WO2022075210A1 - レーザ溶接方法及びレーザ溶接装置 - Google Patents

レーザ溶接方法及びレーザ溶接装置 Download PDF

Info

Publication number
WO2022075210A1
WO2022075210A1 PCT/JP2021/036381 JP2021036381W WO2022075210A1 WO 2022075210 A1 WO2022075210 A1 WO 2022075210A1 JP 2021036381 W JP2021036381 W JP 2021036381W WO 2022075210 A1 WO2022075210 A1 WO 2022075210A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
pattern
laser welding
work
Prior art date
Application number
PCT/JP2021/036381
Other languages
English (en)
French (fr)
Inventor
静波 王
勤 杉山
俊輔 川合
憲三 柴田
雅史 石黒
篤寛 川本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022555435A priority Critical patent/JP7213439B2/ja
Priority to CN202180045994.7A priority patent/CN116018233A/zh
Publication of WO2022075210A1 publication Critical patent/WO2022075210A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams

Definitions

  • This disclosure relates to a laser welding method and a laser welding apparatus.
  • Laser welding has a high power density of laser light shining on the work to be welded, so high-speed and high-quality welding can be performed.
  • the laser beam can be moved to the next welding point at high speed during the non-welding period, thus shortening the total welding time.
  • Patent Document 1 a method of scanning the laser beam so as to draw a resage pattern on the surface of the work has been conventionally proposed (see, for example, Patent Document 2 and Patent Document 3).
  • the resage pattern is usually drawn so as to have a symmetrical shape with respect to its center point (hereinafter, also referred to as an origin).
  • the work to be actually welded has various shapes.
  • the heat capacity of the work becomes asymmetric on both sides of the weld line corresponding to the butt portion of the plates.
  • the heat capacity of the work may be asymmetrical on both sides of the weld line.
  • the shape of the weld bead may differ on both sides of the weld line due to the asymmetry of the heat capacity of the work. was there.
  • the output of the laser beam is adjusted according to the side of the welded part of the work where the heat capacity is small, the amount of heat input is insufficient in the part on the opposite side where the heat capacity is large, so a weld bead with a good shape can be obtained. was difficult.
  • the amount of heat input becomes excessive in the portion having a small heat capacity on the opposite side, which may cause welding defects such as melting off.
  • the scanning pattern of the laser beam is not a Lissajous pattern, for example, when two circular patterns are in contact with each other at one point and are continuous patterns.
  • the present disclosure has been made in view of such a point, and an object thereof is a laser welding method and a laser welding apparatus for irradiating a laser beam so as to draw a predetermined pattern on the surface of a work, and welding formed on the work. It is an object of the present invention to provide a laser welding method and a laser welding apparatus capable of improving the shape of a bead.
  • the work is struck by scanning the laser light two-dimensionally and irradiating the surface of the work while advancing the laser light in the first direction.
  • a welding step for welding is provided, in which the laser beam is scanned so as to draw a predetermined pattern on the surface of the work, and the predetermined pattern intersects the first direction or the first direction.
  • the laser beam is scanned so as to have an asymmetrical shape with respect to the second direction, and the predetermined pattern is characterized in that two annular patterns having an asymmetrical shape are in contact with each other at one point and are continuous. do.
  • the laser welding apparatus includes at least a laser oscillator that generates a laser beam, a laser head that receives the laser beam and irradiates the work, and a controller that controls the operation of the laser head.
  • the laser head has a laser light scanner that scans the laser light in each of a first direction and a second direction intersecting the first direction, and the controller has a predetermined pattern of the laser light on the surface of the work.
  • the laser light scanner is driven and controlled so that the predetermined pattern has an asymmetrical shape with respect to the first direction or the second direction intersecting with the first direction.
  • the laser light scanner is driven and controlled, and the predetermined pattern is characterized in that two annular patterns having an asymmetrical shape are in contact with each other at one point and are continuous.
  • the shape of the weld bead formed on the work can be made good.
  • FIG. 1 is a schematic configuration diagram of a laser welding apparatus according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of a laser light scanner.
  • FIG. 3A is a schematic diagram of the work.
  • FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A.
  • FIG. 4 is a schematic cross-sectional view of another work.
  • FIG. 5 is a diagram showing a scanning pattern of laser light.
  • FIG. 6 is a diagram showing a normal scanning pattern of laser light for comparison.
  • FIG. 7 is a diagram showing the relationship between the drawing position and the output of the laser beam according to the first modification.
  • FIG. 8 is a diagram showing a scanning pattern of the laser beam according to the modified example 2.
  • FIG. 9 is a diagram showing the relationship between the drawing position of the laser beam and the output.
  • FIG. 10 is a diagram showing a scanning pattern of the laser beam according to the second embodiment.
  • FIG. 11 is a diagram showing the relationship between the drawing position of the laser beam and the output.
  • FIG. 12 is a diagram showing the positional relationship between the laser beam according to the third embodiment and the molten pool formed in the work.
  • FIG. 13 is a diagram showing a scanning pattern of laser light.
  • FIG. 14 is a diagram showing the relationship between the drawing position of the laser beam and the output.
  • FIG. 15 is a diagram showing the relationship between the drawing speed of the laser beam and the drawing position of the laser beam according to the fourth embodiment.
  • FIG. 10 is a diagram showing a scanning pattern of the laser beam according to the second embodiment.
  • FIG. 11 is a diagram showing the relationship between the drawing position of the laser beam and the output.
  • FIG. 12 is a diagram showing the positional relationship between the laser beam according to the third embodiment and the
  • FIG. 16A is a diagram showing another relationship of the drawing speed of the laser beam with respect to the drawing position of the laser beam.
  • FIG. 16B is a diagram showing still another relationship of the drawing speed of the laser beam with respect to the drawing position of the laser beam.
  • FIG. 17A is a diagram showing a first scanning pattern of the laser beam according to the modified example 3.
  • FIG. 17B is a diagram showing a second scanning pattern of the laser beam according to the modified example 3.
  • FIG. 18A is a diagram showing a third scanning pattern of the laser beam according to the third modification.
  • FIG. 18B is a diagram showing a fourth scanning pattern of the laser beam according to the third modification.
  • FIG. 18C is a diagram showing a fifth scanning pattern of the laser beam according to the third modification.
  • FIG. 19 is a diagram showing an example of a combination of each parameter when drawing a resage pattern.
  • FIG. 20A is a diagram showing a first scanning pattern of the laser beam according to the modified example 4.
  • FIG. 20B is a diagram showing a second scanning pattern of the laser beam according to the modified example 4.
  • FIG. 20C is a diagram showing a third scanning pattern of the laser beam according to the modified example 4.
  • FIG. 1 shows a schematic diagram of the configuration of the laser welding apparatus according to the present embodiment
  • FIG. 2 shows a schematic configuration diagram of a laser light scanner
  • FIG. 3A shows a schematic view of the work
  • FIG. 3B shows a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A
  • FIG. 4 shows a schematic cross-sectional view of another work.
  • the direction parallel to the traveling direction of the laser beam LB from the reflection mirror 33 toward the laser beam scanner 40 is the X direction, and the direction parallel to the optical axis of the laser beam LB emitted from the laser head 30.
  • the Z direction and the directions orthogonal to the X direction and the Z direction may be referred to as the Y direction, respectively.
  • the XY plane including the X direction and the Y direction in the plane may be substantially parallel to the surface or may form a constant angle with the surface.
  • the laser welding apparatus 100 includes a laser oscillator 10, an optical fiber 20, a laser head 30, a controller 50, and a manipulator 60.
  • the laser oscillator 10 is a laser light source that is supplied with electric power from a power source (not shown) to generate laser light LB.
  • the laser oscillator 10 may be composed of a single laser light source or a plurality of laser modules. In the latter case, the laser light emitted from each of the plurality of laser modules is combined and emitted as the laser light LB. Further, the laser light source or the laser module used in the laser oscillator 10 is appropriately selected according to the material of the work 200, the shape of the welded portion, and the like.
  • a fiber laser, a disk laser, or a YAG (Yttrium Aluminum Garnet) laser can be used as a laser light source.
  • the wavelength of the laser beam LB is set in the range of 1000 nm to 1100 nm.
  • the semiconductor laser may be used as a laser light source or a laser module.
  • the wavelength of the laser beam LB is set in the range of 800 nm to 1000 nm.
  • the visible light laser may be used as a laser light source or a laser module.
  • the wavelength of the laser beam LB is set in the range of 400 nm to 600 nm.
  • the optical fiber 20 is optically coupled to the laser oscillator 10, and the laser light LB generated by the laser oscillator 10 is incident on the optical fiber 20 and transmitted inside the optical fiber 20 toward the laser head 30.
  • the laser head 30 is attached to the end of the optical fiber 20 and irradiates the work 200 with the laser light LB transmitted from the optical fiber 20.
  • the laser head 30 has a collimation lens 32, a reflection mirror 33, a condenser lens 34, and a laser light scanner 40 as optical components, and these optical components have a predetermined arrangement relationship inside the housing 31. Is kept and housed.
  • the collimation lens 32 receives the laser beam LB emitted from the optical fiber 20, converts it into parallel light, and causes it to be incident on the reflection mirror 33. Further, the collimation lens 32 is connected to a drive unit (not shown) and is configured to be displaceable in the Z direction in response to a control signal from the controller 50. By displacing the collimation lens 32 in the Z direction, the focal position of the laser beam LB can be changed, and the laser beam LB can be appropriately irradiated according to the shape of the work 200. That is, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive unit (not shown). The condenser lens 34 may be displaced by the drive unit to change the focal position of the laser beam LB.
  • the reflection mirror 33 reflects the laser light LB transmitted through the collimation lens 32 and makes it incident on the laser light scanner 40.
  • the surface of the reflection mirror 33 is provided so as to form an optical axis of about 45 degrees with the optical axis of the laser beam LB transmitted through the collimation lens 32.
  • the condenser lens 34 concentrates the laser light LB reflected by the reflection mirror 33 and scanned by the laser light scanner 40 on the surface of the work 200.
  • the laser light scanner 40 is a known galvano scanner having a first galvano mirror 41 and a second galvano mirror 42.
  • the first galvano mirror 41 has a first mirror 41a, a first rotation shaft 41b, and a first drive unit 41c
  • the second galvano mirror 42 has a second mirror 42a, a second rotation shaft 42b, and a second drive unit. It has 42c.
  • the laser beam LB transmitted through the condenser lens 34 is reflected by the first mirror 41a and further reflected by the second mirror 42a to irradiate the surface of the work 200.
  • the first drive unit 41c and the second drive unit 42c are galvano motors, and the first rotation shaft 41b and the second rotation shaft 42b are output shafts of the motor.
  • the first drive unit 41c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the first mirror 41a attached to the first rotation shaft 41b becomes the first rotation shaft. It rotates around the axis of 41b.
  • the second drive unit 42c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the second mirror 42a attached to the second rotary shaft 42b becomes the axis of the second rotary shaft 42b. Rotate around.
  • the laser beam LB is scanned in the X direction by the first mirror 41a rotating around the axis of the first rotation shaft 41b to a predetermined angle. Further, the second mirror 42a rotates around the axis of the second rotating shaft 42b to a predetermined angle, so that the laser beam LB is scanned in the Y direction. That is, the laser light scanner 40 is configured to scan the laser light LB two-dimensionally in the XY plane and irradiate the work 200.
  • the controller 50 controls the laser oscillation of the laser oscillator 10. Specifically, laser oscillation control is performed by supplying control signals such as an output current and an on / off time to a power source (not shown) connected to the laser oscillator 10.
  • the controller 50 controls the operation of the laser head 30 according to the content of the selected laser welding program. Specifically, the drive control of the laser light scanner 40 provided on the laser head 30 and the drive unit (not shown) of the collimation lens 32 is performed. Further, the controller 50 controls the operation of the manipulator 60.
  • the laser welding program is stored in a storage unit (not shown) provided inside the controller 50 or at another location, and is called by the controller 50 by a command from the controller 50.
  • the controller 50 has an integrated circuit such as an LSI or a microcomputer (not shown), and the function of the controller 50 described above is realized by executing a laser welding program which is software on the integrated circuit.
  • a controller 50 that controls the operation of the laser head 30 and a controller 50 that controls the output of the laser beam LB may be provided separately.
  • the manipulator 60 is an articulated robot and is attached to the housing 31 of the laser head 30. Further, the manipulator 60 is connected to the controller 50 so as to be able to send and receive signals, and moves the laser head 30 so as to draw a predetermined trajectory according to the above-mentioned laser welding program. In addition, another controller (not shown) that controls the operation of the manipulator 60 may be provided.
  • the laser welding device 100 shown in FIG. 1 can perform laser welding on workpieces 200 having various shapes.
  • the joint of the work 200 in which the first plate material 210 and the second plate material 220, which are made of the same material but have different thicknesses, are butted against each other, is irradiated with laser light LB. Then, butt welding is performed.
  • the corner portion of the joint of the work 200 in which the third plate material 230 and the fourth plate material 240 are overlapped with their end faces shifted is irradiated with the laser beam LB to perform the overlap fillet welding.
  • the shape of the work 200 to be laser welded is not limited to the examples shown in FIGS. 3A and 3B and FIG.
  • FIG. 5 shows a scanning pattern of the laser beam, and the laser beam LB is scanned so as to draw a Lissajous pattern (hereinafter, also referred to as a Lissajous figure) in the XY plane, in this case, on the surface of the work 200.
  • a Lissajous pattern hereinafter, also referred to as a Lissajous figure
  • the Lissajous pattern shown in FIG. 5 vibrates the laser beam LB in the X direction in a sinusoidal shape with a predetermined frequency, and also in the Y direction in a sinusoidal shape with a frequency different from the X direction (1/2 of the frequency in the X direction). Obtained by vibrating. Further, as described above, the scanning pattern of the laser beam LB in the X direction and the Y direction is determined based on the rotational motion of the first mirror 41a and the second mirror 42a. Generally, when the position coordinates of the resage pattern obtained by driving the first mirror 41a are X1 and the position coordinates of the resage pattern obtained by driving the second mirror 42a are Y1, the position coordinates X1 and Y1 are respectively. It is represented by the following equations (1) and (2).
  • X1 a ⁇ sin (nt) ⁇ ⁇ ⁇ (1)
  • Y1 b ⁇ sin (mt + ⁇ ) ⁇ ⁇ ⁇ (2) here, a: Amplitude of the Lissajous pattern in the X direction b: Amplitude of the Lissajous pattern in the Y direction n: Frequency of the first mirror 41a m: Frequency of the second mirror 42a t: Time ⁇ : When the first mirror 41a or the second mirror 42a is driven This is the phase difference between the above, and specifically, the amount of angular deviation provided during the rotational movement of the first mirror 41a and the second mirror 42a.
  • the position coordinates X1 and Y1 shown in the equations (1) and (2) are represented by a static coordinate system of the resage pattern in a state where the position of the laser head 30 is fixed.
  • the frequency n and the frequency m correspond to the drive frequencies of the first mirror 41a and the second mirror 42a, respectively.
  • the resage pattern of the present embodiment has an asymmetrical shape with respect to the center line extending in the X direction through the origin O.
  • the scanning pattern located on the-side is LS2
  • the drawing pattern LS2 has a smaller trajectory than the drawing pattern LS1 in each of the X direction and the Y direction. Therefore, the drawing length of the drawing pattern LS2 is shorter than the drawing length of the drawing pattern LS1.
  • a and b are normalized by 1 based on the size of the drawing pattern LS1.
  • the phase difference ⁇ in the equations (1) and (2) may be either 0 degree or 180 degrees.
  • the pattern in which the drawing patterns LS1 and LS2 are combined is a figure-eight resage pattern.
  • the size of the actual Lissajous pattern that is, the amplitudes in the X direction and the Y direction are in the range of about 1 mm to 10 mm, respectively.
  • the drawing distance of the resage pattern in the predetermined time variation ⁇ t in the X direction is ⁇ X
  • the drawing distance in the Y direction is ⁇ Y
  • the drawing of the resage pattern in the time variation ⁇ t is drawn.
  • the distance is ⁇ L
  • ⁇ X, ⁇ Y, and ⁇ L are represented by the following equations (3) to (5), respectively.
  • the surface of the work 200 is irradiated with the laser beam LB while the laser head 30 is moved in the X direction at a predetermined speed by the manipulator 60.
  • the laser light scanner 40 is used to two-dimensionally scan the laser light LB so as to draw the resage pattern shown in FIG. 5 on the surface of the work 200.
  • the case where the workpieces 200 shown in FIGS. 3A and 3B are butt-welded will be described as an example.
  • the output P of the laser beam LB in this embodiment is controlled to be the same over the entire length of the resage pattern.
  • the resage pattern shown in FIG. 5 is obtained by scanning the laser beam LB from the origin O in the direction of the arrow AR1 and the arrow AR2 shown in FIG. 5 during one cycle. Specifically, the laser beam LB is scanned so as to pass from the origin O to the drawing position A ⁇ B ⁇ C ⁇ O ⁇ D ⁇ E ⁇ F ⁇ O during one cycle.
  • Laser light LB is irradiated along the butt portion of the first plate material 210 and the second plate material 220, which are the welded portions of the work 200, and laser welding is performed.
  • the butt portion extends along the X direction and corresponds to the weld line described above.
  • the thickness of the first plate material 210 in the Z direction is larger than the thickness of the second plate material 220 in the Z direction.
  • the first plate material 210 is made of the same material as the second plate material 220. Therefore, the heat capacity of the first plate material 210 is larger than the heat capacity of the second plate material 220. That is, the heat capacity of the work 200 is asymmetric with respect to the weld line corresponding to the contact surface between the end surface of the first plate material 210 and the end surface of the second plate material 220.
  • the heat capacity of the butt portion of the first plate material 210 and the second plate material 220 is asymmetric with respect to the weld wire. Therefore, when an attempt is made to form a weld bead along the butt portion, the shape of the weld bead may be deformed. For example, when laser welding is performed by matching the amount of heat input to the work 200 by the laser beam LB to the second plate material 220 having a small heat capacity, the heat input to the first plate material 210 having a large heat capacity is insufficient, and the shape of the weld bead is deformed. There was a risk that it would end up.
  • the laser is used so that the drawing length of the drawing pattern LS1 irradiated on the first plate material 210 is longer than the drawing length of the drawing pattern LS2 irradiated on the second plate material 220. It controls the optical LB.
  • the drawing pattern LS1 of the laser beam LB passes through the path O ⁇ A ⁇ B ⁇ C ⁇ O shown in FIG. 5, and the drawing pattern LS2 of the laser beam LB passes through the path O ⁇ D ⁇ E ⁇ F ⁇ F ⁇ shown in FIG. Pass through O.
  • the amount of heat input to the first plate material 210 by the laser beam LB can be made larger than the amount of heat input to the second plate material 220. Therefore, it is possible to apply different amounts of heat to the butt portion of the first plate material 210 and the second plate material 220, which is the welded portion of the work 200 whose heat capacity is asymmetric with respect to the weld wire, on both sides of the weld wire. can. This makes it possible to improve the shape of the weld bead. In addition, it is possible to suppress the occurrence of welding defects such as melting off.
  • the laser beam LB is two-dimensionally scanned and irradiated on the surface of the work 200 while the laser beam LB is advanced in the X direction (first direction). This includes a welding step for welding the work 200.
  • the laser beam LB is vibrated in a sine wave shape having a first frequency corresponding to the frequency n along the X direction and in a sine wave shape having a second frequency corresponding to the frequency m along the Y direction. ..
  • the laser beam LB is scanned so as to draw a resage pattern on the surface of the work 200.
  • the laser beam LB is scanned so that the resage pattern has an asymmetrical shape with respect to the X direction. Specifically, the laser beam LB is scanned so that the drawing length of the resage pattern differs in the X direction. Further, the laser beam LB is scanned so that the drawing length of the resage pattern differs between one side and the other side with the center line extending in the X direction passing through the origin O.
  • the butt portion of the first plate material 210 and the second plate material 220 which are welded portions in the work 200, has an asymmetric heat capacity with respect to the X direction, which is the direction in which the weld line extends.
  • the laser irradiated at the first portion having a large heat capacity, that is, the first plate material 210 is more irradiated than the second portion having a small heat capacity, that is, the second plate material 220.
  • the drawing length of the optical LB is increased.
  • the laser welding apparatus 100 includes a laser oscillator 10 that generates a laser beam LB, a laser head 30 that receives the laser beam LB and irradiates the work 200, and an operation of the laser head 30 and a laser beam LB. It includes at least a controller 50 that controls the output P.
  • the laser head 30 has a laser light scanner 40 that scans the laser light LB in each of the X direction (first direction) and the Y direction (second direction) intersecting the X direction.
  • the controller 50 vibrates the laser beam LB in a sinusoidal shape having a first frequency along the X direction and vibrates in a sinusoidal shape having a second frequency along the Y direction.
  • the controller 50 drives and controls the laser light scanner 40 so that the laser light LB draws a resage pattern on the surface of the work 200.
  • the controller 50 drives and controls the laser light scanner 40 so that the resage pattern has an asymmetrical shape with respect to the X direction. Specifically, the controller 50 drives and controls the laser light scanner 40 so that the drawing length of the resage pattern differs in the X direction. Furthermore, the controller 50 drives and controls the laser light scanner 40 so that the drawing length of the resage pattern differs between one side and the other side with a center line extending in the X direction passing through the origin O. ..
  • different amounts of heat are applied to the welded portion of the work 200 whose heat capacity is asymmetric with respect to the weld wire on both sides of the weld wire, and the shape of the weld bead is improved. Can be.
  • the laser welding device 100 further includes a manipulator 60 to which the laser head 30 is attached, and the controller 50 controls the operation of the manipulator 60.
  • the manipulator 60 moves the laser head 30 in a predetermined direction with respect to the surface of the work 200.
  • the manipulator 60 By providing the manipulator 60 in this way, the welding direction of the laser beam LB can be changed. Further, laser welding can be easily performed on a work 200 having a complicated shape, for example, a three-dimensional shape.
  • the laser oscillator 10 and the laser head 30 are connected by an optical fiber 20, and the laser light LB is transmitted from the laser oscillator 10 to the laser head 30 through the optical fiber 20.
  • optical fiber 20 By providing the optical fiber 20 in this way, it becomes possible to perform laser welding on the work 200 installed at a position away from the laser oscillator 10. This increases the degree of freedom in arranging each part of the laser welding apparatus 100.
  • the laser light scanner 40 is composed of a first galvano mirror 41 that scans the laser light LB in the X direction and a second galvano mirror 42 that scans the laser light LB in the Y direction.
  • the laser light scanner 40 By configuring the laser light scanner 40 in this way, the laser light LB can be easily scanned two-dimensionally. Further, since a known galvano scanner is used as the laser light scanner 40, it is possible to suppress an increase in the cost of the laser welding apparatus 100.
  • the laser head 30 further includes a collimation lens 32, and the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction intersecting each of the X direction and the Y direction. That is, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive unit (not shown).
  • the focal position of the laser beam LB can be easily changed, and the laser beam LB can be appropriately irradiated according to the shape of the work 200.
  • the laser head 30 is moved in the X direction to cause the laser beam LB to travel in the X direction, but the present invention is not particularly limited to this.
  • the laser beam LB may be advanced in the Y direction by moving the laser head 30 in the Y direction. ..
  • the shape of the resage pattern may be changed.
  • the shape and drawing length of the resage pattern are controlled so that different amounts of heat are applied to the welded portion of the work 200 whose heat capacity is asymmetric with respect to the weld line on both sides of the weld line. It is necessary.
  • the drawing direction of the resage pattern is not particularly limited to the above.
  • the resage pattern may be drawn by scanning the laser beam LB so as to pass from the origin O to the drawing position C ⁇ B ⁇ A ⁇ O ⁇ F ⁇ E ⁇ D ⁇ O during one cycle.
  • the resage pattern may be drawn by scanning the laser beam LB so as to pass from the origin O to the drawing position D ⁇ E ⁇ F ⁇ O ⁇ A ⁇ B ⁇ C ⁇ O during one cycle.
  • the resage pattern may be drawn by scanning the laser beam LB so as to pass from the origin O to the drawing position F ⁇ E ⁇ D ⁇ O ⁇ C ⁇ B ⁇ A ⁇ O during one cycle.
  • the method shown in this embodiment may be applied.
  • the overlapped portion (first part) of the third plate material 230 and the fourth plate material 240 is the third plate material.
  • the heat capacity is larger than that of the portion having only 230 (second portion). Therefore, in the superposed portion, the laser beam LB is controlled so that the drawing length of the laser beam LB is longer than that of the portion of only the third plate member 230.
  • the above-mentioned effect can be achieved. That is, different amounts of heat can be applied to the welded portion of the work 200 whose heat capacity is asymmetric with respect to the weld wire on both sides of the weld wire, and the shape of the weld bead can be improved. .. In addition, it is possible to suppress the occurrence of welding defects such as melting off.
  • FIG. 7 shows a scanning pattern of a laser beam according to this modification.
  • the configuration shown in this modification is different from the configuration shown in the first embodiment in that the output P of the laser beam LB is changed according to the drawing position of the laser beam LB.
  • the structure of the work 200 to be laser welded is the same as that shown in FIGS. 3A and 3B.
  • the scanning pattern of the laser beam LB is the same as that shown in FIG.
  • the laser beam in drawing the resage pattern, is such that the output P1 of the laser beam LB irradiated on the first plate material 210 is higher than the output P2 of the laser beam LB irradiated on the second plate material 220.
  • the output P of the LB is controlled. That is, the output P1 of the laser beam LB in the drawing pattern LS1 passing through the path O ⁇ A ⁇ B ⁇ C ⁇ O shown in FIG. 5 is the laser light LB in the drawing pattern LS2 passing through the path O ⁇ D ⁇ E ⁇ F ⁇ O.
  • the output P of the laser beam LB is controlled so as to be higher than the output P2.
  • the control of the output P of the laser beam LB is performed by the controller 50.
  • the difference between the amount of heat input to the first plate material 210 and the amount of heat input to the second plate material 220 can be made larger than that shown in the first embodiment. This will be described further.
  • the resage pattern has an asymmetrical shape in the X direction, and the drawing length of the drawing pattern LS1 is made longer than the drawing length of the drawing pattern LS2. It is possible to make a difference in the amount of heat input.
  • the range of the difference between the drawing length of the drawing pattern LS1 and the drawing length of the drawing pattern LS2 is also restricted, and only the sizes of the drawing pattern LS1 and the drawing pattern LS2 are used in the work 200 on both sides of the welding line. In some cases, a good bead shape could not be obtained even if different amounts of heat were applied.
  • laser welding is performed by drawing the resage pattern shown in FIG. 5 on the surface of the work 200 with the laser beam LB.
  • the output P1 of the laser beam LB irradiated on the first plate material 210 is made higher than the output P2 of the laser beam LB irradiated on the second plate material 220 having a heat capacity smaller than that of the first plate material 210. ..
  • the rising portion and the falling portion of the output P of the laser beam LB may be controlled, respectively.
  • the output P of the laser beam LB is reduced from P1 to P2 from the time when the laser beam LB passes through the origin O until the period t1 elapses. You may let me.
  • the control curve S1 of the output P in this case may be linear or curved.
  • the output P of the laser beam LB increases from P2 to P1 from the time when the laser beam LB passes through the origin O until the period t2 elapses. You may let me.
  • the control curve S2 of the output P in this case may be linear or curved.
  • FIG. 8 shows the scanning pattern of the laser beam according to this modification
  • FIG. 9 shows the relationship between the drawing position of the laser beam and the output.
  • FIGS. 8 and 9 and the drawings shown thereafter the same parts as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
  • the drawing direction of the resage pattern is different from the configuration shown in the first embodiment.
  • the resage pattern shown in FIG. 8 is obtained by scanning the laser beam LB from the origin O in the direction of the arrow AR3 and the arrow AR4 shown in FIG. 7 during one cycle. Specifically, the laser beam LB is scanned so as to pass from the origin O to the drawing position C ⁇ B ⁇ A ⁇ O ⁇ F ⁇ E ⁇ D ⁇ O during one cycle.
  • the output P1 of the laser beam LB irradiated on the first plate material 210 is higher than the output P2 of the laser beam LB irradiated on the second plate material 220.
  • the output P of the laser beam LB is controlled. That is, the output P1 of the laser beam LB in the drawing pattern LS1 passing through the path O ⁇ C ⁇ B ⁇ A ⁇ O shown in FIG. 8 is the laser light LB in the drawing pattern LS2 passing through the path O ⁇ F ⁇ E ⁇ D ⁇ O.
  • the output P of the laser beam LB is controlled so as to be higher than the output P2.
  • the same effect as that of the configuration shown in the modified example 1 can be obtained. That is, it is possible to reliably apply different amounts of heat to the welded portion of the work 200 whose heat capacity is asymmetric with respect to the weld wire on both sides of the weld wire, and by changing the output of the laser beam LB on both sides.
  • the penetration depth on the back side of the work can be obtained to a predetermined level, and the shape of the weld bead can be improved.
  • FIG. 10 shows a scanning pattern of the laser beam according to the present embodiment
  • FIG. 11 shows the relationship between the drawing position of the laser beam and the output.
  • the welded portion of the work 200 in the present embodiment is set so that the heat capacity is the same on both sides of the weld line.
  • the output P of the laser beam LB is set to be lower in the vicinity of the origin O of the resage pattern than in the other portions during drawing of the resage pattern. different.
  • the output P of the laser beam LB is set to P3 between the origin O and each drawing position A', C', D', F'. At other drawing positions of the resage pattern, the output P of the laser beam LB is set to P1 (P1> P3).
  • the control of the output P of the laser beam LB is performed by the controller 50.
  • the laser beam LB passes once in one cycle, for example, at the drawing position A, whereas at the origin O, the laser is used.
  • the light LB passes twice.
  • the speed at which the laser head 30 is advanced in the X direction by the manipulator 60 that is, the traveling speed of the laser light LB in the X direction is much higher than the drawing speed V of the laser light LB when drawing a resage pattern. low.
  • the amount of heat input to the origin O during drawing of the resage pattern is larger than the amount of heat input to other drawing positions, for example, drawing positions A, B, C, D, E, and F.
  • drawing positions A, B, C, D, E, and F for example, drawing positions A, B, C, D, E, and F.
  • the amount of heat input to the surface of the work 200 is spatially unsuitable by setting the output P of the laser beam LB to be lower than the other portions in the vicinity of the origin O of the resage pattern. It suppresses the uniformity. This makes it possible to improve the shape of the weld bead. In addition, it is possible to suppress the occurrence of welding defects such as melting off.
  • the distance from the origin O to each drawing position A', C', D', F' can be appropriately changed according to the shape of the welded portion of the work 200, the material of the work 200, and the like.
  • the angle is preferably larger than 0 degrees and 3 degrees to 15 degrees or less. ..
  • FIG. 12 shows the positional relationship between the laser beam according to the present embodiment and the molten pool formed in the work.
  • FIG. 13 shows a scanning pattern of the laser beam, and
  • FIG. 14 shows the relationship between the drawing position of the laser beam and the output.
  • the metal constituting the work 200 is rapidly heated and melted, and a molten pool 201 is formed in and near the irradiated portion of the laser beam LB. .. Further, at the irradiation site of the laser beam LB, the metal evaporates, and a keyhole 202 is formed from the surface of the work 200 toward the inside. When the laser beam LB reaches the inside of the keyhole 202, the metal is melted to the inside of the work 200, and the penetration depth of the work 200 is secured.
  • the irradiation position of the laser beam LB shown in FIG. 12 corresponds to the origin O of the resage pattern shown in FIG.
  • the work 200 is not sufficiently heated at the third portion 203 located in front of the irradiation position of the laser beam LB along the welding progress direction, in this case, the Y direction, and the molten pool 201 is formed. Not formed.
  • the fourth portion 204 located behind the irradiation position of the laser beam LB has already been sufficiently heated by the laser beam LB. Therefore, the fourth portion 204 is located inside the molten pool 201, or is located at a portion where the molten pool 201 is solidified. That is, the fourth portion 204 includes the molten pool 201.
  • the output P of the laser beam LB is adjusted according to the rear of the origin O of the resage pattern.
  • the amount of heat input to the work 200 is insufficient in front of the origin O, and the shape of the weld bead, particularly the shape at the time of the bead, becomes irregular. There was a risk.
  • the output P of the laser beam LB is adjusted in front of the origin O of the resage pattern, the heat input to the molten pool 201 becomes excessive behind the origin O, and the molten pool 201 may become unstable. rice field. In this case, it was difficult to obtain a weld bead having a good shape. Further, such a problem can occur both when the heat capacities of the work 200 are equal or asymmetrical on both sides of the weld wire.
  • the output P of the laser beam LB to be irradiated is changed between the third site 203 and the fourth site 204 described above.
  • the configuration shown in the present embodiment is different from the configuration shown in the first embodiment in the following points.
  • the third portion 203 including the molten pool 201 is included.
  • the amount of heat input is set to be larger than that of the fourth portion 204 to which the laser beam LB is irradiated behind.
  • the output of the laser beam LB of the drawing portion of the drawing pattern LS2 is higher than the drawing portion of the drawing pattern LS1 drawn behind the origin O or the drawing portion of the drawing pattern LS2 drawn behind the origin O.
  • the laser beam LB is controlled.
  • the output P of the laser beam LB is controlled by the controller 50 while the drawing pattern LS1 and the drawing pattern LS2 are being drawn.
  • the molten pool 201 can be reliably formed in the third portion 203 that has not yet been heated and melted. Further, it is possible to suppress excessive vibration of the molten pool 201. As a result, it is possible to prevent the weld bead from forming a wavy shape. Further, it is possible to suppress the penetration depth of the work 200 from becoming deeper than a desired value, reduce the occurrence of welding defects such as melt-off, and improve the welding quality. Further, the laser energy can be saved in order not to input the heat amount to the fourth portion 204 more than necessary.
  • FIG. 15 shows the relationship between the drawing speed of the laser beam and the drawing position of the laser beam according to the present embodiment.
  • FIG. 16A shows another relationship of the drawing speed of the laser beam with respect to the drawing position of the laser beam.
  • FIG. 16B shows yet another relationship of the drawing speed of the laser beam with respect to the drawing position of the laser beam.
  • the scanning pattern of the laser beam LB in this embodiment is the same as that shown in FIG.
  • the drawing speed V of the laser beam LB may be constant during the drawing of the resage pattern.
  • the drawing speed V of the laser beam LB may be constant over the entire length of the resage pattern.
  • the heat capacity of the work 200 is asymmetric with respect to the weld line. , Different amounts of heat were applied on both sides of the welding wire.
  • the amount of heat input to the work 200 can also be changed by changing the drawing speed V of the laser beam LB according to the drawing position of the laser beam LB. For example, by lowering the drawing speed V of the laser beam LB, the amount of heat input per unit drawing length becomes large. That is, the same effect as increasing the output P of the laser beam LB can be obtained.
  • the drawing speed V of the laser light LB is controlled as shown in FIG. You may.
  • the control of the drawing speed V of the laser beam LB is performed by the controller 50.
  • the drawing length of the drawing pattern LS1 irradiated on the first plate material (first portion) 210 is smaller than that of the first plate material 210 in the second plate material (second plate material).
  • the drawing length of the drawing pattern LS1 irradiated to the portion) 220 is set to be longer than the drawing length.
  • the drawing speed V2 of the laser beam LB drawing the drawing pattern LS1 is set to be lower than the drawing speed V1 of the laser beam LB drawing the drawing pattern LS2 (V1> V2).
  • the drawing speed V of the laser beam LB is controlled as shown in FIG. 16B. May be good.
  • the control of the drawing speed V of the laser beam LB is performed by the controller 50.
  • the drawing speed V of the laser beam LB may be controlled.
  • the control of the drawing speed V of the laser beam LB is performed by the controller 50.
  • the drawing speed V of the laser beam LB is set to V1 between the origin O and each drawing position A', C', D', F'shown in FIG.
  • the drawing speed V of the laser beam LB may be V2 (V1> V2).
  • the weld wire is provided to the welded portion of the work 200 whose heat capacity is asymmetric with respect to the weld wire, as in the case of the configurations shown in the first to third embodiments and the first and second modifications. Different amounts of heat can be applied to both sides of the sandwich to improve the shape of the weld bead.
  • the molten pool 201 in the third portion 203 which has not been heated and melted yet. Further, it is possible to suppress excessive vibration of the molten pool 201. As a result, it is possible to prevent the weld bead from forming a wavy shape. Further, it is possible to suppress the penetration depth of the work 200 from becoming deeper than a desired value, reduce the occurrence of welding defects such as melt-off, and improve the welding quality.
  • the rising portion and the falling portion of the drawing speed V may be controlled, respectively, as shown by the broken line in FIGS. 16A or 16B.
  • the drawing position of the laser beam LB moves from the origin O to D
  • the laser beam is emitted from the time when the laser beam LB passes through the origin O until the period t3 elapses.
  • the drawing speed V of the LB may be increased from V2 to V1.
  • the control curve S3 of the drawing speed V in this case may be linear or curved.
  • the drawing speed V of the laser beam LB is changed from V2 to V1 from the time when the laser beam LB passes through the origin O until the period t4 elapses. It may be lowered.
  • the control curve S4 of the drawing speed V in this case may be linear or curved.
  • FIG. 17A shows a first scanning pattern of the laser beam according to the present modification
  • FIG. 17B shows a second scanning pattern
  • FIG. 18A shows a third scanning pattern of the laser beam according to the present modification
  • FIG. 18B shows a fourth scanning pattern
  • FIG. 18C shows a fifth scanning pattern
  • FIG. 19 shows an example of a combination of each parameter when drawing a resage pattern.
  • the scanning pattern of the laser beam LB is not particularly limited to the pattern shown in FIG.
  • the parameter a may be reduced in each of the drawing patterns LS1 and LS2 so that the amplitude of the Lissajous pattern in the X direction becomes smaller.
  • FIGS. 18B and 18C the parameter b may be reduced in each of the drawing patterns LS1 and LS2 so that the amplitude of the Lissajous pattern shown in FIG. 18A in the Y direction becomes smaller.
  • the values of the parameters a and b shown in the equations (1) and (2) are not particularly limited to the examples shown in FIGS. 17A and 17B and FIGS. 18A to 18C, and for example, appropriate values can be set in the range shown in FIG. It can be taken.
  • FIG. 19 the resage patterns shown in FIGS. 5 and 17A and 17B are referred to as pattern group 1, and the resage patterns shown in FIGS. 18A to 18C are referred to as pattern group 2.
  • the ratio of the frequency n of the first mirror 41a to the frequency m of the second mirror 42a in other words, the ratio of the first frequency which is the vibration frequency in the X direction of the laser beam LB to the second frequency which is the vibration frequency in the Y direction.
  • 2: 1 or 1: 2 a figure-eight-shaped Lissajous pattern can be obtained.
  • the drive frequencies of the first mirror 41a and the second mirror 42a may be changed according to the shape of the work 200 or the required bead shape.
  • ⁇ Modification example 4> 20A to 20C show the first to third scanning patterns of the laser beam according to this modification.
  • the arrows indicate the drawing direction of the laser beam LB.
  • the scanning pattern of the laser beam LB of the present disclosure is not limited to the resage pattern shown in the first embodiment and the third modification.
  • it may be a composite pattern of two circular patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the X-axis.
  • FIG. 20B it may be a composite pattern of two elliptical patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the X-axis.
  • FIG. 20A it may be a composite pattern of two circular patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the X-axis.
  • FIG. 20B it may be a composite pattern of two elliptical patterns having asymmetrical shapes and arranged so as to be in contact with each other at the origin O and sandwiching the X-axis.
  • each scanning pattern shown in FIGS. 20A to 20C may be a composite pattern of two annular patterns arranged asymmetrically with respect to the Y axis. Further, in this case, each of the two annular patterns may be a pattern rotated by 90 degrees from the example shown in FIGS. 20A to 20C. Further, the size of each of the two annular patterns can be changed as appropriate.
  • the scanning pattern of the laser beam LB in the present specification may be a pattern in which two annular patterns are in contact with each other at one point and are continuous, and is not limited to the examples shown in FIGS. 20A to 20C and the modifications thereof. These patterns can be obtained by driving the first mirror 41a and the second mirror 42a according to a predetermined drive pattern, respectively.
  • the laser welding method and the laser welding apparatus 100 according to the present disclosure have the following configurations. It can be said that.
  • the laser beam LB is scanned so that the predetermined pattern has an asymmetrical shape with respect to the X direction or the Y direction. Further, the predetermined patterns have different drawing lengths in the X direction or the Y direction. Furthermore, the laser beam LB is scanned so that the drawing length of a predetermined pattern differs between one side and the other side with a center line extending in the X direction or the Y direction passing through the origin O. As a result, the amount of heat input to the work 200 is controlled according to the drawing position of the laser beam LB in the predetermined pattern.
  • the controller 50 drives and controls the laser light scanner 40 so that the predetermined pattern has an asymmetrical shape with respect to the X direction or the Y direction. Further, the controller 50 drives and controls the laser light scanner 40 so that the drawing lengths of predetermined patterns differ in the X direction or the Y direction. Further, the controller 50 has a laser beam scanner 40 so as to have a predetermined pattern drawing length different between one side and the other side with a center line extending in the X direction or the Y direction passing through the origin O. Is driven and controlled. As a result, the amount of heat input to the work 200 is controlled according to the drawing position of the laser beam LB in the predetermined pattern.
  • the molten pool 201 in the third portion 203 which has not been heated and melted yet. Further, it is possible to suppress excessive vibration of the molten pool 201. As a result, it is possible to prevent the weld bead from forming a wavy shape. Further, it is possible to suppress the penetration depth of the work 200 from becoming deeper than a desired value, reduce the occurrence of welding defects such as melt-off, and improve the welding quality.
  • the "predetermined pattern” which is the scanning pattern of the laser beam LB, is a pattern in which two annular patterns having asymmetrical shapes are at one point, and in this case, they are in contact with each other at the origin O and are continuous. Needless to say, the “predetermined pattern” includes the resage pattern disclosed in the present specification.
  • the output P of the laser beam LB can be controlled as shown in the modified example 1 and the embodiments 2 and 3. Further, as shown in the fourth embodiment, the drawing speed V of the laser beam LB can be controlled.
  • the laser beam LB passes from the origin O to the drawing position C ⁇ B ⁇ A ⁇ O ⁇ F ⁇ E ⁇ D ⁇ O during one cycle, for example.
  • the laserge pattern may be drawn by scanning.
  • the resage pattern may be drawn by scanning the laser beam LB so as to pass from the origin O to the drawing position D ⁇ E ⁇ F ⁇ O ⁇ A ⁇ B ⁇ C ⁇ O during one cycle.
  • the resage pattern may be drawn by scanning the laser beam LB so as to pass from the origin O to the drawing position F ⁇ E ⁇ D ⁇ O ⁇ C ⁇ B ⁇ A ⁇ O during one cycle.
  • the timing for changing the drawing speed V and the output P of the laser beam LB is changed according to the change in the order of the drawing positions.
  • the condenser lens 34 is arranged in the front stage of the laser light scanner 40, but is in the rear stage of the laser light scanner 40, that is, the light emission port of the laser light scanner 40 and the laser head 30. It may be arranged between.
  • the scanning pattern of the laser beam LB becomes a Lissajous pattern. It may be set to. In this case, it goes without saying that the amplitudes a and b of the first mirror 41a and the second mirror 42a, the frequencies n and m of the first mirror 41a and the second mirror 42a, and the phase ⁇ are appropriately changed.
  • the laser welding method and the laser welding method of the present disclosure can improve the shape of the weld bead and are useful.
  • Laser oscillator 20 Optical fiber 30
  • Laser head 31 Housing 32 Collimation lens 33
  • Reflective mirror 34 Condensing lens 40
  • Laser optical scanner 41 1st galvano mirror 41a 1st mirror 41b 1st rotating shaft 41c 1st drive unit 42 2nd galvano mirror 42a 2nd mirror 42b 2nd rotation shaft 42c 2nd drive unit 50
  • Controller 60 Manipulator 200 Work 201 Melting pond 202 Keyhole 203 3rd part 204 4th part 210 1st plate material (1st part) 220 2nd plate material (2nd part) 230 3rd board 240 4th board

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ溶接方法は、レーザ光をX方向に進行させながら、レーザ光を二次元的に走査してワークの表面に照射することで、ワークを溶接する溶接ステップを備えている。溶接ステップでは、ワークの表面で所定のパターンを描くようにレーザ光を走査する。さらに、所定のパターンが、X方向に関して非対称な形状となるように、レーザ光を走査する。所定のパターンは、互いに非対称な形状の2つの環状のパターンが一点で接して連続したパターンである。

Description

レーザ溶接方法及びレーザ溶接装置
 本開示は、レーザ溶接方法及びレーザ溶接装置に関する。
 レーザ溶接は、被溶接物であるワークに照射されるレーザ光のパワー密度が高いため、高速かつ高品質の溶接を行うことができる。特に、レーザ光をワークの表面で高速にスキャンしながら溶接を行うスキャニング溶接では、溶接をしない期間中にレーザビームを次の溶接点へ高速に移動することができるため、トータルな溶接時間を短縮することができる(例えば、特許文献1参照)。また、レーザ光のスキャニング方法に関しては、ワークの表面にリサージュパターンを描くようにレーザ光を走査する方法が、従来提案されている(例えば、特許文献2、特許文献3参照)。
特開2005-095934号公報 特開昭60-177983号公報 特開平11-104877号公報
 ところで、特許文献2,3に示される従来の構成では、通常、リサージュパターンが、その中心点(以下、原点ともいう)に関し、対称な形状となるように描画される。
 しかし、実際に溶接されるワークは、種々の形状を有している。例えば、異なる厚さの板材を突き合わせ溶接する場合、板材の突き合わせ部分に対応する溶接線の両側で、ワークの熱容量が非対称となる。また、ワークの継手形状によっては、同様に、溶接線の両側で、ワークの熱容量が非対称となることがある。
 この場合、前述した対称形状のリサージュパターンを描くようにレーザ光を照射して溶接を行うと、ワークの熱容量の非対称性に起因して、溶接線の両側で溶接ビードの形状が異なってしまうおそれがあった。例えば、ワークの溶接部位のうち、熱容量の小さい側に合わせてレーザ光の出力を調整すると、反対側にある熱容量の大きい部分では入熱量が不足するため、良好な形状の溶接ビードを得ることが難しかった。また、熱容量の大きい側に合わせてレーザ光の出力を調整すると、反対側にある熱容量の小さい部分では入熱量が過多となるため、溶け落ち等の溶接不良を生じるおそれがあった。また、このような問題は、レーザ光の走査パターンがリサージュパターンでない場合、例えば、2つの円形のパターンが一点で接して連続したパターンである場合にも生じる。
 本開示はかかる点に鑑みてなされたもので、その目的は、ワークの表面に所定のパターンを描くようにレーザ光を照射するレーザ溶接方法及びレーザ溶接装置であって、ワークに形成される溶接ビードの形状を良好なものとすることができるレーザ溶接方法及びレーザ溶接装置を提供することにある。
 上記目的を達成するため、本開示に係るレーザ溶接方法は、レーザ光を第1方向に進行させながら、前記レーザ光を二次元的に走査してワークの表面に照射することで、前記ワークを溶接する溶接ステップを備え、前記溶接ステップでは、前記ワークの表面で所定のパターンを描くように前記レーザ光を走査し、さらに、前記所定のパターンが、前記第1方向または前記第1方向と交差する第2方向に関して非対称な形状となるように、前記レーザ光を走査し、前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが一点で接して連続したパターンであることを特徴とする。
 本開示に係るレーザ溶接装置は、レーザ光を発生させるレーザ発振器と、前記レーザ光を受け取ってワークに向けて照射するレーザヘッドと、前記レーザヘッドの動作を制御するコントローラと、を少なくとも備え、前記レーザヘッドは、前記レーザ光を第1方向と前記第1方向と交差する第2方向のそれぞれに走査するレーザ光スキャナを有し、前記コントローラは、前記レーザ光が前記ワークの表面に所定のパターンを描くように、前記レーザ光スキャナを駆動制御し、さらに、前記コントローラは、前記所定のパターンが、前記第1方向または前記第1方向と交差する第2方向に関して非対称な形状となるように、前記レーザ光スキャナを駆動制御し、前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが一点で接して連続したパターンであることを特徴とする。
 本開示によれば、ワークに形成される溶接ビードの形状を良好なものとすることができる。
図1は、実施形態1に係るレーザ溶接装置の概略構成図である。 図2は、レーザ光スキャナの概略構成図である。 図3Aは、ワークの模式図である。 図3Bは、図3AのIIIB-IIIB線での断面図である。 図4は、別のワークの断面模式図である。 図5は、レーザ光の走査パターンを示す図である。 図6は、比較のためのレーザ光の通常の走査パターンを示す図である。 図7は、変形例1に係るレーザ光の描画位置と出力との関係を示す図である。 図8は、変形例2に係るレーザ光の走査パターンを示す図である。 図9は、レーザ光の描画位置と出力との関係を示す図である。 図10は、実施形態2に係るレーザ光の走査パターンを示す図である。 図11は、レーザ光の描画位置と出力との関係を示す図である。 図12は、実施形態3に係るレーザ光とワークに形成された溶融池との位置関係を示す図である。 図13は、レーザ光の走査パターンを示す図である。 図14は、レーザ光の描画位置と出力との関係を示す図である。 図15は、実施形態4に係るレーザ光の描画位置に対するレーザ光の描画速度の関係を示す図である。 図16Aは、レーザ光の描画位置に対するレーザ光の描画速度の別の関係を示す図である。 図16Bは、レーザ光の描画位置に対するレーザ光の描画速度のさらなる別の関係を示す図である。 図17Aは、変形例3に係るレーザ光の第1の走査パターンを示す図である。 図17Bは、変形例3に係るレーザ光の第2の走査パターンを示す図である。 図18Aは、変形例3に係るレーザ光の第3の走査パターンを示す図である。 図18Bは、変形例3に係るレーザ光の第4の走査パターンを示す図である。 図18Cは、変形例3に係るレーザ光の第5の走査パターンを示す図である。 図19は、リサージュパターンを描画するときの各パラメータの組み合わせの一例を示す図である。 図20Aは、変形例4に係るレーザ光の第1の走査パターンを示す図である。 図20Bは、変形例4に係るレーザ光の第2の走査パターンを示す図である。 図20Cは、変形例4に係るレーザ光の第3の走査パターンを示す図である。
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
 (実施形態1)
 [レーザ溶接装置及びレーザ光スキャナの構成]
 図1は、本実施形態に係るレーザ溶接装置の構成の模式図を示し、図2は、レーザ光スキャナの概略構成図を示す。図3Aは、ワークの模式図を示し、図3Bは、図3AのIIIB-IIIB線での断面図を示す。図4は、別のワークの断面模式図を示す。
 なお、以降の説明において、反射ミラー33からレーザ光スキャナ40に向かうレーザ光LBの進行方向と平行な方向をX方向と、レーザヘッド30から出射されるレーザ光LBの光軸と平行な方向をZ方向と、X方向及びZ方向とそれぞれ直交する方向をY方向とそれぞれ呼ぶことがある。X方向とY方向とを面内に含むXY平面は、ワーク200の表面が平坦面である場合、当該表面と略平行でもよく、当該表面と一定の角度をなしていてもよい。
 図1に示すように、レーザ溶接装置100は、レーザ発振器10と光ファイバ20とレーザヘッド30とコントローラ50とマニピュレータ60とを備えている。
 レーザ発振器10は、図示しない電源から電力が供給されてレーザ光LBを発生させるレーザ光源である。なお、レーザ発振器10は、単一のレーザ光源で構成されていてもよいし、複数のレーザモジュールで構成されていてもよい。後者の場合は、複数のレーザモジュールからそれぞれ出射されたレーザ光を結合してレーザ光LBとして出射する。また、レーザ発振器10で使用されるレーザ光源あるいはレーザモジュールは、ワーク200の材質や溶接部位の形状等に応じて、適宜選択される。
 例えば、ファイバレーザかディスクレーザ、あるいはYAG(Yttrium Aluminum Garnet)レーザをレーザ光源とすることもできる。この場合、レーザ光LBの波長は、1000nm~1100nmの範囲に設定される。また、半導体レーザをレーザ光源あるいはレーザモジュールとしてもよい。この場合、レーザ光LBの波長は、800nm~1000nmの範囲に設定される。また、可視光レーザをレーザ光源あるいはレーザモジュールとしてもよい。この場合、レーザ光LBの波長は、400nm~600nmの範囲に設定される。
 光ファイバ20は、レーザ発振器10に光学的に結合されており、レーザ発振器10で発生したレーザ光LBは、光ファイバ20に入射されて、その内部をレーザヘッド30に向けて伝送される。
 レーザヘッド30は、光ファイバ20の端部に取り付けられており、光ファイバ20から伝送されたレーザ光LBをワーク200に向けて照射する。
 また、レーザヘッド30は、光学部品として、コリメーションレンズ32と反射ミラー33と集光レンズ34とレーザ光スキャナ40とを有しており、筐体31の内部にこれらの光学部品が所定の配置関係を保って収容されている。
 コリメーションレンズ32は、光ファイバ20から出射されたレーザ光LBを受け取って、平行光に変換し、反射ミラー33に入射させる。また、コリメーションレンズ32は、図示しない駆動部に連結されており、コントローラ50からの制御信号に応じて、Z方向に変位可能に構成されている。コリメーションレンズ32をZ方向に変位させることで、レーザ光LBの焦点位置を変化させ、ワーク200の形状に応じて適切にレーザ光LBを照射させることができる。つまり、コリメーションレンズ32は、図示しない駆動部との組み合わせにより、レーザ光LBの焦点位置調整機構としても機能している。なお、集光レンズ34を駆動部により変位させて、レーザ光LBの焦点位置を変化させるようにしてもよい。
 反射ミラー33は、コリメーションレンズ32を透過したレーザ光LBを反射して、レーザ光スキャナ40に入射させる。反射ミラー33の表面は、コリメーションレンズ32を透過したレーザ光LBの光軸と約45度をなすように設けられている。
 集光レンズ34は、反射ミラー33で反射され、レーザ光スキャナ40で走査されたレーザ光LBをワーク200の表面に集光させる。
 図2に示すように、レーザ光スキャナ40は、第1ガルバノミラー41と第2ガルバノミラー42とを有する公知のガルバノスキャナである。第1ガルバノミラー41は、第1ミラー41aと第1回転軸41bと第1駆動部41cとを有し、第2ガルバノミラー42は、第2ミラー42aと第2回転軸42bと第2駆動部42cとを有している。集光レンズ34を透過したレーザ光LBは、第1ミラー41aで反射され、さらに第2ミラー42aで反射されて、ワーク200の表面に照射される。
 例えば、第1駆動部41c及び第2駆動部42cは、ガルバノモータであり、第1回転軸41b及び第2回転軸42bは、モータの出力軸である。図示していないが、第1駆動部41cが、コントローラ50からの制御信号に応じて動作するドライバによって回転駆動することで、第1回転軸41bに取り付けられた第1ミラー41aが第1回転軸41bの軸線回りに回転する。同様に、第2駆動部42cが、コントローラ50からの制御信号に応じて動作するドライバによって回転駆動することで、第2回転軸42bに取り付けられた第2ミラー42aが第2回転軸42bの軸線回りに回転する。
 第1ミラー41aが第1回転軸41bの軸線回りに所定の角度まで回転動作をすることで、レーザ光LBがX方向に走査される。また、第2ミラー42aが第2回転軸42bの軸線回りに所定の角度まで回転動作をすることで、レーザ光LBがY方向に走査される。つまり、レーザ光スキャナ40は、レーザ光LBをXY平面内で二次元的に走査してワーク200に向けて照射するように構成されている。
 コントローラ50は、レーザ発振器10のレーザ発振を制御する。具体的には、レーザ発振器10に接続された図示しない電源に対して出力電流やオンオフ時間等の制御信号を供給することにより、レーザ発振制御を行う。
 また、コントローラ50は、選択されたレーザ溶接プログラムの内容に応じて、レーザヘッド30の動作を制御する。具体的には、レーザヘッド30に設けられたレーザ光スキャナ40及び、コリメーションレンズ32の図示しない駆動部の駆動制御を行う。さらに、コントローラ50は、マニピュレータ60の動作を制御する。なお、レーザ溶接プログラムは、コントローラ50の内部または別の場所に設けられた記憶部(図示せず)に保存され、コントローラ50からの命令によってコントローラ50に呼び出される。
 コントローラ50は、図示しないLSIまたはマイクロコンピュータ等の集積回路を有しており、この集積回路上でソフトウェアであるレーザ溶接プログラムを実行することで、前述のコントローラ50の機能が実現される。なお、レーザヘッド30の動作を制御するコントローラ50とレーザ光LBの出力を制御するコントローラ50とを別個に設けてもよい。
 マニピュレータ60は、多関節ロボットであり、レーザヘッド30の筐体31に取り付けられている。また、マニピュレータ60は、コントローラ50と信号の授受が可能に接続され、前述のレーザ溶接プログラムに応じて所定の軌跡を描くようにレーザヘッド30を移動させる。なお、マニピュレータ60の動作を制御する別のコントローラ(図示せず)を設けるようにしてもよい。
 図1に示すレーザ溶接装置100は、種々の形状のワーク200に対してレーザ溶接を行うことができる。例えば、図3A,3Bに示すように、互いに材質が同じである一方、厚さの異なる第1板材210と第2板材220とを端面同士で突き合わせたワーク200の継手にレーザ光LBを照射して、突き合わせ溶接が行われる。また、図3Bに示すように、第3板材230と第4板材240とを端面をずらして重ね合わせたワーク200の継手のコーナー部にレーザ光LBを照射して重ね隅肉溶接が行われる。ただし、レーザ溶接されるワーク200の形状が図3A,3Bや図4に示す例に限定されないことは言うまでもない。
 [リサージュパターンの数式的表現]
 図5は、レーザ光の走査パターンを示し、レーザ光LBは、XY平面内、この場合はワーク200の表面でリサージュパターン(以下、リサージュ図形ともいう)を描くように走査される。
 図5に示すリサージュパターンは、レーザ光LBをX方向に所定の周波数の正弦波状に振動させるとともに、Y方向にX方向と異なる周波数(X方向の周波数の1/2である)の正弦波状に振動させることで得られる。また、前述したように、第1ミラー41a及び第2ミラー42aの回転運動に基づいて、レーザ光LBのX方向及びY方向の走査パターンが決定される。一般的に、第1ミラー41aの駆動によって得られるリサージュパターンの位置座標をX1とし、第2ミラー42aの駆動によって得られるリサージュパターンの位置座標をY1とするとき、位置座標X1,Y1は、それぞれ以下の式(1)、(2)で表される。
 X1=a×sin(nt)   ・・・(1)
 Y1=b×sin(mt+φ) ・・・(2)
 ここで、
 a:リサージュパターンのX方向における振幅
 b:リサージュパターンのY方向における振幅
 n:第1ミラー41aの周波数
 m:第2ミラー42aの周波数
 t:時間
 φ:第1ミラー41aまたは第2ミラー42a駆動時の位相差であり、具体的には、第1ミラー41aと第2ミラー42aの回転運動時に設ける角度ずれ量である。
 なお、式(1)、(2)に示す位置座標X1,Y1は、レーザヘッド30の位置を固定した状態でのリサージュパターンの静止座標系で表現される。
 また、周波数nと周波数mは、それぞれ第1ミラー41aと第2ミラー42aの駆動周波数とそれぞれ対応する。
 図5から明らかなように、本実施形態のリサージュパターンは、原点Oを通りX方向に延びる中心線に関して非対称な形状となっている。
 図5におけるY方向で+側に位置するレーザ光LBの走査パターンをLS1とすると、走査パターンLS1(以下、描画パターンLS1ともいう)は、式(1)、(2)において、a=1,b=1,n=2,m=1,φ=0とした場合に対応する。一方、-側に位置する走査パターンをLS2とすると、走査パターンLS2(以下、描画パターンLS2ともいう)は、式(1)、(2)において、a=0.5,b=0.5,n=2,m=1,φ=0とした場合に対応する。つまり、X方向及びY方向のそれぞれにおいて、描画パターンLS2は、描画パターンLS1よりも小さな軌跡となっている。よって、描画パターンLS2の描画長さは、描画パターンLS1の描画長さよりも短くなっている。なお、aとbは、描画パターンLS1の大きさを基準に1で正規化している。また、式(1)、(2)の位相差φは、0度または180度のどちらでもよい。
 また、描画パターンLS1とLS2とを合成したパターンは、8の字形状のリサージュパターンである。なお、実際のリサージュパターンのサイズ、つまり、X方向及びY方向の振幅は、それぞれ1mm~10mm程度の範囲内にある。
 ここで、図5に示すように、描画パターンLS1において、所定の時間変分ΔtにおけるリサージュパターンのX方向の描画距離をΔX、Y方向の描画距離をΔY、時間変分Δtにおけるリサージュパターンの描画距離をΔLとするとき、ΔX、ΔY、ΔLは、それぞれ以下に示す式(3)~(5)で表される。
 ΔX= a×n×cos(nt)×Δt ・・・(3)
 ΔY= b×m×cos(mt+φ)×Δt ・・・(4)
 ΔL= Δt×{(ΔX)+(ΔY)1/2 ・・・(5)
 よって、リサージュパターンの描画速度Vは、以下に示す式(6)で表される。
 V= ΔL/Δt ・・・(6)
 一方、描画パターンLS2においては、ΔXとΔYは数式(3)と数式(4)によって同様に計算できるが、X方向における振幅とY方向における振幅のみが描画パターンLS1と異なる。
 [レーザ溶接方法]
 本実施形態では、マニピュレータ60によってレーザヘッド30をX方向に所定の速度で移動させつつ、レーザ光LBをワーク200の表面に照射している。さらに、レーザ光スキャナ40を用いて、ワーク200の表面で図5に示すリサージュパターンを描くように、レーザ光LBを二次元的に走査している。また、本実施形態では、図3A,3Bに示すワーク200を突き合わせ溶接する場合を例に取って説明する。なお、本実施形態におけるレーザ光LBの出力Pは、リサージュパターンの全長に亘って同じになるように制御される。
 なお、図5に示すリサージュパターンは、1周期の間に、原点Oから図5に示す矢印AR1及び矢印AR2の方向にレーザ光LBを走査することで得られる。具体的には、1周期の間に、原点Oから描画位置A→B→C→O→D→E→F→Oを通るようにレーザ光LBを走査する。
 ワーク200の溶接部位にあたる第1板材210と第2板材220の突き合わせ部分に沿って、レーザ光LBが照射されてレーザ溶接が行われる。図3Aに示すように、突き合わせ部分はX方向に沿って延びており、前述の溶接線に対応している。一方、図3Bに示すように、第1板材210のZ方向の厚さは、第2板材220のZ方向の厚さよりも大きい。また、第1板材210は、第2板材220と同じ材質である。したがって、第1板材210の熱容量は、第2板材220の熱容量よりも大きい。つまり、第1板材210の端面と第2板材220の端面との当接面に対応する溶接線に関し、ワーク200の熱容量は非対称となっている。
 このようなワーク200に対して、レーザ光LBにより、ワーク200の表面に通常のリサージュパターンを描画しつつレーザ溶接を行う場合、以下に示す課題を生じることがある。
 図6は、比較のためのレーザ光の通常の走査パターンを示し、式(1)、(2)において、パラメータa=1,b=1,n=2,m=1とした場合に相当する。つまり、図6に示すリサージュパターンは、X方向及びY方向に関し、それぞれ対称な8の字形状のリサージュパターンである。
 レーザ光LBをX方向に進行させながら、図6に示すリサージュパターンを描くように第1板材210と第2板材220の突き合わせ部分に照射すると、溶接線に関し、ワーク200への入熱量も対称となる。
 一方、前述したように、第1板材210と第2板材220の突き合わせ部分では、溶接線に関し熱容量が非対称となっている。このため、突き合わせ部分に沿って溶接ビードを形成しようとすると、溶接ビードの形状が崩れてしまうおそれがあった。例えば、レーザ光LBによるワーク200への入熱量を熱容量の小さい第2板材220にあわせてレーザ溶接を行うと、熱容量の大きい第1板材210への入熱が不足し、溶接ビードの形状が崩れてしまうおそれがあった。反対に、レーザ光LBによるワーク200への入熱量を熱容量の大きい第1板材210にあわせてレーザ溶接を行うと、熱容量の小さい第2板材220への入熱が過多となり、溶落ち等の溶接欠陥を生じてしまうおそれがあった。
 そこで、本実施形態では、リサージュパターンのうち、第1板材210に照射される描画パターンLS1の描画長さが、第2板材220に照射される描画パターンLS2の描画長さよりも長くなるようにレーザ光LBを制御している。なお、レーザ光LBの描画パターンLS1は、図5に示す経路O→A→B→C→Oを通り、レーザ光LBの描画パターンLS2は、図5に示す経路O→D→E→F→Oを通る。
 このようにすることで、レーザ光LBにより第1板材210に入熱される入熱量を第2板材220に入熱される入熱量よりも大きくすることができる。よって、溶接線に関して熱容量が非対称となっているワーク200の溶接部位である、第1板材210と第2板材220の突き合わせ部分に対して、溶接線を挟んだ両側で異なる熱量を投入させることができる。このことにより、溶接ビードの形状を良好なものとすることができる。また、溶け落ち等の溶接不良の発生を抑制できる。
 [効果等]
 以上説明したように、本実施形態に係るレーザ溶接方法は、レーザ光LBをX方向(第1方向)に進行させながら、レーザ光LBを二次元的に走査してワーク200の表面に照射することで、ワーク200を溶接する溶接ステップを備えている。
 溶接ステップでは、レーザ光LBをX方向に沿って周波数nに対応する第1周波数を有する正弦波状に振動させるとともに、Y方向に沿って周波数mに対応する第2周波数を有する正弦波状に振動させる。このことにより、ワーク200の表面でリサージュパターンを描くようにレーザ光LBを走査する。
 さらに、リサージュパターンが、X方向に関して非対称な形状となるように、レーザ光LBを走査する。具体的には、X方向に関してリサージュパターンの描画長さが異なるように、レーザ光LBを走査する。さらに言うと、原点Oを通りX方向に関して延びる中心線を挟んで、一方側と他方側とでリサージュパターンの描画長さが異なるように、レーザ光LBを走査する。
 このようにすることで、熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させ、溶接ビードの形状を良好なものとすることができる。
 本実施形態では、ワーク200における溶接部位である第1板材210と第2板材220の突き合わせ部分は、溶接線の延びる方向であるX方向に関して熱容量が非対称である。この場合、リサージュパターンの描画中に、溶接部位のうち、熱容量が大きい第1部位、つまり、第1板材210では、熱容量が小さい第2部位、つまり、第2板材220でよりも照射されるレーザ光LBの描画長さが長くなるようにする。
 このようにすることで、熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を確実に投入させることができる。このことにより、溶接ビードの形状を良好なものとすることができる。また、溶け落ち等の溶接不良の発生を抑制できる。
 本実施形態に係るレーザ溶接装置100は、レーザ光LBを発生させるレーザ発振器10と、レーザ光LBを受け取ってワーク200に向けて照射するレーザヘッド30と、レーザヘッド30の動作及びレーザ光LBの出力Pを制御するコントローラ50と、を少なくとも備えている。
 レーザヘッド30は、レーザ光LBをX方向(第1方向)とX方向と交差するY方向(第2方向)のそれぞれに走査するレーザ光スキャナ40を有している。
 コントローラ50は、レーザ光LBをX方向に沿って第1周波数を有する正弦波状に振動させるとともに、Y方向に沿って第2周波数を有する正弦波状に振動させる。このことにより、コントローラ50は、レーザ光LBがワーク200の表面にリサージュパターンを描くように、レーザ光スキャナ40を駆動制御する。
 さらに、コントローラ50は、リサージュパターンが、X方向に関して非対称な形状となるように、レーザ光スキャナ40を駆動制御する。具体的には、コントローラ50は、X方向に関してリサージュパターンの描画長さを異ならせるように、レーザ光スキャナ40を駆動制御する。さらに言うと、コントローラ50は、原点Oを通りX方向に関して延びる中心線を挟んで、一方側と他方側とで、リサージュパターンの描画長さを異ならせるように、レーザ光スキャナ40を駆動制御する。
 本実施形態のレーザ溶接装置100によれば、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させ、溶接ビードの形状を良好なものとすることができる。
 レーザ溶接装置100は、レーザヘッド30が取り付けられたマニピュレータ60をさらに備え、コントローラ50は、マニピュレータ60の動作を制御する。マニピュレータ60は、ワーク200の表面に対して、所定の方向にレーザヘッド30を移動させる。
 このようにマニピュレータ60を設けることで、レーザ光LBの溶接方向を変化させることができる。また、複雑な形状、例えば、立体的な形状のワーク200に対して、レーザ溶接を容易に行うことができる。
 レーザ発振器10とレーザヘッド30とは光ファイバ20で接続されており、レーザ光LBは、光ファイバ20を通って、レーザ発振器10からレーザヘッド30に伝送される。
 このように光ファイバ20を設けることで、レーザ発振器10から離れた位置に設置されたワーク200に対してレーザ溶接を行うことが可能となる。このことにより、レーザ溶接装置100の各部を配置する自由度が高められる。
 レーザ光スキャナ40は、レーザ光LBをX方向に走査する第1ガルバノミラー41と、レーザ光LBをY方向に走査する第2ガルバノミラー42と、で構成されている。
 レーザ光スキャナ40をこのように構成することで、レーザ光LBを簡便に二次元的に走査することができる。また、公知のガルバノスキャナをレーザ光スキャナ40として用いているため、レーザ溶接装置100のコストが上昇するのを抑制できる。
 レーザヘッド30は、コリメーションレンズ32をさらに有し、コリメーションレンズ32は、X方向及びY方向のそれぞれに交差するZ方向に沿って、レーザ光LBの焦点位置を変化させるように構成されている。つまり、コリメーションレンズ32は、図示しない駆動部との組み合わせにより、レーザ光LBの焦点位置調整機構としても機能している。
 このようにすることで、レーザ光LBの焦点位置を簡便に変化させることができ、ワーク200の形状に応じて適切にレーザ光LBを照射させることができる。
 なお、本実施形態では、レーザヘッド30をX方向に移動させることで、レーザ光LBをX方向に進行させるようにしたが、特にこれに限定されない。例えば、第1板材210と第2板材220の突き合わせ部分がY方向に延びている場合は、レーザヘッド30をY方向に移動させることで、レーザ光LBをY方向に進行させるようにしてもよい。このことに伴い、リサージュパターンの形状が変更されてもよい。ただし、その場合も、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させるようにリサージュパターンの形状及び描画長さを制御することが必要である。
 また、リサージュパターンの描画方向も、前述に特に限定されない。例えば、1周期の間に、原点Oから描画位置C→B→A→O→F→E→D→Oを通るようにレーザ光LBを走査することで、リサージュパターンが描画されてもよい。また、1周期の間に、原点Oから描画位置D→E→F→O→A→B→C→Oを通るようにレーザ光LBを走査することで、リサージュパターンが描画されてもよい。1周期の間に、原点Oから描画位置F→E→D→O→C→B→A→Oを通るようにレーザ光LBを走査することで、リサージュパターンが描画されてもよい。
 なお、図4に示すワーク200をレーザ溶接するにあたって、本実施形態に示す方法が適用されてもよい。第3板材230と第4板材240とを端面をずらして重ね合わせたワーク200の継手のコーナー部において、第3板材230と第4板材240の重ね合わせ部分(第1部位)が、第3板材230のみの部分(第2部位)よりも熱容量が大きくなる。よって、当該重ね合わせ部分では、第3板材230のみの部分よりもレーザ光LBの描画長さが長くなるようにレーザ光LBを制御する。
 このようにすることで、前述した効果を奏することができる。つまり、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させることができ、溶接ビードの形状を良好なものとすることができる。また、溶け落ち等の溶接不良の発生を抑制できる。
 <変形例1>
 図7は、本変形例に係るレーザ光の走査パターンを示す。
 本変形例に示す構成は、レーザ光LBの描画位置に応じて、レーザ光LBの出力Pを変化させている点で、実施形態1に示す構成と異なる。なお、レーザ溶接されるワーク200の構造は、図3A,3Bに示すのと同様である。また、レーザ光LBの走査パターンは、図5に示すのと同様である。
 本変形例では、リサージュパターンを描画するにあたって、第1板材210に照射されるレーザ光LBの出力P1が、第2板材220に照射されるレーザ光LBの出力P2よりも高くなるようにレーザ光LBの出力Pを制御している。つまり、図5に示す経路O→A→B→C→Oを通る描画パターンLS1におけるレーザ光LBの出力P1が、経路O→D→E→F→Oを通る描画パターンLS2におけるレーザ光LBの出力P2よりも高くなるようにレーザ光LBの出力Pを制御している。このようなレーザ光LBの出力Pの制御は、コントローラ50によって行われる。
 このようにすることで、第1板材210への入熱量と第2板材220への入熱量との差を実施形態1に示す構成よりも大きくすることができる。このことについてさらに説明する。
 図5に示すように、リサージュパターンをX方向に非対称な形状とし、描画パターンLS1の描画長さを描画パターンLS2の描画長さよりも長くすることで、X方向に延びる溶接線に関してワーク200への投入熱量に差を付けることができる。
 しかし、例えば、第1板材210と第2板材220との板厚の差によっては、図5に示すリサージュパターンを描画するだけでは、ワーク200において、溶接線を挟んだ両側で異なる熱量を投入させても、良好なビード形状が得られない場合がある。例えば、図3Bの例では、ワーク210側の描画範囲を広くするだけでは不足で、良好な溶接ビード(この場合は、裏側のビード形状)を得るために、ワーク210をより深く溶融する必要があった。また、実際のリサージュパターンのサイズは、溶接に要求される仕様、例えば、ビード幅等により制約される。このため、描画パターンLS1の描画長さと描画パターンLS2の描画長さとの差の範囲にも制約が入り、描画パターンLS1と描画パターンLS2の大きさのみでは、ワーク200において、溶接線を挟んだ両側で異なった熱量を投入させても良好なビード形状が得られない場合があった。
 一方、本変形例によれば、レーザ光LBでワーク200の表面に図5に示すリサージュパターンを描画してレーザ溶接を行う。それと同時に、第1板材210に照射されるレーザ光LBの出力P1が、第1板材210よりも熱容量の小さい第2板材220に照射されるレーザ光LBの出力P2よりも高くなるようにしている。
 このようにすることで、溶接線に関して熱容量が非対称となっているワーク200の溶接部位である、第1板材210と第2板材220の突き合わせ部分に対して、溶接線を挟んだ両側で異なる熱量を確実に投入させることができると同時に、溶接ビード形状のコントロールも可能となる。このことにより、溶接ビードの形状を良好なものとすることができる。また、溶け落ち、溶け込み不足等の溶接不良の発生を抑制できる。
 なお、レーザ光LBの出力Pを変化させるにあたって、図7に破線で示すように、レーザ光LBの出力Pの立ち上がり部分及び立下り部分をそれぞれ制御するようにしてもよい。
 例えば、レーザ光LBの描画位置が原点OからDに移動する場合に、レーザ光LBが原点Oを通過した時点から期間t1を経過するまでに、レーザ光LBの出力PをP1からP2に低下させてもよい。この場合の出力Pの制御曲線S1は、直線状でも曲線状でもよい。また、レーザ光LBの描画位置が原点OからAに移動する場合に、レーザ光LBが原点Oを通過した時点から期間t2を経過するまでに、レーザ光LBの出力PをP2からP1に上昇させてもよい。この場合の出力Pの制御曲線S2は、直線状でも曲線状でもよい。
 レーザ光LBの出力Pを制御曲線S1、S2に示すように制御することで、出力Pを目標値に安定して到達させることが容易となる。
 <変形例2>
 図8は、本変形例に係るレーザ光の走査パターンを、図9は、レーザ光の描画位置と出力との関係をそれぞれ示す。なお、説明の便宜上、図8,9及び以降に示す各図面において、実施形態1と同様の箇所については、同一の符号を付して詳細な説明を省略する。
 本変形例は、リサージュパターンの描画方向が実施形態1に示す構成と異なる。図8に示すリサージュパターンは、1周期の間に、原点Oから図7に示す矢印AR3及び矢印AR4の方向にレーザ光LBを走査することで得られる。具体的には、1周期の間に、原点Oから描画位置C→B→A→O→F→E→D→Oを通るようにレーザ光LBを走査する。
 なお、本変形例においても、図9に示すように、第1板材210に照射されるレーザ光LBの出力P1が、第2板材220に照射されるレーザ光LBの出力P2よりも高くなるようにレーザ光LBの出力Pを制御している。つまり、図8に示す経路O→C→B→A→Oを通る描画パターンLS1におけるレーザ光LBの出力P1が、経路O→F→E→D→Oを通る描画パターンLS2におけるレーザ光LBの出力P2よりも高くなるようにレーザ光LBの出力Pを制御している。
 本変形例においても、変形例1に示す構成が奏するのと同様の効果を奏することができる。つまり、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を確実に投入させることができ、両側のレーザ光LBの出力も変えることでワークの裏側の溶け込み深さをも所定のレベルまで得られるようになり、溶接ビードの形状を良好なものとすることができる。また、溶け落ち、溶け込み不足等の溶接不良の発生を抑制できる。
 (実施形態2)
 図10は、本実施形態に係るレーザ光の走査パターンを示し、図11は、レーザ光の描画位置と出力との関係を示す。なお、図示しないが、本実施形態におけるワーク200の溶接部位は、溶接線を挟んだ両側で熱容量が同じになるように設定されている。
 本実施形態では、リサージュパターンの描画中に、リサージュパターンの原点Oの近傍では、それ以外の部分よりもレーザ光LBの出力Pが低くなるようにしている点で、実施形態1に示す構成と異なる。
 具体的には、図10,11に示すように、原点Oと各描画位置A’,C’,D’,F’との間のそれぞれで、レーザ光LBの出力PがP3となるようにし、それ以外のリサージュパターンの描画位置では、レーザ光LBの出力PがP1(P1>P3)となるようにしている。このようなレーザ光LBの出力Pの制御は、コントローラ50によって行われる。
 前述したように、レーザ光LBによりワーク200の表面にリサージュパターンを描く場合、1周期の間に、例えば、描画位置Aでは、レーザ光LBが1回通過するのに対し、原点Oでは、レーザ光LBが2回通過する。また、通常、マニピュレータ60によってレーザヘッド30をX方向に進行させる速度、つまり、レーザ光LBのX方向への進行速度は、リサージュパターンを描く場合のレーザ光LBの描画速度Vに比べて非常に低い。
 このため、リサージュパターンの描画中の原点Oへの入熱量は、他の描画位置、例えば、描画位置A,B,C,D,E,Fへの入熱量に比べて大きくなってしまう。このように、ワーク200の表面への入熱量が場所的に不均一になることで、溶接ビートの形状が悪化することは既に述べたとおりである。
 そこで、本実施形態では、リサージュパターンの原点Oの近傍で、レーザ光LBの出力Pがそれ以外の部分よりも低くなるようにすることで、ワーク200の表面への入熱量が場所的に不均一になるのを抑制している。このことにより、溶接ビードの形状を良好なものとすることができる。また、溶け落ち等の溶接不良の発生を抑制できる。
 なお、原点Oから各描画位置A’,C’,D’,F’までの距離は、ワーク200の溶接部位の形状やワーク200の材質等に応じて適宜変更されうる。例えば、リサージュパターンの1周期を360度として見た場合に、当該距離を、原点Oを基準として見た角度に置き換えると、当該角度は0度より大きく3度~15度以下であることが好ましい。
 (実施形態3)
 図12は、本実施形態に係るレーザ光とワークに形成された溶融池との位置関係を示す。図13は、レーザ光の走査パターンを示し、図14は、レーザ光の描画位置と出力との関係を示す。
 図12に示すように、レーザ光LBがワーク200に照射されると、ワーク200を構成する金属が急激に加熱、溶融され、レーザ光LBの照射部位及びその近傍に溶融池201が形成される。また、レーザ光LBの照射部位では、金属が蒸発して、ワーク200の表面から内部に向けてキーホール202が形成される。キーホール202の内部にレーザ光LBが到達することで、ワーク200の内部まで金属が溶融され、ワーク200の溶け込み深さが確保される。なお、図12に示すレーザ光LBの照射位置は、図5に示すリサージュパターンの原点Oに相当する。
 また、溶接の進行方向、この場合は、Y方向に沿って、レーザ光LBの照射位置よりも前方に位置する第3部位203では、ワーク200が十分に加熱されておらず、溶融池201は形成されていない。一方、レーザ光LBの照射位置よりも後方に位置する第4部位204は、既にレーザ光LBによって十分に加熱されている。よって、第4部位204は、溶融池201の内部に位置しているか、あるいは溶融池201が固化した部分に位置している。つまり、第4部位204には溶融池201が含まれる。
 このように、溶接線に沿って、レーザ光LBの照射位置に相当するリサージュパターンの原点Oの前方では、ワーク200を溶融するために大きな入熱量が必要とされる。一方、リサージュパターンの原点Oの後方では、既に形成された溶融池201が維持される程度の入熱量で十分である。
 リサージュパターンの原点Oの後方にあわせて、入熱量、この場合は、レーザ光LBの出力Pを調整する場合を考える。図6に示すように、リサージュパターンが対称形状であると、原点Oの前方では、ワーク200への入熱量が不足し、溶接ビードの形状、特に、ビードの際の形状が不ぞろいになってしまうおそれがあった。一方、リサージュパターンの原点Oの前方にあわせて、レーザ光LBの出力Pを調整すると、原点Oの後方で溶融池201への入熱が過多となり、溶融池201が不安定となるおそれがあった。この場合、良好な形状の溶接ビードを得ることが難しかった。また、このような課題は、溶接線を挟んだ両側で、ワーク200の熱容量が同等となっている場合及び非対称になっている場合の両方で生じうる。
 そこで、本実施形態では、前述の第3部位203と第4部位204とで、照射されるレーザ光LBの出力Pを変化させるようにしている。具体的には、本実施形態に示す構成は、以下に示す点で実施形態1に示す構成と異なる。
 つまり、リサージュパターンの描画中に、ワーク200に形成される溶融池201よりもY方向に沿って前方にレーザ光LBが照射される第3部位203では、溶融池201を含んで第3部位203よりも後方にレーザ光LBが照射される第4部位204よりも入熱量が大きくなるようにしている。
 具体的には、図13,14に示すように、リサージュパターンのうち、Y方向に沿って、原点Oよりも前方に描画される描画パターンLS1の描画部分、または原点Oより前方に描画される描画パターンLS2の描画部分のレーザ光LBの出力が、原点Oよりも後方に描画される描画パターンLS1の描画部分、または原点Oより後方に描画される描画パターンLS2の描画部分より高くなるようにレーザ光LBを制御している。
 このことにより、未だ加熱、溶融されていない第3部位203に溶融池201が形成されるのを促進できる。また、溶融池201が過度に振動するのを抑制できる。このことにより、溶接ビードが波立った形状となるのを抑制できる。また、ワーク200の溶け込み深さが所望の値よりも深くなるのを抑制して、溶け落ち等の溶接不良が発生するのを低減し、溶接品質の向上が図れる。さらに、必要以上に第4部位204への熱量を投入しないようにするために、レーザエネルギーを節約することができる。
 本実施形態では、描画パターンLS1と描画パターンLS2を描画中に、レーザ光LBの出力Pの制御は、コントローラ50によって行われる。
 このようにすることで、未だ加熱、溶融されていない第3部位203に溶融池201を確実に形成さきる。また、溶融池201が過度に振動するのを抑制できる。このことにより、溶接ビードが波立った形状となるのを抑制できる。また、ワーク200の溶け込み深さが所望の値よりも深くなるのを抑制して、溶け落ち等の溶接不良が発生するのを低減し、また、溶接品質の向上が図れる。さらに、必要以上に第4部位204への熱量を投入しないようにするために、レーザエネルギーを節約することができる。
 (実施形態4)
 図15は、本実施形態に係るレーザ光の描画位置に対するレーザ光の描画速度の関係を示す。図16Aは、レーザ光の描画位置に対するレーザ光の描画速度の別の関係を示す。図16Bは、レーザ光の描画位置に対するレーザ光の描画速度のさらなる別の関係を示す。なお、本実施形態におけるレーザ光LBの走査パターンは、図5に示すのと同様である。
 実施形態1~3及び変形例1において、図15に示すように、リサージュパターンの描画中に、レーザ光LBの描画速度Vが一定となるようにしてもよい。言い換えると、リサージュパターンの全長に亘って、レーザ光LBの描画速度Vが一定となるようにしてもよい。このようにすることで、溶融池201(図12参照)への入熱量の制御が容易となる。
 また、変形例1では、リサージュパターンにおけるレーザ光LBの描画位置に応じて、レーザ光LBの出力Pを制御することで、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させていた。
 しかし、レーザ光LBの描画位置に応じて、レーザ光LBの描画速度Vを変化させることによっても、ワーク200への入熱量を変化させることができる。例えば、レーザ光LBの描画速度Vを低くすることで、単位描画長さ当たりの入熱量は大きくなる。つまり、レーザ光LBの出力Pを高くするのと同様の効果が得られる。
 したがって、図7に示すように、リサージュパターンにおけるレーザ光LBの描画位置に応じて、レーザ光LBの出力Pを制御する代わりに、図16に示すように、レーザ光LBの描画速度Vを制御してもよい。このようなレーザ光LBの描画速度Vの制御は、コントローラ50によって行われる。
 つまり、図3A,3Bに示すワーク200に対し、第1板材(第1部位)210に照射される描画パターンLS1の描画長さが、第1板材210よりも熱容量が小さい第2板材(第2部位)220に照射される描画パターンLS1の描画長さよりも長くなるようにする。それと同時に、描画パターンLS1を描画中のレーザ光LBの描画速度V2が、描画パターンLS2を描画中のレーザ光LBの描画速度V1よりも低くなるようにする(V1>V2)。
 このようにすることで、変形例1に示す構成が奏するのと同様の効果を奏することができる。つまり、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を確実に投入させることができ、溶接ビードの形状を良好なものとすることができる。また、溶け落ち等の溶接不良の発生を抑制できる。
 また、図14に示すように、溶融池201の前方と溶融池201とでレーザ光LBの出力Pを変化させる代わりに、図16Bに示すように、レーザ光LBの描画速度Vを制御してもよい。このようなレーザ光LBの描画速度Vの制御は、コントローラ50によって行われる。
 このようにすることで、実施形態3に示す構成が奏するのと同様の効果を奏することができる。つまり、第3部位203に溶融池201が形成されるのを促進できるとともに、溶接ビードが波立った形状となるのを抑制できる。また、溶け落ち等の溶接不良が発生するのを低減し、また、溶接品質の向上が図れる。さらに、必要以上に第4部位204への熱量を投入しないようにするために、レーザエネルギーを節約することができる。
 なお、図示しないが、図11に示すように、リサージュパターンの原点Oの近傍でレーザ光LBの出力Pを変化させる代わりに、レーザ光LBの描画速度Vを制御してもよい。
 このようなレーザ光LBの描画速度Vの制御は、コントローラ50によって行われる。
 例えば、原点Oと図11に示す各描画位置A’,C’,D’,F’との間のそれぞれで、レーザ光LBの描画速度VがV1となるようにし、それ以外のリサージュパターンの描画位置では、レーザ光LBの描画速度VがV2(V1>V2)となるようにしてもよい。
 本実施形態によれば、実施形態1~3及び変形例1,2に示す構成が奏するのと同様に、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させ、溶接ビードの形状を良好なものとすることができる。
 また、未だ加熱、溶融されていない第3部位203に溶融池201が形成されるのを促進できる。また、溶融池201が過度に振動するのを抑制できる。このことにより、溶接ビードが波立った形状となるのを抑制できる。また、ワーク200の溶け込み深さが所望の値よりも深くなるのを抑制して、溶け落ち等の溶接不良が発生するのを低減し、また、溶接品質の向上が図れる。
 なお、レーザ光LBの描画速度Vを変化させるにあたって、図16Aまたは図16Bに破線で示すように、描画速度Vの立ち上がり部分及び立下り部分をそれぞれ制御するようにしてもよい。
 図16Aまたは図16Bに示す例で言えば、レーザ光LBの描画位置が原点OからDに移動する場合に、レーザ光LBが原点Oを通過した時点から期間t3を経過するまでに、レーザ光LBの描画速度VをV2からV1に上昇させてもよい。この場合の描画速度Vの制御曲線S3は、直線状でも曲線状でもよい。また、レーザ光LBの描画位置が原点OからAに移動する場合に、レーザ光LBが原点Oを通過した時点から期間t4を経過するまでに、レーザ光LBの描画速度VをV2からV1に低下させてもよい。この場合の描画速度Vの制御曲線S4は、直線状でも曲線状でもよい。
 レーザ光LBの描画速度Vを制御曲線S3、S4に示すように制御することで、描画速度Vを目標値に安定して到達させることが容易となる。
 <変形例3>
 図17Aは、本変形例に係るレーザ光の第1の走査パターンを、図17Bは、第2の走査パターンをそれぞれ示す。図18Aは、本変形例に係るレーザ光の第3の走査パターンを、図18Bは、第4の走査パターンを、図18Cは、第5の走査パターンをそれぞれ示す。図19は、リサージュパターンを描画するときの各パラメータの組み合わせの一例を示す。
 実際のレーザ溶接では、ワーク200の材質、継手形状、求められるビード形状幅などに応じ、式(1)、(2)に示す前述のパラメータa,b,n,mは、適宜変更されうる。したがって、レーザ光LBの走査パターンは、図5に示したパターンに特に限定されない。
 例えば、図17A,17Bに示すように、描画パターンLS1、LS2のそれぞれにおいて、パラメータaを小さくして、リサージュパターンのX方向の振幅が小さくなるようにしてもよい。また、図18Aに示すように、周波数n=1、周波数m=2とすることで、図5に示すリサージュパターンを90度回転させた走査パターンを生成してもよい。また、図18B,18Cに示すように、描画パターンLS1、LS2のそれぞれにおいて、パラメータbを小さくして、図18Aに示すリサージュパターンのY方向の振幅が小さくなるようにしてもよい。
 また、式(1)、(2)に示すパラメータa,bの値は、図17A,17B及び図18A~18Cに示す例に特に限定されず、例えば、図19に示す範囲で適当な値を取りうる。なお、図19において、図5及び図17A,17Bに示すリサージュパターンをパターン群1とし、図18A~18Cに示すリサージュパターンをパターン群2としている。
 また、第1ミラー41aの周波数n及び第2ミラー42aの周波数mの比、言い換えると、レーザ光LBのX方向の振動周波数である第1周波数とY方向の振動周波数である第2周波数の比を2:1または1:2とすることで、8の字形状のリサージュパターンを得ることができる。また、この周波数の比率さえ守れば、ワーク200の形状または要求されるビード形状に応じ第1ミラー41a及び第2ミラー42aの駆動周波数をそれぞれ変更してもよい。
 <変形例4>
 図20A~20Cは、本変形例に係るレーザ光の第1~第3の走査パターンをそれぞれ示す。なお、図20A~20Cにおいて、矢印はレーザ光LBの描画方向を示す。
 本開示のレーザ光LBの走査パターンは、実施形態1や変形例3に示したリサージュパターンに限られない。例えば、図20Aに示すように、それぞれ原点Oで接してX軸を挟んで配置された、互いに非対称な形状を有する2つの円形パターンの合成パターンであってもよい。また、図20Bに示すように、それぞれ原点Oで接してX軸を挟んで配置された、互いに非対称な形状を有する2つの楕円パターンの合成パターンであってもよい。図20Bに示す例では、2つの楕円パターンのそれぞれにおいて、長軸はY方向であり、短軸はX方向であるが、長軸をX方向、短軸をY方向にしてもよい。図20Cに示すように、それぞれ原点Oで接してX軸を挟んで配置された、互いに非対称な形状を有する2つのひし形パターンの合成パターンであってもよい。なお、図示しないが、図20A~図20Cに示す各走査パターンが、Y軸に関して非対称に配置された2つの環状のパターンの合成パターンであってもよい。また、この場合、2つの環状のパターンのそれぞれが、図20A~図20Cに示す例から90度回転したパターンであってもよい。さらに、2つの環状のパターンのそれぞれの大きさも適宜変更されうる。
 つまり、本願明細書におけるレーザ光LBの走査パターンは、2つの環状のパターンが一点で接して連続したパターンであればよく、図20A~図20Cに示す例やその変形例に限定されない。なお、これらのパターンは、第1ミラー41a及び第2ミラー42aをそれぞれ所定の駆動パターンに則って駆動させることで得られる。
 また、本変形例及び実施形態1~4、さらに変形例1~3に示す構成を総合してみれば、本開示に係るレーザ溶接方法及びレーザ溶接装置100は、以下に示す構成を備えていると言える。
 つまり、本開示に係るレーザ溶接方法は、所定のパターンが、X方向またはY方向に関して非対称な形状となるように、レーザ光LBを走査する。また、所定のパターンは、X方向またはY方向に関して、描画長さが異なっている。さらに言うと、原点Oを通りX方向またはY方向に延びる中心線を挟んで、一方側と他方側とで、所定のパターンの描画長さが異なるように、レーザ光LBを走査する。このことにより、所定のパターンにおけるレーザ光LBの描画位置に応じて、ワーク200への入熱量を制御する。
 また、本開示に係るレーザ溶接装置100において、コントローラ50は、所定のパターンが、X方向またはY方向に関して非対称な形状となるように、レーザ光スキャナ40を駆動制御する。また、コントローラ50は、X方向またはY方向に関して、所定のパターンの描画長さを異ならせるように、レーザ光スキャナ40を駆動制御する。さらに言うと、コントローラ50は、原点Oを通りX方向またはY方向に延びる中心線を挟んで、一方側と他方側とで、所定のパターンの描画長さを異ならせるように、レーザ光スキャナ40を駆動制御する。このことにより、所定のパターンにおけるレーザ光LBの描画位置に応じて、ワーク200への入熱量を制御する。
 レーザ溶接方法及びレーザ溶接装置100をこのように構成することで、溶接線に関して熱容量が非対称となっているワーク200の溶接部位に対して、溶接線を挟んだ両側で異なる熱量を投入させ、溶接ビードの形状を良好なものとすることができる。
 また、未だ加熱、溶融されていない第3部位203に溶融池201が形成されるのを促進できる。また、溶融池201が過度に振動するのを抑制できる。このことにより、溶接ビードが波立った形状となるのを抑制できる。また、ワーク200の溶け込み深さが所望の値よりも深くなるのを抑制して、溶け落ち等の溶接不良が発生するのを低減し、また、溶接品質の向上が図れる。
 なお、レーザ光LBの走査パターンである「所定のパターン」とは、互いに非対称な形状である2つの環状のパターンが一点、この場合は原点Oで接して連続したパターンである。当該「所定のパターン」に本願明細書に開示したリサージュパターンが含まれることは言うまでもない。
 (その他の実施形態)
 実施形態1~4及び変形例1~4に示した各構成要素を適宜組み合わせて、新たな実施形態とすることもできる。
 例えば、変形例3,4に示す各走査パターンを描画するにあたって、変形例1や実施形態2,3に示すように、レーザ光LBの出力Pを制御することもできる。また、実施形態4に示すように、レーザ光LBの描画速度Vを制御することもできる。
 また、実施形態2~4及び変形例1~4において、例えば、1周期の間に、原点Oから描画位置C→B→A→O→F→E→D→Oを通るようにレーザ光LBを走査することで、リサージュパターンが描画されてもよい。また、1周期の間に、原点Oから描画位置D→E→F→O→A→B→C→Oを通るようにレーザ光LBを走査することで、リサージュパターンが描画されてもよい。1周期の間に、原点Oから描画位置F→E→D→O→C→B→A→Oを通るようにレーザ光LBを走査することで、リサージュパターンが描画されてもよい。また、描画位置の順番が変更されるのに応じて、レーザ光LBの描画速度Vや出力Pを変化させるタイミング等が変更されることは言うまでもない。
 なお、図1に示す例では、集光レンズ34は、レーザ光スキャナ40の前段に配置されていたが、レーザ光スキャナ40の後段、つまり、レーザ光スキャナ40とレーザヘッド30の光出射口との間に配置されていてもよい。
 また、レーザ光LBをX方向に沿って第1周波数を有する余弦波状に振動させるとともに、Y方向に沿って第2周波数を有する余弦波状に振動させることで、レーザ光LBの走査パターンがリサージュパターンとなるようにしてもよい。この場合、第1ミラー41a及び第2ミラー42aの振幅a,bや第1ミラー41a及び第2ミラー42aの周波数n,m、さらに位相φが適宜変更されることは言うまでもない。
 本開示のレーザ溶接方法及びレーザ溶接方法は、溶接ビードの形状を良好にすることができ、有用である。
10  レーザ発振器
20  光ファイバ
30  レーザヘッド
31  筐体
32  コリメーションレンズ
33  反射ミラー
34  集光レンズ
40  レーザ光スキャナ
41  第1ガルバノミラー
41a 第1ミラー
41b 第1回転軸
41c 第1駆動部
42  第2ガルバノミラー
42a 第2ミラー
42b 第2回転軸
42c 第2駆動部
50  コントローラ
60  マニピュレータ
200 ワーク
201 溶融池
202 キーホール
203 第3部位
204 第4部位
210 第1板材(第1部位)
220 第2板材(第2部位)
230 第3板材
240 第4板材

Claims (20)

  1.  レーザ光を第1方向に進行させながら、前記レーザ光を二次元的に走査してワークの表面に照射することで、前記ワークを溶接する溶接ステップを備え、
     前記溶接ステップでは、
      前記ワークの表面で所定のパターンを描くように前記レーザ光を走査し、
      さらに、前記所定のパターンが、前記第1方向または前記第1方向と交差する第2方向に関して非対称な形状となるように、前記レーザ光を走査し、
     前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが一点で接して連続したパターンであることを特徴とするレーザ溶接方法。
  2.  請求項1に記載のレーザ溶接方法において、
     前記所定のパターンは、8の字状または∞字状のリサージュパターンであり、
    前記溶接ステップでは、前記レーザ光を前記第1方向に沿って第1周波数を有する正弦波状に振動させるとともに、前記第1方向と交差する第2方向に沿って第2周波数を有する正弦波状に振動させることで、前記ワークの表面で前記リサージュパターンを描くように前記レーザ光を走査することを特徴とするレーザ溶接方法。
  3.  請求項2に記載のレーザ溶接方法において、
     前記第1周波数と前記第2周波数との比は、2:1か、または1:2であることを特徴とするレーザ溶接方法。
  4.  請求項1ないし3のいずれか1項に記載のレーザ溶接方法において、
     前記所定のパターンは、前記第1方向または前記第2方向に関して、描画長さが異なっていることを特徴とするレーザ溶接方法。
  5.  請求項4に記載のレーザ溶接方法において、
     前記ワークにおける溶接部位は、溶接線を挟んで一方に第1部位を、他方に前記第1部位よりも熱容量の小さい第2部位を有しており、
     前記第1部位に照射される前記レーザ光の描画パターンの描画長さが、前記第2部位に照射される前記レーザ光の描画パターンの描画長さよりも長くなるようにすることを特徴とするレーザ溶接方法。
  6.  請求項4または5に記載のレーザ溶接方法において、
     前記所定のパターンの描画中に、前記第1方向に沿って、前記ワークに形成される溶融池よりも前方に前記レーザ光が照射される部分を第3部位とし、前記溶融池を含んで前記第3部位よりも後方に前記レーザ光が照射される部分を第4部位とするとき、
     前記第3部位に照射される前記レーザ光の出力が、前記第4部位に照射される前記レーザ光の出力よりも高くなるようにすることを特徴とするレーザ溶接方法。
  7.  請求項5に記載のレーザ溶接方法において、
     前記所定のパターンの描画中に、前記第1部位では、前記第2部位よりも前記レーザ光の出力が高くなるようにするようにすることを特徴とするレーザ溶接方法。
  8.  請求項1ないし4のいずれか1項に記載のレーザ溶接方法において、
     前記所定のパターンの描画中に、前記所定のパターンの原点の近傍では、それ以外の部分よりも前記レーザ光の出力が低くなるようにすることを特徴とするレーザ溶接方法。
  9.  請求項5に記載のレーザ溶接方法において、
     前記所定のパターンの描画中に、前記第1部位では、前記第2部位よりも前記レーザ光の描画速度が低くなるようにするようにすることを特徴とするレーザ溶接方法。
  10.  請求項6に記載のレーザ溶接方法において、
     前記第3部位では、前記第4部位よりも前記レーザ光の描画速度が低くなるようにすることを特徴とするレーザ溶接方法。
  11.  請求項1ないし4のいずれか1項に記載のレーザ溶接方法において、
     前記所定のパターンの描画中に、前記所定のパターンの原点の近傍では、それ以外の部分よりも前記レーザ光の描画速度が高くなるようにすることを特徴とするレーザ溶接方法。
  12.  請求項1ないし8のいずれか1項に記載のレーザ溶接方法において、
     前記所定のパターンの全長に亘って、前記レーザ光の描画速度が一定となるようにすることを特徴とするレーザ溶接方法。
  13.  レーザ光を発生させるレーザ発振器と、
     前記レーザ光を受け取ってワークに向けて照射するレーザヘッドと、
     前記レーザヘッドの動作を制御するコントローラと、を少なくとも備え、
     前記レーザヘッドは、前記レーザ光を第1方向と前記第1方向と交差する第2方向のそれぞれに走査するレーザ光スキャナを有し、
     前記コントローラは、前記レーザ光が前記ワークの表面に所定のパターンを描くように、前記レーザ光スキャナを駆動制御し、
     さらに、前記コントローラは、前記所定のパターンが、前記第1方向または前記第1方向と交差する第2方向に関して非対称な形状となるように、前記レーザ光スキャナを駆動制御し、
     前記所定のパターンは、互いに非対称な形状の2つの環状のパターンが一点で接して連続したパターンであることを特徴とするレーザ溶接装置。
  14.  請求項13に記載のレーザ溶接装置において、
     前記所定のパターンは、8の字状または∞字状のリサージュパターンであり、
     前記コントローラは、前記レーザ光を前記第1方向に沿って第1周波数を有する正弦波状に振動させるとともに、前記第1方向と交差する第2方向に沿って第2周波数を有する正弦波状に振動させることで、前記ワークの表面で前記リサージュパターンを描くように前記レーザ光スキャナを駆動制御することを特徴とするレーザ溶接装置。
  15.  請求項14に記載のレーザ溶接装置において、
     前記第1周波数と前記第2周波数との比は、2:1か、または1:2であることを特徴とするレーザ溶接装置。
  16.  請求項13ないし15のいずれか1項に記載のレーザ溶接装置において、
     前記コントローラは、前記第1方向または前記第2方向に関して、前記所定のパターンの描画長さを異ならせるように、前記レーザ光スキャナを駆動制御することを特徴とするレーザ溶接装置。
  17.  請求項13ないし16のいずれか1項に記載のレーザ溶接装置において、
     前記レーザヘッドが取り付けられたマニピュレータをさらに備え、
     前記コントローラは、前記マニピュレータの動作を制御し、
     前記マニピュレータは、前記ワークの表面に対して、所定の方向に前記レーザヘッドを移動させることを特徴とするレーザ溶接装置。
  18.  請求項13ないし17のいずれか1項に記載のレーザ溶接装置において、
     前記レーザ発振器と前記レーザヘッドとは光ファイバで接続されており、
     前記レーザ光は、前記光ファイバを通って、前記レーザ発振器から前記レーザヘッドに伝送されることを特徴とするレーザ溶接装置。
  19.  請求項13ないし18のいずれか1項に記載のレーザ溶接装置において、
     前記レーザ光スキャナは、前記レーザ光を前記第1方向に走査する第1ガルバノミラーと、前記レーザ光を前記第1方向と交差する第2方向に走査する第2ガルバノミラーと、で構成されていることを特徴とするレーザ溶接装置。
  20.  請求項13ないし19のいずれか1項に記載のレーザ溶接装置において、
     前記レーザヘッドは、焦点位置調整機構をさらに有し、
     前記焦点位置調整機構は、前記第1方向及び前記第2方向のそれぞれに交差する方向に沿って、前記レーザ光の焦点位置を変化させるように構成されていることを特徴とするレーザ溶接装置。
PCT/JP2021/036381 2020-10-05 2021-10-01 レーザ溶接方法及びレーザ溶接装置 WO2022075210A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022555435A JP7213439B2 (ja) 2020-10-05 2021-10-01 レーザ溶接方法及びレーザ溶接装置
CN202180045994.7A CN116018233A (zh) 2020-10-05 2021-10-01 激光焊接方法以及激光焊接装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020168504 2020-10-05
JP2020-168504 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075210A1 true WO2022075210A1 (ja) 2022-04-14

Family

ID=81126868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036381 WO2022075210A1 (ja) 2020-10-05 2021-10-01 レーザ溶接方法及びレーザ溶接装置

Country Status (3)

Country Link
JP (1) JP7213439B2 (ja)
CN (1) CN116018233A (ja)
WO (1) WO2022075210A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084684A (ja) * 1998-09-09 2000-03-28 Mitsubishi Electric Corp エネルギービーム溶接装置及びエネルギービーム溶接方法
WO2015129248A1 (ja) * 2014-02-25 2015-09-03 パナソニックIpマネジメント株式会社 レーザ溶接方法
WO2017022238A1 (ja) * 2015-08-05 2017-02-09 パナソニックIpマネジメント株式会社 レーザ溶接方法
JP2019123008A (ja) * 2018-01-19 2019-07-25 株式会社神戸製鋼所 接合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084684A (ja) * 1998-09-09 2000-03-28 Mitsubishi Electric Corp エネルギービーム溶接装置及びエネルギービーム溶接方法
WO2015129248A1 (ja) * 2014-02-25 2015-09-03 パナソニックIpマネジメント株式会社 レーザ溶接方法
WO2017022238A1 (ja) * 2015-08-05 2017-02-09 パナソニックIpマネジメント株式会社 レーザ溶接方法
JP2019123008A (ja) * 2018-01-19 2019-07-25 株式会社神戸製鋼所 接合体の製造方法

Also Published As

Publication number Publication date
JP7213439B2 (ja) 2023-01-27
CN116018233A (zh) 2023-04-25
JPWO2022075210A1 (ja) 2022-04-14

Similar Documents

Publication Publication Date Title
JP6799755B2 (ja) レーザ溶接方法
JP4020099B2 (ja) レーザ加工方法
WO2020050379A1 (ja) 溶接方法および溶接装置
JP2001030089A (ja) レーザ溶接方法
JP2004136307A (ja) レーザ加工方法とレーザ加工装置
KR20190055092A (ko) 2차원으로 반복적으로 주사되는 에너지 빔을 이용한 용접 방법 및 시스템
JP7014823B2 (ja) 少なくとも2つのワークピースを接合するための方法および装置
JPH07236987A (ja) レーザ切断方法及びその装置
JP5446334B2 (ja) レーザ溶接装置、およびレーザ溶接方法
JP7369915B2 (ja) レーザ溶接装置及びそれを用いたレーザ溶接方法
JP7382554B2 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
JP7213441B2 (ja) レーザ溶接方法及びレーザ溶接装置
US20230013501A1 (en) Laser welding method and laser welding device
WO2022075210A1 (ja) レーザ溶接方法及びレーザ溶接装置
WO2022075209A1 (ja) レーザ溶接方法及びレーザ溶接装置
WO2022075211A1 (ja) レーザ溶接方法及びレーザ溶接装置
WO2022075208A1 (ja) レーザ溶接方法及びレーザ溶接装置
WO2014203489A1 (ja) 外装缶封口方法及び外装缶封口装置
WO2021241387A1 (ja) レーザ溶接方法及びレーザ溶接装置
JP7382552B2 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
JP2022060808A (ja) レーザ溶接方法及びレーザ溶接装置
JP2021194673A (ja) レーザ加工方法
JP7382553B2 (ja) レーザ加工装置及びそれを用いたレーザ加工方法
JP7289509B2 (ja) レーザ溶接方法およびレーザ溶接装置
JP6465125B2 (ja) 異種金属部材の接合装置及び接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877509

Country of ref document: EP

Kind code of ref document: A1