WO2022075457A1 - 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極 - Google Patents

電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極 Download PDF

Info

Publication number
WO2022075457A1
WO2022075457A1 PCT/JP2021/037407 JP2021037407W WO2022075457A1 WO 2022075457 A1 WO2022075457 A1 WO 2022075457A1 JP 2021037407 W JP2021037407 W JP 2021037407W WO 2022075457 A1 WO2022075457 A1 WO 2022075457A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
silver
particles
aluminum
mass
Prior art date
Application number
PCT/JP2021/037407
Other languages
English (en)
French (fr)
Inventor
修一郎 足立
剛 野尻
剛 早坂
研耶 守谷
クレイグ エイチ. ピーターズ
ブライアン イー. ハーディン
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2022555595A priority Critical patent/JPWO2022075457A1/ja
Publication of WO2022075457A1 publication Critical patent/WO2022075457A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the present invention relates to an electrode forming composition, a solar cell element, and an aluminum / silver laminated electrode.
  • renewable energy examples include solar power, geothermal power, wind power, wave power, tidal power, and biomass.
  • photovoltaic power generation is expected to be an effective solution to the growing energy problem, attracting attention as a clean natural energy that does not emit carbon dioxide during power generation while utilizing inexhaustible solar energy.
  • a crystalline silicon solar cell using a silicon (Si) substrate as a semiconductor substrate is generally used.
  • a current collecting electrode for collecting carriers and a carrier for taking out as an output are used.
  • An output take-out electrode (bus bar electrode) is formed.
  • the current collecting electrode on the light receiving surface is particularly called a finger electrode.
  • a composition for forming a silver (Ag) electrode is used for forming the light receiving surface electrode, and printing of the finger electrode and the bus bar electrode portion is performed individually or collectively.
  • a composition for forming a silver electrode is used for forming the bus bar electrode, and a composition for forming an aluminum (Al) electrode is used for the electrode for collecting current.
  • Each electrode-forming composition contains conductive metal particles, glass particles, various additives and the like.
  • Silver particles are generally used as the conductive metal particles in the composition for forming a silver electrode for forming the light receiving surface electrode and the back surface bus bar electrode.
  • the reasons for this are that the volume resistivity of silver is low (1.47 ⁇ 10-6 ⁇ cm), the silver particles are self-reduced and sintered under the above heat treatment conditions, and the silver particles and the silicon substrate have good ohmic contact.
  • the electrodes formed from the silver particles are excellent in wettability of the solder material, and the wiring material (tab wire or the like) for electrically connecting the solar cell elements can be suitably bonded.
  • the aluminum in the composition for forming an aluminum electrode undergoes a eutectic reaction with silicon and a high concentration diffusion layer (p + ) is formed on the front surface of the back surface.
  • p + high concentration diffusion layer
  • -Si layer, Back Surface Field; BSF Back Surface Field
  • the minority carrier recombination speed on the back surface is as fast as about 3 ⁇ 10 3 cm / s, which is a factor that lowers the power generation performance of the solar cell element. Can be.
  • a PERC (Passivated Emitter, Real Cell) structure has attracted attention as a measure for reducing backside recombination loss (see, for example, Patent Document 1).
  • the PERC structure is characterized in that the ohmic contact portion between the back surface electrode and the Si substrate, which is one of the causes of the back surface recombination, is restricted to a point shape or a line shape, and all parts other than the contact portion of the back surface electrode are covered with a passivation film. It has been.
  • the back surface passivation film that can be used for the PERC structure include an amorphous aluminum oxide ( AlOX ) film produced by an atomic layer deposition method (ALD) or a CVD method (Chemical Vapor Deposition). It is known that the AlOX film obtained by the ALD method or the CVD method has a large negative fixed charge, and the PERC structure solar cell element to which this is applied is known to exhibit high power generation performance.
  • a double-sided light receiving (biaxial) type solar cell element can be realized.
  • One of the advantages of the biological-PERC structure is that the light inserted into the back surface can be utilized.
  • an electrode forming composition containing silver and an electrode forming containing aluminum are formed.
  • the composition for use is printed on a predetermined area of the substrate, dried, and then heat-treated collectively.
  • the aluminum oxide (Al 2 O 3 ) film formed on the surface of the aluminum electrode and the solder covering the wiring material have poor wettability, so that the wiring material cannot be directly bonded to the aluminum electrode.
  • the composition for forming a silver electrode is applied.
  • the connection failure of the wiring material may occur due to the step (difference in thickness) between the aluminum electrode and the silver electrode as the back surface output extraction electrode, or as a solar cell. Reliability may be compromised.
  • the silver electrode as the output take-out electrode is not continuously formed along the connection direction of the wiring material from the viewpoint of reducing the amount of the composition for forming the silver electrode, and is not formed continuously along the connection direction of the wiring material.
  • an aluminum electrode may be formed between the silver electrode and the silver electrode.
  • the thickness of the aluminum electrode after heat treatment (after firing) is generally 20 ⁇ m to 40 ⁇ m, and the thickness of the silver electrode as the back surface output take-out electrode may be 2 ⁇ m to 5 ⁇ m.
  • the aluminum electrode formed on the substrate and the silver electrode formed on the aluminum electrode are laminated. It is considered effective to form an electrode (hereinafter, also referred to as an aluminum / silver laminated electrode).
  • an electrode forming composition containing aluminum particles is applied to the back surface of a substrate in a desired pattern to form an aluminum particle-containing film, and then an electrode containing silver is formed. It is conceivable to print the composition on an aluminum particle-containing film in a desired pattern and heat the composition all at once.
  • the aluminum / silver laminated electrodes have sufficient reliability because they are less likely to deteriorate even when placed in a high temperature and high humidity environment.
  • one embodiment of the present disclosure provides an electrode forming composition capable of forming an aluminum / silver laminated electrode having excellent reliability in a high temperature and high humidity environment. Further, the present invention provides a solar cell element and an aluminum / silver laminated electrode obtained by using this electrode forming composition.
  • Means for carrying out the above tasks include the following embodiments.
  • the phosphorus oxide content is 20.0% by mass or more, and the boron oxide ( B2O 3 ) content is lower than the phosphorus oxide content.
  • the boron oxide-containing glass particles have a boron oxide content of 3.0% by mass or more and a phosphorus oxide content lower than the boron oxide content, according to ⁇ 2>.
  • Composition for forming electrodes ⁇ 5> The electrode-forming composition according to any one of ⁇ 1> to ⁇ 4>, wherein the bismuth-containing particles contain at least one selected from the group consisting of metal bismuth, bismuth alloy, and bismuth oxide.
  • the mass ratio (Bi / G ratio) of the content of the bismuth-containing particles to the content of the glass particles is 0.5 to 10.0.
  • the semiconductor substrate, the passivation film provided on the semiconductor substrate, and the heat-treated product of the electrode forming composition according to any one of ⁇ 1> to ⁇ 10> provided on the passivation film are included.
  • a solar cell element having an aluminum / silver laminated electrode.
  • a first electrode containing aluminum and a second electrode containing silver arranged on the first electrode are provided, and the first electrode further contains a bismuth oxide phase and a glass phase containing phosphorus.
  • an electrode forming composition capable of forming an aluminum / silver laminated electrode having excellent reliability in a high temperature and high humidity environment. Further, a solar cell element and an aluminum / silver laminated electrode obtained by using this electrode forming composition are provided.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray analysis
  • the term "process” is included in this term not only as an independent process but also as long as the purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated by using "-" in the present disclosure indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means quantity.
  • equivalent components are designated by the same reference numerals.
  • the term “laminated” refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • the term “cross section” means a surface obtained by cutting a solar cell element perpendicular to the surface direction of the semiconductor substrate.
  • heat treatment includes heating (firing, etc.) performed under the condition that the particles contained in the object to be heat-treated are sintered or melted.
  • the electrode-forming composition according to an embodiment of the present disclosure is an electrode-forming composition containing silver-containing particles, bismuth-containing particles, and phosphorus-containing glass particles.
  • the electrode forming composition containing silver-containing particles, bismuth-containing particles, and phosphorus-containing glass particles contains silver-containing particles and bismuth-containing particles, and does not contain phosphorus-containing glass particles. It is possible to form an aluminum / silver laminated electrode having excellent reliability in a high temperature and high humidity environment as compared with the composition for use. The reason is not always clear, but it can be considered as follows.
  • the electrode-forming composition containing the silver-containing particles and the bismuth-containing particles is applied to a desired region on the aluminum particle-containing film formed on the substrate, dried if necessary, and then heat-treated.
  • the silver-containing particles contained in the electrode-forming composition are sintered to form a silver electrode
  • the aluminum particles contained in the aluminum particle-containing film are sintered to form an aluminum electrode.
  • the bismuth oxide phase formed by oxidizing bismuth contained in the bismuth-containing particles exhibits a property of suppressing mutual diffusion at the interface between the silver electrode and the aluminum electrode (hereinafter, also referred to as diffusion barrier property). Therefore, the concentration of aluminum in the silver electrode is suppressed to a low level, and the wettability to the wiring material is maintained well.
  • the bismuth-containing particles is transferred to the aluminum particle-containing film by heat treatment to form a bismuth oxide phase between the aluminum particles or between the aluminum particles and the substrate.
  • This improves the bulk strength of the formed aluminum electrode and the adhesion to the substrate.
  • the aluminum / silver laminated electrode is placed in a high temperature and high humidity environment, a part of the bismuth oxide phase is reduced to metal bismuth at the interface between the aluminum electrode and the silver electrode, and a volume change occurs. As a result, cracks or the like occur at the interface between the aluminum electrode and the silver electrode, which causes the reliability of the electrode to deteriorate.
  • the melt of the phosphorus-containing glass particles reacts with the bismuth oxide phase at the interface between the aluminum electrode and the silver electrode by heat treatment to reduce bismuth oxide. Acts to suppress. As a result, it is considered that the state of the interface between the aluminum electrode and the silver electrode is maintained well, and the reliability in a high temperature and high humidity environment is improved.
  • the electrode forming composition contains silver-containing particles.
  • the silver-containing particles contained in the electrode forming composition may be only one kind or two or more kinds.
  • the silver-containing particles are not particularly limited as long as they are silver-containing particles. Among them, at least one selected from silver particles and silver alloy particles is preferable, and at least one selected from silver particles and silver alloy particles having a silver content of 50.0% by mass or more is preferable.
  • the silver content in silver particles is not particularly limited. For example, it can be 95.0% by mass or more of the whole silver particles, preferably 97.0% by mass or more, and more preferably 99.0% by mass or more.
  • the silver alloy particles are not particularly limited as long as they are alloy particles containing silver. Above all, from the viewpoint of the melting point and sinterability of the silver alloy particles, the silver content is preferably 50.0% by mass or more, more preferably 60.0% by mass or more, and 70. It is more preferably 0% by mass or more, and particularly preferably 80.0% by mass or more. The content may be 95.0% by mass or less.
  • silver alloys include Ag-Pd-based alloys, Ag-Pd-Au-based alloys, Ag-Pd-Cu-based alloys, Ag-Pd-In-based alloys, Ag-In-based alloys, Ag-Sn-based alloys, and Ag-Zn.
  • system alloys and Ag-Sn-Zn system alloys include system alloys and Ag-Sn-Zn system alloys.
  • the silver-containing particles may or may not contain components that do not correspond to silver and silver alloys. When the silver-containing particles contain a component that does not correspond to silver or a silver alloy, the content thereof can be 3.0% by mass or less in the silver-containing particles, preferably 1.0% by mass or less. ..
  • the particle size of the silver-containing particles is not particularly limited, but the particle size (volume average particle size, hereinafter "D50%") when the accumulation from the small diameter side is 50% in the volume-based particle size distribution obtained by the laser diffraction / scattering method. It is preferably 100 nm or more and 50 ⁇ m or less, more preferably 150 nm or more and 40 ⁇ m or less, and further preferably 200 nm or more and 30 ⁇ m or less.
  • D50% volume average particle size
  • the particle size of the silver-containing particles is measured by a laser diffraction type particle size distribution meter (for example, Beckman Coulter Co., Ltd., LS13 320 type laser scattering diffraction method particle size distribution measuring device). Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) in the range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is injected into the cell and measured at 25 ° C. The particle size distribution is measured with the refractive index of the solvent as 1.48.
  • a laser diffraction type particle size distribution meter for example, Beckman Coulter Co., Ltd., LS13 320 type laser scattering diffraction method particle size distribution measuring device. Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) in the range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dis
  • the shape of the silver-containing particles is not particularly limited, and may be substantially spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of sinterability between silver-containing particles, it is preferably substantially spherical, flat or plate-shaped.
  • the electrode forming composition contains bismuth-containing particles.
  • the bismuth-containing particles contained in the electrode forming composition may be only one kind or two or more kinds.
  • the bismuth-containing particles are not particularly limited as long as they are particles containing bismuth. Among them, at least one selected from metal bismuth particles, bismuth alloy particles and oxide bismuth particles is preferable, and metal bismuth particles, bismuth alloy particles having a bismuth content of 40.0% by mass or more and bismuth oxide particles are selected. It is preferable that the amount is at least one. In the present disclosure, when the bismuth-containing particles are glassy (that is, glass particles containing bismuth), they are not considered to be bismuth-containing particles.
  • the content of bismuth in the metal bismuth particles is not particularly limited. For example, it can be 95.0% by mass or more of the total metal bismuth particles, preferably 97.0% by mass or more, and more preferably 99.0% by mass or more.
  • the bismuth alloy particles are not particularly limited as long as they are alloy particles containing bismuth.
  • the content of bismuth is preferably 40.0% by mass or more, more preferably 50.0% by mass or more, and 60. It is more preferably 0% by mass or more, and particularly preferably 70.0% by mass or more. The content may be 95.0% by mass or less.
  • bismuth alloy examples include Bi-Sn-based alloys, Bi-Sn-Cu-based alloys, Bi-Pb-Sn-based alloys, Bi-Cd-based alloys, and the like.
  • the bismuth oxide particles include bismuth trioxide (Bi 2 O 3 ) particles.
  • the bismuth oxide particles are preferably used in combination with the metal bismuth particles from the viewpoint of exhibiting sufficient diffusion barrier properties and lowering the resistance of the aluminum / laminated electrode itself.
  • the bismuth-containing particles may or may not contain components that do not correspond to metal bismuth, bismuth alloy, and bismuth oxide.
  • the content of the bismuth-containing particles is 3.0 in the bismuth-containing particles from the viewpoint of the formation of the bismuth oxide phase and the barrier property of aluminum / silver. It can be mass% or less, preferably 1.0 mass% or less.
  • the particle size of the bismuth-containing particles is not particularly limited, but the volume average particle size is preferably 100 nm or more and 50 ⁇ m or less, more preferably 150 nm or more and 40 ⁇ m or less, and further preferably 200 nm or more and 30 ⁇ m or less.
  • the volume average particle size is preferably 100 nm or more and 50 ⁇ m or less, more preferably 150 nm or more and 40 ⁇ m or less, and further preferably 200 nm or more and 30 ⁇ m or less.
  • the shape of the bismuth-containing particles is not particularly limited, and may be substantially spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of diffusion barrier property, it is preferably substantially spherical, flat or plate-shaped.
  • the mass ratio (Bi / Ag ratio) of the content of the bismuth-containing particles to the content of the silver-containing particles in the electrode forming composition is preferably 0.30 to 1.40. It is more preferably 0.35 to 1.30, further preferably 0.40 to 1.20, and even more preferably 0.45 to 1.10.
  • the electrode-forming composition contains phosphorus-containing glass particles (hereinafter, also referred to as phosphorus-containing glass particles).
  • phosphorus-containing glass particles include glass particles containing phosphorus oxide ( P2O 5 ) , and phosphate glass is preferable.
  • the phosphate glass means a glass in which phosphorus oxide ( P2O 5 ) is used as a network-forming oxide.
  • the phosphorus-containing glass particles may contain phosphorus oxide and an oxide other than phosphorus oxide.
  • Oxides other than phosphorus oxide contained in the glass constituting the phosphorus-containing glass particles include silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and vanadium oxide (V 2 ).
  • the content of phosphorus oxide (P 2 O 5 ) as an oxide is 20.0% by mass or more as a whole from the viewpoint of the function of the glass. .. Further, it is preferable that the content of boron oxide (B 2 O 3 ) as an oxide is lower than the content of phosphorus oxide.
  • the electrode forming composition preferably further contains boron-containing glass particles (hereinafter, also referred to as boron-containing glass particles), and more preferably contains borate glass.
  • the borate glass means a glass in which boron oxide (B 2 O 3 ) is used as a network-forming oxide.
  • the composition for forming an electrode further contains boron-containing glass particles, it includes both a case where it contains phosphorus-containing glass particles and a boron-containing glass particle, and a case where it contains phosphorus and boron-containing glass particles.
  • the composition for forming an electrode preferably contains phosphorus-containing glass particles and boron-containing glass particles, respectively, and is a phosphate. It is more preferable to contain glass particles and borate glass particles, respectively.
  • the reason why the power generation performance of the solar cell element is improved by containing the boron-containing glass particles in the electrode forming composition is not necessarily clear, but it is considered as follows.
  • the bismuth oxide phase formed by the bismuth-containing particles may dissolve the SiNX film for protecting the passivation film on the surface of the substrate on which the aluminum particle-containing film is formed, thereby reducing the passivation effect.
  • the composition for forming an electrode contains boron-containing glass particles, the boron-containing glass particles are melted by heat treatment, and a part of the melt reaches the surface of the substrate on which the aluminum particle-containing film is arranged.
  • the bismuth concentration of the bismuth oxide phase near the surface of the substrate is lowered, the dissolution of the SiNX film by the bismuth oxide phase is suppressed, and the power generation performance is maintained well.
  • the content of the phosphorus-containing glass particles with respect to the total of the phosphorus-containing glass particles and the boron-containing glass particles is 3.0% by mass to 50. It is preferably 0% by mass, more preferably 3.5% by mass to 45.0% by mass, still more preferably 4.0% by mass to 40.0% by mass.
  • the content of the phosphorus-containing glass particles is 3.0% by mass or more with respect to the total of the phosphorus-containing glass particles and the boron-containing glass particles.
  • the reliability of the aluminum / silver laminated electrode in a high temperature and high humidity environment is more effective. It tends to improve.
  • the content of the phosphate glass particles to 50.0% by mass or less, the dissolution of the SiNX film by the bismuth oxide phase is more effectively suppressed, and the power generation performance is maintained well.
  • the boron-containing glass particles may contain boron oxide (B 2 O 3 ) and an oxide other than boron oxide.
  • the oxide other than boron oxide contained in the glass constituting the boron-containing glass particles include oxides exemplified as oxides that may be contained in the glass constituting the phosphorus-containing glass particles.
  • B 2 O 3 it is preferable to contain at least one selected from SiO 2 , Al 2 O 3 , ZnO, Bi 2 O 3 , Cu O and Li 2 O, and bismuth-containing borate glass (bismuth-containing borate glass).
  • B 2 O 3 -Bi 2 O 3 system and the like are given as preferable examples.
  • glass having such a composition the softening point is low, and the adhesion of the electrode obtained after heat treatment (firing) to the substrate tends to be further improved.
  • the content of boron oxide (B 2 O 3 ) as an oxide is 3.0% by mass or more as a whole from the viewpoint of the function of the glass. preferable. Further, it is preferable that the content of phosphorus oxide (P 2 O 5 ) as an oxide is lower than the content of boron oxide.
  • the glass particles contained in the electrode forming composition may be only one kind or two or more kinds.
  • all of the glass particles may contain phosphorus, or at least one of the glass particles may contain phosphorus.
  • lead-free glass containing substantially no lead examples include lead-free glass described in paragraphs 0024 to 0025 of JP-A-2006-313744, lead-free glass described in JP-A-2009-188281, and the like.
  • the softening point of the glass particles is not particularly limited, but is preferably 650 ° C or lower, and more preferably 500 ° C or lower.
  • the softening point of the glass particles is measured by a conventional method using a thermomechanical analyzer (TMA).
  • the particle size of the glass particles is not particularly limited, but the volume average particle size is preferably 0.2 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 8 ⁇ m or less.
  • the particle size of the glass particles is 0.2 ⁇ m or more, the workability at the time of manufacturing the composition for forming an electrode is improved. Further, when the thickness is 10 ⁇ m or less, the dispersibility in the electrode forming composition is improved, and the uniformity of the aluminum / silver laminated electrode is also improved.
  • the particle size of the glass particles is measured in the same manner as the particle size of the silver-containing particles.
  • the shape of the glass particles is not particularly limited, and may be substantially spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of wettability with silver-containing particles and bismuth-containing particles, it is preferably substantially spherical, flat or plate-shaped.
  • the content of the glass particles contained in the electrode forming composition (the total content of the phosphorus-containing glass particles and the phosphorus-free glass particles when they are contained) is 3.0% by mass of the entire electrode forming composition. It is preferably from 15.0% by mass, more preferably from 3.5% by mass to 14.0% by mass, and even more preferably from 4.0% by mass to 12.0% by mass.
  • the content of the glass particles is 3.0% by mass or more, good reliability in a high temperature and high humidity environment tends to be maintained.
  • the silver concentration on the surface of the silver electrode is sufficiently secured, and the connection strength of the connecting material (wetting property of the solder) tends to be well maintained. It is in.
  • the mass ratio (Bi / G ratio) of the content of the bismuth-containing particles to the content of the glass particles contained in the electrode forming composition is preferably 0.5 to 15.0, preferably 1.0 to 12. It is more preferably 0, and even more preferably 1.5 to 10.0.
  • the electrode forming composition may contain at least one of a solvent and a resin. By containing at least one of the solvent and the resin in the electrode forming composition, the liquidity (viscosity, surface tension, etc.) of the electrode forming composition is adjusted within a range suitable for the applying method when imparting to a substrate or the like. can do.
  • the solvent or resin contained in the electrode forming composition may be only one type or two or more types, respectively.
  • the solvent examples include hydrocarbon solvents such as hexane, cyclohexane and toluene, halogenated hydrocarbon solvents such as dichloroethylene, dichloroethane and dichlorobenzene, and cyclic compounds such as tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, 1,3-dioxolane and trioxane.
  • hydrocarbon solvents such as hexane, cyclohexane and toluene
  • halogenated hydrocarbon solvents such as dichloroethylene, dichloroethane and dichlorobenzene
  • cyclic compounds such as tetrahydrofuran, furan, tetrahydropyran, pyran, dioxane, 1,3-dioxolane and trioxane.
  • Ether solvent amide solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, sulfoxide solvent such as dimethylsulfoxide and diethylsulfoxide, ketone solvent such as acetone, methylethylketone, diethylketone, cyclohexanone, ethanol, 2-propanol, Alcohol solvents such as 1-butanol and diacetone alcohol, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-trimethyl-1,3 pentanediol monopropionate, 2,2 , 4-trimethyl-1,3-pentanediol monobutylate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate and other polyvalent alcohol ester solvents, butyl cell solve, diethylene glycol monobutyl ether, diethylene glycol diethyl ether and other polyvalent alcohols.
  • Examples thereof include ether solvents, ⁇ -terpineol, ⁇ -terpineol, milsen, aloosimene, limonene, dipentene, ⁇ -pinene, ⁇ -pinene, tarpineol, carboxylic, osimene, ferlandren and the like.
  • the solvent is selected from the group consisting of an ester solvent of a polyhydric alcohol, a terpene solvent and an ether solvent of a polyhydric alcohol from the viewpoint of imparting property (for example, coatability or printability) of the composition for forming an electrode. It is preferable to contain at least one kind, and it is more preferable to contain at least one kind selected from the group consisting of an ester solvent of a polyhydric alcohol and a terpene solvent.
  • the resin is not particularly limited as long as it is a resin that can be thermally decomposed by heat treatment, and may be a natural polymer or a synthetic polymer.
  • cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose and nitrocellulose, polyvinyl alcohol compounds, polyvinyl pyrrolidone compounds, acrylic resins, vinyl acetate-acrylic acid ester copolymers, butyral resins such as polyvinyl butyral, and phenol-modified alkyds.
  • examples thereof include resins, alkyd resins such as castor oil fatty acid-modified alkyd resins, epoxy resins, phenol resins, and rosin ester resins.
  • the resin contains at least one selected from the group consisting of cellulose resin and acrylic resin.
  • the weight average molecular weight of the resin is not particularly limited.
  • the weight average molecular weight of the resin is preferably 5000 to 500,000, more preferably 10,000 to 300,000.
  • the increase in the viscosity of the electrode forming composition tends to be suppressed. It can be considered that this is because, for example, the three-dimensional repulsive action when the resin is adsorbed on the particles is sufficient and the aggregation of the resin is suppressed.
  • the weight average molecular weight of the resin is 500,000 or less, the resin is suppressed from aggregating in the solvent, and the increase in the viscosity of the electrode forming composition tends to be suppressed.
  • the weight average molecular weight of the resin is 500,000 or less, it is suppressed that the resin does not burn and remains as a foreign substance when the electrode-forming composition is heat-treated, and there is a tendency that an electrode having a lower resistivity can be formed.
  • the weight average molecular weight of the resin is obtained by converting the molecular weight distribution measured by GPC (gel permeation chromatography) using a standard polystyrene calibration curve.
  • the calibration curve is approximated in three dimensions using a 5-sample set of standard polystyrene (PStQuick MP-H, PStQuick B, Tosoh Corporation).
  • PStQuick MP-H standard polystyrene
  • the content of the solvent and the resin can be selected according to the desired liquid physical characteristics of the electrode forming composition, the type of the solvent and the resin to be used, and the like.
  • the total content of the solvent and the resin is preferably 3.0% by mass to 70.0% by mass, and preferably 20.0% by mass to 55.0% by mass, based on the entire composition for forming the electrode. More preferably, it is 30.0% by mass to 50.0% by mass.
  • the total content of the solvent and the resin is within the above range, the aptitude for applying the electrode-forming composition to the substrate is improved, and an electrode having a desired width and height is more easily formed. Tend to be able to.
  • the content ratio of the solvent and the resin shall be appropriately selected according to the type of the solvent and the resin used so that the electrode forming composition has the desired liquid physical characteristics. Can be done.
  • the composition for forming an electrode is made of silver-containing particles, bismus-containing particles and glass particles from the viewpoints of the sintering property of silver-containing particles, the diffusion barrier property of bismuth-containing particles, and the improvement of the strength and adhesion of aluminum electrodes by glass particles.
  • the total content is preferably 30.0% by mass or more and 97.0% by mass or less, more preferably 45.0% by mass or more and 80.0% by mass or less, and 50. It is more preferably 0.0% by mass or more and 70.0% by mass or less.
  • the electrode-forming composition may further contain other components usually used in the art.
  • other components include plasticizers, dispersants, surfactants, thickeners, inorganic binders, metal oxides (excluding bismuth oxide), ceramics, organic metal compounds and the like.
  • the method for producing the electrode-forming composition is not particularly limited.
  • silver-containing particles, bismuth-containing particles, glass particles, and other components such as solvents and resins used as needed may be dispersed and mixed using commonly used dispersion methods and kneading methods. Can be done.
  • the dispersion method and the kneading method are not particularly limited, and can be appropriately selected and applied from the commonly used dispersion methods and mixing methods.
  • the aluminum / silver laminated electrode according to the embodiment of the present disclosure includes a first electrode containing aluminum and a second electrode containing silver arranged on the first electrode, and the first electrode is bismuth oxide.
  • An aluminum / silver laminated electrode further comprising a phase and a glass phase containing phosphorus.
  • the first electrode contains the bismuth oxide phase and the glass phase can be confirmed by using a transmission electron microscope. Specifically, when the magnification is expanded to several hundred thousand times, the presence of the bismuth oxide phase can be confirmed by the presence of the lattice fringes (arrangement of atoms) of the crystal Bi 2 O 3 . In addition, the presence of the glass phase can be confirmed by the presence of a structure peculiar to amorphous.
  • the glass phase contained in the first electrode further contains boron (B).
  • the aluminum / silver laminated electrode having the above configuration is preferably arranged on the substrate constituting the solar cell element, and more preferably arranged on the side corresponding to the back surface of the solar cell element.
  • “on the substrate” also includes a film such as a passivation film formed on the surface of the substrate and a protective film of the passivation film.
  • the thickness of the first electrode containing aluminum (or the minimum thickness if the thickness is not constant) may be, for example, in the range of 0.5 ⁇ m to 50.0 ⁇ m.
  • the thickness of the second electrode containing silver (or the minimum thickness if the thickness is not constant) may be, for example, in the range of 0.5 ⁇ m to 30.0 ⁇ m.
  • FIG. 1 is a schematic cross-sectional view of a back surface electrode of a solar cell element having a PERC structure produced by using an electrode forming composition. As shown in FIG.
  • a passivation film 18 and a protective film 19 are formed on the surface of the semiconductor substrate 1 in this order, and an aluminum electrode (also referred to as an aluminum particle sintered portion) 5 and aluminum are formed on the passivation film 18 and the protective film 19 (SiN X) in this order.
  • / Silver laminated electrode 8 is formed.
  • the aluminum / silver laminated electrode 8 includes a portion where the aluminum electrode and the silver electrode (also referred to as a silver particle sintered portion) are laminated.
  • a silver particle sintered portion may be formed on the outermost surface of the aluminum / silver laminated electrode 8.
  • the aluminum electrode 5 and the aluminum electrode constituting the aluminum / silver laminated electrode 8 may be formed at the same time.
  • the method for producing an aluminum / silver laminated electrode using the electrode forming composition is not particularly limited. For example, a step of forming an aluminum particle-containing film on a semiconductor substrate, a step of applying an electrode-forming composition onto the aluminum particle-containing film and drying it as necessary, and forming an aluminum particle-containing film and an electrode. Examples thereof include a step of heat-treating the composition for use and a method of carrying out the steps in this order.
  • the aluminum particle-containing film may be formed on a semiconductor substrate on which a passivation film and a protective film (SiN X ) are formed.
  • the aluminum particle-containing film may be formed by drying the aluminum electrode forming composition applied onto the semiconductor substrate.
  • the semiconductor substrate may be a silicon (Si) substrate.
  • the method for applying the aluminum electrode forming composition to the semiconductor substrate includes a screen printing method, an inkjet method, a dispenser method and the like. From the viewpoint of productivity, the screen printing method is preferable.
  • heat treatment conditions usually used in the art can be applied.
  • Examples of the method for applying the electrode forming composition onto the aluminum particle-containing film include a screen printing method, an inkjet method, a dispenser method, and the like, and the screen printing method is preferable from the viewpoint of productivity.
  • the electrode forming composition When the electrode forming composition is applied onto the aluminum particle-containing film by a screen printing method, the electrode forming composition is preferably in the form of a paste.
  • the paste-like electrode-forming composition preferably has a viscosity in the range of 20 Pa ⁇ s to 1000 Pa ⁇ s. The viscosity of the electrode forming composition is measured at 25 ° C. using a Brookfield HBT viscometer.
  • the amount of the electrode-forming composition applied to the aluminum particle-containing film can be appropriately selected according to the size of the electrode to be formed.
  • the amount of the electrode-forming composition applied can be 1.0 mg / cm 2 to 20.0 mg / cm 2 , preferably 2.0 mg / cm 2 to 15.0 mg / cm 2 .
  • the heat treatment conditions for forming the aluminum / silver laminated electrode using the electrode forming composition the heat treatment conditions usually used in the art can be applied.
  • the heat treatment temperature a range of 700 ° C. to 900 ° C., which is used when manufacturing a general crystalline silicon solar cell element, can be preferably used.
  • the heat treatment time can be appropriately selected according to the heat treatment temperature, and can be, for example, 1 second to 20 seconds.
  • any one that can be heated to the above temperature can be appropriately adopted, and examples thereof include an infrared heating furnace, a tunnel furnace, and the like.
  • the infrared heating furnace is highly efficient because electric energy is input to the heating material in the form of electromagnetic waves and converted into heat energy, and rapid heating in a shorter time is possible. Furthermore, since there are few products due to combustion and non-contact heating is used, it is possible to suppress contamination of the generated electrodes.
  • the tunnel furnace automatically and continuously transports the sample from the inlet to the outlet and heat-treats it, it is possible to heat-treat more uniformly by classifying the furnace body and controlling the transport speed. From the viewpoint of the power generation performance of the solar cell element, it is preferable to heat-treat in a tunnel furnace.
  • FIGS. 2A to 2C An example of a typical method for manufacturing an aluminum / silver laminated electrode is shown in FIGS. 2A to 2C.
  • the paste-like aluminum electrode forming composition 2 is applied to one surface of the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN X ) 19 are formed by a screen printing method. do. This is heated at a temperature of about 150 ° C. to remove the solvent in the composition 2 for forming an aluminum electrode.
  • the aluminum particle-containing film 3 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film ( SiNX ) 19 are formed.
  • the electrode-forming composition 4 is applied to a desired region on the aluminum particle-containing film 3, heated at a temperature of about 150 ° C., and dried.
  • the electrode forming composition 4 When the electrode forming composition 4 is in the form of a paste, it is applied by a screen printing method in the same manner as the aluminum electrode forming composition 2. Then, this is heat-treated under the above-mentioned conditions. As a result, as shown in FIG. 2C, the aluminum / silver laminated electrode 8 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN X ) 19 are formed.
  • the aluminum / silver laminated electrode 8 has a silver particle sintered portion 7 arranged on the outermost surface, and is between the silver particle sintered portion 7 and the semiconductor substrate 1 on which the passion film 18 and the protective film (SiN X ) 19 are formed.
  • the aluminum particle sintering portion / oxide bismuth phase mixing portion 6 is arranged in the.
  • FIG. 3 is an enlarged view of the formed portion of the aluminum / silver laminated electrode in FIG. 2C.
  • the aluminum particle sintered portion / bismuth oxide phase mixing portion 6 includes an aluminum particle sintered portion 5 and a bismuth oxide phase 9 filled in a void portion of the aluminum particle sintered portion 5.
  • the reason why the aluminum particle sintered portion / bismuth oxide phase mixing portion 6 has such a configuration is that, as described above, a part or the whole of the bismuth-containing particles in the electrode forming composition 4 is heat-treated to form an aluminum particle-containing film. This is to move to 3.
  • the bismuth oxide phase 9 is arranged so as to separate the silver particle sintering portion 7 and the aluminum particle sintering portion 5, but the aluminum particles in the aluminum particle sintering portion 5 and the silver particle sintering portion 5 are arranged. A portion in contact with the portion 7 may be partially formed. In this case, the bismuth oxide phase 9 is arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5 to the extent that excessive mutual diffusion between the aluminum particles and the silver particles is suppressed. preferable.
  • the solar cell element according to the embodiment of the present disclosure is aluminum / silver including a semiconductor substrate, a passivation film provided on the semiconductor substrate, and a heat-treated product of the above-mentioned electrode forming composition provided on the passivation film. It is a solar cell element having a laminated electrode.
  • the solar cell element may be provided with a protective film for protecting the passivation film provided on the semiconductor substrate, if necessary.
  • the aluminum / silver laminated electrode of the solar cell element may be provided on the back surface of the semiconductor substrate. Further, the solar cell element may have a PERC structure.
  • FIGS. 4, 5A, 5B, 6A, 6B and 6C An example of a typical solar cell element is shown in FIGS. 4, 5A, 5B, 6A, 6B and 6C.
  • FIG. 4 is a schematic plan view of the light receiving surface side of the solar cell element.
  • the light receiving surface electrode 14 shown in FIG. 4 is generally formed by using a silver electrode paste. Specifically, a silver electrode paste is applied onto the antireflection film 13 in a desired pattern, dried, and then heat-treated at about 700 ° C. to 900 ° C. in the atmosphere to form the paste.
  • FIG. 5A is a schematic plan view of the back surface of the solar cell element.
  • An aluminum electrode 5 is formed on the entire surface of the back surface of the solar cell element shown in FIG. 5A.
  • FIG. 5B is a schematic plan view of the back surface of the solar cell element when the aluminum finger electrode 20 and the aluminum bus bar electrode 21 are formed on a part of the back surface.
  • the electrode forming composition is applied in a desired pattern and dried. Next, this is heat-treated at about 700 ° C. to 900 ° C. in the atmosphere to form an aluminum / silver laminated electrode. The heat treatment may be performed collectively with the heat treatment for forming the light receiving surface electrode 14 described above.
  • an n + type diffusion layer 12 is formed near the surface of one surface of the semiconductor substrate 1, and an output extraction electrode 14 and reflection are formed on the n + type diffusion layer 12.
  • the prevention film 13 is formed.
  • FIG. 6A is a cut surface of the AA'part in FIG. 5A.
  • the back surface has the structure shown in FIG. 6A.
  • FIG. 6B is a cut surface of the BB'part in FIG. 5B. If the BB'cross section does not cross the opening of the backside passivation membrane, the backside has the structure shown in FIG. 6B.
  • FIG. 6C is a cut surface of the CC'part in FIG. 5B. When the CC'cross section crosses the opening of the back surface passivation film (aluminum finger electrode 20), the back surface has the structure shown in FIG. 6C.
  • the glass particles contained in the silver electrode paste forming the light receiving surface electrode 14 by heat treatment react (fire through) with the antireflection film 13 to cause a light receiving surface.
  • the electrode 14 and the n + type diffusion layer 12 are electrically connected (omic contact).
  • the aluminum in the aluminum electrode 5, the aluminum finger electrode 20, or the aluminum bus bar electrode 21 is diffused to a part of the back surface of the semiconductor substrate 1 (the portion where the back surface passivation film film-forming portion is removed by a laser or the like) by heat treatment.
  • the p + type diffusion layer 15 an ohmic contact is partially formed between the semiconductor substrate 1 and the aluminum electrode 15.
  • the shape of the glass particles was determined by observing using a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Corporation.
  • the particle size (D50%) of the glass particles was calculated using a Beckman Coulter Co., Ltd., LS13 320-type laser scattering diffraction method particle size distribution measuring device (measurement wavelength: 632 nm).
  • the softening point of the glass particles was determined by a differential thermal (DTA) curve using a DT-60H differential thermal / thermogravimetric simultaneous measuring device manufactured by Shimadzu Corporation. Specifically, in the DTA curve, the softening point can be estimated from the endothermic portion.
  • composition 1 for forming an electrode Silicon dioxide (SiO 2 ) 1.3% by mass, boron oxide (B 2 O 3 ) 6.0% by mass, bismuth oxide (Bi 2 O 3 ) 75.0% by mass ,
  • a borate glass composed of 13.5% by mass of zinc oxide (ZnO) and 4.2% by mass of copper oxide (CuO) (hereinafter, may be abbreviated as "GB01") was obtained.
  • the softening point of the obtained glass GB01 was 380 ° C.
  • glass GB01 particles having a particle diameter (D50%) of 3.9 ⁇ m were obtained.
  • the shape was substantially spherical.
  • Aluminate glass (hereinafter, may be abbreviated as "GP01") was obtained.
  • the softening point of the obtained glass GP01 was 340 ° C.
  • glass GP01 particles having a particle diameter (D50%) of 8.0 ⁇ m were obtained.
  • the shape was substantially spherical.
  • Silver particles (Ag; particle size (D50%) is 0.6 ⁇ m, silver content is 99.9%) by 37.1 parts by mass, metal bismuth particles (Bi; particle size (D50%) is 2.5 ⁇ m, bismus The content is 99.5%) by 24.1 parts by mass, glass GB01 particles by 2.5 parts by mass, glass GP01 particles by 0.8 parts by mass, terpineol (TPO) by 30.4 parts by mass, and ethyl cellulose (EC). 5.1 parts by mass of STD-10 (manufactured by Nissin Kasei Co., Ltd.) was mixed and mixed using a roll mill (BR-150HCV manufactured by Imex) to form a paste to prepare an electrode forming composition 1.
  • BR-150HCV manufactured by Imex
  • n + type diffusion layer, texture and antireflection (SiN X ) film are formed on the light receiving surface, and passivation is formed on the surface opposite to the light receiving surface (hereinafter, also referred to as “back surface”).
  • a 160 ⁇ m-thick p-type silicon single crystal substrate in which an aluminum oxide (AlO X ) film and a protective film (SiN X ) film were formed in this order was prepared and cut into a size of 158.75 mm ⁇ 158.75 mm. rice field.
  • the portion of the passivation film / protective film on the back surface where the aluminum finger electrode was formed was removed by a laser to expose the silicon substrate.
  • a composition for forming a silver electrode (manufactured by DuPont, PV20) containing silver particles and lead glass particles is arranged on the light receiving surface so as to have an electrode pattern as shown in FIG. 4 (actually, the light receiving surface output extraction electrode 14).
  • the number of the particles was set to 9), and the particles were given by screen printing. This was heated in a firing furnace (a tunnel furnace manufactured by Despatch) heated under the conditions of a set temperature of 250 ° C. and a transport speed of 240 inches / min, and the solvent was removed by evaporation.
  • the aluminum electrode forming composition (RX8401 manufactured by Luxing Co., Ltd.) and the electrode forming composition 1 obtained above are subjected to screen printing to the electrodes as shown in FIG. 5B. It was added so as to be a pattern (actually, the number of aluminum bus bar electrodes 21 was set to 9, and the number of aluminum / silver laminated electrodes formed per aluminum bus bar electrode 21 was set to 6). Specifically, the composition for forming an aluminum electrode is printed with a fine line pattern of the aluminum finger electrode 20 and the aluminum bus bar electrode 21, dried to form an aluminum particle-containing film, and then the electrode forming composition 1 is formed on the aluminum particle-containing film. Was printed.
  • the formed portion of the aluminum finger electrode was aligned with the exposed portion of the silicon substrate.
  • the printing conditions of the aluminum electrode forming composition were appropriately adjusted so that the thickness of the aluminum electrode after the heat treatment was 30 ⁇ m.
  • a pattern in which pad shapes having a size of 1.6 mm ⁇ 8.0 mm are arranged is used, and the printing conditions are set so that the coating amount is 8.0 mg / cm 2 . Adjusted appropriately.
  • a solar cell in which a desired electrode was formed was subjected to heat treatment using a firing furnace (a tunnel furnace manufactured by Despatch) under the conditions of a set temperature of a maximum temperature of 870 ° C. and a transport speed of 240 inches / min in an atmospheric atmosphere.
  • the element 1 was manufactured.
  • Example 2 Silicon dioxide (SiO 2 ) 1.6% by mass, boron oxide (B 2 O 3 ) 13.4% by mass, bismuth oxide (Bi 2 O 3 ) 84.1% by mass and lithium oxide (Li 2 O) 0.9.
  • a borate glass composed of% by mass (hereinafter, may be abbreviated as “GB02”) was obtained.
  • the softening point of the obtained glass GB02 was 440 ° C.
  • glass GB02 particles having a particle diameter (D50%) of 1.1 ⁇ m were obtained. The shape was substantially spherical.
  • metal bismuth particles and bismuth oxide particles were used as the bismuth-containing particles. Specifically, silver particles (Ag; particle size (D50%) is 0.6 ⁇ m, silver content is 99.9%) are 30.5 parts by mass, and metal bismuth particles (Bi; particle size (D50%)) are.
  • Example 3 Phosphate glass consisting of 36.0% by mass of phosphorus oxide (P 2 O 5 ), 54.0% by mass of tin oxide (SnO) and 10.0% by mass of boron oxide (B 2 O 3 ) (hereinafter, "GP02"" May be abbreviated as).
  • the softening point of the obtained glass GP02 was 350 ° C.
  • glass GP02 particles having a particle diameter (D50%) of 2.4 ⁇ m were obtained. The shape was substantially spherical.
  • the electrode forming composition 3 was prepared in the same manner as in Example 1 except that the type of glass particles was changed from GP01 to GP02 in Example 1, and the solar cell element 3 was manufactured.
  • Example 4 In Example 2, the content of the metal bismuth particles was changed from 20.8 parts by mass to 19.0 parts by mass, the content of the glass GB02 particles was changed from 2.5 parts by mass to 4.5 parts by mass, and the glass was changed.
  • the electrode forming composition 4 was prepared in the same manner as in Example 2 except that the content of GP01 particles was changed from 0.8 parts by mass to 0.5 parts by mass, and the solar cell element 4 was manufactured.
  • Example 5 Except that in Example 1, the content of silver particles was changed from 37.1 parts by mass to 43.2 parts by mass, and the content of metal bismuth particles was changed from 24.1 parts by mass to 18.0 parts by mass. In the same manner as in Example 1, the electrode forming composition 5 was prepared, and the solar cell element 5 was manufactured.
  • Example 6 In Example 1, the content of silver particles was changed from 37.1 parts by mass to 33.8 parts by mass, the content of metal bismuth particles was changed from 24.1 parts by mass to 22.1 parts by mass, and glass GB01. Same as Example 1 except that the particle content was changed from 2.5 parts by mass to 6.5 parts by mass and the content of glass GP01 particles was changed from 0.8 parts by mass to 2.1 parts by mass. Then, the composition 6 for forming an electrode was prepared, and the solar cell element 6 was manufactured.
  • Example 7 Except that the content of silver particles was changed from 37.1 parts by mass to 55.0 parts by mass and the content of metal bismuth particles was changed from 24.1 parts by mass to 6.2 parts by mass in Example 1. In the same manner as in Example 1, the electrode forming composition 7 was prepared, and the solar cell element 7 was manufactured.
  • Example 8 An electrode-forming composition containing no borate glass particles was prepared. Specifically, the content of silver particles was changed from 37.1 parts by mass to 36.6 parts by mass, the content of metal bismuth particles was changed from 24.1 parts by mass to 23.4 parts by mass, and glass GB01. The same as in Example 1 except that the content of the particles was changed from 2.5 parts by mass to 0 parts by mass and the content of the glass GP01 particles was changed from 0.8 parts by mass to 4.5 parts by mass. , The composition 8 for forming an electrode was prepared, and the solar cell element 8 was manufactured.
  • Example 1 a commercially available silver paste for solar cells (manufactured by DuPont Co., Ltd., PV51M) was used when forming the back electrode. Specifically, the silver paste (PV51M) was first printed on the back surface and dried. The pattern of the back surface output take-out electrode formed by using the silver paste (PV51M) was composed of 1.8 mm ⁇ 8.0 mm, and was printed in the same arrangement as in Example 1. The printing conditions (screen plate mesh, printing speed, and printing pressure) were appropriately adjusted so that the thickness of the back surface output take-out electrode after heat treatment (firing) was 5 ⁇ m.
  • the aluminum electrode forming composition (RX8401) was printed on a place other than the place where the silver paste was printed and dried in the pattern described in Example 1, and dried. After that, heat treatment (firing) was performed in the same manner as in Example 1 to produce a solar cell element C1.
  • Example 2 a solar cell element C2 was produced in the same manner as in Example 1 except that a commercially available silver paste for solar cells (PV51M) was used without using the electrode forming composition 1.
  • PV51M commercially available silver paste for solar cells
  • Example 3 an electrode-forming composition containing no phosphate glass particles was prepared. Specifically, the content of silver particles was changed from 37.1 parts by mass to 37.5 parts by mass, the content of metal bismuth particles was changed from 24.1 parts by mass to 22.5 parts by mass, and glass GB01. The same as in Example 1 except that the content of the particles was changed from 2.5 parts by mass to 4.5 parts by mass and the content of the glass GP01 particles was changed from 0.8 parts by mass to 0 parts by mass. , The composition for forming an electrode C3 was prepared, and the solar cell element C3 was produced.
  • Table 1 summarizes the compositions of the particles contained in the electrode forming compositions used in Examples 1 to 8 and Comparative Example 3.
  • the one in which the wiring material is connected to the backside output take-out electrode is used to change the resistance value of the electrode part in the high temperature and high humidity environment.
  • the wiring material Multi-Tabbing wire manufactured by Ulbrich, Sn-Pb-based eutectic solder coating, the size of the Cu core material is 0.4 mm in diameter
  • the wiring material is placed on the back surface output take-out electrode and placed on the wiring material. It was connected by pressing a soldering iron from the top and melting the solder.
  • probe pins are pressed at equal intervals in the length direction of the wiring material, and using a general-purpose source meter (2400 type, manufactured by Keithley), the average resistance value in the applied voltage range of -0.5V to + 0.5V. was measured. Then, the solar cell element to which the wiring material was connected was placed in a test tank (constant temperature and humidity chamber, PSL-2KPH, manufactured by ESPEC) and held at 85 ° C. and 85% for 100 hours. After that, the resistance value between the wiring materials was measured again, and the reduction rate was calculated. The results are also shown in Table 2.
  • an aluminum / silver laminated electrode as shown in FIG. 7 was formed on the back surface of the solar cell elements manufactured in Examples 1 to 8. Further, as can be seen from the EDX analysis results shown in FIG. 8, a silver particle sintered portion was formed on the outermost surface of the electrode, and a bismuth oxide phase was formed in the void portion of the aluminum electrode. Further, a part of the bismuth oxide phase reached the surface of the substrate in contact with the aluminum / silver laminated electrode.
  • Examples 1 to 8 using the electrode-forming composition containing phosphorus-containing glass particles were compared using the electrode-forming composition containing boron-containing glass particles but not phosphorus-containing glass particles. Compared with Example 3, the rate of increase in the resistance value between the wiring materials was small, showing excellent reliability.
  • Example 1 to 8 As a result of the power generation performance test, the power generation performance of the solar cell elements manufactured in Examples 1 to 8 was almost the same as that of the silver electrode which was not in the state of the aluminum / silver laminated electrode of Comparative Example 1. Further, Examples 1 to 7 containing both phosphorus-containing glass particles and boron-containing glass particles tended to have better power generation performance than Example 8 containing only phosphorus-containing glass particles.

Abstract

銀含有粒子と、ビスマス含有粒子と、リンを含有するガラス粒子と、を含む、電極形成用組成物。

Description

電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
 本発明は、電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極に関する。
 近年、地球温暖化、大気汚染等をはじめとする環境問題への関心が高まっている。中でも地球温暖化問題の対策としては、化石燃料に替わる再生可能エネルギーの需要が高まっている。再生可能エネルギーとしては、太陽光、地熱、風力、波力、潮力、バイオマス等が挙げられる。特に太陽光発電は、無尽蔵な太陽光エネルギーを活用すると同時に、発電の際に二酸化炭素を排出しないクリーンな自然エネルギーとして注目を集め、深刻化するエネルギー問題の有効な解決策として期待されている。
 太陽電池としては、半導体基板としてシリコン(Si)基板を用いた結晶シリコン系太陽電池が一般的である。Si基板を用いた太陽電池セル(太陽電池素子)の受光面及び裏面(受光面と逆の面)のそれぞれには、キャリアを回収するための集電用電極と、キャリアを出力として取り出すための出力取出し電極(バスバー電極)とが形成される。受光面の集電用電極は特に、フィンガー電極と呼ばれる。受光面電極の形成には、銀(Ag)電極形成用組成物が用いられ、フィンガー電極及びバスバー電極部の印刷は、個別又は一括で行われる。裏面については、バスバー電極の形成は銀電極形成用組成物が、集電用電極にはアルミニウム(Al)電極形成用組成物がそれぞれ用いられる。各電極形成用組成物には、導電性金属粒子、ガラス粒子及び種々の添加剤等が含有される。
 受光面電極及び裏面バスバー電極を形成するための銀電極形成用組成物には、前記導電性金属粒子として、銀粒子が一般的に用いられている。この理由として、銀の体積抵抗率が低い(1.47×10-6Ωcm)こと、上記熱処理条件において銀粒子が自己還元して焼結すること、銀粒子とシリコン基板が良好なオーミックコンタクトを形成すること及び銀粒子から形成された電極がはんだ材料の濡れ性に優れ、太陽電池素子間を電気的に接続する配線材料(タブ線等)を好適に接着可能であることが挙げられる。
 アルミニウム電極形成用組成物を用いて裏面の集電用電極を形成する際、アルミニウム電極形成用組成物中のアルミニウムが、シリコンとの共晶反応を経て裏面の表面に高濃度拡散層(p-Si層、Back Surface Field;BSF)を形成する。これにより、p型シリコン基板中の少数キャリアである電子を受光面側に追い返す構造が付与され、キャリア再結合の確率を低減することができる。
 しかしながら、従来のアルミニウム電極形成用組成物を用いた裏面電極/BSF構造では、裏面の少数キャリア再結合速度は3×10cm/s程度と速く、太陽電池素子の発電性能を低下させる要因になり得る。
 裏面再結合損失の低減策として、PERC(Passivated Emitter, Rear Cell)構造が注目されている(例えば、特許文献1参照)。PERC構造は、裏面再結合の一因である裏面電極とSi基板間のオーミックコンタクト部をポイント状又はライン状に制限しているのが特徴で、裏面電極のコンタクト部以外はすべてパッシベーション膜で覆われている。PERC構造に用いることができる裏面パッシベーション膜としては、原子層堆積法(Atomic Layer Deposition;ALD)又はCVD法(Chemical Vapor Deposition)によるアモルファス酸化アルミニウム(AlO)膜が挙げられる。ALD法やCVD法によるAlO膜は、大きな負の固定電荷をもつことが知られ、これを適用したPERC構造太陽電池素子は高い発電性能を示すことが知られている。
 PERC構造では、裏面電極とSi基板のコンタクト部が限られていることから、両面受光(bifacial)型の太陽電池素子が実現できる。bifacial-PERC構造の利点として、裏面に差し込んだ光を活用できること等が挙げられる。
 上述したPERC構造(bifacial-PERC及びMBB(Multi Busbar)-bifacial-PERC構造を含む)において、裏面電極を形成する際は、一般的に銀を含む電極形成用組成物と、アルミニウムを含む電極形成用組成物とを、基板の所定の領域にそれぞれ印刷し、乾燥した後、一括して熱処理する。
 上記構造では、アルミニウム電極の表面に形成されている酸化アルミニウム(Al)皮膜と配線材料を被覆しているはんだとの濡れ性が悪いため、アルミニウム電極には配線材料を直接接合できない。また、裏面においては、受光面側と同様、配線材料を接続する箇所には出力取出し電極としての銀電極を形成する必要があるため、裏面電極プロセスにおいては、成膜したパッシベーション膜の上にまず銀電極形成用組成物を塗布する。このとき、従来のプロセスで形成された裏面電極では、アルミニウム電極と、裏面出力取出し電極としての銀電極との段差(厚さの差)によって、配線材料の接続不良が生じたり、太陽電池としての信頼性が損なわれる可能性がある。
 これは、例えば、以下のようにして考えることができる。裏面電極のうち、出力取出し電極としての銀電極は、銀電極形成用組成物の使用量低減等の観点から、配線材料の接続方向に沿って連続的に形成されず、配線材料の接続方向に沿って、銀電極と銀電極との間にアルミニウム電極が形成されることがある。熱処理(焼成後)のアルミニウム電極の厚さは一般的に20μm~40μmであり、裏面出力取出し電極としての銀電極の厚さは2μm~5μmである場合がある。このような場合、配線材料の一部がアルミニウム電極上に配置されることになるが、アルミニウム電極と銀電極との段差が大きいと、配線材料の変形が段差に追従できず、銀電極での配線材料の接続が不十分になることが考えられる。また、銀電極において配線材料の接続ができたとしても、配線材料が段差に応じて凹凸を形成しながら変形するため、熱による内部応力以外の応力が加わると考えられる。このような中で、太陽電池部材に温度変化が与えられるような試験又は環境(例えば、温度サイクル試験)中に、接続部に亀裂等が生じることで、発電性能の低下率が大きくなってしまう。
 上述したような課題を解決する方法として、アルミニウム電極と銀電極とをそれぞれ基板上に形成するのではなく、基板上に形成したアルミニウム電極と、その上に形成される銀電極とが積層した状態の電極(以下、アルミニウム/銀積層電極ともいう)を形成することが有効と考えられる。
 アルミニウム/銀積層電極を形成する方法としては、例えば、アルミニウム粒子を含む電極形成用組成物を所望のパターンで基板の裏面に塗布し、アルミニウム粒子含有膜を形成した後に、銀を含む電極形成用組成物を所望のパターンでアルミニウム粒子含有膜の上に印刷し、一括して熱処理することが考えられる。
特許第6203990号公報
 太陽電池は一般に屋外で使用されるため、アルミニウム/銀積層電極は高温高湿環境下におかれても劣化等が生じにくく、充分な信頼性を有していることが望まれる。
 上記事情に鑑み、本開示の一実施形態は、高温高湿環境下における信頼性に優れるアルミニウム/銀積層電極を形成可能な電極形成用組成物を提供する。また、この電極形成用組成物を用いて得られる太陽電池素子及びアルミニウム/銀積層電極を提供する。
 上記課題を実施するための手段には、以下の実施形態が含まれる。
<1>銀含有粒子と、ビスマス含有粒子と、リンを含有するガラス粒子と、を含む、電極形成用組成物。
<2>ホウ素を含有するガラス粒子をさらに含む、<1>に記載の電極形成用組成物。
<3>前記リンを含有するガラス粒子において、酸化リンの含有率が全体の20.0質量%以上であり、酸化ホウ素(B)の含有率が酸化リンの含有率よりも低い、<1>又は<2>に記載の電極形成用組成物。
<4>前記ホウ素を含有するガラス粒子において、酸化ホウ素の含有率が全体の3.0質量%以上であり、酸化リンの含有率が酸化ホウ素の含有率よりも低い、<2>に記載の電極形成用組成物。
<5>前記ビスマス含有粒子が金属ビスマス、ビスマス合金及び酸化ビスマスからなる群から選択される少なくとも一種を含む、<1>~<4>のいずれか1項に記載の電極形成用組成物。
<6>前記銀含有粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/Ag比)が0.30~1.40である、<1>~<5>のいずれか1項に記載の電極形成用組成物。
<7>前記ガラス粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/G比)が0.5~10.0である、<1>~<6>のいずれか1項に記載の電極形成用組成物。
<8>前記ガラス粒子の含有率が前記電極形成用組成物全体の3.0質量%~15.0質量%である、<1>~<7>のいずれか1項に記載の電極形成用組成物。
<9>溶剤及び樹脂の少なくとも一方をさらに含む、<1>~<8>のいずれか1項に記載の電極形成用組成物。
<10>アルミニウム電極の上に銀電極を形成するための、<1>~<9>のいずれか1項に記載の電極形成用組成物。
<11>半導体基板と、前記半導体基板上に設けられるパッシベーション膜と、前記パッシベーション膜上に設けられる<1>~<10>のいずれか1項に記載の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極と、を有する太陽電池素子。
<12>アルミニウムを含む第1電極と、前記第1電極の上に配置される銀を含む第2電極とを備え、前記第1電極は酸化ビスマス相及びリンを含有するガラス相をさらに含む、アルミニウム/銀積層電極。
 本開示の一実施形態によれば、高温高湿環境下における信頼性に優れるアルミニウム/銀積層電極を形成可能な電極形成用組成物が提供される。また、この電極形成用組成物を用いて得られる太陽電池素子及びアルミニウム/銀積層電極が提供される。
一実施形態に係る太陽電池素子の裏面の、アルミニウム電極及びアルミニウム/銀積層電極の断面の一例を示す図である。 一実施形態に係るアルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。 一実施形態に係るアルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。 一実施形態に係るアルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。 一実施形態に係るアルミニウム/銀積層電極の断面模式図である。 一実施形態に係る太陽電池素子の受光面の一例を示す概略平面図である。 一実施形態に係る太陽電池素子の裏面の一例を示す概略平面図である。 一実施形態に係る太陽電池素子の裏面の一例を示す概略平面図である。 一実施形態に係る太陽電池素子の一例を示す断面模式図(図5AのA-A´部の切断面)である。 一実施形態に係る太陽電池素子の一例を示す断面模式図(図5BのB-B´部の切断面)である。 一実施形態に係る太陽電池素子の一例を示す断面模式図(図5BのC-C´部の切断面)である。 走査型電子顕微鏡(SEM)で撮影された画像であり、実施例に係る裏面電極の断面組織である。 走査型電子顕微鏡(SEM)及びエネルギー分散型X線分析(EDX)で分析された画像であり、実施例に係る裏面電極における元素分布解析結果である。
 以下、本開示の実施形態について詳細に説明する。ただし、本発明は下記実施形態に限られるものではない。
 本開示において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の目的が達成されれば、本用語に含まれる。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 図面において、同等の構成要素には同一の符号を付す。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されてもよく、二以上の層が着脱可能であってもよい。
 本開示において「断面」との語は、太陽電池素子を半導体基板の面方向に対して垂直に切断して得られる面を意味する。
 本開示において「熱処理」との語には、熱処理の対象物に含まれる粒子が焼結又は溶融する条件で行う加熱(焼成等)を含む。
<電極形成用組成物>
 本開示の一実施形態に係る電極形成用組成物は、銀含有粒子と、ビスマス含有粒子と、リンを含有するガラス粒子と、を含む電極形成用組成物である。
 銀含有粒子と、ビスマス含有粒子と、リンを含有するガラス粒子と、を含む電極形成用組成物は、銀含有粒子と、ビスマス含有粒子とを含み、リンを含有するガラス粒子を含まない電極形成用組成物に比べ、高温高湿環境下における信頼性に優れるアルミニウム/銀積層電極を形成することができる。その理由は必ずしも明らかではないが、下記のように考えられる。
 銀含有粒子と、ビスマス含有粒子とを含む電極形成用組成物は、基板上に形成されたアルミニウム粒子含有膜上の所望の領域に付与され、必要に応じて乾燥した後に、熱処理される。
 熱処理により、電極形成用組成物に含まれる銀含有粒子は焼結して銀電極を、アルミニウム粒子含有膜に含まれるアルミニウム粒子は焼結してアルミニウム電極をそれぞれ形成する。このとき、ビスマス含有粒子に含まれるビスマスが酸化して形成する酸化ビスマス相が、銀電極とアルミニウム電極との界面における相互拡散を抑制する性質(以下、拡散バリア性ともいう)を発現する。このため、銀電極中のアルミニウム濃度が低く抑えられ、配線材料への濡れ性が良好に維持される。
 さらに、ビスマス含有粒子の少なくとも一部が熱処理によってアルミニウム粒子含有膜に移行し、アルミニウム粒子の間又はアルミニウム粒子と基板との間に酸化ビスマス相を形成する。これにより、形成されるアルミニウム電極のバルク強度及び基板に対する密着性が向上する。
 一方、アルミニウム/銀積層電極が高温高湿環境下におかれると、アルミニウム電極と銀電極との界面において酸化ビスマス相の一部が金属ビスマスに還元して、体積変化が生じる。その結果、アルミニウム電極と銀電極との界面に亀裂等が生じて電極の信頼性が低下する原因となる。
 電極形成用組成物がリンを含有するガラス粒子を含んでいると、熱処理によってリンを含有するガラス粒子の溶融物がアルミニウム電極と銀電極との界面において酸化ビスマス相と反応し、酸化ビスマスの還元を抑制するように作用する。その結果、アルミニウム電極と銀電極との界面の状態が良好に維持されて、高温高湿環境下での信頼性が向上すると考えられる。
(銀含有粒子)
 電極形成用組成物は、銀含有粒子を含む。電極形成用組成物に含まれる銀含有粒子は、1種のみでも2種以上であってもよい。
 銀含有粒子は、銀を含む粒子であれば特に制限されない。中でも、銀粒子及び銀合金粒子から選ばれる少なくとも1種であることが好ましく、銀粒子及び銀含有率が50.0質量%以上である銀合金粒子から選ばれる少なくとも1種であることが好ましい。
 銀粒子における銀の含有率は特に制限されない。例えば、銀粒子全体の95.0質量%以上とすることができ、97.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。
 銀合金粒子は、銀を含む合金の粒子であれば特に制限されない。中でも、銀合金粒子の融点及び焼結性の観点から、銀の含有率は粒子全体の50.0質量%以上であることが好ましく、60.0質量%以上であることがより好ましく、70.0質量%以上であることが更に好ましく、80.0質量%以上であることが特に好ましい。上記含有率は、95.0質量%以下であってもよい。
 銀合金としては、Ag-Pd系合金、Ag-Pd-Au系合金、Ag-Pd-Cu系合金、Ag-Pd-In系合金、Ag-In系合金、Ag-Sn系合金、Ag-Zn系合金、Ag-Sn-Zn系合金等が挙げられる。
 銀含有粒子は、銀及び銀合金に該当しない成分を含まなくても、含んでいてもよい。
 銀含有粒子は、銀及び銀合金に該当しない成分を含む場合、その含有率は、銀含有粒子中に3.0質量%以下とすることができ、1.0質量%以下であることが好ましい。
 銀含有粒子の粒子径は特に制限されないが、レーザー回折・散乱法により得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(体積平均粒子径、以下「D50%」と略記することがある)として100nm以上50μm以下であることが好ましく、150nm以上40μm以下であることがより好ましく、200nm以上30μm以下であることが更に好ましい。銀含有粒子の粒子径を100nm以上とすることで、アルミニウム/銀積層電極の表面における銀の濃度を充分に高くでき、配線材料の接続強度が向上する。また50μm以下であることで、アルミニウム/銀積層電極内の抵抗が低くなる。
 銀含有粒子の粒子径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター(株)、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される。具体的には、溶剤(テルピネオール)125gに、銀含有粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶媒の屈折率を1.48として測定する。
 銀含有粒子の形状は特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。銀含有粒子同士の焼結性の観点からは、略球状、扁平状又は板状であることが好ましい。
(ビスマス含有粒子)
 電極形成用組成物は、ビスマス含有粒子を含む。電極形成用組成物に含まれるビスマス含有粒子は、1種のみでも2種以上であってもよい。
 ビスマス含有粒子は、ビスマスを含む粒子であれば特に制限はない。中でも、金属ビスマス粒子、ビスマス合金粒子及び酸化ビスマス粒子から選ばれる少なくとも1種であることが好ましく、金属ビスマス粒子、ビスマス含有率が40.0質量%以上であるビスマス合金粒子及び酸化ビスマス粒子から選ばれる少なくとも1種であることが好ましい。
 本開示において、ビスマス含有粒子がガラス状である場合(すなわち、ビスマスを含むガラス粒子)は、ビスマス含有粒子に該当しないものとする。
 金属ビスマス粒子におけるビスマスの含有率は特に制限されない。例えば、金属ビスマス粒子全体の95.0質量%以上とすることができ、97.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。
 ビスマス合金粒子は、ビスマスを含む合金の粒子であれば特に制限されない。中でも、ビスマス合金粒子の融点及び拡散バリア性の観点から、ビスマスの含有率は粒子全体の40.0質量%以上であることが好ましく、50.0質量%以上であることがより好ましく、60.0質量%以上であることが更に好ましく、70.0質量%以上であることが特に好ましい。上記含有率は、95.0質量%以下であってもよい。
 ビスマス合金としては、Bi-Sn系合金、Bi-Sn-Cu系合金、Bi-Pb-Sn系合金、Bi-Cd系合金等が挙げられる。
 酸化ビスマス粒子としては、三酸化ビスマス(Bi)の粒子が挙げられる。充分な拡散バリア性及びアルミニウム/積層電極自身の低抵抗化を発揮する観点からは、酸化ビスマス粒子は金属ビスマス粒子と併用することが好ましい。
 ビスマス含有粒子は、金属ビスマス、ビスマス合金及び酸化ビスマスに該当しない成分を含まなくても、含んでいてもよい。
 ビスマス含有粒子が金属ビスマス、ビスマス合金及び酸化ビスマスに該当しない成分を含む場合、酸化ビスマス相の形成及びアルミニウム/銀のバリア性の観点からは、その含有率は、ビスマス含有粒子中に3.0質量%以下とすることができ、1.0質量%以下であることが好ましい。
 ビスマス含有粒子の粒子径は特に制限されないが、体積平均粒子径が100nm以上50μm以下であることが好ましく、150nm以上40μm以下であることがより好ましく、200nm以上30μm以下であることが更に好ましい。ビスマス含有粒子の粒子径を100nm以上とすることで、アルミニウム粒子含有膜への移行及び酸化ビスマス相の形成が促進される。また50μm以下であることで、拡散バリア性が効果的に発揮される。
 ビスマス含有粒子の粒子径は、銀含有粒子の粒子径と同様にして測定される。
 ビスマス含有粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。拡散バリア性の観点からは、略球状、扁平状又は板状であることが好ましい。
 電極形成用組成物における銀含有粒子の含有量に対するビスマス含有粒子の含有量の質量比(Bi/Ag比)は、0.30~1.40であることが好ましく。0.35~1.30であることがより好ましく、0.40~1.20であることがさらに好ましく、0.45~1.10であることがさらにより好ましい。Bi/Ag比を0.30以上とすることで、アルミニウムと銀との相互拡散が効果的に抑制される傾向にある。また、Bi/Ag比を1.40以下とすることで、アルミニウム/銀積層電極表面の銀濃度が充分に確保され、接続材料の接続強度(例えば、はんだの濡れ性)が良好に維持される傾向にある。
(ガラス粒子)
 電極形成用組成物は、リンを含有するガラス粒子(以下、リン含有ガラス粒子ともいう)を含む。リンを含有するガラスとしては、酸化リン(P)を含むガラス粒子が挙げられ、リン酸塩ガラスが好ましい。
 本開示においてリン酸塩ガラスとは、酸化リン(P)を網目形成酸化物とするガラスを意味する。
 リン含有ガラス粒子は、酸化リンと、酸化リン以外の酸化物とを含んでもよい。
 リン含有ガラス粒子を構成するガラスに含まれる酸化リン以外の酸化物としては、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化バナジウム(V)、酸化カリウム(KO)、酸化ビスマス(Bi)、酸化ナトリウム(NaO)、酸化リチウム(LiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化錫(SnO)、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化ゲルマニウム(GeO)、酸化テルル(TeO)、酸化ルテチウム(Lu)、酸化アンチモン(Sb)、酸化銅(CuO)、酸化鉄(Fe)、酸化銀(AgO)及び酸化マンガン(MnO)が挙げられる。
 中でも、Pの他に、V、Al、SnO及びZnOから選択される少なくとも1種を含むことが好ましく、錫含有リン酸塩ガラス(P-SnO系)等がその好ましい例として挙げられる。このような組成のガラスを用いることで、アルミニウム/銀積層電極の高温高湿環境下での信頼性がより向上する傾向にある。
 リン含有ガラス粒子を構成するガラスの組成としては、ガラスの機能上の観点から、酸化物としての酸化リン(P)の含有率が全体の20.0質量%以上であることが好ましい。また酸化物としての酸化ホウ素(B)の含有率が酸化リンの含有率よりも低いことが好ましい。
 太陽電池素子の発電性能の観点からは、電極形成用組成物は、ホウ素を含有するガラス粒子(以下、ホウ素含有ガラス粒子ともいう)をさらに含むことが好ましく、ホウ酸塩ガラスを含むことがより好ましい。
 本開示においてホウ酸塩ガラスとは、酸化ホウ素(B)を網目形成酸化物とするガラスを意味する。
 電極形成用組成物がホウ素含有ガラス粒子をさらに含む場合には、リン含有ガラス粒子とホウ素含有ガラス粒子とをそれぞれ含む場合と、リン及びホウ素を含有するガラス粒子を含む場合のいずれも含まれる。
 高温高湿環境下における信頼性の向上と発電性能の維持とを両立させる観点からは、電極形成用組成物は、リン含有ガラス粒子とホウ素含有ガラス粒子とをそれぞれ含むことが好ましく、リン酸塩ガラス粒子とホウ酸塩ガラス粒子とをそれぞれ含むことがより好ましい。
 電極形成用組成物がホウ素含有ガラス粒子を含むことで太陽電池素子の発電性能が向上する理由は必ずしも明らかではないが、下記のように考えられる。
 ビスマス含有粒子により形成される酸化ビスマス相は、アルミニウム粒子含有膜が形成される基板の表面のパッシベーション膜を保護するためのSiN膜を溶解して、パッシベーション効果を低減させる可能性がある。
 電極形成用組成物がホウ素含有ガラス粒子を含んでいると、ホウ素含有ガラス粒子が熱処理により溶融し、溶融物の一部はアルミニウム粒子含有膜が配置された基板の表面に達する。その結果、基板表面付近の酸化ビスマス相のビスマス濃度が低下して酸化ビスマス相によるSiN膜の溶解が抑制され、発電性能が良好に維持されると考えられる。
 電極形成用組成物がリン含有ガラス粒子とホウ素含有ガラス粒子とを含む場合、リン含有ガラス粒子とホウ素含有ガラス粒子との合計に対するリン含有ガラス粒子の含有率は、3.0質量%~50.0質量%であることが好ましく、3.5質量%~45.0質量%であることがより好ましく、4.0質量%~40.0質量%であることがさらに好ましい。
 リン含有ガラス粒子とホウ素含有ガラス粒子との合計に対するリン含有ガラス粒子の含有率を3.0質量%以上とすることで、高温高湿環境下でのアルミニウム/銀積層電極の信頼性がより効果的に向上する傾向にある。また、リン酸塩ガラス粒子の含有率を50.0質量%以下とすることで、酸化ビスマス相によるSiN膜の溶解がより効果的に抑制され、発電性能が良好に維持される。
 ホウ素含有ガラス粒子は、酸化ホウ素(B)と、酸化ホウ素以外の酸化物とを含んでもよい。
 ホウ素含有ガラス粒子を構成するガラスに含まれる酸化ホウ素以外の酸化物としては、リン含有ガラス粒子を構成するガラスに含まれてもよい酸化物として例示した酸化物が挙げられる。
 中でも、Bの他に、SiO、Al、ZnO、Bi、CuO及びLiOから選択される少なくとも1種を含むことが好ましく、ビスマス含有ホウ酸塩ガラス(B-Bi系)等が好ましい例として挙げられる。このような組成のガラスの場合には、軟化点が低く、熱処理(焼成)後に得られる電極の基板への密着性がより向上する傾向にある。
 ホウ酸含有ガラス粒子を構成するガラスの組成としては、ガラスの機能上の観点から、酸化物としての酸化ホウ素(B)の含有率が全体の3.0質量%以上であることが好ましい。また酸化物としての酸化リン(P)の含有率が酸化ホウ素の含有率よりも低いことが好ましい。
 電極形成用組成物に含まれるガラス粒子は、1種のみでも2種以上であってもよい。
 電極形成用組成物が2種以上のガラス粒子を含む場合、ガラス粒子のすべてがリンを含有していても、ガラス粒子の少なくともいずれかがリンを含有していてもよい。
 SiN膜の上にアルミニウム/銀積層電極を形成する場合は、鉛を実質的に含まない鉛フリーガラスを用いることが好ましい。鉛フリーガラスとしては、特開2006-313744号公報の段落番号0024~0025に記載の鉛フリーガラス、特開2009-188281号公報等に記載の鉛フリーガラス等が挙げられる。
 ガラス粒子の軟化点は特に制限されないが、650℃以下であることが好ましく、500℃以下であることがより好ましい。ガラス粒子の軟化点は、熱機械分析装置(TMA)を用いて通常の方法によって測定される。
 ガラス粒子の粒子径は特に制限はないが、体積平均粒子径が0.2μm以上10μm以下であることが好ましく、0.5μm以上8μm以下であることがより好ましい。ガラス粒子の粒子径が0.2μm以上とすることで、電極形成用組成物製造時の作業性が向上する。また10μm以下であることで、電極形成用組成物中への分散性が向上し、アルミニウム/銀積層電極の均一性も向上する。
 ガラス粒子の粒子径は、銀含有粒子の粒子径と同様にして測定される。
 ガラス粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。銀含有粒子及びビスマス含有粒子との濡れ性の観点からは、略球状、扁平状又は板状であることが好ましい。
 電極形成用組成物に含まれるガラス粒子の含有率(リン含有ガラス粒子とリンを含有しないガラス粒子とを含む場合は、その合計含有率)は、電極形成用組成物全体の3.0質量%~15.0質量%であることが好ましく、3.5質量%~14.0質量%であることがより好ましく、4.0質量%~12.0質量%であることが更に好ましい。
 ガラス粒子の含有率を3.0質量%以上とすることで、高温高湿環境下における良好な信頼性が維持される傾向にある。また、ガラス粒子の含有率を15.0質量%以下とすることで、銀電極の表面の銀濃度が充分に確保され、接続材料の接続強度(はんだの濡れ性)が良好に維持される傾向にある。
 電極形成用組成物に含まれるガラス粒子の含有量に対するビスマス含有粒子の含有量の質量比(Bi/G比)は、0.5~15.0であることが好ましく、1.0~12.0であることがより好ましく、1.5~10.0であることがさらに好ましい。Bi/G比を0.5以上とすることで、酸化ビスマス相の拡散バリア性が効果的に発現する傾向にある。Bi/G比を15.0以下とすることで、高温高湿環境下における信頼性が効果的に向上する傾向にある。
(溶剤及び樹脂)
 電極形成用組成物は、溶剤及び樹脂の少なくとも一方を含んでいてもよい。
 電極形成用組成物が溶剤及び樹脂の少なくとも一方を含むことで、電極形成用組成物の液状性(粘度、表面張力等)を、基板等に付与する際の付与方法に適した範囲内に調整することができる。
 電極形成用組成物に含まれる溶剤又は樹脂は、それぞれ1種のみでも2種以上であってもよい。
 溶剤としては、ヘキサン、シクロヘキサン、トルエン等の炭化水素溶剤、ジクロロエチレン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶剤、テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3-ジオキソラン、トリオキサン等の環状エーテル溶剤、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶剤、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド溶剤、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン溶剤、エタノール、2-プロパノール、1-ブタノール、ジアセトンアルコール等のアルコール溶剤、2,2,4-トリメチル-1,3-ペンタンジオールモノアセテート、2,2,4-トリメチル-1,3ペンタンジオールモノプロピオネート、2,2,4-トリメチル-1,3-ペンタンジオールモノブチレート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価アルコールのエステル溶剤、ブチルセルソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールのエーテル溶剤、α-テルピネン、α-テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン溶剤などが挙げられる。
 溶剤は、電極形成用組成物の付与性(例えば、塗布性又は印刷性)の観点からは、溶剤は多価アルコールのエステル溶剤、テルペン溶剤及び多価アルコールのエーテル溶剤からなる群より選択される少なくとも1種を含むことが好ましく、多価アルコールのエステル溶剤及びテルペン溶剤からなる群より選択される少なくとも1種を含むことがより好ましい。
 樹脂は、熱処理によって熱分解されうる樹脂であれば特に制限されず、天然高分子であっても、合成高分子であってもよい。具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロース等のセルロース樹脂、ポリビニルアルコール化合物、ポリビニルピロリドン化合物、アクリル樹脂、酢酸ビニル-アクリル酸エステル共重合体、ポリビニルブチラール等のブチラール樹脂、フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂等のアルキド樹脂、エポキシ樹脂、フェノール樹脂、ロジンエステル樹脂などが挙げられる。
 熱処理による熱分解性の観点からは、樹脂はセルロース樹脂及びアクリル樹脂からなる群より選択される少なくとも1種を含むことが好ましい。
 樹脂の重量平均分子量は、特に制限されない。樹脂の重量平均分子量は、5000~500000であることが好ましく、10000~300000であることがより好ましい。樹脂の重量平均分子量が5000以上であると、電極形成用組成物の粘度の増加が抑制できる傾向にある。これは例えば、樹脂が粒子に吸着したときの立体的な反発作用が充分となり、樹脂の凝集が抑制されるためと考えることができる。一方、樹脂の重量平均分子量が500000以下であると、樹脂が溶剤中で凝集することが抑制され、電極形成用組成物の粘度の増加が抑制できる傾向にある。樹脂の重量平均分子量が500000以下であると、電極形成用組成物を熱処理する際に樹脂が燃焼せずに異物として残存することが抑制され、より低抵抗率な電極を形成できる傾向にある。
 樹脂の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B、東ソー(株))を用いて3次元で近似する。GPCの測定条件は、以下の通りである。
 ・装置:(ポンプ:L-2130型[(株)日立ハイテクノロジーズ])、(検出器:L-2490型RI[(株)日立ハイテクノロジーズ])、(カラムオーブン:L-2350[(株)日立ハイテクノロジーズ])
 ・カラム:Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M(計3本)(日立化成(株))
 ・カラムサイズ:10.7mm×300mm(内径)
 ・溶離液:テトラヒドロフラン
 ・試料濃度:10mg/2mL
 ・注入量:200μL
 ・流量:2.05mL/分
 ・測定温度:25℃
 電極形成用組成物が溶剤及び樹脂を含む場合、溶剤及び樹脂の含有率は、電極形成用組成物の所望の液物性、使用する溶剤及び樹脂の種類等に応じて選択できる。
 例えば、溶剤及び樹脂の合計含有率は、電極形成用組成物全体の3.0質量%~70.0質量%であることが好ましく、20.0質量%~55.0質量%であることがより好ましく、30.0質量%~50.0質量%であることが更に好ましい。
 溶剤及び樹脂の総含有率が上記範囲内であることにより、電極形成用組成物を基板に付与する際の付与適性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる傾向にある。
 電極形成用組成物が溶剤及び樹脂を含む場合、溶剤及び樹脂の含有比は、電極形成用組成物が所望の液物性となるように、使用する溶剤及び樹脂の種類に応じて適宜選択することができる。
 電極形成用組成物は、銀含有粒子の焼結性、ビスマス含有粒子の拡散バリア性、ガラス粒子によるアルミニウム電極の強度及び密着性の向上の観点から、銀含有粒子、ビスマス含有粒子及びガラス粒子の合計含有率が、電極形成用組成物全体の30.0質量%以上97.0質量%以下であることが好ましく、45.0質量%以上80.0質量%以下であることがより好ましく、50.0質量%以上70.0質量%以下であることが更に好ましい。
(その他の成分)
 電極形成用組成物は、上述した成分に加え、当該技術分野で通常用いられるその他の成分を更に含有してよい。その他の成分としては、可塑剤、分散剤、界面活性剤、増粘剤、無機結合剤、金属酸化物(酸化ビスマスを除く)、セラミックス、有機金属化合物等を挙げることができる。
(電極形成用組成物の製造方法)
 電極形成用組成物の製造方法は、特に制限されない。例えば、銀含有粒子、ビスマス含有粒子、ガラス粒子並びに必要に応じて用いられる溶剤、樹脂等のその他の成分を、通常用いられる分散方法及び混練方法を用いて、分散及び混合することで製造することができる。
 分散方法及び混練方法は特に制限されず、通常用いられる分散方法及び混合方法から適宜選択して適用することができる。
<アルミニウム/銀積層電極>
 本開示の一実施形態に係るアルミニウム/銀積層電極は、アルミニウムを含む第1電極と、前記第1電極の上に配置される銀を含む第2電極とを備え、前記第1電極は酸化ビスマス相及びリンを含有するガラス相をさらに含む、アルミニウム/銀積層電極である。
 第1電極が酸化ビスマス相及びガラス相を含むか否かは、透過型電子顕微鏡を用いて確認できる。具体的には、倍率を数十万倍に拡大した際、結晶Biの格子縞(原子の配列)の存在によって酸化ビスマス相の存在を確認できる。また、アモルファス特有の組織の存在によってガラス相の存在を確認できる。
 太陽電池素子の発電性能の観点からは、第1電極に含まれるガラス相はホウ素(B)をさらに含むことが好ましい。
 上記構成のアルミニウム/銀積層電極は、太陽電池素子を構成する基板の上に配置されることが好ましく、太陽電池素子の裏面に相当する側に配置されることがより好ましい。
 本開示において「基板の上」には、基板の表面に形成されるパッシベーション膜、パッシベーション膜の保護膜等の膜の上も含まれる。
 アルミニウムを含む第1電極の厚み(厚みが一定でない場合は、最小厚み)は、例えば、0.5μm~50.0μmの範囲であってよい。
 銀を含む第2電極の厚み(厚みが一定でない場合は、最小厚み)は、例えば、0.5μm~30.0μmの範囲であってよい。
 上記構成のアルミニウム/銀積層電極は、例えば、上述した電極形成用組成物を用いて製造することができる。
 電極形成用組成物を用いて製造されるアルミニウム/銀積層電極及びこれを含む太陽電池素子の構造の一例について、図1を用いて説明する。
 図1は、電極形成用組成物を用いて作製したPERC構造の太陽電池素子の裏面電極の断面模式図である。図1に示すように、半導体基板1の表面にはパッシベーション膜18及び保護膜19(SiN)がこの順で成膜され、その上にアルミニウム電極(アルミニウム粒子焼結部とも言う)5及びアルミニウム/銀積層電極8が形成されている。
 アルミニウム/銀積層電極8は、アルミニウム電極と銀電極(銀粒子焼結部ともいう)とが積層された箇所を含む。例えば、アルミニウム/銀積層電極8の最表面に、銀粒子焼結部が形成されてよい。アルミニウム電極5と、アルミニウム/銀積層電極8を構成するアルミニウム電極とは、同時に形成されてよい。
(アルミニウム/銀積層電極の製造方法)
 電極形成用組成物を用いてアルミニウム/銀積層電極を製造する方法は特に制限されない。
 例えば、半導体基板の上にアルミニウム粒子含有膜を形成する工程と、電極形成用組成物を、アルミニウム粒子含有膜の上に付与し、必要に応じて乾燥する工程と、アルミニウム粒子含有膜及び電極形成用組成物を熱処理する工程と、をこの順に実施する方法が挙げられる。
 アルミニウム粒子含有膜は、パッシベーション膜及び保護膜(SiN)が成膜された半導体基板上に形成されてよい。アルミニウム粒子含有膜は、半導体基板上に付与したアルミニウム電極形成組成物を乾燥して形成されてよい。半導体基板は、シリコン(Si)基板であってよい。アルミニウム電極形成用組成物を用いて、アルミニウム粒子含有膜を半導体基板上に形成する場合の、アルミニウム電極形成用組成物を半導体基板に付与する方法としては、スクリーン印刷法、インクジェット法、ディスペンサー法等を挙げることができ、生産性の観点から、スクリーン印刷法が好ましい。アルミニウム電極形成用組成物を半導体基板に付与した後の乾燥条件としては、当該技術分野で通常用いられる熱処理条件を適用することができる。
 電極形成用組成物を、アルミニウム粒子含有膜上に付与する方法としては、スクリーン印刷法、インクジェット法、ディスペンサー法等を挙げることができ、生産性の観点から、スクリーン印刷法が好ましい。
 電極形成用組成物をスクリーン印刷法によってアルミニウム粒子含有膜上に付与する場合、電極形成用組成物は、ペースト状であることが好ましい。ペースト状の電極形成用組成物は、20Pa・s~1000Pa・sの範囲の粘度を有することが好ましい。尚、電極形成用組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃で測定される。
 電極形成用組成物のアルミニウム粒子含有膜への付与量は、形成する電極の大きさに応じて適宜選択することができる。例えば、電極形成用組成物の付与量は、1.0mg/cm~20.0mg/cmとすることができ、2.0mg/cm~15.0mg/cmであることが好ましい。
 電極形成用組成物を用いてアルミニウム/銀積層電極を形成する際の熱処理条件としては、当該技術分野で通常用いられる熱処理条件を適用することができる。熱処理温度としては、一般的な結晶シリコン系太陽電池素子を製造する際に用いられる700℃~900℃の範囲を好適に用いることができる。
 熱処理時間は、熱処理温度に応じて適宜選択することができ、例えば、1秒~20秒とすることができる。
 熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、赤外線加熱炉、トンネル炉等を挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に投入し熱エネルギーに変換されるため高効率であり、また、より短時間での急速加熱が可能である。更に、燃焼による生成物が少なく、また非接触加熱であるため、生成する電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、熱処理するため、炉体の区分けと搬送スピードの制御によって、より均一に熱処理することが可能である。太陽電池素子の発電性能の観点からは、トンネル炉により熱処理することが好適である。
 以下、アルミニウム/銀積層電極の製造方法の具体例を、図面を参照しながら説明する。ただし、本開示はこれに限定されるものではない。代表的なアルミニウム/銀積層電極の製造方法の一例を、図2A~図2Cに示す。
 まず図2Aに示すように、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1の一方の面に、ペースト状のアルミニウム電極形成用組成物2を、スクリーン印刷法で塗布する。これを150℃程度の温度で加熱し、アルミニウム電極形成用組成物2中の溶剤を除去する。これにより、図2Bに示すように、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1上にアルミニウム粒子含有膜3が形成される。
 次いで、アルミニウム粒子含有膜3上の所望の領域に、電極形成用組成物4を塗布し、これを150℃程度の温度で加熱し、乾燥する。電極形成用組成物4がペースト状の場合は、アルミニウム電極形成用組成物2と同様、スクリーン印刷法で塗布される。その後、これを上述した条件で熱処理する。これにより、図2Cに示すように、アルミニウム/銀積層電極8が、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1上に形成される。
 アルミニウム/銀積層電極8は、最表面に銀粒子焼結部7が配置され、銀粒子焼結部7とパッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1との間には、アルミニウム粒子焼結部/酸化ビスマス相混合部6が配置される。
 図3は、図2Cのうち、アルミニウム/銀積層電極の形成箇所を拡大して示したものである。図3に示すように、アルミニウム粒子焼結部/酸化ビスマス相混合部6は、アルミニウム粒子焼結部5と、アルミニウム粒子焼結部5の空隙部に充填された酸化ビスマス相9とを含む。アルミニウム粒子焼結部/酸化ビスマス相混合部6がこのような構成を有するのは、上述したように、電極形成用組成物4中のビスマス含有粒子の一部又は全体が熱処理によりアルミニウム粒子含有膜3に移行するためである。
 図3では、酸化ビスマス相9は、銀粒子焼結部7とアルミニウム粒子焼結部5とを隔てるように配置されているが、アルミニウム粒子焼結部5中のアルミニウム粒子と、銀粒子焼結部7とが接触している箇所が部分的に形成されてもよい。この場合、アルミニウム粒子と銀粒子との過度の相互拡散が抑制される程度に、銀粒子焼結部7とアルミニウム粒子焼結部5とを隔てるように酸化ビスマス相9が配置されていることが好ましい。
<太陽電池素子>
 本開示の一実施形態に係る太陽電池素子は、半導体基板と、前記半導体基板上に設けられるパッシベーション膜と、前記パッシベーション膜上に設けられる上述した電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極と、を有する太陽電池素子である。
 上記太陽電池素子は、必要に応じ、半導体基板の上に設けられるパッシベーション膜を保護するための保護膜を備えてもよい。
 上記太陽電池素子のアルミニウム/銀積層電極は、半導体基板の裏面に設けられるものであってもよい。また、上記太陽電池素子はPERC構造を有するものであってもよい。
 以下、太陽電池素子の構成の具体例を、図面を参照しながら説明するが、本開示はこれに限定されるものではない。代表的な太陽電池素子の一例を、図4、図5A、図5B、図6A、図6B及び図6Cに示す。
 図4は、太陽電池素子の受光面側の概略平面図である。図4に示す受光面電極14は、一般的には銀電極ペーストを用いて形成される。具体的には、反射防止膜13上に銀電極ペーストを所望のパターンで付与し、乾燥した後、大気中700℃~900℃程度で熱処理して形成される。
 図5Aは、太陽電池素子の裏面の概略平面図である。図5Aに示す太陽電池素子の裏面には、アルミニウム電極5が全面に形成されている。図5Bは、太陽電池素子の裏面のうち、アルミニウムフィンガー電極20及びアルミニウムバスバー電極21が裏面の一部に形成された場合の概略平面図である。
 太陽電池素子の裏面には、上述したように、アルミニウム電極形成用組成物の付与及び乾燥後、電極形成用組成物を所望のパターンで付与し乾燥する。次いで、これを大気中700℃~900℃程度で熱処理して、アルミニウム/銀積層電極を形成する。熱処理は、上述した受光面電極14の形成のための熱処理と一括して行ってもよい。
 図6A~6Cの概略断面図に示すように、半導体基板1の一方の面の表面付近には、n型拡散層12が形成され、n型拡散層12上に出力取出電極14及び反射防止膜13が形成されている。
 図6Aは図5AにおけるA-A´部の切断面である。A-A´断面が裏面パッシベーション膜の開口部を横切らない場合、裏面は図6Aに示す構造をもつ。図6Bは、図5BにおけるB-B´部の切断面である。B-B´断面が裏面パッシベーション膜の開口部を横切らない場合、裏面は図6Bに示す構造をもつ。図6Cは、図5BにおけるC-C´部の切断面である。C-C´断面が裏面パッシベーション膜の開口部(アルミニウムフィンガー電極20)を横切る場合、裏面は図6Cに示す構造をもつ。
 図6A~図6Cに示すように、受光面側では、熱処理によって受光面電極14を形成する銀電極ペーストに含まれるガラス粒子と、反射防止膜13とが反応(ファイアースルー)して、受光面電極14とn型拡散層12とが電気的に接続(オーミックコンタクト)される。
 裏面側では、熱処理によってアルミニウム電極5、アルミニウムフィンガー電極20又はアルミニウムバスバー電極21中のアルミニウムが半導体基板1の裏面の一部(裏面パッシベーション膜成膜部をレーザーなどで除去した部分)に拡散して、p型拡散層15を形成することによって、半導体基板1とアルミニウム電極15との間にオーミックコンタクトが部分的に形成される。
 以下、本開示の内容を実施例及び比較例を用いてより詳細に説明するが、本開示の範囲は以下の実施例に限定されるものではない。
 以下の実施例において、ガラス粒子の形状は、日立ハイテクノロジーズ社TM-1000型走査型電子顕微鏡を用いて観察して判定した。ガラス粒子の粒子径(D50%)はベックマン・コールター(株)、LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:632nm)を用いて算出した。ガラス粒子の軟化点は、島津製作所製、DT-60H示差熱・熱重量同時測定装置を用いて、示差熱(DTA)曲線により求めた。具体的には、DTA曲線において、吸熱部から軟化点を見積もることができる。
<実施例1>
(a)電極形成用組成物1の調製
 二酸化ケイ素(SiO)1.3質量%、酸化ホウ素(B)6.0質量%、酸化ビスマス(Bi)75.0質量%、酸化亜鉛(ZnO)13.5質量%及び酸化銅(CuO)4.2質量%からなるホウ酸塩ガラス(以下、「GB01」と略記することがある)を得た。得られたガラスGB01の軟化点は380℃であった。
 得られたガラスGB01を用いて、粒子径(D50%)が3.9μmであるガラスGB01粒子を得た。またその形状は略球状であった。
 酸化リン(P)38.0質量%、酸化スズ(SnO)57.9質量%、酸化亜鉛(ZnO)3.5質量%及び酸化アルミニウム(Al)1.5質量%からなるリン酸塩ガラス(以下、「GP01」と略記することがある)を得た。得られたガラスGP01の軟化点は340℃であった。
 得られたガラスGP01を用いて、粒子径(D50%)が8.0μmであるガラスGP01粒子を得た。またその形状は略球状であった。
 銀粒子(Ag;粒子径(D50%)は0.6μm、銀含有率は99.9%)を37.1質量部、金属ビスマス粒子(Bi;粒子径(D50%)は2.5μm、ビスマス含有率は99.5%)を24.1質量部、ガラスGB01粒子を2.5質量部、ガラスGP01粒子を0.8質量部、テルピネオール(TPO)を30.4質量部、及びエチルセルロース(EC;日新化成社製、STD-10)を5.1質量部混ぜ合わせ、ロールミル(アイメックス社製、BR-150HCV)を用いて混合してペースト化し、電極形成用組成物1を調製した。
(b)太陽電池素子1の作製
 受光面にn型拡散層、テクスチャ及び反射防止(SiN)膜が形成され、受光面とは反対側の面(以下、「裏面」ともいう)にパッシベーション膜としての酸化アルミニウム(AlO)膜及び保護膜(SiN)膜がこの順に形成された厚さ160μmのp型シリコン単結晶基板を用意し、158.75mm×158.75mmの大きさに切り出した。次いで、裏面のパッシベーション膜/保護膜の一部について、図5Bに示すように、アルミニウムフィンガー電極を形成する箇所をレーザーによって除去し、シリコン基板を露出させた。受光面上に、銀粒子及び鉛ガラス粒子を含む銀電極形成用組成物(デュポン社製、PV20)を図4に示すような電極パターンとなるように(実際には、受光面出力取出電極14の本数を9本とした)スクリーン印刷により付与した。これを250℃の設定温度及び240inch/分の搬送速度の条件で加熱した焼成炉(Despatch社製トンネル炉)で加熱し、溶剤を蒸散により取り除いた。
 続いて、シリコン基板の裏面側に、アルミニウム電極形成用組成物(Ruxing社製、RX8401)と、上記で得られた電極形成用組成物1とを、スクリーン印刷により、図5Bに示すような電極パターンとなるように(実際には、アルミニウムバスバー電極21の本数を9本とし、アルミニウムバスバー電極21の1本あたりのアルミニウム/銀積層電極の形成箇所を6か所とした)付与した。
 具体的には、アルミニウム電極形成用組成物を、アルミニウムフィンガー電極20及びアルミニウムバスバー電極21の細線パターンで印刷し、乾燥してアルミニウム粒子含有膜を形成した後、その上に電極形成用組成物1を印刷した。
 アルミニウムフィンガー電極の形成箇所は、シリコン基板が露出している部分と一致させた。尚、熱処理後のアルミニウム電極の厚さが30μmとなるように、アルミニウム電極形成用組成物の印刷条件を適宜調整した。また、電極形成用組成物1を印刷する場合は、1.6mm×8.0mmサイズのパッド形状が配列されたパターンを用い、8.0mg/cmの塗布量になるように、印刷条件を適宜調整した。
 アルミニウム電極形成用組成物及び電極形成用組成物1をそれぞれ印刷した後は、250℃の設定温度及び240inch/分の搬送速度の条件で、焼成炉(Despatch社製トンネル炉)で加熱し、溶剤を蒸散により取り除いた。
 続いて焼成炉(Despatch社製のトンネル炉)を用いて大気雰囲気下、最高温度870℃の設定温度及び240inch/分の搬送速度の条件で熱処理を行って、所望の電極が形成された太陽電池素子1を作製した。
<実施例2>
 二酸化ケイ素(SiO)1.6質量%、酸化ホウ素(B)13.4質量%、酸化ビスマス(Bi)84.1質量%及び酸化リチウム(LiO)0.9質量%からなるホウ酸塩ガラス(以下、「GB02」と略記することがある)を得た。得られたガラスGB02の軟化点は440℃であった。
 得られたガラスGB02を用いて、粒子径(D50%)が1.1μmであるガラスGB02粒子を得た。またその形状は略球状であった。
 実施例2では、ビスマス含有粒子として金属ビスマス粒子と酸化ビスマス粒子とを用いた。具体的には、銀粒子(Ag;粒子径(D50%)は0.6μm、銀含有率は99.9%)を30.5質量部、金属ビスマス粒子(Bi;粒子径(D50%)は1.5μm、ビスマス含有率は99.5%)を20.8質量部、酸化ビスマス粒子(Bi;粒子径(D50%)は2.2μm、酸化ビスマス含有率は99.9%)を10.0質量部、ガラスGB02粒子を2.5質量部、ガラスGP01粒子を0.8質量部、テルピネオール(TPO)を30.4質量部、及びエチルセルロース(EC;日新化成社製、STD-10)を5.1質量部混ぜ合わせ、ロールミル(アイメックス社製、BR-150HCV)を用いて混合してペースト化し、電極形成用組成物2を調製した。その後は、実施例1と同様にして、太陽電池素子2を作製した。
<実施例3>
 酸化リン(P)36.0質量%、酸化スズ(SnO)54.0質量%及び酸化ホウ素(B)10.0質量%からなるリン酸塩ガラス(以下、「GP02」と略記することがある)を得た。得られたガラスGP02の軟化点は350℃であった。
 得られたガラスGP02を用いて、粒子径(D50%)が2.4μmであるガラスGP02粒子を得た。またその形状は略球状であった。
 実施例1において、ガラス粒子の種類をGP01からGP02に変更したこと以外は、実施例1と同様にして、電極形成用組成物3を調製し、太陽電池素子3を作製した。
<実施例4>
 実施例2において、金属ビスマス粒子の含有量を20.8質量部から19.0質量部に変更し、ガラスGB02粒子の含有量を2.5質量部から4.5質量部に変更し、ガラスGP01粒子の含有量を0.8質量部から0.5質量部に変更したこと以外は、実施例2と同様にして、電極形成用組成物4を調製し、太陽電池素子4を作製した。
<実施例5>
 実施例1において、銀粒子の含有量を37.1質量部から43.2質量部に変更し、金属ビスマス粒子の含有量を24.1質量部から18.0質量部に変更したこと以外は、実施例1と同様にして、電極形成用組成物5を調製し、太陽電池素子5を作製した。
<実施例6>
 実施例1において、銀粒子の含有量を37.1質量部から33.8質量部に変更し、金属ビスマス粒子の含有量を24.1質量部から22.1質量部に変更し、ガラスGB01粒子の含有量を2.5質量部から6.5質量部に変更し、ガラスGP01粒子の含有量を0.8質量部から2.1質量部に変更したこと以外は、実施例1と同様にして、電極形成用組成物6を調製し、太陽電池素子6を作製した。
<実施例7>
 実施例1において、銀粒子の含有量を37.1質量部から55.0質量部に変更し、金属ビスマス粒子の含有率を24.1質量部から6.2質量部に変更したこと以外は、実施例1と同様にして、電極形成用組成物7を調製し、太陽電池素子7を作製した。
<実施例8>
 実施例1において、ホウ酸塩ガラス粒子を含まない電極形成用組成物を調製した。具体的には、銀粒子の含有率を37.1質量部から36.6質量部に変更し、金属ビスマス粒子の含有率を24.1質量部から23.4質量部に変更し、ガラスGB01粒子の含有率を2.5質量部から0質量部に変更し、ガラスGP01粒子の含有率を0.8質量部から4.5質量部に変更したこと以外は、実施例1と同様にして、電極形成用組成物8を調製し、太陽電池素子8を作製した。
<比較例1>
 実施例1において、裏面電極を形成する際に、市販の太陽電池用銀ペースト(デュポン株式会社製、PV51M)を用いた。具体的には、裏面に銀ペースト(PV51M)を先に印刷し、乾燥した。銀ペースト(PV51M)を用いて形成された裏面出力取出電極のパターンは、1.8mm×8.0mmで構成され、実施例1と同様の配列で印刷した。尚、熱処理(焼成)後の裏面出力取出電極の厚さが5μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度及び印圧)を適宜調整した。その後、アルミニウム電極形成用組成物(RX8401)を、実施例1で述べたパターンのうち、上記銀ペーストを印刷及び乾燥した箇所以外の場所に印刷し、乾燥した。
 その後は、実施例1と同様に熱処理(焼成)し、太陽電池素子C1を作製した。
<比較例2>
 実施例1について、電極形成用組成物1を用いずに、市販の太陽電池用銀ペースト(PV51M)を用いたこと以外は、実施例1と同様にして、太陽電池素子C2を作製した。
<比較例3>
 実施例1において、リン酸塩ガラス粒子を含まない電極形成用組成物を調製した。具体的には、銀粒子の含有率を37.1質量部から37.5質量部に変更し、金属ビスマス粒子の含有率を24.1質量部から22.5質量部に変更し、ガラスGB01粒子の含有率を2.5質量部から4.5質量部に変更し、ガラスGP01粒子の含有率を0.8質量部から0質量部に変更したこと以外は、実施例1と同様にして、電極形成用組成物C3を調製し、太陽電池素子C3を作製した。
 実施例1~8及び比較例3で用いた電極形成用組成物に含まれる粒子の組成を、表1にまとめる。
Figure JPOXMLDOC01-appb-T000001

 
<評価>
(1)アルミニウム/銀積層電極の断面組織観察
 作製した太陽電池素子の裏面出力取出電極の断面を、走査電子顕微鏡(日立ハイテク社製、SU5000)を用いて、加速電圧15kVで観察した。また、装置付属のEDX分析を併せて実施し、裏面出力取出電極としてのアルミニウム/銀積層電極の表面における銀粒子焼結部の形成、アルミニウム/銀積層電極内部の酸化ビスマス相の形成及び酸化ビスマス相のシリコン基板への被覆性を調査した。その結果も併せて表2に示した。尚、比較例1では、アルミニウム/銀積層電極を形成しなかったことから、断面組織の観察を行わなかった。
(2)高温高湿環境下での信頼性
 作製した太陽電池素子のうち、裏面出力取出電極に、配線材料を接続したものを用いて、高温高湿環境下での電極部の抵抗値変化を評価した。具体的には、配線材料(Ulbrich社製Multi-Tabbing wire、Sn-Pb系共晶はんだ被覆、Cuコア材の寸法は直径0.4mm)を、裏面出力取出電極上に載せ、配線材料の上からはんだごてを押し当ててはんだを溶融させることで接続した。次いで、配線材料の長さ方向に等間隔でプローブピンを押し当て、汎用ソースメータ(2400型、ケースレー社製)を用いて、-0.5V~+0.5Vの範囲の印可電圧における平均抵抗値を測定した。その後、配線材料を接続した太陽電池素子を試験槽(恒温恒湿槽、PSL-2KPH、エスペック社製)に入れ、85℃、85%の条件で100時間保持した。その後、配線材料間の抵抗値を再度測定し、その低下率を算出した。その結果も併せて表2に示した。
(3)太陽電池素子の発電性能
 作製した太陽電池素子の評価は、擬似太陽光としてワコム電創社製、WXS-155S-10と、電流-電圧(I-V)評価測定器としてI-V CURVE TRACER MP-160(EKO INSTRUMENT社製)の測定装置とを組み合わせて行った。太陽電池素子としての発電性能を示すJSC(短絡電流)、VOC(開放電圧)、FF(形状因子)及びη(変換効率)は、それぞれJIS-C-8912:2011、JIS-C-8913:2005及びJIS-C-8914:2005に準拠して測定を行うことで得られたものである。得られた各測定値を、比較例1(太陽電池素子C1)の測定値を100.0として相対値に換算して表2に示した。
Figure JPOXMLDOC01-appb-T000002

 
 組織観察の結果、実施例1~8で作製した太陽電池素子の裏面には、図7に示すようなアルミニウム/銀積層電極が形成されていた。また図8に示すEDX分析結果から分かるように、電極の最表面には銀粒子焼結部が、アルミニウム電極の空隙部には酸化ビスマス相が、それぞれ形成されていた。更に、酸化ビスマス相の一部は、アルミニウム/銀積層電極が接している基板の表面に到達していた。
 信頼性試験の結果、リン含有ガラス粒子を含む電極形成用組成物を用いた実施例1~8は、ホウ素含有ガラス粒子を含むがリン含有ガラス粒子を含まない電極形成用組成物を用いた比較例3に比べて配線材料間の抵抗値の増大率が小さく、優れた信頼性を示した。
 発電性能試験の結果、実施例1~8で作製した太陽電池素子の発電性能は、比較例1のアルミニウム/銀積層電極の状態でない銀電極とほぼ同等であった。さらに、リン含有ガラス粒子とホウ素含有ガラス粒子の両方を含む実施例1~7は、リン含有ガラス粒子のみを含む実施例8に比べて発電性能に優れる傾向がみられた。
 ビスマス含有粒子を含まない電極形成用組成物を用いて形成した比較例2のアルミニウム/銀積層電極は、表面が黒色化しており、はんだ材料を用いて配線材料を接続することができなかった。表面が黒色化したのは、熱処理中にアルミニウムと銀との相互拡散が過度に進み、銀が酸化したためと考えられる。
 米国特許出願第63/089,541号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (12)

  1.  銀含有粒子と、ビスマス含有粒子と、リンを含有するガラス粒子と、を含む、電極形成用組成物。
  2.  ホウ素を含有するガラス粒子をさらに含む、請求項1に記載の電極形成用組成物。
  3.  前記リンを含有するガラス粒子において、酸化リンの含有率が全体の20.0質量%以上であり、酸化ホウ素(B)の含有率が酸化リンの含有率よりも低い、請求項1又は請求項2に記載の電極形成用組成物。
  4.  前記ホウ素を含有するガラス粒子において、酸化ホウ素の含有率が全体の3.0質量%以上であり、酸化リンの含有率が酸化ホウ素の含有率よりも低い、請求項2に記載の電極形成用組成物。
  5.  前記ビスマス含有粒子が金属ビスマス、ビスマス合金及び酸化ビスマスからなる群から選択される少なくとも一種を含む、請求項1~請求項4のいずれか1項に記載の電極形成用組成物。
  6.  前記銀含有粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/Ag比)が0.30~1.40である、請求項1~請求項5のいずれか1項に記載の電極形成用組成物。
  7.  前記ガラス粒子の含有量に対する前記ビスマス含有粒子の含有量の質量比(Bi/G比)が0.5~10.0である、請求項1~請求項6のいずれか1項に記載の電極形成用組成物。
  8.  前記ガラス粒子の含有率が前記電極形成用組成物全体の3.0質量%~15.0質量%である、請求項1~請求項7のいずれか1項に記載の電極形成用組成物。
  9.  溶剤及び樹脂の少なくとも一方をさらに含む、請求項1~請求項8のいずれか1項に記載の電極形成用組成物。
  10.  アルミニウム電極の上に銀電極を形成するための、請求項1~請求項9のいずれか1項に記載の電極形成用組成物。
  11.  半導体基板と、前記半導体基板上に設けられるパッシベーション膜と、前記パッシベーション膜上に設けられる請求項1~請求項10のいずれか1項に記載の電極形成用組成物の熱処理物を含むアルミニウム/銀積層電極と、を有する太陽電池素子。
  12.  アルミニウムを含む第1電極と、前記第1電極の上に配置される銀を含む第2電極とを備え、前記第1電極は酸化ビスマス相及びリンを含有するガラス相をさらに含む、アルミニウム/銀積層電極。
PCT/JP2021/037407 2020-10-08 2021-10-08 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極 WO2022075457A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555595A JPWO2022075457A1 (ja) 2020-10-08 2021-10-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063089541P 2020-10-08 2020-10-08
US63/089,541 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022075457A1 true WO2022075457A1 (ja) 2022-04-14

Family

ID=81126127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037407 WO2022075457A1 (ja) 2020-10-08 2021-10-08 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極

Country Status (2)

Country Link
JP (1) JPWO2022075457A1 (ja)
WO (1) WO2022075457A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243500A (ja) * 2004-02-27 2005-09-08 Kyocera Chemical Corp 導電性ペースト、太陽電池及び太陽電池の製造方法
JP2008042095A (ja) * 2006-08-09 2008-02-21 Shin Etsu Handotai Co Ltd 半導体基板並びに電極の形成方法及び太陽電池の製造方法
JP2013074165A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 太陽電池集電電極形成用導電性組成物、太陽電池セル、および太陽電池モジュール
WO2014014109A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
JP2015113371A (ja) * 2013-12-10 2015-06-22 京都エレックス株式会社 半導体デバイスの導電膜形成用導電性ペースト、および半導体デバイス、並びに半導体デバイスの製造方法
JP2017521826A (ja) * 2014-06-19 2017-08-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 太陽電池用導体
US20200243697A1 (en) * 2019-01-28 2020-07-30 Dupont Electronics, Inc. Solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243500A (ja) * 2004-02-27 2005-09-08 Kyocera Chemical Corp 導電性ペースト、太陽電池及び太陽電池の製造方法
JP2008042095A (ja) * 2006-08-09 2008-02-21 Shin Etsu Handotai Co Ltd 半導体基板並びに電極の形成方法及び太陽電池の製造方法
JP2013074165A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 太陽電池集電電極形成用導電性組成物、太陽電池セル、および太陽電池モジュール
WO2014014109A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
JP2015113371A (ja) * 2013-12-10 2015-06-22 京都エレックス株式会社 半導体デバイスの導電膜形成用導電性ペースト、および半導体デバイス、並びに半導体デバイスの製造方法
JP2017521826A (ja) * 2014-06-19 2017-08-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 太陽電池用導体
US20200243697A1 (en) * 2019-01-28 2020-07-30 Dupont Electronics, Inc. Solar cell

Also Published As

Publication number Publication date
JPWO2022075457A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
TWI502609B (zh) 太陽電池元件以及太陽電池
TWI570748B (zh) 電極用膠組成物及太陽電池
WO2012140787A1 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
JP5811186B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
TWI495125B (zh) 元件及太陽電池
US20140026953A1 (en) Electroconductive Paste Compositions and Solar Cell Electrodes and Contacts Made Therefrom
TWI631088B (zh) 玻璃熔料組成物、膏糊、以及使用其之太陽能電池
JP6206491B2 (ja) 電極形成用組成物、太陽電池素子及び太陽電池
JP5891599B2 (ja) シリコン系太陽電池の電極用ペースト組成物
JP2022143534A (ja) 電極形成用組成物及び太陽電池素子
WO2015115565A1 (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2012227185A (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2022075457A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
WO2022075456A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
WO2022138385A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
WO2017033343A1 (ja) 電極形成用組成物、電極、太陽電池素子、太陽電池及び太陽電池素子の製造方法
WO2022181732A1 (ja) 太陽電池素子及び太陽電池
WO2022181730A1 (ja) 太陽電池素子及び太陽電池
WO2022176519A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
WO2022181731A1 (ja) 太陽電池素子及び太陽電池
WO2022176520A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
JP2015195223A (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
JP2022143533A (ja) 電極形成用組成物及び太陽電池素子
JP2014093491A (ja) 太陽電池素子及びその製造方法、並びに太陽電池
JP2016189307A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877756

Country of ref document: EP

Kind code of ref document: A1