WO2022073436A1 - 直线压缩机的散热组件 - Google Patents

直线压缩机的散热组件 Download PDF

Info

Publication number
WO2022073436A1
WO2022073436A1 PCT/CN2021/121000 CN2021121000W WO2022073436A1 WO 2022073436 A1 WO2022073436 A1 WO 2022073436A1 CN 2021121000 W CN2021121000 W CN 2021121000W WO 2022073436 A1 WO2022073436 A1 WO 2022073436A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
housing
distribution conduit
lubricant
discharge ports
Prior art date
Application number
PCT/CN2021/121000
Other languages
English (en)
French (fr)
Inventor
威廉 哈恩格雷戈里
P. 维尼克安德烈
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202180068479.0A priority Critical patent/CN116324163A/zh
Priority to KR1020237011720A priority patent/KR20230058719A/ko
Priority to EP21876954.5A priority patent/EP4206466A4/en
Publication of WO2022073436A1 publication Critical patent/WO2022073436A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0261Hermetic compressors with an auxiliary oil pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0269Hermetic compressors with device for spraying lubricant or with mist lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor

Definitions

  • the present invention relates generally to linear compressors, and more particularly to cooling systems for linear compressors.
  • Some refrigeration appliances include a sealing system for cooling the refrigeration compartment of the refrigeration appliance.
  • Sealed systems typically include a compressor that generates compressed refrigerant during operation of the sealed system. The compressed refrigerant flows to the evaporator where heat exchange between the refrigerated compartment and the refrigerant cools the refrigerated compartment and the food product located therein.
  • Some refrigeration appliances include linear compressors for compressing refrigerant. Linear compressors typically include a piston and a drive coil. The drive coil generates a force for sliding the piston forward within the chamber. During movement of the piston within the chamber, the piston compresses the refrigerant.
  • An oil supply or lubricant system is typically included within the compressor housing to lubricate the pistons to reduce frictional losses due to the friction of the pistons against the chamber walls, which can negatively impact the efficiency of the associated refrigeration appliance.
  • linear compressors often experience performance problems when the oil temperature is high. For example, when the oil is heated during operation of the compressor, the oil may be atomized or may otherwise splash around, which may lead to mechanical losses in the springs or reliability issues related to the entrainment of oil droplets into the suction port .
  • Some linear compressors include external heat exchangers that transfer the hot oil to the outside of the casing, but these heat exchangers are complex, expensive and prone to leaks.
  • a linear compressor with features for improved performance would be desirable. More particularly, a linear compressor with an improved system for dissipating heat from oil would be particularly beneficial.
  • a compressor defining an axial and a vertical direction.
  • the compressor includes: a casing defining a sump for collecting lubricant; an inner casing disposed within the casing for slidably receiving a piston, the inner casing defining a hot oil collection point; a pump , the pump is used to circulate the lubricant in the housing, and the pump includes a pump inlet provided in the sump.
  • the heat sink assembly includes a distribution conduit extending along an interior surface of the housing, the distribution conduit defining a fluid inlet fluidly connected to a hot oil collection point for receiving lubricant and within the distribution conduit for passing the lubricant along the housing The body drips and returns to multiple discharge ports in the sump.
  • a heat dissipation assembly for a compressor.
  • the compressor includes: a housing defining a sump for collecting lubricant; an inner housing disposed within the housing for slidably receiving a piston, the inner housing defining a hot oil collection point; and a pump , the pump is used to circulate the lubricant in the housing.
  • the heat sink assembly includes a distribution conduit extending along an interior surface of the housing, the distribution conduit defining a fluid inlet fluidly connected to a hot oil collection point for receiving lubricant and within the distribution conduit for passing the lubricant along the housing The body drips and returns to multiple discharge ports in the sump.
  • FIG. 1 is a front elevational view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic diagram of certain components of the exemplary refrigeration appliance of FIG. 1 .
  • FIG 3 is a perspective cross-sectional view of a linear compressor according to an exemplary embodiment of the present invention.
  • FIG. 4 is another perspective cross-sectional view of the exemplary linear compressor of FIG. 3 according to an exemplary embodiment of the present invention.
  • FIG. 5 is a perspective view of a linear compressor according to an exemplary embodiment of the present invention, with the compressor casing removed for clarity.
  • FIG. 6 is a cross-sectional view of the exemplary linear compressor of FIG. 3 with the piston in an extended position, according to an exemplary embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the exemplary linear compressor of FIG. 3 with the piston in a retracted position, according to an exemplary embodiment of the present invention.
  • FIG. 8 provides a schematic cross-sectional view of the exemplary linear compressor of FIG. 3 including a heat sink assembly in accordance with an exemplary embodiment of the present invention.
  • FIG. 9 provides a top view of the example linear compressor of FIG. 3 including the example heat sink assembly of FIG. 8 in accordance with an example embodiment of the present invention.
  • FIG. 10 provides a schematic diagram of certain components of the exemplary heat dissipation assembly of FIG. 8 in accordance with an exemplary embodiment of the present invention.
  • FIG. 1 depicts a refrigeration appliance 10 including a hermetic refrigeration system 60 (FIG. 2).
  • the term "refrigeration appliance” is used herein in a generic sense to encompass any manner of refrigeration appliances, such as freezers, refrigerator/freezer combinations, and conventional refrigerators of any style or model. Additionally, it should be understood that the present invention is not limited to use in electrical appliances. Thus, the present invention may be used for any other suitable purpose, such as vapor compression in air conditioning units or air compression in air compressors.
  • the refrigeration appliance 10 is described as an upright refrigerator having a cabinet or inner casing 12 defining a plurality of internal cooling storage compartments.
  • the refrigeration appliance 10 includes an upper food preservation compartment 14 having a door body 16 and a lower freezing compartment 18 having an upper drawer 20 and a lower drawer 22 .
  • the upper drawer 20 and the lower drawer 22 are "pull-out" drawers that can be manually moved in and out of the freezer compartment 18 on a suitable sliding mechanism.
  • FIG. 2 is a schematic diagram of certain components of the refrigeration appliance 10 , including the hermetic refrigeration system 60 of the refrigeration appliance 10 .
  • the mechanical chamber 62 contains components for performing a known vapor compression cycle of cooling air. These components include a compressor 64 connected in series and filled with refrigerant, a condenser 66 , an expansion device 68 and an evaporator 70 .
  • the refrigeration system 60 may include additional components, eg, at least one additional evaporator, compressor, expansion device, and/or condenser.
  • refrigeration system 60 may include two evaporators.
  • the refrigerant flows into compressor 64, which operates to increase the pressure of the refrigerant.
  • the compressed refrigerant increases its temperature, which is lowered by flowing the refrigerant through condenser 66 .
  • the refrigerant exchanges heat with ambient air to cool the refrigerant.
  • fan 72 is used to drive air through condenser 66 to provide forced convection for faster and efficient heat exchange between the refrigerant within condenser 66 and the ambient air.
  • increasing the airflow through the condenser 66 may increase the efficiency of the condenser 66, eg, by improving the cooling of the refrigerant contained therein.
  • Expansion device 68 receives refrigerant from condenser 66 .
  • Refrigerant enters evaporator 70 from expansion device 68 .
  • the evaporator 70 is cool relative to the chambers 14 and 18 of the refrigeration appliance 10 due to the pressure drop and phase change of the refrigerant.
  • cooling air can be generated and the compartments 14 and 18 of the refrigeration appliance 10 can be cooled.
  • the evaporator 70 is a heat exchanger that transfers heat from the air passing through the evaporator 70 to the refrigerant flowing through the evaporator 70 .
  • vapor compression cycle components associated fans, and associated compartments in a refrigeration circuit are sometimes referred to as a hermetic refrigeration system operable to force cool air through the compartments 14, 18 (FIG. 1).
  • the refrigeration system 60 depicted in FIG. 2 is provided by way of example only. Accordingly, other configurations using refrigeration systems are also within the scope of the present invention.
  • FIGS. 3 to 9 a linear compressor 100 according to an exemplary embodiment of the present invention will be described.
  • FIGS. 3 and 4 provide a perspective cross-sectional view of the linear compressor 100
  • FIG. 5 provides a perspective view of the linear compressor 100 with the compressor casing or housing 102 removed for clarity
  • FIGS. 6 and 7 respectively
  • a cross-sectional view of the linear compressor is provided with the piston in the extended and retracted positions.
  • the linear compressor 100 is used herein only as an exemplary embodiment to facilitate the description of aspects of the present invention. Modifications and changes to linear compressor 100 may be made while remaining within the scope of the present invention.
  • the housing 102 may include a lower or lower housing 104 and an upper or upper housing 106 that are joined together to form a general outline for housing the various components of the linear compressor 100 Closed cavity 108.
  • cavity 108 may be a gas-tight or air-tight enclosure that may house the working components of linear compressor 100 and that may prevent or prevent refrigerant from leaking or escaping from refrigeration system 60 .
  • the linear compressor 100 generally defines an axial direction A, a radial direction R, and a circumferential direction C. It should be understood that the linear compressor 100 is described and exemplified herein only to describe aspects of the present invention. Variations and modifications may be made to linear compressor 100 while remaining within the scope of the present invention.
  • the linear compressor 100 includes an inner casing 110 that extends between the first end 112 and the second end 114 along the axis A, for example.
  • the inner housing 110 includes a cylinder 117 defining a chamber 118 .
  • the cylinder 117 is disposed at or adjacent to the first end 112 of the inner housing 110 .
  • the chamber 118 extends longitudinally along the axis A.
  • the linear compressor 100 is operable to increase the pressure of the fluid within the chamber 118 of the linear compressor 100 .
  • Linear compressor 100 may be used to compress any suitable fluid, such as refrigerant or air.
  • linear compressor 100 may be used in refrigeration appliances, such as refrigeration appliance 10 (FIG. 1) in which linear compressor 100 may be used as compressor 64 (FIG. 2).
  • the linear compressor 100 includes the stator 120 of the motor mounted or fixed to the inner casing 110 .
  • the stator 120 generally includes an outer back iron 122 and a drive coil 124 extending around the circumference C within the inner housing 110 .
  • Linear compressor 100 also includes one or more valves that allow refrigerant to enter and leave chamber 118 during operation of linear compressor 100 .
  • a discharge muffler 126 is provided at one end of the chamber 118 to regulate the outflow of refrigerant from the chamber 118, while a suction valve 128 (shown only in Figures 6-7 for clarity) regulates the refrigerant to Inflow of chamber 118 .
  • Piston 130 with piston head 132 is slidably received within chamber 118 of cylinder 117 .
  • the piston 130 is slidable along the axis A.
  • the piston head 132 compresses the refrigerant within the chamber 118 .
  • the piston head 132 may slide within the chamber 118 from a top dead center position (see eg FIG. 6 ) towards a bottom dead center position (see eg FIG. 7 ) in the axial direction A, ie, the expansion stroke of the piston head 132 .
  • linear compressor 100 may include additional piston heads and/or additional chambers at opposite ends of the linear compressor 100 .
  • linear compressor 100 may have multiple piston heads.
  • the linear compressor 100 also includes a mover 140 , generally driven by the stator 120 , for compressing the refrigerant.
  • the mover 140 may include an inner back iron 142 provided in the stator 120 of the motor.
  • the outer back iron 122 and/or the drive coil 124 may extend around the inner back iron 142, eg, along the circumferential direction C.
  • the inner back iron 142 also has an outer surface facing the outer back iron 122 and/or the drive coil 124 .
  • At least one drive magnet 144 is mounted to the inner back iron 142 , eg, at the outer surface of the inner back iron 142 .
  • the drive magnet 144 may face and/or be exposed to the drive coil 124 .
  • the drive magnet 144 may be spaced apart from the drive coil 124, eg, radially R by an air gap.
  • an air gap may be defined between the opposing surfaces of the drive magnet 144 and the drive coil 124 .
  • the drive magnet 144 may also be mounted or secured to the inner back iron 142 such that the outer surface of the drive magnet 144 is substantially flush with the outer surface of the inner back iron 142 .
  • the driving magnet 144 can be inserted into the inner back iron 142 .
  • the magnetic field from the drive coil 124 may only need to pass through a single air gap between the outer back iron 122 and the inner back iron 142, as opposed to having air on both sides of the drive magnet A linear compressor with a gap, the linear compressor 100 may be more efficient.
  • the drive coil 124 extends around the inner back iron 142 , for example in the circumferential direction C.
  • the inner back iron 142 may extend along the circumferential direction C around the drive coil 124 .
  • the drive coil 124 is operable to move the inner back iron 142 along the axis A during operation of the drive coil 124 .
  • a current source (not shown) may induce a current within the drive coil 124 to generate a magnetic field that attracts the drive magnet 144 and urges the piston 130 to move along the axis A, as described above and to those skilled in the art
  • the refrigerant within chamber 118 will be understood to be compressed.
  • the magnetic field of the drive coil 124 may attract the drive magnet 144 to move the inner back iron 142 and piston head 132 along the axis A.
  • the drive coil 124 may slide the piston 130 between the top dead center position and the bottom dead center position, eg, by moving the inner back iron 142 along the axis A.
  • Linear compressor 100 may include various components for allowing and/or regulating operation of linear compressor 100 .
  • the linear compressor 100 includes a controller (not shown) configured to regulate the operation of the linear compressor 100 .
  • the controller is, for example, in operative communication with the motor (eg, the drive coil 124 of the motor).
  • the controller may selectively activate the drive coil 124, eg, by inducing a current in the drive coil 124, to compress the refrigerant with the piston 130 as described above.
  • the controller includes memory and one or more processing devices, such as a microprocessor, CPU, etc., such as a general-purpose or special-purpose microprocessor, operable to execute programmed instructions or micro-controls related to the operation of the linear compressor 100 code.
  • the memory may represent random access memory such as DRAM or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be included on a board within the processor.
  • the controller may be constructed without the use of a microprocessor, eg, using a combination of discrete analog and/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions instead of relying on software.
  • a microprocessor eg, using a combination of discrete analog and/or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions instead of relying on software.
  • the inner back iron 142 also includes an outer cylinder 146 and an inner sleeve 148 .
  • the outer cylinder 146 defines the outer surface of the inner back iron 142 and also has an inner surface disposed opposite the outer surface of the outer cylinder 146 .
  • the inner sleeve 148 is disposed on or at the inner surface of the outer cylinder 146 .
  • the first interference fit between the outer cylinder 146 and the inner sleeve 148 may couple or secure the outer cylinder 146 and the inner sleeve 148 together.
  • the inner sleeve 148 may be welded, glued, fastened or connected to the outer cylinder 146 via any other suitable mechanism or method.
  • the outer cylinder 146 may be constructed of or constructed from any suitable material.
  • the outer cylinder 146 may be constructed from or with multiple (eg, ferromagnetic) laminations.
  • the laminations are distributed along the circumferential direction C so as to form the outer cylinder 146 and are mounted to each other or fixed together, for example with rings pressed onto the ends of the laminations.
  • the outer cylinder 146 may define a recess extending inwardly from the outer surface of the outer cylinder 146 , eg, along the radial direction R.
  • the drive magnet 144 is disposed in a recess on the outer cylinder 146 , for example, so that the drive magnet 144 is embedded in the outer cylinder 146 .
  • the linear compressor 100 also includes a pair of flat springs 150 .
  • Each flat spring 150 may be coupled to a corresponding end of the inner back iron 142 along the axis A, for example.
  • the planar spring 150 supports the inner back iron 142 during operation of the drive coil 124 .
  • the inner back iron 142 is suspended within the stator or motor of the linear compressor 100 by the plane spring 150, so that the movement of the inner back iron 142 in the radial direction R is prevented or restricted, while the movement in the axial direction A is relatively immobile hindered.
  • the flat spring 150 may be substantially stiffer along the radial direction R than along the axial direction A.
  • the planar spring 150 may help maintain uniformity of the air gap between the drive magnets 144 and the drive coils 124, eg, along the radial direction R.
  • the flat spring 150 may also help prevent the side pull of the motor from being transmitted to the piston 130 and causing frictional losses in the cylinder 117 .
  • a flexible mount 160 is mounted to and extends through the inner back iron 142 .
  • the flexible mount 160 is mounted to the inner back iron 142 via the inner sleeve 148 .
  • the flexible mount 160 may be coupled (eg, threaded) to the inner sleeve 148 at the inner sleeve 148 and/or an intermediate portion of the flexible mount 160 in order to mount or secure the flexible mount 160 to the Inner sleeve 148 .
  • Flexible mounts 160 may help form coupling 162 .
  • the coupling 162 connects the inner back iron 142 and the piston 130 so that the movement of the inner back iron 142 is transmitted to the piston 130 along the axis A, for example.
  • the coupling 162 may be a flexible coupling that is flexible or flexible along the radial direction R. As shown in FIG. In particular, the coupling 162 is relatively flexible in the radial direction R, so that little or no movement of the inner back iron 142 in the radial direction R is transmitted through the coupling 162 to the piston 130 . In this way, the side pull of the motor is decoupled from the piston 130 and/or the cylinder 117, and friction between the piston 130 and the cylinder 117 can be reduced.
  • the piston head 132 of the piston 130 has a piston cylindrical side wall 170 .
  • the cylindrical side wall 170 may extend along the axis A from the piston head 132 toward the inner back iron 142 .
  • the outer surface of the cylindrical sidewall 170 can slide over the cylinder 117 at the chamber 118 and the inner surface of the cylindrical sidewall 170 can be positioned opposite the outer surface of the cylindrical sidewall 170 .
  • the outer surface of the cylindrical sidewall 170 may face away from the center of the cylindrical sidewall 170 along the radial direction R, and the inner surface of the cylindrical sidewall 170 may face the center of the cylindrical sidewall 170 along the radial direction.
  • the flexible mount 160 extends between the first end 172 and the second end 174, for example along the axis A.
  • the inner surface of the cylindrical sidewall 170 defines a ball seat 176 proximate the first end.
  • the coupling 162 also includes a ball nose 178 .
  • the ball head 178 is provided at the first end 172 of the flex mount 160 and the ball head 178 may contact the flex mount 160 at the first end 172 of the flex mount 160 .
  • the ball nose 178 may contact the piston 130 at the ball seat 176 of the piston 130 .
  • the ball head 178 can rest on the ball seat 176 of the piston 130 such that the ball head 178 can slide and/or rotate on the ball seat 176 of the piston 130 .
  • ball head 178 may have a frusto-spherical surface positioned against ball seat 176 of piston 130 , and ball seat 176 may be shaped to complement the frusto-spherical surface of ball head 178 .
  • the frusto-spherical surface of the ball head 178 may slide and/or rotate on the ball seat 176 of the piston 130 .
  • relative motion between the flexible mount 160 and the piston 130 at the interface between the ball nose 178 and the ball seat 176 of the piston 130 may be reduced as compared to a fixed connection between the flexible mount 160 and the piston 130 Friction between the small piston 130 and the cylinder 117 .
  • the frusto-spherical surface of the ball head 178 may slide on the ball seat 176 of the piston 130 to slide relative to the inner back iron 142.
  • the rigid connection between the iron 142 and the piston 130 reduces friction between the piston 130 and the cylinder 117 .
  • the first end 172 of the flex mount 160 remote from the flex mount 160 is connected to the inner back iron 142 .
  • the flex mount 160 may be connected to the inner back iron 142 at the second end 174 of the flex mount 160 or between the first and second ends of the flex mount 160 .
  • the flexible mount 160 is positioned at or within the piston 130 at the first end 172 of the flexible mount 160, as discussed in more detail below.
  • the flexible mount 160 includes a tubular wall 190 between the inner back iron 142 and the piston 130 .
  • Channels 192 within tubular wall 190 are configured to direct a compressible fluid, such as refrigerant or air, through flexible mount 160 to piston head 132 and/or into piston 130 .
  • the inner back iron 142 may be mounted, for example, to an intermediate portion of the flexible mount 160 between the first end 172 and the second end 174 of the flexible mount 160 such that the inner back iron 142 extends around the tubular wall 190 .
  • Channel 192 may extend within tubular wall 190 between first end 172 and second end 174 of flexible mount 160 such that compressible fluid may pass through channel 192 from first end 172 of flexible mount 160 to the second end 174 of the flexible mount 160 .
  • compressible fluid may flow through the inner back iron 142 within the flexible mount 160 during operation of the linear compressor 100 .
  • a muffler 194 may be disposed within the channel 192 within the tubular wall 190 , for example, to reduce noise from the compressible fluid flowing through the channel 192 .
  • the piston head 132 also defines at least one opening 196 .
  • the opening 196 of the piston head 132 extends through the piston head 132 in the axial direction A, for example.
  • fluid may pass through the piston head 132 and into the chamber 118 via the opening 196 of the piston head.
  • fluid compressed by piston head 132 within chamber 118
  • suction valve 128 may be provided on piston head 132 to regulate the flow of compressible fluid into chamber 118 through opening 196 .
  • a lubrication system 200 that may be used with the linear compressor 100 will be described.
  • the lubrication system 200 is configured to circulate a lubricant, such as oil, through the working or moving parts of the linear compressor 100 to reduce friction, increase efficiency, and the like.
  • a lubricant such as oil
  • lubrication system 200 is described herein with respect to linear compressor 100, it should be understood that aspects of lubrication system 200 may be applied to any other suitable compressor or machine requiring continuous lubrication.
  • the housing 102 generally defines a sump 202 configured to collect oil (eg, as indicated herein by reference numeral 204, see FIG. 8). Specifically, the sump 202 is defined in the bottom of the lower housing 104 .
  • the lubrication system 200 also includes a pump 206 for continuously circulating the oil 204 through the components of the linear compressor 100 that require lubrication.
  • the pump 206 may include a pump inlet 208 positioned proximate the bottom of the housing 102 within the sump 202 . Pump 206 may draw oil 204 from sump 202 through pump inlet 208 before circulating oil 206 through linear compressor 100, such as via supply conduit 210 (FIG. 7). Although only one supply conduit 210 is shown in the figures for clarity, it should be understood that lubrication system 200 may include any suitable number of supply conduits, nozzles, and other distribution features to provide various components of linear compressor 100 Oil 204.
  • the pump inlet 208 is positioned very close to and faces the bottom of the lower housing 104 .
  • the linear compressor 100 may be configured to receive the oil 204 up to the maximum fuel line 212 .
  • the maximum fuel line 212 is shown in Figure 8, and for example, the maximum fuel line may be less than half the distance on the lower housing 1, or less than a quarter of the way, or lower.
  • pump 206 may circulate oil 204 throughout linear compressor 100 prior to recirculation, as will be described in further detail below.
  • the lubrication system 200 may include various features for treating, filtering, or conditioning the oil 204 during recirculation, such as various filters, screens, and the like. Additionally, it should be understood that while the pump 206 is illustrated as being positioned within the sump 202 , it may be positioned at any other location and may include a fluid passage to draw the oil 204 from the sump 202 .
  • the linear compressor 100 may include a suction port 220 for receiving a flow of refrigerant.
  • the suction port 220 may be defined on the housing 102 (eg, such as on the lower housing 104 ) and may be configured to receive a refrigerant supply conduit to provide refrigerant to the cavity 108 .
  • the flexible mount 160 includes a tubular wall 190 that defines a passage 192 for directing a compressible fluid, such as refrigerant gas, through the flexible mount 160 to the piston head 132 .
  • the desired flow path for the refrigerant gas is through suction port 220 , through passage 192 , through opening 196 and into chamber 118 .
  • Suction valve 128 may block opening 196 during the compression stroke, and discharge valve 116 may allow compressed gas to exit chamber 118 when the desired pressure is reached.
  • the flexible mount 160 may also define a channel inlet 222 disposed proximate the second end 174 of the flexible mount 160 for drawing gas from the suction port 220 or cavity 108 into the channel 192 .
  • the channel inlet 222 may be an opening on the flexible mount 160 that extends generally in a horizontal plane (the same vertical plane) and that opens towards the suction port 220 .
  • the channel inlet 222 and the suction inlet 220 may be disposed substantially in the same horizontal plane.
  • the suction port 220 and the channel inlet 222 are also positioned along the vertical V near the midpoint of the housing 102 . It should be understood, however, that the suction port 220 and the channel inlet 222 may be provided at any other suitable location within the housing 102 according to alternative embodiments.
  • linear compressor 100 may also include features for removing or dissipating heat that has accumulated in the oil or lubricant within the linear compressor 100 or elsewhere.
  • linear compressor 100 includes a heat sink assembly 230 disposed within cavity 108 and helping to facilitate the discharge of thermal energy from within cavity 108 to the exterior of housing 102 .
  • heat sink assembly 230 will be described below as being used with lubrication system 200 of linear compressor 100 . It should be understood, however, that aspects of heat dissipation assembly 230 may be used in other compressors and other lubrication systems while remaining within the scope of the present invention.
  • the heat sink assembly 230 discharges or discharges the heat absorbed by the lubricant 204 during operation of the linear compressor 100 .
  • the hot lubricant 204 may be delivered directly from the moving components of the linear compressor 100 to the hot oil collection point 232 .
  • heat sink assembly 230 may have any suitable mechanism, piping, or other features for collecting lubricant 204 and discharging it through hot oil collection point 232 so that it may be cooled by heat sink assembly 230 and returned to sump 202 and recycled.
  • a hot oil collection point 232 may be defined on the inner housing 110 for passing the heated lubricant 204 therethrough.
  • the heat dissipation assembly 230 includes a distribution conduit 240 extending along the inner surface 242 of the housing 102 .
  • the distribution conduit 240 defines a fluid inlet 244 that is fluidly coupled to the hot oil collection point 232 on the inner shell 110 .
  • the distribution conduit may also define a plurality of discharge ports 246 configured for spraying, dripping, or otherwise depositing the lubricant 204 along the housing 102 such that the lubricant flow may be recirculated by the pump 206 Previously recollected in sump 202 . In this way, the oil 204 is pushed through the working components of the linear compressor 100 to minimize friction and improve operating efficiency, the oil absorbs heat during the process.
  • the heated oil 204 then exits the inner casing 110 through a hot oil collection point 232 where it is distributed around the casing 102 in a distribution conduit 240 .
  • the heated oil 204 is then sprayed onto the casing 102 , which is at a lower temperature than the heated oil 204 .
  • thermal energy may be transferred from the oil 204 to the housing 102, where it may be discharged to the surrounding environment. In this way, the oil 204 can be recirculated at cooler temperatures, thereby increasing the performance and life of the linear compressor 100 .
  • the distribution conduit 240 may be fluidly coupled to any point on the inner housing 110 in any manner or by any mechanism for receiving the heated oil 204 .
  • the heat sink assembly 230 includes a supply tube 250 that extends between the hot oil collection point 232 and the fluid inlet 244 of the distribution conduit 240 and provides fluid communication therebetween.
  • the supply pipe 250 may be a flexible pipe from the hot oil collection point 232 to the distribution pipe 240 .
  • the distribution conduit 240 may be coupled directly to the inner casing, eg, via the hot oil collection point 232 or through any other outlet of the inner casing 110 .
  • Distribution conduit 240 may generally have any suitable size, location, and configuration for distributing oil 204 as desired to facilitate operation of heat sink assembly 230 and cooling of linear compressor 100.
  • the distribution conduit 240 extends around the entire circumference of the housing 102 in a single horizontal plane.
  • the distribution conduit 240 is a circular conduit that mounts directly to the lower housing 104 via the mounting bracket 252 .
  • the mounting brackets 252 are configured to reduce the transmission of vibrations from the distribution conduit 240 to the housing 102 .
  • the distribution conduit 240 is illustrated as being mounted directly to the lower housing 104, it should be understood that any other suitable mounting location and mechanism may be used according to alternative embodiments.
  • the distribution conduit 240 may be mounted directly to the inner housing 110 such that the distribution conduit 240 simply hangs adjacent to the housing 102 .
  • a distribution conduit 240 may be installed within the upper housing 106 such that the heated oil 204 drains along a larger surface area of the housing 102 before being collected in the sump 202 .
  • distribution conduit 240 is illustrated as a circular conduit extending in a single horizontal plane, it should be understood that the distribution conduit may have any other suitable cross-sectional shape and may be in any other suitable pattern or location (eg, in a serpentine shape). way, zigzag, etc.) through the housing. Other configurations are possible and within the scope of the present invention.
  • the distribution conduit 240 may be formed of any material that is sufficiently rigid to maintain the fluid passage and accommodate the flow of the lubricating oil 204 therein.
  • the distribution conduit 240 is a small conduit formed of metal.
  • the distribution conduit 240 may be injection molded, for example, using a suitable plastic material such as injection molding grade polybutylene terephthalate (PBT), nylon 6, high impact polystyrene (HIPS), full Fluoroalkoxy (PFA), fluorinated ethylene propylene (FEP) or acrylonitrile butadiene styrene (ABS)).
  • PBT injection molding grade polybutylene terephthalate
  • HIPS high impact polystyrene
  • PFA full Fluoroalkoxy
  • FEP fluorinated ethylene propylene
  • ABS acrylonitrile butadiene styrene
  • these components may be extrusion (tubing), compression molded, for example, using sheet molding compound (SMC) thermosets or other thermoplastics.
  • the distribution conduit 240 may be formed from any other suitable rigid material.
  • the discharge ports 246 defined as the distribution conduit 240 may have any suitable number, shape, size and configuration to properly direct the flow of the heated oil 204 onto the desired portion of the housing 102 .
  • the plurality of vents 246 includes greater than 10, greater than 25, greater than 50, greater than 75, or greater than 100 vents 246 equally spaced along the length of the distribution conduit 240 .
  • the distribution conduit 240 may define an area that does not include the discharge port 246 , eg, in certain locations where the distribution of the oil 204 may not be ideal, eg, such as near the suction inlet 220 .
  • the discharge port 246 is a simple orifice 260 that is drilled, machined, stamped, or otherwise formed in the distribution conduit 240 .
  • each discharge port 246 may include a discharge nozzle mounted above the orifice 260 for selectively controlling the flow rate and direction of oil 204 flow.
  • a discharge port 246 (eg, orifice 260 ) is defined on the bottom side 262 of the distribution conduit 240 .
  • the discharge port 246 may be defined at the side, the top, or any other suitable location along the distribution conduit 240 .
  • the discharge port 246 may be angled vertically downward and away from the vertical centerline of the linear compressor 100 .
  • the drain port 246 may be positioned and oriented in any other suitable manner to direct the oil 204 onto the inner surface 242 of the housing 102 .
  • the heat sink assembly 230 also includes one or more flow restricting members 270 disposed above the drain port 246 for restricting the passage of the oil 204 through the drain port 246 .
  • the flow restriction member 270 may include a coil spring element 272 that extends around the outer diameter of the distribution conduit 240 and serves to restrict flow out of the discharge port 246 .
  • the flow restricting member 270 may be a braid or screen 274 disposed over the plurality of discharge ports 246 for restricting flow therethrough. It should be appreciated that any suitable flow restricting member 270 may be used according to alternative embodiments.
  • a cross member or mesh may be formed within the apertures 260 during the manufacturing process, or may be overmolded onto the distribution conduit 240 after the distribution conduit is constructed.
  • the heat sink assembly 230 described above may be used to cool the operation of a linear compressor, such as the linear compressor 100 or any other compressor.
  • the heat sink assembly 230 may use a mechanism for spraying oil onto the walls of the compressor housing in order to achieve improved heat discharge and compressor efficiency.
  • heat sink assembly 230 uses a spray mechanism (eg, distribution conduit 240 ) to spray oil uniformly and in a controlled manner onto the inner surface of the housing such that heat is conducted to the exterior wall. The slow flow of oil within the walls allows the oil to cool.
  • a spray mechanism eg, distribution conduit 240
  • the distribution line 240 operates by receiving hot oil leaving the cylinder under the force of the pump 206 .
  • the distribution conduit 240 is provided with a plurality of holes (eg, discharge ports 246 ), and oil is forced out through the plurality of holes along the bottom periphery. Oil flows down the wall around the entire lower housing inner wall portion (loss of heat to the wall). The slow-flowing oil drips down the walls, allowing the oil to cool before reaching the sump. The oil remains in liquid form and releases minimal heat to the intake gas inside the shell.
  • the flow of oil may be slowed by the use of porous or flow restricting surfaces (eg, flow restricting member 270 ) as the oil flows out of the holes in the conduit.
  • a tight fitting spring could be used to cover the outer diameter of the distribution conduit 240 and provide further flow resistance without atomizing the oil.
  • a similar material like a screen or woven nylon or other polymeric material can be used to induce oil flow resistance.
  • the flow resistance material allows the oil to flow evenly down the inner wall (a built-in debris filter is also provided as the oil flows through the sock or spring structure placed on the distribution conduit 240).

Abstract

一种直线压缩机(100)及其散热组件(230)。直线压缩机(100)包括限定有用于收集润滑剂的贮槽的壳体(102)和用于使润滑剂在壳体(102)内循环的泵(206)。还包括散热组件(230),散热组件(230)设置在腔(108)内并且有助于促进热能从腔(108)内排放到壳体(102)的外部。散热组件(230)包括分配管道(240)和流动限制构件(270),分配管道(240)连接到热油收集点(232),并限定有多个用于沿着壳体(102)分配润滑剂(204)并使润滑剂(204)回到贮槽(202)中的排出口。流动限制构件(240)可以设置在分配管道(240)下方或缠绕在分配管道(240)周围以限制润滑剂(204)的流动。

Description

直线压缩机的散热组件 技术领域
本发明总体涉及直线压缩机,更具体地涉及用于直线压缩机的散热系统。
背景技术
某些制冷电器包括用于冷却制冷电器的制冷间室的密封系统。密封系统通常包括压缩机,该压缩机在密封系统的运行期间生成压缩的制冷剂。压缩的制冷剂流到蒸发器,在该蒸发器处,制冷间室与制冷剂之间的热交换冷却制冷间室和位于其中的食品。近来,某些制冷电器包括用于压缩制冷剂的直线压缩机。直线压缩机通常包括活塞和驱动线圈。驱动线圈生成用于使活塞在腔室内前向滑动的力。在活塞在腔室内的运动期间,活塞压缩制冷剂。
通常在压缩机壳体内包括供油或润滑剂系统,用于润滑活塞,以减少由于活塞抵靠腔室壁的摩擦引起的摩擦损失,这可能负面地影响关联制冷电器的效率。然而,当油温高时,这种直线压缩机经常遇到性能问题。例如,当油在压缩机的操作期间被加热时,油可能被雾化或者可能以其它方式四处飞溅,这可能导致弹簧中的机械损失或者与油滴夹带到吸气体口中有关的可靠性问题。某些直线压缩机包括外部热交换器,这些外部热交换器将热油传递到壳体外部,但是这些热交换器是复杂的、昂贵的并且易于泄漏。
因此,具有用于改进性能的特征的直线压缩机将是期望的。更特别地,具有用于从油散热的改进系统的直线压缩机将是特别有益的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在一个示例性实施方式中,提供了一种限定有轴向和竖向的压缩机。该压缩机包括:壳体,该壳体限定有用于收集润滑剂的贮槽;内壳,该内壳设置在壳体内,用于可滑动地接收活塞,内壳限定有热油收集点;泵,该泵用于使润滑剂在壳体内循环,泵包括设置在贮槽内的泵入口。散热组件包括沿着壳体的内表面延伸的分配管道,分配管道限定有流体连接到热油收集点以用于接收润滑剂的流体入口和限定在分配管道内以用于使润滑剂沿着壳体滴落并回到贮槽中的多个排出口。
在另一示例性实施方式中,提供了一种用于压缩机的散热组件。压缩机包括: 壳体,该壳体限定有用于收集润滑剂的贮槽;内壳,该内壳设置在壳体内,用于可滑动地接收活塞,内壳限定有热油收集点;以及泵,该泵用于使润滑剂在壳体内循环。散热组件包括沿着壳体的内表面延伸的分配管道,分配管道限定有流体连接到热油收集点以用于接收润滑剂的流体入口和限定在分配管道内以用于使润滑剂沿着壳体滴落并回到贮槽中的多个排出口。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1是根据本发明的示例性实施方式的制冷电器的前立面图。
图2是图1的示例性制冷电器的某些部件的示意图。
图3是根据本发明的示例性实施方式的直线压缩机的立体剖视图。
图4是根据本发明的示例性实施方式的图3的示例性直线压缩机的另一个立体剖视图。
图5是根据本发明的示例性实施方式的直线压缩机的立体图,其中为了清楚起见,去除压缩机壳体。
图6是根据本发明的示例性实施方式的图3的示例性直线压缩机的剖视图,其中活塞处于伸出位置中。
图7是根据本发明的示例性实施方式的图3的示例性直线压缩机的剖视图,其中活塞处于缩回位置中。
图8提供了根据本发明的示例性实施方式的包括散热组件的图3的示例性直线压缩机的示意性剖视图。
图9提供了根据本发明的示例性实施方式的包括图8的示例性散热组件的图3的示例性直线压缩机的顶视图。
图10提供了根据本发明的示例性实施方式的图8的示例性散热组件的某些部件的示意图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
图1描绘了包括密封制冷系统60(图2)的制冷电器10。应当理解,术语“制冷电器”在本文中以一般意义用于包含任意方式的制冷电器,诸如冰柜、冰箱/冰柜组合、以及任意样式或型号的常规冰箱。另外,应当理解,本发明不限于用于电器中。由此,本发明可以用于任意其他合适的目的,诸如空调单元内的蒸气压缩或空气压缩机内的空气压缩。
在图1所示的所例示示例实施方式中,制冷电器10被描述为具有限定多个内部冷却储存间室的箱体或内壳12的直立式冰箱。特别地,制冷电器10包括具有门体16的上食物保鲜室14和具有上抽屉20和下抽屉22的下冷冻室18。上抽屉20和下抽屉22是“拉出式”抽屉,它们可以在合适的滑动机构上手动移入和移出冷冻室18。
图2是制冷电器10的某些部件的示意图,包括制冷电器10的密封制冷系统60。机械室62包含用于执行已知的冷却空气的蒸气压缩循环的部件。这些部件包括串联连接并填充有制冷剂的压缩机64、冷凝器66、膨胀装置68以及蒸发器70。如本领域技术人员将理解的,制冷系统60可以包括额外部件,例如,至少一个额外的蒸发器、压缩机、膨胀装置和/或冷凝器。作为示例,制冷系统60可以包括两个蒸发器。
在制冷系统60内,制冷剂流入压缩机64中,该压缩机运行为增大制冷剂的压力。压缩制冷剂升高其温度,该温度通过使制冷剂流过冷凝器66来降低。在冷凝器66内,制冷剂与周围空气进行热交换,以便冷却制冷剂。如箭头A C例示,使用风扇72驱动空气经过冷凝器66,以便提供强制对流,用于冷凝器66内的制冷剂与周围空气之间进行更快且高效的热交换。由此,如本领域技术人员所知的,增大穿过冷凝器66的气流可以例如通过改善其中所含制冷剂的冷却来提高冷凝器66的效率。
膨胀装置68(例如,阀、毛细管或其他限制装置)接收来自冷凝器66的制冷剂。 制冷剂从膨胀装置68进入蒸发器70。在离开膨胀装置68并进入蒸发器70时,制冷剂的压力下降。由于制冷剂的压降和相变,蒸发器70相对于制冷电器10的室14和18是凉的。由此可以产生冷却空气并且对制冷电器10的间室14和18进行制冷。由此,蒸发器70是一种热交换器,该热交换器将热量从经过蒸发器70的空气传递到流过蒸发器70的制冷剂。
总的来说,制冷回路中的蒸汽压缩循环部件、相关风扇以及相关间室有时被称为可操作为迫使冷空气穿过间室14、18(图1)的密封制冷系统。图2中描述的制冷系统60仅以示例的方式来提供。由此,使用制冷系统的其他构造也在本发明的范围内。
现在总体参照图3至图9,将描述根据本发明的示例性实施方式的直线压缩机100。具体地,图3和图4提供了直线压缩机100的立体剖视图,图5提供了为了清楚起见而去除了压缩机壳或壳体102的直线压缩机100的立体图,并且图6和图7分别提供了活塞处于伸出位置和缩回位置时的直线压缩机的剖视图。应当理解,直线压缩机100在本文中仅用作示例性实施方式,以促进本发明的方面的描述。可以在保持在本发明的范围内的同时对直线压缩机100进行修改和变更。
例如图3和图4示例,壳体102可以包括下部壳体或下壳体104和上部壳体或上壳体106,它们接合在一起来形成用于容纳直线压缩机100的各种部件的大致封闭的腔108。具体地,例如,腔108可以是不透气或气密壳,该不透气或气密壳可以容纳直线压缩机100的工作部件,并且可以阻止或防止制冷剂从制冷系统60泄漏或逸出。另外,直线压缩机100通常限定轴向A、径向R以及周向C。应当理解,直线压缩机100在本文中仅被描述并例示为描述本发明的方面。可以在保持在本发明的范围内的同时对直线压缩机100进行变更和修改。
现在总体参照图3至图9,将描述根据示例性实施方式的直线压缩机100的各种零件和工作部件。如图所示,直线压缩机100包括内壳110,该内壳例如沿着轴向A在第一端部112与第二端部114之间延伸。内壳110包括限定有腔室118的气缸117。气缸117被设置在内壳110的第一端部112处或与其相邻。腔室118沿着轴向A纵向延伸。如下面更详细讨论的,直线压缩机100可操作为增大直线压缩机100的腔室118内的流体的压力。直线压缩机100可以用于压缩任意合适的流体,诸如制冷剂或空气。特别地,直线压缩机100可以用于制冷电器中,诸如直线压缩机100可以用作压缩机64(图2)的制冷电器10(图1)。
直线压缩机100包括安装或固定到内壳110的电机的定子120。例如,定子120 通常包括在内壳110内围绕周向C延伸的外背铁122和驱动线圈124。直线压缩机100还包括一个或多个阀,这些阀在直线压缩机100的运行期间允许制冷剂进入和离开腔室118。例如,排放消声器126设置在腔室118的一端处,用于调节制冷剂从腔室118的流出,而吸入阀128(为了清楚起见,仅在图6至图7中示出)调节制冷剂到腔室118的流入。
具有活塞头132的活塞130可滑动地接收在气缸117的腔室118内。特别地,活塞130可沿着轴向A滑动。在活塞头132在腔室118内的滑动期间,活塞头132压缩腔室118内的制冷剂。作为示例,活塞头132可以在腔室118内从上止点位置(参见例如图6)沿着轴向A朝向下止点位置(参见例如图7)滑动,即,活塞头132的膨胀行程。当活塞头132到达下止点位置时,活塞头132改变方向并在腔室118中朝向上止点位置滑动返回,即,活塞头132的压缩行程。应当理解,直线压缩机100可以包括在直线压缩机100的相对端处的附加活塞头和/或附加腔室。由此,在可选的示例性实施方式中,直线压缩机100可以具有多个活塞头。
如图例示,直线压缩机100还包括通常由定子120驱动的用于压缩制冷剂的动子140。具体地,例如,动子140可以包括设置在电机的定子120中的内背铁142。特别地,外背铁122和/或驱动线圈124可以例如沿着周向C围绕内背铁142延伸。内背铁142还具有面向外背铁122和/或驱动线圈124的外表面。至少一个驱动磁铁144安装到内背铁142,例如安装在内背铁142的外表面处。
驱动磁铁144可以面对和/或暴露于驱动线圈124。特别地,驱动磁铁144可以与驱动线圈124隔开,例如,沿径向R隔开一个气隙。由此,可以在驱动磁铁144与驱动线圈124的相对表面之间限定气隙。驱动磁铁144也可以安装或固定到内背铁142,使得驱动磁铁144的外表面与内背铁142的外表面大致齐平。由此,驱动磁铁144可以插入在内背铁142内。这样,在直线压缩机100的运行期间,来自驱动线圈124的磁场可能只需要穿过外背铁122与内背铁142之间的单个气隙,并且相对于在驱动磁铁的两侧上具有气隙的直线压缩机,直线压缩机100可能更高效。
如在图3中可以看到的,驱动线圈124例如沿着周向C围绕内背铁142延伸。在另选示例实施方式中,内背铁142可以沿着周向C围绕驱动线圈124延伸。驱动线圈124可操作为在驱动线圈124的运行期间使内背铁142沿着轴向A移动。作为示例,电流源(未示出)可以在驱动线圈124内感应出电流,以生成磁场,该磁场吸引驱动磁铁144并推动活塞130沿着轴向A移动,以便如上所述且本领域技术人员将理解地压缩腔室118内的制冷剂。特别地,在驱动线圈124的运行期间,驱动 线圈124的磁场可以吸引驱动磁铁144,以便使内背铁142和活塞头132沿着轴向A移动。由此,在驱动线圈124的运行期间,驱动线圈124可以使活塞130在上止点位置与下止点位置之间滑动,例如,通过使内背铁142沿着轴向A移动。
直线压缩机100可以包括用于允许和/或调节直线压缩机100的操作的各种部件。特别地,直线压缩机100包括被配置为调节直线压缩机100的操作的控制器(未示出)。控制器与电机(例如,电机的驱动线圈124)例如可操作地通信。由此,控制器可以例如通过在驱动线圈124中感应出电流来选择性地启动驱动线圈124,以便如上所述地用活塞130压缩制冷剂。
控制器包括存储器和一个或多个处理装置,诸如微处理器、CPU等,诸如通用或专用微处理器,该微处理器可操作为执行与直线压缩机100的操作相关的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包括在处理器内的板上。另选地,控制器可以在不使用微处理器的情况下例如使用离散的模拟和/或数字逻辑电路的组合(诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
内背铁142还包括外缸146和内套筒148。外缸146限定内背铁142的外表面,并且还具有与外缸146的外表面相对设置的内表面。内套筒148设置在外缸146的内表面上或内表面处。外缸146与内套筒148之间的第一过盈配合可以将外缸146和内套筒148联结或固定在一起。在另选示例性实施方式中,内套筒148可以经由任意其他合适的机构或方法焊接、胶合、紧固或连接到外缸146。
外缸146可以由或用任意合适的材料构造。例如,外缸146可以由或用多个(例如,铁磁的)叠片来构造。叠片沿着周向C分布,以便形成外缸146,并且例如用压到叠片的端上的环安装到彼此或固定在一起。外缸146可以限定有凹部,该凹部例如沿着径向R从外缸146的外表面向内延伸。驱动磁铁144被设置在外缸146上的凹部中,例如使得驱动磁铁144嵌入外缸146内。
直线压缩机100还包括一对平面弹簧150。各个平面弹簧150可以例如沿着轴向A联接到内背铁142的相应端。在驱动线圈124的操作期间,平面弹簧150支撑内背铁142。特别地,内背铁142被平面弹簧150悬挂在直线压缩机100的定子或电机内,使得内背铁142沿着径向R的运动被阻止或限制,而沿着轴向A的运动相对不受阻碍。由此,平面弹簧150沿着径向R可以比沿着轴向A大致更硬。这样,在电机的操作和内背铁142在轴向A上的移动期间,平面弹簧150可以例如沿着径向R 帮助维持驱动磁铁144与驱动线圈124之间的气隙的均匀性。平面弹簧150还可以帮助阻止电机的侧拉力传递到活塞130并在气缸117中造成摩擦损失。
挠性安装件160被安装到内背铁142并延伸穿过内背铁142。特别地,挠性安装件160经由内套筒148安装到内背铁142。由此,挠性安装件160可以在内套筒148和/或挠性安装件160的中间部分处联接(例如,螺纹连接)到内套筒148,以便将挠性安装件160安装或固定到内套筒148。挠性安装件160可以帮助形成联轴器162。联轴器162连接内背铁142和活塞130,使得内背铁142的运动例如沿着轴向A传递到活塞130。
联轴器162可以是沿着径向R柔性或挠性的柔性联轴器。特别地,联轴器162沿着径向R柔性较好,使得内背铁142沿着径向R的很少运动或无运动通过联轴器162传递到活塞130。这样,电机的侧拉力与活塞130和/或气缸117分离,并且可以减小活塞130与气缸117之间的摩擦。
如在图中可以看出的,活塞130的活塞头132具有活塞圆柱形侧壁170。该圆柱形侧壁170可以沿着轴向A从活塞头132朝向内背铁142延伸。圆柱形侧壁170的外表面可以在腔室118处在气缸117上滑动,并且圆柱形侧壁170的内表面可以与圆柱形侧壁170的外表面相对地定位。由此,圆柱形侧壁170的外表面可以沿着径向R背对圆柱形侧壁170的中心,并且圆柱形侧壁170的内表面可以沿着径向面向圆柱形侧壁170的中心。
挠性安装件160例如沿着轴向A在第一端部172与第二端部174之间延伸。根据示例性实施方式,圆柱形侧壁170的内表面限定有接近第一端部的球座176。另外,联轴器162还包括球头178。具体地,例如,球头178设置在挠性安装件160的第一端部172处,并且球头178可以在挠性安装件160的第一端部172处接触挠性安装件160。另外,球头178可以在活塞130的球座176处接触活塞130。特别地,球头178可以搁在活塞130的球座176上,使得球头178可在活塞130的球座176上滑动和/或旋转。例如,球头178可以具有紧靠活塞130的球座176定位的截头球形表面,并且球座176可以被成形为与球头178的截头球形表面互补。球头178的截头球形表面可以在活塞130的球座176上滑动和/或旋转。
例如,与挠性安装件160与活塞130之间的固定连接相比,挠性安装件160与活塞130之间在活塞130的球头178与球座176之间的界面处的相对运动可以减小活塞130与气缸117之间的摩擦。例如,当活塞130在气缸117内滑动的轴线相对于内背铁142往复运动的轴线成角度时,球头178的截头球形表面可以在活塞130 的球座176上滑动,以相对于内背铁142与活塞130之间的刚性连接减小活塞130与气缸117之间的摩擦。
挠性安装件160远离挠性安装件160的第一端部172连接到内背铁142。例如,挠性安装件160可以在挠性安装件160的第二端部174处或在挠性安装件160的第一端部与第二端部之间连接到内背铁142。相反,挠性安装件160在挠性安装件160的第一端部172处定位在活塞130处或内,如下面更详细地讨论的。
另外,挠性安装件160包括在内背铁142与活塞130之间的管状壁190。管状壁190内的通道192被构造为将诸如制冷剂或空气的可压缩流体穿过挠性安装件160引向活塞头132和/或引导到活塞130中。内背铁142可以例如安装到挠性安装件160的第一端部172与第二端部174之间的挠性安装件160的中间部分处,使得内背铁142围绕管状壁190延伸。通道192可以在管状壁190内在挠性安装件160的第一端部172与第二端部174之间延伸,使得可压缩流体可穿过通道192从挠性安装件160的第一端部172流到挠性安装件160的第二端部174。这样,在直线压缩机100的操作期间,可压缩流体可以流过挠性安装件160内的内背铁142。消声器194可以设置在管状壁190内的通道192内,例如,以减少流过通道192的可压缩流体的噪音。
活塞头132还限定至少一个开口196。活塞头132的开口196例如沿着轴向A延伸穿过活塞头132。由此,在直线压缩机100的操作期间,流体可以经由活塞头的开口196穿过活塞头132到达室118中。这样,流体(在室118内被活塞头132压缩的)可以穿过挠性安装件160和内背铁142在通道192中流到活塞130。如上所述,吸入阀128(图6至图7)可以设置在活塞头132上,以调节可压缩流体穿过开口196到室118中的流量。
仍然参照图3至图9,将描述可与直线压缩机100一起使用的润滑系统200。具体地,润滑系统200被构造为使诸如油的润滑剂循环穿过直线压缩机100的工作或移动部件,以减小摩擦,提高效率等。虽然本文关于直线压缩机100来描述润滑系统200,但应当理解,润滑系统200的方面可以适用于需要连续润滑的任意其他合适的压缩机或机器。
如图所示,壳体102通常限定贮槽202,该贮槽被构造为收集油(例如,如本文中由附图标记204所示的,参见图8)。具体地,贮槽202限定在下壳体104的底部中。润滑系统200还包括泵206,该泵用于使油204连续循环穿过直线压缩机100的需要润滑的部件。在这点上,例如,泵206可以包括泵入口208,泵入口208设置为接近贮槽202内的壳体102的底部。在例如经由供应管道210(图7)使油206穿过 直线压缩机100循环之前,泵206可以通过泵入口208从贮槽202吸入油204。虽然为了清楚起见而在图中仅示出了一个供应管道210,但应当理解,润滑系统200可以包括任意合适数量的供应管道、喷嘴以及其他分配特征,以便向直线压缩机100的各种部件提供油204。
明显地,根据所例示的实施方式,泵入口208被设置为非常靠近并面向下壳体104的底部。这样,即使在油位低时,泵206也可以容易地吸入油204。具体地,直线压缩机100可以被构造为接收不超过最大加油线212的油204。例如,最大加油线212如图8中所示,并且例如,最大加油线可以在下壳体1上不到一半的距离,或小于四分之一处,或更低。在操作期间,泵206可在再循环之前使油204在整个直线压缩机100中循环,如将在下文中进一步详细描述的。虽然在此未示例,但应当理解,润滑系统200可以包括用于在再循环期间处理、过滤或调节油204的各种特征,诸如各种过滤器、筛网等。另外,应当理解,尽管泵206被示例为设置在贮槽202内,但是其可以设置在任何其它位置处,并且可以包括从贮槽202抽取油204的流体通道。
还如图示例,直线压缩机100可以包括用于接收制冷剂流的吸入口220。具体地,吸入口220可以被限定在壳体102上(例如,诸如在下壳体104上),并且可以被构造为接收制冷剂供应管道,以向腔108提供制冷剂。如上所述,挠性安装件160包括管状壁190,该管状壁限定通道192,该通道用于将诸如制冷剂气体的可压缩流体穿过挠性安装件160引向活塞头132。这样,制冷剂气体的期望流动路径是穿过吸入口220,穿过通道192,穿过开口196并进入室118中。吸入阀128在压缩行程期间可以阻塞开口196,并且排出阀116在达到期望压力时可以允许压缩气体离开室118。
挠性安装件160还可以限定有通道入口222,该通道入口222设置为接近挠性安装件160的第二端部174,用于将气体从吸入口220或腔108抽入通道192中。具体地,通道入口222可以是挠性安装件160上的开口,该开口大致在水平面(同一竖直平面)内延伸并且开口朝向吸入口220。具体地,根据所示例的实施方式,通道入口222和吸入口220可以大致设置在同一水平面内。根据所示例的实施方式,吸入口220和通道入口222也沿着竖向V设置为接近壳体102的中点。然而,应当理解,根据可选实施方式,吸入口220和通道入口222可以设置在壳体102内的任意其他合适的位置处。
现在具体参照图6至图10,直线压缩机100还可以包括用于排出或耗散已经在 直线压缩机100内的油或润滑剂中或其它地方积聚的热量的特征。具体地,根据示例性实施方式,直线压缩机100包括散热组件230,该散热组件设置在腔108内并且有助于促进热能从腔108内排放到壳体102的外部。虽然本文描述了示例性散热组件230,但应当理解,可以在保持在本发明的范围内的同时对散热组件230进行各种变更和修改。为了解释本发明的方面的目的,散热组件230将在下面描述为与直线压缩机100的润滑系统200一起使用。然而,应当理解,散热组件230的各方面可用于其它压缩机和其它润滑系统中,同时保持在本发明的范围内。
通常,散热组件230排放或排出润滑剂204在直线压缩机100运行期间吸收的热量。在这点上,例如,热润滑剂204可以直接从直线压缩机100的移动部件传递到热油收集点232。在这方面,散热组件230可具有任意合适的机构、管道或其它特征,用于收集润滑剂204并通过热油收集点232将其排出,使得其可被散热组件230冷却、返回到贮槽202并再循环。例如,根据一个示例性实施方式,热油收集点232可以限定在内壳110上,用于使加热的润滑剂204从内壳110通过。
如图6到10中最佳示出的,散热组合件230包括沿着壳体102的内表面242延伸的分配管道240。分配管道240限定有流体地联接到内壳110上的热油收集点232的流体入口244。分配管道还可以限定多个排出口246,这些排出口246被配置成用于沿着壳体102喷射、滴落或以其他方式沉积润滑剂204,使得该润滑剂流可以在由泵206再循环之前重新收集在贮槽202中。这样,油204被推动通过直线压缩机100的工作部件,以最小化摩擦并提高操作效率,油在该过程期间吸收热量。加热的油204然后通过热油收集点232离开内壳110,在热油收集点,它在分配管道240内围绕壳体102分配。然后,加热的油204被喷射到温度低于加热的油204的壳体102上。当被加热的油204流下壳体102并重新收集在贮槽202中时,热能可从油204传递到壳体102,在壳体中,热能可被排放到周围环境中。这样,油204可以在较冷的温度下再循环,从而提高直线压缩机100的性能和寿命。
通常,分配管道240可以以任何方式或通过任何机构流体地联接到内壳110上的任何点,以用于接收加热的油204。例如,根据所示例的实施方式,散热组件230包括供应管250,该供应管在热油收集点232与分配管道240的流体入口244之间延伸并提供它们之间的流体连通。在这点上,例如,供应管250可以是从热油收集点232到分配管道240的柔性管道。根据可选实施方式,分配管道240可例如经由热油收集点232或通过内壳110的任何其它出口直接联接到内壳。
分配管道240通常可以具有用于根据需要分配油204的任意合适的尺寸、位置 和构造,以便于散热组件230的操作和直线压缩机100的冷却。例如,根据所示例的实施方式,分配管道240在单个水平面内围绕壳体102的整个圆周延伸。更具体地,根据所示例的实施方式,分配管道240是经由安装托架252直接安装到下壳体104上的圆形管道。通常,安装托架252被构造成用于减少从分配管道240到壳体102上的振动传递。
尽管分配管道240被示例为直接安装到下壳体104,但是应当理解,根据可选实施方式,可以使用任意其他合适的安装位置和机构。例如,根据可选实施方式,分配管道240可直接安装到内壳110,使得分配管道240简单地悬挂在壳体102附近。可选地,分配管道240可安装在上壳体106内,使得加热的油204在收集在贮槽202内之前沿壳体102的较大表面积排出。另外,虽然分配管道240被示例为在单个水平面中延伸的圆形管道,但是应当理解,分配管道可以具有任意其他合适的横截面形状,并且可以以任意其他合适的图案或位置(例如以蛇形方式、之字形等)通过壳体。其它配置是可能的并且在本发明的范围内。
根据示例性实施方式,分配管道240可以由任何材料形成,这些材料具有足够的硬度,以保持流体通道并在其中容纳润滑油204的流动。。例如,根据所示例的实施方式,分配管道240是由金属形成的小管道。根据可选实施方式,分配管道240可通过注塑例如使用合适的塑料材料(诸如注塑级的聚对苯二甲酸丁二醇酯(PBT)、尼龙6、高抗冲聚苯乙烯(HIPS)、全氟烷氧基(PFA)、氟化乙烯丙烯(FEP)或丙烯腈丁二烯苯乙烯(ABS))形成。可选地,根据示例性实施方式,这些部件可以例如使用片状模塑料(SMC)热固性塑料或其他热塑性塑料挤出(管道)、压缩成型。根据另一些实施方式,分配管道240可由任意其它合适的刚性材料形成。
限定为分配管道240的排出口246可具有任意合适的数量、形状、尺寸和构造,以便将加热的油204的流动适当地引导到壳体102的期望部分上。例如,根据所示例的实施方式,多个排出口246包括沿着分配管道240的长度等距地隔开的大于10个、大于25个、大于50个、大于75个或大于100个排出口246。根据还有其他的实施方案,分配导管240可以限定有不包括排放口246的区域,例如,在油204的分配可能不理想的某些位置,例如,如靠近吸气入口220。
根据示例性实施方式,排出口246是在分配管道240内钻出、机械加工、冲压或以其它方式形成的简单孔口260。根据另一些实施方式,各个排出口246可包括排出喷嘴,该排出喷嘴安装在孔口260上方,用于选择性地控制油204的流动的流速和方向。根据所示例的实施方式,排出口246(例如,孔口260)限定在分配管道240 的底侧262上。然而,根据可选实施方式,排出口246可限定在侧部、顶部或沿着分配管道240的任意其它合适的位置上。例如,排出口246可以沿着竖向向下成角度,并且远离直线压缩机100的竖直中心线。这样,油204被直接朝向下壳体104推动并向下进入贮槽202。根据另一些实施方式,排出口246可以以任意其它合适的方式设置和定向,以便将油204引导到壳体102的内表面242上。
值得注意的是,由于分配管道240内的油204的压力和流动,可能期望限制流动,例如,以防止油204的飞溅和/或雾化。由此,如图10中最佳示出的,散热组件230还包括一个或多个流动限制构件270,这些流动限制构件设置在排出口246上方,用于限制油204通过排出口246。例如,图10中示例了两个不同的流动限制构件270。应当理解,这些流动限制构件270可单独使用或彼此结合使用。具体地,流动限制构件270可包括螺旋弹簧元件272,该螺旋弹簧元件围绕分配管道240的外径延伸,并且用于限制流出排出口246的流动。根据可选实施方式,流动限制构件270可以是设置在多个排出口246上方用于限制穿过其中的流动的编织物或筛网274。应当理解,根据可选实施方式,可使用任意合适的流动限制构件270。例如,在制造过程期间,可以在孔口260内形成横向构件或网筛,或者在分配管道构造之后,可以将横向构件或网筛包覆成型到分配管道240上。
上述散热组件230可用于冷却直线压缩机(诸如直线压缩机100或任何其它压缩机)的操作。具体地,散热组件230可使用用于将油喷射到压缩机壳体的壁上的机构,以便实现改进的热排放和压缩机效率。具体地,根据示例性实施方式,散热组件230使用喷射机构(例如,分配管道240)来均匀地且以受控的方式将油喷射到壳体的内表面上,使得热量传导到外表壁。油在壁内的缓慢流动允许油冷却。
分配管道240通过接收在泵206的作用力下离开气缸的热油来运行。分配管道240设置有多个孔(例如,排出口246),并且油沿着底部外周通过多个孔被压出。油沿着壁向下围绕整个下壳体内壁部分流动(将热量损失到壁)。缓慢流动的油沿壁滴下,允许油在到达贮槽之前冷却。油保持为液体形式,并向壳内部的吸入气体释放最少的热量。当油从管道中的孔中流出时,通过使用多孔或流动限制表面(例如,流动限制构件270)可以使油的流动减慢。例如,可以使用紧密配合的弹簧来覆盖分配管道240的外径,并且在不使油雾化的情况下提供进一步的流动阻力。相反,可以使用类似筛网或编织尼龙或其它聚合物材料的类似材料来引起油流动阻力。流阻材料允许油沿着内壁均匀地向下流动(当油流经放置在分配管道240上的袜套或弹簧结构时,还提供了一个内置的碎片过滤器)。通过从结构顶部的最热的 油开始,油在其再循环到油泵和压缩气缸和活塞之前向下流到底部,在贮槽中冷却,油在连续的循环中在油泵和压缩气缸和活塞处再次获得热量。本发明提供了实现更好的效率的低成本的方法,并且避免了在壳外部的额外的钎焊接头。
本书面描述使用示例对本发明进行了公开(其中包括最佳模式),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种限定轴向和竖向的压缩机,其特征在于,所述压缩机包括:
    壳体,所述壳体限定有用于收集润滑剂的贮槽;
    内壳,所述内壳设置在所述壳体内,用于接收可滑动地活塞,所述内壳限定有热油收集点;
    泵,所述泵用于使所述润滑剂在所述壳体内循环,所述泵包括设置在所述贮槽内的泵入口;以及
    散热组件,所述散热组件包括:
    分配管道,所述分配管道沿着所述壳体的内表面延伸,所述分配管道限定有流体入口,所述流体入口流体连接到所述热油收集点以用于接收所述润滑剂;和
    多个排出口,所述多个排出口设置在所述分配管道内,用于使所述润滑剂沿着所述壳体滴下并回到所述贮槽中。
  2. 根据权利要求1所述的压缩机,其特征在于,所述多个排出口沿着所述分配管道的长度方向等距地隔开。
  3. 根据权利要求1所述的压缩机,其特征在于,所述多个排出口包括大于50个孔口。
  4. 根据权利要求1所述的压缩机,其特征在于,所述多个排出口中的每一个排出口设置和定向成用于将所述润滑剂引导到所述壳体的所述内表面上。
  5. 根据权利要求1所述的压缩机,其特征在于,所述多个排出口中的每一个排出口限定在所述分配管道的底部上。
  6. 根据权利要求1所述的压缩机,其特征在于,所述多个排出口中的每一个排出口是孔口或排出喷嘴。
  7. 根据权利要求1所述的压缩机,其特征在于,所述散热组件还包括:
    流动限制构件,所述流动限制构件设置在所述多个排出口上方,用于限制所述润滑剂穿过所述多个排出口。
  8. 根据权利要求7所述的压缩机,其特征在于,所述流动限制构件是围绕所述分配管道延伸的弹性元件。
  9. 根据权利要求7所述的压缩机,其特征在于,所述流动限制构件是设置在所述多个排出口上方的编织物或筛网。
  10. 根据权利要求1所述的压缩机,其特征在于,所述分配管道围绕所述壳体的 整个圆周延伸。
  11. 根据权利要求1所述的压缩机,其特征在于,所述压缩机是直线压缩机。
  12. 根据权利要求1所述的压缩机,其特征在于,所述散热组件还包括:
    供应管,所述供应管提供所述热油收集点与所述分配管道的所述流体入口之间的流体连通。
  13. 根据权利要求1所述的压缩机,其特征在于,所述分配管道直接附接到所述壳体。
  14. 一种用于压缩机的散热组件,其特征在于,所述压缩机包括:壳体,所述壳体限定有用于收集润滑剂的贮槽;内壳,所述内壳设置在所述壳体内,用于接收可滑动地活塞,所述内壳限定有热油收集点;以及泵,所述泵用于使所述润滑剂在所述壳体内循环,所述散热组件包括:
    分配管道,所述分配管道沿着所述壳体的内表面延伸,所述分配管道限定有流体入口,所述流体入口流体连接到所述热油收集点以用于接收所述润滑剂;和
    多个排出口,所述多个排出口限定在所述分配管道内,用于使所述润滑剂沿着所述壳体滴下并回到所述贮槽中。
  15. 根据权利要求14所述的散热组件,其特征在于,所述多个排出口包括沿着所述分配管道的长度方向等距地隔开的多于50个孔口。
  16. 根据权利要求14所述的散热组件,其特征在于,所述多个排出口中的每一个排出口限定在所述分配管道的底部上。
  17. 根据权利要求14所述的散热组件,其特征在于,还包括:
    流动限制构件,所述流动限制构件设置在所述多个排出口上方,用于限制所述润滑剂穿过所述多个排出口。
  18. 根据权利要求17所述的散热组件,其特征在于,所述流动限制构件是围绕所述分配管道延伸的弹性元件或设置在所述多个排出口上方的编织物或筛网。
  19. 根据权利要求14所述的散热组件,其特征在于,所述分配管道围绕所述壳体的下部的整个圆周延伸,并且供应管提供所述热油收集点与所述分配管道的所述流体入口之间的流体连通。
  20. 根据权利要求14所述的散热组件,其特征在于,所述压缩机是直线压缩机。
PCT/CN2021/121000 2020-10-07 2021-09-27 直线压缩机的散热组件 WO2022073436A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180068479.0A CN116324163A (zh) 2020-10-07 2021-09-27 直线压缩机的散热组件
KR1020237011720A KR20230058719A (ko) 2020-10-07 2021-09-27 선형 압축기의 방열 어셈블리
EP21876954.5A EP4206466A4 (en) 2020-10-07 2021-09-27 HEAT DISSIPATION ASSEMBLY FOR LINEAR COMPRESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/064,725 2020-10-07
US17/064,725 US20220106953A1 (en) 2020-10-07 2020-10-07 Heat dissipation assembly for a linear compressor

Publications (1)

Publication Number Publication Date
WO2022073436A1 true WO2022073436A1 (zh) 2022-04-14

Family

ID=80931205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121000 WO2022073436A1 (zh) 2020-10-07 2021-09-27 直线压缩机的散热组件

Country Status (5)

Country Link
US (1) US20220106953A1 (zh)
EP (1) EP4206466A4 (zh)
KR (1) KR20230058719A (zh)
CN (1) CN116324163A (zh)
WO (1) WO2022073436A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015685A (ko) * 2003-08-07 2005-02-21 엘지전자 주식회사 리니어 압축기의 냉각 구조
CN1712705A (zh) * 2004-06-21 2005-12-28 三星电子株式会社 压缩机
CN1769681A (zh) * 2004-11-03 2006-05-10 Lg电子株式会社 线性压缩机
CN1786471A (zh) * 2004-12-10 2006-06-14 Lg电子株式会社 线性压缩机
CN102197222A (zh) * 2008-10-28 2011-09-21 Lg电子株式会社 压缩机
CN102966515A (zh) * 2012-11-29 2013-03-13 广州万宝集团压缩机有限公司 一种冰箱压缩机及油过滤装置
CN103362783A (zh) * 2013-06-27 2013-10-23 天津探峰科技有限公司 一种高效率且低成本的线性压缩机
CN103912472A (zh) * 2013-01-08 2014-07-09 海尔集团公司 线性压缩机
KR20160055544A (ko) * 2014-11-10 2016-05-18 엘지전자 주식회사 왕복동식 압축기
KR20160055499A (ko) * 2014-11-10 2016-05-18 엘지전자 주식회사 왕복동식 압축기
CN106224198A (zh) * 2016-07-28 2016-12-14 西安交通大学 一种伺服电机直驱往复式高压空气压缩机
CN107339226A (zh) * 2016-05-03 2017-11-10 Lg电子株式会社 线性压缩机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1264866A (en) * 1916-08-08 1918-04-30 John Henry Sauers Refrigerating device.
US2125645A (en) * 1936-06-11 1938-08-02 Crosley Radio Corp Lubricating enclosed engines
US2198258A (en) * 1937-01-21 1940-04-23 Crosley Corp Refrigeration system
US2138664A (en) * 1937-01-21 1938-11-29 Crosley Radio Corp Compressor and lubricating means
US2504528A (en) * 1944-09-06 1950-04-18 Philco Corp Refrigeration apparatus
FR1156042A (fr) * 1956-08-20 1958-05-12 Moto-compresseur à palettes, à circulation d'huile
DE1503408A1 (de) * 1966-10-15 1970-02-26 Danfoss As Gekapselter Motorverdichter,insbesondere fuer Kaeltemaschinen
US4569639A (en) * 1982-05-03 1986-02-11 Tecumseh Products Company Oil distribution system for a compressor
BR9102288A (pt) * 1991-05-28 1993-01-05 Brasileira S A Embraco Empresa Conjunto abafador de succao para compressor hermetico
KR100439503B1 (ko) * 2004-05-18 2004-07-09 동화정밀이엔지 (주) 오일분리기
US9239054B2 (en) * 2012-11-20 2016-01-19 Emerson Climate Technologies, Inc. Scroll compressor with oil-cooled motor
JP6133003B1 (ja) * 2015-11-18 2017-05-24 寿産業株式会社 冷媒処理装置及び冷凍空調システム
US10247464B2 (en) * 2016-01-27 2019-04-02 Haier Us Appliance Solutions, Inc. Sealed system for an appliance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015685A (ko) * 2003-08-07 2005-02-21 엘지전자 주식회사 리니어 압축기의 냉각 구조
CN1712705A (zh) * 2004-06-21 2005-12-28 三星电子株式会社 压缩机
CN1769681A (zh) * 2004-11-03 2006-05-10 Lg电子株式会社 线性压缩机
CN1786471A (zh) * 2004-12-10 2006-06-14 Lg电子株式会社 线性压缩机
CN102197222A (zh) * 2008-10-28 2011-09-21 Lg电子株式会社 压缩机
CN102966515A (zh) * 2012-11-29 2013-03-13 广州万宝集团压缩机有限公司 一种冰箱压缩机及油过滤装置
CN103912472A (zh) * 2013-01-08 2014-07-09 海尔集团公司 线性压缩机
CN103362783A (zh) * 2013-06-27 2013-10-23 天津探峰科技有限公司 一种高效率且低成本的线性压缩机
KR20160055544A (ko) * 2014-11-10 2016-05-18 엘지전자 주식회사 왕복동식 압축기
KR20160055499A (ko) * 2014-11-10 2016-05-18 엘지전자 주식회사 왕복동식 압축기
CN107339226A (zh) * 2016-05-03 2017-11-10 Lg电子株式会社 线性压缩机
CN106224198A (zh) * 2016-07-28 2016-12-14 西安交通大学 一种伺服电机直驱往复式高压空气压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206466A4 *

Also Published As

Publication number Publication date
US20220106953A1 (en) 2022-04-07
EP4206466A4 (en) 2024-01-03
EP4206466A1 (en) 2023-07-05
CN116324163A (zh) 2023-06-23
KR20230058719A (ko) 2023-05-03

Similar Documents

Publication Publication Date Title
CN114466974B (zh) 用于制冷电器的线性压缩机和制冷系统
US10247464B2 (en) Sealed system for an appliance
US10465671B2 (en) Compressor with a discharge muffler
US9322401B2 (en) Linear compressor
US8789387B2 (en) Refrigerator
WO2020224400A1 (zh) 具有防油溅板的线性压缩机
US9932975B2 (en) Compressor
WO2022073436A1 (zh) 直线压缩机的散热组件
US20120279245A1 (en) Compact discharge device for the refrigeration compressor of an appliance
RU2745561C1 (ru) Холодильник
WO2023274334A1 (zh) 用于往复式压缩机的吸入消音器
WO2021213196A1 (zh) 线性压缩机的散热组件
KR102485232B1 (ko) 냉장고
WO2020143627A1 (en) Cooled piston and cylinder for compressors and engines
WO2023131080A1 (zh) 线性压缩机和平面弹簧组件
WO2022105829A1 (zh) 线性压缩机和内部碰撞缓冲
KR20110083913A (ko) 냉장고
KR100441084B1 (ko) 수액기가 구비된 공기 조화기
KR101419945B1 (ko) 냉장고
CN116792287A (zh) 压缩机及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237011720

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021876954

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE