WO2022181731A1 - 太陽電池素子及び太陽電池 - Google Patents

太陽電池素子及び太陽電池 Download PDF

Info

Publication number
WO2022181731A1
WO2022181731A1 PCT/JP2022/007755 JP2022007755W WO2022181731A1 WO 2022181731 A1 WO2022181731 A1 WO 2022181731A1 JP 2022007755 W JP2022007755 W JP 2022007755W WO 2022181731 A1 WO2022181731 A1 WO 2022181731A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
aluminum
silver
particles
solar cell
Prior art date
Application number
PCT/JP2022/007755
Other languages
English (en)
French (fr)
Inventor
修一郎 足立
剛 野尻
剛 早坂
研耶 守谷
クレイグ エイチ. ピーターズ
ブライアン イー. ハーディン
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023502511A priority Critical patent/JPWO2022181731A1/ja
Publication of WO2022181731A1 publication Critical patent/WO2022181731A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • the present invention relates to solar cell elements and solar cells.
  • renewable energy includes solar, geothermal, wind, wave, tidal, and biomass.
  • photovoltaic power generation which utilizes inexhaustible solar energy, is attracting attention as a clean natural energy that does not emit carbon dioxide during power generation, and is expected to be an effective solution to the increasingly serious energy problem.
  • a crystalline silicon solar cell using a silicon (Si) substrate as a semiconductor substrate is common.
  • a current collecting electrode for recovering carriers and an electrode for extracting carriers as an output are provided.
  • Output extraction electrodes (busbar electrodes) are formed.
  • the current-collecting electrodes on the light-receiving surface are particularly called finger electrodes.
  • a silver (Ag) electrode-forming composition is used to form the light-receiving surface electrodes, and the finger electrodes and busbar electrode portions are printed individually or collectively.
  • a composition for forming a silver electrode is used to form a busbar electrode, and a composition for forming an aluminum (Al) electrode is used to form a collector electrode.
  • Each electrode-forming composition contains conductive metal particles, glass particles, various additives, and the like.
  • Silver particles are generally used as the conductive metal particles in a silver electrode-forming composition for forming light-receiving surface electrodes and back surface bus bar electrodes.
  • the reasons for this are that the volume resistivity of silver is low (1.47 ⁇ 10 ⁇ 6 ⁇ cm), that the silver particles are self-reduced and sintered under the above heat treatment conditions, and that the silver particles and the silicon substrate are in good ohmic contact. and that the electrode formed from silver particles has excellent wettability with a solder material, and can preferably adhere wiring materials (such as tab wires) that electrically connect solar cell elements.
  • the aluminum electrode-forming composition When the aluminum electrode-forming composition is used to form the current-collecting electrode on the back surface, aluminum in the aluminum electrode-forming composition undergoes a eutectic reaction with silicon to form a high-concentration diffusion layer (p + - forming a Si layer, Back Surface Field (BSF); Thereby, a structure is provided in which electrons, which are minority carriers in the p-type silicon substrate, are repelled to the light receiving surface side, and the probability of carrier recombination can be reduced.
  • the minority carrier recombination rate on the back surface is as high as about 3 ⁇ 10 3 cm/s, which is a factor in lowering the power generation performance of the solar cell element. can be.
  • a PERC (Passivated Emitter, Rear Cell) structure is attracting attention as a measure for reducing backside recombination loss (see, for example, Patent Document 1).
  • the PERC structure is characterized by limiting the ohmic contact portion between the back electrode and the Si substrate, which is one of the causes of back recombination, in a point or line shape.
  • Backside passivation films that can be used in PERC structures include amorphous aluminum oxide (AlO x ) films by Atomic Layer Deposition (ALD) or CVD (Chemical Vapor Deposition). AlO X films produced by ALD or CVD are known to have large negative fixed charges, and PERC structure solar cell elements to which this is applied are known to exhibit high power generation performance.
  • the contact portion between the back electrode and the Si substrate is limited, so a bifacial solar cell element can be realized.
  • Advantages of the bifacial-PERC structure include the ability to utilize the light that enters the rear surface.
  • an electrode-forming composition containing silver and an electrode-forming composition containing aluminum are used. are printed on predetermined regions of the substrate, dried, and heat-treated all at once.
  • the wiring material cannot be directly bonded to the aluminum electrode because the aluminum electrode (Al 2 O 3 ) film formed on the surface of the aluminum electrode has poor wettability with the solder covering the wiring material.
  • the back surface as with the light-receiving surface side, it is necessary to form a silver electrode as an output extraction electrode at the location where the wiring material is connected. A composition for forming a silver electrode is applied.
  • a step (difference in thickness) between the aluminum electrode and the silver electrode as the rear surface output extraction electrode causes connection failure of the wiring material, and the solar cell cannot be used. Reliability may be compromised.
  • the silver electrode as an output extraction electrode is not formed continuously along the connection direction of the wiring material, but is formed in the connection direction of the wiring material from the viewpoint of reducing the amount of the silver electrode-forming composition used.
  • an aluminum electrode may be formed between the silver electrodes.
  • the thickness of the aluminum electrode after heat treatment (burning) is generally 20 ⁇ m to 40 ⁇ m, and the thickness of the silver electrode as the rear output extraction electrode may be 2 ⁇ m to 5 ⁇ m. In such a case, part of the wiring material is placed on the aluminum electrode. It is conceivable that the connection of the wiring material becomes insufficient.
  • the wiring material can be connected to the silver electrode, the wiring material is deformed while forming irregularities according to the steps, so stress other than the internal stress due to heat is thought to be applied. Under such circumstances, during a test or an environment (for example, a temperature cycle test) in which temperature changes are applied to solar cell members, cracks or the like occur in the joints, resulting in a large decrease in power generation performance. .
  • one embodiment of the present disclosure provides a solar cell element and a solar cell with a PERC structure that has excellent connectivity of wiring materials to the back electrode.
  • Means for carrying out the above tasks include the following embodiments.
  • the aluminum/silver laminate electrode comprises a bismuth oxide-containing phase
  • a solar cell element wherein a thickness A of the aluminum non-laminated electrode and a thickness B of the aluminum/silver laminated electrode satisfy a relationship of A ⁇ B.
  • ⁇ 3> The solar cell element according to ⁇ 1> or ⁇ 2>, wherein the bismuth oxide-containing phase contains boron.
  • ⁇ 4> The solar cell element according to any one of ⁇ 1> to ⁇ 3>, wherein the bismuth oxide-containing phase contains phosphorus.
  • ⁇ 5> The solar cell according to any one of ⁇ 1> to ⁇ 4>, wherein the aluminum/silver laminated electrode comprises a heat-treated electrode-forming composition containing silver-containing particles and bismuth-containing particles. element.
  • the bismuth-containing particles include at least one selected from the group consisting of bismuth particles, bismuth alloy particles having a bismuth content of 40.0% by mass or more, and bismuth oxide particles. element.
  • the electrode-forming composition contains glass particles.
  • the glass particles contain boron.
  • the glass particles contain phosphorus.
  • a solar cell comprising the solar cell element according to any one of ⁇ 1> to ⁇ 9> and a wiring material provided on the aluminum/silver laminated electrode of the solar cell element.
  • a solar cell element and a solar cell with a PERC structure that have excellent connectivity of wiring materials to the back electrode are provided.
  • FIG. 2 is a diagram showing an example of a cross section of a portion of a solar cell element according to one embodiment, in which an aluminum non-laminated electrode and an aluminum/silver laminated electrode are formed.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows an example of the manufacturing method of the aluminum/silver laminated electrode which concerns on one Embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows an example of the manufacturing method of the aluminum/silver laminated electrode which concerns on one Embodiment.
  • FIG. 1 is a schematic cross-sectional view of an aluminum/silver laminated electrode according to one embodiment
  • FIG. 1 is a schematic plan view showing an example of a light receiving surface of a solar cell element according to one embodiment
  • FIG. 1 is a schematic plan view showing an example of the back surface of a solar cell element according to one embodiment
  • FIG. 1 is a schematic plan view showing an example of the back surface of a solar cell element according to one embodiment
  • FIG. 5B is a schematic cross-sectional view (cut along line AA' in FIG.
  • FIG. 5A showing an example of a solar cell element according to an embodiment.
  • FIG. 5B is a schematic cross-sectional view (cut along BB' in FIG. 5B) showing an example of a solar cell element according to an embodiment.
  • FIG. 5B is a schematic cross-sectional view (a cross-sectional view taken along line CC′ in FIG. 5B) showing an example of a solar cell element according to an embodiment. It is an image taken with a scanning electron microscope (SEM), and is a cross-sectional structure of an aluminum non-laminated electrode formed on the back surface of a solar cell element according to an example. It is an image taken with a scanning electron microscope (SEM), and is a cross-sectional structure of an aluminum/silver laminated electrode formed on the back surface of a solar cell element according to an example.
  • SEM scanning electron microscope
  • the term "process” includes not only an independent process, but also a process that cannot be clearly distinguished from other processes, as long as the purpose of the process is achieved.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the content of each component in the composition is the total of the multiple substances present in the composition unless otherwise specified. means quantity.
  • laminate indicates stacking two or more layers.
  • cross section means a plane obtained by cutting the solar cell element perpendicularly to the surface direction of the semiconductor substrate.
  • heat treatment includes heating (firing, etc.) under conditions that sinter or melt the particles contained in the subject of the heat treatment.
  • solar cell element means one having a semiconductor substrate formed with a pn junction and an electrode formed on the semiconductor substrate.
  • a solar cell element having a PERC structure means a solar cell element having a passivation film on the back surface thereof.
  • a solar cell element of the present disclosure includes a semiconductor substrate, a passivation film provided on the semiconductor substrate, an aluminum/silver laminated electrode provided on the passivation film, and a non-laminated aluminum layer provided on the passivation film. an electrode;
  • the aluminum/silver laminate electrode comprises a bismuth oxide-containing phase, In the solar cell element, the thickness A of the aluminum non-laminated electrode and the thickness B of the aluminum/silver laminated electrode satisfy the relationship of A ⁇ B.
  • the thickness A of the aluminum non-laminated electrode and the thickness B of the aluminum/silver laminated electrode satisfy the relationship A ⁇ B.
  • a solar cell element in which the thickness A of the aluminum non-laminated electrode and the thickness B of the aluminum/silver laminated electrode satisfy the relationship of A ⁇ B has the thickness A of the aluminum non-laminated electrode and the thickness B of the aluminum/silver laminated electrode The connectivity of the wiring material to the aluminum/silver laminated electrode is superior to that of the solar cell element that does not satisfy the relationship of A ⁇ B.
  • aluminum/silver laminated electrode means an electrode in which an aluminum electrode and a silver electrode formed thereon are laminated
  • aluminum non-laminated electrode means an aluminum electrode on which It means an electrode in which no silver electrode is formed.
  • the thickness A of the aluminum non-laminated electrode is the dimension of the aluminum non-laminated electrode in the thickness direction of the solar cell element
  • the thickness B of the aluminum/silver laminated electrode is the thickness of the aluminum/silver laminated electrode in the thickness direction of the solar cell element. dimension.
  • FIG. 1 is a cross-sectional schematic diagram of a back electrode of a solar cell element of the present disclosure.
  • a passivation film 18 and a protective film 19 are formed on the surface of the semiconductor substrate 1 in this order.
  • an aluminum electrode 5 without a silver electrode that is, an aluminum non-laminated electrode
  • an aluminum/silver laminated electrode 8 are formed on the protective film 19, an aluminum electrode 5 without a silver electrode (that is, an aluminum non-laminated electrode) and an aluminum/silver laminated electrode 8 are formed.
  • the aluminum/silver laminated electrode 8 includes a portion where an aluminum electrode (also referred to as an aluminum particle sintered portion) and a silver electrode (also referred to as a silver particle sintered portion) are laminated.
  • a silver particle sintered portion may be formed on the outermost surface of the aluminum/silver laminated electrode 8 .
  • the aluminum electrode 5 and the aluminum electrode constituting the aluminum/silver laminated electrode 8 may be formed at the same time.
  • A is smaller than B, where A is the thickness of the aluminum electrode 5 (that is, the aluminum non-laminated electrode) and B is the thickness of the aluminum/silver laminated electrode 8 . That is, the thickness of the aluminum non-laminated electrode 5 is thinner than the thickness of the aluminum/silver laminated electrode.
  • the thickness of the aluminum non-laminated electrode is thinner than the thickness of the aluminum/silver laminated electrode (A ⁇ B), but the thickness of the aluminum non-laminated electrode is equal to the thickness of the aluminum/silver laminated electrode.
  • the thickness of the aluminum non-laminated electrode and the aluminum/silver laminated electrode can be measured using, for example, electron micrographs of cross-sections of each electrode. Specifically, the portion where each electrode of the solar cell element is formed is cut perpendicularly to the surface direction of the semiconductor substrate with a diamond cutter or the like, and the measurement can be performed by observing an electron microscope photograph of the obtained cross section. As shown in FIGS. 7 and 8, it is perpendicular to the thickness direction of the electrode and passes through a point closest to the surface side of the electrode among the points on the contour line of the electrode on the semiconductor substrate side.
  • the thickness of the electrode The distance between the line segment and the line segment that is perpendicular to the thickness direction of the electrode and that passes through the farthest point from the semiconductor substrate among the points on the contour line on the surface side of the electrode , the thickness of the electrode.
  • the thickness A of the aluminum non-laminated electrode in the observed cross section shown in FIG. 7 is 22.8 ⁇ m
  • the thickness B of the aluminum/silver laminated electrode in the observed cross section shown in FIG. 8 is 27.6 ⁇ m. From the viewpoint of improving measurement accuracy, it is preferable to perform the above measurements at a plurality of locations (for example, 5 locations) and use the arithmetic average value as the thickness of the electrode.
  • the size of the observation cross section when measuring the thickness of each electrode from the electron micrograph is not particularly limited, and for example, the observation cross section may be a region having a length of 50 ⁇ m to 500 ⁇ m in the plane direction of the semiconductor substrate.
  • the difference between the thickness A of the aluminum non-laminated electrode and the thickness B of the aluminum/silver electrode is not particularly limited.
  • the difference between A and B is preferably 10.0 ⁇ m or less, more preferably 7.0 ⁇ m or less, and 5.0 ⁇ m. It is more preferably 3.0 ⁇ m or less, and particularly preferably 3.0 ⁇ m or less.
  • the thickness A of the aluminum non-laminated electrode may be, for example, 10 ⁇ m to 50 ⁇ m, 12 ⁇ m to 45 ⁇ m, or 15 ⁇ m to 40 ⁇ m.
  • the thickness B of the aluminum/silver laminated electrode may be, for example, 12 ⁇ m to 55 ⁇ m, 15 ⁇ m to 50 ⁇ m, or 18 ⁇ m to 45 ⁇ m.
  • the aluminum/silver laminated electrode contains a bismuth oxide-containing phase.
  • the silver particle sintered portion is sufficiently formed on the surface. The reason is considered as follows.
  • an aluminum/silver laminated electrode by performing heat treatment in a state in which a layer is formed using an electrode-forming composition containing silver particles on a layer formed using an electrode-forming composition containing aluminum particles
  • Mutual diffusion of aluminum and silver occurs at the interface between the aluminum electrode (aluminum sintered portion) and the silver electrode (silver particle sintered portion) formed by heat treatment, and part of the aluminum migrates to the silver electrode side.
  • Interdiffusion between aluminum and silver contributes to the formation of a conductive path between the aluminum electrode and the silver electrode, while excessive interdiffusion reduces the silver concentration on the surface of the silver electrode, resulting in the sintering of silver particles. It can be a cause of difficulty in forming.
  • the bismuth oxide-containing phase develops the property of suppressing excessive interdiffusion between silver and aluminum (hereinafter also referred to as diffusion barrier property). For this reason, the aluminum concentration in the silver electrode is kept low, and an aluminum/silver laminated electrode in which silver particle sintered portions are sufficiently formed on the surface can be obtained.
  • the aluminum/silver laminated electrode containing the bismuth oxide-containing phase can be formed using, for example, an electrode-forming composition containing bismuth.
  • the bismuth oxide-containing phase contained in the aluminum/silver laminated electrode improves the strength of the electrode by filling the gaps between the aluminum particles contained in the aluminum electrode, and improves the adhesion to the semiconductor substrate. It is considered to be effective.
  • the bismuth oxide-containing phase contained in the aluminum/silver laminated electrode may contain an amorphous phase.
  • the bismuth oxide-containing phase contains an amorphous phase, the phenomenon that bismuth oxide reaching the passivation film on the semiconductor substrate etches the passivation film tends to be suppressed.
  • the adhesion of the aluminum/silver laminated electrode to the semiconductor substrate to improve.
  • An aluminum/silver laminated electrode in which the bismuth oxide-containing phase contains an amorphous phase can be formed, for example, using an electrode-forming composition containing glass particles.
  • the electrode-forming composition containing glass particles is heat-treated, the melt of the glass particles melts into the bismuth oxide-containing phase, forming a state in which the bismuth oxide-containing phase contains an amorphous phase.
  • the aluminum/silver laminated electrode contains a bismuth oxide phase can be confirmed by performing energy dispersive X-ray analysis (EDX) on the cross section of the aluminum/silver laminated electrode. Confirmation is performed, for example, under the conditions described in Examples.
  • EDX energy dispersive X-ray analysis
  • the bismuth oxide-containing phase of the aluminum/silver laminated electrode contains an amorphous phase can be confirmed using a transmission electron microscope (TEM). Specifically, when the bismuth oxide-containing phase is observed at a high magnification, the existence of the amorphous phase can be confirmed by observing whether or not a structure peculiar to amorphous without crystal lattice fringes is observed. Observation is performed, for example, under the conditions described in Examples.
  • TEM transmission electron microscope
  • the bismuth oxide-containing phase contained in the aluminum/silver laminate electrode may contain boron.
  • the bismuth oxide-containing phase contains boron, the power generation performance of the solar cell element tends to be maintained well. The reason for this is not necessarily clear, but is considered as follows.
  • the bismuth oxide contained in the bismuth oxide-containing phase may dissolve the SiN X film, which is the protective film of the passivation film, and reduce the passivation effect of the passivation film.
  • the bismuth oxide-containing phase contains boron, the bismuth oxide concentration in the bismuth oxide-containing phase near the semiconductor substrate decreases, thereby suppressing dissolution of the SiN X film. As a result, it is considered that the power generation performance of the solar cell element is favorably maintained.
  • the bismuth oxide-containing phase contained in the aluminum/silver laminate electrode may contain phosphorus.
  • the reliability of the aluminum/silver laminated electrode tends to improve in a high-temperature, high-humidity environment. The reason for this is not necessarily clear, but is considered as follows.
  • part of the bismuth oxide contained in the bismuth oxide-containing phase is reduced to metallic bismuth at the interface between the aluminum electrode and the silver electrode, causing a volume change. Cracks or the like are generated at the interface between the aluminum electrode and the silver electrode, which causes deterioration of the reliability of the electrode.
  • the phosphorus acts to suppress the reduction of bismuth oxide.
  • the state of the interface between the aluminum electrode and the silver electrode is maintained in good condition, improving the reliability in a high-temperature and high-humidity environment.
  • An aluminum/silver laminated electrode in which the bismuth oxide-containing phase contains boron or phosphorus can be formed, for example, using an electrode-forming composition containing glass particles containing boron or phosphorus.
  • a protective film for protecting the passivation film may be formed on the passivation film provided on the semiconductor substrate.
  • a specific example of the passivation film is an aluminum oxide film (AlO x ).
  • a specific example of the protective film is a silicon nitride film (SiN x ).
  • the aluminum/silver laminated electrode may include a heat-treated electrode-forming composition containing silver-containing particles and bismuth-containing particles.
  • An electrode-forming composition containing silver-containing particles and bismuth-containing particles is applied to a desired region on an aluminum particle-containing film formed on a semiconductor substrate, dried as necessary, and then heat-treated to form an electrode.
  • the silver-containing particles contained in the composition for use are sintered to form a silver electrode.
  • the aluminum particles contained in the aluminum particle-containing film are sintered to form an aluminum electrode.
  • an aluminum/silver laminated electrode in which the silver electrode is arranged on the aluminum electrode is formed.
  • the bismuth-containing particles contained in the electrode-forming composition turn into a bismuth oxide-containing phase by heat treatment, exhibiting a property (also referred to as a diffusion barrier property) of suppressing interdiffusion at the interface between the silver electrode and the aluminum electrode.
  • a property also referred to as a diffusion barrier property
  • part of the bismuth-containing particles contained in the electrode-forming composition migrates to the aluminum particle-containing film to form a bismuth oxide-containing phase between the aluminum particles or between the aluminum particles and the semiconductor substrate. This improves the bulk strength of the formed aluminum electrode and the adhesion to the substrate.
  • the silver-containing particles contained in the electrode-forming composition are not particularly limited as long as they contain silver. Among them, at least one selected from silver particles and silver alloy particles is preferable, and at least one selected from silver particles and silver alloy particles having a silver content of 50.0% by mass or more is preferable.
  • the silver-containing particles contained in the electrode-forming composition may be of one type or two or more types.
  • the content of silver in silver particles is not particularly limited. For example, it can be 95.0% by mass or more, preferably 97.0% by mass or more, more preferably 99.0% by mass or more, of the entire silver particles.
  • the silver alloy particles are not particularly limited as long as they are alloy particles containing silver.
  • the silver content is preferably 50.0% by mass or more, more preferably 60.0% by mass or more, based on the total amount of the particles. It is more preferably 0% by mass or more, and particularly preferably 80.0% by mass or more. The content may be 95.0% by mass or less.
  • the silver-containing particles may or may not contain components not applicable to silver and silver alloys.
  • the content of the silver-containing particles can be 3.0% by mass or less, preferably 1.0% by mass or less. .
  • the particle size of the silver-containing particles is not particularly limited, but the particle size (volume average particle size, hereinafter “D50% ”) is preferably 0.1 ⁇ m to 50.0 ⁇ m, more preferably 0.15 ⁇ m to 40.0 ⁇ m, even more preferably 0.2 ⁇ m to 30.0 ⁇ m.
  • D50% volume average particle size
  • the volume average particle diameter of the silver-containing particles is 0.1 ⁇ m or more, the concentration of silver on the surface of the aluminum/silver laminated electrode can be sufficiently increased, and the connection strength of the wiring material is improved.
  • the volume average particle size of the silver-containing particles is 50.0 ⁇ m or less, the resistance in the aluminum/silver laminated electrode tends to decrease.
  • the particle size of the silver-containing particles is measured by a laser diffraction particle size distribution analyzer (for example, Beckman Coulter, Inc., LS 13 320 laser scattering diffraction particle size distribution measuring device). Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) within a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is injected into the cell and measured at 25°C. Particle size distribution is measured assuming the refractive index of the solvent to be 1.48.
  • a laser diffraction particle size distribution analyzer for example, Beckman Coulter, Inc., LS 13 320 laser scattering diffraction particle size distribution measuring device. Specifically, silver-containing particles are added to 125 g of a solvent (terpineol) within a range of 0.01% by mass to 0.3% by mass to prepare a dispersion. About 100 ml of this dispersion is injected into the
  • the shape of the silver-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of sinterability between the silver-containing particles, it is preferably substantially spherical, flat, or tabular.
  • the bismuth-containing particles contained in the electrode-forming composition are not particularly limited as long as they contain bismuth. Among them, it is preferably at least one selected from metal bismuth particles, bismuth alloy particles and bismuth oxide particles, and is selected from metal bismuth particles, bismuth alloy particles having a bismuth content of 40.0% by mass or more, and bismuth oxide particles. It is preferable that it is at least one kind.
  • the bismuth-containing particles contained in the electrode-forming composition may be of one type or two or more types.
  • the bismuth-containing particles are vitreous (glass particles containing bismuth), they do not correspond to bismuth-containing particles.
  • the content of bismuth in the metal bismuth particles is not particularly limited. For example, it can be 95.0% by mass or more, preferably 97.0% by mass or more, and more preferably 99.0% by mass or more of the entire metal bismuth particles.
  • the bismuth alloy particles are not particularly limited as long as they are alloy particles containing bismuth.
  • the bismuth content of the bismuth alloy particles is preferably 40.0% by mass or more, more preferably 50.0% by mass or more. It is preferably 60.0% by mass or more, and particularly preferably 70.0% by mass or more.
  • the bismuth content of the bismuth alloy particles may be 95.0% by mass or less.
  • Bismuth alloys include Bi-Sn alloys, Bi-Sn-Cu alloys, Bi-Pb-Sn alloys, and Bi-Cd alloys.
  • Bismuth oxide particles include particles of bismuth trioxide (Bi 2 O 3 ). Bismuth oxide particles are preferably used in combination with metal bismuth particles from the viewpoint of exhibiting sufficient diffusion barrier properties and low resistance of the aluminum/laminated electrode itself.
  • the bismuth-containing particles may or may not contain components that are not metal bismuth, bismuth alloys, and bismuth oxide.
  • the content of the bismuth-containing particles is 3. It can be 0% by mass or less, preferably 1.0% by mass or less.
  • the particle diameter of the bismuth-containing particles is not particularly limited, but the volume average particle diameter is preferably 0.1 ⁇ m to 50.0 ⁇ m, more preferably 0.15 ⁇ m to 40.0 ⁇ m, and more preferably 0.2 ⁇ m to 30.0 ⁇ m. 0 ⁇ m is even more preferable.
  • the particle diameter of the bismuth-containing particles is 0.1 ⁇ m or more, the transition to the aluminum particle-containing film and the formation of the bismuth oxide-containing phase are promoted.
  • the particle diameter of the bismuth-containing particles is 50.0 ⁇ m or less, diffusion barrier properties are effectively exhibited.
  • the volume average particle size of the bismuth-containing particles is measured in the same manner as the volume average particle size of the silver-containing particles.
  • the shape of the bismuth-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of diffusion barrier properties, it is preferably substantially spherical, flat or plate-shaped.
  • the ratio of the content of bismuth-containing particles to the content of silver-containing particles in the electrode-forming composition is preferably 0.30 to 1.40. It is more preferably 0.35 to 1.30, even more preferably 0.40 to 1.20, even more preferably 0.45 to 1.10.
  • a Bi/Ag ratio of 0.30 or more tends to effectively suppress interdiffusion between aluminum and silver.
  • the electrode-forming composition may contain glass particles.
  • the glass particles melted by the heat treatment are mixed with bismuth oxide to form a state in which the bismuth oxide-containing phase contains an amorphous phase.
  • the electrode-forming composition may contain glass particles containing boron (hereinafter also referred to as boron-containing glass particles).
  • boron-containing glass particles glass particles containing boron
  • Glass containing boron includes glass particles containing boron oxide (B 2 O 3 ), more preferably borate glass.
  • borate glass means a glass containing boron oxide ( B2O3 ) as a network-forming oxide.
  • the content of boron oxide as an oxide is preferably 3.0% by mass or more, preferably 5.0% by mass. It is more preferably 10.0% by mass or more, and more preferably 10.0% by mass or more.
  • the content of boron oxide is preferably 25.0% by mass or less, more preferably 20.0% by mass or less, and even more preferably 15.0% by mass or less.
  • the boron-containing glass particles may contain boron oxide and oxides other than boron oxide.
  • oxides other than boron oxide contained in the glass constituting the boron-containing glass particles include silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), phosphorus oxide (P 2 O 5 ), vanadium oxide ( V2O5 ), potassium oxide ( K2O ), bismuth oxide (Bi2O3), sodium oxide ( Na2O ) , lithium oxide ( Li2O), barium oxide ( BaO), strontium oxide (SrO) , calcium oxide (CaO), magnesium oxide (MgO), beryllium oxide (BeO), zinc oxide (ZnO), cadmium oxide (CdO), tin oxide (SnO), zirconium oxide ( ZrO2), tungsten oxide ( WO3) , molybdenum oxide ( MoO3 ), lanthanum oxide (La2O3) , niobium oxide ( Nb2O3 ) ,
  • the boron-containing glass particles preferably contain at least one selected from silicon oxide, aluminum oxide, zinc oxide, bismuth oxide, copper oxide and lithium oxide, more preferably bismuth oxide, and bismuth-containing borate glass. (B 2 O 3 -Bi 2 O 3 system) and the like are preferred examples.
  • a glass with such a composition has a low softening point, and tends to further improve the adhesion of the electrode to the substrate after heat treatment.
  • the content of bismuth oxide is preferably 50.0% by mass or more, more preferably 60.0% by mass or more, and 70.0% by mass or more. is more preferable.
  • the content of bismuth oxide is preferably 95.0% by mass or less, more preferably 90.0% by mass or less, and even more preferably 85.0% by mass or less.
  • the electrode-forming composition may contain phosphorus-containing glass particles (hereinafter also referred to as phosphorus-containing glass particles).
  • phosphorus-containing glass particles By including phosphorus-containing glass in the electrode-forming composition, it is possible to form an aluminum/silver laminated electrode in which the bismuth oxide-containing phase contains an amorphous phase and contains phosphorus.
  • Phosphorus-containing glasses include glass particles containing phosphorus oxide (P 2 O 5 ), and phosphate glasses are preferred.
  • Phosphate glass in the present disclosure means glass containing phosphorus oxide ( P2O5) as a network - forming oxide.
  • the content of phosphorus oxide is preferably 20.0% by mass or more, more preferably 30.0% by mass or more, from the viewpoint of the functionality of the glass. is more preferable, and 35.0% by mass or more is even more preferable.
  • the content of phosphorus oxide (P 2 O 5 ) is preferably 50.0% by mass or less, more preferably 45.0% by mass or less, and further preferably 40.0% by mass or less. preferable.
  • the phosphorus-containing glass particles may contain phosphorus oxide and oxides other than phosphorus oxide.
  • oxides other than phosphorus oxide contained in the glass constituting the phosphorus-containing glass particles include the oxides exemplified as the oxides that may be contained in the glass constituting the boron-containing glass particles.
  • the phosphorus-containing glass particles do not contain boron oxide or contain less boron oxide than phosphorus oxide.
  • the phosphorus-containing glass particles preferably contain at least one selected from vanadium oxide, aluminum oxide, tin oxide and zinc oxide, more preferably tin oxide, and tin-containing phosphate glass (P 2 O 5 - SnO-based) and the like are preferred examples.
  • the use of glass with such a composition tends to further improve the reliability of the aluminum/silver laminated electrode in a high-temperature, high-humidity environment.
  • the content of tin oxide is preferably 20.0% by mass or more, more preferably 30.0% by mass or more, and 40.0% by mass or more. is more preferable.
  • the tin oxide content is preferably 80.0% by mass or less, more preferably 70.0% by mass or less, and even more preferably 60.0% by mass or less.
  • the electrode-forming composition preferably contains boron-containing glass particles and phosphorus-containing glass particles.
  • the content of the phosphorus-containing glass particles with respect to the sum of the boron-containing glass particles and the phosphorus-containing glass particles is 3.0% by mass to 50.0% by mass. % by mass is preferable, 3.5% by mass to 45.0% by mass is more preferable, and 4.0% by mass to 40.0% by mass is even more preferable.
  • the content of the phosphorus-containing glass particles is 3.0% by mass or more with respect to the total of the boron-containing glass particles and the phosphorus-containing glass particles, the reliability of the aluminum/silver laminated electrode in a high-temperature and high-humidity environment is more effective. tend to improve.
  • the content of the phosphorus-containing glass particles to 50.0% by mass or less, the dissolution of the SiN X film due to the bismuth oxide-containing phase is more effectively suppressed, and the power generation performance is maintained satisfactorily.
  • the glass particles contained in the electrode-forming composition may be of one type or two or more types.
  • all of the glass particles may contain phosphorus, or at least one of the glass particles may contain phosphorus.
  • lead-free glass that does not substantially contain lead.
  • Examples of lead-free glass include lead-free glasses described in paragraphs 0024 to 0025 of JP-A-2006-313744, lead-free glasses described in JP-A-2009-188281, and the like.
  • the softening point of the glass particles is not particularly limited, it is preferably 650°C or lower, more preferably 500°C or lower.
  • the softening point of glass particles is measured by conventional methods using a thermomechanical analyzer (TMA).
  • the particle size of the glass particles is not particularly limited, but the volume average particle size is preferably 0.2 ⁇ m to 10.0 ⁇ m, more preferably 0.5 ⁇ m to 8.0 ⁇ m, more preferably 2.0 ⁇ m to 5.0 ⁇ m. 0 ⁇ m is even more preferable.
  • the volume average particle size of the glass particles is 0.2 ⁇ m or more, the workability during the production of the electrode-forming composition is improved.
  • the volume average particle diameter of the glass particles is 10 ⁇ m or less, the dispersibility of the glass particles in the electrode-forming composition is improved, and the uniformity of the composition of the aluminum/silver laminated electrode is also improved.
  • the volume average particle size of the glass particles is measured in the same manner as the volume average particle size of the silver-containing particles.
  • the shape of the glass particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like. From the viewpoint of wettability with silver-containing particles and bismuth-containing particles, it is preferably substantially spherical, flat, or plate-like.
  • the content of the glass particles contained in the electrode-forming composition is the total content of the electrode-forming composition. It is preferably 3.0% by mass to 15.0% by mass, more preferably 3.5% by mass to 14.0% by mass, and 4.0% by mass to 12.0% by mass is more preferred.
  • the content of the glass particles is 3.0% by mass or more, good reliability tends to be maintained in a high-temperature, high-humidity environment.
  • the connection strength (solder wettability) of the connection material tends to be maintained satisfactorily. .
  • the ratio of the content of the bismuth-containing particles to the content of the glass particles contained in the electrode-forming composition is preferably 0.5 to 15.0, more preferably 1.0 to 12.0. is more preferably 1.5 to 10.0.
  • the electrode-forming composition may contain molybdenum-containing particles. Molybdenum contained in the molybdenum-containing particles reacts with the aluminum oxide (Al 2 O 3 ) film formed on the surface of the aluminum electrode during the heat treatment. At this time, part of the aluminum oxide film is destroyed, and the molten aluminum inside flows out of the particles, thereby promoting interdiffusion between aluminum and silver. As a result, a good conductive path is formed between the aluminum electrode and the silver electrode, and the resistance value of the aluminum/silver laminated electrode is reduced. In addition, excessive generation of the bismuth oxide phase between the silver electrode and the aluminum electrode is suppressed, improving reliability in a high-temperature and high-humidity environment.
  • the molybdenum-containing particles are not particularly limited as long as they contain molybdenum.
  • the molybdenum-containing particles are vitreous (glass particles containing molybdenum), they are not regarded as molybdenum-containing particles.
  • the content of molybdenum in the molybdenum-containing particles is not particularly limited.
  • the content of molybdenum may be 70.0% by mass or more, 80.0% by mass or more, or 90.0% by mass or more of the entire particles.
  • the volume average particle size of the molybdenum-containing particles is preferably 0.1 ⁇ m to 50.0 ⁇ m, more preferably 0.15 ⁇ m to 40.0 ⁇ m, and more preferably 0.2 ⁇ m to 30.0 ⁇ m. 0 ⁇ m is even more preferable.
  • the particle diameter of the molybdenum-containing particles is 0.1 ⁇ m or more, the reaction between molybdenum and the aluminum oxide film can be effectively promoted.
  • the particle diameter of the molybdenum-containing particles is 50.0 ⁇ m or less, the surface silver concentration of the aluminum/silver laminated electrode after heat treatment can be kept high.
  • the volume average particle size of the molybdenum-containing particles is measured in the same manner as the volume average particle size of the silver-containing particles.
  • the shape of the molybdenum-containing particles is not particularly limited, and may be approximately spherical, flat, block-shaped, plate-shaped, scale-shaped, or the like.
  • the content of molybdenum-containing particles contained in the electrode-forming composition is preferably 0.1% by mass to 5.0% by mass, more preferably 0.2% by mass to 2.0% by mass, based on the total electrode-forming composition. %, more preferably 0.5 mass % to 1.0 mass %.
  • the content of the molybdenum-containing particles is preferably 0.1% by mass to 5.0% by mass, more preferably 0.2% by mass to 2.0% by mass, based on the total electrode-forming composition. %, more preferably 0.5 mass % to 1.0 mass %.
  • the electrode-forming composition may contain at least one of a solvent and a resin. By including at least one of a solvent and a resin in the electrode-forming composition, the liquid properties (viscosity, surface tension, etc.) of the electrode-forming composition are adjusted within a range suitable for the application method when applied to a substrate or the like. can do.
  • the solvent or resin contained in the electrode-forming composition may be of one type or two or more types.
  • Solvents include hydrocarbon solvents such as hexane, cyclohexane and toluene; halogenated hydrocarbon solvents such as dichloroethylene, dichloroethane and dichlorobenzene; Ether solvents, amide solvents such as N,N-dimethylformamide and N,N-dimethylacetamide, sulfoxide solvents such as dimethylsulfoxide and diethylsulfoxide, ketone solvents such as acetone, methylethylketone, diethylketone and cyclohexanone, ethanol, 2-propanol, Alcohol solvents such as 1-butanol and diacetone alcohol, 2,2,4-trimethyl-1,3-pentanediol monoacetate, 2,2,4-trimethyl-1,3-pentanediol monopropionate, 2,2 Ester solvents of polyhydric alcohols such as ,4-trimethyl-1,3-pentanediol mono
  • the solvent is selected from the group consisting of a polyhydric alcohol ester solvent, a terpene solvent, and a polyhydric alcohol ether solvent, from the viewpoint of imparting properties (e.g., coatability or printability) of the electrode-forming composition. It preferably contains at least one, and more preferably contains at least one selected from the group consisting of polyhydric alcohol ester solvents and terpene solvents.
  • the resin is not particularly limited as long as it can be thermally decomposed by heat treatment, and may be a natural polymer or a synthetic polymer.
  • cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and nitrocellulose
  • polyvinyl alcohol compounds such as polyvinyl alcohol compounds
  • polyvinylpyrrolidone compounds acrylic resins
  • vinyl acetate-acrylic acid ester copolymers such as polyvinyl butyral
  • phenol-modified alkyds Resins, alkyd resins such as castor oil fatty acid-modified alkyd resins, epoxy resins, phenol resins, rosin ester resins, and the like.
  • the resin preferably contains at least one selected from the group consisting of cellulose resins and acrylic resins.
  • the weight average molecular weight of the resin is not particularly limited. Among them, the weight average molecular weight of the resin is preferably 5,000 to 500,000, more preferably 10,000 to 300,000. When the weight-average molecular weight of the resin is 5,000 or more, the increase in the viscosity of the electrode-forming composition tends to be suppressed. It can be considered that this is because, for example, when the resin is adsorbed to the particles, the steric repulsive action becomes sufficient, and the cohesion of these resins is suppressed.
  • the weight-average molecular weight of the resin is 500,000 or less, aggregation of the resins in the solvent is suppressed, and an increase in the viscosity of the electrode-forming composition tends to be suppressed.
  • the weight-average molecular weight of the resin is 500,000 or less, the combustion temperature of the resin is too high, so that the electrode-forming composition is not burned and remains as a foreign substance during the heat treatment. tend to be able to form electrodes.
  • the weight-average molecular weight of the resin is obtained by converting the molecular weight distribution measured by GPC (gel permeation chromatography) using a standard polystyrene calibration curve. A standard curve is approximated in three dimensions using a set of 5 standard polystyrene samples (PStQuick MP-H, PStQuick B, Tosoh Corporation).
  • the measurement conditions of GPC are as follows. ⁇ Apparatus: (Pump: L-2130 [Hitachi High-Technologies Co., Ltd.]), (Detector: L-2490 RI [Hitachi High-Technologies Co., Ltd.]), (Column Oven: L-2350 [Co., Ltd.
  • the total content can be selected depending on the desired liquid properties of the electrode-forming composition, the types of the solvent and resin used, and the like.
  • the total content of the solvent and the resin is preferably 3.0% by mass to 70.0% by mass, more preferably 20.0% by mass to 55.0% by mass, of the entire electrode-forming composition. More preferably, it is 30.0% by mass to 50.0% by mass.
  • the content ratio of the solvent and the resin is appropriately determined according to the types of the solvent and resin used so that the electrode-forming composition has desired liquid properties. can be selected.
  • the electrode-forming composition contains silver-containing particles, bismuth-containing particles and glass from the viewpoint of the sinterability of silver-containing particles, the diffusion barrier properties of bismuth-containing particles, and the effect of improving the strength and adhesion of aluminum electrodes by glass particles.
  • the total content of particles is preferably 30.0% by mass or more and 97.0% by mass or less, more preferably 45.0% by mass or more and 80.0% by mass or less, of the entire electrode-forming composition. , 50.0% by mass or more and 70.0% by mass or less.
  • the electrode-forming composition may further contain other components commonly used in the art.
  • Other components include plasticizers, dispersants, surfactants, thickeners, inorganic binders, metal oxides (except bismuth oxide), ceramics, organometallic compounds, and the like.
  • the method for producing the electrode-forming composition is not particularly limited. For example, it can be produced by dispersing and mixing silver-containing particles, bismuth-containing particles, and optionally glass particles and other components. Dispersion and kneading methods are not particularly limited, and can be applied by selecting from commonly used methods.
  • a method for producing an aluminum/silver laminated electrode using the electrode-forming composition is not particularly limited. For example, a step of forming an aluminum particle-containing film on a semiconductor substrate, a step of applying an electrode-forming composition onto the aluminum particle-containing film and drying if necessary, and a step of forming the aluminum particle-containing film and the electrode. and a step of heat-treating the composition for use in this order.
  • the aluminum particle-containing film may be formed on a semiconductor substrate on which a passivation film and a protective film (SiN x ) are formed. Also, the aluminum particle-containing film may be formed by drying the aluminum electrode-forming composition that has been applied onto the semiconductor substrate.
  • the semiconductor substrate may be a silicon (Si) substrate.
  • the method for applying the composition for forming an aluminum electrode includes a screen printing method, an inkjet method, a dispenser method, and the like. screen printing method is preferable from the viewpoint of productivity.
  • drying conditions after application of the composition for forming an aluminum electrode heat treatment conditions commonly used in the technical field can be applied.
  • Examples of the method for applying the electrode-forming composition onto the aluminum particle-containing film include a screen printing method, an inkjet method, a dispenser method, and the like, and the screen printing method is preferable from the viewpoint of productivity.
  • the electrode-forming composition When the electrode-forming composition is applied onto the aluminum particle-containing film by screen printing, the electrode-forming composition is preferably in the form of a paste.
  • the paste-like electrode-forming composition preferably has a viscosity in the range of 20 Pa ⁇ s to 1000 Pa ⁇ s. The viscosity of the electrode-forming composition is measured at 25° C. using a Brookfield HBT viscometer.
  • the amount of the electrode-forming composition applied to the aluminum particle-containing film may be adjusted according to the size of the electrode to be formed.
  • the amount of the electrode-forming composition applied can be 1.0 mg/cm 2 to 20.0 mg/cm 2 , preferably 2.0 mg/cm 2 to 15.0 mg/cm 2 . .
  • the heat treatment for forming the aluminum/silver laminated electrode using the electrode-forming composition can be carried out under the conditions commonly used in the technical field.
  • the heat treatment temperature may be in the range of 700° C. to 900° C., which is used when manufacturing a general crystalline silicon solar cell element.
  • the heat treatment time can be adjusted according to the heat treatment temperature, and can be, for example, 1 second to 20 seconds.
  • any device capable of heating to the above temperature can be appropriately adopted, and examples thereof include infrared heating furnaces and tunnel furnaces.
  • An infrared heating furnace is highly efficient because electric energy is applied to the heating material in the form of electromagnetic waves and converted into thermal energy, and rapid heating in a shorter time is possible. Furthermore, since there are few combustion products and non-contact heating, it is possible to suppress contamination of the generated electrodes.
  • the tunnel furnace automatically and continuously transports the sample from the entrance to the exit for heat treatment, more uniform heat treatment is possible by dividing the furnace body and controlling the transport speed. From the viewpoint of the power generation performance of the solar cell element, heat treatment in a tunnel furnace is preferable.
  • FIGS. 2A-2C An example of a method of manufacturing a typical aluminum/silver laminated electrode is shown in FIGS. 2A-2C.
  • a paste-like aluminum electrode forming composition 2 is applied by screen printing to one surface of a semiconductor substrate 1 on which a passivation film 18 and a protective film (SiN x ) 19 are formed. do. This is heated at a temperature of about 150° C. to remove the solvent in the aluminum electrode forming composition 2 .
  • the aluminum particle-containing film 3 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN x ) 19 are formed.
  • the electrode-forming composition 4 is applied to a desired region on the aluminum particle-containing film 3, and is dried by heating at a temperature of about 150°C.
  • the electrode-forming composition 4 When the electrode-forming composition 4 is in the form of a paste, it is applied by screen printing as in the case of the aluminum electrode-forming composition 2 . After that, it is heat-treated under the conditions described above. Thereby, as shown in FIG. 2C, the aluminum/silver laminated electrode 8 is formed on the semiconductor substrate 1 on which the passivation film 18 and the protective film (SiN x ) 19 are formed.
  • the aluminum/silver layered electrode 8 has a silver particle sintered portion 7 disposed on the outermost surface, and a space between the silver particle sintered portion 7 and the semiconductor substrate 1 on which a passivation film 18 and a protective film (SiN x ) 19 are formed. , an aluminum particle sintered portion/bismuth oxide-containing phase mixed portion 6 is arranged.
  • FIG. 3 is an enlarged view of the portion where the aluminum/silver laminated electrode is formed in FIG. 2C.
  • the aluminum particle sintered portion/bismuth oxide-containing phase mixed portion 6 includes the aluminum particle sintered portion 5 and the bismuth oxide-containing phase 9 filled in the voids of the aluminum particle sintered portion 5. include.
  • the aluminum particle sintered portion/bismuth oxide-containing phase mixed portion 6 has such a configuration because, as described above, part or all of the bismuth-containing particles in the electrode-forming composition 4 are heat-treated to contain aluminum particles. This is because it migrates to the membrane 3 .
  • the bismuth oxide-containing phase 9 may be arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5, and the aluminum particles in the aluminum particle sintered portion 5 and the silver particle sintered portion 7 may be partially formed.
  • the bismuth oxide-containing phase 9 is arranged so as to separate the silver particle sintered portion 7 and the aluminum particle sintered portion 5 to the extent that excessive mutual diffusion between the aluminum particles and the silver particles is suppressed. is preferred.
  • FIGS. 4, 5A, 5B, 6A, 6B and 6C An example of a typical solar cell element is shown in FIGS. 4, 5A, 5B, 6A, 6B and 6C.
  • FIG. 4 is a schematic plan view of the light receiving surface side of the solar cell element.
  • the light-receiving surface electrode 14 shown in FIG. 4 is generally formed using a silver electrode paste. Specifically, silver electrode paste is applied on the antireflection film 13 in a desired pattern, dried, and then heat-treated at about 700° C. to 900° C. in the atmosphere.
  • FIG. 5A is a schematic plan view of the back surface of the solar cell element.
  • An aluminum electrode 5 is formed on the entire back surface of the solar cell element shown in FIG. 5A.
  • FIG. 5B is a schematic plan view when the aluminum finger electrodes 20 and the aluminum busbar electrodes 21 are formed on part of the back surface of the solar cell element.
  • the electrode-forming composition is applied in a desired pattern and dried. Next, this is heat-treated in the air at about 700° C. to 900° C. to form an aluminum/silver laminated electrode. The heat treatment may be performed together with the heat treatment for forming the light-receiving surface electrode 14 described above.
  • an n + -type diffusion layer 12 is formed near the surface of one surface of the semiconductor substrate 1, and an output extraction electrode 14 and a reflector are formed on the n + -type diffusion layer 12.
  • a protective film 13 is formed.
  • FIG. 6A is a cross section along line AA' in FIG. 5A. If the AA' section does not cross the opening of the backside passivation film, the backside has the structure shown in FIG. 6A.
  • FIG. 6B is a cross section along BB' in FIG. 5B. If the BB' section does not cross the opening of the backside passivation film, the backside has the structure shown in FIG. 6B.
  • FIG. 6C is a cross-sectional view taken along line CC' in FIG. 5B. When the CC' section crosses the openings (aluminum finger electrodes 20) of the back surface passivation film, the back surface has the structure shown in FIG. 6C.
  • the glass particles contained in the silver electrode paste forming the light-receiving surface electrode 14 react (fire through) with the antireflection film 13 by heat treatment.
  • the light-receiving surface electrode 14 and the n + -type diffusion layer 12 are electrically connected (ohmic contact).
  • the heat treatment causes the aluminum in the aluminum electrodes 5, the aluminum finger electrodes 20, or the aluminum bus bar electrodes 21 to be part of the back side of the semiconductor substrate 1 (the part where the back side passivation film is removed by laser or the like).
  • An ohmic contact is partially formed between the semiconductor substrate 1 and the aluminum electrode 5 by diffusing to form the p + -type diffusion layer 15 .
  • a solar cell according to an embodiment of the present disclosure is a solar cell having the solar cell element described above and a wiring material provided on the aluminum/silver laminated electrode of the solar cell element.
  • the term “solar cell” refers to a structure in which a wiring material such as a tab wire is provided on the electrodes of a solar cell element, and a plurality of solar cell elements are connected via the wiring material as necessary, and a sealing resin or the like is used. means a state sealed with
  • the solar cell of the present disclosure includes at least one solar cell element, and may be configured by arranging a wiring material on the electrode of the solar cell element. If necessary, the solar cell may be configured by connecting a plurality of solar cell elements via a wiring material and further sealing with a sealing material.
  • the types of wiring material and sealing material are not particularly limited, and can be selected from those commonly used in the industry.
  • the shape of the glass particles was observed and determined using a scanning electron microscope (Hitachi High-Technologies Corporation, Model TM-1000).
  • the volume average particle diameter (D50%) of the glass particles was calculated using a laser scattering diffraction method particle size distribution analyzer (Beckman Coulter, Inc., LS 13 320 type) at a measurement wavelength of 632 nm.
  • the softening point of the glass particles was obtained from a differential thermal (DTA) curve obtained using a simultaneous differential thermal/thermogravimetric analyzer (Shimadzu Corporation, DT-60H). Specifically, the softening point can be estimated from the endothermic part in the DTA curve.
  • Example 1 (a) Preparation of electrode-forming composition 1 Silicon dioxide (SiO 2 ) 1.3% by mass, boron oxide (B 2 O 3 ) 6.0% by mass, bismuth oxide (Bi 2 O 3 ) 75.0% by mass , 13.5% by mass of zinc oxide (ZnO) and 4.2% by mass of copper oxide (CuO) to obtain a borate glass (hereinafter sometimes abbreviated as “GB01”).
  • the softening point of the obtained glass GB01 was 380°C.
  • glass GB01 particles having a particle size (D50%) of 3.9 ⁇ m were obtained.
  • the shape of the glass GB01 particles was approximately spherical.
  • a pasty electrode-forming composition 1 was prepared by mixing the following materials using a roll mill (BR-150HCV, Imex Co., Ltd.).
  • Silver particles (Ag; D50% is 0.6 ⁇ m, silver content is 99.9% by mass): 34.8 parts by mass Metal bismuth particles (Bi; D50% is 2.5 ⁇ m, bismuth content is 99.5% by mass ) 22.7 parts by mass Glass GB01 particles: 6.5 parts by mass Terpineol (TPO): 30.9 parts by mass Ethyl cellulose (EC; Nisshin Kasei Co., Ltd., STD-10): 5.1 parts by mass
  • n + -type diffusion layer, a texture, and an antireflection film (SiN x ) are formed in this order on the light receiving surface, and the surface opposite to the light receiving surface (hereinafter also referred to as “back surface”).
  • AlO x aluminum oxide film
  • SiN x protective film
  • portions of the passivation film/protective film on the back surface were removed by laser at portions where aluminum finger electrodes were to be formed, exposing the silicon substrate.
  • a composition for forming a silver electrode (PV20, manufactured by DuPont) containing silver particles and lead-glass particles is applied on the light-receiving surface so as to form an electrode pattern as shown in FIG. (the number of lines was set to 9)) was applied by screen printing. This was heated in a sintering furnace (tunnel furnace manufactured by Despatch Co.) at a set temperature of 250° C. and a conveying speed of 240 inches/minute to remove the solvent by evaporation.
  • an aluminum electrode-forming composition (RX8401, manufactured by Ruxing) and the electrode-forming composition 1 obtained above were applied in this order by screen printing to obtain a composition as shown in FIG. 5B. It was applied to the shape of an electrode pattern (actually, the number of aluminum busbar electrodes 21 was 9, and the number of aluminum/silver laminated electrodes 21 was 6 for each aluminum busbar electrode 21). Specifically, the composition for forming an aluminum electrode was printed in the shape of fine line patterns of the aluminum finger electrodes 20 and the aluminum busbar electrodes 21, and dried to form an aluminum particle-containing film. After that, the electrode-forming composition 1 was printed on the aluminum particle-containing film.
  • RX8401 manufactured by Ruxing
  • the positions where the aluminum finger electrodes were formed were aligned with the exposed portions of the silicon substrate.
  • the conditions for printing the composition for forming an aluminum electrode were adjusted so that the thickness of the aluminum electrode after heat treatment was 30 ⁇ m.
  • the electrode-forming composition 1 was printed using a pattern in which pad shapes each having a size of 1.6 mm ⁇ 8.0 mm were arranged, and the coating amount was 8.0 mg/cm 2 .
  • a firing furnace a tunnel furnace manufactured by Despatch
  • a battery element 1 was produced.
  • Example 2 Silicon dioxide (SiO 2 ) 1.6% by mass, boron oxide (B 2 O 3 ) 13.4% by mass, bismuth oxide particles (Bi 2 O 3 ) 84.1% by mass and lithium oxide (Li 2 O) 0.2% by mass.
  • a borate glass containing 9% by mass (hereinafter sometimes abbreviated as “GB02”) was obtained. The softening point of the resulting glass GB02 was 440°C. Using the obtained glass GB02, glass GB02 particles having a volume average particle size (D50%) of 1.1 ⁇ m were obtained. The shape of the glass GB02 particles was approximately spherical.
  • a pasty electrode-forming composition 2 was prepared by mixing the following materials using a roll mill (BR-150HCV, Imex Co., Ltd.). A solar cell element 2 was produced in the same manner as in Example 1 using the electrode-forming composition 2 thus obtained.
  • Silver particles (Ag; D50% is 0.6 ⁇ m, silver content is 99.9% by mass): 30.4 parts by mass Metal bismuth particles (Bi; D50% is 1.5 ⁇ m, bismuth content is 99.5% by mass ): 19.8 parts by mass Bismuth oxide particles ( Bi2O3; D50% is 2.2 ⁇ m, bismuth oxide content is 99.9% by mass): 10.0 parts by mass Glass GB02 particles: 3.3 parts by mass Molybdenum Particles (Mo; Shin Nippon Metal Co., Ltd.
  • Mo-1K D50% is 1.5 ⁇ m, molybdenum content is 99.8% by mass
  • TPO Terpineol
  • Ethyl cellulose EC; Nisshin Kasei Co., Ltd. "STD-10": 5.1 parts by mass
  • Example 3 from 38.0% by weight phosphorus oxide ( P2O5), 57.9% by weight tin oxide (SnO), 3.5 % by weight zinc oxide (ZnO) and 1.5% by weight aluminum oxide ( Al2O3 )
  • P2O5 phosphorus oxide
  • SnO tin oxide
  • ZnO zinc oxide
  • Al2O3 aluminum oxide
  • a phosphate glass (hereinafter sometimes abbreviated as "GP01”) was obtained.
  • the softening point of the obtained glass GP01 was 340°C.
  • glass GP01 particles having a volume average particle diameter (D50%) of 8.0 ⁇ m were obtained.
  • the shape of the glass GP01 particles was approximately spherical.
  • a pasty electrode-forming composition 3 was prepared by mixing the following materials using a roll mill (BR-150HCV, Imex Co., Ltd.). A solar cell element 3 was produced in the same manner as in Example 1 using the electrode-forming composition 3 thus obtained.
  • Silver particles (Ag; D50% is 0.6 ⁇ m, silver content is 99.9% by mass): 31.9 parts by mass Metal bismuth particles (Bi; D50% is 1.5 ⁇ m, bismuth content is 99.5% by mass ): 19.6 parts by mass Bismuth oxide particles ( Bi2O3; D50% is 2.2 ⁇ m, bismuth oxide content is 99.9% by mass): 5.0 parts by mass Glass GB02 particles: 5.6 parts by mass Glass GP01 particles: 1.4 parts by mass Molybdenum particles (Mo; Shin Nippon Metal Co., Ltd.
  • Mo-1K D50% is 1.5 ⁇ m, molybdenum content is 99.8% by mass
  • TPO Terpineol
  • Ethyl cellulose EC; Nisshin Kasei Co., Ltd. "STD-10": 5.1 parts by mass
  • Example 4 A pasty electrode-forming composition 4 was prepared by mixing the following materials using a roll mill (BR-150HCV, Imex Co., Ltd.). A solar cell element 4 was produced in the same manner as in Example 1 using the electrode-forming composition 4 thus obtained.
  • Silver particles (Ag; D50% is 0.6 ⁇ m, silver content is 99.9% by mass): 35.6 parts by mass Metal bismuth particles (Bi; D50% is 1.5 ⁇ m, bismuth content is 99.5% by mass ): 21.4 parts by mass Bismuth oxide particles (Bi 2 O 3 ; D50% is 2.2 ⁇ m, bismuth oxide content is 99.9% by mass): 3.0 parts by mass Glass GB02 particles: 5.6 parts by mass Glass GP01 particles: 1.4 parts by weight terpineol (TPO): 28.3 parts by weight ethyl cellulose (EC; Nisshin Kasei Co., Ltd. "STD-10”): 4.7 parts by weight
  • Example 1 a commercial silver paste for solar cells (manufactured by DuPont, PV51M) was used in forming the back electrode. Specifically, a silver paste was first printed on the back surface and then dried. The pattern of the rear surface output extraction electrode formed using silver paste was configured to have a size of 1.8 mm ⁇ 8.0 mm, and was printed in the same arrangement as in Example 1. The printing conditions (mesh of screen plate, printing speed and printing pressure) were adjusted so that the thickness of the rear surface output extraction electrode after heat treatment was 5 ⁇ m. After that, the composition for forming an aluminum electrode (RX8401) was printed on the pattern described in Example 1, except for the areas where the silver paste was printed and dried, and dried. After that, heat treatment was performed in the same manner as in Example 1 to produce a solar cell element C1.
  • RX8401 an aluminum electrode
  • a solar cell element C2 was produced in the same manner as in Example 1, except that the electrode-forming composition 1 was not used and a commercially available solar cell silver paste (PV51M) was used.
  • Example 3 the aluminum electrode-forming composition was thinly printed only on the portions where the aluminum/silver laminated electrodes were to be formed. Specifically, in the printed pattern shown in FIG. 5B, areas where the aluminum/silver laminated electrode is to be formed are alternately coated areas (100 ⁇ m width) and non-coated areas (100 ⁇ m width) of the composition for forming an aluminum electrode. The aluminum electrode-forming composition was printed so as to form an arranged slit-like pattern. After that, in the same manner as in Example 1, a solar cell element C3 was produced.
  • Table 1 shows the compositions of the electrode-forming compositions used in Examples 1 to 4 and Comparative Examples 1 to 3.
  • a wiring material was connected to the rear surface output extraction electrode of the fabricated solar cell element, and the connection strength of the wiring material was measured by a peel test. Specifically, a wiring material (Ulbrich Co., Multi-Tabbing wire, Sn--Pb-based eutectic solder coating, Cu core material with a diameter of 0.4 mm) is placed on the rear surface output extraction electrode, and is placed on the wiring material. The connection was made by pressing a soldering iron and melting the solder.
  • a wiring material Ultra-Tabbing wire, Sn--Pb-based eutectic solder coating, Cu core material with a diameter of 0.4 mm
  • connection strength (N) connection strength
  • the wiring material was connected by a thermocompression bonding machine. Specifically, the wiring material was placed along the aluminum busbar electrode formation direction of the rear output electrode of the fabricated solar cell element, and a thermocompression bonding machine (device name: MB-200WH, manufactured by Nikka Setsubi Engineering Co., Ltd.) was used. , 250° C., 0.1 MPa, and 10 seconds. After that, the proportion of the wiring material connected to the back surface output extraction electrode by solder melting was calculated.
  • a thermocompression bonding machine device name: MB-200WH, manufactured by Nikka Setsubi Engineering Co., Ltd.
  • the power generation performance of the solar cell elements produced in Examples 1 to 4 showed almost the same value as the measured value of the solar cell element of Comparative Example 1.
  • an aluminum/silver laminated electrode was formed on the back surface of the solar cell elements produced in Examples 1-4.
  • a silver particle sintered portion was formed on the outermost surface of the electrode, and a bismuth oxide-containing phase was formed in the void portion of the aluminum electrode. Furthermore, part of the bismuth oxide-containing phase reached the surface of the substrate in contact with the aluminum/silver laminated electrode.
  • the thickness of the aluminum/silver laminated electrode on the back surface of the solar cell elements produced in Examples 1 to 4 was greater than the thickness of the surrounding aluminum non-laminated electrode.
  • 7 and 8 show an example of measuring the thickness of each electrode of the solar cell element produced in Example 1.
  • the connection strength of the wiring material in the back surface output extraction electrode of the solar cells produced in Examples 1 to 4 showed a high value of 2N or more.
  • the reason for this is that the surface silver concentration of the aluminum/silver laminated electrode, which is the rear output extraction electrode, is high, so that the wettability of the solder is good, and part of the bismuth oxide-containing phase reaches the silicon substrate. It is conceivable that the bulk strength of the aluminum electrode and the adhesion to the substrate (passivation protective film formation surface) are good due to the close contact and melting of the glass particles into the bismuth oxide-containing phase.
  • the connectivity of the wiring materials in the back surface output extraction electrodes of the solar cell elements produced in Examples 1 to 4 was all good. This is probably because the aluminum/silver laminated electrode was formed to be thicker than the non-aluminum laminated electrode, so that the solder of the wiring material was sufficiently connected to the electrode surface. From this, it is considered that the aluminum/silver laminated electrode having the configuration of the present disclosure is effective from the viewpoint of improving workability during solar cell manufacturing and ensuring power generation performance (eg, series resistance) as a solar cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

半導体基板と、前記半導体基板の上に設けられるパッシベーション膜と、前記パッシベーション膜の上に設けられるアルミニウム/銀積層電極と、前記パッシベーション膜の上に設けられるアルミニウム非積層電極と、を備え、前記アルミニウム/銀積層電極は酸化ビスマス含有相を含み、前記アルミニウム非積層電極の厚さAと前記アルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たす、太陽電池素子。

Description

太陽電池素子及び太陽電池
 本発明は、太陽電池素子及び太陽電池に関する。
 近年、地球温暖化、大気汚染等をはじめとする環境問題への関心が高まっている。中でも地球温暖化問題の対策としては、化石燃料に替わる再生可能エネルギーの需要が高まっている。再生可能エネルギーとしては、太陽光、地熱、風力、波力、潮力、バイオマス等が挙げられる。特に太陽光発電は、無尽蔵な太陽光エネルギーを活用すると同時に、発電の際に二酸化炭素を排出しないクリーンな自然エネルギーとして注目を集め、深刻化するエネルギー問題の有効な解決策として期待されている。
 太陽電池としては、半導体基板としてシリコン(Si)基板を用いた結晶シリコン系太陽電池が一般的である。Si基板を用いた太陽電池セル(太陽電池素子)の受光面及び裏面(受光面と逆の面)のそれぞれには、キャリアを回収するための集電用電極と、キャリアを出力として取り出すための出力取出し電極(バスバー電極)とが形成される。受光面の集電用電極は特に、フィンガー電極と呼ばれる。受光面電極の形成には、銀(Ag)電極形成用組成物が用いられ、フィンガー電極及びバスバー電極部の印刷は、個別又は一括で行われる。裏面については、バスバー電極の形成は銀電極形成用組成物が、集電用電極にはアルミニウム(Al)電極形成用組成物がそれぞれ用いられる。各電極形成用組成物には、導電性金属粒子、ガラス粒子及び種々の添加剤等が含有される。
 受光面電極及び裏面バスバー電極を形成するための銀電極形成用組成物には、前記導電性金属粒子として、銀粒子が一般的に用いられている。この理由として、銀の体積抵抗率が低い(1.47×10-6Ωcm)こと、上記熱処理条件において銀粒子が自己還元して焼結すること、銀粒子とシリコン基板が良好なオーミックコンタクトを形成すること及び銀粒子から形成された電極がはんだ材料の濡れ性に優れ、太陽電池素子間を電気的に接続する配線材料(タブ線等)を好適に接着可能であることが挙げられる。
 アルミニウム電極形成用組成物を用いて裏面の集電用電極を形成する際、アルミニウム電極形成用組成物中のアルミニウムが、シリコンとの共晶反応を経て裏面の表面に高濃度拡散層(p-Si層、Back Surface Field;BSF)を形成する。これにより、p型シリコン基板中の少数キャリアである電子を受光面側に追い返す構造が付与され、キャリア再結合の確率を低減することができる。
 しかしながら、従来のアルミニウム電極形成用組成物を用いた裏面電極/BSF構造では、裏面の少数キャリア再結合速度は3×10cm/s程度と速く、太陽電池素子の発電性能を低下させる要因になり得る。
 裏面再結合損失の低減策として、PERC(Passivated Emitter, Rear Cell)構造が注目されている(例えば、特許文献1参照)。PERC構造は、裏面再結合の一因である裏面電極とSi基板間のオーミックコンタクト部をポイント状又はライン状に制限しているのが特徴で、裏面電極のコンタクト部以外はすべてパッシベーション膜で覆われている。PERC構造に用いることができる裏面パッシベーション膜としては、原子層堆積法(Atomic Layer Deposition;ALD)又はCVD法(Chemical Vapor Deposition)によるアモルファス酸化アルミニウム(AlO)膜が挙げられる。ALD法やCVD法によるAlO膜は、大きな負の固定電荷をもつことが知られ、これを適用したPERC構造太陽電池素子は高い発電性能を示すことが知られている。
 PERC構造では、裏面電極とSi基板のコンタクト部が限られていることから、両面受光(bifacial)型の太陽電池素子が実現できる。bifacial-PERC構造の利点として、裏面に差し込んだ光を活用できること等が挙げられる。
 上述したPERC構造(bifacial-PERC及びMBB-bifacial-PERC構造を含む)において、裏面電極を形成する際は、一般的に銀を含む電極形成用組成物と、アルミニウムを含む電極形成用組成物とを、基板の所定の領域にそれぞれ印刷し、乾燥した後、一括して熱処理する。上記構造では、アルミニウム電極は表面に形成されている酸化アルミニウム(Al)皮膜と配線材料を被覆しているはんだとの濡れ性が悪いため、アルミニウム電極には配線材料を直接接合できない。
また、裏面においては、受光面側と同様、配線材料を接続する箇所には出力取出し電極としての銀電極を形成する必要があるため、裏面電極プロセスにおいては、成膜したパッシベーション膜の上にまず銀電極形成用組成物を塗布する。このとき、従来のプロセスで形成された裏面電極では、アルミニウム電極と、裏面出力取出し電極としての銀電極との段差(厚さの差)によって、配線材料の接続不良が生じたり、太陽電池としての信頼性が損なわれる可能性がある。
 これは、例えば、以下のようにして考えることができる。裏面電極のうち、出力取出し電極としての銀電極は、銀電極形成用組成物の使用量低減等の観点から、配線材料の接続方向に沿って連続的に形成されず、配線材料の接続方向に沿って、銀電極と銀電極との間にアルミニウム電極が形成されることがある。熱処理(焼成)後のアルミニウム電極の厚さは一般的に20μm~40μmであり、裏面出力取出し電極としての銀電極の厚さは2μm~5μmである場合がある。このような場合、配線材料の一部がアルミニウム電極上に配置されることになるが、アルミニウム電極と銀電極との段差が大きいと、配線材料の変形が段差に追従できず、銀電極での配線材料の接続が不十分になることが考えられる。また、銀電極において配線材料の接続ができたとしても、配線材料が段差に応じて凹凸を形成しながら変形するため、熱による内部応力以外の応力が加わると考えられる。このような中で、太陽電池部材に温度変化が与えられるような試験又は環境(例えば、温度サイクル試験)中に、接続部に亀裂等が生じることで、発電性能の低下率が大きくなってしまう。
特許第6203990号公報
 上記事情に鑑み、本開示の一実施形態は、裏面電極への配線材料の接続性に優れるPERC構造の太陽電池素子及び太陽電池を提供する。
 上記課題を実施するための手段には、以下の実施形態が含まれる。
<1>半導体基板と、前記半導体基板の上に設けられるパッシベーション膜と、前記パッシベーション膜の上に設けられるアルミニウム/銀積層電極と、前記パッシベーション膜の上に設けられるアルミニウム非積層電極と、を備え、
 前記アルミニウム/銀積層電極は酸化ビスマス含有相を含み、
 前記アルミニウム非積層電極の厚さAと前記アルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たす、太陽電池素子。
<2>前記アルミニウム/銀積層電極は表面に銀粒子焼結部を有する、<1>に記載の太陽電池素子。
<3>前記酸化ビスマス含有相はホウ素を含む、<1>又は<2>に記載の太陽電池素子。
<4>前記酸化ビスマス含有相はリンを含む、<1>~<3>のいずれか1項に記載の太陽電池素子。
<5>前記アルミニウム/銀積層電極は銀含有粒子と、ビスマス含有粒子と、を含む電極形成用組成物の熱処理物を含む、<1>~<4>のいずれか1項に記載の太陽電池素子。
<6>前記ビスマス含有粒子はビスマス粒子、ビスマス含有率が40.0質量%以上であるビスマス合金粒子及び酸化ビスマス粒子からなる群より選ばれる少なくとも1種を含む、<5>に記載の太陽電池素子。
<7>前記電極形成用組成物はガラス粒子を含む、<5>又は<6>に記載の太陽電池素子。
<8>前記ガラス粒子はホウ素を含む、<7>に記載の太陽電池素子。
<9>前記ガラス粒子はリンを含む、<7>又は<8>に記載の太陽電池素子。
<10><1>~<9>のいずれか1項に記載の太陽電池素子と、前記太陽電池素子の前記アルミニウム/銀積層電極の上に設けられる配線材料と、を有する太陽電池。
 本開示の一実施形態によれば、裏面電極への配線材料の接続性に優れるPERC構造の太陽電池素子及び太陽電池が提供される。
一実施形態に係る太陽電池素子の、アルミニウム非積層電極及びアルミニウム/銀積層電極が形成された部分の断面の一例を示す図である。 一実施形態に係るアルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。 一実施形態に係るアルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。 一実施形態に係るアルミニウム/銀積層電極の製造方法の一例を示す断面模式図である。 一実施形態に係るアルミニウム/銀積層電極の断面模式図である。 一実施形態に係る太陽電池素子の受光面の一例を示す概略平面図である。 一実施形態に係る太陽電池素子の裏面の一例を示す概略平面図である。 一実施形態に係る太陽電池素子の裏面の一例を示す概略平面図である。 一実施形態に係る太陽電池素子の一例を示す断面模式図(図5AのA-A´部の切断面)である。 一実施形態に係る太陽電池素子の一例を示す断面模式図(図5BのB-B´部の切断面)である。 一実施形態に係る太陽電池素子の一例を示す断面模式図(図5BのC-C´部の切断面)である。 走査型電子顕微鏡(SEM)で撮影された画像であり、実施例に係る太陽電池素子の裏面に形成されたアルミニウム非積層電極の断面組織である。 走査型電子顕微鏡(SEM)で撮影された画像であり、実施例に係る太陽電池素子の裏面に形成されたアルミニウム/銀積層電極の断面組織である。
 以下、本開示の実施形態について詳細に説明する。ただし、本発明は下記実施形態に限られるものではない。本開示において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の目的が達成されれば、本用語に含まれる。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示において、「積層」との語は、二以上の層を積み重ねることを示す、
 本開示において「断面」との語は、太陽電池素子を半導体基板の面方向に対して垂直に切断して得られる面を意味する。
 本開示において「熱処理」との語には、熱処理の対象物に含まれる粒子が焼結又は溶融する条件で行う加熱(焼成等)を含む。
 図面において、同等の構成要素には同一の符号を付す。
 本開示において「太陽電池素子」とは、pn接合が形成された半導体基板と、半導体基板上に形成された電極と、を有するものを意味する。本開示において「PERC構造の太陽電池素子」とは、太陽電池素子の裏面にパッシベーション膜を有するものを意味する。
<太陽電池素子>
 本開示の太陽電池素子は、半導体基板と、前記半導体基板の上に設けられるパッシベーション膜と、前記パッシベーション膜の上に設けられるアルミニウム/銀積層電極と、前記パッシベーション膜の上に設けられるアルミニウム非積層電極と、を備え、
 前記アルミニウム/銀積層電極は酸化ビスマス含有相を含み、
 前記アルミニウム非積層電極の厚さAと前記アルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たす、太陽電池素子である。
 本開示の太陽電池素子では、アルミニウム非積層電極の厚さAとアルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たす。
 アルミニウム非積層電極の厚さAとアルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たす太陽電池素子は、アルミニウム非積層電極の厚さAとアルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たさない太陽電池素子に比べ、アルミニウム/銀積層電極への配線材料の接続性に優れている。
 本開示において「アルミニウム/銀積層電極」とは、アルミニウム電極と、その上に形成される銀電極とが積層した状態の電極を意味し、「アルミニウム非積層電極」とは、アルミニウム電極の上に銀電極が形成されていない状態の電極を意味する。
 本開示においてアルミニウム非積層電極の厚さAは太陽電池素子の厚み方向におけるアルミニウム非積層電極の寸法とし、アルミニウム/銀積層電極の厚さBは太陽電池素子の厚み方向におけるアルミニウム/銀積層電極の寸法とする。
 本開示の太陽電池素子の構造の一例について、図1を用いて説明する。
 図1は、本開示の太陽電池素子の裏面電極の断面模式図である。図1に示すように、半導体基板1の表面にはパッシベーション膜18及び保護膜19がこの順で成膜されている。保護膜19の上には、銀電極が形成されていない状態のアルミニウム電極5(すなわち、アルミニウム非積層電極)及びアルミニウム/銀積層電極8が形成されている。
 アルミニウム/銀積層電極8は、アルミニウム電極(アルミニウム粒子焼結部ともいう)と銀電極(銀粒子焼結部ともいう)とが積層された箇所を含む。例えば、アルミニウム/銀積層電極8の最表面に、銀粒子焼結部が形成されてよい。また、アルミニウム電極5と、アルミニウム/銀積層電極8を構成するアルミニウム電極とは、同時に形成されてよい。
 図1に示す構成では、アルミニウム電極5(すなわち、アルミニウム非積層電極)の厚さをAとし、アルミニウム/銀積層電極8の厚さをBとしたときに、AはBよりも小さい。すなわち、アルミニウム非積層電極5の厚さがアルミニウム/銀積層電極の厚さよりも薄い。
 図1に示す構成では、アルミニウム非積層電極の厚さがアルミニウム/銀積層電極の厚さよりも薄い(A<Bである)が、アルミニウム非積層電極の厚さがアルミニウム/銀積層電極の厚さと等しい(A=Bである)場合も本開示の太陽電池素子に含まれる。
 本開示において、アルミニウム非積層電極及びアルミニウム/銀積層電極の厚さは、例えば、各電極の断面の電子顕微鏡写真を用いて計測できる。具体的には、太陽電池素子の各電極が形成された箇所をダイヤモンドカッター等で半導体基板の面方向に対して垂直に切断し、得られた断面の電子顕微鏡写真を観察して計測できる。
 図7及び図8に示すように、電極の厚さ方向に対して垂直であり、かつ、電極の半導体基板側の輪郭線上の点のうち最も電極の表面側に近い位置に存在する点を通る線分と、電極の厚さ方向に対して垂直であり、かつ、電極の表面側の輪郭線上の点のうち半導体基板から最も遠い位置に存在する点を通る線分と、の間の距離を、その電極の厚さとする。例えば、図7に示す観察断面におけるアルミニウム非積層電極の厚さAは、22.8μmであり、図8に示す観察断面におけるアルミニウム/銀積層電極の厚さBは、27.6μmである。
 測定精度向上の観点からは、複数個所(例えば、5箇所)で上記の測定を行い、その算術平均値を電極の厚さとすることが好ましい。
 電子顕微鏡写真から各電極の厚さを計測する際の観察断面の大きさは、特に制限はなく、例えば、半導体基板の面方向の長さが50μm~500μmである領域を観察断面としてよい。
 本開示の太陽電池素子において、アルミニウム非積層電極の厚さAとアルミニウム/銀電極の厚さBとの差は特に制限されない。配線材料の変形抑制及び配線材料の接続の際の作業性の観点から、AとBとの差は10.0μm以下であることが好ましく、7.0μm以下であることがより好ましく、5.0μm以下であることが更に好ましく、3.0μm以下であることが特に好ましい。
 アルミニウム非積層電極の厚さAは、例えば、10μm~50μmであってもよく、12μm~45μmであってもよく、15μm~40μmであってもよい。
 アルミニウム/銀積層電極の厚さBは、例えば、12μm~55μmであってもよく、15μm~50μmであってもよく、18μm~45μmであってもよい。
 本開示の太陽電池素子では、アルミニウム/銀積層電極が酸化ビスマス含有相を含む。このような構成のアルミニウム/銀積層電極は、表面に銀粒子焼結部が充分に形成される。その理由は下記のように考えられる。
 アルミニウム粒子を含む電極形成用組成物を用いて形成した層の上に銀粒子を含む電極形成用組成物を用いて層を形成した状態で熱処理を行ってアルミニウム/銀積層電極を形成する場合、熱処理によって形成されるアルミニウム電極(アルミニウム焼結部)と銀電極(銀粒子焼結部)との界面においてアルミニウムと銀との相互拡散が生じ、アルミニウムの一部が銀電極側に移行する。
 アルミニウムと銀との相互拡散は、アルミニウム電極と銀電極との間の導電パスの形成に寄与する一方で、過度の相互拡散は銀電極の表面の銀濃度が低下し、銀粒子焼結部の形成を困難にする原因となりうる。
 アルミニウム/銀積層電極が酸化ビスマス含有相を含んでいると、酸化ビスマス含有相が銀とアルミニウムとの過度の相互拡散を抑制する性質(以下、拡散バリア性ともいう)を発現する。このため、銀電極中のアルミニウム濃度が低く抑えられ、表面に銀粒子焼結部が充分に形成されたアルミニウム/銀積層電極が得られる。
 酸化ビスマス含有相を含んだ状態であるアルミニウム/銀積層電極は、例えば、ビスマスを含む電極形成用組成物を用いて形成することができる。
 アルミニウム/銀積層電極に含まれる酸化ビスマス含有相は、上述した拡散バリア効果に加え、アルミニウム電極に含まれるアルミニウム粒子間の空隙を充填することによって電極の強度向上、半導体基板に対する密着性向上等の効果を発揮すると考えられる。
 アルミニウム/銀積層電極に含まれる酸化ビスマス含有相は、アモルファス相を含んでもよい。酸化ビスマス含有相がアモルファス相を含んでいると、半導体基板上のパッシベーション膜に到達した酸化ビスマスがパッシベーション膜をエッチングする現象が抑制される傾向にある。また、アルミニウム/銀積層電極の半導体基板に対する密着性が向上する傾向にある。
 酸化ビスマス含有相がアモルファス相を含んだ状態であるアルミニウム/銀積層電極は、例えば、ガラス粒子を含む電極形成用組成物を用いて形成することができる。ガラス粒子を含む電極形成用組成物を熱処理すると、ガラス粒子の溶融物が酸化ビスマス含有相に溶け込み、酸化ビスマス含有相がアモルファス相を含んだ状態が形成される。
 アルミニウム/銀積層電極が酸化ビスマス相を含むか否かは、アルミニウム/銀積層電極の断面についてエネルギー分散型X線分析(EDX)を実施することで確認することができる。確認は、例えば、実施例に記載した条件で行う。
 アルミニウム/銀積層電極の酸化ビスマス含有相がアモルファス相を含むか否かは、透過型電子顕微鏡(TEM)を用いて確認できる。具体的には、酸化ビスマス含有相を高倍率で観察した際に、結晶の格子縞を持たないアモルファス特有の組織が観察されるかによってアモルファス相の存在を確認できる。観察は、例えば、実施例に記載した条件で行う。
 アルミニウム/銀積層電極に含まれる酸化ビスマス含有相は、ホウ素を含んでもよい。
 酸化ビスマス含有相がホウ素を含んでいると、太陽電池素子の発電性能が良好に維持される傾向にある。この理由は必ずしも明らかではないが、下記のように考えられる。
 酸化ビスマス含有相に含まれる酸化ビスマスは、パッシベーション膜の保護膜であるSiN膜を溶解して、パッシベーション膜のパッシベーション効果を低減させる可能性がある。酸化ビスマス含有相がホウ素を含んでいると、半導体基板付近の酸化ビスマス含有相の酸化ビスマス濃度が低下して、SiN膜の溶解が抑制される。その結果、太陽電池素子の発電性能が良好に維持されると考えられる。
 アルミニウム/銀積層電極に含まれる酸化ビスマス含有相は、リンを含んでもよい。
 酸化ビスマス含有相がリンを含んでいると、アルミニウム/銀積層電極の高温高湿環境下での信頼性が向上する傾向にある。この理由は必ずしも明らかではないが、下記のように考えられる。
 アルミニウム/銀積層電極が高温高湿環境下におかれると、アルミニウム電極と銀電極との界面において酸化ビスマス含有相に含まれる酸化ビスマスの一部が金属ビスマスに還元して、体積変化が生じ、アルミニウム電極と銀電極との界面に亀裂等が生じて電極の信頼性が低下する原因となる。酸化ビスマス含有相がリンを含んでいると、リンが酸化ビスマスの還元を抑制するように作用する。その結果、アルミニウム電極と銀電極との界面の状態が良好に維持されて、高温高湿環境下での信頼性が向上すると考えられる。
 酸化ビスマス含有相がホウ素又はリンを含んだ状態のアルミニウム/銀積層電極は、例えば、ホウ素又はリンを含むガラス粒子を含む電極形成用組成物を用いて形成することができる。
 半導体基板の上に設けられるパッシベーション膜の上には、パッシベーション膜を保護するための保護膜が形成された状態であってもよい。パッシベーション膜として具体的には酸化アルミニウム膜(AlO)が挙げられる。保護膜として具体的には窒化ケイ素膜(SiN)が挙げられる。
(電極形成用組成物)
 アルミニウム/銀積層電極は、銀含有粒子と、ビスマス含有粒子と、を含む電極形成用組成物の熱処理物を含むものであってもよい。
 銀含有粒子と、ビスマス含有粒子とを含む電極形成用組成物を、半導体基板上に形成されたアルミニウム粒子含有膜上の所望の領域に付与し、必要に応じて乾燥した後に熱処理
すると、電極形成用組成物に含まれる銀含有粒子は焼結して銀電極を形成する。一方、アルミニウム粒子含有膜に含まれるアルミニウム粒子は焼結してアルミニウム電極を形成する。これにより、アルミニウム電極の上に銀電極が配置された状態のアルミニウム/銀積層電極が形成される。
 電極形成用組成物に含まれるビスマス含有粒子は、熱処理により酸化ビスマス含有相となって、銀電極とアルミニウム電極との界面における相互拡散を抑制する性質(拡散バリア性ともいう)を発現する。
 このとき、電極形成用組成物に含まれるビスマス含有粒子の一部はアルミニウム粒子含有膜に移行して、アルミニウム粒子の間又はアルミニウム粒子と半導体基板との間に酸化ビスマス含有相を形成する。これにより、形成されるアルミニウム電極のバルク強度及び基板に対する密着性が向上する。
(銀含有粒子)
 電極形成用組成物に含まれる銀含有粒子は、銀を含む粒子であれば特に制限されない。中でも、銀粒子及び銀合金粒子から選ばれる少なくとも1種であることが好ましく、銀粒子及び銀含有率が50.0質量%以上である銀合金粒子から選ばれる少なくとも1種であることが好ましい。電極形成用組成物に含まれる銀含有粒子は、1種のみでも2種以上であってもよい。
 銀粒子における銀の含有率は特に制限されない。例えば、銀粒子全体の95.0質量%以上とすることができ、97.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。
 銀合金粒子は、銀を含む合金の粒子であれば特に制限されない。中でも、銀合金粒子の融点及び焼結性の観点から、銀の含有率は粒子全体の50.0質量%以上であることが好ましく、60.0質量%以上であることがより好ましく、70.0質量%以上であることがさらに好ましく、80.0質量%以上であることが特に好ましい。上記含有率は、95.0質量%以下であってもよい。
 銀合金としては、Ag-Pd系合金、Ag-Pd-Au系合金、Ag-Pd-Cu系合金、Ag-Pd-In系合金、Ag-In系合金、Ag-Sn系合金、Ag-Zn系合金、Ag-Sn-Zn系合金等が挙げられる。
 銀含有粒子は、銀及び銀合金に該当しない成分を含まなくても、含んでいてもよい。
 銀含有粒子は、銀及び銀合金に該当しない成分を含む場合、その含有率は、銀含有粒子中に3.0質量%以下とすることができ、1.0質量%以下であることが好ましい。
 銀含有粒子の粒子径は特に制限されないが、レーザー回折・散乱法により得られる体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(体積平均粒子径、以下「D50%」と略記することがある)として0.1μm~50.0μmであることが好ましく、0.15μm~40.0μmであることがより好ましく、0.2μm~30.0μmであることがさらに好ましい。銀含有粒子の体積平均粒子径が0.1μm以上であると、アルミニウム/銀積層電極の表面における銀の濃度を充分に高くでき、配線材料の接続強度が向上する。銀含有粒子の体積平均粒子径が50.0μm以下であると、アルミニウム/銀積層電極内の抵抗が低減する傾向にある。
 銀含有粒子の粒子径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター(株)、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される。具体的には、溶剤(テルピネオール)125gに、銀含有粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶媒の屈折率を1.48として測定する。
 銀含有粒子の形状は特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。銀含有粒子同士の焼結性の観点からは、略球状、扁平状又は板状であることが好ましい。
(ビスマス含有粒子)
 電極形成用組成物に含まれるビスマス含有粒子は、ビスマスを含む粒子であれば特に制限はない。中でも、金属ビスマス粒子、ビスマス合金粒子及び酸化ビスマス粒子から選ばれる少なくとも1種であることが好ましく、金属ビスマス粒子、ビスマス含有率が40.0質量%以上であるビスマス合金粒子及び酸化ビスマス粒子から選ばれる少なくとも1種であることが好ましい。電極形成用組成物に含まれるビスマス含有粒子は、1種のみでも2種以上であってもよい。
 本開示において、ビスマス含有粒子がガラス状である場合(ビスマスを含むガラス粒子)は、ビスマス含有粒子に該当しないものとする。
 金属ビスマス粒子におけるビスマスの含有率は特に制限されない。例えば、金属ビスマス粒子全体の95.0質量%以上とすることができ、97.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。
 ビスマス合金粒子は、ビスマスを含む合金の粒子であれば特に制限されない。中でも、ビスマス合金粒子の融点及び拡散バリア性の観点から、ビスマス合金粒子のビスマスの含有率は粒子全体の40.0質量%以上であることが好ましく、50.0質量%以上であることがより好ましく、60.0質量%以上であることがさらに好ましく、70.0質量%以上であることが特に好ましい。ビスマス合金粒子のビスマスの含有率は95.0質量%以下であってもよい。
 ビスマス合金としては、Bi-Sn系合金、Bi-Sn-Cu系合金、Bi-Pb-Sn系合金、Bi-Cd系合金等が挙げられる。
 酸化ビスマス粒子としては、三酸化ビスマス(Bi)の粒子が挙げられる。充分な拡散バリア性及びアルミニウム/積層電極自身の低抵抗化を発揮する観点からは、酸化ビスマス粒子は金属ビスマス粒子と併用することが好ましい。
 ビスマス含有粒子は、金属ビスマス、ビスマス合金及び酸化ビスマスに該当しない成分を含まなくても、含んでいてもよい。
 ビスマス含有粒子が金属ビスマス、ビスマス合金及び酸化ビスマスに該当しない成分を含む場合、酸化ビスマス含有相の形成及びアルミニウム/銀のバリア性の観点からは、その含有率は、ビスマス含有粒子中に3.0質量%以下とすることができ、1.0質量%以下であることが好ましい。
 ビスマス含有粒子の粒子径は特に制限されないが、体積平均粒子径が0.1μm~50.0μmであることが好ましく、0.15μm~40.0μmであることがより好ましく、0.2μm~30.0μmであることがさらに好ましい。ビスマス含有粒子の粒子径が0.1μm以上であると、アルミニウム粒子含有膜への移行及び酸化ビスマス含有相の形成が促進される。ビスマス含有粒子の粒子径が50.0μm以下であると、拡散バリア性が効果的に発揮される。
 ビスマス含有粒子の体積平均粒子径は、銀含有粒子の体積平均粒子径と同様にして測定される。
 ビスマス含有粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。拡散バリア性の観点からは、略球状、扁平状又は板状であることが好ましい。
 電極形成用組成物における銀含有粒子の含有量に対するビスマス含有粒子の含有量の比率(Bi/Ag比)は、0.30~1.40であることが好ましく。0.35~1.30であることがより好ましく、0.40~1.20であることがさらに好ましく、0.45~1.10であることがさらにより好ましい。Bi/Ag比を0.30以上とすることで、アルミニウムと銀との相互拡散が効果的に抑制される傾向にある。Bi/Ag比を1.40以下とすることで、アルミニウム/銀積層電極の表面の銀濃度が充分に確保され、接続材料の接続強度(はんだの濡れ性)が良好に維持される傾向にある。
(ガラス粒子)
 電極形成用組成物は、ガラス粒子を含んでもよい。電極形成用組成物がガラス粒子を含んでいると、熱処理により溶融したガラス粒子が酸化ビスマスと混じりあうことにより、酸化ビスマス含有相がアモルファス相を含んだ状態が形成される。
 電極形成組成物は、ホウ素を含有するガラス粒子(以下、ホウ素含有ガラス粒子ともいう)を含んでもよい。電極形成用組成物がホウ素含有ガラスを含むことで、酸化ビスマス含有相がアモルファス相を含み、かつホウ素を含んだ状態のアルミニウム/銀積層電極を形成することができる。
 ホウ素を含有するガラスとしては、酸化ホウ素(B)を含むガラス粒子が挙げられ、ホウ酸塩ガラスがより好ましい。
 本開示においてホウ酸塩ガラスとは、酸化ホウ素(B)を網目形成酸化物として含むガラスを意味する。
 ホウ素含有ガラス粒子を構成するガラスの組成としては、ガラスの機能上の観点から、酸化物としての酸化ホウ素の含有率が全体の3.0質量%以上であることが好ましく、5.0質量%以上であることがより好ましく、10.0質量%以上であることがさらに好ましい。酸化ホウ素の含有率は全体の25.0質量%以下であることが好ましく、20.0質量%以下であることがより好ましく、15.0質量%以下であることがさらに好ましい。
 ホウ素含有ガラス粒子は、酸化ホウ素と、酸化ホウ素以外の酸化物とを含んでもよい。
 ホウ素含有ガラス粒子を構成するガラスに含まれる酸化ホウ素以外の酸化物としては、例えば、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化リン(P)、酸化バナジウム(V)、酸化カリウム(KO)、酸化ビスマス(Bi)、酸化ナトリウム(NaO)、酸化リチウム(LiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)、酸化錫(SnO)、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化ゲルマニウム(GeO)、酸化テルル(TeO)、酸化ルテチウム(Lu)、酸化アンチモン(Sb)、酸化銅(CuO)、酸化鉄(Fe)、酸化銀(AgO)及び酸化マンガン(MnO)が挙げられる。
 ホウ素含有ガラス粒子は酸化リンを含まないか、又は酸化リンの含有率が酸化ホウ素の含有率よりも低いことが好ましい。
 ホウ素含有ガラス粒子は酸化ケイ素、酸化アルミニウム、酸化亜鉛、酸化ビスマス、酸化銅及び酸化リチウムから選択される少なくとも1種を含むことが好ましく、酸化ビスマスを含むことがより好ましく、ビスマス含有ホウ酸塩ガラス(B-Bi系)等が好ましい例として挙げられる。このような組成のガラスは軟化点が低く、熱処理後に得られる電極の基板への密着性がより向上する傾向にある。
 ホウ素含有ガラス粒子が酸化ビスマスを含む場合、酸化ビスマスの含有率が全体の50.0質量%以上であることが好ましく、60.0質量%以上であることがより好ましく、70.0質量%以上であることがさらに好ましい。酸化ビスマスの含有率は全体の95.0質量%以下であることが好ましく、90.0質量%以下であることがより好ましく、85.0質量%以下であることがさらに好ましい。
 電極形成用組成物は、リンを含有するガラス粒子(以下、リン含有ガラス粒子ともいう)を含んでもよい。電極形成用組成物がリン含有ガラスを含むことで、酸化ビスマス含有相がアモルファス相を含み、かつリンを含んだ状態のアルミニウム/銀積層電極を形成することができる。
 リンを含有するガラスとしては、酸化リン(P)を含むガラス粒子が挙げられ、リン酸塩ガラスが好ましい。
 本開示においてリン酸塩ガラスとは、酸化リン(P)を網目形成酸化物として含むガラスを意味する。
 リン含有ガラス粒子を構成するガラスの組成としては、ガラスの機能上の観点から、酸化リンの含有率が全体の20.0質量%以上であることが好ましく、30.0質量%以上であることがより好ましく、35.0質量%以上であることがさらに好ましい。酸化リン(P)の含有率は全体の50.0質量%以下であることが好ましく、45.0質量%以下であることがより好ましく、40.0質量%以下であることがさらに好ましい。
 リン含有ガラス粒子は、酸化リンと、酸化リン以外の酸化物とを含んでもよい。
 リン含有ガラス粒子を構成するガラスに含まれる酸化リン以外の酸化物としては、ホウ素含有ガラス粒子を構成するガラスに含まれてもよい酸化物として例示した酸化物が挙げられる。
 リン含有ガラス粒子は酸化ホウ素を含まないか、又は酸化ホウ素の含有率が酸化リンの含有率よりも低いことが好ましい。
 リン含有ガラス粒子は酸化バナジウム、酸化アルミニウム、酸化錫及び酸化亜鉛から選択される少なくとも1種を含むことが好ましく、酸化錫を含むことがより好ましく、錫含有リン酸塩ガラス(P-SnO系)等が好ましい例として挙げられる。このような組成のガラスを用いることで、アルミニウム/銀積層電極の高温高湿環境下での信頼性がより向上する傾向にある。
 リン含有ガラス粒子が酸化錫を含む場合、酸化錫の含有率は全体の20.0質量%以上であることが好ましく、30.0質量%以上であることがより好ましく、40.0質量%以上であることがさらに好ましい。酸化錫の含有率は全体の80.0質量%以下であることが好ましく、70.0質量%以下であることがより好ましく、60.0質量%以下であることがさらに好ましい。
 高温高湿環境下における信頼性の向上と発電性能の維持とを両立させる観点からは、電極形成用組成物は、ホウ素含有ガラス粒子とリン含有ガラス粒子とをそれぞれ含むことが好ましい。
 電極形成用組成物がホウ素含有ガラス粒子とリン含有ガラス粒子とを含む場合、ホウ素含有ガラス粒子及びリン含有ガラス粒子の合計に対するリン含有ガラス粒子の含有率は、3.0質量%~50.0質量%であることが好ましく、3.5質量%~45.0質量%であることがより好ましく、4.0質量%~40.0質量%であることがさらに好ましい。
 ホウ素含有ガラス粒子及びリン含有ガラス粒子の合計に対するリン含有ガラス粒子の含有率を3.0質量%以上とすることで、高温高湿環境下でのアルミニウム/銀積層電極の信頼性がより効果的に向上する傾向にある。また、リン含有ガラス粒子の含有率を50.0質量%以下とすることで、酸化ビスマス含有相によるSiN膜の溶解がより効果的に抑制され、発電性能が良好に維持される。
 電極形成用組成物に含まれるガラス粒子は、1種のみでも2種以上であってもよい。
 電極形成用組成物が2種以上のガラス粒子を含む場合、ガラス粒子のすべてがリンを含有していても、ガラス粒子の少なくともいずれかがリンを含有していてもよい。
 パッシベーション膜の保護膜(SiN)の上にアルミニウム/銀積層電極を形成する場合は、鉛を実質的に含まない鉛フリーガラスを用いることが好ましい。鉛フリーガラスとしては、特開2006-313744号公報の段落番号0024~0025に記載の鉛フリーガラス、特開2009-188281号公報等に記載の鉛フリーガラス等が挙げられる。
 ガラス粒子の軟化点は特に制限されないが、650℃以下であることが好ましく、500℃以下であることがより好ましい。ガラス粒子の軟化点は、熱機械分析装置(TMA)を用いて通常の方法によって測定される。
 ガラス粒子の粒子径は特に制限はないが、体積平均粒子径が0.2μm~10.0μmであることが好ましく、0.5μm~8.0μmであることがより好ましく、2.0μm~5.0μmであることがさらに好ましい。
 ガラス粒子の体積平均粒子径が0.2μm以上であると、電極形成用組成物の製造時の作業性が向上する。ガラス粒子の体積平均粒子径が10μm以下であると、電極形成用組成物中のガラス粒子の分散性が向上し、アルミニウム/銀積層電極の組成の均一性も向上する。
 ガラス粒子の体積平均粒子径は、銀含有粒子の体積平均粒子径と同様にして測定される。
 ガラス粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。銀含有粒子及びビスマス含有粒子との濡れ性の観点からは、略球状、扁平状、または板状であることが好ましい。
 電極形成用組成物に含まれるガラス粒子の含有率(ホウ素又はリンを含有するガラス粒子とホウ素又はリンを含有しないガラス粒子とを含む場合は、その合計含有率)は、電極形成用組成物全体の3.0質量%~15.0質量%であることが好ましく、3.5質量%~14.0質量%であることがより好ましく、4.0質量%~12.0質量%であることがさらに好ましい。
 ガラス粒子の含有率を3.0質量%以上とすることで、高温高湿環境下における良好な信頼性が維持される傾向にある。ガラス粒子の含有率を15.0質量%以下とすることで、銀電極の表面の銀濃度が充分に確保され、接続材料の接続強度(はんだの濡れ性)が良好に維持される傾向にある。
 電極形成用組成物に含まれるガラス粒子の含有量に対するビスマス含有粒子の含有量の比率(Bi/G比)は、0.5~15.0であることが好ましく、1.0~12.0であることがより好ましく、1.5~10.0であることがさらに好ましい。Bi/G比を0.5以上とすることで、酸化ビスマス含有相の拡散バリア性が効果的に発現する傾向にある。また、Bi/G比を15.0以下とすることで、高温高湿環境下における信頼性が効果的に向上し、かつ良好な電池性能が維持される傾向にある。
(モリブデン含有粒子)
 電極形成用組成物は、モリブデン含有粒子を含んでもよい。モリブデン含有粒子に含まれるモリブデンは、熱処理中に、アルミニウム電極の表面に形成されている酸化アルミニウム(Al)皮膜と反応する。このとき、酸化アルミニウム皮膜の一部が破壊され、内部の溶融アルミニウムが粒子外に流れ出すことで、アルミニウムと銀との相互拡散が促進される。
 その結果、アルミニウム電極と銀電極との間に導電パスが良好に形成されてアルミニウム/銀積層電極の抵抗値が低減する。また、銀電極とアルミニウム電極との間における酸化ビスマス相の過度の生成が抑制されて高温高湿環境下での信頼性が向上する。
 モリブデン含有粒子は、モリブデンを含む粒子であれば特に制限はない。本開示において、モリブデン含有粒子がガラス状である場合(モリブデンを含むガラス粒子)は、モリブデン含有粒子に該当しないものとする。
 モリブデン含有粒子におけるモリブデンの含有率は特に制限されない。例えば、モリブデンの含有率は粒子全体の70.0質量%以上であってもよく、80.0質量%以上であってもよく、90.0質量%以上であってもよい。
モリブデン含有粒子の粒子径は特に制限されないが、体積平均粒子径が0.1μm~50.0μmであることが好ましく、0.15μm~40.0μmであることがより好ましく、0.2μm~30.0μmであることがさらに好ましい。モリブデン含有粒子の粒子径が0.1μm以上であると、モリブデンと酸化アルミニウム皮膜との反応を効果的に促進できる。モリブデン含有粒子の粒子径が50.0μm以下であると、熱処理後のアルミニウム/銀積層電極の表面銀濃度を高く保つことができる。
 モリブデン含有粒子の体積平均粒子径は、銀含有粒子の体積平均粒子径と同様にして測定される。
 モリブデン含有粒子の形状は特に制限されず、略球状、扁平状、ブロック状、板状、鱗片状等であってもよい。
 電極形成用組成物に含まれるモリブデン含有粒子の含有率は、電極形成用組成物全体の0.1質量%~5.0質量%であることが好ましく、0.2質量%~2.0質量%であることがより好ましく、0.5質量%~1.0質量%であることがさらに好ましい。
 モリブデン含有粒子の含有率を0.1質量%以上とすることで、モリブデンと酸化アルミニウム皮膜との反応を効果的に促進できる。モリブデン含有粒子の含有率を5.0質量%以下とすることで、熱処理後のアルミニウム/銀積層電極の表面銀濃度を高く保つことができる。
(溶剤及び樹脂)
 電極形成用組成物は、溶剤及び樹脂の少なくとも一方を含んでいてもよい。
 電極形成用組成物が溶剤及び樹脂の少なくとも一方を含むことで、電極形成用組成物の液状性(粘度、表面張力等)を、基板等に付与する際の付与方法に適した範囲内に調整することができる。
 電極形成用組成物に含まれる溶剤又は樹脂は、それぞれ1種のみでも2種以上であってもよい。
 溶剤としては、ヘキサン、シクロヘキサン、トルエン等の炭化水素溶剤、ジクロロエチレン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶剤、テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3-ジオキソラン、トリオキサン等の環状エーテル溶剤、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶剤、ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド溶剤、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン溶剤、エタノール、2-プロパノール、1-ブタノール、ジアセトンアルコール等のアルコール溶剤、2,2,4-トリメチル-1,3-ペンタンジオールモノアセテート、2,2,4-トリメチル-1,3ペンタンジオールモノプロピオネート、2,2,4-トリメチル-1,3-ペンタンジオールモノブチレート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価アルコールのエステル溶剤、ブチルセルソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールのエーテル溶剤、α-テルピネオール等のテルピネオール、α-テルピネン、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤などが挙げられる。
 溶剤は、電極形成用組成物の付与性(例えば、塗布性又は印刷性)の観点からは、溶剤は多価アルコールのエステル溶剤、テルペン溶剤及び多価アルコールのエーテル溶剤からなる群より選択される少なくとも1種を含むことが好ましく、多価アルコールのエステル溶剤及びテルペン溶剤からなる群より選択される少なくとも1種を含むことがより好ましい。
 樹脂は、熱処理によって熱分解されうる樹脂であれば特に制限されず、天然高分子であっても、合成高分子であってもよい。具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロース等のセルロース樹脂、ポリビニルアルコール化合物、ポリビニルピロリドン化合物、アクリル樹脂、酢酸ビニル-アクリル酸エステル共重合体、ポリビニルブチラール等のブチラール樹脂、フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂等のアルキド樹脂、エポキシ樹脂、フェノール樹脂、ロジンエステル樹脂などが挙げられる。
 熱処理による熱分解性の観点からは、樹脂はセルロース樹脂及びアクリル樹脂からなる群より選択される少なくとも1種を含むことが好ましい。
 樹脂の重量平均分子量は、特に制限されない。中でも樹脂の重量平均分子量は、5,000~500,000が好ましく、10,000~300,000であることがより好ましい。樹脂の重量平均分子量が5,000以上であると、電極形成用組成物の粘度の増加が抑制できる傾向にある。これは例えば、樹脂が粒子に吸着したときの立体的な反発作用が充分となり、これら樹脂同士の凝集が抑制されるためと考えることができる。一方、樹脂の重量平均分子量が500,000以下であると、樹脂同士が溶剤中で凝集することが抑制され、電極形成用組成物の粘度の増加が抑制できる傾向にある。樹脂の重量平均分子量が500,000以下であると、樹脂の燃焼温度が高すぎて電極形成用組成物を熱処理する際に燃焼されずに異物として残存することが抑制され、より低抵抗率な電極を形成することができる傾向にある。
 樹脂の重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP-H、PStQuick B、東ソー(株))を用いて3次元で近似する。GPCの測定条件は、以下の通りである。
 ・装置:(ポンプ:L-2130型[(株)日立ハイテクノロジーズ])、(検出器:L-2490型RI[(株)日立ハイテクノロジーズ])、(カラムオーブン:L-2350[(株)日立ハイテクノロジーズ])
 ・カラム:Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M(計3本)(日立化成(株))
 ・カラムサイズ:10.7mm×300mm(内径)
 ・溶離液:テトラヒドロフラン
 ・試料濃度:10mg/2mL
 ・注入量:200μL
 ・流量:2.05mL/分
 ・測定温度:25℃
 電極形成用組成物が溶剤及び樹脂の少なくとも一方を含む場合、その合計含有率は、電極形成用組成物の所望の液物性、使用する溶剤及び樹脂の種類等に応じて選択できる。
 例えば、溶剤及び樹脂の合計含有率は、電極形成用組成物全体の3.0質量%~70.0質量%であることが好ましく、20.0質量%~55.0質量%であることがより好ましく、30.0質量%~50.0質量%であることがさらに好ましい。
 溶剤及び樹脂の合計含有率が上記範囲内であることにより、電極形成用組成物を基板に付与する際の付与適性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる傾向にある。
 電極形成用組成物が溶剤及び樹脂の少なくとも一方を含む場合、溶剤及び樹脂の含有比は、電極形成用組成物が所望の液物性となるように、使用する溶剤及び樹脂の種類に応じて適宜選択することができる。
 電極形成用組成物は、銀含有粒子の焼結性、ビスマス含有粒子の拡散バリア性、ガラス粒子によるアルミニウム電極の強度及び密着性の向上効果等の観点から、銀含有粒子、ビスマス含有粒子及びガラス粒子の合計含有率が、電極形成用組成物全体の30.0質量%以上97.0質量%以下であることが好ましく、45.0質量%以上80.0質量%以下であることがより好ましく、50.0質量%以上70.0質量%以下であることがさらに好ましい。
(その他の成分)
 電極形成用組成物は、上述した成分に加え、当該技術分野で通常用いられるその他の成分をさらに含有してよい。その他の成分としては、可塑剤、分散剤、界面活性剤、増粘剤、無機結合剤、金属酸化物(酸化ビスマスを除く)、セラミックス、有機金属化合物等を挙げることができる。
(電極形成用組成物の製造方法)
 電極形成用組成物の製造方法は、特に制限されない。例えば、銀含有粒子、ビスマス含有粒子、及び必要に応じて用いられるガラス粒子その他の成分を分散及び混合することで製造することができる。分散及び混練の方法は特に制限されず、通常用いられる方法から選択して適用することができる。
(アルミニウム/銀積層電極の製造方法)
 電極形成用組成物を用いてアルミニウム/銀積層電極を製造する方法は、特に制限されない。
 例えば、半導体基板の上にアルミニウム粒子含有膜を形成する工程と、電極形成用組成物を、アルミニウム粒子含有膜の上に付与し、必要に応じて乾燥する工程と、アルミニウム粒子含有膜及び電極形成用組成物を熱処理する工程と、をこの順に実施する方法が挙げられる。
 アルミニウム粒子含有膜は、パッシベーション膜及び保護膜(SiN)が成膜された半導体基板上に形成されてよい。また、アルミニウム粒子含有膜は、半導体基板上に付与したアルミニウム電極形成組成物を乾燥して形成されてよい。半導体基板は、シリコン(Si)基板であってよい。アルミニウム電極形成用組成物を用いて、アルミニウム粒子含有膜を半導体基板上に形成する場合の、アルミニウム電極形成用組成物を付与する方法としては、スクリーン印刷法、インクジェット法、ディスペンサー法等を挙げることができ、生産性の観点から、スクリーン印刷法が好ましい。アルミニウム電極形成用組成物を付与した後の乾燥条件としては、当該技術分野で通常用いられる熱処理条件を適用することができる。
 電極形成用組成物を、アルミニウム粒子含有膜上に付与する方法としては、スクリーン印刷法、インクジェット法、ディスペンサー法等を挙げることができ、生産性の観点から、スクリーン印刷法が好ましい。
 電極形成用組成物をスクリーン印刷法によってアルミニウム粒子含有膜上に付与する場合、電極形成用組成物は、ペースト状であることが好ましい。ペースト状の電極形成用組成物は、20Pa・s~1000Pa・sの範囲の粘度を有することが好ましい。電極形成用組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃で測定される。
 電極形成用組成物のアルミニウム粒子含有膜への付与量は、形成する電極の大きさに応じて調節してもよい。例えば、電極形成用組成物の付与量としては、1.0mg/cm~20.0mg/cmとすることができ、2.0mg/cm~15.0mg/cmであることが好ましい。
 電極形成用組成物を用いてアルミニウム/銀積層電極を形成する際の熱処理は、当該技術分野で通常用いられる条件で実施することができる。熱処理の温度は、一般的な結晶シリコン系太陽電池素子を製造する際に用いられる700℃~900℃の範囲としてもよい。熱処理の時間は、熱処理の温度に応じて調節でき、例えば、1秒~20秒とすることができる。
 熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、赤外線加熱炉、トンネル炉等を挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に投入し熱エネルギーに変換されるため高効率であり、また、より短時間での急速加熱が可能である。さらに、燃焼による生成物が少なく、また非接触加熱であるため、生成する電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、熱処理するため、炉体の区分けと搬送スピードの制御によって、より均一に熱処理することが可能である。太陽電池素子の発電性能の観点からは、トンネル炉により熱処理することが好適である。
 以下、アルミニウム/銀積層電極の製造方法の具体例を、図面を参照しながら説明する。ただし、本開示はこれに限定されるものではない。代表的なアルミニウム/銀積層電極の製造方法の一例を、図2A~図2Cに示す。
 まず図2Aに示すように、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1の一方の面に、ペースト状のアルミニウム電極形成用組成物2を、スクリーン印刷法で塗布する。これを150℃程度の温度で加熱し、アルミニウム電極形成用組成物2中の溶剤を除去する。これにより、図2Bに示すように、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1上にアルミニウム粒子含有膜3が形成される。
 次いで、アルミニウム粒子含有膜3上の所望の領域に、電極形成用組成物4を塗布し、これを150℃程度の温度で加熱し、乾燥する。なお、電極形成用組成物4がペースト状の場合は、アルミニウム電極形成用組成物2と同様、スクリーン印刷法で塗布される。その後、これを上述した条件で熱処理する。これにより、図2Cに示すように、アルミニウム/銀積層電極8が、パッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1上に形成される。
 アルミニウム/銀積層電極8は、最表面に銀粒子焼結部7が配置され、銀粒子焼結部7とパッシベーション膜18及び保護膜(SiN)19が成膜された半導体基板1との間には、アルミニウム粒子焼結部/酸化ビスマス含有相混合部6が配置される。
 図3は、図2Cのうち、アルミニウム/銀積層電極の形成箇所を拡大して示したものである。図3に示すように、アルミニウム粒子焼結部/酸化ビスマス含有相混合部6は、アルミニウム粒子焼結部5と、アルミニウム粒子焼結部5の空隙部に充填された酸化ビスマス含有相9とを含む。アルミニウム粒子焼結部/酸化ビスマス含有相混合部6がこのような構成を有するのは、上述したように、電極形成用組成物4中のビスマス含有粒子の一部又は全体が熱処理によりアルミニウム粒子含有膜3に移行するためである。
 酸化ビスマス含有相9は、銀粒子焼結部7とアルミニウム粒子焼結部5とを隔てるように配置されていてもよく、アルミニウム粒子焼結部5中のアルミニウム粒子と、銀粒子焼結部7とが接触している箇所が部分的に形成されてもよい。この場合、アルミニウム粒子と銀粒子との過度の相互拡散が抑制される程度に、銀粒子焼結部7とアルミニウム粒子焼結部5とを隔てるように酸化ビスマス含有相9が配置されていることが好ましい。
 以下、太陽電池素子の構成の具体例を、図面を参照しながら説明するが、本開示はこれに限定されるものではない。代表的な太陽電池素子の一例を、図4、図5A、図5B、図6A、図6B及び図6Cに示す。
 図4は、太陽電池素子の受光面側の概略平面図である。図4に示す受光面電極14は、一般的には銀電極ペーストを用いて形成される。具体的には、反射防止膜13上に銀電極ペーストを所望のパターンで付与し、乾燥した後、大気中700℃~900℃程度で熱処理して形成される。
 図5Aは、太陽電池素子の裏面の概略平面図である。図5Aに示す太陽電池素子の裏面には、アルミニウム電極5が全面に形成されている。図5Bは、太陽電池素子の裏面のうち、アルミニウムフィンガー電極20及びアルミニウムバスバー電極21が裏面の一部に形成された場合の概略平面図である。
 太陽電池素子の裏面には、上述したように、アルミニウム電極形成用組成物の付与及び乾燥後、電極形成用組成物を所望のパターンで付与し乾燥する。次いで、これを大気中700℃~900℃程度で熱処理して、アルミニウム/銀積層電極を形成する。熱処理は、上述した受光面電極14の形成のための熱処理と一括して行ってもよい。
 図6A~6Cの概略断面図に示すように、半導体基板1の一方の面の表面付近には、n型拡散層12が形成され、n型拡散層12上に出力取出電極14及び反射防止膜13が形成されている。
 図6Aは図5AにおけるA-A´部の切断面である。A-A´断面が裏面パッシベーション膜の開口部を横切らない場合、裏面は図6Aに示す構造をもつ。図6Bは、図5BにおけるB-B´部の切断面である。B-B´断面が裏面パッシベーション膜の開口部を横切らない場合、裏面は図6Bに示す構造をもつ。図6Cは、図5BにおけるC-C´部の切断面である。C-C´断面が裏面パッシベーション膜の開口部(アルミニウムフィンガー電極20)を横切る場合、裏面は図6Cに示す構造をもつ。
 図6A~図6Cに示すように、太陽電池素子の受光面側では、熱処理によって受光面電極14を形成する銀電極ペーストに含まれるガラス粒子と、反射防止膜13とが反応(ファイアースルー)して、受光面電極14とn型拡散層12とが電気的に接続(オーミックコンタクト)される。
 太陽電池素子の裏面側では、熱処理によってアルミニウム電極5、アルミニウムフィンガー電極20またはアルミニウムバスバー電極21中のアルミニウムが半導体基板1の裏面の一部(裏面パッシベーション膜成膜部をレーザーなどで除去した部分)に拡散して、p型拡散層15を形成することによって、半導体基板1とアルミニウム電極5との間にオーミックコンタクトが部分的に形成される。
<太陽電池>
 本開示の一実施形態に係る太陽電池は、上述した太陽電池素子と、前記太陽電池素子の前記アルミニウム/銀積層電極の上に設けられる配線材料と、を有する太陽電池である。
 本開示において太陽電池とは、太陽電池素子の電極上にタブ線等の配線材料が設けられ、必要に応じて複数の太陽電池素子が配線材料を介して接続されて構成され、封止樹脂等で封止された状態のものを意味する。
 本開示の太陽電池は、太陽電池素子の少なくとも1つを含み、太陽電池素子の電極上に配線材料が配置されて構成されていればよい。太陽電池はさらに必要に応じて、配線材料を介して複数の太陽電池素子が連結され、さらに封止材で封止されて構成されていてもよい。
 配線材料及び封止材の種類は特に制限されず、当業界で通常用いられているものから選択できる。
 以下、本開示の内容を実施例及び比較例を用いてより詳細に説明するが、本開示の範囲は以下の実施例に限定されるものではない。
 以下の実施例において、ガラス粒子の形状は、走査型電子顕微鏡(日立ハイテクノロジーズ社、TM-1000型)を用いて観察して判定した。ガラス粒子の体積平均粒子径(D50%)は、レーザー散乱回折法粒度分布測定装置(ベックマン・コールター株式会社、LS 13 320型)を用いて、測定波長:632nmにて算出した。ガラス粒子の軟化点は、示差熱・熱重量同時測定装置(株式会社島津製作所、DT-60H)を用いて得られる示差熱(DTA)曲線により求めた。具体的には、DTA曲線において、吸熱部から軟化点を見積もることができる。
<実施例1>
(a)電極形成用組成物1の調製
 二酸化ケイ素(SiO)1.3質量%、酸化ホウ素(B)6.0質量%、酸化ビスマス(Bi)75.0質量%、酸化亜鉛(ZnO)13.5質量%及び酸化銅(CuO)4.2質量%からなるホウ酸塩ガラス(以下、「GB01」と略記することがある)を得た。得られたガラスGB01の軟化点は、380℃であった。
 得られたガラスGB01を用いて、粒子径(D50%)が3.9μmであるガラスGB01粒子を得た。ガラスGB01粒子の形状は、略球状であった。
 下記の材料をロールミル(株式会社アイメックス、BR-150HCV)を用いて混合し、ペースト状の電極形成用組成物1を調製した。
 銀粒子(Ag;D50%は0.6μm、銀含有率は99.9質量%):34.8質量部
 金属ビスマス粒子(Bi;D50%は2.5μm、ビスマス含有率は99.5質量%)22.7質量部
 ガラスGB01粒子:6.5質量部
 テルピネオール(TPO):30.9質量部
 エチルセルロース(EC;日新化成株式会社、STD-10):5.1質量部
(b)太陽電池素子1の作製
 受光面にn型拡散層、テクスチャ及び反射防止膜(SiN)がこの順に形成され、受光面とは反対の面(以下、「裏面」ともいう)にパッシベーション膜としての酸化アルミニウム膜(AlO)及び保護膜(SiN)がこの順に形成された厚さ160μmのp型シリコン単結晶基板を用意し、158.75mm×158.75mmの大きさに切り出した。次いで、裏面のパッシベーション膜/保護膜の一部について、図5Bに示すように、アルミニウムフィンガー電極を形成する箇所をレーザーによって除去し、シリコン基板を露出させた。受光面上に、銀粒子及び鉛ガラス粒子を含む銀電極形成用組成物(DuPont社製、PV20)を図4に示すような電極パターンとなるように(実施例では、受光面出力取出し電極14の本数を9本とした)スクリーン印刷により付与した。これを250℃の設置温度及び240インチ/分の搬送速度の条件で加熱した焼成炉(Despatch社製のトンネル炉)で加熱し、溶剤を蒸散により取り除いた。
 続いて、シリコン基板の裏面側に、アルミニウム電極形成用組成物(Ruxing社、RX8401)と、上記で得られた電極形成用組成物1とを、この順にスクリーン印刷により、図5Bに示すような電極パターン(実際には、アルミニウムバスバー電極21の本数を9本とし、アルミニウムバスバー電極21の1本あたりのアルミニウム/銀積層電極の形成箇所を6か所とした)の形状に付与した。
 具体的には、アルミニウム電極形成用組成物を、アルミニウムフィンガー電極20及びアルミニウムバスバー電極21の細線パターンの形状に印刷し、乾燥してアルミニウム粒子含有膜を形成した。その後、アルミニウム粒子含有膜の上に電極形成用組成物1を印刷した。
 アルミニウムフィンガー電極の形成箇所は、シリコン基板が露出している部分と一致させた。アルミニウム電極形成用組成物の印刷条件は、熱処理後のアルミニウム電極の厚さが30μmとなるように調節した。電極形成用組成物1の印刷は、1.6mm×8.0mmサイズのパッド形状が配列されたパターンを用い、8.0mg/cmの塗布量になるように行った。
 アルミニウム電極形成用組成物及び電極形成用組成物1をそれぞれ印刷した後は、250℃の設定温度及び240インチ/分の搬送速度の条件で、焼成炉(Despatch社製のトンネル炉)で加熱し、溶剤を蒸散により取り除いた。
 続いて焼成炉(Despatch社製のトンネル炉)を用いて大気雰囲気下、最高温度870℃の設定温度及び240インチ/分の搬送速度の条件で熱処理を行って、所望の電極が形成された太陽電池素子1を作製した。
<実施例2>
 二酸化ケイ素(SiO)1.6質量%、酸化ホウ素(B)13.4質量%、酸化ビスマス粒子(Bi)84.1質量%及び酸化リチウム(LiO)0.9質量%からなるホウ酸塩ガラス(以下、「GB02」と略記することがある)を得た。得られたガラスGB02の軟化点は440℃であった。
 得られたガラスGB02を用いて、体積平均粒子径(D50%)が1.1μmであるガラスGB02粒子を得た。ガラスGB02粒子の形状は略球状であった。
 下記の材料をロールミル(株式会社アイメックス、BR-150HCV)を用いて混合し、ペースト状の電極形成用組成物2を調製した。得られた電極形成用組成物2を用いて、実施例1と同様にして太陽電池素子2を作製した。
 銀粒子(Ag;D50%は0.6μm、銀含有率は99.9質量%):30.4質量部
 金属ビスマス粒子(Bi;D50%は1.5μm、ビスマス含有率は99.5質量%):19.8質量部
 酸化ビスマス粒子(Bi;D50%は2.2μm、酸化ビスマス含有率は99.9質量%):10.0質量部
 ガラスGB02粒子:3.3質量部
 モリブデン粒子(Mo;新日本金属社株式会社「Mo-1K」、D50%は1.5μm、モリブデン含有率は99.8質量%):0.5質量部
 テルピネオール(TPO):30.9質量部
 エチルセルロース(EC;日新化成株式会社「STD-10」):5.1質量部
<実施例3>
 酸化リン(P)38.0質量%、酸化スズ(SnO)57.9質量%、酸化亜鉛(ZnO)3.5質量%及び酸化アルミニウム(Al)1.5質量%からなるリン酸塩ガラス(以下、「GP01」と略記することがある)を得た。得られたガラスGP01の軟化点は340℃であった。
 得られたガラスGP01を用いて、体積平均粒子径(D50%)が8.0μmであるガラスGP01粒子を得た。ガラスGP01粒子の形状は略球状であった。
 下記の材料をロールミル(株式会社アイメックス、BR-150HCV)を用いて混合し、ペースト状の電極形成用組成物3を調製した。得られた電極形成用組成物3を用いて、実施例1と同様にして太陽電池素子3を作製した。
 銀粒子(Ag;D50%は0.6μm、銀含有率は99.9質量%):31.9質量部
 金属ビスマス粒子(Bi;D50%は1.5μm、ビスマス含有率は99.5質量%):19.6質量部
 酸化ビスマス粒子(Bi;D50%は2.2μm、酸化ビスマス含有率は99.9質量%):5.0質量部
 ガラスGB02粒子:5.6質量部
 ガラスGP01粒子:1.4質量部
 モリブデン粒子(Mo;新日本金属株式会社「Mo-1K」、D50%は1.5μm、モリブデン含有率は99.8質量%):0.5質量部
 テルピネオール(TPO):30.9質量部
 エチルセルロース(EC;日新化成株式会社「STD-10」):5.1質量部
<実施例4>
 下記の材料をロールミル(株式会社アイメックス、BR-150HCV)を用いて混合し、ペースト状の電極形成用組成物4を調製した。得られた電極形成用組成物4を用いて、実施例1と同様にして太陽電池素子4を作製した。
 銀粒子(Ag;D50%は0.6μm、銀含有率は99.9質量%):35.6質量部 金属ビスマス粒子(Bi;D50%は1.5μm、ビスマス含有率は99.5質量%):21.4質量部
 酸化ビスマス粒子(Bi;D50%は2.2μm、酸化ビスマス含有率は99.9質量%):3.0質量部
 ガラスGB02粒子:5.6質量部
 ガラスGP01粒子:1.4質量部
 テルピネオール(TPO):28.3質量部
 エチルセルロース(EC;日新化成株式会社「STD-10」):4.7質量部
<比較例1>
 実施例1において、裏面電極を形成する際に、市販の太陽電池用銀ペースト(DuPont社製、PV51M)を用いた。具体的には、裏面に銀ペーストを先に印刷し、乾燥した。銀ペーストを用いて形成された裏面出力取出電極のパターンは、1.8mm×8.0mmで構成され、実施例1と同様の配列で印刷した。印刷条件(スクリーン版のメッシュ、印刷速度及び印圧)は熱処理後の裏面出力取出電極の厚さが5μmとなるように調節した。その後、アルミニウム電極形成用組成物(RX8401)を、実施例1で述べたパターンのうち、銀ペーストを印刷及び乾燥した箇所以外の場所に印刷し、乾燥した。
 その後は、実施例1と同様に熱処理し、太陽電池素子C1を作製した。
<比較例2>
 実施例1において、電極形成用組成物1を用いずに、市販の太陽電池用銀ペースト(PV51M)を用いたこと以外は、実施例1と同様にして、太陽電池素子C2を作製した。
<比較例3>
 実施例1において、アルミニウム/銀積層電極を形成する箇所にのみ、アルミニウム電極形成用組成物を薄く印刷した。具体的には、図5Bに示す印刷パターンのうち、アルミニウム/銀積層電極を形成する箇所に、アルミニウム電極形成用組成物の塗布領域(100μm幅)と非塗布領域(100μm幅)とが交互に配置されたスリット状パターンとなるように、アルミニウム電極形成用組成物を印刷した。その後は、実施例1と同様にして、太陽電池素子C3を作製した。
 実施例1~4及び比較例1~3で用いた電極形成用組成物の組成を、表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
(1)アルミニウム/銀積層電極の断面組織観察
 作製した太陽電池素子の裏面出力取出電極としてのアルミニウム/銀積層電極の断面を、走査電子顕微鏡(日立ハイテク社製、SU5000)を用いて、加速電圧15kVで観察した。また、装置付属のEDX分析を併せて実施し、アルミニウム/銀積層電極の表面における銀粒子焼結部の形成の有無、アルミニウム/銀積層電極内部の酸化ビスマス含有相の形成の有無及び酸化ビスマス含有相のシリコン基板への被覆性を調べた。比較例1では、アルミニウム/銀積層電極を形成しなかったことから、断面組織の観察を行わなかった。結果を表2に示す。アルミニウム/銀積層電極の断面組織解析におけるEDXの測定条件は、以下のとおりである。
・加速電圧:15kV
・測定倍率:2000~8000倍(任意)
・分析領域:20μm×15μm~80μm×60μm(任意)
・分析モード:マッピングモード、点分析モード
(2)酸化ビスマス含有相中の微細組織観察
 実施例1及び実施例3で作製した太陽電池素子のアルミニウム/銀積層電極の断面を透過型電子顕微鏡(TEM)を用いて以下の条件で観察し、アルミニウム/銀積層電極の酸化ビスマス含有相がアモルファス相を含むか否かを調べた。
・装置:透過型電子顕微鏡(TITAN G2 60-300、FEI社製)
・加速電圧:300kV
・測定倍率:50万倍~91万倍
・分析領域:20nm×20nm~50nm×50nm
・観察モード:高分解能TEM(HRTEM)モード
(3)太陽電池素子の発電性能の測定
 作製した太陽電池素子の評価は、擬似太陽光としてワコム電創社製、WXS-155S-10と、電流-電圧(I-V)評価測定器としてI-V CURVE TRACER MP-160(EKO INSTRUMENT社製)の測定装置とを組み合わせて行った。太陽電池素子としての発電性能を示すJSC(短絡電流)、VOC(開放電圧)、FF(形状因子)及びη(変換効率)は、それぞれJIS-C-8912:2011、JIS-C-8913:2005及びJIS-C-8914:2005に準拠して測定を行うことで得られたものである。得られた各測定値を、比較例1(太陽電池素子C1)の測定値を100.0として相対値に換算して表2に示す。
(4)アルミニウム非積層電極及びアルミニウム/銀積層電極の厚さの測定
 アルミニウム/銀積層電極の断面組織観察で使用したサンプルの走査電子顕微鏡像(観察領域幅:80μm)から、上述した方法でアルミニウム非積層電極及びアルミニウム/銀積層電極の厚さ(5点における算術平均値)を測定した。結果を表2に示す。比較例1については、銀電極のみの厚さを記載した。
(5)配線材料の接続強度の測定
 作製した太陽電池素子の裏面出力取出し電極に配線材料を接続し、ピール試験により配線材料の接続強度を測定した。
 具体的には、配線材料(Ulbrich社、Multi-Tabbing wire、Sn-Pb系共晶はんだ被覆、Cuコア材の寸法は直径0.4mm)を、裏面出力取出電極上に載せ、配線材料の上からはんだごてを押し当ててはんだを溶融させることで接続した。次いで、卓上ピール試験機(株式会社島津製作所、EZ-S)を用い、配線材料の引張り速度を300mm/minとし、180°の方向で配線材料を裏面出力取出電極から剥がしたときの強さを接続強度(N)とした。結果を表2に示す。
(6)配線材料の接続性
 裏面出力取出し電極表面に対する配線材料の接続性(はんだの濡れ性)を評価するため、配線材料を熱圧着機で接続した。具体的には、作製した太陽電池素子の裏面出力電極の、アルミニウムバスバー電極形成方向に沿って配線材料を載せ、熱圧着機(装置名:MB-200WH, 日化設備エンジニアリング社製)を用いて、250℃、0.1MPa、10秒の条件で加熱圧着した。その後、はんだ溶融によって配線材料が裏面出力取出し電極に接続されている割合を算出した。54個の裏面出力取出し電極のうち、50個以上接続できていれば「A」、接続箇所が30個以上50個未満の場合は「B」、接続箇所が30個未満の場合は「C」として、配線材料の接続性を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

 
 実施例1~4で作製した太陽電池素子の発電性能は、比較例1の太陽電池素子の測定値と比べてほぼ同等の値を示した。
 組織解析の結果、実施例1~4で作製した太陽電池素子の裏面には、アルミニウム/銀積層電極が形成されていた。EDX分析の結果、電極の最表面には銀粒子焼結部が、アルミニウム電極の空隙部には酸化ビスマス含有相が、それぞれ形成されていた。さらに、酸化ビスマス含有相の一部は、アルミニウム/銀積層電極が接している基板の表面に到達していた。
 実施例1及び実施例3について実施したTEM観察の結果、酸化ビスマス含有相中にアモルファス相が含まれていた。
 実施例1~4で作製した太陽電池素子の裏面におけるアルミニウム/銀積層電極の厚さは、周囲のアルミニウム非積層電極の厚さよりも大きかった。図7及び図8は、実施例1で作製した太陽電池素子の各電極の厚さを測定した一例である。
 ピール試験の結果、実施例1~4で作製した太陽電池セルの裏面出力取出電極における配線材料の接続強度は、2N以上の高い値を示した。この理由としては、裏面出力取出し電極であるアルミニウム/銀積層電極の表面銀濃度が高いためにはんだの濡れ性が良好であること、及び、酸化ビスマス含有相の一部がシリコン基板まで到達して密着し、かつ酸化ビスマス含有相にガラス粒子の溶融物が溶け込んだことで、アルミニウム電極のバルク強度及び基板(パッシベーション保護膜成膜面)への密着性が良好であることが考えられる。
 実施例1~4で作製した太陽電池素子の裏面出力取出し電極における、配線材料の接続性はいずれも良好であった。これは、アルミニウム/銀積層電極の厚さがアルミニウム非積層電極よりも厚くなるように形成されていたため、配線材料のはんだが十分に電極表面に接続されたことが考えられる。このことから、本開示の構成を有するアルミニウム/銀積層電極は、太陽電池製造時の作業性向上、及び太陽電池としての発電性能(例えば、直列抵抗)確保の観点で有効であると考えられる。
 ビスマス含有粒子を含まない電極形成用組成物を用いて形成した比較例2のアルミニウム/銀積層電極は、表面が黒色化しており、銀粒子焼結部が観察されなかった。また、はんだ材料を用いて電極表面に配線材料を接続することができなかった。
 比較例2で作製したアルミニウム/銀積層電極の表面が黒色化したのは、熱処理中にアルミニウムと銀との相互拡散が過度に進み、銀粒子の焼結が阻害され、銀、アルミニウム及びビスマスからなる複合酸化物が形成したためと考えられる。
 比較例1及び比較例3で作製した太陽電池素子における、配線材料の接続性(熱圧着機使用)は、実施例1~4に比べて低かった。一方、配線材料の接続強度(はんだごて使用)は2N以上の高い値を示した。
 比較例1及び比較例3において熱圧着機を使用した場合の配線材料の接続性が実施例に劣る理由としては、アルミニウム非積層電極に比べて配線材料を接続させる部分である裏面出力取出し電極(比較例1においては銀電極、比較例3においてはアルミニウム/銀積層電極)の厚みが小さく陥没した状態であるため、配線材料の変形が電極の段差に追従できず、配線材料の接続が不十分になったことが考えられる。
 米国特許出願第63/152848号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (10)

  1.  半導体基板と、前記半導体基板の上に設けられるパッシベーション膜と、前記パッシベーション膜の上に設けられるアルミニウム/銀積層電極と、前記パッシベーション膜の上に設けられるアルミニウム非積層電極と、を備え、
     前記アルミニウム/銀積層電極は酸化ビスマス含有相を含み、
     前記アルミニウム非積層電極の厚さAと前記アルミニウム/銀積層電極の厚さBとがA≦Bの関係を満たす、太陽電池素子。
  2.  前記アルミニウム/銀積層電極は表面に銀粒子焼結部を有する、請求項1に記載の太陽電池素子。
  3.  前記酸化ビスマス含有相はホウ素を含む、請求項1又は請求項2に記載の太陽電池素子。
  4.  前記酸化ビスマス含有相はリンを含む、請求項1~請求項3のいずれか1項に記載の太陽電池素子。
  5.  前記アルミニウム/銀積層電極は銀含有粒子と、ビスマス含有粒子と、を含む電極形成用組成物の熱処理物を含む、請求項1~請求項4のいずれか1項に記載の太陽電池素子。
  6.  前記ビスマス含有粒子はビスマス粒子、ビスマス含有率が40.0質量%以上であるビスマス合金粒子及び酸化ビスマス粒子からなる群より選ばれる少なくとも1種を含む、請求項5に記載の太陽電池素子。
  7.  前記電極形成用組成物はガラス粒子を含む、請求項5又は請求項6に記載の太陽電池素子。
  8.  前記ガラス粒子はホウ素を含む、請求項7に記載の太陽電池素子。
  9.  前記ガラス粒子はリンを含む、請求項7又は請求項8に記載の太陽電池素子。
  10.  請求項1~請求項9のいずれか1項に記載の太陽電池素子と、前記太陽電池素子の前記アルミニウム/銀積層電極の上に設けられる配線材料と、を有する太陽電池。
PCT/JP2022/007755 2021-02-24 2022-02-24 太陽電池素子及び太陽電池 WO2022181731A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502511A JPWO2022181731A1 (ja) 2021-02-24 2022-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163152848P 2021-02-24 2021-02-24
US63/152,848 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181731A1 true WO2022181731A1 (ja) 2022-09-01

Family

ID=83049215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007755 WO2022181731A1 (ja) 2021-02-24 2022-02-24 太陽電池素子及び太陽電池

Country Status (2)

Country Link
JP (1) JPWO2022181731A1 (ja)
WO (1) WO2022181731A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074165A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 太陽電池集電電極形成用導電性組成物、太陽電池セル、および太陽電池モジュール
WO2014014109A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
US20150060742A1 (en) * 2013-09-03 2015-03-05 E I Du Pont De Nemours And Company Conductive paste used for a solar cell electrode
JP2017521826A (ja) * 2014-06-19 2017-08-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 太陽電池用導体
JP2018535557A (ja) * 2015-11-24 2018-11-29 プラント ピーヴイ, インコーポレーテッドPlant Pv, Inc 集積回路に使用するための焼成多層スタック及び太陽電池
WO2020009200A1 (en) * 2018-07-06 2020-01-09 Hitachi Chemical Company, Ltd. Print-on pastes with metal-based additives for modifying material properties of metal particle layers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074165A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The 太陽電池集電電極形成用導電性組成物、太陽電池セル、および太陽電池モジュール
WO2014014109A1 (ja) * 2012-07-19 2014-01-23 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法、及び太陽電池
US20150060742A1 (en) * 2013-09-03 2015-03-05 E I Du Pont De Nemours And Company Conductive paste used for a solar cell electrode
JP2017521826A (ja) * 2014-06-19 2017-08-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 太陽電池用導体
JP2018535557A (ja) * 2015-11-24 2018-11-29 プラント ピーヴイ, インコーポレーテッドPlant Pv, Inc 集積回路に使用するための焼成多層スタック及び太陽電池
WO2020009200A1 (en) * 2018-07-06 2020-01-09 Hitachi Chemical Company, Ltd. Print-on pastes with metal-based additives for modifying material properties of metal particle layers

Also Published As

Publication number Publication date
JPWO2022181731A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
TWI502609B (zh) 太陽電池元件以及太陽電池
TWI570748B (zh) 電極用膠組成物及太陽電池
TWI495125B (zh) 元件及太陽電池
JP5811186B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2012140787A1 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
JP6206491B2 (ja) 電極形成用組成物、太陽電池素子及び太陽電池
JP5891599B2 (ja) シリコン系太陽電池の電極用ペースト組成物
WO2022075456A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
JP5720393B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2015115565A1 (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2022143534A (ja) 電極形成用組成物及び太陽電池素子
WO2022181731A1 (ja) 太陽電池素子及び太陽電池
JP2016189443A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法、並びに太陽電池
WO2022181730A1 (ja) 太陽電池素子及び太陽電池
WO2022181732A1 (ja) 太陽電池素子及び太陽電池
WO2017033343A1 (ja) 電極形成用組成物、電極、太陽電池素子、太陽電池及び太陽電池素子の製造方法
WO2022176519A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
WO2022176520A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
WO2022075457A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
JP2015195223A (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
JP2022143533A (ja) 電極形成用組成物及び太陽電池素子
WO2022138385A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
JP2014093491A (ja) 太陽電池素子及びその製造方法、並びに太陽電池
JP2016189307A (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2016189447A (ja) 太陽電池素子及びその製造方法並びに太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502511

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759766

Country of ref document: EP

Kind code of ref document: A1