WO2022074918A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2022074918A1
WO2022074918A1 PCT/JP2021/028704 JP2021028704W WO2022074918A1 WO 2022074918 A1 WO2022074918 A1 WO 2022074918A1 JP 2021028704 W JP2021028704 W JP 2021028704W WO 2022074918 A1 WO2022074918 A1 WO 2022074918A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
flow path
outdoor air
absorbent material
outdoor
Prior art date
Application number
PCT/JP2021/028704
Other languages
English (en)
French (fr)
Inventor
悠二 渡邉
貴史 福榮
章弘 京極
智貴 森川
輝夫 藤社
峻一 植松
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to KR1020237003380A priority Critical patent/KR20230078996A/ko
Priority to CN202180055359.7A priority patent/CN116157633A/zh
Priority to EP21877222.6A priority patent/EP4227593A4/en
Publication of WO2022074918A1 publication Critical patent/WO2022074918A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • F24F2013/205Mounting a ventilator fan therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater

Definitions

  • This disclosure relates to an air conditioner.
  • Patent Document 1 an air conditioner composed of an indoor unit arranged indoors to be air-conditioned and an outdoor unit arranged outdoors is known.
  • This air conditioner is configured to be able to supply humidified outdoor air from the outdoor unit to the indoor unit.
  • the air conditioner according to the present disclosure is an air conditioner including an indoor unit and an outdoor unit, and includes an absorbent material, a first flow path, a second flow path, a first heater, and a second. With a heater.
  • the absorbent material absorbs the moisture of the outdoor air.
  • the first flow path passes through the absorbent material, connects the outdoor unit and the indoor unit, and the outdoor air flows.
  • the second flow path passes through the absorbent material, connects the outdoor unit and the indoor unit, and the outdoor air flows.
  • the first heater heats the outdoor air on the upstream side of the absorber in the first flow path.
  • the second heater heats the outdoor air on the upstream side of the absorber in the second flow path.
  • at least one of the first heater and the second heater heats the outdoor air, and the heated outdoor air deprives the absorbent material of the moisture and performs a humidifying operation toward the indoor unit. Run.
  • the air conditioner according to the present disclosure can control the amount of humidification in the room more finely.
  • FIG. 1 Schematic configuration diagram of the air conditioner according to the embodiment of the present disclosure.
  • Schematic cross-sectional view of the ventilation system according to the embodiment The figure which shows the humidification operation (low humidification operation) of the ventilation apparatus which concerns on embodiment.
  • the air conditioner according to the present disclosure is an air conditioner including an indoor unit and an outdoor unit, and includes an absorbent material, a first flow path, a second flow path, a first heater, and a second. With a heater.
  • the absorbent material absorbs the moisture of the outdoor air.
  • the first flow path passes through the absorbent material, connects the outdoor unit and the indoor unit, and the outdoor air flows.
  • the second flow path passes through the absorbent material, connects the outdoor unit and the indoor unit, and the outdoor air flows.
  • the first heater heats the outdoor air on the upstream side of the absorber in the first flow path.
  • the second heater heats the outdoor air on the upstream side of the absorber in the second flow path.
  • at least one of the first heater and the second heater heats the outdoor air, and the heated outdoor air deprives the absorbent material of the moisture and performs a humidifying operation toward the indoor unit. Run.
  • the air conditioner according to the present disclosure can control the amount of humidification in the room more finely.
  • the first heater and the second heater may be heaters whose outputs can be adjusted.
  • the outputs of the first heater and the second heater may be adjusted based on the amount of water retained by the absorbent material.
  • the air conditioner according to the present disclosure may be further provided in the indoor unit and further have an indoor humidity sensor that measures the indoor humidity and outputs the measured value of the indoor humidity. Then, in the air conditioner according to the present disclosure, the outputs of the first heater and the second heater may be adjusted based on the measured values of the indoor humidity output by the indoor humidity sensor.
  • the first flow path and the second flow path may include a merging flow path that merges with each other after passing through the absorbent material.
  • the air conditioner according to the present disclosure is provided in a fan provided in the confluence to generate the flow of outdoor air toward the inside of the indoor unit, and is provided in the indoor unit to measure the indoor humidity and output the measured value of the indoor humidity. It may further have an indoor humidity sensor. Then, in the air conditioner according to the present disclosure, the rotation speed of the fan is based on the measured value of the indoor humidity output by the indoor humidity sensor while keeping the outputs of the first heater and the second heater constant. May be adjusted.
  • the first heater and the second heater may be PTC (Positive Temperature Coefficient) heaters.
  • the absorbent material may be a polymer sorbent.
  • the first flow path and the second flow path may include a labyrinth through which outdoor air passes.
  • FIG. 1 is a schematic configuration diagram of the air conditioner 10.
  • the air conditioner 10 includes an indoor unit 20 arranged in the indoor Rin to be air-conditioned and an outdoor unit 30 arranged in the outdoor Rout.
  • the indoor unit 20 has a heat exchanger 22 that exchanges heat with the indoor air Ain of the indoor Rin, and an air that attracts the indoor air Ain into the indoor unit 20 and blows out the air that has exchanged heat with the heat exchanger 22 to the indoor Rin.
  • the fan 24 is provided.
  • the outdoor unit 30 includes a heat exchanger 32 that exchanges heat with the outdoor air Aout of the outdoor Rout, a fan 34 that generates a flow of the outdoor air Aout that passes through the heat exchanger 32, a compressor 36, and an expansion valve 38. And are provided.
  • the heat exchanger 22 of the indoor unit 20, the heat exchanger 32 of the outdoor unit 30, the compressor 36, and the expansion valve 38 are connected by a refrigerant pipe 40 to form a refrigerating cycle of the air conditioner 10. ..
  • the heating operation of blowing the heated indoor air Ain to the indoor Rin, the cooling operation of blowing the cooled indoor air Ain to the indoor Rin, and the dehumidifying operation of blowing the dehumidified indoor air Ain to the indoor Rin are performed in air conditioning.
  • Machine 10 executes.
  • the controller 42 for the user to select the operation of the air conditioner 10 such as the heating operation, the cooling operation, and the dehumidifying operation and to set the parameters necessary for the operation such as the set temperature.
  • the air conditioner 10 is provided.
  • the outdoor unit 30 of the air conditioner 10 has a ventilation device 50 that supplies the outdoor air Aout to the indoor Rin, that is, ventilates the indoor Rin.
  • the ventilation device 50 may not be included in the outdoor unit 30.
  • FIG. 2 is a perspective view showing the appearance of the outdoor unit 30.
  • FIG. 3 is a perspective view showing the internal configuration of the ventilation device 50.
  • FIGS. 4 and 5 are a perspective view and a top view showing a state in which a part of the components of the ventilation device 50 is removed.
  • FIG. 6 is an exploded perspective view of the ventilation device 50.
  • FIG. 7 is an exploded perspective view of some of the components of the ventilator 50 as viewed from different perspectives.
  • FIG. 8 is a schematic cross-sectional view of the ventilation device 50.
  • the ventilation device 50 has a housing 52 having an open upper part and a top plate 54 for covering the housing 52.
  • the housing 52 of the ventilation device 50 has a plurality of intake ports 52a, 52b, 52c for taking in the outdoor air Aout into the housing 52, and an exhaust port 52d for discharging the outdoor air Aout taken into the housing 52 to the outside. , 52e, 52f are provided.
  • the ventilation conduit 56 shown in FIG. 2 is connected to the exhaust port 52d.
  • the ventilation conduit 56 is attached to the side surface of the outdoor unit 30 and is connected to a ventilation hose communicating with the indoor unit 20. That is, the ventilation conduit 56 connects the inside of the outdoor unit 30 and the inside of the indoor unit 20.
  • the remaining exhaust ports 52e and 52f communicate with the outdoor Rout.
  • the ventilation device 50 has an absorbent 58 that absorbs the moisture of the outdoor air Aout in the center of the housing 52.
  • the absorbent material 58 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air.
  • the absorbent material 58 is a disk-shaped member that allows air to pass in the vertical direction (Z-axis direction) and rotates about the rotation center line C1 extending in the vertical direction. ..
  • the absorbent material 58 is held by a cylindrical holder 60 and rotated by an absorbent motor 64 having a gear 62 that engages with the external teeth of the holder 60.
  • the absorbent material 58 continues to rotate at a constant rotation speed.
  • the absorbent material 58 is preferably formed of a polymer sorbent that sorbs moisture in the air.
  • the polymer sorbent is composed of, for example, a crosslinked product of sodium polyacrylate.
  • Polymer sorbents have a higher rate of absorption of moisture than adsorbents such as silica gel and zeolite, can desorb moisture that is retained at low heating temperatures, and can retain moisture for long periods of time. can.
  • the ventilation device 50 also attracts the outdoor air Aout into the ventilation device 50 and passes it through the absorbent material 58, and the outdoor air Aout that has passed through the absorbent material 58 is passed through the indoor unit 20. It is provided with a first fan 66 that blows air toward.
  • the first fan 66 is arranged on one side of the ventilation device 50 in the longitudinal direction (Y-axis direction) with respect to the absorbent material 58, and is, for example, a sirocco fan.
  • the first fan 66 is housed in a cylindrical portion 68a provided on the partition wall plate 68 that vertically divides the space on one side in the longitudinal direction with respect to the absorbent material 58.
  • the partition plate 68 forms an upper space S1 in which a part of the upper surface 58a of the absorbent material 58 is in contact and a lower space S2 in which a part of the lower surface 58b of the absorbent material 58 is in contact.
  • the cylindrical portion 68a of the partition plate 68 is formed with an opening 68b connected to the exhaust port 52d and an opening 68c connected to the exhaust port 52e. Further, the partition plate 68 is formed with a through hole 68d for taking in air into the first fan 66 in the cylindrical portion 68a.
  • a fan cover 70 that covers the first fan 66 is attached to the cylindrical portion 68a of the partition plate 68.
  • the fan cover 70 is provided with a motor 72 for rotating the first fan 66.
  • the fan cover 70 is provided with a damper device 74 that closes one of the opening 68b and the opening 68c of the partition plate 68.
  • the damper device 74 includes a swivelable damper 74a, and is configured to close one of the opening 68b and the opening 68c of the partition plate 68 by swiveling the damper 74a.
  • the outdoor air Aout flows into the housing 52 through the intake ports 52a and 52b of the housing 52. Specifically, as shown in FIG. 8, the outdoor air Aout that has flowed in through the intake ports 52a and 52b each flows into the upper space S1 above the partition plate 68 and flows upward of the absorbent material 58. .. Next, the outdoor air Aout passes through the absorbent material 58 from the upper surface 58a of the absorbent material 58 toward the lower surface 58b.
  • the outdoor air Aout that has passed through the absorbent material 58 moves in the lower space S2 below the partition plate 68, passes through the through hole 68d of the partition plate 68, and is taken into the first fan 66.
  • the outdoor air Aout taken into the first fan 66 passes through the opening 68b and the opening 68c that are not closed by the damper 74a of the damper device 74. That is, the outdoor air Aout passes through the exhaust port 52d and finally reaches the inside of the indoor unit 20, or is discharged to the outdoor Rout through the exhaust port 52e.
  • the first fan 66 takes in the outdoor air Aout into the outdoor unit 30, and sends the taken-in outdoor air Aout toward the indoor unit 20 via the ventilation conduit 56.
  • a fan cover 70 and a motor 72 exist between the intake port 52a and the intake port 52b of the housing 52. Therefore, there are substantially two flow paths through which the outdoor air Aout flows, passing through the absorbent material 58, connecting the outdoor Rout and the inside of the indoor unit 20, that is, connecting to the ventilation conduit 56.
  • the two flow paths R1 and R2 include a merging flow path that merges with each other after passing through the absorbent material 58, and a first fan 66 is provided in the merging flow path. That is, the first fan 66 generates the flow of the outdoor air Aout toward the indoor unit 20 in the flow paths R1 and R2. As shown in FIG.
  • the ventilation device 50 includes a first heater 76A provided for the flow path R1 starting from the intake port 52a and a second heater 76A provided for the flow path R2 starting from the intake port 52b. It has a heater 76B. As described above, the reason why the ventilation device 50 provides a plurality of flow paths of the outdoor air Aout toward the indoor unit 20 and provides the first heater 76A and the second heater 76B in each of the flow paths will be described later.
  • the first heater 76A and the second heater 76B are arranged in the vicinity of the absorbent material 58. Specifically, the first heater 76A and the second heater 76B are arranged on the upstream side of the absorbent material 58 in the flow paths R1 and R2 of the outdoor air Aout. In the case of this embodiment, the first heater 76A and the second heater 76B are provided on the partition plate 78 (see FIG. 6).
  • the portion of the upper surface 58a of the first heater 76A, the second heater 76B, and the absorbent material 58 through which the flow paths R1 and R2 pass is covered with the heater cover 80.
  • the outdoor air Aout heated by the first heater 76A and the second heater 76B can pass through the absorbent material 58.
  • the details of heating the outdoor air Aout by the first heater 76A and the second heater 76B will be described later.
  • the first heater 76A and the second heater 76B may be heaters having the same heating capacity or heaters having different heating capacities. Further, the first heater 76A and the second heater 76B are preferably PTC heaters capable of increasing the electric resistance when a current flows and the temperature rises, that is, suppressing an excessive rise in the heating temperature.
  • a heater using nichrome wire or carbon fiber may be used, but in this case, the heating temperature (surface temperature) continues to rise as the current continues to flow, so it is necessary to monitor the temperature.
  • PTC heaters are more preferred.
  • the first heater 76A and the second heater 76B are covered by the heater cover 80. Therefore, the outdoor air Aout flowing through the flow paths R1 and R2 first descends along the outer surface of the side wall portion 80a in order to enter the first heater 76A and the second heater 76B. Next, the outdoor air Aout enters the gap and moves upward. Subsequently, the outdoor air Aout moves through the first heater 76A and the second heater 76B. Then, the outdoor air Aout descends toward the upper surface 58a of the absorbent material 58. That is, the two flow paths R1 and R2 include a labyrinth through which the outdoor air Aout passes.
  • the flow paths R1 and R2 through which the outdoor air Aout flows include a labyrinth through which the outdoor air Aout passes, dust and sand contained in the outdoor air Aout may reach the ventilation conduit 56, the indoor unit 20, and the indoor Rin. It is suppressed. That is, when the outdoor air Aout moves through the labyrinth, dust, sand, and the like are separated from the outdoor air Aout by gravity.
  • a tray 82 for receiving and collecting dust and the like separated from the outdoor air Aout is provided on the partition wall plate 78 in the vicinity of the first heater 76A and the second heater 76B.
  • the ventilation device 50 includes a flow path R3 other than the flow paths R1 and R2 as the flow path of the outdoor air Aout.
  • the flow path R3 of the outdoor air Aout is not connected to the inside of the indoor unit 20.
  • the flow path R3 is a flow path through which the absorbent material 58 passes and the outdoor air Aout flows from the outdoor Rout to the outdoor Rout.
  • the flow path R3 starts from the intake port 52c, passes through the absorbent material 58 from the lower surface 58b toward the upper surface 58a, and reaches the exhaust port 52f.
  • the ventilation device 50 includes a second fan 84 that generates a flow of outdoor air Aout in the flow path R3.
  • the second fan 84 is arranged on the other side of the ventilation device 50 in the longitudinal direction (Y-axis direction) with respect to the absorbent material 58, and is, for example, a sirocco fan.
  • the second fan 84 is rotated by a motor 86 attached to the outer surface of the bottom plate portion 52 g of the housing 52.
  • the second fan 84 is housed in a cylindrical portion 52h provided on the inner surface of the bottom plate portion 52g of the housing 52. The internal space of the cylindrical portion 52h communicates with the exhaust port 52f.
  • a partition plate 78 covering the second fan 84 is mounted on the cylindrical portion 52h of the housing 52.
  • the partition plate 78 divides the space on the other side in the longitudinal direction (Y-axis direction) into upper and lower parts with respect to the absorbent material 58.
  • the partition plate 78 is provided with a through hole 78a for taking the outdoor air Aout into the second fan 84.
  • the partition plate 78 is provided with an absorbent material accommodating portion 78b for rotatably accommodating the absorbent material 58 without covering the upper surface 58a.
  • the outdoor air Aout flows into the housing 52 through the intake port 52c of the housing 52. Specifically, as shown in FIG. 8, the outdoor air Aout that has flowed in through the intake port 52c flows into the lower space S4 below the partition plate 78 and flows downward of the absorbent material 58. Next, the outdoor air Aout passes through the absorbent material 58 from the lower surface 58b of the absorbent material 58 toward the upper surface 58a. Then, the outdoor air Aout that has passed through the absorbent material 58 moves in the upper space S3 above the partition wall plate 78, passes through the through hole 78a of the partition wall plate 78, and is taken into the second fan 84. The outdoor air Aout taken in by the second fan 84 is discharged to the outdoor Rout via the exhaust port 52f.
  • the housing 52 in order to block the traffic of the outdoor air Aout between the lower space S2 below the absorbent material 58 and the lower space S4, the housing 52 is attached to the bottom plate portion 52 g thereof. A seal portion 52j is provided. Further, in order to block the traffic of outdoor air Aout between the upper spaces S1 and S3 above the absorbent material 58, the partition plate 78 is provided with a sealing portion 78c, and the partition plate 78 and the top plate 54 are provided. A sealing member 88 for sealing between them is provided between them. As a result, the outdoor air Aout flowing through the flow paths R1 and R2 and the outdoor air Aout flowing through the flow paths R3 can pass through the absorber 58 at different positions and are prevented from being mixed with each other.
  • the ventilation device 50 is configured to perform the humidification operation, the dehumidification operation, the regeneration operation, and the ventilation operation described below. Specifically, the ventilation device 50 controls the first fan 66, the second fan 84, the first heater 76A, the second heater 76B, the damper device 74 (damper 74a), and the like to perform humidification operation. , A control device for performing dehumidifying operation, regeneration operation, and ventilation operation.
  • the control device has a computer system having a processor and a memory. Then, the processor executes a program stored in the memory, so that the computer system functions as a control device.
  • the program executed by the processor is pre-recorded in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or a telecommunications line such as the Internet. May be provided through.
  • FIG. 9 and 10 are diagrams showing the humidification operation of the ventilation device 50. Further, FIG. 11 shows a timing chart of the humidification operation.
  • the first heater 76A and the second heater 76B in the present embodiment, the first heater 76A was operated. It is done in the state.
  • the indoor humidity of the indoor Rin is slightly increased (low humidification operation)
  • at least one of the first heater 76A and the second heater 76B operates as shown in FIG.
  • both the first heater 76A and the second heater 76B operate as shown in FIG.
  • both the first fan 66 and the second fan 84 rotate.
  • the damper 74a closes the exhaust port 52e (IN state) in order to direct the outdoor air Aout to the indoor unit 20.
  • the outdoor air Aout heated by at least one of the first heater 76A and the second heater 76B takes away the moisture held by the absorbent 58 and is supplied to the indoor Rin.
  • the indoor Rin is humidified.
  • the absorbent material 58 deprived of moisture by the heated outdoor air Aout collects moisture from the outdoor air Aout flowing through the flow path R3.
  • the absorbent 58 can continue to retain a certain amount of water, and as a result, the ventilator 50 can continue the humidifying operation.
  • first heater 76A, second heater 76B the heating means for the outdoor air Aout in this way, the water content of the outdoor air Aout (as compared with the case where one heating means is used).
  • the amount of water taken from the absorbent 58) can be finely adjusted. That is, the humidification amount of the indoor Rin can be finely controlled.
  • the moisture content of the outdoor air Aout can be obtained by turning on / off each of the first heater 76A and the second heater 76B.
  • the amount can be adjusted in 3 steps. As a result, excessive humidification can be suppressed, and the heater can suppress unnecessary power consumption (compared to the case where one heating means is used).
  • each of the first heater 76A and the second heater 76B is a heater whose output can be adjusted as well as ON / OFF, the amount of water in the outdoor air Aout (the amount of water taken from the absorbent material 58) is further reduced. Can be adjusted. This facilitates maintenance when the room humidity is maintained at a set value set by the user.
  • the controller 42 shown in FIG. 1 is configured to allow the user to set the indoor humidity, and the indoor unit 20 is provided with an indoor humidity sensor 90 that measures the indoor humidity and outputs the measured value of the measured indoor humidity. ..
  • the outputs of the first heater 76A and the second heater 76B are controlled so that the indoor humidity (measured value) output by the indoor humidity sensor 90 becomes a set value.
  • both the first heater 76A and the second heater 76B operate at the maximum output.
  • a predetermined value for example, 30%
  • only one of the first heater 76A and the second heater 76B operates to adjust the output value.
  • the rotation of the first fan 66 is performed while the outputs of the first heater 76A and the second heater 76B are kept constant. You may adjust the number.
  • the adjustable range is smaller than that adjusted by the first heater 76A and the second heater 76B. The indoor humidity can be adjusted quickly.
  • the output adjustment of the first heater 76A and the second heater 76B may be performed based on the amount of water retained by the absorbent material 58.
  • the amount of water in the outdoor air Aout that can be taken away from the absorbent 58 and held is determined by its temperature, that is, the output of the first heater 76A and the second heater 76B. Therefore, if the amount of water held by the absorbent 58 is smaller than the amount of water held by the outdoor air Aout heated by the first heater 76A and the second heater 76B having the maximum output, power is wasted. The outdoor air Aout will be heated.
  • the output adjustment of the first heater 76A and the second heater 76B is performed based on the amount of water retained by the absorbent material 58.
  • the amount of water retained by the absorbent 58 can be estimated based on, for example, the humidity of the outdoor Rout and the rotation time of the second fan 84.
  • the outdoor unit 30 is provided with an outdoor humidity sensor (not shown) for measuring the outdoor humidity.
  • the second fan 84 may be operated for a predetermined time.
  • the second fan 84 of the ventilation device 50 rotates even though the fan 24 of the indoor unit 20, the fan 34 of the outdoor unit 30, and the compressor 36 are stopped.
  • water is stored in the absorbent material 58.
  • the humidifying operation can be reliably executed with the absorbent material 58 having a sufficient amount of water retained. That is, immediately after the start of the air conditioning operation, the indoor Rin can be sufficiently and quickly humidified.
  • the second fan 84 may start operating before the start of the air conditioning operation of the air conditioner 10 (before the timing T0).
  • moisture is stored in the absorbent material 58 before the start of the air conditioning operation of the air conditioner 10.
  • the controller 42 shown in FIG. 1 is configured to allow the user to set the start time of the air conditioning operation, and the second fan 84 starts to rotate from a predetermined time before the start time.
  • the predetermined time is, for example, the time required from zero to the maximum amount of water retained in the absorbent material 58.
  • FIG. 12 is a diagram showing a dehumidifying operation and a regeneration operation of the ventilation device 50. Further, FIG. 13 is a timing chart of the dehumidifying operation and the regeneration operation.
  • the dehumidifying operation of the ventilation device 50 is performed in a state where the first heater 76A and the second heater 76B are stopped (OFF state). Further, during the dehumidifying operation, the first fan 66 rotates and the second fan 84 stops. Then, during the dehumidifying operation, the damper 74a closes the exhaust port 52e (IN state) in order to direct the outdoor air Aout to the indoor unit 20.
  • the outdoor air Aout passes through the absorbent material 58 without being heated.
  • the outdoor air Aout collects its moisture by the absorbent 58 and is supplied to the indoor Rin in a dry state.
  • the indoor Rin is dehumidified.
  • the absorbent material 58 While the dehumidifying operation is being continued, the absorbent material 58 continues to collect the moisture in the outdoor air Aout. Therefore, the absorbent material 58 eventually reaches a saturated state in which it cannot retain any more water. Therefore, a regeneration operation for regenerating the collecting capacity of the absorbent material 58 is executed.
  • the regeneration operation of the ventilation device 50 is performed in a state in which the first heater 76A and the second heater 76B are operated (ON state). Further, during the regeneration operation, the first fan 66 rotates and the second fan 84 stops. Then, during the regeneration operation, the damper 74a closes the exhaust port 52d in order to direct the outdoor air Aout to the outdoor Rout instead of the indoor unit 20 (OUT state).
  • the outdoor air Aout heated by both the first heater 76A and the second heater 76B deprives the absorbent material 58 of the moisture and is discharged to the outdoor Rout.
  • the absorbent 58 is dried and its water collecting ability is regenerated.
  • the regeneration operation is executed in pairs with the dehumidification operation. Specifically, when the duration of the dehumidifying operation is longer than the time until the absorbent material 58 becomes saturated, the regeneration operation is executed. In this case, as shown in FIG. 13, the dehumidifying operation and the regeneration operation are alternately executed. As a result, the dehumidifying operation is continued intermittently.
  • FIG. 14 is a diagram showing the ventilation operation of the ventilation device 50.
  • the ventilation operation of the ventilation device 50 is performed in a state where the first heater 76A and the second heater 76B are stopped (OFF state). Further, during the ventilation operation, the first fan 66 rotates and the second fan 84 stops. Then, during the ventilation operation, the damper 74a closes the exhaust port 52e (IN state) in order to direct the outdoor air Aout to the indoor unit 20.
  • the outdoor air Aout is supplied to the indoor Rin as it is.
  • the user determines whether to perform the humidification operation, the dehumidification operation, or the ventilation operation of these ventilation devices 50. For example, when the user selects the operation of the ventilation device 50 via the controller 42, the operation selected by the user among the humidification operation, the dehumidification operation, and the ventilation operation is executed. Further, when the air conditioner 10 is configured so that the user can set the indoor humidity via the controller 42, the humidification operation and the dehumidification operation are performed so that the measured value of the indoor humidity sensor 90 becomes the set value. And are selectively executed. The regeneration operation is not performed by the user, but is executed based on the duration of the dehumidifying operation and the amount of water retained in the absorbent material 58.
  • the ventilation conduit 56 is a fixed pipe 92 fixed to the side surface of the outdoor unit 30, and a ventilation hose connecting the fixed pipe 92 and the indoor unit 20 (not shown). ) And the connector 94.
  • the connector 94 is attached to the tip of the ventilation hose and is detachably connected to the tip 92a of the fixed pipe 92.
  • the tip 92a of the fixed pipe 92 is located at the bottom of the ventilation conduit 56 and may collect water.
  • FIG. 15 is an exploded view of a part of the ventilation conduit 56. Further, FIG. 16 is a cross-sectional view of a part of the ventilation conduit 56.
  • a through hole 92b is formed at the lowermost portion of the tip portion 92a of the fixed pipe 92. That is, the ventilation conduit 56 is provided with a through hole 92b at the lowermost portion of the ventilation conduit 56. The water accumulated in the ventilation conduit 56 is discharged to the outside through the through hole 92b.
  • the fixed pipe 92 (that is, the ventilation conduit 56) extends from the outdoor unit 30 side and has a through hole so that the outdoor air Aout from the outdoor unit 30 to the indoor unit 20 does not leak to the outside through the through hole 92b.
  • a semi-cylindrical hood portion 92c that covers the 92b is provided. In the present embodiment, the hood portion 92c has a semi-cylindrical shape, but may have other shapes such as a triangular shape, a rectangular shape, or a polygonal shape.
  • the water flow path that enters the hood portion 92c and reaches the through hole 92b is provided so that the direction of water flow is opposite to the direction of the outdoor air Aout, whereby the outdoor air Aout is provided in the hood portion. It is prevented from entering the 92c and unnecessarily exiting from the through hole 92b.
  • the diameter of the through hole 92b is preferably 2.5 mm or more. This is because the diameter of the water droplet is about 2 mm, and the water droplet is bridged to the through hole 92b so as not to be blocked.
  • the air conditioner 10 can control the humidification amount of the indoor Rin more finely.
  • the air conditioner 10 is an air conditioner including an indoor unit 20 and an outdoor unit 30, and has an absorbent material 58 and a first flow path (flow path R1). It has a second flow path (flow path R2), a first heater 76A, and a second heater 76B.
  • the flow path R1 is an example of the first flow path according to the present disclosure
  • the flow path R2 is an example of the second flow path according to the present disclosure.
  • the absorbent material 58 absorbs the moisture of the outdoor air Aout.
  • the first flow path (flow path R1) passes through the absorbent material 58, connects the outdoor Rout and the inside of the indoor unit 20, and the outdoor air Aout flows.
  • the second flow path passes through the absorbent material 58, connects the outdoor Rout and the inside of the indoor unit 20, and the outdoor air Aout flows.
  • the first heater 76A heats the outdoor air Aout on the upstream side of the absorbent material 58 in the first flow path (flow path R1).
  • the second heater 76B heats the outdoor air Aout on the upstream side of the absorbent material 58 in the second flow path (flow path R2).
  • at least one of the first heater 76A and the second heater 76B heats the outdoor air Aout, and the heated outdoor air Aout is the moisture content of the absorber 58.
  • the humidification operation toward the indoor unit 20 is executed.
  • the first heater 76A and the second heater 76B are heaters whose outputs can be adjusted.
  • the outputs of the first heater 76A and the second heater 76B are adjusted based on the amount of water retained by the absorbent material 58.
  • the air conditioner 10 according to the embodiment of the present disclosure is provided in the indoor unit 20 and further has an indoor humidity sensor 90 that measures the indoor humidity and outputs the measured value of the indoor humidity. Then, in the air conditioner 10 according to the embodiment of the present disclosure, the outputs of the first heater 76A and the second heater 76B are adjusted based on the measured values of the indoor humidity output by the indoor humidity sensor 90. To.
  • the air conditioner 10 further includes a fan (first fan 66) and an indoor humidity sensor 90.
  • the first fan 66 is an example of the fan according to the present disclosure.
  • the fan (first fan 66) is provided in the junction flow path and generates a flow of outdoor air Aout toward the inside of the indoor unit 20.
  • the indoor humidity sensor 90 is provided in the indoor unit 20 to measure the indoor humidity and output the measured value of the indoor humidity.
  • the measured value of the indoor humidity output by the indoor humidity sensor 90 is maintained while keeping the outputs of the first heater 76A and the second heater 76B constant.
  • the number of rotations of the fan (first fan 66) is adjusted based on the above.
  • the first heater 76A and the second heater 76B are PTC heaters.
  • the absorbent material 58 is a polymer sorbent.
  • the first flow path (flow path R1) and the second flow path (flow path R2) include a labyrinth through which the outdoor air Aout passes. ..
  • the air conditioner 10 according to the embodiment of the present disclosure includes an indoor unit 20 and an outdoor unit 30, and the outdoor unit 30 has a ventilation device 50.
  • the air conditioner 10 according to the embodiment of the present disclosure is modified so that the outdoor unit 30 and the ventilation device 50 have a separate configuration, that is, the indoor unit 20, the outdoor unit 30, and the ventilation device 50 are provided. It may be (modification example 1).
  • the air conditioner 10 according to the embodiment of the present disclosure includes an indoor unit 20 and an outdoor unit 30, and includes an absorbent material 58, a first flow path (flow path R1), and a second flow path (flow path R1). It may be deformed so as to have at least a flow path R2), a first heater 76A, and a second heater 76B (modification example 2).
  • the first heater 76A and the second heater 76B are provided as the heating means for heating the outdoor air Aout.
  • the number of heaters as a heating means is not limited to this. There may be three or more means for heating the outdoor air Aout.
  • the dehumidifying operation is executed to reduce the indoor humidity, but the purpose of executing the dehumidifying operation is not limited to this.
  • a dehumidifying operation may be performed in order to dry the heat exchanger 22 of the indoor unit 20 to which water droplets are attached after the cooling operation.
  • the indoor unit 20 is configured so that the outdoor air Aout dried by the dehumidifying operation is blown toward the heat exchanger 22.
  • the air conditioner according to the embodiment of the present disclosure is, in a broad sense, an air conditioner including an indoor unit and an outdoor unit, and is an absorbent material, a first flow path, and a second flow path. And a first heater and a second heater.
  • the absorbent material absorbs the moisture of the outdoor air.
  • the first flow path passes through the absorbent material, connects the outdoor unit and the indoor unit, and the outdoor air flows.
  • the second flow path passes through the absorbent material, connects the outdoor unit and the indoor unit, and the outdoor air flows.
  • the first heater heats the outdoor air on the upstream side of the absorber in the first flow path.
  • the second heater heats the outdoor air on the upstream side of the absorber in the second flow path.
  • At least one of the first heater and the second heater heats the outdoor air, and the heated outdoor air deprives the absorbent material of the moisture and becomes the indoor unit. Perform a humidifying operation on the way.
  • This disclosure is applicable to any air conditioner equipped with an indoor unit and an outdoor unit.

Abstract

本開示の実施の形態に係る空気調和機の吸収材(58)は、室外空気の水分を吸収する。第1の流路(流路(R1))は、吸収材(58)を通過し、室外と室内機(20)内とを接続し、室外空気が流れる。第2の流路(流路(R2))は、吸収材(58)を通過し、室外と室内機(20)内とを接続し、室外空気が流れる。第1のヒータ(76A)は、第1の流路(R1)における吸収材(58)に対する上流側で室外空気を加熱する。第2のヒータ(76B)は、第2の流路(R2)における吸収材(58)に対する上流側で室外空気を加熱する。この空気調和機は、第1のヒータ(76A)および第2のヒータ(76B)の少なくとも一方が室外空気を加熱し、加熱された室外空気が吸収材(58)の水分を奪って室内機(20)に向かう加湿運転を実行する。

Description

空気調和機
 本開示は、空気調和機に関する。
 従来、特許文献1に記載するように、空気調和対象の室内に配置される室内機と、室外に配置される室外機とから構成される空気調和機が知られている。この空気調和機は、室外機から室内機に加湿された室外空気を供給できるように構成されている。
特開2001-91000号公報
 ところで、このような空気調和機においては、室内の加湿量をよりきめ細やかに制御したいというニーズがある。
 そこで、本開示は、室内の加湿量をよりきめ細やかに制御可能な空気調和機を提供することを目的とする。
 本開示に係る空気調和機は、室内機と室外機とを備える空気調和機であって、吸収材と、第1の流路と、第2の流路と、第1のヒータと、第2のヒータと、を有する。吸収材は、室外空気の水分を吸収する。第1の流路は、吸収材を通過し、室外と室内機内とを接続し、室外空気が流れる。第2の流路は、吸収材を通過し、室外と室内機内とを接続し、室外空気が流れる。第1のヒータは、第1の流路における吸収材に対する上流側で室外空気を加熱する。第2のヒータは、第2の流路における吸収材に対する上流側で室外空気を加熱する。そして、本開示に係る空気調和機は、第1のヒータおよび第2のヒータの少なくとも一方が室外空気を加熱し、加熱された室外空気が吸収材の水分を奪って室内機に向かう加湿運転を実行する。
 本開示に係る空気調和機は、室内の加湿量をよりきめ細やかに制御することができる。
本開示の実施の形態に係る空気調和機の概略的構成図 実施の形態に係る室外機の外観を示す斜視図 実施の形態に係る換気装置の内部構成を示す斜視図 実施の形態に係る換気装置の構成要素の一部を取り外した状態の斜視図 実施の形態に係る換気装置の構成要素の一部を取り外した状態の上面図 実施の形態に係る換気装置の分解斜視図 異なる視点から見た実施の形態に係る換気装置の一部の構成要素の分解斜視図 実施の形態に係る換気装置の概略的な断面図 実施の形態に係る換気装置の加湿運転(低加湿運転)を示す図 実施の形態に係る換気装置の加湿運転(高加湿運転)を示す図 実施の形態に係る換気装置の加湿運転のタイミングチャート 実施の形態に係る換気装置の除湿運転と再生運転とを示す図 実施の形態に係る換気装置の除湿運転と再生運転のタイミングチャート 実施の形態に係る換気装置の換気運転を示す図 実施の形態に係る換気導管の一部分の分解図 実施の形態に係る換気導管の一部分の断面図
 本開示に係る空気調和機は、室内機と室外機とを備える空気調和機であって、吸収材と、第1の流路と、第2の流路と、第1のヒータと、第2のヒータと、を有する。吸収材は、室外空気の水分を吸収する。第1の流路は、吸収材を通過し、室外と室内機内とを接続し、室外空気が流れる。第2の流路は、吸収材を通過し、室外と室内機内とを接続し、室外空気が流れる。第1のヒータは、第1の流路における吸収材に対する上流側で室外空気を加熱する。第2のヒータは、第2の流路における吸収材に対する上流側で室外空気を加熱する。そして、本開示に係る空気調和機は、第1のヒータおよび第2のヒータの少なくとも一方が室外空気を加熱し、加熱された室外空気が吸収材の水分を奪って室内機に向かう加湿運転を実行する。
 本開示に係る空気調和機は、室内の加湿量をよりきめ細やかに制御することができる。
 また、例えば、本開示に係る空気調和機では、第1のヒータおよび第2のヒータが、出力調節可能なヒータであってもよい。
 また、例えば、本開示に係る空気調和機では、吸収材が保持する水分量に基づいて、第1のヒータおよび第2のヒータそれぞれの出力が調節されてもよい。
 また、例えば、本開示に係る空気調和機が、室内機に設けられ、室内湿度を測定し、室内湿度の測定値を出力する室内湿度センサを、さらに有してもよい。そして、本開示に係る空気調和機では、室内湿度センサによって出力された室内湿度の測定値に基づいて、第1のヒータおよび第2のヒータそれぞれの出力が調節されてもよい。
 また、例えば、本開示に係る空気調和機では、第1の流路および第2の流路が、吸収材の通過後に互いに合流する合流路を含んでもよい。また、本開示に係る空気調和機が、合流路に設けられ、室内機内に向かう室外空気の流れを発生させるファンと、室内機に設けられ、室内湿度を測定し、室内湿度の測定値を出力する室内湿度センサと、をさらに有してもよい。そして、本開示に係る空気調和機では、第1のヒータおよび第2のヒータそれぞれの出力を一定に維持しつつ、室内湿度センサによって出力された室内湿度の測定値に基づいて、ファンの回転数が調節されてもよい。
 また、例えば、本開示に係る空気調和機では、第1のヒータおよび第2のヒータが、PTC(Positive Temperature Coefficient)ヒータであってもよい。
 また、例えば、本開示に係る空気調和機では、吸収材が、高分子収着材であってもよい。
 また、例えば、本開示に係る空気調和機では、第1の流路および第2の流路が、室外空気が通過するラビリンスを含んでいてもよい。
 (実施の形態)
 以下、本開示の一実施の形態について図面を参照しながら説明する。なお、以下では、各図でのZ軸方向(鉛直方向)を上下方向として記載する場合がある。
 まず、本実施の形態に係る空気調和機10の構成について、図1を用いて説明する。
 図1は、空気調和機10の概略的構成図である。
 図1に示すように、空気調和機10は、空気調和対象の室内Rinに配置される室内機20と、室外Routに配置される室外機30とを備える。
 室内機20には、室内Rinの室内空気Ainと熱交換を行う熱交換器22と、室内空気Ainを室内機20内に誘引するとともに熱交換器22と熱交換した空気を室内Rinに吹き出すためのファン24とが設けられている。
 室外機30には、室外Routの室外空気Aoutと熱交換を行う熱交換器32と、熱交換器32を通過する室外空気Aoutの流れを発生させるファン34と、圧縮機36と、膨張弁38とが設けられている。
 室内機20の熱交換器22、室外機30の熱交換器32、圧縮機36、および膨張弁38が、冷媒配管40によって接続されることにより、空気調和機10の冷凍サイクルが構成されている。この冷凍サイクルにより、加熱された室内空気Ainを室内Rinに吹き出す暖房運転、冷却された室内空気Ainを室内Rinに吹き出す冷房運転、および除湿した室内空気Ainを室内Rinに吹き出す除湿運転を、空気調和機10は実行する。なお、本実施の形態の場合、暖房運転、冷房運転、除湿運転などの空気調和機10の運転の選択や設定温度などの運転に必要なパラメータ等の設定をユーザが行うためのコントローラ42を、空気調和機10は備える。
 さらに、空気調和機10の室外機30は、室外空気Aoutを室内Rinに供給する、すなわち室内Rinを換気する換気装置50を有する。なお、本実施の形態では、室外機30が換気装置50を有するものとして説明するが、換気装置50は、室外機30に含まれなくてもよい。
 以下、換気装置50の構成について、図2~図8を用いて説明する。
 図2は、室外機30の外観を示す斜視図である。また、図3は、換気装置50の内部構成を示す斜視図である。さらに、図4および図5は、換気装置50の構成要素の一部を取り外した状態の斜視図および上面図である。さらにまた、図6は、換気装置50の分解斜視図である。加えて、図7は、異なる視点から見た換気装置50の一部の構成要素の分解斜視図である。そして、図8は、換気装置50の概略的な断面図である。
 本実施の形態の場合、換気装置50は、図2および図3に示すように、上方が開いた筺体52と、筺体52に蓋をする天板54とを有する。換気装置50の筺体52には、室外空気Aoutを筺体52内に取り込むための複数の吸気口52a、52b、52cと、筺体52内に取り込んだ室外空気Aoutを外部に排出するための排気口52d、52e、52fが設けられている。排気口52dには、図2に示す換気導管56が接続される。換気導管56は、図2に示すように、室外機30の側面に取り付けられ、室内機20に連通する換気ホースと連結する。すなわち、換気導管56は、室外機30内と室内機20内とを接続する。残りの排気口52e、52fは室外Routに連通する。
 換気装置50は、図4、5、6、および8に示すように、筺体52内の中央に、室外空気Aoutの水分を吸収する吸収材58を有する。
 吸収材58は、空気が通過可能な部材であって、通過する空気から水分を捕集するまたは通過する空気に水分を与える部材である。本実施の形態の場合、吸収材58は、鉛直方向(Z軸方向)に空気が通過可能であって、鉛直方向に延在する回転中心線C1を中心にして回転する円盤状の部材である。その吸収材58は、図6に示すように、円筒状のホルダ60によって保持され、そのホルダ60の外歯に係合するギヤ62を備える吸収材用モータ64によって回転される。換気装置50の運転中、吸収材58は、一定の回転速度で回転し続ける。
 なお、吸収材58は、空気中の水分を収着する高分子収着材で形成されることが好ましい。高分子収着材は、例えば、ポリアクリル酸ナトリウム架橋体から構成される。高分子収着材は、シリカゲルやゼオライトなどの吸着材に比べて、水分を吸収する速度が高く、低い加熱温度で保持する水分を脱離することができ、そして水分を長時間保持することができる。
 換気装置50はまた、図6、7、および8に示すように、室外空気Aoutを換気装置50内に誘引して吸収材58を通過させ、吸収材58を通過した室外空気Aoutを室内機20に向かって送風する第1のファン66を備える。
 第1のファン66は、吸収材58に対して換気装置50の長手方向(Y軸方向)の一方側に配置され、例えばシロッコファンである。第1のファン66は、吸収材58に対して長手方向の一方側の空間を上下に二分割する隔壁板68に設けられた円筒状部68a内に収容されている。この隔壁板68により、図8に示すように、吸収材58の上面58aの一部分が接する上側空間S1と、吸収材58の下面58bの一部分が接する下側空間S2とが形成されている。
 隔壁板68の円筒状部68aには、排気口52dに接続する開口68bと、排気口52eと接続する開口68cとが形成されている。また、隔壁板68には、円筒状部68a内の第1のファン66に空気を取り込むための貫通穴68dが形成されている。
 また、隔壁板68の円筒状部68aには、第1のファン66を覆うファンカバー70が取り付けられている。そのファンカバー70に、第1のファン66を回転させるモータ72が設けられている。また、ファンカバー70には、図7に示すように、隔壁板68の開口68bおよび開口68cの一方を閉じるダンパ装置74が設けられている。ダンパ装置74は、旋回可能なダンパ74aを備え、そのダンパ74aを旋回させることによって隔壁板68の開口68bおよび開口68cの一方を閉じるように構成されている。
 モータ72が第1のファン66を回転させると、図4に示すように、筺体52の吸気口52a、52bを介して、室外空気Aoutが筺体52内に流入する。具体的には、図8に示すように、吸気口52a、52bそれぞれを介して流入した室外空気Aoutは、隔壁板68の上方の上側空間S1に流入し、吸収材58の上方に向かって流れる。次に、室外空気Aoutは、吸収材58の上面58aから下面58bに向かって吸収材58を通過する。そして、吸収材58を通過した室外空気Aoutは、隔壁板68の下方の下側空間S2内を移動し、隔壁板68の貫通穴68dを通過して第1のファン66に取り込まれる。第1のファン66に取り込まれた室外空気Aoutは、開口68bおよび開口68cのうち、ダンパ装置74のダンパ74aによって閉じられていない方の開口を通過する。すなわち、室外空気Aoutは、排気口52dを通過して最終的に室内機20内に到達する、または排気口52eを介して室外Routに排出される。このように、第1のファン66は、室外機30内に室外空気Aoutを取り込み、取り込んだ室外空気Aoutを室内機20に向かって換気導管56を介して送る。
 本実施の形態の場合、図4および図5に示すように、筺体52の吸気口52aと吸気口52bとの間には、ファンカバー70とモータ72とが存在する。そのため、吸収材58を通過し、室外Routと室内機20内とを接続し、すなわち換気導管56と接続し、室外空気Aoutが流れる流路が実質的に2つ存在する。図6に示すように、2つの流路R1、R2は、吸収材58の通過後に互いに合流する合流路を含み、その合流路に第1のファン66が設けられている。すなわち、第1のファン66は、流路R1、R2に室内機20に向かう室外空気Aoutの流れを発生させる。図5に示すように、換気装置50は、吸気口52aから始まる流路R1に対して設けられた第1のヒータ76Aと、吸気口52bから始まる流路R2に対して設けられた第2のヒータ76Bとを有する。このように、換気装置50が、室内機20に向かう室外空気Aoutの流路を複数設け、その流路それぞれに第1のヒータ76Aおよび第2のヒータ76Bを設ける理由については後述する。
 図4および図5に示すように、第1のヒータ76Aおよび第2のヒータ76Bは、吸収材58近傍に配置される。具体的には、室外空気Aoutの流路R1、R2における吸収材58に対して上流側に、第1のヒータ76Aおよび第2のヒータ76Bが配置されている。本実施の形態の場合、第1のヒータ76Aおよび第2のヒータ76Bは、隔壁板78に設けられている(図6参照)。
 また、図4に示すように、第1のヒータ76A、第2のヒータ76B、および流路R1、R2が通過する吸収材58の上面58aの部分は、ヒータカバー80によって覆われている。これにより、第1のヒータ76Aおよび第2のヒータ76Bによって加熱された室外空気Aoutが、吸収材58を通過することができる。なお、第1のヒータ76Aおよび第2のヒータ76Bによる室外空気Aoutの加熱の詳細については後述する。
 第1のヒータ76Aおよび第2のヒータ76Bは、同一の加熱能力を備えるヒータであってもよいし、異なる加熱能力を備えるヒータであってもよい。また、第1のヒータ76Aおよび第2のヒータ76Bは、電流が流れて温度が上昇すると電気抵抗が増加する、すなわち過剰な加熱温度の上昇を抑制することができるPTCヒータが好ましい。ニクロム線やカーボン繊維などを用いるヒータを用いてもよいが、この場合、電流が流れ続けると加熱温度(表面温度)が上昇し続けるため、その温度をモニタリングする必要がある。一方、PTCヒータの場合、ヒータ自体が加熱温度を一定の温度範囲内で調節するために、加熱温度をモニタリングする必要がなくなる。この点で、PTCヒータがより好ましい。
 図8に示すように、第1のヒータ76Aおよび第2のヒータ76Bは、ヒータカバー80によって覆われている。そのため、流路R1、R2を流れる室外空気Aoutは、まず、第1のヒータ76Aおよび第2のヒータ76Bに進入するために、側壁部80aの外側面に沿って降下する。次に、室外空気Aoutは、隙間に進入して上方向に移動する。続いて、室外空気Aoutは、第1のヒータ76Aおよび第2のヒータ76Bを貫通して移動する。そして、室外空気Aoutは、吸収材58の上面58aに向かって降下する。すなわち、2つの流路R1、R2は、室外空気Aoutが通過するラビリンスを含んでいる。
 室外空気Aoutが流れる流路R1、R2が、室外空気Aoutが通過するラビリンスを含むことにより、室外空気Aoutに含まれる塵や砂などが換気導管56、室内機20、および室内Rinに届くことが抑制される。すなわち、室外空気Aoutがラビリンスを移動するときに塵や砂などが重力によって室外空気Aoutから分離される。なお、室外空気Aoutから分離した塵などを受け止めて回収するトレイ82が、第1のヒータ76Aおよび第2のヒータ76B近傍の隔壁板78の部分に設けられている。
 図4、5、6、および8に示すように、換気装置50は、室外空気Aoutの流路として、流路R1、R2以外の流路R3を備える。
 室外空気Aoutの流路R3は、流路R1、R2と異なり、室内機20内に接続していない。流路R3は、吸収材58を通過し、室外空気Aoutが室外Routから室外Routに流れる流路である。
 具体的には、流路R3は、吸気口52cから始まり、吸収材58をその下面58bから上面58aに向かって通過し、排気口52fに至る。その流路R3に室外空気Aoutの流れを発生させる第2のファン84を、換気装置50は備える。
 第2のファン84は、図6に示すように、吸収材58に対して換気装置50の長手方向(Y軸方向)の他方側に配置され、例えばシロッコファンである。第2のファン84は、筺体52の底板部52gの外側面に取り付けられたモータ86によって回転される。また、第2のファン84は、筺体52の底板部52gの内側面に設けられた円筒状部52h内に収容されている。円筒状部52hの内部空間は、排気口52fに連通している。
 また、筺体52の円筒状部52h上には、第2のファン84を覆う隔壁板78が取り付けられている。この隔壁板78は、吸収材58に対して長手方向(Y軸方向)の他方側の空間を上下に二分割する。また、隔壁板78には、室外空気Aoutを第2のファン84内に取り込むための貫通穴78aが設けられている。さらに、隔壁板78には、上面58aを覆うことなく吸収材58を回転可能に収容する吸収材収容部78bが設けられている。
 モータ86が第2のファン84を回転させると、図4に示すように、筺体52の吸気口52cを介して、室外空気Aoutが筺体52内に流入する。具体的には、図8に示すように、吸気口52cを介して流入した室外空気Aoutは、隔壁板78の下方の下側空間S4に流入し、吸収材58の下方に向かって流れる。次に、室外空気Aoutは、吸収材58の下面58bから上面58aに向かって吸収材58を通過する。そして、吸収材58を通過した室外空気Aoutは、隔壁板78の上方の上側空間S3内を移動し、隔壁板78の貫通穴78aを通過して第2のファン84に取り込まれる。第2のファン84に取り込まれた室外空気Aoutは、排気口52fを介して室外Routに排出される。
 なお、吸収材58の下方の下側空間S2と下側空間S4との間で室外空気Aoutの往来を遮断するために、図6および8に示すように、筺体52は、その底板部52gにシール部52jを備える。また、吸収材58の上方の上側空間S1、S3との間で室外空気Aoutの往来を遮断するために、隔壁板78がシール部78cを備えるとともに、また、隔壁板78と天板54との間をシールするシール部材88がこれらの間に設けられている。これにより、流路R1、R2を流れる室外空気Aoutと流路R3を流れる室外空気Aoutとが、異なる位置で吸収材58を通過することができるとともに、互いに混合されることが抑制される。
 ここまでは、換気装置50の構成について説明してきた。ここからは換気装置50の動作について、図9~図14を用いて説明する。
 換気装置50は、以下で説明する加湿運転、除湿運転、再生運転、および換気運転を実行するように構成されている。具体的には、換気装置50は、第1のファン66、第2のファン84、第1のヒータ76A、第2のヒータ76Bおよびダンパ装置74(ダンパ74a)等を制御することにより、加湿運転、除湿運転、再生運転、および換気運転を行う制御装置を備える。制御装置は、プロセッサおよびメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御装置として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。
 図9および図10は、換気装置50の加湿運転を示す図である。また、図11は、加湿運転のタイミングチャートを示している。
 図9、10、および11に示すように、換気装置50の加湿運転は、第1のヒータ76Aおよび第2のヒータ76Bの少なくとも一方(本実施の形態では、第1のヒータ76A)が作動した状態で行われる。室内Rinの室内湿度を小さく増加させる場合(低加湿運転)、図9に示すように、第1のヒータ76Aおよび第2のヒータ76Bの少なくとも一方が作動する。一方、室内Rinの室内湿度を大きく増加させる場合(高加湿運転)、図10に示すように、第1のヒータ76Aおよび第2のヒータ76Bの両方が作動する。また、加湿運転中、第1のファン66および第2のファン84の両方が回転する。さらに、加湿運転中、ダンパ74aが、室外空気Aoutを室内機20に振り向けるために、排気口52eを閉じる(IN状態)。
 このような加湿運転によれば、第1のヒータ76Aおよび第2のヒータ76Bの少なくとも一方によって加熱された室外空気Aoutが、吸収材58が保持する水分を奪って室内Rinに供給される。その結果、室内Rinが加湿される。また、加熱された室外空気Aoutによって水分を奪われた吸収材58は、流路R3を流れる室外空気Aoutから水分を捕集する。それにより、吸収材58は一定量の水分を保持し続けることができ、その結果として、換気装置50は加湿運転を継続することができる。
 このように室外空気Aoutの加熱手段として複数のヒータ(第1のヒータ76A、第2のヒータ76B)を使用することにより、1つの加熱手段を用いる場合に比べて、室外空気Aoutの水分量(吸収材58から奪う水分量)を細かく調節することができる。すなわち、室内Rinの加湿量をきめ細やかに制御することができる。例えば、第1のヒータ76Aおよび第2のヒータ76Bが一定の温度で作動するタイプの場合、その第1のヒータ76Aおよび第2のヒータ76BそれぞれをON/OFFすることにより、室外空気Aoutの水分量を三段階で調節することができる。その結果、過剰な加湿が抑制できるとともに、ヒータが無駄に電力を消費することが抑制できる(1つの加熱手段を用いる場合に比べて)。
 なお、第1のヒータ76Aおよび第2のヒータ76Bそれぞれが、ON/OFFのみならず、出力調節可能なヒータである場合、室外空気Aoutの水分量(吸収材58から奪う水分量)をさらに細かく調節することができる。これにより、室内湿度をユーザが設定した設定値で維持する場合に、その維持が容易になる。この場合、図1に示すコントローラ42がユーザによる室内湿度の設定操作が可能に構成され、室内機20に室内湿度を測定し、測定した室内湿度の測定値を出力する室内湿度センサ90が設けられる。室内湿度センサ90によって出力される室内湿度(測定値)が設定値になるように、第1のヒータ76Aおよび第2のヒータ76Bの出力が制御される。例えば、室内湿度センサ90の測定値と設定値との差が所定値(例えば30%)より大きい場合、第1のヒータ76Aおよび第2のヒータ76Bの両方が最大出力で作動する。また例えば、室内湿度センサ90の測定値と設定値との差が上述の所定値より小さい場合、第1のヒータ76Aおよび第2のヒータ76Bの一方のみが作動し、その出力値を調節する。
 また、例えば室内湿度センサ90の測定値と設定値とが略一致するなどの場合、第1のヒータ76Aおよび第2のヒータ76Bの出力を一定に維持した状態で、第1のファン66の回転数を調節してもよい。室内湿度センサ90の測定値に基づいて第1のファン66の回転数を調節することにより、第1のヒータ76Aおよび第2のヒータ76Bによって調節する場合に比べて、調節可能範囲は小さいものの、室内湿度を素早く調節することができる。
 さらに、第1のヒータ76Aおよび第2のヒータ76Bの出力調節は、吸収材58が保持する水分量に基づいて実行されてもよい。吸収材58から奪って保持できる室外空気Aoutの水分量は、その温度、すなわち第1のヒータ76Aおよび第2のヒータ76Bの出力によって決まる。したがって、最大出力の第1のヒータ76Aおよび第2のヒータ76Bによって加熱された室外空気Aoutが保持できる水分量に比べて吸収材58が保持する水分量が少ない場合、電力が無駄に消費されて室外空気Aoutが加熱されることになる。このようなヒータの無駄な電力消費を抑制するために、第1のヒータ76Aおよび第2のヒータ76Bの出力調節は、吸収材58が保持する水分量に基づいて実行されるのが好ましい。なお、吸収材58が保持する水分量は、例えば、室外Routの湿度と第2のファン84の回転時間に基づいて推定することができる。この場合、室外機30に室外湿度を測定する室外湿度センサ(図示せず)が設けられる。
 さらにまた、図11に示すように、空気調和機10の空調運転停止後(タイミングTe後)、第2のファン84が所定の時間作動してもよい。この場合、室内機20のファン24、室外機30のファン34、および圧縮機36が停止しているにもかかわらず、換気装置50の第2のファン84が回転する。これにより、空気調和機10の空調運転停止後、吸収材58に水分が蓄えられる。その結果、その後の空調運転の開始と同時に加湿運転が実行された場合、吸収材58の水分の保持量が不足なく十分な状態で、加湿運転を確実に実行することができる。すなわち、空調運転の開始後すぐに、室内Rinの加湿を十分に且つ素早く行うことができる。
 加えて、図11に示すように、空気調和機10の空調運転開始前(タイミングT0前)に、第2のファン84が作動し始めてもよい。これにより、空気調和機10の空調運転開始前に、吸収材58に水分が蓄えられる。その結果、その後の空調運転の開始と同時に加湿運転が実行された場合、吸収材58の水分の保持量が不足なく十分な状態で、加湿運転を確実に実行することができる。なお、この場合、図1に示すコントローラ42が、ユーザによる空調運転の開始時間の設定操作が可能に構成されており、その開始時間の所定の時間前から第2のファン84が回転し始める。所定の時間は、例えば、吸収材58の水分の保持量がゼロから最大になるまでに要する時間である。
 次に、換気装置50の除湿運転と再生運転について説明する。
 図12は、換気装置50の除湿運転と再生運転とを示す図である。また、図13は、除湿運転と再生運転のタイミングチャートである。
 図12および13に示すように、換気装置50の除湿運転は、第1のヒータ76Aおよび第2のヒータ76Bが停止した状態(OFF状態)で行われる。また、除湿運転中、第1のファン66が回転し、第2のファン84が停止する。そして、除湿運転中、ダンパ74aが室外空気Aoutを室内機20に振り向けるために、排気口52eを閉じる(IN状態)。
 このような除湿運転によれば、室外空気Aoutが、加熱されることなく、吸収材58を通過する。それにより、室外空気Aoutは、その水分を吸収材58によって捕集され、乾燥された状態で室内Rinに供給される。その結果、室内Rinが除湿される。
 除湿運転を継続中、吸収材58は室外空気Aoutの水分を捕集し続ける。そのため、吸収材58は、いずれは、これ以上水分を保持することができない飽和状態に至る。そこで、吸収材58の捕集能力を再生させる再生運転が実行される。
 図12および13に示すように、換気装置50の再生運転は、第1のヒータ76Aおよび第2のヒータ76Bが作動した状態(ON状態)で行われる。また、再生運転中、第1のファン66が回転し、第2のファン84が停止する。そして、再生運転中、ダンパ74aが室外空気Aoutを室内機20ではなく室外Routに振り向けるために、排気口52dを閉じる(OUT状態)。
 このような再生運転によれば、第1のヒータ76Aおよび第2のヒータ76Bの両方によって加熱された室外空気Aoutが、吸収材58が保持する水分を奪って室外Routに排出される。その結果、吸収材58が乾燥し、その水分捕集能力が再生される。
 再生運転は、除湿運転と対で実行される。具体的には、除湿運転の継続時間が、吸収材58が飽和状態になるまでの時間に比べて長い場合に、再生運転は実行される。この場合、図13に示すように、除湿運転と再生運転は交互に実行される。これにより、除湿運転が断続的に継続される。
 図14は、換気装置50の換気運転を示す図である。
 図14に示すように、換気装置50の換気運転は、第1のヒータ76Aおよび第2のヒータ76Bが停止した状態(OFF状態)で行われる。また、換気運転中、第1のファン66が回転し、第2のファン84が停止する。そして、換気運転中、ダンパ74aが室外空気Aoutを室内機20に振り向けるために、排気口52eを閉じる(IN状態)。
 このような換気運転によれば、室外空気Aoutがそのまま室内Rinに供給される。
 その結果、室内Rinが換気される。
 これらの換気装置50の加湿運転、除湿運転、および換気運転のいずれを実行するかは、例えば、ユーザが決定する。例えば、ユーザがコントローラ42を介して換気装置50の運転を選択することにより、加湿運転、除湿運転、および換気運転のうち、ユーザに選択された運転が実行される。また、コントローラ42を介してユーザが室内湿度を設定することが可能に、空気調和機10が構成されている場合、室内湿度センサ90の測定値が設定値になるように、加湿運転と除湿運転とが選択的に実行される。なお、再生運転は、ユーザの操作ではなく、除湿運転の継続時間や吸収材58の水分保持量に基づいて実行される。
 なお、換気装置50の運転(特に加湿運転)によって室外空気Aoutが図1に示す換気導管56に流れると、周囲の環境や季節によっては、結露が生じて換気導管56内に水が溜まる可能性がある。具体的には、換気導管56において最下部に水が溜まる場合がある。
 本実施の形態の場合、図2に示すように、換気導管56は、室外機30の側面に固定された固定配管92と、固定配管92と室内機20とを接続する換気ホース(図示せず)と、コネクタ94とを含んでいる。コネクタ94は、換気ホースの先端に取り付けられて固定配管92の先端部92aに対して着脱可能に接続する。固定配管92の先端部92aが、換気導管56において最も下に位置し、水が溜まる可能性がある。
 図15は換気導管56の一部分の分解図である。また、図16は換気導管56の一部分の断面図である。
 図16に示すように、固定配管92の先端部92aにおける最下部には、貫通穴92bが形成されている。すなわち、換気導管56は、換気導管56の最下部に貫通穴92bを備える。この貫通穴92bを介して、換気導管56に溜まった水が外部に排出される。なお、室外機30から室内機20に向かう室外空気Aoutが貫通穴92bを介して外部に漏れないように、固定配管92(すなわち換気導管56)は、室外機30側から延在して貫通穴92bを覆う半円筒状のフード部92cを備えている。なお、本実施の形態では、フード部92cは半円筒状であるが、他の形状、例えば三角形状、矩形状または多角形状であってもよい。
 さらには、フード部92cに入って貫通穴92bに至る水の流路は、水の流れる向きが室外空気Aoutの向きと逆方向になるように設けられており、それにより室外空気Aoutがフード部92cに入って貫通穴92bから無駄に抜けることが抑制されている。また、貫通穴92bの径は2.5mm以上が望ましい。これは、水滴の径が2mm程度であり、貫通穴92bにブリッジして塞いでしまわないようにするためである。
 以上のように、本実施の形態に係る空気調和機10は、室内Rinの加湿量をよりきめ細やかに制御することができる。
 このように、本開示の実施の形態に係る空気調和機10は、室内機20と室外機30とを備える空気調和機であって、吸収材58と、第1の流路(流路R1)と、第2の流路(流路R2)と、第1のヒータ76Aと、第2のヒータ76Bと、を有する。ここで、流路R1は、本開示に係る第1の流路の一例であり、流路R2は、本開示に係る第2の流路の一例である。吸収材58は、室外空気Aoutの水分を吸収する。第1の流路(流路R1)は、吸収材58を通過し、室外Routと室内機20内とを接続し、室外空気Aoutが流れる。第2の流路(流路R2)は、吸収材58を通過し、室外Routと室内機20内とを接続し、室外空気Aoutが流れる。第1のヒータ76Aは、第1の流路(流路R1)における吸収材58に対する上流側で室外空気Aoutを加熱する。第2のヒータ76Bは、第2の流路(流路R2)における吸収材58に対する上流側で室外空気Aoutを加熱する。そして、本開示の実施の形態に係る空気調和機10は、第1のヒータ76Aおよび第2のヒータ76Bの少なくとも一方が室外空気Aoutを加熱し、加熱された室外空気Aoutが吸収材58の水分を奪って室内機20に向かう加湿運転を実行する。
 また、本開示の実施の形態に係る空気調和機10では、第1のヒータ76Aおよび第2のヒータ76Bが、出力調節可能なヒータである。
 また、本開示の実施の形態に係る空気調和機10では、吸収材58が保持する水分量に基づいて、第1のヒータ76Aおよび第2のヒータ76Bそれぞれの出力が調節される。
 また、本開示の実施の形態に係る空気調和機10は、室内機20に設けられ、室内湿度を測定し、室内湿度の測定値を出力する室内湿度センサ90を、さらに有する。そして、本開示の実施の形態に係る空気調和機10では、室内湿度センサ90によって出力された室内湿度の測定値に基づいて、第1のヒータ76Aおよび第2のヒータ76Bそれぞれの出力が調節される。
 また、本開示の実施の形態に係る空気調和機10では、第1の流路(流路R1)および第2の流路(流路R2)が、吸収材58の通過後に互いに合流する合流路を含む。また、本開示の実施の形態に係る空気調和機10は、ファン(第1のファン66)と、室内湿度センサ90と、をさらに有する。ここで、第1のファン66は、本開示に係るファンの一例である。ファン(第1のファン66)は、合流路に設けられ、室内機20内に向かう室外空気Aoutの流れを発生させる。室内湿度センサ90は、室内機20に設けられ、室内湿度を測定し、室内湿度の測定値を出力する。そして、本開示の実施の形態に係る空気調和機10では、第1のヒータ76Aおよび第2のヒータ76Bそれぞれの出力を一定に維持しつつ、室内湿度センサ90によって出力された室内湿度の測定値に基づいて、ファン(第1のファン66)の回転数が調節される。
 また、本開示の実施の形態に係る空気調和機10では、第1のヒータ76Aおよび第2のヒータ76Bが、PTCヒータである。
 また、本開示の実施の形態に係る空気調和機10では、吸収材58が、高分子収着材である。
 また、本開示の実施の形態に係る空気調和機10では、第1の流路(流路R1)および第2の流路(流路R2)が、室外空気Aoutが通過するラビリンスを含んでいる。
 なお、本開示の実施の形態に係る空気調和機10は、室内機20と室外機30とを備え、室外機30が換気装置50を有すると説明した。しかしながら、本開示の実施の形態に係る空気調和機10は、室外機30と換気装置50とを別構成とし、すなわち、室内機20と、室外機30と、換気装置50とを備えるよう変形してもよい(変形例1)。さらに、本開示の実施の形態に係る空気調和機10は、室内機20と室外機30とを備え、吸収材58と、第1の流路(流路R1)と、第2の流路(流路R2)と、第1のヒータ76Aと、第2のヒータ76Bと、を少なくとも有するよう変形してもよい(変形例2)。
 以上、上述の実施の形態(変形例1、2を含む)を挙げて本開示を説明したが、本開示は上述の実施の形態に限定されない。
 例えば、上述の実施の形態の場合、室外空気Aoutを加熱する加熱手段として、第1のヒータ76Aおよび第2のヒータ76Bが設けられている。しかしながら、加熱手段としてのヒータの数はこれに限らない。室外空気Aoutを加熱する手段は、3つ以上であってもよい。
 また、上述の実施の形態の場合、除湿運転は、室内湿度を低下させるために実行されるが、除湿運転を実行する目的はこれに限らない。例えば、冷房運転後に水滴がついた室内機20の熱交換器22を乾燥させるために、除湿運転が実行されてよい。この場合、除湿運転によって乾燥した室外空気Aoutが熱交換器22に向かって吹き付けられるように、室内機20が構成される。
 すなわち、本開示の実施の形態に係る空気調和機は、広義には、室内機と室外機とを備える空気調和機であって、吸収材と、第1の流路と、第2の流路と、第1のヒータと、第2のヒータと、を有する。吸収材は、室外空気の水分を吸収する。第1の流路は、吸収材を通過し、室外と室内機内とを接続し、室外空気が流れる。第2の流路は、吸収材を通過し、室外と室内機内とを接続し、室外空気が流れる。第1のヒータは、第1の流路における吸収材に対する上流側で室外空気を加熱する。第2のヒータは、第2の流路における吸収材に対する上流側で室外空気を加熱する。そして、本開示の実施の形態に係る空気調和機は、第1のヒータおよび第2のヒータの少なくとも一方が室外空気を加熱し、加熱された室外空気が吸収材の水分を奪って室内機に向かう加湿運転を実行する。
 本開示は、室内機と室外機を備える空気調和機であれば適用可能である。
 10  空気調和機
 20  室内機
 22  熱交換器
 24  ファン
 30  室外機
 32  熱交換器
 34  ファン
 36  圧縮機
 38  膨張弁
 40  冷媒配管
 42  コントローラ
 50  換気装置
 52  筺体
 52a  吸気口
 52b  吸気口
 52c  吸気口
 52d  排気口
 52e  排気口
 52f  排気口
 52g  底板部
 52h  円筒状部
 52j  シール部
 54  天板
 56  換気導管
 58  吸収材
 58a  上面
 58b  下面
 60  ホルダ
 62  ギヤ
 64  吸収材用モータ
 66  第1のファン
 68  隔壁板
 68a  円筒状部
 68b  開口
 68c  開口
 68d  貫通穴
 70  ファンカバー
 72  モータ
 74  ダンパ装置
 74a  ダンパ
 76A  第1のヒータ
 76B  第2のヒータ
 78  隔壁板
 78a  貫通穴
 78b  吸収材収容部
 78c  シール部
 80  ヒータカバー
 80a  側壁部
 82  トレイ
 84  第2のファン
 86  モータ
 88  シール部材
 90  室内湿度センサ
 92  固定配管
 92a  先端部
 92b  貫通穴
 92c  フード部
 94  コネクタ
 Ain  室内空気
 Aout  室外空気
 C1  回転中心線
 R1  流路
 R2  流路
 R3  流路
 Rin  室内
 Rout  室外
 S1  上側空間
 S2  下側空間
 S3  上側空間
 S4  下側空間
 T0  タイミング
 Te  タイミング

Claims (8)

  1.  室内機と室外機とを備える空気調和機であって、
     室外空気の水分を吸収する吸収材と、
     前記吸収材を通過し、室外と前記室内機内とを接続し、前記室外空気が流れる第1の流路と、
     前記吸収材を通過し、前記室外と前記室内機内とを接続し、前記室外空気が流れる第2の流路と、
     前記第1の流路における前記吸収材に対する上流側で前記室外空気を加熱する第1のヒータと、
     前記第2の流路における前記吸収材に対する上流側で前記室外空気を加熱する第2のヒータと、を有し、
     前記第1のヒータおよび前記第2のヒータの少なくとも一方が前記室外空気を加熱し、加熱された前記室外空気が前記吸収材の前記水分を奪って前記室内機に向かう加湿運転を実行する、
    空気調和機。
  2.  前記第1のヒータおよび前記第2のヒータが、出力調節可能なヒータである、
    請求項1に記載の空気調和機。
  3.  前記吸収材が保持する水分量に基づいて、前記第1のヒータおよび前記第2のヒータそれぞれの出力が調節される、
    請求項2に記載の空気調和機。
  4.  前記室内機に設けられ、室内湿度を測定し、前記室内湿度の測定値を出力する室内湿度センサを、さらに有し、
     前記室内湿度センサによって出力された前記室内湿度の前記測定値に基づいて、前記第1のヒータおよび前記第2のヒータそれぞれの出力が調節される、
    請求項2または3に記載の空気調和機。
  5.  前記第1の流路および前記第2の流路が、前記吸収材の通過後に互いに合流する合流路を含み、
     前記合流路に設けられ、前記室内機内に向かう前記室外空気の流れを発生させるファンと、
     前記室内機に設けられ、室内湿度を測定し、前記室内湿度の測定値を出力する室内湿度センサと、をさらに有し、
     前記第1のヒータおよび前記第2のヒータそれぞれの出力を一定に維持しつつ、前記室内湿度センサによって出力された前記室内湿度の測定値に基づいて、前記ファンの回転数が調節される、
    請求項1から3のいずれか一項に記載の空気調和機。
  6.  前記第1のヒータおよび前記第2のヒータが、PTC(Positive Temperature Coefficient)ヒータである、
    請求項1から5のいずれか一項に記載の空気調和機。
  7.  前記吸収材が、高分子収着材である、
    請求項1から6のいずれか一項に記載の空気調和機。
  8.  前記第1の流路および前記第2の流路が、前記室外空気が通過するラビリンスを含んでいる、
    請求項1から7のいずれか一項に記載の空気調和機。
PCT/JP2021/028704 2020-10-05 2021-08-03 空気調和機 WO2022074918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237003380A KR20230078996A (ko) 2020-10-05 2021-08-03 공기 조화기
CN202180055359.7A CN116157633A (zh) 2020-10-05 2021-08-03 空调机
EP21877222.6A EP4227593A4 (en) 2020-10-05 2021-08-03 AIR CONDITIONER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168618 2020-10-05
JP2020168618A JP7126175B2 (ja) 2020-10-05 2020-10-05 空気調和機

Publications (1)

Publication Number Publication Date
WO2022074918A1 true WO2022074918A1 (ja) 2022-04-14

Family

ID=81125263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028704 WO2022074918A1 (ja) 2020-10-05 2021-08-03 空気調和機

Country Status (5)

Country Link
EP (1) EP4227593A4 (ja)
JP (1) JP7126175B2 (ja)
KR (1) KR20230078996A (ja)
CN (1) CN116157633A (ja)
WO (1) WO2022074918A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436897B1 (ja) 2022-09-09 2024-02-22 ダイキン工業株式会社 換気装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297626A (ja) * 1985-10-23 1987-05-07 San Plant:Kk 回転式乾式除湿機
JPH07178312A (ja) * 1993-12-24 1995-07-18 Matsushita Seiko Co Ltd 除湿装置および加湿装置
JPH08178350A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 調湿装置および調湿機能付空気調和機
JP2001091000A (ja) 1999-09-27 2001-04-03 Daikin Ind Ltd 加湿機能を有する空気調和機
JP2003262427A (ja) * 2002-03-08 2003-09-19 Denso Corp エンジン駆動式システムの換気制御装置
JP2011085289A (ja) * 2009-10-14 2011-04-28 Daikin Industries Ltd 空気調和機
JP2017044395A (ja) * 2015-08-25 2017-03-02 ダイキン工業株式会社 空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398897B1 (ko) * 2007-04-11 2014-07-01 삼성전자주식회사 환기장치 및 이를 갖춘 공기조화기
JP6297626B2 (ja) 2016-06-17 2018-03-20 株式会社平和 遊技機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297626A (ja) * 1985-10-23 1987-05-07 San Plant:Kk 回転式乾式除湿機
JPH07178312A (ja) * 1993-12-24 1995-07-18 Matsushita Seiko Co Ltd 除湿装置および加湿装置
JPH08178350A (ja) * 1994-12-28 1996-07-12 Matsushita Electric Ind Co Ltd 調湿装置および調湿機能付空気調和機
JP2001091000A (ja) 1999-09-27 2001-04-03 Daikin Ind Ltd 加湿機能を有する空気調和機
JP2003262427A (ja) * 2002-03-08 2003-09-19 Denso Corp エンジン駆動式システムの換気制御装置
JP2011085289A (ja) * 2009-10-14 2011-04-28 Daikin Industries Ltd 空気調和機
JP2017044395A (ja) * 2015-08-25 2017-03-02 ダイキン工業株式会社 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227593A4

Also Published As

Publication number Publication date
KR20230078996A (ko) 2023-06-05
JP7126175B2 (ja) 2022-08-26
EP4227593A4 (en) 2024-02-28
EP4227593A1 (en) 2023-08-16
JP2022060876A (ja) 2022-04-15
CN116157633A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2022074919A1 (ja) 空気調和機
JP2007010216A (ja) 換気装置
JP3786090B2 (ja) 空気調和機および空気調和機の制御方法
JP2010281476A (ja) 調湿装置
JP5014378B2 (ja) 除湿乾燥機
WO2022074918A1 (ja) 空気調和機
WO2022074917A1 (ja) 空気調和機
WO2022074920A1 (ja) 空気調和機
JP2008164203A (ja) デシカント空調装置
JP5007098B2 (ja) 吸着体、調湿装置及び空気調和機の室内機
WO2022074921A1 (ja) 空気調和機
JP2010043848A (ja) 空気調和機
WO2022172485A1 (ja) 換気装置及び換気装置を備える空気調和機
JP2011012846A (ja) 調湿装置
JP3835920B2 (ja) 温風器
KR100624729B1 (ko) 공기조화기
JP2010259994A (ja) 除湿乾燥機
JP2009024917A (ja) 吸着体装置、調湿装置及び空気調和機の室内機
JP2024041238A (ja) 空気調和装置、及び空気調和装置の制御方法
JP2000300933A (ja) 除湿装置
CN114729763A (zh) 空调系统
JP2000081228A (ja) 除湿及び加湿機能付き換気装置
JPH09243108A (ja) 空気調和機および空気調和機用室内ユニット
JP2010259980A (ja) 除湿乾燥機
JP2009109117A (ja) 調湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877222

Country of ref document: EP

Effective date: 20230508