WO2022074789A1 - 揚げ物用小麦粉 - Google Patents

揚げ物用小麦粉 Download PDF

Info

Publication number
WO2022074789A1
WO2022074789A1 PCT/JP2020/038156 JP2020038156W WO2022074789A1 WO 2022074789 A1 WO2022074789 A1 WO 2022074789A1 JP 2020038156 W JP2020038156 W JP 2020038156W WO 2022074789 A1 WO2022074789 A1 WO 2022074789A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheat flour
flour
fried
texture
fried food
Prior art date
Application number
PCT/JP2020/038156
Other languages
English (en)
French (fr)
Inventor
祥吾 辻
俊 金井
正二郎 戸塚
Original Assignee
昭和産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和産業株式会社 filed Critical 昭和産業株式会社
Priority to JP2022555199A priority Critical patent/JPWO2022074789A1/ja
Priority to PCT/JP2020/038156 priority patent/WO2022074789A1/ja
Priority to TW109139247A priority patent/TW202214118A/zh
Publication of WO2022074789A1 publication Critical patent/WO2022074789A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof

Definitions

  • the present invention relates to flour for deep-fried foods.
  • fried foods In particular, fried foods, fried foods such as tempura are popular foods. Such fried foods are distributed as delicatessen after the ingredients with the clothing material attached to the surface are oiled in oil and then frozen. However, when these frozen fried foods are reheated in an oven or microwave oven, moisture is transferred from the ingredients such as vegetables and fish to the clothing side during heating, which impairs the juiciness of the ingredients and also impairs the juiciness of the ingredients. The batter absorbs moisture and softens, and the crispness of the batter tends to be impaired.
  • Patent Document 1 wheat flour is introduced into a closed system stirrer in a pressurized state into which saturated steam is introduced, and the closed system stirring is performed under the condition that the residence time in the closed system stirrer is 2 to 20 seconds.
  • the contained starch is not substantially pregelatinized and the gluten vitality is 100 that of the untreated flour.
  • a heat-treated wheat flour having a gluten swelling degree of 80 to 92 and a gluten swelling degree of 105 to 155 when the gluten swelling degree is 100 is obtained, and the flour is peculiar to fried food even when reheated in a microwave oven. It is described that the crispy texture of the flour does not deteriorate, and that it is suitable as heat-treated wheat flour for deep-fried foods, which is suitable for reheating in a microwave oven.
  • the degree of pregelatinization obtained by moist heat treatment using saturated steam under normal pressure conditions of 130 ° C. is 12.5 to 30%, and the viscosity when water is added to 300% by mass of flour is 1 to 1.
  • Wet-heated wheat flour of 10 Pa ⁇ s is described, and the wet-heated wheat flour improves workability when cooking fried food and batter's burning, improving the crunchy texture of the batter and the volume of the batter.
  • the main object of the present invention is to provide flour for deep-fried foods, which can obtain deep-fried foods with an improved texture.
  • the fried food that has been frozen after oiling is heated again by oiling or microwave cooking, it does not have a gummy texture or a texture with flour, but an excellent texture equivalent to that immediately after the first oiling. It is an object of the present invention to provide flour for deep-fried foods which can be obtained.
  • the present technology provides flour for deep-fried foods having the following characteristics. (1) Containing ungelatinized starch, (2) The content of acetic acid-soluble protein in the total protein of wheat flour is 25% by mass or less, (3) The maximum viscosity in RVA is 2500 cP or less, (4) The amylase digestibility is 60% or more when the amylase digestibility of untreated wheat flour is 100%.
  • the use of the fried food flour may be for frozen fried food.
  • the amylase digestibility may be 60% or more and 400% or less when the amylase digestibility of untreated wheat flour is 100%.
  • the present art provides a fried food mix containing the fried food flour.
  • the present technology provides a texture improving agent containing the above-mentioned flour for deep-fried foods.
  • the present technology provides a method for improving the texture of fried foods, which uses the flour for fried foods, the mix for fried foods, or the texture improving agent as one of the raw materials for producing fried foods in the production of fried foods.
  • the present art provides a fried food containing the fried food flour, the fried food mix, or the texture improving agent.
  • the texture of fried food can be improved.
  • workability during batter preparation can be improved.
  • the fried food that has been frozen after oiling is heated again by oiling, microwave cooking, baking in an oven, etc., it does not have a gummy texture or a texture with a crack, but is equivalent to immediately after the first oiling. You can get the excellent texture of.
  • the RVA profiles of Reference Example (untreated wheat flour), Test Example 2, and Test Example 10 are shown.
  • a polarizing microscope (1000 magnification) image of the wheat flour of the reference example (untreated wheat flour) is shown.
  • a polarizing microscope (1000 magnification) image of the wheat flour of Test Example 2 is shown.
  • a polarizing microscope (1000 magnification) image of the wheat flour of Test Example 10 is shown.
  • untreated wheat flour The raw wheat flour that has not been subjected to the wet heat treatment (modification treatment) described below is referred to as "untreated wheat flour".
  • untreated wheat flour the characteristics of the wheat flour for deep-fried foods of this technology (1) that it contains ungelatinized starch, (2) that the content of acetic acid-soluble protein in the total protein of wheat flour is 25% by mass or less.
  • Wheat flour that does not satisfy at least one of (3) the maximum viscosity in RVA is 2500 cP or less, and (4) amylase digestibility is 60% or more when the amylase digestibility of untreated wheat flour is 100%. Is referred to as "unmodified wheat flour”.
  • the wheat flour for deep-fried food of this technology has the following characteristics (1) to (4).
  • (1) Contains ungelatinized starch.
  • (2) The content of acetic acid-soluble protein in the total protein of wheat flour is 25% by mass or less.
  • (3) The maximum viscosity in RVA is 2500 cP or less.
  • (4) The amylase digestibility is 60% or more when the amylase digestibility of untreated wheat flour is 100%.
  • Starch containing ungelatinized starch is composed of amylose, which is a linear component, and amylopectin, which is a branched component, and these components have a polycrystalline granular structure in which microcrystals are partially developed.
  • amylose which is a linear component
  • amylopectin which is a branched component
  • starch gelatinization is a state in which starch granules irreversibly swell when heated in the presence of water, further disintegrate or dissolve, lose crystallinity and birefringence, and increase in viscosity.
  • Such a gelatinization process can generally be evaluated by a polarization microscopy for observing changes in the crystal structure of starch granules from the birefringence of starch granules (edited by Michinori Nakamura et al .: Biochemical Experimental Method 19 "Starch”. ⁇ Related sugar experiment method ”(Academic Publishing Center) p.166 (1999)).
  • polarization microscopy starch gelatinization can be determined by the loss of crystallinity and birefringence, which eliminates the crossing of polarized crosses at the formed nuclei found in ungelatinized starch.
  • the flour for deep-fried foods according to this technology contains ungelatinized starch.
  • the wheat flour contains ungelatinized starch by clearly confirming the starch grain shape and the polarized cross in the observation by the polarizing microscope.
  • the proportion of ungelatinized starch contained in the wheat flour is not limited, but is less than 100% and 70% or more as compared with the amount of ungelatinized starch contained in the unprocessed wheat flour before the wet heat treatment (100%). Is preferable. It is preferably 75% or more, more preferably 80% or more.
  • This ratio can be evaluated by measuring the total number of starch granules observed in the observation by the polarizing microscope method and the number of starch granules in which the polarized cross was observed, and calculating the ratio.
  • a small amount of wet-heat-treated wheat flour or untreated wheat flour (collectively referred to as "wheat flour") is placed on a slide glass as a test sample, and 1 to 2 drops of distilled water is dropped from above with a dropper. Then, it was covered with a cover glass and observed at a magnification of 200.
  • the wheat flour for deep-fried foods according to the present technology has an effect of improving at least one problem of the conventional wet-heat-treated wheat flour by containing ungelatinized starch while being heat-treated.
  • the fried food flour or non-modified wheat flour according to the present technology is also collectively referred to as "wet heat treated wheat flour”.
  • Acetic acid-soluble protein content in the total protein content of wheat flour is 25% by mass or less
  • "acetic acid-soluble protein” can be used in 0.05N acetic acid aqueous solution among all proteins contained in wheat flour. Means a dissolved protein.
  • the ratio (% by mass) of the acetic acid-soluble protein is converted from the nitrogen content in the soluble fraction (extract) extracted from wheat flour using a 0.05 N aqueous acetic acid solution and the total nitrogen content in wheat flour. Can be requested.
  • a method for extracting an acetic acid-soluble fraction (extract) from wheat flour and preparing a sample (extract containing an acetic acid-soluble protein) to be used in the Kjeldahl method will be briefly described below.
  • the extraction operation can be carried out under atmospheric pressure conditions of 25 ° C.
  • Iii Centrifuge (5000 rpm, 5 minutes) to separate into the upper liquid phase (extract) and the lower solid phase (residue).
  • the fried food flour according to the present technology has an acetic acid-soluble protein content (% by mass) of 25% by mass or less in the total protein of the flour obtained by the above method.
  • the proportion of the acetic acid-soluble protein in the untreated wheat flour is 50 to 70% by mass, the above-mentioned value of the fried wheat flour according to the present technique is considerably small. This is considered to mean that a part of the acetic acid-soluble protein originally contained in the untreated wheat flour is altered and insolubilized.
  • the proportion (% by mass) of the acetic acid-soluble protein in the total protein of wheat flour is preferably 22% by mass or less, more preferably 20% by mass or less, and further preferably 18% by mass or less.
  • the lower limit is not particularly limited, but is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 4% by mass or more.
  • the fried food flour according to this technology has a good texture (for example, crispy texture) because the ratio (mass%) of the acetic acid-soluble protein in the total protein of the flour is 25% by mass or less and the protein is more denatured. It has the effect of being able to develop crispness, etc.).
  • RVA The maximum viscosity of fried wheat flour according to this technology is obtained by using a rapid visco analyzer (RVA) that continuously measures the viscosity change of the suspension. It is 2500 cP or less.
  • RVA rapid visco analyzer
  • the suspension is heated and cooled according to the set temperature conditions of the RVA device, and during that time, the viscosity (cP) of the suspension is continuously read, and the time (seconds) is the horizontal axis and the viscosity (cP) is the vertical axis. Create a profile.
  • the set temperature conditions of the RVA device are as follows. Hold at 50 ° C for 60 seconds ⁇ Raise from 50 ° C at a rate of 1 ° C / 5 seconds ⁇ Hold at the same temperature for 150 seconds when the temperature reaches 95 ° C (282 seconds after the start of heating) ⁇ Then (432 from the start of heating) After seconds) The temperature drops at a rate of about 1 ° C / 5 seconds ⁇ When the temperature reaches 50 ° C (660 seconds after the start of heating), it is held at the same temperature for 120 seconds.
  • the maximum viscosity can be obtained from the RVA profile thus obtained. Specifically, when the temperature is raised from 50 ° C. to 95 ° C., the viscosity increases, reaches a peak, and then decreases, and the viscosity at the peak is taken as the maximum viscosity.
  • the maximum viscosity of fried wheat flour of the present technology in RVA is 2500 cP or less as described above. It is preferably 2400 cP or less, more preferably 2300 cP or less, still more preferably 2000 cP or less, still more preferably 1800 cP or less, and particularly preferably 1500 cP or less.
  • the lower limit is not limited, but is 100 cP or more, preferably 200 cP or more.
  • FIG. 1 shows the RVA profile of the fried food flour (Test Example 10) produced in Experimental Example 1 described later.
  • FIG. 1 also shows the RVA profiles of untreated wheat flour (reference example) and wheat flour of Test Example 2 (also referred to as “unmodified wheat flour”).
  • untreated wheat flour reference example
  • wheat flour of Test Example 2 also referred to as “unmodified wheat flour”.
  • starch the relationship between the physical characteristics of starch and the RVA profile can be said to be as follows.
  • the viscosity of the starch suspension is extremely low, but when the measurement using RVA is started and then gradually heated, the starch granules absorb water and swell, and the friction between the starch granules increases, so that the starch is suspended.
  • the viscosity of the liquid increases.
  • the general starch suspension reaches the maximum viscosity (peak viscosity), and then, as the starch granules disintegrate, the viscosity starts to decrease. Breakdown is a phenomenon in which the viscosity decreases after reaching the maximum viscosity.
  • the swelling-suppressed starch in which the swelling of the starch granules is sufficiently suppressed by the cross-linking treatment or the like, the starch granules do not collapse even when the paste solution is heated, so that breakdown is unlikely to occur.
  • the starch particles When the starch particles are gradually cooled after collapsing, the starch particles cool and solidify, and as a result of reconstitution (starch aging phenomenon), the friction between the starch particles increases and the viscosity of the paste liquid increases. Can be seen. This re-increase in viscosity is called setback. Setback is unlikely to occur in starch granules with suppressed aging. Based on this, the fried wheat flour according to the present technology exhibits a characteristic that the maximum viscosity is lower than that of untreated wheat flour (reference example) and unmodified wheat flour (test example 2).
  • the fried wheat flour according to the present technology exhibits a characteristic that the breakdown width is smaller than that of the untreated wheat flour (reference example) and the unmodified wheat flour (test example 2). This indicates that the wheat flour for deep-fried foods according to this technique swells when heated in the presence of water, but does not easily disintegrate like crosslinked starch (collapse resistance). Further, the fried wheat flour according to the present technology exhibits a characteristic that the setback value is smaller than that of the untreated wheat flour (reference example) and the unmodified wheat flour (test example 2). From this, it can be said that the flour for deep-fried foods according to this technique has aging resistance. According to the fried food flour according to the present technology having aging resistance, it is possible to produce a fried food having aging resistance (it does not become hard over time).
  • the amylase digestibility is 60% or more when the amylase digestibility of untreated wheat flour is 100%. This characteristic is related to the present technology in addition to the above-mentioned characteristics (1) to (3). This is a characteristic of fried wheat flour.
  • the amylase in the present invention means a mold-derived amylase.
  • amyloglucosidase solution (derived from Aspergillus niger, 2unit / 0.1mL) is added to 0.1 mL of this supernatant, treated at 40 ° C. for 20 minutes, and then the absorbance is measured at 510 nm. From the obtained absorbance, the amount of glucose produced is calculated using a calibration curve of D-glucose prepared using a standard solution.
  • amylase digestibility of the wet heat-treated wheat flour when the amylase digestibility of the untreated wheat flour is 100% can be obtained from the following formula.
  • Amylase digestibility ⁇ (amount of glucose produced from wet heat-treated wheat flour) / (amount of glucose produced from untreated wheat flour) ⁇ ⁇ 100
  • the wheat flour for deep-fried foods according to the present technology has an amylase digestibility of 60% or more, preferably 62% or more, more preferably 65% when the amylase digestibility of untreated wheat flour is 100%. Above, more preferably 70% or more.
  • the upper limit is not particularly limited as long as it does not interfere with the effect of the present technology, but is preferably 400% or less, more preferably 300% or less, still more preferably 250% or less, 200% or less, and even more. It is preferably 110% or less, 100% or less, and particularly preferably 90% or less.
  • the texture of fried food can be improved, and in addition, when the fried food is produced, the workability at the time of batter preparation can be improved. Furthermore, when the fried food that has been frozen after oiling is heated again by oiling or microwave cooking, it does not have a gummy texture or a texture with a crack, but an excellent food equivalent to that immediately after the first oiling. You can get a feeling.
  • the flour for deep-fried foods according to the present technology having the above-mentioned characteristics can be prepared by heat-treating the flour under saturated steam at a temperature of 100 ° C. or higher in a pressurized state.
  • the device used for the treatment may be a pressurized airtight container, and examples thereof include an autoclave device and a pressure cooker. Further, a pressure heater provided with a jacket heating mechanism can be used. In order to efficiently produce flour for deep-fried foods according to the present technology having the above characteristics, it is preferable to have a jacket heating mechanism.
  • the pressurizing condition include atmospheric pressure (0 MPaG) or higher, preferably 0.05 MPaG or higher, and more preferably 0.1 MPaG or higher.
  • the upper limit value is not limited, it can usually be 0.5 MPaG or less.
  • the temperature inside the pressurizing heater may be as high as 100 ° C. or higher, and although not limited, 105 ° C. or higher, preferably 110 ° C. or higher, more preferably 120 ° C. or higher can be mentioned. Although the upper limit is not limited, it can usually be 160 ° C. or lower. Further, when the jacket heating mechanism is provided, the temperature inside the jacket is preferably higher than the temperature inside the pressure heater, and more preferably 1 ° C. or higher.
  • the time required for the wet heat treatment under the pressure condition may be any time as long as the flour for fried food according to the present technology having the above-mentioned characteristics can be prepared, the amount of the flour to be the wet heat treatment, and the pressure condition and the temperature condition to be adopted.
  • the settings can be adjusted as appropriate according to the above. Although not limited, the upper limit can be set within a range not exceeding 5 hours.
  • the wheat flour used as a raw material for moist heat treatment is not limited to the types such as soft flour, medium-strength flour, strong flour, and durum flour, but those having a protein content in the range of 6 to 15% by mass are preferable. More preferably, the protein content is in the range of 6.5 to 14% by mass, and even more preferably, the protein content is in the range of 7 to 13.5% by mass.
  • the protein content can also be determined according to the above-mentioned Kjeldahl method.
  • the fried food flour according to the present technology can be used as a fried food mix itself, and if necessary, in combination with flour other than wheat flour and / or starch according to the type of food to be produced.
  • it can be prepared as a mixed flour (mix for tempura, mix for fried food, mix for frying, mix for nugget, mix for fritters, etc.).
  • flour prepared from rice for example, flour prepared from rice (glutinous rice, glutinous rice, etc.), barley, rye, oats, hato wheat, corn, soybeans, buckwheat, Japanese millet, Japanese millet, or white sorghum.
  • rice flour (joshinko, fine flour, rice cake flour, shiratama-ko, brown rice flour, etc.), barley flour, rye flour, oat flour, hato wheat flour, corn flour, soybean flour, buckwheat flour, foam flour, etc.
  • joshinko, joshinko, and white sorghum flour which can be used alone or in combination of two or more.
  • powdered potatoes and bracken starch prepared from potatoes such as potatoes and sweet potatoes and vegetables such as bracken starch can also be blended.
  • starch examples include grains, plant seeds other than grains, and starch extracted from plants, such as cornstarch, waxy cornstarch, green bean starch, horse bell starch, wheat starch, tapioca starch, sweet potato starch, and sago. Examples include starch and the like. Further, modified starch can be blended as starch.
  • the processed starch is a starch obtained by physically and / or chemically treating natural starch, and is, for example, an enzyme-treated starch processed using raw starch such as potato starch, corn starch, tapioca starch, and wheat starch, and pregelatinized.
  • Starch wet heat treated starch, oxidized starch, acid-treated starch, bleached starch, esterified starch such as acetylated starch, etherified starch such as phosphorylated starch and hydroxypropylated starch, phosphoric acid cross-linked starch, adipic acid cross-linked starch and the like.
  • Processed starch that combines multiple processes such as cross-linked starch, acetylated adipic acid cross-linked starch, acetylated phosphoric acid cross-linked starch, acetylated oxidized starch, hydroxypropylated phosphoric acid cross-linked starch, and phosphoric acid monoesterified phosphoric acid cross-linked starch.
  • the starch the above-mentioned grains, plant seeds other than grains, starch extracted from plants, and the above-mentioned modified starch can be used alone or in combination of two or more.
  • the fried food mix may contain various auxiliary materials as needed.
  • salts and other salts eg, sodium chloride, potassium chloride, etc.
  • fats and oils eg, vegetable fats, animal fats, processed fats, powdered fats, etc.
  • sugars eg, trehalose, glucose, fructose, lactose, etc.
  • Sugar martose, saccharides such as isomartose
  • sugar alcohols such as sorbitol, martitol, reduced palatinose, reduced candy
  • dextrin oligosaccharide, etc.
  • protein material eg, egg white powder, egg yolk powder, whole egg powder
  • Increased thickeners eg, xanthan gum, gua gum, alginate ester, pectin, tamarind seed gum, carrageenan, locust bean gum, arabic gum, galact
  • the fried food flour according to this technology has the above-mentioned characteristics, it is possible to improve the texture of the fried food by using it in place of or in combination with the conventional wheat flour (untreated wheat flour). become. Therefore, in the present technology, the use of the fried wheat flour according to the present technology as a texture improving agent is provided.
  • Foods that are subject to texture improvement are fried foods.
  • the fried food flour according to the present technology is blended as one of the raw materials for producing fried food.
  • the fried food may contain a predetermined amount.
  • the cooked fried food does not contain the blended untreated wheat flour as it is. It is common sense to understand that the state of the blended flour for deep-fried foods has changed through various cooking processes including heating.
  • Fried food is a food that contains wheat flour as a manufacturing raw material and is heat-treated with oil.
  • specific examples thereof include tempura, fritters, fried chicken, croquettes, cutlets, and various fried foods obtained by attaching batter such as dusting powder, batter, and batter to the ingredients and then oiling them.
  • batter such as dusting powder
  • batter and batter
  • the fried food flour according to the present technology in place of or as a part of the untreated wheat flour normally used, for example, in the case of batter such as tempura, the flour is familiar to the batter. It is possible to improve the workability at the time of preparing the batter.
  • the obtained tempura can have effects such as improving the texture such as hardness, crispness, sliminess, and oiliness.
  • the method of reheating is not particularly limited, and examples thereof include microwave cooking, oiling, and baking.
  • the use of flour for deep-fried foods according to this technique can also be used for frozen deep-fried foods.
  • the fried food flour according to the present technology in place of or as a part of the untreated wheat flour normally used, for example, in the case of batter such as fried chicken, the wheat flour in the batter. It is possible to improve the water compatibility and workability at the time of preparing the batter. Further, in the obtained fried chicken, it is possible to obtain effects such as improvement of texture such as hardness, crispness, sliminess, oiliness, and juiciness of meat. Further, even when the fried chicken that has been frozen after being oiled is reheated, it is possible to obtain effects such as improvement in hardness, texture such as crispness and hiki.
  • the method of reheating is not particularly limited, and examples thereof include microwave cooking, oiling, and baking.
  • the use of flour for deep-fried foods according to this technique can also be used for frozen deep-fried foods. It was
  • the wheat flour for fried foods according to the present technology, the mix for fried foods according to the present technology, or the texture improving agent according to the present technology contains the wheat flour for fried foods having the above-mentioned characteristics. When used in place of or in combination with (untreated wheat flour), it is possible to improve the texture of fried foods. Therefore, the present technology provides a texture improving method using the fried food flour, the fried food mix, or the texture improving agent. Foods that are subject to texture improvement are fried foods.
  • the fried food flour, the fried food mix, or the texture improving agent according to the present technology is used for the fried food. It may be blended as one of the raw materials for producing the above-mentioned food, and may be contained in a predetermined amount in the fried food.
  • the fried food targeted by the present technology contains the above-mentioned fried food flour, fried food mix, or texture improving agent according to the present technology. Specifically, it is a fried food obtained by cooking using the above-mentioned flour for fried food, a mix for fried food, or a texture improving agent according to the present technology as all or part of the manufacturing raw material.
  • the cooking method can be exemplified as a cooking method conventionally adopted according to the type of fried food, and is not particularly limited.
  • the fried food flour, fried food mix, and texture improvement according to the present technology is not particularly limited.
  • a dressing process in which a batter containing an agent is attached to ingredients such as vegetables and seafood, a fried food flour, a fried food mix, or a glare powder containing a texture improving agent according to this technique includes a clothing treatment step of directly adhering to ingredients such as deep-fried foods and seafood, and includes a heat treatment step of oil sardines, microwave cooking, baking and the like.
  • the heat treatment also includes reheating the frozen fried food obtained by freezing the fried food obtained by cooking by oiling or microwave cooking.
  • the addition amount, addition method, addition timing, etc. of the above-mentioned fried food flour, fried food mix, or texture improving agent according to the present technology is no particular limitation on the addition amount, addition method, addition timing, etc. of the above-mentioned fried food flour, fried food mix, or texture improving agent according to the present technology.
  • the fried food flour according to the present technology described above may be used in place of or in combination with the untreated wheat flour conventionally blended. It may be blended as one of the raw materials for producing fried food, and may be contained in the fried food in a predetermined amount.
  • the batter containing the fried food flour, the fried food mix, or the texture improving agent according to the present technology has a uniform and smooth property with less lumps and is compatible with water. It is easy and shows excellent workability when preparing batter. It was
  • the pressure in the pressure heater is returned to the atmospheric pressure, then the wet heat-treated wheat flour is discharged from the pressure heater, the flour is dried until the water content becomes about 10%, and the flour is crushed by a crusher.
  • the treatment was carried out to obtain wet heat-treated wheat flour having a particle size of 0.5 mm or less (Test Examples 1 to 11).
  • the acetic acid-soluble protein content (%) in the total protein content of wheat flour was measured by the following operation step.
  • amylase digestibility of the wet heat-treated wheat flour when the amylase digestibility of the untreated wheat flour is 100% can be obtained from the following formula.
  • Amylase digestibility ⁇ (amount of glucose produced from wet heat-treated wheat flour) / (amount of glucose produced from untreated wheat flour) ⁇ ⁇ 100
  • Table 2 shows the results of evaluation of the physical characteristics of wheat flour for deep-fried foods.
  • FIG. 1 shows the RVA profiles of Reference Example (untreated wheat flour) and Test Example 10 (fried food flour).
  • the fried wheat flour of Test Example 10 having a maximum viscosity of 60% or more was an untreated wheat flour of Reference Example having a maximum viscosity of 2949 cP and an acetate-soluble protein content of 66.6 mass% in the total protein of the wheat flour, and a maximum viscosity of 2500 cP. It was significantly different from the higher unmodified wheat flour of Test Example 1.
  • the non-modified wheat flour of Test Example 2 has a maximum viscosity of 2500 cP or less, an acetic acid-soluble protein content of 25% by mass or less in all wheat flour proteins, and amylase digestibility of 100 untreated wheat flour. The percentage was 60% or more, but no polarized cross was observed, and it was confirmed that the ungelatinized starch was not contained.
  • Table 4 shows the evaluation results of workability.
  • the maximum viscosity in RVA is 2500 cP or less (characteristic (3)), the content of acetic acid-soluble protein in the total protein of wheat flour is 25% by mass or less (characteristic (2)), and the amylases digestibility is not yet.
  • Untreated wheat flour reference example
  • fried wheat flour Test Examples 3 to 11
  • Characteristic (4) when the amylase digestibility of the treated wheat flour is 100%. It was confirmed that the workability (water compatibility of wheat flour, batter properties) at the time of batter preparation at the time of producing tempura was improved as compared with the case of using the non-modified wheat flour of Test Examples 1 and 2.
  • Table 5 shows the evaluation results of the texture of the batter in the tempura left at room temperature for 4 hours.
  • Table 6 shows the evaluation results of the texture of the batter in the frozen tempura reheated by microwave cooking.
  • Table 7 shows the evaluation results of the texture of the batter in the frozen tempura reheated with oil.
  • Table 9 shows the evaluation results of workability.
  • the maximum viscosity in RVA is 2500 cP or less (characteristic (3)), the content of acetic acid-soluble protein in the total protein of wheat flour is 25% by mass or less (characteristic (2)), and the amylases digestibility is not yet.
  • Untreated wheat flour reference example
  • fried wheat flour Test Examples 3 to 11
  • Characteristic (4) when the amylase digestibility of the treated wheat flour is 100%. It was confirmed that the workability (water compatibility of wheat flour, batter properties) at the time of batter preparation at the time of fried chicken production was improved as compared with the case of using the non-modified wheat flour of Test Examples 1 and 2.
  • Table 10 shows the evaluation results of the texture of the batter in the fried chicken left at room temperature for 4 hours.
  • Table 11 shows the evaluation results of the texture of the batter in the frozen fried chicken reheated by microwave cooking.
  • Table 12 shows the evaluation results of the texture of the batter in the frozen fried chicken reheated with oil.
  • Table 13 shows the evaluation results of the texture of the batter in the fried chicken left at room temperature for 4 hours.
  • Table 14 shows the evaluation results of the texture of the batter in the frozen fried chicken reheated by microwave cooking.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Grain Derivatives (AREA)
  • Cereal-Derived Products (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

本発明は揚げ物食品用小麦粉を提供することを課題とする。 本発明の改質小麦粉は下記の特性を有することを特徴とする: (1)未糊化澱粉を含む、(2)小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下、(3)RVAにおける最高粘度が2500cP以下、(4)アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%にした場合の60%以上である。

Description

揚げ物用小麦粉
 本発明は揚げ物用小麦粉に関する。
 近年、東南アジアでは、流通技術の発達により、冷凍食品の市場が拡大している。また、日本においては、ライフスタイルの多様化や、高齢化の進行に伴い、調理の手間を省き、より簡便に喫食することができる総菜類等の需要が高まっている。中でも、長期保存が可能であり、オーブンや電子レンジ等で加熱処理を行うことにより簡便に喫食することが可能な調理済み冷凍食品の需要が増加している。
 特に、フライ食品、天ぷら等の揚げ物は、人気のある食品である。このような揚げ物は、表面に衣材を付着させた具材を油中で油ちょうした後、冷凍処理されて、総菜として流通している。
 しかし、こういった冷凍揚げ物は、オーブンや電子レンジにより再度加熱した場合、加熱中に野菜や魚肉類等の具材から衣側に水分が移行するため、具材のジューシー感が損なわれるとともに、衣が水分を吸って軟化して、衣のサクサク感が損なわれやすい。
 特許文献1には、飽和水蒸気が導入された加圧状態での密閉系撹拌機中に小麦粉を導入し、密閉系撹拌機中での滞留時間が2~20秒間の条件下に、密閉系撹拌機からの排出時の小麦粉の品温が80℃超92℃以下になるようにして湿熱処理することで、含有澱粉が実質的にα化しておらず、グルテンバイタリティが未処理小麦粉のそれを100としたときに80~92で、かつグルテン膨潤度が未処理小麦粉のそれを100としたときに105~155である熱処理小麦粉が得られ、当該小麦粉は、電子レンジで再加熱した場合でも揚げ物特有のサクサクとした食感が劣化せず、電子レンジ再加熱に適した揚げ物用熱処理小麦粉として好適であることが記載されている。
 特許文献2には、飽和水蒸気を用いて130℃の常圧条件で湿熱処理することで得られるα化度が12.5~30%、対粉300質量%に加水した場合の粘度が1~10Pa・sである湿熱処理小麦粉が記載され、当該湿熱処理小麦粉が、揚げ物を調理する際の作業性及び衣の火通りを改善し、衣の歯もろくサクサクした食感の向上と衣のボリューム感、花咲等衣の外観の向上を両立し、かつ常温、チルド又は冷凍保存後の電子レンジ調理等の再加熱した場合でも製造直後の食感を保持し、経時変化耐性に優れた揚げ物類用のミックスとして有用であることが記載されている。
特開平9-191847号公報 特開2008-67675号公報
 本発明は、食感が改良された揚げ物を得ることが可能な揚げ物用小麦粉を提供することを主な目的とする。加えて、揚げ物を製造する場合に、バッター調製時の作業性を向上させることが可能な揚げ物用小麦粉を提供することを目的とする。さらに、油ちょう後冷凍された揚げ物を再度、油ちょうや電子レンジ調理等で加熱した場合に、ガミーな食感やヒキがある食感ではなく、最初の油ちょう直後と同等の優れた食感を得ることが可能な揚げ物用小麦粉を提供することを目的とする。
 本技術は、下記の特性を有する揚げ物用小麦粉を提供する。
(1)未糊化澱粉を含む、
(2)小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下、
(3)RVAにおける最高粘度が2500cP以下、
(4)アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上である。
 前記揚げ物用小麦粉の用途が冷凍揚げ物用でありうる。
 前記アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上400%以下でありうる。
 本技術は、前記揚げ物用小麦粉を含有する、揚げ物用ミックスを提供する。
 本技術は、前記揚げ物用小麦粉を含有する、食感改良剤を提供する。
 本技術は、揚げ物の製造に際して、前記揚げ物用小麦粉、前記揚げ物用ミックス、又は前記食感改良剤を揚げ物の製造原料の一つとして用いる、揚げ物の食感改良方法を提供する。
 本技術は、前記揚げ物用小麦粉、前記揚げ物用ミックス、又は前記食感改良剤を含有する揚げ物を提供する。
 本技術によれば、揚げ物の食感を向上させることができる。加えて、揚げ物を製造する場合に、バッター調製時の作業性を向上させることができる。さらに、油ちょう後冷凍された揚げ物を再度、油ちょうや電子レンジ調理、オーブン等による焼成等で加熱した場合に、ガミーな食感やヒキがある食感ではなく、最初の油ちょう直後と同等の優れた食感を得ることができる。
参考例(未処理小麦粉)、試験例2、及び試験例10のRVAプロファイルを示す。 参考例(未処理小麦粉)の小麦粉に関する偏光顕微鏡(1000倍率)画像を示す。 試験例2の小麦粉に関する偏光顕微鏡(1000倍率)画像を示す。 試験例10の小麦粉に関する偏光顕微鏡(1000倍率)画像を示す。
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。
 なお、以下で説明する湿熱処理(改質処理)を施していない原料小麦粉を「未処理小麦粉」と称する。また、湿熱処理を施したが、本技術の揚げ物用小麦粉の特性(1)未糊化澱粉を含むこと、(2)小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下であること、(3)RVAにおける最高粘度が2500cP以下であること、(4)アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上であることの少なくともいずれかを満足しない小麦粉を「非改質小麦粉」と称する。
1.揚げ物用小麦粉
 本技術の揚げ物用小麦粉は、下記(1)~(4)の特性を有する。
(1)未糊化澱粉を含む。
(2)小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下である。
(3)RVAにおける最高粘度が2500cP以下である。
(4)アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上である。
 以下、これらの特性について説明する。
(1)未糊化澱粉を含む
 澱粉は、直鎖成分のアミロースと分岐成分のアミロペクチンから構成され、これらの成分が部分的に微結晶を発達させた多結晶の粒状構造をもつ。澱粉粒を水中で加熱すると、まず結晶性を消失して膨潤し、さらに加熱すると、澱粉粒が崩壊し、その断片と一部溶解した澱粉分子が混合した糊液となる。つまり「澱粉の糊化」は、一般に水の存在下で加熱することで澱粉粒が不可逆的に膨潤し、さらに崩壊ないし溶解して、結晶性及び複屈折性を失い、粘度が上昇した状態をいう。こうした糊化過程は、一般には、澱粉粒の結晶構造の変化を、澱粉粒の複屈折性から観察する偏光顕微鏡法等によって評価することができる(中村道徳ら編:生物化学実験法19「澱粉・関連糖質実験法」(学会出版センター)p.166(1999))。偏光顕微鏡法による観察において、澱粉の糊化は、結晶性及び複屈折性の喪失により、未糊化澱粉で見られた形成核で交差した偏光十字が見られなくなることで判定することができる。
 本技術に係る揚げ物用小麦粉は未糊化澱粉を含む。当該小麦粉が未糊化澱粉を含んでいることは、前述するように、偏光顕微鏡法による観察において澱粉粒形と偏光十字が鮮明に確認できることで判断することができる。前記小麦粉中に含まれる未糊化澱粉の割合は、制限されないが、湿熱処理前の未処理小麦粉に含まれる未糊化澱粉の量(100%)と比較して100%未満70%以上であることが好ましい。好ましくは75%以上、より好ましくは80%以上である。なお、この割合は偏光顕微鏡法による観察において観察した全ての澱粉粒数と偏光十字が観察された澱粉粒の個数を計測し、その比を算出することで評価することができる。なお、偏光顕微鏡観察は、スライドガラスに被験試料として湿熱処理後の小麦粉又は未処理小麦粉(これらを総称して「小麦粉」という)を少量のせ、上からスポイトで蒸留水を1~2滴たらし、次いでカバーガラスで覆い、200倍率にて観察した。本技術に係る揚げ物用小麦粉は、湿熱処理しながらも未糊化澱粉を含むことで、従来の湿熱処理小麦粉が有する問題を少なくとも一つ改善する効果を有している。なお、本技術に係る揚げ物用小麦粉又は非改質小麦粉は、総称して「湿熱処理小麦粉」ともいう。
(2)小麦粉に含まれる全蛋白質量中の酢酸可溶蛋白質含量が25質量%以下
 本技術において「酢酸可溶蛋白質」は、小麦粉に含まれる全蛋白質のうち、0.05Nの酢酸水溶液に可溶な蛋白質を意味する。上記酢酸可溶蛋白質の割合(質量%)は、0.05Nの酢酸水溶液を用いて小麦粉から抽出した可溶性画分(抽出液)に含まれる窒素含量と、小麦粉に含まれる全窒素量から換算して求めることができる。
 小麦粉から酢酸可溶性画分(抽出液)を抽出して、ケルダール法に供する検体(酢酸可溶蛋白質を含む抽出液)を調製する方法を簡単に説明すると以下の通りである。なお、当該抽出操作は25℃、大気圧条件下で実施することができる。
(i)小麦粉2gを、100mL容量の三角フラスコに入れる。
(ii)これに0.05N酢酸を40mL加えて、振盪する(25℃、130rpm、60分間)。
(iii)遠心分離(5000rpm、5分間)し、上層の液相(抽出液)と下層の固相(残渣)とに分離する。
(iv)上記(iii)で分離した抽出液をろ紙(Whatman、No.42)で吸引濾過し、濾液を回収する。
(v)上記(iii)で抽出液を回収した後三角フラスコに残った残渣に、0.05N酢酸40mLを入れてフラスコ壁面についた残渣を洗い流すように軽く撹拌し、遠心分離(5000rpm、5分間)し、上層の液相(抽出液)と下層の固相(残渣)とに分離する。
(vi)上記(v)で分離した抽出液をろ紙(Whatman、No.42)で吸引濾過して濾液を回収し、前記(iv)で回収した濾液と混合する。
(vii)濾液をイオン交換水にて100mLに定容する。
(viii)上記の操作で回収した濾液(小麦粉の酢酸抽出液)は25mLを、小麦粉は0.5gを、それぞれ分解に供した。
(ix)分解により得られた試料に、水を30mL加え、ケルダール蒸留滴定装置(スーパーケル1500/1550、アクタック社製)にセットして蒸留及び滴定を行う。
(x)得られた窒素量から下式に基づいて酢酸可溶蛋白質含量(%)を算出する。
 検体中の窒素含量(g/100g)=f×N×(b-B) /1000)×14×(100/0.5(g))
 小麦粉中の窒素含量(g/100g)=f×N×(b-B) /1000)×14×(100/W(g))
f: ファクター
N: 滴定用硫酸の規定数
b: 測定試料の滴定量(mL)
B: ブランク(検体及び小麦粉に代えて水を用いた測定試料)の滴定量(mL)
W: 小麦粉採取量(g)
 
 酢酸可溶蛋白質含量(%)=(検体中の窒素量(%)/小麦粉中の窒素量(%))×100
 本技術に係る揚げ物用小麦粉は、上記方法で求められる小麦粉全蛋白質中の酢酸可溶蛋白質含量(質量%)が25質量%以下である。未処理の小麦粉における当該酢酸可溶蛋白質の割合は、50~70質量%であることからわかるように、本技術に係る揚げ物用小麦粉の上記値はかなり小さい。このことは、未処理小麦粉に本来含まれている酢酸可溶蛋白質の一部が変質して不溶化していることを意味するものと考えられる。小麦粉全蛋白質中の酢酸可溶蛋白質の割合(質量%)として、好ましくは22質量%以下、より好ましくは20質量%以下、さらに好ましくは18質量%以下である。その下限値は、特に制限されないものの、通常1質量%以上、好ましくは2質量%以上、より好ましくは4質量%以上である。本技術に係る揚げ物用小麦粉は、小麦粉全蛋白質中の酢酸可溶蛋白質の割合(質量%)が25質量%以下と、蛋白質がより変性していることで、良好な食感(例えば、サクミや歯切れ等)を発現することができるという効果を有している。
(3)RVAにおける最高粘度が2500cP以下である
 本技術に係る揚げ物用小麦粉は、その懸濁液の粘度変化を連続的に測定するラピッド・ビスコ・アナライザー(RVA)を用いて求められる最高粘度が2500cP以下である。
 当該最高粘度の求め方を簡単に説明すると以下の通りである。なお、当該測定は特に言及しない限り、大気圧条件下で実施することができる。
(i)測定する対象の小麦粉3.5gを25mLの0.5mM硝酸銀水溶液に入れてよくかき混ぜて懸濁し、14質量%濃度の懸濁液を調製する。
(ii)この懸濁液(25℃)を、RVA装置(RVA4500、Perten Instruments社製)(パドル回転数:160rpm)に供する。RVA装置の設定温度条件に従って懸濁液を加温及び冷却し、その間連続的に懸濁液の粘度(cP)を読み取り、時間(秒)を横軸、粘度(cP)を縦軸としたRVAプロファイルを作製する。
 なお、RVA装置の設定温度条件は次の通りである。
 50℃に60秒間保持→50℃より1℃/5秒の速度で昇温→95℃になった時点(加熱開始から282秒後)で同温度にて150秒間保持→その後(加熱開始から432秒後)約1℃/5秒の速度で降温→50℃になった時点(加熱開始から660秒後)で同温度にて120秒間保持。
 最高粘度は斯くして得られるRVAプロファイルから求めることができる。具体的には、50℃から95℃に温度を上昇させると粘度が上がってピークに達した後、下降する挙動を示すが、そのピーク時の粘度を最高粘度とする。本技術の揚げ物用小麦粉のRVAにおける最高粘度は、前述するように2500cP以下である。好ましくは2400cP以下、より好ましくは2300cP以下、さらに好ましくは2000cP以下、よりさらに好ましくは1800cP以下、特に好ましくは1500cP以下である。その下限値は、制限されないものの、100cP以上であり、好ましくは200cP以上である。
 本技術に係る揚げ物用小麦粉の一例として、後記実験例1で製造した揚げ物用小麦粉(試験例10)のRVAプロファイルを図1に示す。図1には、未処理小麦粉(参考例)、及び試験例2(「非改質小麦粉」とも称する)の小麦粉のRVAプロファイルも合わせて示す。なお、澱粉に関して、澱粉の物性とRVAプロファイルとの関係は次のことがいえる。澱粉の懸濁液の粘度は極めて低いが、RVAを用いた測定を開始後、徐々に加温していくと、澱粉粒が吸水、膨潤し、澱粉粒同士の摩擦が増加するため澱粉懸濁液の粘度が上昇する。さらに加熱を続けると、一般的な澱粉懸濁液は最高粘度(ピーク粘度)に達し、その後、澱粉粒の崩壊に伴い、粘度は減少に転じる。最高粘度に達した後に減少に転ずる粘度の低下現象をブレークダウンという。架橋処理等によって澱粉粒の膨潤が十分に抑制された膨潤抑制澱粉は、糊液を加熱しても澱粉粒が崩壊しないためにブレークダウンは起こり難い。澱粉粒は崩壊後、徐々に冷却していくと、澱粉の粒子が冷え固まり、再構成される結果(澱粉の老化現象)、澱粉粒同士の摩擦が増加して糊液の粘度が上昇する挙動が見られる。この粘度の再上昇をセットバックという。老化が抑制された澱粉粒ではセットバックが生じにくい。このことを踏まえると、本技術に係る揚げ物用小麦粉は、未処理小麦粉(参考例)及び非改質小麦粉(試験例2)と比較して、最高粘度が低いという特性を示す。また、本技術に係る揚げ物用小麦粉は、未処理小麦粉(参考例)及び非改質小麦粉(試験例2)と比較して、ブレークダウン幅が小さいという特性を示す。このことは本技術に係る揚げ物用小麦粉は、水存在下で加熱すると、澱粉粒は膨潤するものの、架橋澱粉等と同様に崩壊しにくいことを示す(崩壊耐性)。さらに、本技術に係る揚げ物用小麦粉は、未処理小麦粉(参考例)及び非改質小麦粉(試験例2)と比較して、セットバック値が小さいという特性を示す。このことから本技術に係る揚げ物用小麦粉は、老化耐性を備えているといえる。老化耐性を備えた本技術に係る揚げ物用小麦粉によれば、経時変化耐性(時間が経っても硬くなりにくい)を有する揚げ物食品を製造することが可能である。
(4)アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上である
 当該特性は、前述の(1)~(3)の特性に加えて、本技術に係る揚げ物用小麦粉が有する特性である。なお、本発明でいうアミラーゼはカビ由来のアミラーゼを意味する。
 アミラーゼ消化性の求め方を簡単に説明すると以下の通りである。なお、当該測定は特に言及しない限り、室温(25℃)及び大気圧条件下で実施することができる。
(小麦粉のアミラーゼ消化性の求め方)
 小麦粉試料100mgに、予め40℃で10分間プレインキュベートしたα-アミラーゼ溶液(Aspergillus oryzae由来,50unit/mL)を1mL添加して、撹拌した後、40℃で10分間処理する。次いで、クエン酸-燐酸水溶液(pH2.5)を5mL添加して反応を停止させ、遠心分離(1,000g、5分)して上清を得る。この上清0.1mLにアミログルコシダーゼ溶液(Aspergillus niger由来,2unit/0.1mL)を添加して40℃で20分間処理した後、510nmで吸光度を測定する。得られた吸光度から、標準溶液を用いて作成したD-グルコースの検量線を利用して、生成したグルコース量を算出する。
 未処理小麦粉のアミラーゼ消化性を100%とした場合における湿熱処理小麦粉のアミラーゼ消化性は、下式から求めることができる。
   アミラーゼ消化性={(湿熱処理小麦粉から生成したグルコース量)/(未処理小麦粉から生成したグルコース量)}×100
 本技術に係る揚げ物用小麦粉は、前述するようにアミラーゼ消化性が未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上であり、好ましくは62%以上であり、より好ましくは65%以上、さらに好ましくは70%以上である。なお、上限は、本技術の効果を妨げないことを限度として、特に制限されないものの、好ましくは400%以下であり、より好ましくは300%以下、さらに好ましくは250%以下、200%以下、さらにより好ましくは110%以下、100%以下、特に好ましくは90%以下である。本技術においては、アミラーゼ消化性がこの範囲に含まれることにより、揚げ物の食感を向上させることができ、加えて、揚げ物を製造する場合に、バッター調製時の作業性を向上させることができ、さらに、油ちょう後冷凍された揚げ物を再度、油ちょうや電子レンジ調理等で加熱した場合に、ガミーな食感やヒキがある食感ではなく、最初の油ちょう直後と同等の優れた食感を得ることができる。
 上記の特性を有する本技術に係る揚げ物用小麦粉は、小麦粉を、飽和水蒸気下で、加圧した状態のままで100℃以上に加熱処理することで調製することができる。その処理に使用する装置は、加圧密閉容器であればよく、オートクレーブ装置や圧力鍋等が挙げられる。また、ジャケット加熱機構を備えた加圧加熱機を使用することができる。上記の特性を有する本技術に係る揚げ物用小麦粉を高効率に製造するために、ジャケット加熱機構を備えていることが好ましい。加圧条件としては、大気圧(0MPaG)以上、好ましくは0.05MPaG以上、より好ましくは0.1MPaG以上を挙げることができる。上限値は、制限されないものの、通常0.5MPaG以下を挙げることができる。また、加熱条件としては、加圧加熱機内温度が100℃以上の高温であればよく、制限されないものの、105℃以上、好ましくは110℃以上、より好ましくは120℃以上を挙げることができる。上限値は、制限されないものの、通常160℃以下を挙げることができる。さらに、ジャケット加熱機構を備えている場合、ジャケット内温度が加圧加熱機内温度よりも高いことが好ましく、1℃以上高いことがより好ましい。
 加圧条件下での湿熱処理に要する時間は、前述する特性を有する本技術に係る揚げ物用小麦粉が調製できる時間であればよく、湿熱処理する小麦粉の量、並びに採用する加圧条件及び温度条件等に応じて適宜設定調整することができる。制限されないものの、上限としては5時間を超えない範囲で設定することができる。
 湿熱処理する原料として用いる小麦粉は、薄力粉、中力粉、強力粉、及びデュラム小麦粉等、その種類に制限されるものではないが、蛋白質含量が6~15質量%の範囲にあるものが好ましい。より好ましくは蛋白質含量が6.5~14質量%、さらに好ましくは蛋白質含量が7~13.5質量%の範囲にあるものである。なお、この蛋白質含量も前述するケルダール法に従って求めることができる。
2.揚げ物用ミックス
 前述する本技術に係る揚げ物用小麦粉は、そのもの自体を揚げ物用ミックスとすることができるほか、必要に応じて、製造する食品の種類に従って、小麦粉以外の穀粉及び/又は澱粉と組み合わせて、例えば、ミックス粉(天ぷら用ミックス、唐揚げ用ミックス、フライ用ミックス、ナゲット用ミックス、フリッター用ミックス等)として調製することができる。
 小麦粉以外の穀粉としては、例えば、米(うるち米、もち米等)、大麦、ライ麦、オーツ麦、はと麦、とうもろこし、大豆、そば、あわ、ひえ、又は、ホワイトソルガム等から調製される穀粉を挙げることができる。具体的には、米粉(上新粉、上用粉、餅粉、白玉粉、玄米粉等)、大麦粉、ライ麦粉、オーツ麦粉、はと麦粉、とうもろこし粉、大豆粉、そば粉、あわ粉、ひえ粉、きび粉、又は、ホワイトソルガム粉等が挙げられ、単独又は2種以上組み合わせて用いることができる。また穀粉のほか、馬鈴薯や甘藷等の芋類やワラビ等の野菜から調製される粉末ポテトやワラビ粉を配合することもできる。
 澱粉としては、穀物、穀物以外の植物種子、又は、植物体から抽出される澱粉を挙げることができ、例えば、コーンスターチ、ワキシーコーンスターチ、緑豆澱粉、馬鈴薯澱粉、小麦澱粉、タピオカ澱粉、甘藷澱粉、サゴ澱粉等が例示される。また澱粉として、加工澱粉を配合することもできる。加工澱粉は、天然澱粉に物理的及び/又は化学的処理等を施した澱粉であり、例えば、馬鈴薯澱粉、コーンスターチ、タピオカ澱粉、小麦澱粉等を原料澱粉として加工処理された酵素処理澱粉、アルファー化澱粉、湿熱処理澱粉、酸化澱粉、酸処理澱粉、漂白澱粉、アセチル化澱粉等のエステル化澱粉、リン酸化澱粉、ヒドロキシプロピル化澱粉等のエーテル化澱粉、リン酸架橋澱粉、アジピン酸架橋澱粉等の架橋澱粉、アセチル化アジピン酸架橋澱粉、アセチル化リン酸架橋澱粉、アセチル化酸化澱粉、ヒドロキシプロピル化リン酸架橋澱粉、リン酸モノエステル化リン酸架橋澱粉等の複数の加工を組み合わせた加工澱粉等が挙げられる。なお、澱粉は、前記した穀物、穀物以外の植物種子、又は、植物体から抽出される澱粉、前記した加工澱粉を単独又は2種以上組み合わせて用いることができる。
 調製する揚げ物の種類によっても相違するが、揚げ物用ミックスには、その他、必要により、各種の副資材を含むことができる。例えば、食塩やその他の塩(例えば、塩化ナトリウム、塩化カリウム等);油脂類(例えば、植物性油脂、動物性油脂、加工油脂、粉末油脂等);糖類(例えば、トレハロース、グルコース、フルクトース、ラクトース、砂糖、マルトース、イソマルトース等の糖類;ソルビト-ル、マルチトール、還元パラチノース、還元水飴等の糖アルコール;デキストリン;オリゴ糖等);たん白素材(例えば、卵白粉、卵黄粉、全卵粉、小麦たん白、乳たん白、大豆たん白等);増粘剤(例えば、キサンタンガム、グアガム、アルギン酸エステル、ペクチン、タマリンドシードガム、カラギーナン、ローカストビーンガム、アラビアガム、ガラクトマンナン、ジェランガム等の増粘多糖類;カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、プロピレングリコール等);膨張剤(例えば、重曹(炭酸水素ナトリウム)、炭酸アンモニウム、炭酸カルシウム等のガス発生剤、及び酒石酸、酒石酸水素カリウム、リン酸二水素ナトリウム、グルコノデルタラクトン等の酸性剤を含むベーキングパウダー等);乳化剤(例えば、レシチン、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等);酵素類;調味料(例えば、グルタミン酸ナトリウム、粉末醤油等);エキス類(例えば、酵母エキス、畜肉又は魚介由来エキス等);保存料;着色料、又は香料等を用いることもできる。
3.食感改良剤
 本技術に係る揚げ物用小麦粉は、前述する特性を有することから、従来の小麦粉(未処理小麦粉)に代えて又はそれと一緒に用いることで、揚げ物の食感を改良することが可能になる。このため、本技術では、前記本技術に係る揚げ物用小麦粉についてその食感改良剤としての用途を提供する。
  食感改良の対象となる食品は、揚げ物である。また、揚げ物に添加する方法やそのタイミングに特に制限はなく、従来配合している未処理小麦粉に代えて又はそれと一緒に、本技術に係る揚げ物用小麦粉を揚げ物の製造原料の一つとして配合し、その揚げ物中に所定量含有するようにすればよい。なお、調理された揚げ物中には、配合した未処理小麦粉がそのままの状態で含まれているわけではない。加熱を含む各種の調理工程を経ることで、配合した揚げ物用小麦粉の状態は変化していることは常識的に理解されることである。
 揚げ物とは、製造原料として小麦粉を含み、油ちょうによる加熱処理をすることで得られる食品である。具体的には、打粉、バッター、ブレッダー等の衣材を具材に付着させた後に油ちょうして得られる天ぷら、フリッター、唐揚げ、コロッケ、カツ、各種フライ等の揚げ物が挙げられる。これらの揚げ物の製造に際して、通常使用される未処理小麦粉に代えて又はその一部に、本技術に係る揚げ物用小麦粉を用いることで、例えば、天ぷら等の衣の場合、バッターにおける小麦粉の水なじみとバッター調製時の作業性を向上させることが可能となる。また、得られた天ぷらにおいて、硬さ、サクミ、ぬめり、油っぽさ等の食感が向上する等の効果を得ることが可能になる。さらに、油ちょう後、冷凍処理した天ぷらを、再加熱した場合でも、硬さ、歯切れ・ヒキ等の食感が向上する等の効果を得ることが可能になる。再加熱の方法には特に制限はなく、電子レンジ調理や油ちょう、焼成等が挙げられる。本技術に係る揚げ物用小麦粉の用途を冷凍揚げ物用とすることもできる。
 また、これらの揚げ物の製造に際して、通常使用される未処理小麦粉に代えて又はその一部に、本技術に係る揚げ物用小麦粉を用いることで、例えば、唐揚げ等の衣の場合、バッターにおける小麦粉の水なじみとバッター調製時の作業性を向上させることが可能となる。また、得られた唐揚げにおいて、硬さ、歯切れ、ぬめり、油っぽさ、肉のジューシー感等の食感が向上する等の効果を得ることが可能になる。さらに、油ちょう後、冷凍処理した唐揚げを、再加熱した場合でも、硬さ、歯切れ・ヒキ等の食感が向上する等の効果を得ることが可能になる。再加熱の方法には特に制限はなく、電子レンジ調理や油ちょう、焼成等が挙げられる。本技術に係る揚げ物用小麦粉の用途を冷凍揚げ物用とすることもできる。  
4.揚げ物の食感改良方法
 本技術に係る揚げ物用小麦粉、本技術に係る揚げ物用ミックス、又は本技術に係る食感改良剤は、前述する特性を有する揚げ物用小麦粉を含有することから、従来の小麦粉(未処理小麦粉)に代えて又はそれと一緒に用いることで、揚げ物の食感を改良することが可能になる。このため、本技術では、前記揚げ物用小麦粉、前記揚げ物用ミックス、又は前記食感改良剤を用いた食感改良方法を提供する。食感改良の対象となる食品は、揚げ物である。また、揚げ物に添加する方法やそのタイミングに特に制限はなく、従来配合している未処理小麦粉に代えて又はそれと一緒に、本技術に係る揚げ物用小麦粉、揚げ物ミックス、又は食感改良剤を揚げ物の製造原料の一つとして配合し、その揚げ物中に所定量含有するようにすればよい。
5.本技術が対象とする揚げ物とその製造方法

 本技術が対象とする揚げ物は、前述する本技術に係る揚げ物用小麦粉、揚げ物用ミックス、又は食感改良剤を含有するものである。具体的には、前述する本技術に係る揚げ物用小麦粉、揚げ物用ミックス、又は食感改良剤を製造原料の全部又は一部として用いて調理することで得られる揚げ物である。なお、調理とは、揚げ物の種類に応じて慣用的に採用される調理方法を例示することができ、特に制限されるものではなく、本技術に係る揚げ物用小麦粉、揚げ物用ミックス、食感改良剤を含有するバッターを、野菜類や魚介類等の具材に付着させる衣付け処理工程や、本技術に係る揚げ物用小麦粉、揚げ物用ミックス、又は食感改良剤を含有するまぶし粉として野菜類や魚介類等の具材に直接付着させる衣付け処理工程を含み、油ちょう、電子レンジ調理、焼成等の加熱処理工程を含む。  

 また、加熱処理には、調理して得られた揚げ物を冷凍して得られた冷凍揚げ物を、油ちょうや電子レンジ調理で再加熱することも含まれる。
 また、その製造方法において、前述する本技術に係る揚げ物用小麦粉、揚げ物ミックス、又は食感改良剤の添加量、添加方法、及び添加するタイミング等に特に制限はない。例えば、各揚げ物の種類に応じて慣用的に採用される調理方法に基づいて、従来配合している未処理小麦粉に代えて又はその一部と一緒に、前述する本技術に係る揚げ物用小麦粉を揚げ物の製造原料の一つとして配合し、その揚げ物中に所定量含有するようにすればよい。なお、本技術に係る揚げ物の製造方法において、本技術に係る揚げ物用小麦粉、揚げ物用ミックス、又は食感改良剤を含有するバッターは、ダマが少なく均一でなめらかな性状を有し、水となじみやすく、バッター調製時に優れた作業性を示す。 
 以下、実施例に基づいて本発明の構成及びその効果を説明する。ただし、これらの実施例はいずれも本発明の一例であって、本発明はこれらの実施例によって制限されるものではない。なお、下記において、特に言及しない限り、実験は室温(25±5℃)、又は大気圧条件下で行った。また、特に言及しない限り、「%」は「質量%」、「部」は「質量部」を意味する。
[実験例1]揚げ物用小麦粉の製造、及びその特性
 下記1種類の小麦粉を原料小麦粉として用いて揚げ物用小麦粉の製造を行い、その特性を評価した。なお、原料小麦粉は25℃、50%の恒温恒湿条件下に24時間置いたのちに試験に供した。
原料小麦粉A:「月桂冠」昭和産業株式会社製(蛋白質含量8.3質量%)
1.揚げ物用小麦粉の製造方法
 各試験例のそれぞれにおいて、上記原料小麦粉Aを用い、圧力条件、加熱条件(温度、時間)、水分条件を適宜調整し、下記性質の湿熱処理小麦粉(試験例1~11)を製造した。
 湿熱処理後、加圧加熱機内の圧力を大気圧に戻した後、加圧加熱機内から湿熱処理小麦粉を排出し、小麦粉を水分含量が10%程度になるまで乾燥処理し、粉砕機にて粉砕処理を行い、粒径が0.5mm以下の湿熱処理小麦粉(試験例1~11)を得た。
2.揚げ物用小麦粉の物性評価方法
(1)偏光顕微鏡による偏光十字の観察
 上記で調製した湿熱処理小麦粉(試験例1~11)、及び湿熱処理前の原料小麦粉A(参考例)(以上、被験試料)を、偏光顕微鏡にて観察して、偏光十字の有無を確認した。具体的には、スライドガラスに粉末状の被験試料を少量のせ、上からスポイトで蒸留水を1~2滴たらし、次いでカバーガラスで覆い、偏光顕微鏡(200倍率)にて偏光十字の有無を観察した。
(2)酢酸可溶蛋白質含量(質量%)の測定
 小麦粉に含まれる全蛋白質量中の酢酸可溶蛋白質含量(%)の測定は、下記の操作工程により実施した。
(i)上記で調製した湿熱処理小麦粉(試験例1~11)又は湿熱処理前の原料小麦粉A(参考例)2gを、100mL容量の三角フラスコに入れる。
(ii)これに0.05N酢酸を40mL加えて、振盪する(25℃、130rpm、60分間)。
(iii)三角フラスコの内容物を遠沈管に移して遠心分離(5000rpm、5分間)し、上層の液相と下層の残渣とに分離する。
(iv)上記で分離した上層をろ紙(Whatman、No.42)で吸引濾過して濾液を回収する。
(v)上記(ii)の三角フラスコに、0.05N酢酸40mLを入れてフラスコ壁面についた残渣を洗い流すように軽く撹拌し、内容物を遠沈管に移して遠心分離(5000rpm、5分間)し、上層の液相と下層の残渣とに分離する。
(vi)分離した上層の液相をろ紙(Whatman、No.42)で吸引濾過して回収した濾液を前記(iv )で回収した濾液と混合する。
(vii)濾液をイオン交換水にて100mLにメスアップする。
(viii)上記の操作で回収した濾液(小麦粉酢酸抽出液)は25mLを、小麦粉は0.5gを、それぞれ分解に供した。
(ix)分解により得られた試料それぞれに、イオン交換水を30mL加え、ケルダール蒸留滴定装置(スーパーケル1500/1550、アクタック社製)にセットして蒸留及び滴定を行う。
(x)下式に基づき、小麦粉酢酸抽出液と小麦粉の窒素量をそれぞれ求めた後、酢酸可溶蛋白質含量(%)を算出する。
 小麦粉酢酸抽出液中の窒素含量(g/100g)
=f×N×(b-B) /1000)×14×(100/0.5(g))
 小麦粉中の窒素含量(g/100g)= f×N×(b-B) /1000)×14×(100/W(g))
f: ファクター
N: 滴定用硫酸の規定数
b: 測定試料の滴定量(mL)
B: ブランク(小麦粉酢酸抽出液及び小麦粉に代えて、水を用いた測定試料)の滴定量(mL)
W: 小麦粉採取量(g)
 
 酢酸可溶蛋白質含量(%)=(小麦粉酢酸抽出液中の窒素量(%)/小麦粉中の窒素量(%))×100
(3)RVA粘度特性の評価
 上記で調製した湿熱処理小麦粉(試験例1~11)、及び湿熱処理前の原料小麦粉A(参考例)について、それらの各3.5gを25mLの0.5mM硝酸銀水溶液に入れてよくかき混ぜて懸濁し、14質量%濃度の懸濁液を調製した。この懸濁液(25℃)を、ラピッド・ビスコ・アナライザー(RVA装置)(RVA4500、Perten Instruments社製)(パドル回転数:160rpm)に供して、米国穀物化学会の公定法(AACC Method 76-21)に基づいて下記表1の条件にて粘度を測定し、粘度特性(最高粘度)を評価した。
Figure JPOXMLDOC01-appb-T000001
(4)アミラーゼ消化性の測定
 小麦粉のアミラーゼ消化性の測定は、下記の操作工程により実施した。
(i)上記で調製した湿熱処理小麦粉試料(試験例1~11)又は湿熱処理前の原料小麦粉A(参考例)試料100mgに、予め40℃で10分間プレインキュベートしたα-アミラーゼ溶液(Aspergillus oryzae由来,50unit/mL)を1mL添加して、撹拌した後、40℃で10分間処理する。
(ii)次いで、これにクエン酸-燐酸水溶液(pH2.5)を5mL添加して反応を停止させ、遠心分離(1,000g、5分)して上清を得る。
(iii)この上清0.1mLにアミログルコシダーゼ溶液(Aspergillus niger由来,2unit/0.1mL)を添加して40℃で20分間処理した後、510nmで吸光度を測定する。
(iv)得られた吸光度から、標準溶液を用いて作成したD-グルコースの検量線を利用して、生成したグルコース量を算出する。
 未処理小麦粉のアミラーゼ消化性を100%とした場合における湿熱処理小麦粉のアミラーゼ消化性は、下式から求めることができる。
アミラーゼ消化性={(湿熱処理小麦粉から生成したグルコース量)/(未処理小麦粉から生成したグルコース量)}×100
3.揚げ物用小麦粉の物性評価結果
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 代表例として、参考例(未処理小麦粉)、及び試験例10(揚げ物用小麦粉)のRVAプロファイルを図1に示す。図1に示すように、最高粘度が2500cP以下、小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下、かつ、アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上であった試験例10の揚げ物用小麦粉は、最高粘度が2949cP、小麦粉全蛋白質中の酢酸可溶蛋白質含量が66.6質量%であった参考例の未処理小麦粉、最高粘度が2500cPより高い試験例1の非改質小麦粉と比較して、大きく相違するものであった。
 また参考例(未処理小麦粉)、試験例10(揚げ物用小麦粉)の小麦粉を偏光顕微鏡(200倍率)で観察し、偏光十字の有無を確認した。1000倍率で撮影した偏光顕微鏡画像を、それぞれ図2(A)、及び図2(C)に示す。図2(C)に示すように本技術に係る揚げ物用小麦粉に含まれる澱粉粒には偏光十字を鮮明に確認することでき、完全には糊化していないことが確認された。他の試験例3~9、11の揚げ物用小麦粉も同様であり(表2参照)、揚げ物用小麦粉に含まれる澱粉のうち70%以上もの多くの澱粉は未糊化澱粉の状態であると考えられる。一方、試験例2の非改質小麦粉は、最高粘度が2500cP以下、小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下、かつ、アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上であったが、偏光十字が認められず、未糊化澱粉を含んでいないことが確認された。
[実験例2]揚げ物用小麦粉の応用とその評価(その1:天ぷら)
1.天ぷらの製造方法
 表3に示す原料を混合して、天ぷら粉を調製した。調製した天ぷら粉100質量部と水180質量部を合わせ、各バッターを調製した。次に、2Lサイズのエビに、打ち粉として薄力粉を付着させ、各バッターに浸漬したものを170℃のフライ油中に投入した後、上記バッター15mLを用いて追い種を行い、3分間油ちょうして、天ぷらを製造した。
Figure JPOXMLDOC01-appb-T000003
2.評価方法
(2-1)バッター調製時の作業性
 天ぷら製造時、バッターについて、下記の基準により、バッター調製時の作業性(バッターにおける天ぷら粉の水なじみ、バッター性状)を評価した。評価は天ぷらの調理についてよく訓練し、パネル間で判断基準を統一した10名をパネルとし、結果は各パネルの評価の平均値で示した。
[水なじみの判断基準]
5:コントロールと比較して、なじみやすい
4:コントロールと比較して、ややなじみやすい
3:コントロールと同等
2:コントロールと比較して、ややなじみにくい
1:コントロールと比較して、なじみにくい
[バッター性状の判断基準]
5:コントロールと比較して、ダマが少なく均一で、なめらかな性状
4:コントロールと比較して、ダマがやや少なく、ややなめらかな性状
3:コントロールと同等
2:コントロールと比較して、ややダマが多く、ややぼてついた性状
1:コントロールと比較して、ダマが多く不均一で、ぼてついた性状
 作業性の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、RVAにおける最高粘度が2500cP以下(特性(3))、小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下(特性(2))、及びアミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上(特性(4))となるように調製した揚げ物用小麦粉(試験例3~11)を用いることで、未処理小麦粉(参考例)、試験例1~2の非改質小麦粉を用いた場合と比較して、天ぷら製造時におけるバッター調製時の作業性(小麦粉の水なじみ、バッター性状)が向上することが確認された。
(2-2)天ぷらにおける衣の食感
 天ぷらを製造後、室温で4時間放置した、コントロール、及び試験例5-1~5-11の天ぷらについて、下記の基準により、衣の食感(硬さ、サクミ、ぬめり、油っぽさ)を評価した。なお、評価は天ぷらの食感についてよく訓練し、パネル間で判断基準を統一した10名をパネルとし、結果は各パネルの評価の平均値で示した。
[硬さの判断基準]
5:コントロールと比較して、噛んだ時の歯当たりが硬く、非常に良好
4:コントロールと比較して、噛んだ時の歯当たりがやや硬く、良好
3:コントロールと同等
2:コントロールと比較して、噛んだ時の歯当たりがやや柔らかく、やや悪い
1:コントロールと比較して、噛んだ時の歯当たりが柔らかく、悪い
[サクミの判断基準]
5:コントロールと比較して、咀嚼時の歯応えが軽く、非常に良好
4:コントロールと比較して、咀嚼時の歯応えがやや軽く、良好
3:コントロールと同等
2:コントロールと比較して、咀嚼時の歯応えがやや重く、やや悪い
1:コントロールと比較して、咀嚼時の歯応えが重く、悪い
[ぬめりの判断基準]
5:コントロールと比較して、衣の内側にぬめりがなく、非常に良好
4:コントロールと比較して、衣の内側にぬめりがあまりなく、良好
3:コントロールと同等
2:コントロールと比較して、衣の内側にぬめりがあり、やや悪い
1:コントロールと比較して、衣の内側にぬめりがあり、悪い
[油っぽさの判断基準]
5:コントロールと比較して、油っぽさがなく、ドライで、非常に良好
4:コントロールと比較して、油っぽさをあまり感じず、ややドライで、良好
3:コントロールと同等
2:コントロールと比較して、油っぽさをやや感じ、やや悪い
1:コントロールと比較して、油っぽさを感じ、悪い
 室温で4時間放置した天ぷらにおける衣の食感の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、試験例3~11の揚げ物用小麦粉を用いることで、未処理小麦粉(参考例)及び試験例1~2の非改質小麦粉を用いた場合と比較して、食感(硬さ、サクミ、ぬめり、油っぽさ)がより一層向上した衣が得られることが確認された。
(2-3)電子レンジ調理で再加熱された冷凍天ぷらにおける衣の食感
 前記油ちょうにより天ぷらを製造後、急速凍結機(設定温度-40℃)で天ぷらを冷凍し、冷凍天ぷらを得た。得られた冷凍天ぷらをその中心温度が約60℃に到達する程度まで電子レンジ調理で再加熱して、コントロール、及び試験例6-1~6-11の天ぷらを得た。得られた天ぷらについて、衣の食感(硬さ)を実験例2の2-2と同様の基準により評価し、衣の食感(歯切れ・ヒキ)を下記の基準により評価した。なお、評価は前記衣の食感と同様に行った。結果を表6に示す。
[歯切れ・ヒキの判断基準]
5:コントロールと比較して、ヒキがなく、歯切れが良い食感
4:コントロールと比較して、あまりヒキがなく、やや歯切れが良い食感
3:コントロールと同等
2:コントロールと比較して、ややガミーで、やや歯切れが悪い食感
1:コントロールと比較して、ガミーで、歯切れが悪い食感
 電子レンジ調理により再加熱した冷凍天ぷらにおける衣の食感の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、試験例3~11の揚げ物用小麦粉を用いて製造した天ぷらを冷凍後、電子レンジ調理で再加熱した場合、未処理小麦粉(参考例)及び試験例1~2の非改質小麦粉を用いた場合と比較して、油ちょう後、冷凍され、電子レンジ調理により再加熱したものであるにもかかわらず、硬さを維持しており、ガミーな食感や歯切れが悪い食感ではない、最初の油ちょう直後と同等の優れた食感の衣が得られたことが確認された。また、試験例3~11の揚げ物用小麦粉を用いて製造した天ぷらを冷凍後、電子レンジ調理で再加熱した場合、硬脆く、良好な食感であった。
(2-4)油ちょうにより再加熱した冷凍天ぷらにおける衣の食感
 前記油ちょうにより天ぷらを製造後、急速凍結機(設定温度-40℃)で天ぷらを冷凍し、冷凍天ぷらを得た。得られた冷凍天ぷらを170℃のフライ油中に投入して、3分間油ちょうにより再加熱して、コントロール、及び試験例7-1~7-11の天ぷらを得た。得られた天ぷらについて、実験例2の2-2および2-3と同様の基準により、衣の食感(硬さ、歯切れ・ヒキ)を評価した。なお、評価は前記衣の食感と同様に行った。結果を表7に示す。
 油ちょうにより再加熱した冷凍天ぷらにおける衣の食感の評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、試験例3~11の揚げ物用小麦粉を用いて製造した天ぷらを冷凍後、フライ油中で油ちょうにより再加熱した場合、未処理小麦粉(参考例)及び試験例1~2の非改質小麦粉を用いた場合と比較して、油ちょう後、冷凍され、油ちょうにより再加熱したものであるにもかかわらず、硬さを維持しており、ガミーな食感や歯切れが悪い食感ではない、最初の油ちょう直後と同等の優れた食感の衣が得られたことが確認された。また、試験例3~11の揚げ物用小麦粉を用いて製造した天ぷらを冷凍後、フライ油中で油ちょうにより再加熱した場合、硬脆く、良好な食感であった。
[実験例3]揚げ物用小麦粉の応用とその評価(その2:唐揚げ)
1.唐揚げの製造方法
 表8に示す原料を混合して唐揚げ粉を調製した。調製した唐揚げ粉100質量部と水120質量部を合わせ、各バッターを調製した。鶏もも肉10切れ(約250g)を各バッターに浸漬させた後、170℃のフライ油で4分間油ちょうし、唐揚げを製造した。
Figure JPOXMLDOC01-appb-T000008
2.評価方法
(2-1)バッター調製時の作業性
 唐揚げ製造時、バッターについて、実験例2の2-1と同様の基準により、バッター調製時の作業性(バッターにおける唐揚げ粉の水なじみ、バッター性状)を評価した。評価は唐揚げの調理についてよく訓練し、パネル間で判断基準を統一した10名をパネルとし、結果は各パネルの評価の平均値で示した。
 作業性の評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、RVAにおける最高粘度が2500cP以下(特性(3))、小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下(特性(2))、及びアミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上(特性(4))となるように調製した揚げ物用小麦粉(試験例3~11)を用いることで、未処理小麦粉(参考例)、試験例1~2の非改質小麦粉を用いた場合と比較して、唐揚げ製造時のバッター調製時における作業性(小麦粉の水なじみ、バッター性状)が向上することが確認された。
(2-2)衣の食感
 唐揚げを製造後、室温で4時間放置した、コントロール、及び試験例10-1~10-11の唐揚げについて、衣の食感(硬さ、ぬめり、油っぽさ)を実験例2の2-2と同様の基準により評価し、衣の食感(歯切れ)と肉のジューシー感を下記の基準により評価した。なお、評価は唐揚げの食感についてよく訓練し、パネル間で判断基準を統一した10名をパネルとし、結果は各パネルの評価の平均値で示した。
[歯切れの判断基準]
5:コントロールと比較して、歯切れがよく、非常に良好
4:コントロールと比較して、歯切れがややよく、良好
3:コントロールと同等
2:コントロールと比較して、やや歯切れが悪い
1:コントロールと比較して、歯切れが悪い
[肉のジューシー感の判断基準]
5:コントロールと比較して、ジューシーで、非常に良好
4:コントロールと比較して、ややジューシーで、良好
3:コントロールと同等
2:コントロールと比較して、ジューシー感がやや足りない
1:コントロールと比較して、ジューシー感がない
 室温で4時間放置した唐揚げにおける衣の食感の評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、試験例3~11の揚げ物用小麦粉を用いることで、未処理小麦粉(参考例)及び試験例1~2の非改質小麦粉を用いた場合と比較して、食感(硬さ、歯切れ、ぬめり、油っぽさ、肉のジューシー感)がより一層向上した衣が得られることが確認された。
(2-3)電子レンジ調理により再加熱した冷凍唐揚げにおける衣の食感
 前記油ちょうにより唐揚げを製造後、急速凍結機(設定温度-40℃)で唐揚げを冷凍し、冷凍唐揚げを得た。得られた冷凍唐揚げをその中心温度が約60℃に到達する程度まで電子レンジ調理で再加熱して、コントロール、及び試験例11-1~11-11の唐揚げを得た。得られた唐揚げについて、衣の食感(硬さ)を実験例2の2-2と同様の基準により評価し、衣の食感(歯切れ・ヒキ)を実験例2の2-3と同様の基準により評価した。なお、評価は前記衣の食感と同様に行った。
 電子レンジ調理により再加熱した冷凍唐揚げにおける衣の食感の評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、試験例3~11の揚げ物用小麦粉を用いて製造した唐揚げを冷凍後、電子レンジ調理で再加熱した場合、未処理小麦粉(参考例)及び試験例1~2の非改質小麦粉を用いた場合と比較して、油ちょう後、冷凍し、電子レンジ調理で再加熱したものであるにもかかわらず、硬さを維持しており、ガミーな食感や歯切れが悪い食感ではない、最初の油ちょう直後と同等の優れた食感の衣が得られたことが確認された。また、試験例3~11の揚げ物用小麦粉を用いて製造した唐揚げを冷凍後、電子レンジ調理で再加熱した場合、硬脆く、良好な食感であった。
(2-4)油ちょうにより再加熱した冷凍唐揚げにおける衣の食感
 前記油ちょうにより唐揚げを製造後、急速凍結機(設定温度-40℃)で唐揚げを冷凍し、冷凍唐揚げを得た。得られた冷凍唐揚げを170℃のフライ油で4分間、油ちょうにより再加熱して、コントロール、及び試験例12-1~12-11の唐揚げを得た。得られた唐揚げについて、衣の食感(硬さ)を実験例2の2-2と同様の基準により評価し、衣の食感(歯切れ・ヒキ)を実験例2の2-3と同様の基準により評価した。なお、評価は前記衣の食感と同様に行った。結果を表12に示す。
 油ちょうにより再加熱した冷凍唐揚げにおける衣の食感の評価結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、試験例3~11の揚げ物用小麦粉を用いて製造した唐揚げを冷凍後、フライ油中で油ちょうにより再加熱した場合、未処理小麦粉(参考例)及び試験例1~2の非改質小麦粉を用いた場合と比較して、油ちょう後、冷凍し、油ちょうにより再加熱したものであるにもかかわらず、硬さを維持しており、ガミーな食感や歯切れが悪い食感ではない、最初の油ちょう直後と同等の優れた食感の衣が得られたことが確認された。
[実験例4]揚げ物用小麦粉の応用とその評価(その3:まぶし処方による唐揚げ)
1.唐揚げの製造方法
 試験例9の試験粉を用い、前記表8に示す原料を混合して唐揚げ粉を調製した。これを、鶏もも肉10切れ(約250g)にまぶして付着させた後、170℃のフライ油で4分間油ちょうし、唐揚げを製造した。
2.評価方法
(2-1)衣の食感
 唐揚げを製造後、室温で4時間放置した、コントロール、及び試験例13-1の唐揚げについて、衣の食感(硬さ)を実験例2の2-2と同様の基準により評価し、衣の食感(歯切れ・ヒキ)を実験例2の2-3と同様の基準により評価した。なお、評価は唐揚げの食感についてよく訓練し、パネル間で判断基準を統一した10名をパネルとし、結果は各パネルの評価の平均値で示した。
 室温で4時間放置した唐揚げにおける衣の食感の評価結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、試験例9の揚げ物用小麦粉を用いることで、未処理小麦粉(参考例)を用いた場合と比較して、食感(硬さ、歯切れ・ヒキ)がより一層向上した衣が得られることが確認された。
(2-2)電子レンジ調理により再加熱した冷凍唐揚げにおける衣の食感
 前記油ちょうにより唐揚げを製造後、急速凍結機(設定温度-40℃)で唐揚げを冷凍し、冷凍唐揚げを得た。得られた冷凍唐揚げをその中心温度が約60℃に到達する程度まで電子レンジ調理で再加熱して、コントロール、及び試験例14-1の唐揚げを得た。得られた唐揚げについて、衣の食感(硬さ、歯切れ・ヒキ)を評価した。なお、評価は前記衣の食感と同様に行った。
 電子レンジ調理により再加熱した冷凍唐揚げにおける衣の食感の評価結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 表14に示すように、試験例9の揚げ物用小麦粉を用いることで、未処理小麦粉(参考例)を用いた場合と比較して、油ちょう後、冷凍し、電子レンジ調理により再加熱したものであるにもかかわらず、食感(硬さ、歯切れ・ヒキ)がより一層向上した衣が得られることが確認された。また、試験例9の揚げ物用小麦粉を用いることで、硬脆く、良好な食感であった。
(2-3)再油ちょう後の衣の食感
 前記油ちょうにより唐揚げを製造後、急速凍結機(設定温度-40℃)で唐揚げを冷凍し、冷凍唐揚げを得た。得られた冷凍唐揚げを170℃のフライ油で4分間、油ちょうにより再加熱して、コントロール、及び試験例15-1の唐揚げを得た。得られた唐揚げについて、衣の食感(硬さ)を実験例2の2-2と同様の基準により評価し、衣の食感(歯切れ・ヒキ)を実験例2の2-3と同様の基準により評価した。なお、評価は前記衣の食感と同様に行った。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 表15に示すように、試験例9の揚げ物用小麦粉を用いて製造した唐揚げを冷凍後、フライ油中で油ちょうにより再加熱した場合、未処理小麦粉(参考例)を用いた場合と比較して、油ちょう後、冷凍し、油ちょうにより再加熱したものであるにもかかわらず、硬さを維持しており、ガミーな食感や歯切れが悪い食感ではない、最初の油ちょう直後と同等の優れた食感の衣が得られたことが確認された。また、試験例9の揚げ物用小麦粉を用いることで、硬脆く、良好な食感であった。

Claims (7)

  1.  下記の特性を有する揚げ物用小麦粉:
    (1)未糊化澱粉を含む、
    (2)小麦粉全蛋白質中の酢酸可溶蛋白質含量が25質量%以下、
    (3)RVAにおける最高粘度が2500cP以下、
    (4)アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上である。
  2.  前記揚げ物用小麦粉の用途が冷凍揚げ物用である請求項1に記載の揚げ物用小麦粉。
  3.  前記アミラーゼ消化性が、未処理小麦粉のアミラーゼ消化性を100%とした場合の60%以上400%以下である、請求項1又は2に記載の揚げ物用小麦粉。
  4.  請求項1~3のいずれかに記載する揚げ物用小麦粉を含有する、揚げ物用ミックス。
  5.  請求項1~3のいずれかに記載する揚げ物用小麦粉を含有する、食感改良剤。
  6.  揚げ物の製造に際して、請求項1~3のいずれかに記載する揚げ物用小麦粉、請求項4に記載する揚げ物用ミックス、又は請求項5に記載する食感改良剤を揚げ物の製造原料の一つとして用いる、揚げ物の食感改良方法。
  7.  請求項1~3のいずれかに記載する揚げ物用小麦粉、請求項4に記載する揚げ物用ミックス、又は請求項5に記載する食感改良剤を含有する揚げ物。
     
PCT/JP2020/038156 2020-10-08 2020-10-08 揚げ物用小麦粉 WO2022074789A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022555199A JPWO2022074789A1 (ja) 2020-10-08 2020-10-08
PCT/JP2020/038156 WO2022074789A1 (ja) 2020-10-08 2020-10-08 揚げ物用小麦粉
TW109139247A TW202214118A (zh) 2020-10-08 2020-11-11 油炸物用麵粉、油炸物用混料、口感改良劑、油炸物之口感改良方法、以及油炸物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038156 WO2022074789A1 (ja) 2020-10-08 2020-10-08 揚げ物用小麦粉

Publications (1)

Publication Number Publication Date
WO2022074789A1 true WO2022074789A1 (ja) 2022-04-14

Family

ID=81126358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038156 WO2022074789A1 (ja) 2020-10-08 2020-10-08 揚げ物用小麦粉

Country Status (3)

Country Link
JP (1) JPWO2022074789A1 (ja)
TW (1) TW202214118A (ja)
WO (1) WO2022074789A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130102A (ja) * 1990-09-21 1992-05-01 Sanwa Kosan Kk 湿熱処理澱粉の効率的製造法
JPH09191847A (ja) * 1996-01-18 1997-07-29 Nisshin Flour Milling Co Ltd 電子レンジ再加熱に適した揚げ物用熱処理小麦粉及びその製造法
JP2008067675A (ja) * 2006-09-15 2008-03-27 Nisshin Foods Kk 揚げ物用湿熱処理小麦粉、揚げ物用ミックス、および揚げ物類
JP2014018136A (ja) * 2012-07-18 2014-02-03 Nisshin Seifun Group Inc 熱処理米粉組成物および菓子類または粉物の製造方法
JP2015097494A (ja) * 2013-11-19 2015-05-28 株式会社ブルボン 便通改善剤、便通改善作用を有する加工米の製造方法およびその加工品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130102A (ja) * 1990-09-21 1992-05-01 Sanwa Kosan Kk 湿熱処理澱粉の効率的製造法
JPH09191847A (ja) * 1996-01-18 1997-07-29 Nisshin Flour Milling Co Ltd 電子レンジ再加熱に適した揚げ物用熱処理小麦粉及びその製造法
JP2008067675A (ja) * 2006-09-15 2008-03-27 Nisshin Foods Kk 揚げ物用湿熱処理小麦粉、揚げ物用ミックス、および揚げ物類
JP2014018136A (ja) * 2012-07-18 2014-02-03 Nisshin Seifun Group Inc 熱処理米粉組成物および菓子類または粉物の製造方法
JP2015097494A (ja) * 2013-11-19 2015-05-28 株式会社ブルボン 便通改善剤、便通改善作用を有する加工米の製造方法およびその加工品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI MINGFEI, LIU CHONG, ZHENG XUELING, LI LIMIN, BIAN KE: "Physicochemical properties of wheat flour modified by heat‐moisture treatment and their effects on noodles making quality", JOURNAL OF FOOD PROCESSING AND PRESERVATION, WILEY-BLACKWELL PUBLISHING, INC., TRUMBULL, CT, US, vol. 44, no. 9, 1 September 2020 (2020-09-01), TRUMBULL, CT, US , XP055934298, ISSN: 0145-8892, DOI: 10.1111/jfpp.14590 *

Also Published As

Publication number Publication date
JPWO2022074789A1 (ja) 2022-04-14
TW202214118A (zh) 2022-04-16

Similar Documents

Publication Publication Date Title
Sajilata et al. Resistant starch–a review
JP5159631B2 (ja) 米飯の品質改良剤及びその応用
JP4276683B2 (ja) パン粉組成物及びパン粉
Mahadevamma et al. Processing of legumes: resistant starch and dietary fiber contents
MX2012004600A (es) Material de cubierta para frituras y/o alimentos fritos en profundidad.
JP3514141B2 (ja) 即席乾燥麺類の製造法
Li et al. Low and high methoxyl pectin lowers on structural change and digestibility of fried potato starch
Ye et al. A simulated gastrointestinal tract study of texturized rice grains: Impact of texturization on starch digestibility
JP7401984B2 (ja) 改質小麦粉
Veena et al. Effect of processing on the composition of dietary fibre and starch in some legumes
Naiker et al. The effect of soaking, steaming, and dehydration on the microstructure, physicochemical properties and in vitro starch digestibility of flour produced from Lablab purpureus (L.) Sweet (hyacinth bean)
JP4549913B2 (ja) 吸油量の少ないパン粉
WO2022074789A1 (ja) 揚げ物用小麦粉
Meuser Technological aspects of dietary fibre
WO2023187211A1 (en) Dough compositions, products and related methods
Roskhrua et al. Physicochemical properties of thermal alkaline treated pigeonpea (Cajanus cajan L.) flour
EP4094587A1 (en) Processed cereal, method for manufacturing processed cereal, and method for manufacturing softened processed cereal
JP4799578B2 (ja) クレープミックス、クレープバッターおよびクレープ
JP3995573B2 (ja) 春巻きの皮及びその製造方法
JPS6274255A (ja) フライ食品用パン粉およびその利用
Wanikar et al. Resistant starch: A promising functional food ingredient
Ekanayake et al. Effect of processing of sword beans (Canavalia gladiata) on physicochemical properties of starch
JPS5911153A (ja) 揚げ物用衣材
Avula Rheological and functional properties of potato and sweet potato flour and evaluation of its application in some selected food products
JP7026923B2 (ja) 揚げ物用ミックス粉、バッター、それらの製造方法及びフライ製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956736

Country of ref document: EP

Kind code of ref document: A1