WO2022074903A1 - 炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2022074903A1
WO2022074903A1 PCT/JP2021/027708 JP2021027708W WO2022074903A1 WO 2022074903 A1 WO2022074903 A1 WO 2022074903A1 JP 2021027708 W JP2021027708 W JP 2021027708W WO 2022074903 A1 WO2022074903 A1 WO 2022074903A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
reference mark
single crystal
crystal substrate
position coordinates
Prior art date
Application number
PCT/JP2021/027708
Other languages
English (en)
French (fr)
Inventor
隆 櫻田
太郎 西口
哲郎 近藤
直樹 松本
信 佐々木
裕史 山本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US18/029,903 priority Critical patent/US20230369411A1/en
Priority to CN202180067424.8A priority patent/CN116490646A/zh
Priority to JP2022555273A priority patent/JPWO2022074903A1/ja
Publication of WO2022074903A1 publication Critical patent/WO2022074903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54433Marks applied to semiconductor devices or parts containing identification or tracking information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Definitions

  • the present disclosure relates to a method for manufacturing a silicon carbide substrate, a silicon carbide single crystal substrate, and a silicon carbide semiconductor device.
  • This application claims priority based on Japanese Patent Application No. 2020-169062, which is a Japanese patent application filed on October 6, 2020. All the contents of the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 4-62858 (Patent Document 1) describes a method for observing and analyzing foreign substances. In this method, a coordinate system is set by providing a coordinate reference on the wafer.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-269286 (Patent Document 2) describes a method for identifying a defect position on a semiconductor substrate. In this method, the position of the defect is specified based on the coordinate values in the coordinate system of the affine transformation and the defect evaluation device.
  • the method for manufacturing a silicon carbide semiconductor device includes the following steps.
  • a reference mark serving as a reference for two-dimensional position coordinates is formed.
  • at least one of polishing or cleaning is performed on the reference mark forming surface of the silicon carbide substrate.
  • the position coordinates of the defect on the silicon carbide substrate are specified.
  • the device active region is formed on the silicon carbide substrate.
  • the position coordinates of the element active region are specified based on the reference mark.
  • the quality of the element active region is determined by associating the position coordinates of the defect with the position coordinates of the element active region.
  • the silicon carbide substrate according to the present disclosure is a silicon carbide substrate including a silicon carbide single crystal substrate and a silicon carbide epitaxial film provided on the silicon carbide single crystal substrate, and includes an outer peripheral edge and a main surface. There is.
  • the main surface is surrounded by an outer peripheral edge.
  • the main surface includes an outer peripheral region which is a region within 5 mm from the outer peripheral edge and a central region surrounded by the outer peripheral region.
  • a plurality of reference marks that serve as a reference for the two-dimensional position coordinates are provided in the outer peripheral region of the silicon carbide epitaxial film.
  • the silicon carbide single crystal substrate according to the present disclosure includes an outer peripheral edge and a main surface surrounded by the outer peripheral edge.
  • the main surface includes an outer peripheral region which is a region within 5 mm from the outer peripheral edge and a central region surrounded by the outer peripheral region.
  • a plurality of reference marks that serve as a reference for the two-dimensional position coordinates are provided in the outer peripheral region.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide single crystal substrate according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is an enlarged plan view showing the configuration of the reference mark.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is an enlarged plan schematic view showing the configuration of the reference mark of the silicon carbide single crystal substrate according to the second embodiment.
  • FIG. 6 is a schematic cross-sectional view taken along the VI-VI line of FIG.
  • FIG. 7 is an enlarged plan schematic view showing the configuration of the reference mark of the silicon carbide single crystal substrate according to the third embodiment.
  • FIG. 1 is a schematic plan view showing the configuration of a silicon carbide single crystal substrate according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is an enlarged plan view showing the configuration of
  • FIG. 8 is a schematic cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 9 is a schematic plan view showing the configuration of the silicon carbide single crystal substrate according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view taken along the line XX of FIG.
  • FIG. 11 is a schematic plan view showing the configuration of the silicon carbide substrate according to the fifth embodiment.
  • FIG. 12 is a schematic cross-sectional view taken along the line XII-XII of FIG.
  • FIG. 13 is a flow chart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the sixth embodiment.
  • FIG. 14 is a schematic cross-sectional view showing a process of forming a reference mark on a silicon carbide single crystal substrate.
  • FIG. 15 is a schematic plan view showing a step of specifying the position coordinates of defects in the silicon carbide single crystal substrate based on the reference mark.
  • FIG. 16 is a schematic cross-sectional view showing a process of forming a silicon carbide epitaxial film on a silicon carbide single crystal substrate.
  • FIG. 17 is a schematic plan view showing a step of specifying the position coordinates of defects in the silicon carbide epitaxial film based on the reference mark.
  • FIG. 18 is a schematic cross-sectional view showing a process of forming an element active region on a silicon carbide epitaxial film.
  • FIG. 19 is a schematic plan view showing a step of determining the quality of the element active region.
  • FIG. 20 is a schematic cross-sectional view showing a process of forming a gate insulating film.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of a silicon carbide semiconductor device.
  • FIG. 22 is a flow chart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the seventh embodiment.
  • FIG. 23 is a schematic plan view showing a step of adjusting the formation position of the element active region based on the position coordinates of the defect.
  • FIG. 24 is a flow chart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the eighth embodiment.
  • FIG. 25 is a schematic cross-sectional view showing a process of preparing a silicon carbide single crystal substrate.
  • FIG. 26 is a schematic cross-sectional view showing a process of forming a silicon carbide epitaxial film on a silicon carbide single crystal substrate.
  • FIG. 27 is a schematic cross-sectional view showing a process of forming a reference mark on the silicon carbide epitaxial film.
  • FIG. 28 is a schematic cross-sectional view showing a process of forming an element active region on a silicon carbide epitaxial film.
  • FIG. 29 is a flow chart schematically showing a method for manufacturing the silicon carbide semiconductor device according to the ninth embodiment.
  • FIG. 30 is a schematic cross-sectional view showing a process of forming a first silicon carbide epitaxial film on a silicon carbide single crystal substrate.
  • FIG. 31 is a schematic cross-sectional view showing a process of forming a reference mark on the first silicon carbide epitaxial film.
  • FIG. 32 is a schematic cross-sectional view showing a step of forming a second silicon carbide epitaxial film on the first silicon carbide epitaxial film.
  • FIG. 33 is a schematic cross-sectional view showing a step of forming an element active region on the second silicon carbide epitaxial film.
  • An object of the present disclosure is to provide a method for manufacturing a silicon carbide substrate, a silicon carbide single crystal substrate, and a silicon carbide semiconductor device capable of accurately determining the quality of an element active region.
  • a silicon carbide substrate, a silicon carbide single crystal substrate, and a silicon carbide semiconductor device capable of accurately determining the quality of an element active region According to the present disclosure, it is possible to provide a method for manufacturing a silicon carbide substrate, a silicon carbide single crystal substrate, and a silicon carbide semiconductor device capable of accurately determining the quality of an element active region.
  • the method for manufacturing the silicon carbide semiconductor device 300 includes the following steps.
  • a reference mark 3 that serves as a reference for two-dimensional position coordinates is formed on the silicon carbide substrate 1 including the silicon carbide single crystal substrate 61 and the silicon carbide epitaxial film 62 provided on the silicon carbide single crystal substrate 61.
  • After forming the reference mark 3, at least one of polishing and cleaning is performed on the reference mark forming surface of the silicon carbide substrate 1.
  • the position coordinates of the defect 80 on the silicon carbide substrate 1 are specified.
  • the device active region 90 is formed on the silicon carbide substrate 1.
  • the position coordinates of the element active region 90 are specified based on the reference mark 3.
  • the quality of the element active region 90 is determined by associating the position coordinates of the defect 80 with the position coordinates of the element active region 90. Polishing of the reference mark forming surface may be performed only on the reference mark forming surface (single-sided polishing), or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface. Good (double-sided polishing).
  • the position coordinates of the defect 80 on the silicon carbide substrate 1 are specified based on the reference mark 3.
  • the device active region 90 is formed on the silicon carbide substrate 1.
  • the position coordinates of the element active region 90 are specified based on the reference mark 3.
  • the quality of the element active region 90 is determined by associating the position coordinates of the defect 80 with the position coordinates of the element active region 90.
  • the defect rate of the element due to the defect 80 can be accurately estimated. Based on the defect rate of the element, the optimum design of the element structure or the element arrangement becomes possible.
  • the formation position of the element active region 90 is the position coordinate of the defect 80. It may be adjusted based on. Thereby, the device active region 90 can be formed so as to avoid the defect 80. Therefore, the yield of the element can be improved.
  • the reference mark 3 may be provided on the silicon carbide single crystal substrate 61.
  • the device active region 90 may be provided on the silicon carbide epitaxial film 62.
  • the reference mark 3 is provided on the silicon carbide single crystal substrate 61, after the reference mark is formed, it is polished on the reference mark forming surface in order to remove irregularities and distortions in the vicinity of the reference mark due to processing, foreign matter such as dust and dirt. It is desirable to perform processing and then clean the reference mark forming surface.
  • the polishing process may be performed only on the reference mark forming surface, or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface.
  • the silicon carbide epitaxial film 62 provided above the reference mark 3 may be removed by etching or the like until the silicon carbide single crystal substrate 61 is exposed.
  • the etching of the silicon carbide epitaxial film 62 may be performed until the silicon carbide single crystal substrate 61 is exposed, or may be stopped before the silicon carbide single crystal substrate 61 is exposed. When the etching is stopped before the silicon carbide single crystal substrate 61 is exposed, the silicon carbide epitaxial film 62 may remain above the reference mark 3.
  • each of the reference mark 3 and the element active region 90 may be provided on the silicon carbide epitaxial film 62.
  • the reference mark 3 is provided on the silicon carbide epitaxial film 62, the reference mark forming surface is polished or washed after the reference mark 3 is formed.
  • the reference mark 3 may be formed by laser processing. If the reference mark 3 is an indentation, dust may be generated when the reference mark 3 is formed. By forming the reference mark 3 by laser processing, it is possible to suppress the generation of dust. Therefore, the yield of the element can be further improved. Further, when the reference mark 3 is an indentation, it is difficult to form the reference mark 3 deeply. Therefore, if the reference mark forming surface is polished in order to remove irregularities and distortions in the vicinity of the reference mark that occur when the reference mark 3 is processed, the reference mark 3 may disappear. In this case, it becomes difficult to discriminate the reference mark 3.
  • the reference mark 3 By forming the reference mark 3 by laser processing, the reference mark 3 can be formed deeply. Therefore, in order to remove the unevenness and distortion in the vicinity of the reference mark generated when the reference mark 3 is processed, the reference mark forming surface can be polished. Further, at the time of alignment, the reference mark 3 can be accurately discriminated. Further, when the reference mark 3 is an indentation, a crack may occur in the substrate on which the reference mark 3 is formed. By forming the reference mark 3 by laser processing, it is possible to suppress the occurrence of cracks on the substrate.
  • the reference mark 3 When the reference mark 3 is provided on the silicon carbide single crystal substrate 61, after the reference mark is formed, it is polished on the reference mark forming surface in order to remove irregularities and distortions in the vicinity of the reference mark due to processing, foreign matter such as dust and dirt. It is desirable to perform processing and then clean the reference mark forming surface.
  • the polishing process may be performed only on the reference mark forming surface, or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface.
  • the reference mark 3 is provided on the silicon carbide epitaxial film 62, the reference mark forming surface is polished or washed after the reference mark 3 is formed.
  • the reference mark 3 may be formed by etching. If the reference mark 3 is an indentation, dust may be generated when the reference mark 3 is formed. By forming the reference mark 3 by etching, it is possible to suppress the generation of dust. Therefore, the yield of the element can be further improved. Further, when the reference mark 3 is an indentation, it is difficult to form the reference mark 3 deeply. Therefore, if the reference mark forming surface is polished in order to remove irregularities and distortions in the vicinity of the reference mark that occur when the reference mark 3 is processed, the reference mark 3 may disappear. In this case, it becomes difficult to discriminate the reference mark 3.
  • the reference mark 3 By forming the reference mark 3 by etching, the reference mark 3 can be formed deeply. Therefore, in order to remove the unevenness and distortion in the vicinity of the reference mark generated when the reference mark 3 is processed, the reference mark forming surface can be polished. Further, at the time of alignment, the reference mark 3 can be accurately discriminated. Further, when the reference mark 3 is an indentation, a crack may occur in the substrate on which the reference mark 3 is formed. By forming the reference mark 3 by etching, it is possible to suppress the occurrence of cracks on the substrate.
  • the reference mark 3 When the reference mark 3 is provided on the silicon carbide single crystal substrate 61, after the reference mark is formed, it is polished on the reference mark forming surface in order to remove irregularities and distortions in the vicinity of the reference mark due to processing, foreign matter such as dust and dirt. It is desirable to perform processing and then clean the reference mark forming surface.
  • the polishing process may be performed only on the reference mark forming surface, or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface.
  • the reference mark 3 is provided on the silicon carbide epitaxial film 62, the reference mark forming surface is polished or washed after the reference mark 3 is formed.
  • the silicon carbide substrate 1 is a silicon carbide substrate 1 including a silicon carbide single crystal substrate 61 and a silicon carbide epitaxial film 62 provided on the silicon carbide single crystal substrate 61, and is an outer peripheral edge. 2 and a main surface 10 are provided.
  • the main surface 10 is surrounded by the outer peripheral edge 2.
  • the main surface 10 includes an outer peripheral region 12 which is a region within 5 mm from the outer peripheral edge 2 and a central region 11 surrounded by the outer peripheral region 12.
  • a plurality of reference marks 3 that serve as a reference for two-dimensional position coordinates are provided in the outer peripheral region 12 of the silicon carbide epitaxial film 62. As a result, it is possible to secure a wider area of the region where the element is formed, as compared with the case where the reference mark 3 is provided in the central region 11.
  • the distance between each of the plurality of reference marks 3 may be 30 mm or more when viewed in a direction perpendicular to the main surface 10. .. This makes it possible to accurately identify the position coordinates of the defect 80.
  • the diameter of the minimum virtual circle surrounding each of the plurality of reference marks 3 when viewed in a direction perpendicular to the main surface 10 is It may be larger than 10 ⁇ m and less than 3 mm. As a result, the reference mark 3 can be accurately discriminated at the time of alignment.
  • the depth of each of the plurality of reference marks 3 in the direction perpendicular to the main surface 10 is silicon carbide epitaxial. It is desirable that the thickness of the film 62 is about 1/10 to 10 times. The depth of each of the plurality of reference marks 3 may be, for example, greater than 0.5 ⁇ m and less than 100 ⁇ m.
  • the growth conditions for example, growth temperature and C / Si ratio
  • the silicon carbide epitaxial film 62 are formed by forming the reference mark 3 having the above-mentioned depth. Even if the shape of the reference mark 3 formed by being taken over by the silicon carbide epitaxial film 62 is slightly deformed, the reference mark 3 can be accurately discriminated at the time of alignment.
  • each of the plurality of reference marks 3 has a cross shape when viewed in a direction perpendicular to the main surface 10. You may be doing it. As a result, the reference mark 3 can be accurately discriminated at the time of alignment.
  • the silicon carbide single crystal substrate 61 includes an outer peripheral edge 2 and a main surface 10 surrounded by the outer peripheral edge 2.
  • the main surface 10 includes an outer peripheral region 12 which is a region within 5 mm from the outer peripheral edge 2 and a central region 11 surrounded by the outer peripheral region 12.
  • a plurality of reference marks 3 that serve as a reference for the two-dimensional position coordinates are provided in the outer peripheral region 12.
  • the distance between each of the plurality of reference marks 3 may be 30 mm or more when viewed in a direction perpendicular to the main surface 10. ..
  • the diameter of the minimum virtual circle surrounding each of the plurality of reference marks 3 when viewed in a direction perpendicular to the main surface 10 is the diameter. It may be larger than 10 ⁇ m and less than 3 mm.
  • the depth of each of the plurality of reference marks 3 is 0 in the direction perpendicular to the main surface 10. It may be larger than .5 ⁇ m and less than 100 ⁇ m.
  • each of the plurality of reference marks 3 has a cross shape when viewed in a direction perpendicular to the main surface 10. May have.
  • FIG. 1 is a schematic plan view showing the configuration of the silicon carbide single crystal substrate 61 according to the first embodiment.
  • the silicon carbide single crystal substrate 61 according to the first embodiment mainly has a first main surface 10 and an outer peripheral edge 2.
  • the first main surface 10 is surrounded by the outer peripheral edge 2.
  • the first main surface 10 includes a central region 11 and an outer peripheral region 12.
  • the outer peripheral region 12 is a region within 5 mm from the outer peripheral edge 2.
  • the central region 11 is surrounded by the outer peripheral region 12.
  • the first main surface 10 is composed of a central region 11 and an outer peripheral region 12. In the radial direction of the first main surface 10, the distance W2 between the boundary between the central region 11 and the outer peripheral region 12 and the outer peripheral edge 2 is 5 mm.
  • the outer peripheral edge 2 has, for example, an orientation flat 2a and an arc-shaped portion 2b.
  • the orientation flat 2a extends along the first direction X. As shown in FIG. 1, the orientation flat 2a is linear when viewed in a direction perpendicular to the first main surface 10.
  • the arc-shaped portion 2b is connected to the orientation flat 2a.
  • the arcuate portion 2b has an arcuate shape when viewed in a direction perpendicular to the first main surface 10.
  • the first main surface 10 when viewed in a direction perpendicular to the first main surface 10, the first main surface 10 extends along each of the first direction X and the second direction Y.
  • the second direction Y is a direction perpendicular to the first direction X.
  • the first direction X is, for example, the ⁇ 11-20> direction.
  • the first direction X may be, for example, the [11-20] direction.
  • the first direction X may be a direction in which the ⁇ 11-20> direction is projected onto the first main surface 10. From another point of view, the first direction X may be, for example, a direction containing a ⁇ 11-20> direction component.
  • the second direction Y is, for example, the ⁇ 1-100> direction.
  • the second direction Y may be, for example, the [1-100] direction.
  • the second direction Y may be, for example, a direction in which the ⁇ 1-100> direction is projected onto the first main surface 10. From another point of view, the second direction Y may be, for example, a direction containing a ⁇ 1-100> direction component.
  • the first main surface 10 may be a ⁇ 0001 ⁇ surface or a surface inclined with respect to the ⁇ 0001 ⁇ surface.
  • the inclination angle (off angle) with respect to the ⁇ 0001 ⁇ surface is, for example, 1 ° or more and 8 ° or less.
  • the inclination direction (off direction) of the first main surface 10 is, for example, the ⁇ 11-20> direction.
  • the maximum diameter W1 of the first main surface 10 is, for example, 100 mm (4 inches) or more.
  • the maximum diameter W1 of the first main surface 10 may be 150 mm (6 inches) or more, or 200 mm (8 inches) or more.
  • the upper limit of the maximum diameter W1 of the first main surface 10 is not particularly limited, but may be, for example, 400 mm (16 inches) or less.
  • the maximum diameter W1 of the first main surface 10 is the longest linear distance between two different points on the outer peripheral edge 2.
  • 4 inches means 100 mm or 101.6 mm (4 inches x 25.4 mm / inch). 6 inches means 150 mm or 152.4 mm (6 inches x 25.4 mm / inch). 8 inches means 200 mm or 203.2 mm (8 inches x 25.4 mm / inch). 16 inches means 400 mm or 406.4 mm (16 inches x 25.4 mm / inch).
  • a plurality of reference marks 3 are provided in the outer peripheral region 12.
  • Each of the plurality of reference marks 3 serves as a reference for the two-dimensional position coordinates.
  • each of the plurality of reference marks 3 when viewed in a direction perpendicular to the first main surface 10, each of the plurality of reference marks 3 is located in a region (outer peripheral region 12) within 5 mm from the orientation flat. good.
  • the number of the reference marks 3 is not particularly limited, but is, for example, two.
  • the distance A between each of the plurality of reference marks 3 is, for example, 30 mm or more.
  • the lower limit of the distance A between each of the plurality of reference marks 3 is not particularly limited, but may be, for example, 40 mm or more, or 50 mm or more.
  • the upper limit of the distance A between each of the plurality of reference marks 3 is not particularly limited, but may be, for example, 200 mm or less, or 150 mm or less.
  • each of the plurality of reference marks 3 may have a cross shape when viewed in a direction perpendicular to the first main surface 10.
  • the plurality of reference marks 3 have, for example, a first reference mark 31 and a second reference mark 32.
  • the distance A between each of the plurality of reference marks 3 is the distance from the center of the first reference mark 31 to the center of the second reference mark 32.
  • the distance A between each of the plurality of reference marks 3 is from the center of the cross shape of the first reference mark 31 to the center of the cross shape of the second reference mark 32. The distance.
  • FIG. 2 is a schematic cross-sectional view taken along the line II-II of FIG.
  • the silicon carbide single crystal substrate 61 has a second main surface 20 on the opposite side of the first main surface 10.
  • Each of the plurality of reference marks 3 is, for example, a recess. In a direction perpendicular to the first main surface 10, the bottom surface of the recess is located between the first main surface 10 and the second main surface 20.
  • the depth D of each of the plurality of reference marks 3 is, for example, greater than 0.5 ⁇ m and less than 100 ⁇ m.
  • the lower limit of the depth D of each of the plurality of reference marks 3 is not particularly limited, but may be, for example, 3 ⁇ m or more, or 5 ⁇ m or more.
  • the upper limit of the depth D of each of the plurality of reference marks 3 is not particularly limited, but may be, for example, 50 ⁇ m or less, or 30 ⁇ m or less.
  • the polytype of silicon carbide constituting the silicon carbide single crystal substrate 61 is, for example, 4H.
  • the polytype of silicon carbide constituting the silicon carbide single crystal substrate 61 may be, for example, 6H.
  • the thickness of the silicon carbide single crystal substrate 61 is, for example, 350 ⁇ m or more and 500 ⁇ m or less.
  • the silicon carbide single crystal substrate 61 contains n-type impurities such as nitrogen (N).
  • the conductive type of the silicon carbide single crystal substrate 61 is, for example, n type.
  • FIG. 3 is an enlarged plan view showing the configuration of the reference mark 3.
  • the shape of the reference mark 3 is, for example, axisymmetric when viewed in a direction perpendicular to the first main surface 10.
  • the shape of the reference mark 3 is, for example, a cross shape.
  • the two rectangles may be provided so as to intersect vertically at the center.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG. As shown in FIG. 4, the length of the short side of the rectangle (third length W3) may be larger than the depth D of the reference mark 3.
  • the third length W3 is, for example, 10 ⁇ m.
  • the shape of the reference mark 3 is not limited to the cross shape.
  • the shape of the reference mark 3 may be a polygon, an axisymmetric rectangle (rectangle, square), or a circle.
  • the reference mark 3 has a shape that can be surrounded by, for example, a virtual circle.
  • the smallest virtual circle surrounding the reference mark 3 is, for example, the circumscribed circle of the reference mark 3.
  • the center of the reference mark 3 is the center of the circumscribed circle.
  • the radius of the minimum virtual circle (first virtual circle R1) surrounding each of the plurality of reference marks 3 is larger than, for example, 10 ⁇ m and less than 3 mm.
  • the lower limit of the radius of the first virtual circle R1 is not particularly limited, but may be, for example, 50 ⁇ m or more, or 100 ⁇ m or more.
  • the upper limit of the radius of the first virtual circle R1 is not particularly limited, but may be, for example, 1 mm or less, or 0.5 mm or less.
  • the maximum virtual circle (second virtual circle R2) surrounded by the reference mark 3 is, for example, the inscribed circle of the reference mark 3.
  • the center of the inscribed circle of the reference mark 3 may coincide with the center of the circumscribed circle of the reference mark 3.
  • the radius of the second virtual circle R2 is, for example, less than 5 ⁇ m when viewed in a direction perpendicular to the first main surface 10.
  • the straight line passing through the center of the first reference mark 31 and the center of the second reference mark 32 is defined as the X axis.
  • a straight line parallel to the first main surface 10 and perpendicular to the X axis is defined as the Y axis.
  • the intermediate position between the center of the first reference mark 31 and the center of the second reference mark 32 is, for example, the origin of the two-dimensional position coordinates.
  • the direction from the origin to the first reference mark 31 is, for example, the minus direction of the X axis.
  • the direction from the origin to the second reference mark 32 is, for example, the positive direction of the X axis.
  • the direction from the origin to the orientation flat 2a is, for example, the negative direction of the Y axis.
  • the direction opposite to the direction from the origin toward the orientation flat 2a is, for example, the positive direction of the Y axis.
  • the virtual two-dimensional position coordinate system is determined based on the first reference mark 31 and the second reference mark 32.
  • the position coordinates of the defect 80 may be defined by a representative point such as the center of the defect, a rectangle surrounding the defect, a figure such as a circle or an ellipse, or the like, using the above virtual two-dimensional position coordinate system.
  • the silicon carbide single crystal substrate 61 according to the second embodiment is different from the silicon carbide single crystal substrate 61 according to the first embodiment in that the reference mark 3 is mainly composed of a plurality of recesses 30. Other points are the same as those of the silicon carbide single crystal substrate 61 according to the first embodiment.
  • a configuration different from that of the silicon carbide single crystal substrate 61 according to the first embodiment will be mainly described.
  • FIG. 5 is an enlarged plan schematic view showing the configuration of the reference mark 3 of the silicon carbide single crystal substrate 61 according to the second embodiment.
  • the reference mark 3 of the silicon carbide single crystal substrate 61 according to the second embodiment is composed of a plurality of recesses 30.
  • the shape of each of the plurality of recesses 30 is, for example, a circle.
  • Each of the plurality of recesses 30 is arranged at equal intervals along, for example, each of the first direction X and the second direction Y.
  • FIG. 6 is a schematic cross-sectional view taken along the VI-VI line of FIG.
  • the width of the region between two adjacent recesses may be larger than the diameter of each of the plurality of recesses 30 (fourth width W4).
  • the silicon carbide single crystal substrate 61 according to the third embodiment is different from the silicon carbide single crystal substrate 61 according to the first embodiment mainly in that the reference mark 3 is convex, and the other points are the same. , The same as the silicon carbide single crystal substrate 61 according to the first embodiment.
  • a configuration different from that of the silicon carbide single crystal substrate 61 according to the first embodiment will be mainly described.
  • FIG. 7 is an enlarged plan schematic view showing the configuration of the reference mark 3 of the silicon carbide single crystal substrate 61 according to the third embodiment.
  • FIG. 8 is a schematic cross-sectional view taken along the line VIII-VIII of FIG.
  • the reference mark 3 may be convex.
  • the shape of the convex reference mark 3 is, for example, a cross shape.
  • a part of the convex reference mark 3 is provided between, for example, two groove portions 54.
  • Each of the two grooves 54 has a bottom surface 53 and a side surface 52.
  • a part of the side surface 52 of the groove portion 54 constitutes the side surface of the convex reference mark 3.
  • the depth D of the groove portion 54 corresponds to the height of the reference mark 3.
  • the silicon carbide single crystal substrate 61 according to the fourth embodiment is different from the silicon carbide single crystal substrate 61 according to the first embodiment mainly in the arrangement location of the reference mark 3, and the other points are the first. It is the same as the silicon carbide single crystal substrate 61 which concerns on embodiment.
  • a configuration different from that of the silicon carbide single crystal substrate 61 according to the first embodiment will be mainly described.
  • FIG. 9 is a schematic plan view showing the configuration of the silicon carbide single crystal substrate 61 according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view taken along the line XX of FIG.
  • the plurality of reference marks 3 have, for example, a first reference mark 31, a second reference mark 32, a third reference mark 33, and a fourth reference mark 34.
  • Each of the first reference mark 31, the second reference mark 32, the third reference mark 33, and the fourth reference mark 34 is provided in the outer peripheral region 12.
  • the straight line (first straight line) passing through the center of the first reference mark 31 and the center of the second reference mark 32 is, for example, parallel to the first direction X.
  • the straight line (second straight line) passing through the center of the third reference mark 33 and the center of the fourth reference mark 34 is, for example, parallel to the second direction Y.
  • the first straight line is used, for example, as the X-axis of two-dimensional coordinates.
  • the second straight line is used, for example, as the Y-axis of two-dimensional coordinates.
  • the intersection of the first straight line and the second straight line is used, for example, as the origin of two-dimensional coordinates.
  • a virtual two-dimensional position coordinate system may be determined based on the first reference mark 31, the second reference mark 32, the third reference mark 33, and the fourth reference mark 34.
  • the silicon carbide single crystal substrate 1 according to the fifth embodiment is different from the silicon carbide single crystal substrate 61 according to the first embodiment in that it has a silicon carbide single crystal substrate 61 and a silicon carbide epitaxial film 62. Other points are the same as those of the silicon carbide single crystal substrate 61 according to the first embodiment.
  • a configuration different from that of the silicon carbide single crystal substrate 61 according to the first embodiment will be mainly described.
  • FIG. 11 is a schematic plan view showing the configuration of the silicon carbide substrate 1 according to the fifth embodiment.
  • FIG. 12 is a schematic cross-sectional view taken along the line XII-XII of FIG.
  • the silicon carbide substrate 1 has a silicon carbide single crystal substrate 61 and a silicon carbide epitaxial film 62.
  • the silicon carbide epitaxial film 62 is provided on the silicon carbide single crystal substrate 61.
  • the silicon carbide epitaxial film 62 has a third main surface 43 and a fourth main surface 40.
  • the third main surface 43 is in contact with the silicon carbide single crystal substrate 61.
  • the fourth main surface 40 is on the opposite side of the third main surface 43.
  • the fourth main surface 40 has a central region 41 and an outer peripheral region 42.
  • the outer peripheral region 42 is a region within 5 mm from the outer peripheral edge 2.
  • the outer peripheral region 42 surrounds the central region 41.
  • Each of the plurality of reference marks 3 is provided in the outer peripheral region 42 of the fourth main surface 40.
  • the plurality of reference marks 3 have a first reference mark 31 and a second reference mark 32.
  • each of the plurality of reference marks 3 is provided on the silicon carbide epitaxial film 62.
  • the polytype of silicon carbide constituting each of the silicon carbide single crystal substrate 61 and the silicon carbide epitaxial film 62 is, for example, 4H.
  • the polytype of silicon carbide constituting each of the silicon carbide single crystal substrate 61 and the silicon carbide epitaxial film 62 may be, for example, 6H.
  • the thickness of the silicon carbide single crystal substrate 61 is, for example, 350 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the silicon carbide epitaxial film 62 is, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • Each of the silicon carbide single crystal substrate 61 and the silicon carbide epitaxial film 62 contains n-type impurities such as nitrogen (N).
  • the conductive type of each of the silicon carbide single crystal substrate 61 and the silicon carbide epitaxial film 62 is, for example, n type.
  • the silicon carbide single crystal substrate 61 may be a conductive substrate or a semi-insulating substrate.
  • the silicon carbide epitaxial film 62 may be an epitaxial film having a homostructure or an epitaxial film having a heterostructure.
  • the silicon carbide epitaxial film 62 may have one layer or two or more layers.
  • FIG. 13 is a flow chart schematically showing a manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment.
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the sixth embodiment includes a step (S11) of forming a reference mark on the silicon carbide single crystal substrate and polishing the silicon carbide single crystal substrate.
  • a step of forming a silicon carbide epitaxial film on the surface (S15), a step of specifying the position coordinates of defects of the silicon carbide epitaxial film based on a reference mark (S16), and a step of forming an element active region on the silicon carbide epitaxial film.
  • S17 the step of specifying the position coordinates of the element active region based on the reference mark (S18), and the step of associating the position coordinates of the defect with the position coordinates of the element active region to determine the quality of the element active region. It mainly has (S19).
  • a polytype 4H silicon carbide single crystal is produced by a sublimation method.
  • the silicon carbide single crystal substrate 61 is prepared by slicing the silicon carbide single crystal, for example, with a wire saw.
  • the silicon carbide single crystal substrate 61 has a first main surface 10 and a second main surface 20.
  • the second main surface 20 is on the opposite side of the first main surface 10.
  • the first main surface 10 has a central region 11 and an outer peripheral region 12.
  • the outer peripheral region 12 surrounds the central region 11.
  • FIG. 14 is a schematic cross-sectional view showing a process of forming a reference mark on a silicon carbide single crystal substrate.
  • the reference mark 3 (first mark 3a) is provided in the outer peripheral region 12 of the silicon carbide single crystal substrate 61.
  • the reference mark 3 (first mark 3a) which serves as a reference for the two-dimensional position coordinates, is formed on the silicon carbide substrate 1.
  • the silicon carbide single crystal substrate 61 on which the reference mark 3 is formed is, for example, the silicon carbide substrate according to the first to fourth embodiments.
  • a step (S12) of polishing the silicon carbide single crystal substrate is carried out. Specifically, a mechanical polishing step and a chemical mechanical polishing step are performed on the silicon carbide single crystal substrate 61.
  • a mechanical polishing step for example, diamond is used as the abrasive grains.
  • a chemical mechanical polishing process for example, colloidal silica is used as the abrasive grains. Polishing may be performed only on the first main surface 10 of the silicon carbide single crystal substrate 61 (single-sided polishing), or polishing is performed on both the first main surface 10 and the second main surface 20. Good (double-sided polishing).
  • the reference mark 3 By removing irregularities and strains in the vicinity of the reference mark by the polishing step and the cleaning step after forming the reference mark, it is possible to prevent the shape of the reference mark 3 which is succeeded by the silicon carbide epitaxial film from being deformed. Therefore, the reference mark 3 can be discriminated with high accuracy.
  • a step (S13) of cleaning the silicon carbide single crystal substrate is carried out.
  • the residue and the like generated when the reference mark 3 is formed on the silicon carbide single crystal substrate 61 is removed by washing.
  • the reference mark forming surface of the silicon carbide substrate 1 is polished, and then the reference mark forming surface is washed.
  • the reference mark forming surface corresponds to the first main surface 10.
  • the present embodiment is not limited to this. In the present embodiment, at least one of a step of polishing the silicon carbide single crystal substrate (S12) and a step of cleaning the silicon carbide single crystal substrate (S13) may be performed.
  • FIG. 15 is a schematic plan view showing a step of specifying the position coordinates of the defect 80 in the silicon carbide single crystal substrate 61 based on the reference mark 3.
  • a plurality of reference marks 3 (first mark 3a) are provided in the outer peripheral region 12 of the silicon carbide single crystal substrate 61.
  • the plurality of reference marks 3 (first mark 3a) have a first reference mark 31a and a second reference mark 32a.
  • the X-axis is a straight line passing through the center of the first reference mark 31a and the center of the second reference mark 32a.
  • a straight line parallel to the first main surface 10 and perpendicular to the X axis is defined as the Y axis.
  • the intermediate position between the center of the first reference mark 31a and the center of the second reference mark 32a is, for example, the origin of the two-dimensional position coordinates.
  • the direction from the origin toward the first reference mark 31a is, for example, the minus direction of the X axis.
  • the direction from the origin to the second reference mark 32a is, for example, the positive direction of the X axis.
  • the direction from the origin to the orientation flat 2a is, for example, the negative direction of the Y axis.
  • the direction opposite to the direction from the origin toward the orientation flat 2a is, for example, the positive direction of the Y axis.
  • a virtual two-dimensional position coordinate system is determined based on the first reference mark 31a and the second reference mark 32a.
  • the defect 80 is present in the silicon carbide single crystal substrate 61.
  • the defect 80 has, for example, a first defect 81 and a second defect 82.
  • the first defect 81 is, for example, a micropipe.
  • the second defect 82 is, for example, a stacking defect.
  • Defects 80 may be, for example, through-spiral dislocations, through-blade dislocations, basal plane dislocations, carbon inclusions or surface deposits.
  • the defect 80 may be located in the central region 11 or may be located in the outer peripheral region 12.
  • the second defect 82 may be a scratch or the like.
  • the two-dimensional position coordinates of the defect 80 are specified by using the virtual two-dimensional position coordinate system determined based on the reference mark 3. Specifically, when the first defect 81 exists on a plurality of coordinates including, for example, the first coordinate (X1, Y1), the plurality of coordinates including the first coordinate (X1, Y1) are the first defect. It is specified as the two-dimensional position coordinates of 81. Similarly, if the second defect 82 is present on a plurality of coordinates including, for example, the second coordinates (X2, Y2), the plurality of coordinates including the second coordinates (X2, Y2) are the second defect 82. Specified as two-dimensional position coordinates.
  • the inspection method for the defect 80 is a non-destructive inspection using, for example, a photoluminescence method, an X-ray diffraction method, a surface light scattering method, or a polarized light transmission method.
  • a step (S15) of forming a silicon carbide epitaxial film on the silicon carbide single crystal substrate is carried out.
  • the silicon carbide single crystal substrate 61 is arranged, for example, in the film forming chamber of a CVD (Chemical Vapor Deposition) apparatus.
  • the raw material gas includes, for example, silane (SiH 4 ) gas and propane (C 3 H 8 ) gas.
  • the carrier gas is, for example, hydrogen.
  • the doping gas is, for example, ammonia gas or nitrogen gas.
  • FIG. 16 is a schematic cross-sectional view showing a process of forming a silicon carbide epitaxial film 62 on a silicon carbide single crystal substrate 61.
  • the silicon carbide epitaxial film 62 is formed on the first main surface 10 of the silicon carbide single crystal substrate 61 by thermally decomposing the silane gas and the propane gas in the film forming chamber.
  • the silicon carbide epitaxial film 62 has a third main surface 43 and a fourth main surface 40.
  • the third main surface 43 is in contact with the silicon carbide single crystal substrate 61.
  • the silicon carbide epitaxial film 62 in the outer peripheral region 12 is formed so as to fill the reference mark 3 (first mark 3a) formed on the first main surface 10.
  • the reference mark 3 (second mark 3b) is formed on the outer peripheral region 12 of the fourth main surface 40 of the silicon carbide epitaxial film 62.
  • the reference mark 3 (second mark 3b) formed in the outer peripheral region 12 of the fourth main surface 40 is directly above the reference mark 3 (first mark 3a) formed in the outer peripheral region 12 of the first main surface 10. ..
  • the second mark 3b is formed by being inherited from the first mark 3a by the silicon carbide epitaxial film 62.
  • the shape of the second mark 3b is substantially the same as the shape of the first mark 3a.
  • the reference mark 3 (first mark 3a and second mark 3b) is formed by, for example, laser processing.
  • laser processing for example, it is preferable to use a UV (ultraviolet) laser or a fiber laser.
  • the wavelength of the laser is preferably in the range of 100 nm or more and 1200 nm or less.
  • the depth of the reference mark 3 is, for example, greater than 0.5 ⁇ m and less than 100 ⁇ m. If the reference mark 3 is too shallow, the reference mark 3 is difficult to see. If the reference mark 3 is too deep, it is difficult to remove dust or dirt inside the reference mark 3. In this case, the risk of contamination is likely to be introduced to the subsequent process.
  • the reference mark 3 is not formed by a single laser irradiation, but is laser-irradiated in a plurality of times. However, when the planned depth is reached by one laser irradiation, the reference mark 3 may be formed by one laser irradiation. Further, if the laser machining is performed by focusing on the machined surface, the reference mark 3 can be machined with high accuracy.
  • Only a part of the region of the silicon carbide epitaxial film 62 provided above the reference mark 3 (first mark 3a) may be removed by etching or the like until the silicon carbide single crystal substrate 61 is exposed.
  • By exposing the reference mark 3 (first mark 3a) provided on the silicon carbide single crystal substrate 61 by performing etching or the like it is possible to discriminate the reference mark 3 (first mark 3a) more accurately.
  • the etching of the silicon carbide epitaxial film 62 may be performed until the silicon carbide single crystal substrate 61 is exposed, or may be stopped before the silicon carbide single crystal substrate 61 is exposed. When the etching is stopped before the silicon carbide single crystal substrate 61 is exposed, the silicon carbide epitaxial film 62 may remain on the reference mark 3 (first mark 3a).
  • the reference mark 3 (first mark 3a and second mark 3b) may be formed by, for example, etching.
  • etching for example, a mask pattern made of SiO 2 is formed on a silicon carbide single crystal substrate 61 or a silicon carbide epitaxial film 62 provided on the silicon carbide single crystal substrate 61, and a plasma etching process using an etching gas is performed. May be done. It is effective to use SF 6 as the etching gas.
  • the etching gas may contain O 2 gas or Si F 4 in SF 6 .
  • Only a part of the region of the silicon carbide epitaxial film 62 provided above the reference mark 3 (first mark 3a) may be removed by etching or the like until the silicon carbide single crystal substrate 61 is exposed.
  • By exposing the reference mark 3 (first mark 3a) provided on the silicon carbide single crystal substrate 61 by performing etching or the like it is possible to discriminate the reference mark 3 (first mark 3a) more accurately.
  • the etching of the silicon carbide epitaxial film 62 may be performed until the silicon carbide single crystal substrate 61 is exposed, or may be stopped before the silicon carbide single crystal substrate 61 is exposed. When the etching is stopped before the silicon carbide single crystal substrate 61 is exposed, the silicon carbide epitaxial film 62 may remain on the reference mark 3 (first mark 3a).
  • FIG. 17 is a schematic plan view showing a step of specifying the position coordinates of the defect 80 in the silicon carbide epitaxial film 62 based on the reference mark 3.
  • a plurality of reference marks 3 (second mark 3b) are provided in the outer peripheral region 12 of the silicon carbide epitaxial film 62.
  • the plurality of reference marks 3 (second mark 3b) have a first reference mark 31b and a second reference mark 32b.
  • the X-axis is a straight line passing through the center of the first reference mark 31b and the center of the second reference mark 32b.
  • a straight line parallel to the fourth main surface 40 and perpendicular to the X axis is defined as the Y axis.
  • the intermediate position between the center of the first reference mark 31b and the center of the second reference mark 32b is, for example, the origin of the two-dimensional position coordinates.
  • the direction from the origin toward the first reference mark 31b is, for example, the negative direction of the X axis.
  • the direction from the origin to the second reference mark 32b is, for example, the positive direction of the X axis.
  • the direction from the origin to the orientation flat 2a is, for example, the negative direction of the Y axis.
  • the direction opposite to the direction from the origin toward the orientation flat 2a is, for example, the positive direction of the Y axis.
  • a virtual two-dimensional position coordinate system is determined based on the first reference mark 31b and the second reference mark 32b.
  • a defect 80 is present on the fourth main surface 40 of the silicon carbide epitaxial film 62.
  • the defect 80 has, for example, a third defect 83 and a fourth defect 84.
  • the third defect 83 is, for example, a triangular defect.
  • the fourth defect 84 is, for example, a downfall.
  • the defect 80 may be, for example, a stacking defect, a carrot defect, a basal plane dislocation, or a surface deposit.
  • the two-dimensional position coordinates of the defect 80 are specified by using the virtual two-dimensional position coordinate system determined based on the reference mark 3 (second mark 3b). Specifically, when the third defect 83 exists on a plurality of coordinates including, for example, the third coordinate (X3, Y3), the plurality of coordinates including the third coordinate (X3, Y3) are the third defect. It is specified as the two-dimensional position coordinates of 83. Similarly, if the fourth defect 84 is present on a plurality of coordinates including, for example, the fourth coordinate (X4, Y4), the plurality of coordinates including the fourth coordinate (X4, Y4) are the fourth defect 84. Specified as two-dimensional position coordinates. As described above, the position coordinates of the defect 80 on the silicon carbide substrate 1 are specified based on the reference mark 3 (second mark 3b).
  • FIG. 18 is a schematic cross-sectional view showing a step of forming the device active region 90 on the silicon carbide epitaxial film 62.
  • a p-type impurity such as aluminum (Al) is injected into the silicon carbide epitaxial film 62.
  • the body region 132 having the p-type conductive type is formed.
  • an n-type impurity such as phosphorus (P) is injected into a part of the body region 132.
  • the source region 133 having an n-type conductive type is formed.
  • p-type impurities such as aluminum are injected into a part of the source region 133.
  • a contact region 134 having a p-type conductive type is formed (see FIG. 18).
  • the portion other than the body region 132, the source region 133, and the contact region 134 becomes the drift region 131.
  • the source region 133 is separated from the drift region 131 by the body region 132.
  • Ion implantation may be performed by heating the silicon carbide substrate 1 to, for example, 300 ° C. or higher and 600 ° C. or lower.
  • activation annealing is performed on the silicon carbide epitaxial substrate 100.
  • the atmosphere of activation annealing may be, for example, an argon (Ar) atmosphere.
  • the temperature of the activation annealing may be, for example, about 1800 ° C.
  • the activation annealing time may be, for example, about 30 minutes.
  • the element active region 90 includes, for example, a body region 132, a source region 133, and a contact region 134. As described above, the device active region 90 is formed on the silicon carbide substrate 1. The device active region 90 is provided on the silicon carbide epitaxial film 62.
  • a step (S18) of specifying the position coordinates of the element active region based on the reference mark is carried out.
  • the two-dimensional position coordinates of the element active region 90 are specified by using the virtual two-dimensional position coordinate system determined based on the reference mark 3 (second mark 3b). Specifically, when the element active region 90 exists on a plurality of coordinates including, for example, the fifth coordinate (X5, Y5), the plurality of coordinates including the fifth coordinate (X5, Y5) are the element active region. It is specified as the two-dimensional position coordinates of 90. As described above, the position coordinates of the element active region 90 are specified based on the reference mark 3.
  • the reference mark 3 in the step (S18) of specifying the position coordinates of the element active region based on the reference mark is the reference mark 3 (S11) formed in the step of forming the reference mark on the silicon carbide single crystal substrate (S11). It may be the first mark 3a) or the reference mark 3 (second mark 3b) formed in the step (S15) of forming the silicon carbide epitaxial film on the silicon carbide single crystal substrate.
  • the second mark 3b is formed by taking over the first mark 3a to the silicon carbide epitaxial film 62. Therefore, the two-dimensional position coordinate system determined based on the first mark 3a is substantially the same as the two-dimensional position coordinate system determined based on the second mark 3b.
  • FIG. 19 is a schematic plan view showing a step of determining the quality of the element active region 90.
  • the device active region 90 is a plurality of regions represented by substantially squares.
  • the dicing region 91 is between the two adjacent element active regions 90.
  • the position coordinates of the first defect 81 and the position coordinates of the element active region 90 are compared. If at least a part of the position coordinates of the first defect 81 and the position coordinates of the element active region 90 overlap, the first defect 81 exists in the element active region 90. As shown in FIG. 19, among the plurality of element active regions 90, a part of the element active regions 90 overlaps with the first defect 81. The semiconductor device formed in the element active region 90 overlapping the first defect 81 is determined to be a defective product.
  • the position coordinates of the second defect 82 and the position coordinates of the element active region 90 are compared. If at least a part of the position coordinates of the second defect 82 and the position coordinates of the element active region 90 overlap, the second defect 82 exists in the element active region 90. As shown in FIG. 19, among the plurality of element active regions 90, a part of the element active regions 90 overlaps with the second defect 82. The semiconductor device formed in the element active region 90 overlapping the second defect 82 is determined to be a defective product.
  • the position coordinates of the third defect 83 and the position coordinates of the element active region 90 are compared. If at least a part of the position coordinates of the third defect 83 and the position coordinates of the element active region 90 overlap, the third defect 83 exists in the element active region 90. As shown in FIG. 19, among the plurality of element active regions 90, a part of the element active regions 90 overlaps with the third defect 83. The semiconductor device formed in the element active region 90 overlapping the third defect 83 is determined to be a defective product.
  • the position coordinates of the fourth defect 84 and the position coordinates of the element active region 90 are compared. If at least a part of the position coordinates of the fourth defect 84 and the position coordinates of the element active region 90 overlap, the fourth defect 84 exists in the element active region 90. As shown in FIG. 19, among the plurality of element active regions 90, a part of the element active regions 90 overlaps with the fourth defect 84. The semiconductor device formed in the element active region 90 overlapping the fourth defect 84 is determined to be a defective product.
  • each of the first defect 81, the second defect 82, the third defect 83, and the fourth defect 84 does not exist.
  • a part of the element active regions 90 overlaps with any of the first defect 81, the second defect 82, the third defect 83, and the fourth defect 84.
  • a semiconductor device formed in the element active region 90 that does not overlap with any of the first defect 81, the second defect 82, the third defect 83, and the fourth defect 84 is judged to be a good product.
  • the quality of the element active region 90 is determined by associating the position coordinates of the defect 80 with the position coordinates of the element active region 90.
  • FIG. 20 is a schematic cross-sectional view showing a process of forming a gate insulating film.
  • a gate insulating film 136 is formed on the silicon carbide epitaxial film 62.
  • the gate insulating film 136 is made of, for example, silicon dioxide (SiO 2 ) or the like.
  • the temperature of the thermal oxidation treatment is, for example, about 1300 ° C.
  • the time of the thermal oxidation treatment is, for example, about 30 minutes.
  • heat treatment may be further performed in a nitrogen atmosphere.
  • heat treatment may be carried out at about 1100 ° C. for about 1 hour in an atmosphere of nitric oxide (NO), nitrous oxide ( N2O) or the like.
  • the heat treatment may be performed in an argon atmosphere.
  • heat treatment may be performed in an argon atmosphere at 1100 ° C. or higher and 1500 ° C. or lower for about 1 hour.
  • the first electrode 141 is formed on the gate insulating film 136.
  • the first electrode 141 functions as a gate electrode.
  • the first electrode 141 is formed by, for example, a CVD method.
  • the first electrode 141 is composed of, for example, polyvinyl silicon containing impurities and having conductivity.
  • the first electrode 141 is formed at a position facing the source region 133 and the body region 132.
  • the interlayer insulating film 137 is formed.
  • the interlayer insulating film 137 is formed so as to cover the first electrode 141.
  • the interlayer insulating film 137 is formed by, for example, a CVD method.
  • the interlayer insulating film 137 is made of, for example, silicon dioxide or the like.
  • the interlayer insulating film 137 is formed so as to be in contact with the first electrode 141 and the gate insulating film 136.
  • a part of the gate insulating film 136 and a part of the interlayer insulating film 137 are removed by etching. As a result, the source region 133 and the contact region 134 are exposed from the gate insulating film 136.
  • the second electrode 142 functions as a source electrode.
  • the second electrode 142 is made of, for example, titanium, aluminum, silicon, or the like.
  • the second electrode 142 and the silicon carbide substrate 1 are heated at a temperature of, for example, 900 ° C. or higher and 1100 ° C. or lower. As a result, the second electrode 142 and the silicon carbide substrate 1 come into ohmic contact.
  • the wiring layer 138 is formed so as to be in contact with the second electrode 142.
  • the wiring layer 138 is made of a material containing, for example, aluminum.
  • the third electrode 143 functions as a drain electrode.
  • the third electrode 143 is composed of an alloy containing, for example, nickel and silicon (for example, NiSi, etc.).
  • the dicing process is carried out. For example, by dicing the silicon carbide substrate 1 along the dicing region 91, the silicon carbide substrate 1 is divided into a plurality of semiconductor chips. As described above, the silicon carbide semiconductor device 300 is manufactured.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the silicon carbide semiconductor device 300.
  • the silicon carbide semiconductor device 300 is, for example, a MOSFET (Metal Oxide Semiconductor Device Field Effect Transistor).
  • the silicon carbide semiconductor device 300 includes a silicon carbide substrate 1, a first electrode 141, a second electrode 142, a third electrode 143, a gate insulating film 136, an interlayer insulating film 137, and a wiring layer 138.
  • the silicon carbide substrate 1 has a silicon carbide single crystal substrate 61 and a silicon carbide epitaxial film 62.
  • the silicon carbide epitaxial film 62 has a drift region 131, a source region 133, a body region 132, and a contact region 134.
  • the manufacturing method of the silicon carbide semiconductor device 300 according to the present disclosure has been described by exemplifying the MOSFET, but the manufacturing method according to the present disclosure is not limited to this.
  • the manufacturing method according to the present disclosure can be applied to a silicon carbide semiconductor device 300 such as an IGBT (Insulated Gate Bipolar Transistor), an SBD (Shotky Barrier Diode), a thyristor, a GTO (Gate Turn Off thyristor), and a PiN diode.
  • the sixth embodiment of the method for manufacturing the silicon carbide semiconductor device 300 according to the seventh embodiment mainly includes a step of adjusting the formation position of the element active region 90 based on the position coordinates of the defect 80. It is different from the manufacturing method of the silicon carbide semiconductor device 300 according to the above, and other steps are the same as the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment. Hereinafter, a process different from the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment will be mainly described.
  • FIG. 22 is a flow chart schematically showing a manufacturing method of the silicon carbide semiconductor device 300 according to the seventh embodiment.
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the seventh embodiment includes a step (S21) of forming a reference mark on the silicon carbide single crystal substrate and polishing the silicon carbide single crystal substrate.
  • the step of forming the reference mark (S21) is performed.
  • the step (S21) of forming the reference mark on the silicon carbide single crystal substrate according to the seventh embodiment is the same as the step (S11) of forming the reference mark on the silicon carbide single crystal substrate according to the sixth embodiment.
  • a step (S22) of polishing the silicon carbide single crystal substrate is performed.
  • the step (S22) for polishing the silicon carbide single crystal substrate according to the seventh embodiment is the same as the step (S12) for polishing the silicon carbide single crystal substrate according to the sixth embodiment.
  • a step (S23) of cleaning the silicon carbide single crystal substrate is performed.
  • the step (S23) for cleaning the silicon carbide single crystal substrate according to the seventh embodiment is the same as the step (S13) for cleaning the silicon carbide single crystal substrate according to the sixth embodiment.
  • a step (S24) of specifying the position coordinates of defects on the silicon carbide single crystal substrate based on the reference mark is performed.
  • the step (S24) of specifying the position coordinates of the defect in the silicon carbide single crystal substrate based on the reference mark according to the seventh embodiment is the defect in the silicon carbide single crystal substrate based on the reference mark according to the sixth embodiment. It is the same as the step (S14) of specifying the position coordinates of.
  • a step (S25) of forming a silicon carbide epitaxial film on the silicon carbide single crystal substrate is performed.
  • the step (S25) of forming the silicon carbide epitaxial film on the silicon carbide single crystal substrate according to the seventh embodiment is a step (S15) of forming the silicon carbide epitaxial film on the silicon carbide single crystal substrate according to the sixth embodiment. Is similar to.
  • a step (S26) of specifying the position coordinates of the defect of the silicon carbide epitaxial film based on the reference mark is performed.
  • the position coordinates of the defect of the silicon carbide epitaxial film are determined based on the reference mark according to the sixth embodiment. This is the same as the specifying step (S16).
  • FIG. 23 is a schematic plan view showing a step of adjusting the formation position of the element active region 90 based on the position coordinates of the defect 80.
  • the substantially square region 92 shown by the broken line is a region where the element active region 90 was planned to be formed.
  • the step (S24) of specifying the position coordinates of the defects in the silicon carbide single crystal substrate based on the reference mark the two-dimensional position coordinates of each of the first defect 81 and the second defect 82 in the silicon carbide single crystal substrate 61 are set. , Has already been identified.
  • step (S26) of specifying the position coordinates of the defects of the silicon carbide epitaxial film based on the reference mark 3 the two-dimensional position coordinates of each of the third defect 83 and the fourth defect 84 in the silicon carbide epitaxial film 62 have already been obtained. It has been identified.
  • each of the first defect 81, the second defect 82, the third defect 83 and the fourth defect 84, and the element active region 90 is adjusted so as not to overlap as much as possible.
  • the formation position of the element active region 90 is set so that the number of the element active regions 90 overlapping each of the first defect 81, the second defect 82, the third defect 83, and the fourth defect 84 is minimized. It will be adjusted.
  • each of the first defect 81, the second defect 82, the third defect 83, and the fourth defect 84 is formed in the dicing region 91 between the two adjacent element active regions 90, so that the element active region is formed.
  • the formation position of 90 is adjusted. As described above, the formation position of the element active region 90 is adjusted based on the position coordinates of the defect 80. From another point of view, the formation position of the device active region 90 is optimally designed.
  • a step (S28) of associating the position coordinates of the defect with the position coordinates of the element active region and determining the quality of the element active region is performed.
  • the position coordinates of the defect and the element active region according to the sixth embodiment are performed. This is the same as the step (S19) of determining the quality of the element active region in association with the position coordinates of.
  • the gate insulating film 136 is formed by using the same method as the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment (see FIG. 20).
  • the first electrode 141, the second electrode 142, the interlayer insulating film 137, the wiring layer 138, and the third electrode are used. 143 and are formed.
  • the silicon carbide substrate 1 is cut along the dicing region 91. As a result, the silicon carbide semiconductor device 300 is manufactured (see FIG. 21).
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the eighth embodiment mainly does not include a step of forming the reference mark 3 on the silicon carbide single crystal substrate 61, and the silicon carbide semiconductor according to the sixth embodiment does not have a step. It is different from the manufacturing method of the device 300, and other steps are the same as the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment.
  • a process different from the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment will be mainly described.
  • FIG. 24 is a flow chart schematically showing a manufacturing method of the silicon carbide semiconductor device 300 according to the eighth embodiment.
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the eighth embodiment is based on a step (S31) of forming a silicon carbide epitaxial film on a silicon carbide single crystal substrate and a silicon carbide epitaxial film.
  • a step of specifying the position coordinates of the element active region based on the reference mark (S35), a step of associating the position coordinates of the defect with the position coordinates of the element active region, and a step of determining the quality of the element active region (S36). have.
  • FIG. 25 is a schematic cross-sectional view showing a process of preparing a silicon carbide single crystal substrate 61.
  • the silicon carbide single crystal substrate 61 has a central region 11 and an outer peripheral region 12.
  • the reference mark 3 is not formed in either the central region 11 or the outer peripheral region 12.
  • FIG. 26 is a schematic cross-sectional view showing a process of forming a silicon carbide epitaxial film 62 on a silicon carbide single crystal substrate 61.
  • a silicon carbide epitaxial film 62 is formed by epitaxial growth on a silicon carbide single crystal substrate 61.
  • the silicon carbide epitaxial film 62 has a third main surface 43 and a fourth main surface 40.
  • the third main surface 43 is in contact with the silicon carbide single crystal substrate 61.
  • the fourth main surface 40 is on the opposite side of the third main surface 43.
  • FIG. 27 is a schematic cross-sectional view showing a process of forming the reference mark 3 on the silicon carbide epitaxial film 62. As shown in FIG. 27, the reference mark 3 is formed in the outer peripheral region 12 of the fourth main surface 40 of the silicon carbide epitaxial film 62.
  • the reference mark 3 After forming the reference mark 3, at least one of polishing and cleaning is performed on the reference mark forming surface of the silicon carbide epitaxial film 62 provided on the silicon carbide single crystal substrate 61.
  • the reference mark forming surface corresponds to the fourth main surface 40.
  • a step (S33) of specifying the position coordinates of the defect of the silicon carbide epitaxial film based on the reference mark is carried out.
  • the position coordinates of the defect of the silicon carbide epitaxial film are determined based on the reference mark according to the sixth embodiment. This is the same as the specifying step (S16).
  • FIG. 28 is a schematic cross-sectional view showing a process of forming the device active region 90 on the silicon carbide epitaxial film 62.
  • the device active region 90 is formed on the silicon carbide epitaxial film 62.
  • the element active region 90 has, for example, a body region 132, a source region 133, and a contact region 134. As described above, each of the reference mark 3 and the element active region 90 is provided on the silicon carbide epitaxial film 62.
  • a step (S35) of specifying the position coordinates of the element active region based on the reference mark is carried out.
  • the step (S35) of specifying the position coordinates of the element active region based on the reference mark according to the eighth embodiment is a step (S18) of specifying the position coordinates of the element active region based on the reference mark according to the sixth embodiment. Is similar to.
  • a step (S36) of associating the position coordinates of the defect 80 with the position coordinates of the element active region 90 and determining the quality of the element active region 90 is performed.
  • step (S36) of associating the position coordinates of the defect according to the eighth embodiment with the position coordinates of the element active region and determining the quality of the element active region the position coordinates of the defect and the element active region according to the sixth embodiment are performed. This is the same as the step (S19) of determining the quality of the element active region in association with the position coordinates of.
  • the gate insulating film 136 is formed by using the same method as the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment (see FIG. 20).
  • the first electrode 141, the second electrode 142, the interlayer insulating film 137, the wiring layer 138, and the third electrode are used. 143 and are formed.
  • the silicon carbide substrate 1 is cut along the dicing region 91. As a result, the silicon carbide semiconductor device 300 is manufactured (see FIG. 21).
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the ninth embodiment is mainly in that the reference mark 3 is formed on both the first silicon carbide epitaxial film 71 and the second silicon carbide epitaxial film 72.
  • the method is different from the method for manufacturing the silicon carbide semiconductor device 300 according to the above, and the other steps are the same as the method for manufacturing the silicon carbide semiconductor device 300 according to the eighth embodiment.
  • a process different from the manufacturing method of the silicon carbide semiconductor device 300 according to the eighth embodiment will be mainly described.
  • FIG. 29 is a flow chart schematically showing a manufacturing method of the silicon carbide semiconductor device 300 according to the ninth embodiment.
  • the method for manufacturing the silicon carbide semiconductor device 300 according to the ninth embodiment includes a step (S41) of forming a first silicon carbide epitaxial film on a silicon carbide single crystal substrate and a first silicon carbide.
  • the pass / fail judgment of the element active region 90 is determined by associating the step (S46), the step (S47) of specifying the position coordinates of the element active region based on the reference mark, and the position coordinates of the defect with the position coordinates of the element active region. It has a step (S48) to be performed.
  • FIG. 30 is a schematic cross-sectional view showing a process of forming the first silicon carbide epitaxial film 71 on the silicon carbide single crystal substrate 61. As shown in FIG. 30, the first silicon carbide epitaxial film 71 is formed by epitaxial growth on the silicon carbide single crystal substrate 61.
  • FIG. 31 is a schematic cross-sectional view showing a process of forming the reference mark 3 on the first silicon carbide epitaxial film 71. As shown in FIG. 31, the reference mark 3 (first mark 3a) is formed in the outer peripheral region 12 of the first silicon carbide epitaxial film 71.
  • the reference mark 3 After forming the reference mark 3 (first mark 3a), at least one of polishing or cleaning is performed on the reference mark forming surface of the first silicon carbide epitaxial film 71 provided on the silicon carbide single crystal substrate 61. ..
  • the reference mark forming surface corresponds to the upper surface of the first silicon carbide epitaxial film 71.
  • a step (S43) of specifying the position coordinates of the defect of the first silicon carbide epitaxial film based on the reference mark is carried out.
  • the step (S43) of specifying the position coordinates of the defect of the first silicon carbide epitaxial film based on the reference mark according to the ninth embodiment is the position of the defect of the silicon carbide epitaxial film based on the reference mark according to the eighth embodiment. This is the same as the step of specifying the coordinates (S33).
  • FIG. 32 is a schematic cross-sectional view showing a process of forming the second silicon carbide epitaxial film 72 on the first silicon carbide epitaxial film 71.
  • the second silicon carbide epitaxial film 72 is formed by epitaxial growth on the first silicon carbide epitaxial film 71.
  • a reference mark 3 (second mark 3b) is formed in the outer peripheral region 12 of the second silicon carbide epitaxial film 72. The second mark 3b is located directly above the first mark 3a.
  • the reference mark 3 (first mark 3a) provided on the first silicon carbide epitaxial film 71 is exposed by etching or the like, so that the reference mark 3 (first mark 3a) can be discriminated more accurately. It becomes.
  • the etching of the second silicon carbide epitaxial film 72 may be performed until the first silicon carbide epitaxial film 71 is exposed, or may be stopped before the first silicon carbide epitaxial film 71 is exposed. When the etching is stopped before the first silicon carbide epitaxial film 71 is exposed, the second silicon carbide epitaxial film 72 may remain above the reference mark 3 (first mark 3a).
  • a step (S45) of specifying the position coordinates of the defect of the second silicon carbide epitaxial film based on the reference mark is carried out.
  • the step (S45) of specifying the position coordinates of the defect of the second silicon carbide epitaxial film based on the reference mark according to the ninth embodiment is the position of the defect of the silicon carbide epitaxial film based on the reference mark according to the eighth embodiment. This is the same as the step of specifying the coordinates (S33).
  • FIG. 33 is a schematic cross-sectional view showing a step of forming an element active region on the second silicon carbide epitaxial film.
  • the step (S46) of forming the element active region on the second silicon carbide epitaxial film according to the ninth embodiment is the same as the step (S34) of forming the element active region on the silicon carbide epitaxial film according to the eighth embodiment. ..
  • the device active region 90 is formed on the second silicon carbide epitaxial film 72.
  • the device active region 90 may be formed on both the first silicon carbide epitaxial film 71 and the second silicon carbide epitaxial film 72.
  • a step (S47) of specifying the position coordinates of the element active region based on the reference mark is carried out.
  • the step (S47) of specifying the position coordinates of the element active region based on the reference mark according to the ninth embodiment is a step (S35) of specifying the position coordinates of the element active region based on the reference mark according to the eighth embodiment. Is similar to.
  • a step (S48) of associating the position coordinates of the defect with the position coordinates of the element active region and determining the quality of the element active region is performed.
  • the position coordinates of the defect and the element active region according to the eighth embodiment are performed. This is the same as the step (S36) of determining the quality of the element active region in association with the position coordinates of.
  • the gate insulating film 136 is formed by using the same method as the manufacturing method of the silicon carbide semiconductor device 300 according to the sixth embodiment (see FIG. 20).
  • the first electrode 141, the second electrode 142, the interlayer insulating film 137, the wiring layer 138, and the third electrode are used. 143 and are formed.
  • the silicon carbide substrate 1 is cut along the dicing region 91. As a result, the silicon carbide semiconductor device 300 is manufactured (see FIG. 21).
  • the reference mark 3 is formed in the outer peripheral region 12 in the method for manufacturing the silicon carbide semiconductor device 300 according to the sixth to ninth embodiments, but the location where the reference mark 3 is formed is the outer periphery. It is not limited to the region 12. Specifically, the reference mark 3 may be provided only in the central region 11 or may be provided in both the outer peripheral region 12 and the central region 11. When the reference mark 3 is provided in the central region 11, the reference mark 3 is provided in, for example, the dicing region 91. Further, the reference mark 3 may be formed on the front surface (first main surface 10) of the silicon carbide single crystal substrate 61, or may be formed on the back surface (second main surface 20).
  • the position coordinates of the defect 80 on the silicon carbide substrate 1 are specified based on the reference mark 3.
  • the device active region 90 is formed on the silicon carbide substrate 1.
  • the position coordinates of the element active region 90 are specified based on the reference mark 3.
  • the quality of the element active region 90 is determined by associating the position coordinates of the defect 80 with the position coordinates of the element active region 90.
  • the defect rate of the element due to the defect 80 can be accurately estimated. Based on the defect rate of the element, the optimum design of the element structure or the element arrangement becomes possible.
  • the formation position of the element active region 90 is set to the position coordinates of the defect 80. It may be adjusted based on. Thereby, the device active region 90 can be formed so as to avoid the defect 80. Therefore, the yield of the element can be improved.
  • the reference mark 3 may be provided on the silicon carbide single crystal substrate 61.
  • the device active region 90 may be provided on the silicon carbide epitaxial film 62.
  • the reference mark 3 When the reference mark 3 is provided on the silicon carbide single crystal substrate 61, after the reference mark is formed, it is polished on the reference mark forming surface in order to remove irregularities and distortions in the vicinity of the reference mark due to processing, foreign matter such as dust and dirt. It is desirable to perform processing and then clean the reference mark surface.
  • the polishing process may be performed only on the reference mark forming surface, or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface.
  • the silicon carbide epitaxial film 62 provided above the reference mark 3 may be removed by etching or the like until the silicon carbide single crystal substrate 61 is exposed.
  • the etching of the silicon carbide epitaxial film 62 may be performed until the silicon carbide single crystal substrate 61 is exposed, or may be stopped before the silicon carbide single crystal substrate 61 is exposed. When the etching is stopped before the silicon carbide single crystal substrate 61 is exposed, the silicon carbide epitaxial film 62 may remain above the reference mark 3.
  • each of the reference mark 3 and the element active region 90 may be provided on the silicon carbide epitaxial film 62.
  • the reference mark 3 is provided on the silicon carbide epitaxial film 62, the reference mark forming surface is polished or washed after the reference mark 3 is formed.
  • the reference mark 3 may be formed by laser processing. If the reference mark 3 is an indentation, dust may be generated when the reference mark 3 is formed. By forming the reference mark 3 by laser processing, it is possible to suppress the generation of dust. Therefore, the yield of the element can be further improved. Further, when the reference mark 3 is an indentation, it is difficult to form the reference mark 3 deeply. Therefore, if the reference mark forming surface is polished in order to remove irregularities and distortions in the vicinity of the reference mark 3 that occur when the reference mark 3 is processed, the reference mark 3 may disappear. In this case, it becomes difficult to discriminate the reference mark 3.
  • the reference mark 3 By forming the reference mark 3 by laser processing, the reference mark 3 can be formed deeply. Therefore, in order to remove the unevenness and distortion in the vicinity of the reference mark 3 generated when the reference mark 3 is processed, the reference mark forming surface can be polished. Further, at the time of alignment, the reference mark 3 can be accurately discriminated. Further, when the reference mark 3 is an indentation, a crack may occur in the substrate on which the reference mark 3 is formed. By forming the reference mark 3 by laser processing, it is possible to suppress the occurrence of cracks on the substrate.
  • the reference mark 3 When the reference mark 3 is provided on the silicon carbide single crystal substrate 61, after the reference mark is formed, it is polished on the reference mark forming surface in order to remove irregularities and distortions in the vicinity of the reference mark due to processing, foreign matter such as dust and dirt. It is desirable to perform processing and then clean the reference mark forming surface.
  • the polishing process may be performed only on the reference mark forming surface, or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface.
  • the reference mark 3 is provided on the silicon carbide epitaxial film 62, the reference mark forming surface is polished or washed after the reference mark 3 is formed.
  • the reference mark 3 may be formed by etching. If the reference mark 3 is an indentation, dust may be generated when the reference mark 3 is formed. By forming the reference mark 3 by etching, it is possible to suppress the generation of dust. Therefore, the yield of the element can be further improved. Further, when the reference mark 3 is an indentation, it is difficult to form the reference mark 3 deeply. Therefore, if the reference mark forming surface is polished in order to remove irregularities and distortions in the vicinity of the reference mark 3 that occur when the reference mark 3 is processed, the reference mark 3 may disappear. In this case, it becomes difficult to discriminate the reference mark 3.
  • the reference mark 3 By forming the reference mark 3 by etching, the reference mark 3 can be formed deeply. Therefore, in order to remove the unevenness and distortion in the vicinity of the reference mark 3 generated when the reference mark 3 is processed, the reference mark forming surface can be polished. Further, at the time of alignment, the reference mark 3 can be accurately discriminated. Further, when the reference mark 3 is an indentation, a crack may occur in the substrate on which the reference mark 3 is formed. By forming the reference mark 3 by etching, it is possible to suppress the occurrence of cracks on the substrate.
  • the reference mark 3 When the reference mark 3 is provided on the silicon carbide single crystal substrate 61, after the reference mark is formed, it is polished on the reference mark forming surface in order to remove irregularities and distortions in the vicinity of the reference mark due to processing, foreign matter such as dust and dirt. It is desirable to perform processing and then clean the reference mark forming surface.
  • the polishing process may be performed only on the reference mark forming surface, or may be performed on both sides of the reference mark forming surface and the surface opposite to the reference mark forming surface.
  • the reference mark 3 is provided on the silicon carbide epitaxial film 62, the reference mark forming surface is polished or washed after the reference mark 3 is formed.
  • the silicon carbide substrate 1 and the silicon carbide single crystal substrate 61 include an outer peripheral edge 2 and a main surface 10.
  • the main surface 10 is surrounded by the outer peripheral edge 2.
  • the main surface 10 includes an outer peripheral region 12 which is a region within 5 mm from the outer peripheral edge 2 and a central region 11 surrounded by the outer peripheral region 12.
  • a plurality of reference marks 3 that serve as a reference for the two-dimensional position coordinates are provided in the outer peripheral region 12. As a result, it is possible to secure a wider area of the region where the element is formed, as compared with the case where the reference mark 3 is provided in the central region 11.
  • the silicon carbide substrate 1 and the silicon carbide single crystal substrate 61 according to one embodiment of the above embodiment have a distance of 30 mm or more between each of the plurality of reference marks 3 when viewed in a direction perpendicular to the main surface 10. There may be. This makes it possible to accurately identify the position coordinates of the defect 80.
  • the silicon carbide substrate 1 and the silicon carbide single crystal substrate 61 according to one embodiment of the above embodiment have the diameter of the minimum virtual circle surrounding each of the plurality of reference marks 3 when viewed in a direction perpendicular to the main surface 10. It may be larger than 10 ⁇ m and less than 3 mm. As a result, the reference mark 3 can be accurately discriminated at the time of alignment.
  • the silicon carbide substrate 1 and the silicon carbide single crystal substrate 61 have the silicon carbide epitaxial film 62 having a depth of each of the plurality of reference marks 3 in a direction perpendicular to the main surface 10. It is desirable that the thickness is about 1/10 to 10 times the thickness.
  • the depth of each of the plurality of reference marks 3 may be, for example, greater than 0.5 ⁇ m and less than 100 ⁇ m.
  • the reference mark 3 is provided on the silicon carbide single crystal substrate 61, the reference mark having a depth as described above is formed depending on the growth conditions (for example, growth temperature and C / Si ratio) of the silicon carbide epitaxial film 62. Even if the shape of the reference mark 3 formed by being taken over by the silicon carbide epitaxial film is slightly deformed, the reference mark 3 can be accurately discriminated at the time of alignment.
  • the silicon carbide substrate 1 and the silicon carbide single crystal substrate 61 according to one aspect of the above embodiment are viewed in a direction perpendicular to the main surface 10, and each of the plurality of reference marks 3 has a cross shape. May be good. As a result, the reference mark 3 can be accurately discriminated at the time of alignment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

炭化珪素半導体装置の製造方法は以下の工程を有している。炭化珪素単結晶基板と、炭化珪素単結晶基板上に設けられた炭化珪素エピタキシャル膜とを含む炭化珪素基板において、2次元位置座標の基準となる基準マークが形成される。基準マークを形成した後、炭化珪素基板の基準マーク形成面に対して研磨または洗浄の少なくともいずれかが行われる。基準マークに基づいて、炭化珪素基板にある欠陥の位置座標が特定される。炭化珪素基板に素子活性領域が形成される。基準マークに基づいて、素子活性領域の位置座標が特定される。欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定が行われる。

Description

炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法
 本開示は、炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法に関する。本出願は、2020年10月6日に出願した日本特許出願である特願2020-169062号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特開平4-62858号公報(特許文献1)には、異物の観察、分析方法が記載されている。当該方法においては、ウエハ上に座標基準を設けて座標系が設定される。
 特開2000-269286号公報(特許文献2)には、半導体基板の欠陥位置特定方法が記載されている。当該方法においては、アフィン変換および欠陥の評価装置の座標系における座標値に基づいて、欠陥の位置が特定される。
特開平4-62858号公報 特開2000-269286号公報
 本開示に係る炭化珪素半導体装置の製造方法は以下の工程を備えている。炭化珪素単結晶基板と、炭化珪素単結晶基板上に設けられた炭化珪素エピタキシャル膜とを含む炭化珪素基板において、2次元位置座標の基準となる基準マークが形成される。基準マークを形成した後、炭化珪素基板の基準マーク形成面に対して研磨または洗浄の少なくともいずれかが行われる。基準マークに基づいて、炭化珪素基板にある欠陥の位置座標が特定される。炭化珪素基板に素子活性領域が形成される。基準マークに基づいて、素子活性領域の位置座標が特定される。欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定が行われる。
 本開示に係る炭化珪素基板は、炭化珪素単結晶基板と、炭化珪素単結晶基板上に設けられた炭化珪素エピタキシャル膜とを含む炭化珪素基板であって、外周縁と、主面とを備えている。主面は、外周縁に取り囲まれている。主面は、外周縁から5mm以内の領域である外周領域と、外周領域に囲まれた中央領域とを含んでいる。炭化珪素エピタキシャル膜の外周領域には、2次元位置座標の基準となる複数の基準マークが設けられている。
 本開示に係る炭化珪素単結晶基板は、外周縁と、外周縁に取り囲まれた主面とを備えている。主面は、外周縁から5mm以内の領域である外周領域と、外周領域に囲まれた中央領域とを含んでいる。外周領域には、2次元位置座標の基準となる複数の基準マークが設けられている。
図1は、第1実施形態に係る炭化珪素単結晶基板の構成を示す平面模式図である。 図2は、図1のII-II線に沿った断面模式図である。 図3は、基準マークの構成を示す拡大平面図である。 図4は、図3のIV-IV線に沿った断面模式図である。 図5は、第2実施形態に係る炭化珪素単結晶基板の基準マークの構成を示す拡大平面模式図である。 図6は、図5のVI-VI線に沿った断面模式図である。 図7は、第3実施形態に係る炭化珪素単結晶基板の基準マークの構成を示す拡大平面模式図である。 図8は、図7のVIII-VIII線に沿った断面模式図である。 図9は、第4実施形態に係る炭化珪素単結晶基板の構成を示す平面模式図である。 図10は、図9のX-X線に沿った断面模式図である。 図11は、第5実施形態に係る炭化珪素基板の構成を示す平面模式図である。 図12は、図11のXII-XII線に沿った断面模式図である。 図13は、第6実施形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 図14は、炭化珪素単結晶基板に基準マークを形成する工程を示す断面模式図である。 図15は、基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程を示す平面模式図である。 図16は、炭化珪素単結晶基板に炭化珪素エピタキシャル膜を形成する工程を示す断面模式図である。 図17は、基準マークに基づいて炭化珪素エピタキシャル膜にある欠陥の位置座標を特定する工程を示す平面模式図である。 図18は、炭化珪素エピタキシャル膜に素子活性領域を形成する工程を示す断面模式図である。 図19は、素子活性領域の良否判定を行う工程を示す平面模式図である。 図20は、ゲート絶縁膜を形成する工程を示す断面模式図である。 図21は、炭化珪素半導体装置の構成を示す断面模式図である。 図22は、第7実施形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 図23は、欠陥の位置座標に基づいて素子活性領域の形成位置を調整する工程を示す平面模式図である。 図24は、第8実施形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 図25は、炭化珪素単結晶基板を準備する工程を示す断面模式図である。 図26は、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程を示す断面模式図である。 図27は、炭化珪素エピタキシャル膜に基準マークを形成する工程を示す断面模式図である。 図28は、炭化珪素エピタキシャル膜に素子活性領域を形成する工程を示す断面模式図である。 図29は、第9実施形態に係る炭化珪素半導体装置の製造方法を概略的に示すフロー図である。 図30は、炭化珪素単結晶基板上に第1炭化珪素エピタキシャル膜を形成する工程を示す断面模式図である。 図31は、第1炭化珪素エピタキシャル膜に基準マークを形成する工程を示す断面模式図である。 図32は、第1炭化珪素エピタキシャル膜上に第2炭化珪素エピタキシャル膜を形成する工程を示す断面模式図である。 図33は、第2炭化珪素エピタキシャル膜に素子活性領域を形成する工程を示す断面模式図である。
[本開示が解決しようとする課題]
 本開示の目的は、素子活性領域の良否を精度良く判定可能な炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法を提供することである。
[本開示の効果]
 本開示によれば、素子活性領域の良否を精度良く判定可能な炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法を提供することができる。
 [本開示の実施形態の概要]
 まず、本開示の実施形態の概要について説明する。
 (1)本開示に係る炭化珪素半導体装置300の製造方法は以下の工程を備えている。炭化珪素単結晶基板61と、炭化珪素単結晶基板61上に設けられた炭化珪素エピタキシャル膜62とを含む炭化珪素基板1において、2次元位置座標の基準となる基準マーク3が形成される。基準マーク3を形成した後、炭化珪素基板1の基準マーク形成面に対して研磨または洗浄の少なくともいずれかが行われる。基準マーク3に基づいて、炭化珪素基板1にある欠陥80の位置座標が特定される。炭化珪素基板1に素子活性領域90が形成される。基準マーク3に基づいて、素子活性領域90の位置座標が特定される。欠陥80の位置座標と素子活性領域90の位置座標とを関連付けて、素子活性領域90の良否判定が行われる。基準マーク形成面に対する研磨は、基準マーク形成面のみに対して行われてもよいし(片面研磨)、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい(両面研磨)。
 上記(1)に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3に基づいて、炭化珪素基板1にある欠陥80の位置座標が特定される。炭化珪素基板1に素子活性領域90が形成される。基準マーク3に基づいて、素子活性領域90の位置座標が特定される。欠陥80の位置座標と素子活性領域90の位置座標とを関連付けて、素子活性領域90の良否判定が行われる。基準マーク3を利用した共通座標を用いて、欠陥80の位置座標と素子活性領域90の位置座標とを紐付けることにより、欠陥80に起因した素子の不良品を精度良く特定することができる。そのため、素子活性領域90の良否を精度良く判定することができる。
 また炭化珪素半導体装置300が完成する前に、欠陥80に起因した素子の不良率を正確に想定することができる。当該素子の不良率に基づき、素子構造または素子配置の最適な設計が可能となる。
 (2)上記(1)に係る炭化珪素半導体装置300の製造方法によれば、炭化珪素基板1に素子活性領域90を形成する工程において、素子活性領域90の形成位置は、欠陥80の位置座標に基づいて調整されてもよい。これにより、欠陥80を避けるように素子活性領域90を形成することができる。そのため、素子の歩留まりを向上することができる。
 (3)上記(1)または(2)に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3は、炭化珪素単結晶基板61に設けられていてもよい。素子活性領域90は、炭化珪素エピタキシャル膜62に設けられていてもよい。基準マーク3が炭化珪素単結晶基板61に設けられる場合は、基準マーク形成後、加工による基準マーク近傍の凹凸や歪み、粉塵等の異物や汚れを除去するため、基準マーク形成面に対して研磨加工を行い、その後、基準マーク形成面に対して洗浄を行うことが望ましい。研磨加工は、基準マーク形成面のみに対して行われてもよいし、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい。
 尚、基準マーク3の上部に設けられた炭化珪素エピタキシャル膜62の一部の領域のみを、炭化珪素単結晶基板61が露出するまでエッチング等を行うことにより除去してもよい。エッチング等を行うことにより炭化珪素単結晶基板61に設けられた基準マーク3が露出することで、より精度良く基準マーク3を判別することが可能となる。炭化珪素エピタキシャル膜62のエッチングは、炭化珪素単結晶基板61が露出するまで行ってもよいし、炭化珪素単結晶基板61が露出する手前で止めてもよい。炭化珪素単結晶基板61が露出する手前でエッチングを止めた場合、基準マーク3の上部には炭化珪素エピタキシャル膜62が残っていてもよい。
 (4)上記(1)または(2)に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3および素子活性領域90の各々は、炭化珪素エピタキシャル膜62に設けられていてもよい。基準マーク3が炭化珪素エピタキシャル膜62に設けられる場合は、基準マーク3を形成した後、基準マーク形成面に対して研磨または洗浄が行われる。
 (5)上記(1)から(4)のいずれかに係る炭化珪素半導体装置300の製造方法によれば、基準マーク3は、レーザー加工により形成されていてもよい。基準マーク3が圧痕である場合、基準マーク3を形成する際に粉塵が発生するおそれがある。基準マーク3がレーザー加工により形成されることにより、粉塵が発生することを抑制することができる。そのため、素子の歩留まりをさらに向上することができる。また基準マーク3が圧痕の場合、基準マーク3を深く形成することが困難である。そのため、基準マーク3を加工する際に発生する基準マーク近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うと、基準マーク3が消失するおそれがある。この場合、基準マーク3の判別が難しくなる。基準マーク3がレーザー加工により形成されることにより、基準マーク3を深く形成することができる。そのため、基準マーク3を加工する際に発生する基準マーク近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うことができる。さらに、アライメントの際、基準マーク3を精度良く判別することができる。さらに基準マーク3が圧痕の場合、基準マーク3が形成された基板にクラックが発生するおそれがある。基準マーク3がレーザー加工により形成されることにより、基板にクラックが発生することを抑制することができる。
 基準マーク3が炭化珪素単結晶基板61に設けられる場合は、基準マーク形成後、加工による基準マーク近傍の凹凸や歪み、粉塵等の異物や汚れを除去するため、基準マーク形成面に対して研磨加工を行い、その後、基準マーク形成面に対して洗浄を行うことが望ましい。研磨加工は、基準マーク形成面のみに対して行われてもよいし、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい。基準マーク3が炭化珪素エピタキシャル膜62に設けられる場合は、基準マーク3を形成した後、基準マーク形成面に対して研磨または洗浄が行われる。
 (6)上記(1)から(4)のいずれかに係る炭化珪素半導体装置300の製造方法によれば、基準マーク3は、エッチングにより形成されていてもよい。基準マーク3が圧痕である場合、基準マーク3を形成する際に粉塵が発生するおそれがある。基準マーク3がエッチングにより形成することにより、粉塵が発生することを抑制することができる。そのため、素子の歩留まりをさらに向上することができる。また基準マーク3が圧痕の場合、基準マーク3を深く形成することが困難である。そのため、基準マーク3を加工する際に発生する基準マーク近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うと、基準マーク3が消失するおそれがある。この場合、基準マーク3の判別が難しくなる。基準マーク3がエッチングにより形成されることにより、基準マーク3を深く形成することができる。そのため、基準マーク3を加工する際に発生する基準マーク近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うことができる。さらに、アライメントの際、基準マーク3を精度良く判別することができる。さらに基準マーク3が圧痕の場合、基準マーク3が形成された基板にクラックが発生するおそれがある。基準マーク3がエッチングにより形成されることにより、基板にクラックが発生することを抑制することができる。
 基準マーク3が炭化珪素単結晶基板61に設けられる場合は、基準マーク形成後、加工による基準マーク近傍の凹凸や歪み、粉塵等の異物や汚れを除去するため、基準マーク形成面に対して研磨加工を行い、その後、基準マーク形成面に対して洗浄を行うことが望ましい。研磨加工は、基準マーク形成面のみに対して行われてもよいし、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい。基準マーク3が炭化珪素エピタキシャル膜62に設けられる場合は、基準マーク3を形成した後、基準マーク形成面に対して研磨または洗浄が行われる。
 (7)本開示に係る炭化珪素基板1は、炭化珪素単結晶基板61と、炭化珪素単結晶基板61上に設けられた炭化珪素エピタキシャル膜62とを含む炭化珪素基板1であって、外周縁2と、主面10とを備えている。主面10は、外周縁2に取り囲まれている。主面10は、外周縁2から5mm以内の領域である外周領域12と、外周領域12に囲まれた中央領域11とを含んでいる。炭化珪素エピタキシャル膜62の外周領域12には、2次元位置座標の基準となる複数の基準マーク3が設けられている。これにより、基準マーク3が中央領域11に設けられている場合と比較して、素子が形成される領域の面積を広く確保することができる。
 (8)上記(7)に係る炭化珪素基板1によれば、主面10に対して垂直な方向に見て、複数の基準マーク3の各々の間の距離は、30mm以上であってもよい。これにより、欠陥80の位置座標を精度良く特定することができる。
 (9)上記(7)または(8)に係る炭化珪素基板1によれば、主面10に対して垂直な方向に見て、複数の基準マーク3の各々を取り囲む最小仮想円の直径は、10μmよりも大きく3mm未満であってもよい。これにより、アライメントの際、基準マーク3を精度良く判別することができる。
 (10)上記(7)から(9)のいずれかに係る炭化珪素基板1によれば、主面10に対して垂直な方向において、複数の基準マーク3の各々の深さは、炭化珪素エピタキシャル膜62の厚みの1/10から10倍程度が望ましい。複数の基準マーク3の各々の深さは、たとえば、0.5μmよりも大きく100μm未満であってもよい。基準マーク3が炭化珪素単結晶基板61に設けられる場合は、上記のような深さの基準マーク3を形成することで、炭化珪素エピタキシャル膜62の成長条件(たとえば成長温度やC/Si比)によって炭化珪素エピタキシャル膜62に引き継がれて形成される基準マーク3の形状が多少崩れても、アライメントの際、基準マーク3を精度良く判別することができる。
 (11)上記(7)から(10)のいずれかに係る炭化珪素基板1によれば、主面10に対して垂直な方向に見て、複数の基準マーク3の各々は、十字形状を有していてもよい。これにより、アライメントの際、基準マーク3を精度良く判別することができる。
 (12)本開示に係る炭化珪素単結晶基板61は、外周縁2と、外周縁2に取り囲まれた主面10とを備えている。主面10は、外周縁2から5mm以内の領域である外周領域12と、外周領域12に囲まれた中央領域11とを含んでいる。外周領域12には、2次元位置座標の基準となる複数の基準マーク3が設けられている。
 (13)上記(12)に係る炭化珪素単結晶基板61において、主面10に対して垂直な方向に見て、複数の基準マーク3の各々の間の距離は、30mm以上であってもよい。
 (14)上記(12)または(13)に係る炭化珪素単結晶基板61において、主面10に対して垂直な方向に見て、複数の基準マーク3の各々を取り囲む最小仮想円の直径は、10μmよりも大きく3mm未満であってもよい。
 (15)上記(12)から(14)のいずれかに係る炭化珪素単結晶基板61によれば、主面10に対して垂直な方向において、複数の基準マーク3の各々の深さは、0.5μmよりも大きく100μm未満であってもよい。
 (16)上記(12)から(15)のいずれかに係る炭化珪素単結晶基板61によれば、主面10に対して垂直な方向に見て、複数の基準マーク3の各々は、十字形状を有していてもよい。
 [本開示の実施形態の詳細]
 以下、図面に基づいて本開示の実施形態(以降、本実施形態とも称する)の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 (第1実施形態)
 まず、第1実施形態に係る炭化珪素単結晶基板61の構成について説明する。
 図1は、第1実施形態に係る炭化珪素単結晶基板61の構成を示す平面模式図である。図1に示されるように、第1実施形態に係る炭化珪素単結晶基板61は、第1主面10と、外周縁2とを主に有している。第1主面10は、外周縁2に取り囲まれている。第1主面10は、中央領域11と、外周領域12とを含んでいる。外周領域12は、外周縁2から5mm以内の領域である。中央領域11は、外周領域12に囲まれている。第1主面10は、中央領域11と、外周領域12とにより構成されている。第1主面10の径方向において、中央領域11と外周領域12との境界と、外周縁2との間の間隔W2は5mmである。
 外周縁2は、たとえばオリエンテーションフラット2aと、円弧状部2bとを有している。オリエンテーションフラット2aは、第1方向Xに沿って延在している。図1に示されるように、オリエンテーションフラット2aは、第1主面10に対して垂直な方向に見て、直線状である。円弧状部2bは、オリエンテーションフラット2aに連なっている。円弧状部2bは、第1主面10に対して垂直な方向に見て、円弧状である。
 図1に示されるように、第1主面10に対して垂直な方向に見て、第1主面10は、第1方向Xおよび第2方向Yの各々に沿って拡がっている。第1主面10に対して垂直な方向に見て、第2方向Yは、第1方向Xに対して垂直な方向である。
 第1方向Xは、たとえば<11-20>方向である。第1方向Xは、たとえば[11-20]方向であってもよい。第1方向Xは、<11-20>方向を第1主面10に射影した方向であってもよい。別の観点から言えば、第1方向Xは、たとえば<11-20>方向成分を含む方向であってもよい。
 第2方向Yは、たとえば<1-100>方向である。第2方向Yは、たとえば[1-100]方向であってもよい。第2方向Yは、たとえば<1-100>方向を第1主面10に射影した方向であってもよい。別の観点から言えば、第2方向Yは、たとえば<1-100>方向成分を含む方向であってもよい。
 第1主面10は、{0001}面であってもよいし、{0001}面に対して傾斜した面であってもよい。第1主面10は、{0001}面に対して傾斜している場合、{0001}面に対する傾斜角(オフ角)は、たとえば1°以上8°以下である。第1主面10が{0001}面に対して傾斜している場合、第1主面10の傾斜方向(オフ方向)は、たとえば<11-20>方向である。
 第1主面10の最大径W1は、たとえば100mm(4インチ)以上である。第1主面10の最大径W1は、150mm(6インチ)以上でもあってもよいし、200mm(8インチ)以上でもよい。第1主面10の最大径W1の上限は、特に限定されないが、たとえば400mm(16インチ)以下であってもよい。なお第1主面10の最大径W1は、外周縁2上の異なる2点間の最長直線距離である。
 なお本明細書において、4インチは、100mm又は101.6mm(4インチ×25.4mm/インチ)のことである。6インチは、150mm又は152.4mm(6インチ×25.4mm/インチ)のことである。8インチは、200mm又は203.2mm(8インチ×25.4mm/インチ)のことである。16インチは、400mm又は406.4mm(16インチ×25.4mm/インチ)のことである。
 図1に示されるように、外周領域12には、複数の基準マーク3が設けられている。複数の基準マーク3の各々は、2次元位置座標の基準となる。図1に示されるように、第1主面10に対して垂直な方向に見て、複数の基準マーク3の各々は、オリエンテーションフラットから5mm以内の領域(外周領域12)に位置していてもよい。基準マーク3の数は、特に限定されないが、たとえば2個である。
 図1に示されるように、第1主面10に対して垂直な方向に見て、複数の基準マーク3の各々の間の距離Aは、たとえば30mm以上である。複数の基準マーク3の各々の間の距離Aの下限は、特に限定されないが、たとえば40mm以上であってもよいし、50mm以上であってもよい。複数の基準マーク3の各々の間の距離Aの上限は、特に限定されないが、たとえば200mm以下であってもよいし、150mm以下であってもよい。
 図1に示されるように、第1主面10に対して垂直な方向に見て、複数の基準マーク3の各々は、十字形状を有していてもよい。複数の基準マーク3は、たとえば、第1基準マーク31と、第2基準マーク32とを有している。複数の基準マーク3の各々の間の距離Aは、第1基準マーク31の中心から第2基準マーク32の中心までの距離である。基準マーク3が十字形状を有している場合、複数の基準マーク3の各々の間の距離Aは、第1基準マーク31の十字形状の中心から第2基準マーク32の十字形状の中心までの距離である。
 図2は、図1のII-II線に沿った断面模式図である。図2に示されるように、炭化珪素単結晶基板61は、第1主面10の反対側にある第2主面20を有している。複数の基準マーク3の各々は、たとえば凹部である。第1主面10に対して垂直な方向において、凹部の底面は、第1主面10と第2主面20との間に位置している。
 第1主面10に対して垂直な方向において、複数の基準マーク3の各々の深さDは、たとえば0.5μmよりも大きく100μm未満である。複数の基準マーク3の各々の深さDの下限は、特に限定されないが、たとえば3μm以上であってもよいし、5μm以上であってもよい。複数の基準マーク3の各々の深さDの上限は、特に限定されないが、たとえば50μm以下であってもよいし、30μm以下であってもよい。
 炭化珪素単結晶基板61を構成する炭化珪素のポリタイプは、たとえば4Hである。炭化珪素単結晶基板61を構成する炭化珪素のポリタイプは、たとえば6Hであってもよい。炭化珪素単結晶基板61の厚みは、たとえば350μm以上500μm以下である。炭化珪素単結晶基板61は、たとえば窒素(N)などのn型不純物を含んでいる。炭化珪素単結晶基板61の導電型は、たとえばn型である。
 図3は、基準マーク3の構成を示す拡大平面図である。第1主面10に対して垂直な方向に見て、基準マーク3の形状は、たとえば軸対称である。基準マーク3の形状は、たとえば十字形状である。たとえば、2つの長方形が中心で垂直に交差するように設けられていてもよい。図4は、図3のIV-IV線に沿った断面模式図である。図4に示されるように、長方形の短辺の長さ(第3長さW3)は、基準マーク3の深さDよりも大きくてもよい。第3長さW3は、たとえば10μmである。
 基準マーク3の形状は、十字形状に限定されない。基準マーク3の形状は、多角形であってもよいし、軸対称の矩形(長方形、正方形)であってもよいし、円形であってもよい。基準マーク3は、たとえば仮想円で取り囲むことができる形状である。基準マーク3を取り囲む最小仮想円は、たとえば基準マーク3の外接円である。基準マーク3の中心は、外接円の中心である。
 第1主面10に対して垂直な方向に見て、複数の基準マーク3の各々を取り囲む最小仮想円(第1仮想円R1)の半径は、たとえば10μmよりも大きく3mm未満である。第1仮想円R1の半径の下限は、特に限定されないが、たとえば50μm以上であってもよいし、100μm以上であってもよい。第1仮想円R1の半径の上限は、特に限定されないが、たとえば1mm以下であってもよいし、0.5mm以下であってもよい。
 図3に示されるように、基準マーク3によって取り囲まれる最大仮想円(第2仮想円R2)は、たとえば基準マーク3の内接円である。基準マーク3の内接円の中心は、基準マーク3の外接円の中心と一致してもよい。第1主面10に対して垂直な方向に見て、第2仮想円R2の半径は、たとえば5μm未満である。
 図1に示されるように、第1基準マーク31の中心と、第2基準マーク32の中心とを通る直線をX軸とする。第1主面10と平行であって、かつX軸と垂直な直線をY軸とする。第1基準マーク31の中心と第2基準マーク32の中心との中間位置が、たとえば2次元位置座標の原点とされる。原点から第1基準マーク31に向かう方向は、たとえばX軸のマイナス方向とされる。原点から第2基準マーク32に向かう方向は、たとえばX軸のプラス方向とされる。原点からオリエンテーションフラット2aに向かう方向は、たとえばY軸のマイナス方向とされる。原点からオリエンテーションフラット2aに向かう方向と反対方向は、たとえばY軸のプラス方向とされる。たとえば以上のように、第1基準マーク31および第2基準マーク32に基づいて、仮想の2次元位置座標系が決定される。
 欠陥80の位置座標は、上記仮想の2次元位置座標系を用いて、欠陥中心等の代表点、欠陥を取り囲む矩形、円もしくは楕円等の図形等で定義してもよい。
 (第2実施形態)
 次に、第2実施形態に係る炭化珪素単結晶基板61の構成について説明する。第2実施形態に係る炭化珪素単結晶基板61は、主に、基準マーク3が複数の凹部30によって構成されている点において、第1実施形態に係る炭化珪素単結晶基板61と異なっており、その他の点については、第1実施形態に係る炭化珪素単結晶基板61と同様である。以下、第1実施形態に係る炭化珪素単結晶基板61と異なる構成を中心に説明する。
 図5は、第2実施形態に係る炭化珪素単結晶基板61の基準マーク3の構成を示す拡大平面模式図である。図5に示されるように、第2実施形態に係る炭化珪素単結晶基板61の基準マーク3は、複数の凹部30によって構成されている。第1主面10に対して垂直な方向に見て、複数の凹部30の各々の形状は、たとえば円である。複数の凹部30の各々は、たとえば第1方向Xおよび第2方向Yの各々に沿って等間隔に並べられている。
 図5に示されるように、たとえば2行10列の凹部30と10行2列の凹部30とが十字に公差するように設けられていてもよい。図6は、図5のVI-VI線に沿った断面模式図である。図6に示されるように、隣り合う2つの凹部の間の領域の幅(第5幅W5)は、複数の凹部30の各々の直径(第4幅W4)よりも大きくてもよい。
 (第3実施形態)
 次に、第3実施形態に係る炭化珪素単結晶基板61の構成について説明する。第3実施形態に係る炭化珪素単結晶基板61は、主に、基準マーク3が凸状である点において、第1実施形態に係る炭化珪素単結晶基板61と異なっており、その他の点については、第1実施形態に係る炭化珪素単結晶基板61と同様である。以下、第1実施形態に係る炭化珪素単結晶基板61と異なる構成を中心に説明する。
 図7は、第3実施形態に係る炭化珪素単結晶基板61の基準マーク3の構成を示す拡大平面模式図である。図8は、図7のVIII-VIII線に沿った断面模式図である。図7および図8に示されるように、基準マーク3は、凸状であってもよい。凸状の基準マーク3の形状は、たとえば十字形状である。
 図8に示されるように、凸状の基準マーク3の一部は、たとえば2つの溝部54の間に設けられている。2つの溝部54の各々は、底面53と、側面52とを有している。溝部54の側面52の一部は、凸状の基準マーク3の側面を構成する。溝部54の深さDは、基準マーク3の高さに対応する。
 (第4実施形態)
 次に、第4実施形態に係る炭化珪素単結晶基板61の構成について説明する。第4実施形態に係る炭化珪素単結晶基板61は、主に、基準マーク3の配置場所において、第1実施形態に係る炭化珪素単結晶基板61と異なっており、その他の点については、第1実施形態に係る炭化珪素単結晶基板61と同様である。以下、第1実施形態に係る炭化珪素単結晶基板61と異なる構成を中心に説明する。
 図9は、第4実施形態に係る炭化珪素単結晶基板61の構成を示す平面模式図である。図10は、図9のX-X線に沿った断面模式図である。図9に示されるように、複数の基準マーク3は、たとえば第1基準マーク31と、第2基準マーク32と、第3基準マーク33と、第4基準マーク34とを有している。第1基準マーク31、第2基準マーク32、第3基準マーク33および第4基準マーク34の各々は、外周領域12に設けられている。
 第1基準マーク31の中心と、第2基準マーク32の中心とを通る直線(第1直線)は、たとえば第1方向Xに平行である。第3基準マーク33の中心と、第4基準マーク34の中心とを通る直線(第2直線)は、たとえば第2方向Yに平行である。第1直線は、たとえば2次元座標のX軸として用いられる。第2直線は、たとえば2次元座標のY軸として用いられる。第1直線と第2直線との交点は、たとえば2次元座標の原点として用いられる。たとえば以上のように、第1基準マーク31、第2基準マーク32、第3基準マーク33および第4基準マーク34に基づいて、仮想の2次元位置座標系が決定されてもよい。
 (第5実施形態)
 次に、第5実施形態に係る炭化珪素基板1の構成について説明する。第5実施形態に係る炭化珪素基板1は、炭化珪素単結晶基板61と炭化珪素エピタキシャル膜62とを有している点において、第1実施形態に係る炭化珪素単結晶基板61と異なっており、その他の点については、第1実施形態に係る炭化珪素単結晶基板61と同様である。以下、第1実施形態に係る炭化珪素単結晶基板61と異なる構成を中心に説明する。
 図11は、第5実施形態に係る炭化珪素基板1の構成を示す平面模式図である。図12は、図11のXII-XII線に沿った断面模式図である。図12に示されるように、炭化珪素基板1は、炭化珪素単結晶基板61と、炭化珪素エピタキシャル膜62とを有している。炭化珪素エピタキシャル膜62は、炭化珪素単結晶基板61上に設けられている。炭化珪素エピタキシャル膜62は、第3主面43と、第4主面40とを有している。第3主面43は、炭化珪素単結晶基板61に接している。第4主面40は、第3主面43の反対側にある。
 図11に示されるように、第4主面40は、中央領域41と、外周領域42とを有している。外周領域42は、外周縁2から5mm以内の領域である。外周領域42は、中央領域41を取り囲んでいる。複数の基準マーク3の各々は、第4主面40の外周領域42に設けられている。複数の基準マーク3は、第1基準マーク31と、第2基準マーク32とを有している。図12に示されるように、複数の基準マーク3の各々は、炭化珪素エピタキシャル膜62に設けられている。
 炭化珪素単結晶基板61および炭化珪素エピタキシャル膜62の各々を構成する炭化珪素のポリタイプは、たとえば4Hである。炭化珪素単結晶基板61および炭化珪素エピタキシャル膜62の各々を構成する炭化珪素のポリタイプは、たとえば6Hであってもよい。炭化珪素単結晶基板61の厚みは、たとえば350μm以上500μm以下である。炭化珪素エピタキシャル膜62の厚みは、たとえば1μm以上100μm以下である。
 炭化珪素単結晶基板61および炭化珪素エピタキシャル膜62の各々は、たとえば窒素(N)などのn型不純物を含んでいる。炭化珪素単結晶基板61および炭化珪素エピタキシャル膜62の各々の導電型は、たとえばn型である。炭化珪素単結晶基板61は、導電性基板であってもよいし、半絶縁性基板であってもよい。炭化珪素エピタキシャル膜62は、ホモ構造のエピタキシャル膜であってもよいし、ヘテロ構造のエピタキシャル膜であってもよい。炭化珪素エピタキシャル膜62は、1層であってもよいし、2層以上であってもよい。
 (第6実施形態)
 次に、第6実施形態に係る炭化珪素半導体装置300の製造方法について説明する。
 図13は、第6実施形態に係る炭化珪素半導体装置300の製造方法を概略的に示すフロー図である。図13に示されるように、第6実施形態に係る炭化珪素半導体装置300の製造方法は、炭化珪素単結晶基板に基準マークを形成する工程(S11)と、炭化珪素単結晶基板を研磨加工する工程(S12)と、炭化珪素単結晶基板を洗浄する工程(S13)と、基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S14)と、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S15)と、基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S16)と、炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S17)と、基準マークに基づいて素子活性領域の位置座標を特定する工程(S18)と、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S19)とを主に有している。
 まず、たとえば昇華法により、ポリタイプ4Hの炭化珪素単結晶が製造される。次に、たとえばワイヤーソーによって炭化珪素単結晶をスライスすることにより、炭化珪素単結晶基板61が準備される。炭化珪素単結晶基板61は、第1主面10と、第2主面20とを有している。第2主面20は、第1主面10の反対側にある。第1主面10は、中央領域11と、外周領域12とを有している。外周領域12は、中央領域11を取り囲んでいる。
 次に、炭化珪素単結晶基板に基準マークを形成する工程(S11)が実施される。図14は、炭化珪素単結晶基板に基準マークを形成する工程を示す断面模式図である。図14に示されるように、基準マーク3(第1マーク3a)は、炭化珪素単結晶基板61の外周領域12に設けられる。以上により、炭化珪素基板1において、2次元位置座標の基準となる基準マーク3(第1マーク3a)が形成される。基準マーク3が形成された炭化珪素単結晶基板61は、たとえば、第1実施形態から第4実施形態に係る炭化珪素基板である。
 次に、炭化珪素単結晶基板を研磨加工する工程(S12)が実施される。具体的には、炭化珪素単結晶基板61に対して機械研磨工程と化学機械研磨工程とが行われる。機械研磨工程においては、砥粒としてたとえばダイヤモンドが用いられる。化学機械研磨工程においては、砥粒としてたとえばコロイダルシリカが用いられる。炭化珪素単結晶基板61の第1主面10のみに対して研磨が行われてもよいし(片面研磨)、第1主面10および第2主面20の双方に対して研磨が行われてもよい(両面研磨)。基準マーク形成後の研磨工程および洗浄工程により、基準マーク近傍の凹凸や歪みを除去することで、炭化珪素エピタキシャル膜に引き継がれて形成される基準マーク3の形状は崩れることが抑制される。そのため、基準マーク3を精度良く判別することが可能となる。
 次に、炭化珪素単結晶基板を洗浄する工程(S13)が実施される。これにより、炭化珪素単結晶基板61に基準マーク3を形成する際に発生した残渣等が、洗浄によって取り除かれる。以上のように、基準マーク3を形成した後、炭化珪素基板1の基準マーク形成面に対して研磨が行われ、その後、基準マーク形成面に対して洗浄が行われる。基準マーク形成面は、第1主面10に対応する。上記においては、炭化珪素単結晶基板を研磨加工する工程(S12)および炭化珪素単結晶基板を洗浄する工程(S13)の双方を実施する場合について説明したが、本実施形態はこれに限定されない。本実施形態においては、炭化珪素単結晶基板を研磨加工する工程(S12)または炭化珪素単結晶基板を洗浄する工程(S13)の少なくともいずれかが行われればよい。
 次に、基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S14)が実施される。工程(S14)において、基準マークに基づいて炭化珪素単結晶基板にある欠陥が測定され、その位置座標が特定される。図15は、基準マーク3に基づいて炭化珪素単結晶基板61にある欠陥80の位置座標を特定する工程を示す平面模式図である。図15に示されるように、炭化珪素単結晶基板61の外周領域12には、複数の基準マーク3(第1マーク3a)が設けられている。複数の基準マーク3(第1マーク3a)は、第1基準マーク31aと、第2基準マーク32aとを有している。
 たとえば、第1基準マーク31aの中心と、第2基準マーク32aの中心とを通る直線をX軸とする。第1主面10と平行であって、かつX軸と垂直な直線をY軸とする。第1基準マーク31aの中心と第2基準マーク32aの中心との中間位置が、たとえば2次元位置座標の原点とされる。原点から第1基準マーク31aに向かう方向は、たとえばX軸のマイナス方向とされる。原点から第2基準マーク32aに向かう方向は、たとえばX軸のプラス方向とされる。原点からオリエンテーションフラット2aに向かう方向は、たとえばY軸のマイナス方向とされる。原点からオリエンテーションフラット2aに向かう方向と反対方向は、たとえばY軸のプラス方向とされる。たとえば以上のように、第1基準マーク31aおよび第2基準マーク32aに基づいて、仮想の2次元位置座標系が決定される。
 図15に示されるように、炭化珪素単結晶基板61には、欠陥80が存在している。欠陥80は、たとえば第1欠陥81と、第2欠陥82とを有している。第1欠陥81は、たとえばマイクロパイプである。第2欠陥82は、たとえば積層欠陥である。欠陥80は、たとえば貫通螺旋転位、貫通刃状転位、基底面転位、カーボンインクルージョンまたは表面の付着物などであってもよい。欠陥80は、中央領域11に位置していてもよいし、外周領域12に位置していてもよい。第2欠陥82は、スクラッチなどであってもよい。
 基準マーク3に基づいて決定された仮想の2次元位置座標系を利用して、欠陥80の2次元位置座標が特定される。具体的には、第1欠陥81が、たとえば第1座標(X1、Y1)を含む複数の座標上に存在している場合、第1座標(X1、Y1)を含む複数の座標が第1欠陥81の2次元位置座標として特定される。同様に、第2欠陥82が、たとえば第2座標(X2、Y2)を含む複数の座標上に存在している場合、第2座標(X2、Y2)を含む複数の座標が第2欠陥82の2次元位置座標として特定される。以上のように、基準マーク3(第1マーク3a)に基づいて、炭化珪素基板1にある欠陥80の位置座標が特定される。欠陥80の検査方法は、たとえばフォトルミネッセンス法、X線回折法または表面光散乱法または偏光透過光法を用いた非破壊検査である。
 次に、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S15)が実施される。具体的には、炭化珪素単結晶基板61が、たとえばCVD(Chemical Vapor Deposition)装置の成膜チャンバに配置される。次に、原料ガスと、キャリアガスと、ドーピングガスとが、成膜チャンバに導入される。原料ガスは、たとえばシラン(SiH4)ガスと、プロパン(C38)ガスとを含んでいる。キャリアガスは、たとえば水素である。ドープングガスは、たとえばアンモニアガスまたは窒素ガスである。
 図16は、炭化珪素単結晶基板61に炭化珪素エピタキシャル膜62を形成する工程を示す断面模式図である。成膜チャンバにおいて、シランガスとプロパンガスとが熱分解されることにより、炭化珪素単結晶基板61の第1主面10上に炭化珪素エピタキシャル膜62が形成される。図16に示されるように、炭化珪素エピタキシャル膜62は、第3主面43と、第4主面40とを有している。第3主面43は、炭化珪素単結晶基板61に接している。
 図16に示されるように、外周領域12にある炭化珪素エピタキシャル膜62は、第1主面10に形成された基準マーク3(第1マーク3a)を埋めるように形成される。その結果、炭化珪素エピタキシャル膜62の第4主面40の外周領域12に基準マーク3(第2マーク3b)が形成される。第4主面40の外周領域12に形成された基準マーク3(第2マーク3b)は、第1主面10の外周領域12に形成された基準マーク3(第1マーク3a)の直上にある。第2マーク3bは、第1マーク3aから炭化珪素エピタキシャル膜62に引き継がれて形成されている。第2マーク3bの形状は、第1マーク3aの形状と実質的に同じである。
 基準マーク3(第1マーク3aおよび第2マーク3b)は、たとえばレーザー加工により形成される。レーザー加工においては、たとえばUV(紫外線)レーザーやファイバーレーザーを用いることが好ましい。レーザーの波長は、好ましくは100nm以上1200nm以下の範囲である。基準マーク3の深さは、たとえば0.5μmよりも大きく100μm未満である。基準マーク3が浅すぎると、基準マーク3は視認しづらい。基準マーク3が深すぎると、基準マーク3の内部にゴミや汚れが入った場合、それらを取り出すことが困難である。この場合、後工程へ汚染リスクをもたらしやすくなる。
 基準マーク3は、1回のレーザー照射で形成するのではなく、複数回に分けてレーザー照射する方が好ましい。ただし、1回のレーザー照射で予定深さに到達する場合は、1回のレーザー照射で基準マーク3が形成されてもよい。また、加工面にフォーカスしてレーザー加工を行うと、基準マーク3を精度良く加工することが出来る。
 基準マーク3(第1マーク3a)の上部に設けられた炭化珪素エピタキシャル膜62の一部の領域のみを、炭化珪素単結晶基板61が露出するまでエッチング等を行うことにより除去してもよい。エッチング等を行うことにより炭化珪素単結晶基板61に設けられた基準マーク3(第1マーク3a)が露出することで、より精度良く基準マーク3(第1マーク3a)を判別することが可能となる。炭化珪素エピタキシャル膜62のエッチングは、炭化珪素単結晶基板61が露出するまで行ってもよいし、炭化珪素単結晶基板61が露出する手前で止めてもよい。炭化珪素単結晶基板61が露出する手前でエッチングを止めた場合、基準マーク3(第1マーク3a)の上部には炭化珪素エピタキシャル膜62が残っていてもよい。
 基準マーク3(第1マーク3aおよび第2マーク3b)は、たとえばエッチングにより形成されてもよい。エッチング加工は、たとえば、炭化珪素単結晶基板61上、もしくは、炭化珪素単結晶基板61の上に設けた炭化珪素エピタキシャル膜62上に、SiO2によるマスクパターンを形成し、エッチングガスによるプラズマエッチング処理を行ってもよい。エッチングガスとして、SF6を用いることが効果的である。エッチングガスは、SF6にO2ガスまたはSiF4を含んでもよい。これにより、深い基準マーク3(第1マーク3aおよび第2マーク3b)を形成することができる。
 基準マーク3(第1マーク3a)の上部に設けられた炭化珪素エピタキシャル膜62の一部の領域のみを、炭化珪素単結晶基板61が露出するまでエッチング等を行うことにより除去してもよい。エッチング等を行うことにより炭化珪素単結晶基板61に設けられた基準マーク3(第1マーク3a)が露出することで、より精度良く基準マーク3(第1マーク3a)を判別することが可能となる。炭化珪素エピタキシャル膜62のエッチングは、炭化珪素単結晶基板61が露出するまで行ってもよいし、炭化珪素単結晶基板61が露出する手前で止めてもよい。炭化珪素単結晶基板61が露出する手前でエッチングを止めた場合、基準マーク3(第1マーク3a)の上部には炭化珪素エピタキシャル膜62が残っていてもよい。
 次に、基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S16)が実施される。図17は、基準マーク3に基づいて炭化珪素エピタキシャル膜62にある欠陥80の位置座標を特定する工程を示す平面模式図である。図17に示されるように、炭化珪素エピタキシャル膜62の外周領域12には、複数の基準マーク3(第2マーク3b)が設けられている。複数の基準マーク3(第2マーク3b)は、第1基準マーク31bと、第2基準マーク32bとを有している。
 たとえば、第1基準マーク31bの中心と、第2基準マーク32bの中心とを通る直線をX軸とする。第4主面40と平行であって、かつX軸と垂直な直線をY軸とする。第1基準マーク31bの中心と第2基準マーク32bの中心との中間位置が、たとえば2次元位置座標の原点とされる。原点から第1基準マーク31bに向かう方向は、たとえばX軸のマイナス方向とされる。原点から第2基準マーク32bに向かう方向は、たとえばX軸のプラス方向とされる。原点からオリエンテーションフラット2aに向かう方向は、たとえばY軸のマイナス方向とされる。原点からオリエンテーションフラット2aに向かう方向と反対方向は、たとえばY軸のプラス方向とされる。たとえば以上のように、第1基準マーク31bおよび第2基準マーク32bに基づいて、仮想の2次元位置座標系が決定される。
 図17に示されるように、炭化珪素エピタキシャル膜62の第4主面40には、欠陥80が存在している。欠陥80は、たとえば第3欠陥83と、第4欠陥84とを有している。第3欠陥83は、たとえば三角欠陥である。第4欠陥84は、たとえばダウンフォールである。欠陥80は、たとえば積層欠陥、キャロット欠陥、基底面転位または表面の付着物などであってもよい。
 次に、基準マーク3(第2マーク3b)に基づいて決定された仮想の2次元位置座標系を利用して、欠陥80の2次元位置座標が特定される。具体的には、第3欠陥83が、たとえば第3座標(X3、Y3)を含む複数の座標上に存在している場合、第3座標(X3、Y3)を含む複数の座標が第3欠陥83の2次元位置座標として特定される。同様に、第4欠陥84が、たとえば第4座標(X4、Y4)を含む複数の座標上に存在している場合、第4座標(X4、Y4)を含む複数の座標が第4欠陥84の2次元位置座標として特定される。以上のように、基準マーク3(第2マーク3b)に基づいて、炭化珪素基板1にある欠陥80の位置座標が特定される。
 次に、炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S17)が実施される。図18は、炭化珪素エピタキシャル膜62に素子活性領域90を形成する工程を示す断面模式図である。図18に示されるように、炭化珪素エピタキシャル膜62に対して、たとえばアルミニウム(Al)等のp型不純物が注入される。これにより、p型の導電型を有するボディ領域132が形成される。次に、ボディ領域132の一部に、たとえばリン(P)等のn型不純物が注入される。これにより、n型の導電型を有するソース領域133が形成される。次に、アルミニウム等のp型不純物がソース領域133の一部に注入される。これにより、p型の導電型を有するコンタクト領域134が形成される(図18参照)。
 炭化珪素エピタキシャル膜62において、ボディ領域132、ソース領域133およびコンタクト領域134以外の部分は、ドリフト領域131となる。ソース領域133は、ボディ領域132によってドリフト領域131から隔てられている。イオン注入は、炭化珪素基板1をたとえば300℃以上600℃以下程度に加熱して行われてもよい。イオン注入の後、炭化珪素エピタキシャル基板100に対して活性化アニールが行われる。活性化アニールにより、炭化珪素エピタキシャル膜62に注入された不純物が活性化し、各領域においてキャリアが生成される。活性化アニールの雰囲気は、たとえばアルゴン(Ar)雰囲気でもよい。活性化アニールの温度は、たとえば1800℃程度でもよい。活性化アニールの時間は、たとえば30分程度でもよい。
 素子活性領域90は、たとえば、ボディ領域132、ソース領域133およびコンタクト領域134を含む。以上のように、炭化珪素基板1に素子活性領域90が形成される。素子活性領域90は、炭化珪素エピタキシャル膜62に設けられる。
 次に、基準マークに基づいて素子活性領域の位置座標を特定する工程(S18)が実施される。基準マーク3(第2マーク3b)に基づいて決定された仮想の2次元位置座標系を利用して、素子活性領域90の2次元位置座標が特定される。具体的には、素子活性領域90が、たとえば第5座標(X5、Y5)を含む複数の座標上に存在している場合、第5座標(X5、Y5)を含む複数の座標が素子活性領域90の2次元位置座標として特定される。以上のように、基準マーク3に基づいて、素子活性領域90の位置座標が特定される。
 なお、基準マークに基づいて素子活性領域の位置座標を特定する工程(S18)における基準マーク3とは、炭化珪素単結晶基板に基準マークを形成する工程(S11)において形成された基準マーク3(第1マーク3a)であってもよいし、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S15)において形成された基準マーク3(第2マーク3b)であってもよい。第2マーク3bは、第1マーク3aが炭化珪素エピタキシャル膜62に引き継がれて形成されたものである。そのため、第1マーク3aに基づいて決定される2次元位置座標系は、第2マーク3bに基づいて決定される2次元位置座標系と実質的に同じである。
 次に、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S19)が実施される。図19は、素子活性領域90の良否判定を行う工程を示す平面模式図である。図19において、素子活性領域90は、略正方形で示される複数の領域である。隣り合う2つの素子活性領域90の間は、ダイシング領域91である。図19に示されるように、第1欠陥81の位置座標と、第2欠陥82の位置座標と、第3欠陥83の位置座標と、第4欠陥84の位置座標と、素子活性領域90の位置座標とが、2次元面内においてマッピングされてもよい。
 次に、第1欠陥81の位置座標と、素子活性領域90の位置座標とが比較される。第1欠陥81の位置座標と、素子活性領域90の位置座標との少なくとも一部が重なっていれば、素子活性領域90に第1欠陥81が存在していることになる。図19に示されるように、複数の素子活性領域90の内、一部の素子活性領域90は、第1欠陥81と重なっている。第1欠陥81と重なっている素子活性領域90に形成された半導体素子は不良品と判断される。
 同様に、第2欠陥82の位置座標と、素子活性領域90の位置座標とが比較される。第2欠陥82の位置座標と、素子活性領域90の位置座標との少なくとも一部が重なっていれば、素子活性領域90に第2欠陥82が存在していることになる。図19に示されるように、複数の素子活性領域90の内、一部の素子活性領域90は、第2欠陥82と重なっている。第2欠陥82と重なっている素子活性領域90に形成された半導体素子は不良品と判断される。
 同様に、第3欠陥83の位置座標と、素子活性領域90の位置座標とが比較される。第3欠陥83の位置座標と、素子活性領域90の位置座標との少なくとも一部が重なっていれば、素子活性領域90に第3欠陥83が存在していることになる。図19に示されるように、複数の素子活性領域90の内、一部の素子活性領域90は、第3欠陥83と重なっている。第3欠陥83と重なっている素子活性領域90に形成された半導体素子は不良品と判断される。
 同様に、第4欠陥84の位置座標と、素子活性領域90の位置座標とが比較される。第4欠陥84の位置座標と、素子活性領域90の位置座標との少なくとも一部が重なっていれば、素子活性領域90に第4欠陥84が存在していることになる。図19に示されるように、複数の素子活性領域90の内、一部の素子活性領域90は、第4欠陥84と重なっている。第4欠陥84と重なっている素子活性領域90に形成された半導体素子は不良品と判断される。
 素子活性領域90の位置座標が、第1欠陥81の位置座標、第2欠陥82の位置座標、第3欠陥83の位置座標および第4欠陥84の位置座標のいずれとも重ならない場合、素子活性領域90には、第1欠陥81、第2欠陥82、第3欠陥83および第4欠陥84の各々が存在していないことになる。図19に示されるように、複数の素子活性領域90の内、一部の素子活性領域90は、第1欠陥81、第2欠陥82、第3欠陥83および第4欠陥84のいずれにも重なっていない。第1欠陥81、第2欠陥82、第3欠陥83および第4欠陥84のいずれにも重なっていない素子活性領域90に形成された半導体素子は良品と判断される。以上のように、欠陥80の位置座標と素子活性領域90の位置座標とを関連付けて、素子活性領域90の良否判定が行われる。
 図20は、ゲート絶縁膜を形成する工程を示す断面模式図である。図20に示されるように、炭化珪素基板1が酸素を含む雰囲気中において加熱されることにより、炭化珪素エピタキシャル膜62上にゲート絶縁膜136が形成される。ゲート絶縁膜136は、たとえば二酸化珪素(SiO2)等から構成される。熱酸化処理の温度は、たとえば1300℃程度である。熱酸化処理の時間は、たとえば30分程度である。
 ゲート絶縁膜136が形成された後、さらに窒素雰囲気中で熱処理が行なわれてもよい。たとえば、一酸化窒素(NO)、亜酸化窒素(N2O)等の雰囲気中において、1100℃程度で1時間程度、熱処理が実施されてもよい。さらにその後、アルゴン雰囲気中で熱処理が行なわれてもよい。たとえば、アルゴン雰囲気中において、1100℃以上1500℃以下程度で、1時間程度、熱処理が行われてもよい。
 次に、第1電極141がゲート絶縁膜136上に形成される。第1電極141は、ゲート電極として機能する。第1電極141は、たとえばCVD法により形成される。第1電極141は、たとえば不純物を含有し導電性を有するポリシリコン等から構成される。第1電極141は、ソース領域133およびボディ領域132に対面する位置に形成される。
 次に、層間絶縁膜137が形成される。層間絶縁膜137は、第1電極141を覆うように形成される。層間絶縁膜137は、たとえばCVD法により形成される。層間絶縁膜137は、たとえば二酸化珪素等から構成される。層間絶縁膜137は、第1電極141とゲート絶縁膜136とに接するように形成される。次に、ゲート絶縁膜136の一部および層間絶縁膜137の一部がエッチングによって除去される。これにより、ソース領域133およびコンタクト領域134が、ゲート絶縁膜136から露出する。
 次に、第2電極142が形成される。第2電極142はソース電極として機能する。第2電極142は、たとえばチタン、アルミニウムおよびシリコン等から構成される。第2電極142が形成された後、第2電極142と炭化珪素基板1が、たとえば900℃以上1100℃以下程度の温度で加熱される。これにより、第2電極142と炭化珪素基板1とがオーミック接触するようになる。次に、第2電極142に接するように、配線層138が形成される。配線層138は、たとえばアルミニウムを含む材料から構成される。
 次に、第3電極143が形成される。第3電極143は、ドレイン電極として機能する。第3電極143は、たとえばニッケルおよびシリコンを含む合金(たとえばNiSi等)から構成される。
 次に、ダイシング工程が実施される。たとえば炭化珪素基板1がダイシング領域91に沿ってダイシングされることにより、炭化珪素基板1が複数の半導体チップに分割される。以上のように、炭化珪素半導体装置300が製造される。
 図21は、炭化珪素半導体装置300の構成を示す断面模式図である。図21に示されるように、炭化珪素半導体装置300は、たとえばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。炭化珪素半導体装置300は、炭化珪素基板1と、第1電極141と、第2電極142と、第3電極143と、ゲート絶縁膜136と、層間絶縁膜137と、配線層138を有している。炭化珪素基板1は、炭化珪素単結晶基板61と、炭化珪素エピタキシャル膜62とを有している。炭化珪素エピタキシャル膜62は、ドリフト領域131と、ソース領域133と、ボディ領域132と、コンタクト領域134とを有している。
 上記において、MOSFETを例示して、本開示に係る炭化珪素半導体装置300の製造方法を説明したが、本開示に係る製造方法はこれに限定されない。本開示に係る製造方法は、たとえばIGBT(Insulated Gate Bipolar Transistor)、SBD(Schottky Barrier Diode)、サイリスタ、GTO(Gate Turn Off thyristor)、PiNダイオード等の炭化珪素半導体装置300に適用可能である。
 (第7実施形態)
 次に、第7実施形態に係る炭化珪素半導体装置300の製造方法について説明する。第7実施形態に係る炭化珪素半導体装置300の製造方法は、主に、欠陥80の位置座標に基づいて素子活性領域90の形成位置を調整する工程を有している点において、第6実施形態に係る炭化珪素半導体装置300の製造方法と異なっており、その他の工程については、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様である。以下、第6実施形態に係る炭化珪素半導体装置300の製造方法と異なる工程を中心に説明する。
 図22は、第7実施形態に係る炭化珪素半導体装置300の製造方法を概略的に示すフロー図である。図22に示されるように、第7実施形態に係る炭化珪素半導体装置300の製造方法は、炭化珪素単結晶基板に基準マークを形成する工程(S21)と、炭化珪素単結晶基板を研磨加工する工程(S22)と、炭化珪素単結晶基板を洗浄する工程(S23)と、基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S24)と、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S25)と、基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S26)と、欠陥の位置座標に基づいて素子活性領域の形成位置を調整する工程(S27)と、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S28)とを主に有している。
 まず、基準マークを形成する工程(S21)が行われる。第7実施形態に係る炭化珪素単結晶基板に基準マークを形成する工程(S21)は、第6実施形態に係る炭化珪素単結晶基板に基準マークを形成する工程(S11)と同様である。
 次に、炭化珪素単結晶基板を研磨加工する工程(S22)が行われる。第7実施形態に係る炭化珪素単結晶基板を研磨加工する工程(S22)は、第6実施形態に係る炭化珪素単結晶基板を研磨加工する工程(S12)と同様である。
 次に、炭化珪素単結晶基板を洗浄する工程(S23)が行われる。第7実施形態に係る炭化珪素単結晶基板を洗浄する工程(S23)は、第6実施形態に係る炭化珪素単結晶基板を洗浄する工程(S13)と同様である。
 次に、基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S24)が行われる。第7実施形態に係る基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S24)は、第6実施形態に係る基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S14)と同様である。
 次に、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S25)が行われる。第7実施形態に係る炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S25)は、第6実施形態に係る炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S15)と同様である。
 次に、基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S26)が行われる。第7実施形態に係る基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S26)は、第6実施形態に係る基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S16)と同様である。
 次に、欠陥の位置座標に基づいて素子活性領域の形成位置を調整する工程(S27)が行われる。図23は、欠陥80の位置座標に基づいて素子活性領域90の形成位置を調整する工程を示す平面模式図である。図23において、破線で示す略正方形の領域92は、素子活性領域90の形成を予定していた領域である。基準マークに基づいて炭化珪素単結晶基板にある欠陥の位置座標を特定する工程(S24)において、炭化珪素単結晶基板61にある第1欠陥81および第2欠陥82の各々の2次元位置座標は、既に特定されている。基準マーク3に基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S26)において、炭化珪素エピタキシャル膜62にある第3欠陥83および第4欠陥84の各々の2次元位置座標は、既に特定されている。
 欠陥の位置座標に基づいて素子活性領域の形成位置を調整する工程(S27)においては、第1欠陥81、第2欠陥82、第3欠陥83および第4欠陥84の各々と、素子活性領域90とが、出来る限り重ならないように素子活性領域90の形成位置が調整される。別の観点から言えば、第1欠陥81、第2欠陥82、第3欠陥83および第4欠陥84の各々と重なる素子活性領域90の数が最小になるように素子活性領域90の形成位置が調整される。たとえば、第1欠陥81、第2欠陥82、第3欠陥83および第4欠陥84の各々は、2つの隣り合う素子活性領域90の間にあるダイシング領域91に形成されるように、素子活性領域90の形成位置が調整される。以上のように、素子活性領域90の形成位置は、欠陥80の位置座標に基づいて調整される。別の観点から言えば、素子活性領域90の形成位置が最適に設計される。
 次に、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S28)が行われる。第7実施形態に係る欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S28)は、第6実施形態に係る欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S19)と同様である。
 次に、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様の方法を利用して、ゲート絶縁膜136が形成される(図20参照)。次に、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様の方法を利用して、第1電極141、第2電極142、層間絶縁膜137と、配線層138と、第3電極143とが形成される。次に、炭化珪素基板1が、ダイシング領域91に沿って切断される。これにより、炭化珪素半導体装置300が製造される(図21参照)。
 (第8実施形態)
 次に、第8実施形態に係る炭化珪素半導体装置300の製造方法について説明する。第8実施形態に係る炭化珪素半導体装置300の製造方法は、主に、炭化珪素単結晶基板61に基準マーク3を形成する工程を有していない点において、第6実施形態に係る炭化珪素半導体装置300の製造方法と異なっており、その他の工程については、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様である。以下、第6実施形態に係る炭化珪素半導体装置300の製造方法と異なる工程を中心に説明する。
 図24は、第8実施形態に係る炭化珪素半導体装置300の製造方法を概略的に示すフロー図である。図24に示されるように、第8実施形態に係る炭化珪素半導体装置300の製造方法は、炭化珪素単結晶基板上に炭化珪素エピタキシャル膜を形成する工程(S31)と、炭化珪素エピタキシャル膜に基準マークを形成する工程(S32)と、基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S33)と、炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S34)と、基準マークに基づいて素子活性領域の位置座標を特定する工程(S35)と、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S36)と、を有している。
 図25は、炭化珪素単結晶基板61を準備する工程を示す断面模式図である。図25に示されるように、炭化珪素単結晶基板61は、中央領域11と、外周領域12とを有している。中央領域11および外周領域12のいずれにも、基準マーク3は形成されていない。
 図26は、炭化珪素単結晶基板61上に炭化珪素エピタキシャル膜62を形成する工程を示す断面模式図である。図26に示されるように、炭化珪素単結晶基板61上に炭化珪素エピタキシャル膜62がエピタキシャル成長によって形成される。炭化珪素エピタキシャル膜62は、第3主面43と、第4主面40とを有している。第3主面43は、炭化珪素単結晶基板61に接している。第4主面40は、第3主面43の反対側にある。
 図27は、炭化珪素エピタキシャル膜62に基準マーク3を形成する工程を示す断面模式図である。図27に示されるように、炭化珪素エピタキシャル膜62の第4主面40の外周領域12において、基準マーク3が形成される。
 基準マーク3を形成した後、炭化珪素単結晶基板61上に設けられた炭化珪素エピタキシャル膜62の基準マーク形成面に対して研磨または洗浄の少なくともいずれかが行われる。基準マーク形成面は、第4主面40に対応する。
 次に、基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S33)が実施される。第8実施形態に係る基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S33)は、第6実施形態に係る基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S16)と同様である。
 図28は、炭化珪素エピタキシャル膜62に素子活性領域90を形成する工程を示す断面模式図である。図28に示されるように、炭化珪素エピタキシャル膜62に素子活性領域90が形成される。素子活性領域90は、たとえば、ボディ領域132と、ソース領域133と、コンタクト領域134とを有している。以上のように、基準マーク3および素子活性領域90の各々は、炭化珪素エピタキシャル膜62に設けられる。
 次に、基準マークに基づいて素子活性領域の位置座標を特定する工程(S35)が実施される。第8実施形態に係る基準マークに基づいて素子活性領域の位置座標を特定する工程(S35)は、第6実施形態に係る基準マークに基づいて素子活性領域の位置座標を特定する工程(S18)と同様である。次に、欠陥80の位置座標と素子活性領域90の位置座標とを関連付けて、素子活性領域90の良否判定を行う工程(S36)が実施される。第8実施形態に係る欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S36)は、第6実施形態に係る欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S19)と同様である。
 次に、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様の方法を利用して、ゲート絶縁膜136が形成される(図20参照)。次に、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様の方法を利用して、第1電極141、第2電極142、層間絶縁膜137と、配線層138と、第3電極143とが形成される。次に、炭化珪素基板1が、ダイシング領域91に沿って切断される。これにより、炭化珪素半導体装置300が製造される(図21参照)。
 (第9実施形態)
 次に、第9実施形態に係る炭化珪素半導体装置300の製造方法について説明する。第9実施形態に係る炭化珪素半導体装置300の製造方法は、主に、第1炭化珪素エピタキシャル膜71および第2炭化珪素エピタキシャル膜72の双方に基準マーク3を形成する点において、第8実施形態に係る炭化珪素半導体装置300の製造方法と異なっており、その他の工程については、第8実施形態に係る炭化珪素半導体装置300の製造方法と同様である。以下、第8実施形態に係る炭化珪素半導体装置300の製造方法と異なる工程を中心に説明する。
 図29は、第9実施形態に係る炭化珪素半導体装置300の製造方法を概略的に示すフロー図である。図29に示されるように、第9実施形態に係る炭化珪素半導体装置300の製造方法は、炭化珪素単結晶基板上に第1炭化珪素エピタキシャル膜を形成する工程(S41)と、第1炭化珪素エピタキシャル膜に基準マークを形成する工程(S42)と、基準マークに基づいて第1炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S43)と、第1炭化珪素エピタキシャル膜上に第2炭化珪素エピタキシャル膜を形成する工程(S44)と、基準マークに基づいて第2炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S45)と、第2炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S46)と、基準マークに基づいて素子活性領域の位置座標を特定する工程(S47)と、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域90の良否判定を行う工程(S48)とを有している。
 図30は、炭化珪素単結晶基板61上に第1炭化珪素エピタキシャル膜71を形成する工程を示す断面模式図である。図30に示されるように、第1炭化珪素エピタキシャル膜71は、炭化珪素単結晶基板61上にエピタキシャル成長により形成される。
 図31は、第1炭化珪素エピタキシャル膜71に基準マーク3を形成する工程を示す断面模式図である。図31に示されるように、基準マーク3(第1マーク3a)は、第1炭化珪素エピタキシャル膜71の外周領域12に形成される。
 基準マーク3(第1マーク3a)を形成した後、炭化珪素単結晶基板61上に設けられた第1炭化珪素エピタキシャル膜71の基準マーク形成面に対して研磨または洗浄の少なくともいずれかが行われる。基準マーク形成面は、第1炭化珪素エピタキシャル膜71の上面に対応する。
 次に、基準マークに基づいて第1炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S43)が実施される。第9実施形態に係る基準マークに基づいて第1炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S43)は、第8実施形態に係る基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S33)と同様である。
 図32は、第1炭化珪素エピタキシャル膜71上に第2炭化珪素エピタキシャル膜72を形成する工程を示す断面模式図である。図32に示されるように、第2炭化珪素エピタキシャル膜72は、第1炭化珪素エピタキシャル膜71上にエピタキシャル成長により形成される。第2炭化珪素エピタキシャル膜72の外周領域12には基準マーク3(第2マーク3b)が形成される。第2マーク3bは、第1マーク3aの直上に位置している。
 基準マーク3(第1マーク3a)の上部に設けられた第2炭化珪素エピタキシャル膜72の一部の領域のみを、第1炭化珪素エピタキシャル膜71が露出するまでエッチング等を行うことにより除去してもよい。エッチング等を行うことにより第1炭化珪素エピタキシャル膜71に設けられた基準マーク3(第1マーク3a)が露出することで、より精度良く基準マーク3(第1マーク3a)を判別することが可能となる。第2炭化珪素エピタキシャル膜72のエッチングは、第1炭化珪素エピタキシャル膜71が露出するまで行ってもよいし、第1炭化珪素エピタキシャル膜71が露出する手前で止めてもよい。第1炭化珪素エピタキシャル膜71が露出する手前でエッチングを止めた場合、基準マーク3(第1マーク3a)の上部には第2炭化珪素エピタキシャル膜72が残っていてもよい。
 次に、基準マークに基づいて第2炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S45)が実施される。第9実施形態に係る基準マークに基づいて第2炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S45)は、第8実施形態に係る基準マークに基づいて炭化珪素エピタキシャル膜の欠陥の位置座標を特定する工程(S33)と同様である。
 次に、第2炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S46)が実施される。図33は、第2炭化珪素エピタキシャル膜に素子活性領域を形成する工程を示す断面模式図である。第9実施形態に係る第2炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S46)は、第8実施形態に係る炭化珪素エピタキシャル膜に素子活性領域を形成する工程(S34)と同様である。図33に示されるように、素子活性領域90は、第2炭化珪素エピタキシャル膜72に形成される。素子活性領域90は、第1炭化珪素エピタキシャル膜71および第2炭化珪素エピタキシャル膜72の双方に形成されてもよい。
 次に、基準マークに基づいて素子活性領域の位置座標を特定する工程(S47)が実施される。第9実施形態に係る基準マークに基づいて素子活性領域の位置座標を特定する工程(S47)は、第8実施形態に係る基準マークに基づいて素子活性領域の位置座標を特定する工程(S35)と同様である。
 次に、欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S48)が実施される。第9実施形態に係る欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S48)は、第8実施形態に係る欠陥の位置座標と素子活性領域の位置座標とを関連付けて、素子活性領域の良否判定を行う工程(S36)と同様である。
 次に、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様の方法を利用して、ゲート絶縁膜136が形成される(図20参照)。次に、第6実施形態に係る炭化珪素半導体装置300の製造方法と同様の方法を利用して、第1電極141、第2電極142、層間絶縁膜137と、配線層138と、第3電極143とが形成される。次に、炭化珪素基板1が、ダイシング領域91に沿って切断される。これにより、炭化珪素半導体装置300が製造される(図21参照)。
 なお、上記第6実施形態から第9実施形態に係る炭化珪素半導体装置300の製造方法においては、基準マーク3が外周領域12に形成される場合について説明したが、基準マーク3の形成箇所は外周領域12に限定されない。具体的には、基準マーク3は、中央領域11のみに設けられていてもよいし、外周領域12と中央領域11との双方に設けられていてもよい。基準マーク3が中央領域11に設けられる場合、基準マーク3は、たとえばダイシング領域91に設けられる。また基準マーク3は、炭化珪素単結晶基板61の表面(第1主面10)に形成されてもよいし、裏面(第2主面20)に形成されてもよい。
 次に、上記実施形態に係る炭化珪素単結晶基板61、炭化珪素基板1および炭化珪素半導体装置300の製造方法の作用効果について説明する。
 上記実施形態の一態様に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3に基づいて、炭化珪素基板1にある欠陥80の位置座標が特定される。炭化珪素基板1に素子活性領域90が形成される。基準マーク3に基づいて、素子活性領域90の位置座標が特定される。欠陥80の位置座標と素子活性領域90の位置座標とを関連付けて、素子活性領域90の良否判定が行われる。基準マーク3を利用した共通座標を用いて、欠陥80の位置座標と素子活性領域90の位置座標とを紐付けることにより、欠陥80に起因した素子の不良品を精度良く特定することができる。そのため、素子活性領域90の良否を精度良く判定することができる。
 また炭化珪素半導体装置300が完成する前に、欠陥80に起因した素子の不良率を正確に想定することができる。当該素子の不良率に基づき、素子構造または素子配置の最適な設計が可能となる。
 上記実施形態の一態様に係る炭化珪素半導体装置300の製造方法によれば、炭化珪素基板1に素子活性領域90を形成する工程において、素子活性領域90の形成位置は、欠陥80の位置座標に基づいて調整されてもよい。これにより、欠陥80を避けるように素子活性領域90を形成することができる。そのため、素子の歩留まりを向上することができる。
 上記実施形態の一態様に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3は、炭化珪素単結晶基板61に設けられていてもよい。素子活性領域90は、炭化珪素エピタキシャル膜62に設けられていてもよい。
 基準マーク3が炭化珪素単結晶基板61に設けられる場合は、基準マーク形成後、加工による基準マーク近傍の凹凸や歪み、粉塵等の異物や汚れを除去するため、基準マーク形成面に対して研磨加工を行い、その後、基準マーク面に対して洗浄を行うことが望ましい。研磨加工は、基準マーク形成面のみに対して行われてもよいし、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい。
 尚、基準マーク3の上部に設けられた炭化珪素エピタキシャル膜62の一部の領域のみを、炭化珪素単結晶基板61が露出するまでエッチング等を行うことにより除去してもよい。エッチング等を行うことにより炭化珪素単結晶基板61に設けられた基準マーク3が露出することで、より精度良く基準マーク3を判別することが可能となる。炭化珪素エピタキシャル膜62のエッチングは、炭化珪素単結晶基板61が露出するまで行ってもよいし、炭化珪素単結晶基板61が露出する手前で止めてもよい。炭化珪素単結晶基板61が露出する手前でエッチングを止めた場合、基準マーク3の上部には炭化珪素エピタキシャル膜62が残っていてもよい。
 上記実施形態の一態様に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3および素子活性領域90の各々は、炭化珪素エピタキシャル膜62に設けられていてもよい。基準マーク3が炭化珪素エピタキシャル膜62に設けられる場合は、基準マーク3を形成した後、基準マーク形成面に対して研磨または洗浄が行われる。
 上記実施形態の一態様に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3は、レーザー加工により形成されていてもよい。基準マーク3が圧痕である場合、基準マーク3を形成する際に粉塵が発生するおそれがある。基準マーク3がレーザー加工により形成されることにより、粉塵が発生することを抑制することができる。そのため、素子の歩留まりをさらに向上することができる。また基準マーク3が圧痕の場合、基準マーク3を深く形成することが困難である。そのため、基準マーク3を加工する際に発生する基準マーク3近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うと、基準マーク3が消失するおそれがある。この場合、基準マーク3の判別が難しくなる。基準マーク3がレーザー加工により形成されることにより、基準マーク3を深く形成することができる。そのため、基準マーク3を加工する際に発生する基準マーク3近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うことができる。さらに、アライメントの際、基準マーク3を精度良く判別することができる。さらに基準マーク3が圧痕の場合、基準マーク3が形成された基板にクラックが発生するおそれがある。基準マーク3がレーザー加工により形成されることにより、基板にクラックが発生することを抑制することができる。
 基準マーク3が炭化珪素単結晶基板61に設けられる場合は、基準マーク形成後、加工による基準マーク近傍の凹凸や歪み、粉塵等の異物や汚れを除去するため、基準マーク形成面に対して研磨加工を行い、その後、基準マーク形成面に対して洗浄を行うことが望ましい。研磨加工は、基準マーク形成面のみに対して行われてもよいし、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい。基準マーク3が炭化珪素エピタキシャル膜62に設けられる場合は、基準マーク3を形成した後、基準マーク形成面に対して研磨または洗浄が行われる。
 上記実施形態の一態様に係る炭化珪素半導体装置300の製造方法によれば、基準マーク3は、エッチングにより形成されていてもよい。基準マーク3が圧痕である場合、基準マーク3を形成する際に粉塵が発生するおそれがある。基準マーク3がエッチングにより形成することにより、粉塵が発生することを抑制することができる。そのため、素子の歩留まりをさらに向上することができる。また基準マーク3が圧痕の場合、基準マーク3を深く形成することが困難である。そのため、基準マーク3を加工する際に発生する基準マーク3近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うと、基準マーク3が消失するおそれがある。この場合、基準マーク3の判別が難しくなる。基準マーク3がエッチングにより形成されることにより、基準マーク3を深く形成することができる。そのため、基準マーク3を加工する際に発生する基準マーク3近傍の凹凸や歪みを除去するために、基準マーク形成面に対して研磨加工を行うことができる。さらに、アライメントの際、基準マーク3を精度良く判別することができる。さらに基準マーク3が圧痕の場合、基準マーク3が形成された基板にクラックが発生するおそれがある。基準マーク3がエッチングにより形成されることにより、基板にクラックが発生することを抑制することができる。
 基準マーク3が炭化珪素単結晶基板61に設けられる場合は、基準マーク形成後、加工による基準マーク近傍の凹凸や歪み、粉塵等の異物や汚れを除去するため、基準マーク形成面に対して研磨加工を行い、その後、基準マーク形成面に対して洗浄を行うことが望ましい。研磨加工は、基準マーク形成面のみに対して行われてもよいし、基準マーク形成面および基準マーク形成面の反対側の面の両面に対して行われてもよい。基準マーク3が炭化珪素エピタキシャル膜62に設けられる場合は、基準マーク3を形成した後、基準マーク形成面に対して研磨または洗浄が行われる。
 上記実施形態の一態様に係る炭化珪素基板1および炭化珪素単結晶基板61は、外周縁2と、主面10とを備えている。主面10は、外周縁2に取り囲まれている。主面10は、外周縁2から5mm以内の領域である外周領域12と、外周領域12に囲まれた中央領域11とを含んでいる。外周領域12には、2次元位置座標の基準となる複数の基準マーク3が設けられている。これにより、基準マーク3が中央領域11に設けられている場合と比較して、素子が形成される領域の面積を広く確保することができる。
 上記実施形態の一態様に係る炭化珪素基板1および炭化珪素単結晶基板61は、主面10に対して垂直な方向に見て、複数の基準マーク3の各々の間の距離は、30mm以上であってもよい。これにより、欠陥80の位置座標を精度良く特定することができる。
 上記実施形態の一態様に係る炭化珪素基板1および炭化珪素単結晶基板61は、主面10に対して垂直な方向に見て、複数の基準マーク3の各々を取り囲む最小仮想円の直径は、10μmよりも大きく3mm未満であってもよい。これにより、アライメントの際、基準マーク3を精度良く判別することができる。
 上記実施形態の一態様に係る炭化珪素基板1および炭化珪素単結晶基板61は、主面10に対して垂直な方向において、複数の基準マーク3の各々の深さは、炭化珪素エピタキシャル膜62の厚みの1/10から10倍程度が望ましい。複数の基準マーク3の各々の深さは、たとえば、0.5μmよりも大きく100μm未満であってもよい。基準マーク3が炭化珪素単結晶基板61に設けられる場合は、上記のような深さの基準マークを形成することで、炭化珪素エピタキシャル膜62の成長条件(たとえば成長温度やC/Si比)によって炭化珪素エピタキシャル膜に引き継がれて形成される基準マーク3の形状が多少崩れても、アライメントの際、基準マーク3を精度良く判別することができる。
 上記実施形態の一態様に係る炭化珪素基板1および炭化珪素単結晶基板61は、主面10に対して垂直な方向に見て、複数の基準マーク3の各々は、十字形状を有していてもよい。これにより、アライメントの際、基準マーク3を精度良く判別することができる。
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1 炭化珪素基板、2 外周縁、2a オリエンテーションフラット、2b 円弧状部、3 基準マーク、3a 第1マーク、3b 第2マーク、10 第1主面(主面)、11,41 中央領域、12,42 外周領域、20 第2主面、30 凹部、31,31a,31b 第1基準マーク、32,32a,32b 第2基準マーク、33 第3基準マーク、34 第4基準マーク、40 第4主面、43 第3主面、52 側面、53 底面、54 溝部、61 単結晶基板、62 炭化珪素エピタキシャル膜、71 第1炭化珪素エピタキシャル膜、72 第2炭化珪素エピタキシャル膜、80 欠陥、81 第1欠陥、82 第2欠陥、83 第3欠陥、84 第4欠陥、90 素子活性領域、91 ダイシング領域、92 領域、100 炭化珪素エピタキシャル基板、131 ドリフト領域、132 ボディ領域、133 ソース領域、134 コンタクト領域、136 ゲート絶縁膜、137 層間絶縁膜、138 配線層、141 第1電極、142 第2電極、143 第3電極、300 炭化珪素半導体装置、A 距離、D 深さ、R1 第1仮想円、R2 第2仮想円、W1 最大径、W2 間隔、W3 第3長さ、W4 第4幅、W5 第5幅、X 第1方向、Y 第2方向。

Claims (16)

  1.  炭化珪素単結晶基板と、前記炭化珪素単結晶基板上に設けられた炭化珪素エピタキシャル膜とを含む炭化珪素基板において、2次元位置座標の基準となる基準マークを形成する工程と、
     前記基準マークを形成する工程後、前記炭化珪素基板の基準マーク形成面に対して研磨または洗浄の少なくともいずれかを行う工程と、
     前記基準マークに基づいて、前記炭化珪素基板にある欠陥の位置座標を特定する工程と、
     前記炭化珪素基板に素子活性領域を形成する工程と、
     前記基準マークに基づいて、前記素子活性領域の位置座標を特定する工程と、
     前記欠陥の位置座標と前記素子活性領域の位置座標とを関連付けて、前記素子活性領域の良否判定を行う工程とを備えた、炭化珪素半導体装置の製造方法。
  2.  前記炭化珪素基板に素子活性領域を形成する工程において、前記素子活性領域の形成位置は、前記欠陥の位置座標に基づいて調整される、請求項1に記載の炭化珪素半導体装置の製造方法。
  3.  前記基準マークは、前記炭化珪素単結晶基板に設けられており、
     前記素子活性領域は、前記炭化珪素エピタキシャル膜に設けられている、請求項1または請求項2に記載の炭化珪素半導体装置の製造方法。
  4.  前記基準マークおよび前記素子活性領域の各々は、前記炭化珪素エピタキシャル膜に設けられている、請求項1または請求項2に記載の炭化珪素半導体装置の製造方法。
  5.  前記基準マークは、レーザー加工により形成される、請求項1から請求項4のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  6.  前記基準マークは、エッチングにより形成される、請求項1から請求項4のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  7.  炭化珪素単結晶基板と、前記炭化珪素単結晶基板上に設けられた炭化珪素エピタキシャル膜とを含む炭化珪素基板であって、
     外周縁と、
     前記外周縁に取り囲まれた主面とを備え、
     前記主面は、前記外周縁から5mm以内の領域である外周領域と、前記外周領域に囲まれた中央領域とを含み、
     前記炭化珪素エピタキシャル膜の前記外周領域には、2次元位置座標の基準となる複数の基準マークが設けられている、炭化珪素基板。
  8.  前記主面に対して垂直な方向に見て、前記複数の基準マークの各々の間の距離は、30mm以上である、請求項7に記載の炭化珪素基板。
  9.  前記主面に対して垂直な方向に見て、前記複数の基準マークの各々を取り囲む最小仮想円の直径は、10μmよりも大きく3mm未満である、請求項7または請求項8に記載の炭化珪素基板。
  10.  前記主面に対して垂直な方向において、前記複数の基準マークの各々の深さは、0.5μmよりも大きく100μm未満である、請求項7から請求項9のいずれか1項に記載の炭化珪素基板。
  11.  前記主面に対して垂直な方向に見て、前記複数の基準マークの各々は、十字形状を有している、請求項7から請求項10のいずれか1項に記載の炭化珪素基板。
  12.  外周縁と、
     前記外周縁に取り囲まれた主面とを備え、
     前記主面は、前記外周縁から5mm以内の領域である外周領域と、前記外周領域に囲まれた中央領域とを含み、
     前記外周領域には、2次元位置座標の基準となる複数の基準マークが設けられている、炭化珪素単結晶基板。
  13.  前記主面に対して垂直な方向に見て、前記複数の基準マークの各々の間の距離は、30mm以上である、請求項12に記載の炭化珪素単結晶基板。
  14.  前記主面に対して垂直な方向に見て、前記複数の基準マークの各々を取り囲む最小仮想円の直径は、10μmよりも大きく3mm未満である、請求項12または請求項13に記載の炭化珪素単結晶基板。
  15.  前記主面に対して垂直な方向において、前記複数の基準マークの各々の深さは、0.5μmよりも大きく100μm未満である、請求項12から請求項14のいずれか1項に記載の炭化珪素単結晶基板。
  16.  前記主面に対して垂直な方向に見て、前記複数の基準マークの各々は、十字形状を有している、請求項12から請求項15のいずれか1項に記載の炭化珪素単結晶基板。
PCT/JP2021/027708 2020-10-06 2021-07-27 炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法 WO2022074903A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/029,903 US20230369411A1 (en) 2020-10-06 2021-07-27 Method of manufacturing silicon carbide substrate, silicon carbide single-crystal substrate and silicon carbide semiconductor device
CN202180067424.8A CN116490646A (zh) 2020-10-06 2021-07-27 碳化硅基板、碳化硅单晶基板以及碳化硅半导体装置的制造方法
JP2022555273A JPWO2022074903A1 (ja) 2020-10-06 2021-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169062 2020-10-06
JP2020-169062 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022074903A1 true WO2022074903A1 (ja) 2022-04-14

Family

ID=81126434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027708 WO2022074903A1 (ja) 2020-10-06 2021-07-27 炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法

Country Status (4)

Country Link
US (1) US20230369411A1 (ja)
JP (1) JPWO2022074903A1 (ja)
CN (1) CN116490646A (ja)
WO (1) WO2022074903A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344056A (ja) * 1989-07-12 1991-02-25 Fujitsu Ltd 半導体装置の製造方法
JP2003142563A (ja) * 2001-11-06 2003-05-16 Shin Etsu Handotai Co Ltd 表面検査用補助治具及びそれを用いた同点測定方法
JP2009044083A (ja) * 2007-08-10 2009-02-26 Central Res Inst Of Electric Power Ind 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344056A (ja) * 1989-07-12 1991-02-25 Fujitsu Ltd 半導体装置の製造方法
JP2003142563A (ja) * 2001-11-06 2003-05-16 Shin Etsu Handotai Co Ltd 表面検査用補助治具及びそれを用いた同点測定方法
JP2009044083A (ja) * 2007-08-10 2009-02-26 Central Res Inst Of Electric Power Ind 炭化珪素単結晶ウェハの欠陥検出方法、及び炭化珪素半導体素子の製造方法

Also Published As

Publication number Publication date
JPWO2022074903A1 (ja) 2022-04-14
CN116490646A (zh) 2023-07-25
US20230369411A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6136731B2 (ja) 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
US20160189955A1 (en) Silicon carbide semiconductor substrate, method for manufacturing silicon carbide semiconductor substrate, and method for manufacturing silicon carbide semiconductor device
WO2014192411A9 (ja) 炭化珪素基板および炭化珪素半導体装置ならびに炭化珪素基板および炭化珪素半導体装置の製造方法
JP6136732B2 (ja) 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
US9978651B2 (en) Silicon carbide single crystal substrate, silicon carbide semiconductor device, and method for manufacturing silicon carbide semiconductor device
US20160020156A1 (en) Method for manufacturing silicon carbide semiconductor device
JP6597381B2 (ja) 炭化珪素基板の製造方法、炭化珪素エピタキシャル基板の製造方法および炭化珪素半導体装置の製造方法
JP2017050446A (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
WO2022074903A1 (ja) 炭化珪素基板、炭化珪素単結晶基板および炭化珪素半導体装置の製造方法
WO2021153351A1 (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
CN112074928B (zh) 碳化硅外延衬底和制造碳化硅半导体器件的方法
JP7036095B2 (ja) 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
CN113272480B (zh) 碳化硅再生基板和碳化硅半导体装置的制造方法
CN112470255B (zh) 碳化硅外延衬底和碳化硅半导体器件的制造方法
JP6340642B2 (ja) 炭化珪素半導体基板およびその製造方法、ならびに炭化珪素半導体装置の製造方法
JP5975200B1 (ja) 炭化珪素単結晶基板、炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2024113396A (ja) 炭化珪素基板、炭化珪素エピタキシャル基板、炭化珪素基板の製造方法および炭化珪素半導体装置の製造方法
JP2020181994A (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP2016028009A (ja) 炭化珪素基板および炭化珪素半導体装置ならびに炭化珪素基板および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555273

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180067424.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877207

Country of ref document: EP

Kind code of ref document: A1