WO2022071409A1 - Method for producing single-layer phase difference material - Google Patents

Method for producing single-layer phase difference material Download PDF

Info

Publication number
WO2022071409A1
WO2022071409A1 PCT/JP2021/035905 JP2021035905W WO2022071409A1 WO 2022071409 A1 WO2022071409 A1 WO 2022071409A1 JP 2021035905 W JP2021035905 W JP 2021035905W WO 2022071409 A1 WO2022071409 A1 WO 2022071409A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
wavelength
polymer
light
Prior art date
Application number
PCT/JP2021/035905
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 山極
司 藤枝
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022554048A priority Critical patent/JPWO2022071409A1/ja
Priority to KR1020237013383A priority patent/KR20230079105A/en
Priority to CN202180066988.XA priority patent/CN116323702A/en
Publication of WO2022071409A1 publication Critical patent/WO2022071409A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/302Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and two or more oxygen atoms in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a single-layer retardation material, and more specifically, a material having optical properties suitable for applications such as a display device and a recording material, particularly an organic electroluminescence (EL) display device and a liquid crystal display.
  • the present invention relates to a method for producing a single-layer retardation material which can be suitably used for an optical compensation film such as a polarizing plate for a display and a retardation plate.
  • the polymerizable liquid crystal compound used here is generally a liquid crystal compound having a polymerizable group and a liquid crystal structural portion (a structural portion having a spacer portion and a mesogen portion), and an acrylic group is widely used as the polymerizable group. ing.
  • Such a polymerizable liquid crystal compound is generally made into a polymer (film) by a method of irradiating with radiation such as ultraviolet rays to polymerize.
  • a method of supporting a specific polymerizable liquid crystal compound having an acrylic group between supports and irradiating with radiation while holding this compound in a liquid crystal state to obtain a polymer (Patent Document 1), or having an acrylic group.
  • a method of adding a photopolymerization initiator to a mixture of two types of polymerizable liquid crystal compounds or a composition obtained by mixing a chiral liquid crystal with the mixture and irradiating the mixture with ultraviolet rays to obtain a polymer is known (Patent Document 2).
  • Patent Documents 3 and 4 an alignment film using a polymerizable liquid crystal compound or a polymer that does not require a liquid crystal alignment film
  • Patent Documents 5 and 6 an alignment film using a polymer containing a photocrosslinking site
  • Patent Documents 5 and 6 an alignment film using a polymer containing a photocrosslinking site
  • the wavelength of ultraviolet rays and other radiation required for formation differs depending on the structure of the organic compound, so in order to maximize optical anisotropy, ultraviolet rays derived from the structure of the organic compound are used.
  • the exposure process has been performed at a wavelength in the region where the absorption peak of ultraviolet rays is maximum.
  • the short wavelength light may not be able to impart sufficient exposure energy to the inside of the film, resulting in a phase difference or a phase difference. There was a problem that the amount of birefringence was insufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a single-layer retardation material capable of producing a single-layer retardation material having a high retardation value and birefringence.
  • the present inventors have a composition containing a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light having a wavelength of 365 nm.
  • a composition containing a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light having a wavelength of 365 nm.
  • the present invention 1.
  • the step of applying the polymer composition on the substrate and drying to form a coating film, and (II) the step of irradiating the coating film with polarized ultraviolet rays are included.
  • the polymer composition comprises a polymer having a photoreactive moiety in the side chain that is photodimerized or photoisomerized with light having a wavelength of 365 nm.
  • a method for producing a single-layer retardation material wherein the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm is 5% or less. 3.
  • L represents an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be independently replaced with a halogen atom.
  • T represents a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be replaced with a halogen atom.
  • a 2 also represents a single bond
  • Y 1 represents a divalent benzene ring and represents P 1 , Q 1 and Q 2 each independently represent a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms.
  • R is a hydrogen atom, a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkyloxy having 1 to 5 carbon atoms.
  • the hydrogen atom bonded to the benzene ring is independently a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkylcarbonyl group having 1 to 5 carbon atoms.
  • X 1 and X 2 independently represent single bonds, -O-, -COO- or -OCO-, respectively.
  • n1 and n2 are 0, 1 or 2, respectively, respectively.
  • X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different.
  • Q 1 When the number of Q 1 is 2, Q 1 may be the same or different, and when the number of Q 2 is 2, Q 2 may be the same or different. Represent a hand.
  • the method for producing a single-layer retardation material of 7, wherein the side chain that does not exhibit photoalignment is any one of the side chains selected from the group consisting of the following formulas (1) to (12).
  • R 11 is -NO 2 , -CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, 1 A valent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where R 12 is a phenyl group.
  • the hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 13 is a hydrogen atom.
  • D represents an integer of 1 to 12
  • k1 to k5 are independently integers of 0 to 2
  • k6 and k7 are.
  • Each independently is an integer of 0 to 2, but the sum of k6 and k7 is 1 or more
  • m1, m2 and m3 are independently integers of 1 to 3, and n is 0.
  • polarized ultraviolet light having a wavelength of 365 nm which has not been generally used for exposure treatment of organic compounds having a photoreactive group, occupies a larger proportion than light having a wavelength of 313 nm.
  • a single-layer retardation material having a high retardation value and birefringence can be obtained.
  • the method for producing a single-layer retardation material of the present invention is a step of (I) applying a polymer composition on a substrate and drying to form a coating film, and (II) polarized ultraviolet light on the obtained coating film.
  • the polymer composition comprises a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light at a wavelength of 365 nm, comprising light at a wavelength of 365 nm and light at a wavelength of 313 nm in polarized ultraviolet light.
  • the amount of light having a wavelength of 313 nm in the total amount of light is 10% or less.
  • Step (I) is a step of applying the polymer composition on the substrate to form a coating film. More specifically, the polymer composition is coated on a substrate (for example, silicon / silicon dioxide coated substrate, silicon nitride substrate, metal (for example, aluminum, molybdenum, chromium, etc.)), a glass substrate, a quartz substrate, and the like. Bar coat, spin coat, flow coat, roll coat, etc. on ITO substrate, etc.) or film (for example, resin film such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film, etc.).
  • TAC triacetyl cellulose
  • the coating is applied by a method such as a slit coat, a spin coat following the slit coat, an inkjet method, and a printing method.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven to evaporate the solvent to obtain a coating film.
  • the temperature is not particularly limited, but is preferably 50 to 200 ° C, more preferably 50 to 150 ° C.
  • the polymer composition used in the present invention is a photosensitive side chain polymer capable of exhibiting liquidity, or a mixed side chain polymer having a liquid crystal side chain polymer and a photosensitive side chain polymer individually.
  • a side-chain type polymer a photosensitive side chain polymer capable of exhibiting liquidity
  • the obtained coating film is also a film having a side-chain type polymer including liquidity and photosensitivity.
  • This coating film is not subjected to a rubbing treatment, but is subjected to an orientation treatment by polarization irradiation.
  • the film is subjected to a step of heating the side chain polymer film to obtain a film to which optical anisotropy is imparted (hereinafter, also referred to as a single-layer retardation material).
  • a single-layer retardation material a film to which optical anisotropy is imparted
  • the slight anisotropy developed by the polarization irradiation becomes the driving force, and the side chain polymer itself is efficiently reoriented by self-assembly.
  • highly efficient orientation processing can be realized as a single-layer retardation material, and a single-layer retardation material with high optical anisotropy can be obtained.
  • the side chain type polymer a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light having a wavelength of 365 nm is used.
  • the polymer is not particularly limited as long as it is a side chain type polymer having the above properties, but a side chain having any of the photoreactive sites represented by the following formulas (a1) to (a3) (hereinafter referred to as “side chain”). , Also referred to as side chain a), and more preferably having a side chain having any of the photoreactive sites represented by the following formulas (a1-1) to (a3-1).
  • the number of benzene rings in the side chain having one photoreactive moiety is preferably 3 or less.
  • a 1 , A 2 and D independently represent a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, or -NH-CO-. .. L represents an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be independently replaced with a halogen atom.
  • T represents a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be replaced with a halogen atom.
  • a 2 also represents a single bond.
  • Y 1 represents a divalent benzene ring.
  • P 1 , Q 1 and Q 2 each independently represent a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms.
  • R is a hydrogen atom, a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkyloxy having 1 to 5 carbon atoms. Represents a group.
  • the hydrogen atom bonded to the benzene ring is independently a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkylcarbonyl group having 1 to 5 carbon atoms. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms.
  • X 1 and X 2 independently represent a single bond, -O-, -COO- or -OCO-, respectively.
  • n1 and n2 are 0, 1 or 2, respectively.
  • X 1 When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different, and the number of Q 1 When is 2, Q 1s may be the same or different, and when the number of Q 2s is 2 , Q 2s may be the same or different.
  • the alkylene group having 1 to 12 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl and pentane. -1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, nonane-1,9-diyl, decane-1,10-diyl group, etc. Be done.
  • alicyclic hydrocarbon ring having 5 to 8 carbon atoms examples include a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the alkyl group having 1 to 5 carbon atoms may be linear or branched, and specific examples thereof include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl and n-pentyl. Group etc. can be mentioned.
  • alkylcarbonyl group having 1 to 5 carbon atoms include methylcarbonyl (acetyl), ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl group and the like.
  • Specific examples of the cycloalkyl group having 3 to 7 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl group and the like.
  • alkyloxy group having 1 to 5 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, n-pentyloxy group and the like.
  • a polymer having a side chain having a photoreactive site represented by any of the following formulas (a1-1-1) to (a3-1-1) is more preferable.
  • the side chain polymer used in the present invention has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction or an isomerization reaction in response to light having a wavelength of 365 nm.
  • the structure of the photosensitive side chain polymer is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component. Stable optical anisotropy can be obtained when the side chain polymer is used as a single-layer retardation material.
  • More specific examples of the structure of the photosensitive side chain polymer include radical polymerizable properties such as (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide and norbornene.
  • a structure having a main chain composed of at least one selected from the group consisting of radicals and siloxane and a side chain a is preferable.
  • the side chain type polymer may further have a side chain (hereinafter, also referred to as side chain b) that does not exhibit photoalignment.
  • a side chain b any one of the side chains selected from the group consisting of the following formulas (1) to (12) is preferable, but the side chain b is not limited thereto.
  • R 12 is a phenyl group or naphthyl.
  • the hydrogen atom bonded to may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 13 is a hydrogen atom,-.
  • d represents an integer of 1 to 12
  • k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more
  • k6 and k7 are.
  • Each independently is an integer of 0 to 2, but the sum of k6 and k7 is 1 or more
  • m1, m2 and m3 are independently integers of 1 to 3
  • n is 0 or 1
  • the dashed line represents the bond.
  • the monovalent nitrogen-containing heterocyclic group examples include pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl, and pyridyl group, and specific examples of the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms are cyclopentyl. , Cyclohexyl group and the like.
  • the alkyl group and the alkoxy group include the same groups as those exemplified in R5 above.
  • the side chain b preferably represented by any of the formulas (1) to (11).
  • the side chain type polymer used in the present invention can be obtained by polymerizing a monomer having a structure represented by any of the formulas (a1) to (a3) and, if necessary, a monomer giving a side chain b.
  • monomer M1 As the monomer having the structure represented by any of the formulas (a1) to (a3) (hereinafter, also referred to as monomer M1), the compounds represented by the following formulas (M1-1) to (M1-3) are used. Can be mentioned.
  • any compound represented by the following formulas (M1-1-1) to (M1-3-1) is preferable.
  • any compound represented by the following formulas (M1-1-1-1) to (M1-3-1-1) is more preferable.
  • PG is a polymerizable group, and a group selected from the groups represented by the following formulas PG1 to PG8 is preferable. Among them, an acrylic group or a methacrylic group represented by PG1 is preferable from the viewpoint of easy control of the polymerization reaction and the stability of the polymer.
  • M 1 represents a hydrogen atom or a methyl group, and the broken line represents a bond with L.
  • Examples of the monomer (M1-1) include monomers selected from the following formulas A-1-1 to A-1-12.
  • PG represents any polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups and is an integer of 2 to 9. Is.
  • Examples of the monomer (M1-2) include monomers selected from the following formulas A-2-1 to A-2-8.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 and s2 each independently represent the number of methylene groups of 2 to 9. It is an integer.
  • Examples of the monomer (M1-3) include monomers selected from the following formulas A-3-1 to A-3-3.
  • PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
  • Specific examples of the above-mentioned monomer (M1-3) include 4- (6-methacryloxyhexyl-1-oxy) cinnamic acid, 4- (6-acrylicoxyhexyl-1-oxy) cinnamic acid, and 4- (6-(6-methacrylicoxyhexyl-1-oxy) cinnamic acid. Examples thereof include 3-methacryloxypropyl-1-oxy) cinnamic acid and 4- (4- (6-methacryloxyhexyl-1-oxy) benzoyloxy) cinnamic acid.
  • the monomer that gives the side chain b that does not show photo-orientation (hereinafter, also referred to as monomer M2) is a monomer that can form a mesogen group at the side chain site.
  • the mesogen group having a side chain even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, it is a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. May be good.
  • the following structure is preferable as the mesogen group contained in the side chain.
  • the monomer M2 include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups and siloxanes. It is preferable that the structure has a structure consisting of a polymerizable group derived from at least one selected from the group and at least one of the formulas (1) to (12).
  • the monomer M2 preferably has a (meth) acrylate as a polymerizable group, and preferably has a -COOH end in the side chain.
  • Preferred examples of the monomer M2 include those represented by the following formulas (M2-1) to (M2-9).
  • other monomers can be copolymerized as long as the photoreactiveness and / or liquid crystallinity development ability is not impaired.
  • examples of other monomers include industrially available radical polymerization-reactive monomers.
  • Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds, vinyl compounds and the like.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic acid ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-.
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • styrene compound examples include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene and the like.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the contents of the side chain a and the side chain b are not particularly limited, but the side chain a is preferably 5 to 99.9 mol% from the viewpoint of photoreactivity. 10-95 mol% is more preferred. From the viewpoint of photoreactivity, the side chain b is preferably 95 mol% or less.
  • the side chain type polymer used in the present invention may contain other side chains.
  • the content of the other side chains is the rest when the total content of the side chains a and b is less than 100 mol%.
  • the method for producing the side chain polymer is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by radical polymerization, cationic polymerization or anionic polymerization using the vinyl group of the above-mentioned monomer M1, the monomer M2 and other monomers as needed. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control and the like.
  • a known compound such as a radical polymerization initiator (radical thermal polymerization initiator, radical photopolymerization initiator) or a reversible addition-cleaving chain transfer (RAFT) polymerization reagent shall be used. Can be done.
  • a radical polymerization initiator radiation thermal polymerization initiator, radical photopolymerization initiator
  • RAFT reversible addition-cleaving chain transfer
  • the radical thermal polymerization initiator is a compound that generates radicals by heating to a temperature higher than the decomposition temperature.
  • examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation).
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy.
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method and the like can be used.
  • the organic solvent used in the polymerization reaction is not particularly limited as long as the produced polymer can be dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, and tetramethylurea.
  • Ppyridine dimethyl sulfone, hexamethylphosphoramide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, Methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol.
  • dipropylene glycol monomethyl ether diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, Dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethylisobutyl ether, diisobutylene , Amilacetate, butylbutyrate, butyl ether, diisobutylketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane
  • the solvent may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
  • oxygen in the organic solvent causes the polymerization reaction to be inhibited, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C, but is preferably in the range of 50 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 20 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
  • the polymer produced from the reaction solution obtained by the above reaction can be recovered by pouring the reaction solution into a poor solvent and precipitating it, but this reprecipitation treatment is not essential.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like.
  • the polymer put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
  • the side chain polymer used in the present invention has a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film. It is preferably 2,000 to 2,000,000, more preferably 2,000 to 1,000,000, and even more preferably 5,000 to 200,000.
  • GPC Gel Permeation Chromatography
  • the polymerizable composition used in the present invention contains the side chain type polymer as described above and an organic solvent (good solvent).
  • the organic solvent is not particularly limited as long as it is an organic solvent that dissolves the polymer component. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-.
  • Vinyl-2-pyrrolidone dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-Butoxy-N, N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethylamylketone, methylnonylketone, methylethylketone, methylisoamylketone, methylisopropylketone, cyclohexanone, cyclopentanone, ethylene carbonate , Propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glyco
  • the polymer composition may contain components other than the side chain type polymer and the organic solvent (good solvent).
  • examples thereof include a solvent (poor solvent) that improves the film thickness uniformity and surface smoothness when the polymer composition is applied, a compound, and a compound that improves the adhesion between the retardation material and the substrate.
  • a solvent poor solvent
  • the adhesion between the retardation material and the substrate it is not limited to these.
  • These poor solvents may be used alone or in combination of two or more.
  • the content thereof is preferably 5 to 80% by mass, more preferably 20 to 60% by mass in the solvent so as not to significantly reduce the solubility of the polymer.
  • Examples of the compound that improves the film thickness uniformity and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. Specific examples of these include Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), Megafuck (registered trademark) F171, F173, F560, F563, R-30, R-40 (registered trademark).
  • the content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the side chain polymer.
  • the compound that improves the adhesion between the retardation material and the substrate include functional silane-containing compounds, and specific examples thereof include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • a phenoplast-based compound or an epoxy group-containing compound is added to the polymer composition for the purpose of preventing deterioration of the characteristics due to the backlight when the polarizing plate is formed. It may be added.
  • epoxy group-containing compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol Diglycidyl Ether, Glycerin Diglycidyl Ether, Dibromoneopentyl Glycol Diglycidyl Ether, 1,3,5,6-Tetraglycidyl-2,4-Hexanediol, N, N, N', N'-Tetra
  • examples thereof include glycidyl-m-xylylene diamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenyl
  • the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the side chain type polymer contained in the polymer composition, and 1 to 20 parts by mass. Parts by mass are more preferred. If the content is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal display may deteriorate.
  • a photosensitizer can also be used as an additive.
  • a colorless sensitizer and a triplet sensitizer are preferable.
  • photosensitizer examples include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarin, carbonylbiscmarin, aromatic 2-hydroxyketone, and aromatic 2-hydroxy.
  • Ketone (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthron, thiazolin (2-benzoylmethylene-3-methyl- ⁇ - Naftthiazolin, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazolin, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazolin, 2- (4-biphenoylmethylene) -3-methylbenzothiazolin , 2- ( ⁇ -naphthoyl methylene) -3
  • aromatic 2-hydroxyketone (benzophenone), coumarin, ketokumarin, carbonylbisquemarin, acetophenone, anthraquinone, xanthone, thioxanthone and acetophenone ketal are preferred.
  • the polymer composition includes a dielectric or a conductive substance for the purpose of changing the electrical properties such as the dielectric constant and the conductivity of the retardation material as long as the effect of the present invention is not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and the density of the film when it is used as a retardation material.
  • the polymer composition is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material.
  • the polymer composition used in the present invention includes a side chain type polymer, a solvent or compound that improves the film thickness uniformity and surface smoothness described above, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like.
  • the solution is prepared as a solution dissolved in an organic solvent (good solvent).
  • the content of the side chain type polymer is preferably 1 to 20% by mass, more preferably 3 to 20% by mass in the composition.
  • the polymer composition may contain other polymers as long as the liquid crystal display ability and photosensitive performance are not impaired.
  • other polymers include polymers such as poly (meth) acrylate, polyamic acid, and polyimide, which are not photosensitive side chain polymers capable of exhibiting liquid crystallinity.
  • the content of the other polymer in the total polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass.
  • the coating film obtained in the step (I) is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays from a certain direction via a polarizing plate.
  • the ultraviolet rays as described above, the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm is 10% or less.
  • the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm in the polarized ultraviolet rays used is not particularly limited as long as it is 10% or less, but the phase difference value of the obtained retardation material is not particularly limited. And from the viewpoint of further enhancing birefringence, 5% or less is preferable, 3% or less is more preferable, 1% or less is even more preferable, and it is further preferable that light having a wavelength of 313 nm is substantially not contained.
  • substantially free means polarized ultraviolet rays obtained by cutting light having a wavelength of 313 nm with a cut filter or the like.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the wavelength ratio of the polarized ultraviolet rays can be adjusted by selecting the optimum wavelength ratio via a filter or the like.
  • light having a wavelength of 313 nm may be reduced by using a bandpass filter (BPF) having a center wavelength of 365 nm, a long wavepass filter (LWPF) that transmits a wavelength longer than 313 nm, or the like.
  • BPF bandpass filter
  • LWPF long wavepass filter
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used. That is, the irradiation amount is 1 to 70 of the amount of polarized ultraviolet rays that realizes the maximum value of ⁇ A, which is the difference between the ultraviolet absorptance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorptivity in the vertical direction in the coating film. It is preferably in the range of%, and more preferably in the range of 1 to 50%.
  • the production method of the present invention may include a step (III) of heating the coating film irradiated with polarized ultraviolet rays in the step (II). Orientation control ability can be imparted to the coating film by heating.
  • a heating means a hot plate, a heat circulation type oven, an IR (infrared) type oven or the like can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is developed, and the temperature at which the side chain type polymer contained in the polymerizable composition to be used develops liquid crystal color (hereinafter, liquid crystal expression). It is preferably within the temperature range of). In the case of a thin film surface such as a coating film, the liquid crystal development temperature on the coating film surface is expected to be lower than the liquid crystal development temperature when the side chain polymer is observed in bulk. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal display temperature on the surface of the coating film.
  • the temperature range of the heating temperature after irradiation with polarized ultraviolet rays has a lower limit of 10 ° C lower than the lower limit of the temperature range of the liquid crystal development temperature of the side chain polymer, and an upper limit of a temperature 10 ° C lower than the upper limit of the liquid crystal temperature range.
  • the temperature in the range is preferable. If the heating temperature is lower than the above temperature range, the effect of amplifying anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
  • the liquid crystal development temperature is equal to or higher than the liquid crystal transition temperature at which the surface of the polymer or the coating film undergoes a phase transition from the solid phase to the liquid crystal phase, and the isotropic phase undergoes a phase transition from the liquid crystal phase to the isotropic phase.
  • the temperature below the phase transition temperature (Tiso).
  • exhibiting liquid crystallinity at 130 ° C. or lower means that the liquid crystal transition temperature at which a phase transition occurs from the solid phase to the liquid crystal phase is 130 ° C. or lower.
  • the thickness of the single-layer retardation material produced by the production method of the present invention can be appropriately selected in consideration of the step of the substrate to be used and the optical and electrical properties, and is preferably 0.5 to 10 ⁇ m, for example.
  • the coating film thickness at the time of irradiation with the polarized ultraviolet rays in the step (II) reaches a deep part even if the film thickness is 0.5 ⁇ m or more, particularly 3.0 ⁇ m or more.
  • the single-layer retardation material obtained by the above-described manufacturing method is a material having optical characteristics suitable for applications such as display devices and recording materials, and in particular, optical compensation for polarizing plates and retardation plates for liquid crystal displays. Suitable as a film.
  • M1, m3, m4, m5, and m6 are shown below as the monomers having photoreactive groups used in the examples, and m2 is shown below as the monomers having liquidity groups.
  • m1 was synthesized according to the synthetic method described in International Publication No. 2011/0854546.
  • m2 and m3 were synthesized according to the synthesis method described in JP-A-9-118717.
  • m4 was synthesized by the synthetic method described in Polymer, 52 (25), 5788-5794; 2011.
  • m5 was synthesized by the synthetic method described in Macromolecules 2007, 40, 6355-6360.
  • m6 was synthesized by the synthetic method described in the non-patent document (Macromolecules 2002, 35, 706-713).
  • Methacrylate polymer powder P5 (3 g) was added to NMP (7.5 g), and the mixture was dissolved by stirring at room temperature for 1 hour. To this solution, PB (1.5 g), PGME (1.5 g), BC (1.5 g), R40 (0.0015 g) and S-1 (0.03 g) are added, and the mixture is stirred to obtain a polymer solution. I got T5. This polymer solution T5 was used as a retardation material for forming a retardation film as it was.
  • Example 1-1 Manufacture of single-layer retardation material
  • the polymer solution T1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a non-alkali glass substrate, and dried on a hot plate at 60 ° C. for 4 minutes to form a retardation film having a film thickness of 2.0 ⁇ m.
  • the coating film surface was irradiated with ultraviolet rays of 365 nm through the polarizing plate at 50, 100, 200, 400, 600, 800, 1000 mJ / cm 2 , and then heat circulation at 140 ° C.
  • the substrate S1 with a retardation film was prepared by heating in a formula oven for 20 minutes.
  • Example 1-2 A substrate S2 with a retardation film was produced in the same manner as in Example 1-1 except that a 325 nm long wave pass filter (325 LWPF) was used when irradiating with ultraviolet rays of 365 nm.
  • 325 LWPF 325 nm long wave pass filter
  • Example 1-3 A substrate S3 with a retardation film was prepared in the same manner as in Example 1-2 except that T2 was used as the polymer solution.
  • Example 1-4 A substrate S4 with a retardation film was prepared in the same manner as in Example 1-2 except that T3 was used as the polymer solution.
  • Example 1-5 A substrate S5 with a retardation film was produced in the same manner as in Example 1-1 except that a 365 nm bandpass filter (365BPF) was used when irradiating with ultraviolet rays of 365 nm.
  • 365BPF 365 nm bandpass filter
  • Example 1-6 The polymer solution was filtered using T4 with a filter having a pore size of 5.0 ⁇ m, spin-coated on the substrate, and dried on a hot plate at 60 ° C. for 4 minutes to form a retardation film having a film thickness of 1.5 ⁇ m.
  • ultraviolet rays having a wavelength of 365 nm are irradiated to the coating film surface through a polarizing plate at 50, 100, 200, 400, 800, 1500 mJ / cm 2 , and then a heat circulation method at 130 ° C. is performed.
  • the substrate S9 with a retardation film was prepared by heating in an oven for 20 minutes.
  • Example 1-7 The polymer solution was filtered using T5 with a filter having a pore size of 5.0 ⁇ m, spin-coated on the substrate, and dried on a hot plate at 60 ° C. for 4 minutes to form a retardation film having a film thickness of 2.0 ⁇ m. Then, after irradiating the coating film surface with ultraviolet rays having a wavelength of 365 nm via a polarizing plate at 250,500,1000,2000,4000,8000,10000 mJ / cm 2 as shown in Table 5, using 325 LWPF. , The substrate S11 with a retardation film was prepared by heating in a heat circulation type oven at 160 ° C. for 20 minutes.
  • Example 1-1 A substrate S6 with a retardation film was produced in the same manner as in Example 1-1 except that the coating film surface was irradiated with ultraviolet rays having a wavelength of 313 nm via a polarizing plate.
  • Comparative Example 1-2 A substrate S7 with a retardation film was produced in the same manner as in Comparative Example 1-1 except that the polymer solution T2 was used.
  • Comparative Example 1-3 A substrate S8 with a retardation film was produced in the same manner as in Comparative Example 1-1 except that the polymer solution T3 was used.
  • Example 1-4 A substrate S10 with a retardation film was produced in the same manner as in Example 1-6 except that the coating film surface was irradiated with ultraviolet rays having a wavelength of 313 nm via a polarizing plate.
  • Example 1-5 A substrate S12 with a retardation film was produced in the same manner as in Example 1-7 except that the coating film surface was irradiated with ultraviolet rays having a wavelength of 313 nm via a polarizing plate without a cut filter.
  • Table 2 shows a summary of each of the above examples and comparative examples.
  • phase difference value and ⁇ n value of the substrates S1 to S12 produced in each of the above Examples and Comparative Examples were evaluated by the following methods.
  • phase difference evaluation The phase difference value at a wavelength of 550 nm was evaluated using AxoScan manufactured by Axometrics. The results are shown in Tables 3-5.

Abstract

Provided is a method for producing a single-layer phase difference material, comprising (I) a step for applying a polymer composition onto a substrate and drying the polymer composition to form a coating film, and (II) a step for irradiating the coating film with polarized ultraviolet light, wherein: the polymer composition includes a polymer having in a side chain thereof a photoreactive site that undergoes photodimerization or photoisomerization with light having a wavelength of 365 nm; and in the polarized ultraviolet light, the amount of light having a wavelength of 313 nm accounts for not more than 10% of the combined amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm. Thus, it is possible to produce a single-layer phase difference material having a high phase difference value and high birefringence.

Description

単層位相差材の製造方法Manufacturing method of single-layer retardation material
 本発明は、単層位相差材の製造方法に関し、さらに詳述すると、表示装置や記録材料等の用途に好適な光学特性を有する材料、特に、有機エレクトロルミネッセンス(Electroluminescence:EL)表示装置や液晶ディスプレイ用の偏光板および位相差板等の光学補償フィルムに好適に利用できる単層位相差材の製造方法に関する。 The present invention relates to a method for producing a single-layer retardation material, and more specifically, a material having optical properties suitable for applications such as a display device and a recording material, particularly an organic electroluminescence (EL) display device and a liquid crystal display. The present invention relates to a method for producing a single-layer retardation material which can be suitably used for an optical compensation film such as a polarizing plate for a display and a retardation plate.
 有機EL表示装置や液晶表示装置の表示品位の向上や軽量化等の要求から、偏光板や位相差板等の光学補償フィルムとして、内部の分子配向構造が制御された高分子フィルムの要求が高まっている。この要求に応えるべく、重合性液晶化合物が有する光学異方性を利用したフィルムの開発がなされている。ここで用いられる重合性液晶化合物は、一般に、重合性基と液晶構造部位(スペーサ部とメソゲン部とを有する構造部位)とを有する液晶化合物であり、この重合性基としてアクリル基が広く用いられている。 Due to the demand for improvement of display quality and weight reduction of organic EL display devices and liquid crystal display devices, the demand for polymer films with controlled internal molecular orientation structure as optical compensation films such as polarizing plates and retardation plates is increasing. ing. In order to meet this demand, a film utilizing the optical anisotropy of the polymerizable liquid crystal compound has been developed. The polymerizable liquid crystal compound used here is generally a liquid crystal compound having a polymerizable group and a liquid crystal structural portion (a structural portion having a spacer portion and a mesogen portion), and an acrylic group is widely used as the polymerizable group. ing.
 このような重合性液晶化合物は、一般的に、紫外線等の放射線を照射して重合する方法で重合体(フィルム)とされる。例えば、アクリル基を有する特定の重合性液晶化合物を支持体間に担持し、この化合物を液晶状態に保持しつつ放射線を照射して重合体を得る方法(特許文献1)や、アクリル基を有する2種類の重合性液晶化合物の混合物またはこの混合物にカイラル液晶を混合した組成物に光重合開始剤を添加し、紫外線を照射して重合体を得る方法(特許文献2)が知られている。 Such a polymerizable liquid crystal compound is generally made into a polymer (film) by a method of irradiating with radiation such as ultraviolet rays to polymerize. For example, a method of supporting a specific polymerizable liquid crystal compound having an acrylic group between supports and irradiating with radiation while holding this compound in a liquid crystal state to obtain a polymer (Patent Document 1), or having an acrylic group. A method of adding a photopolymerization initiator to a mixture of two types of polymerizable liquid crystal compounds or a composition obtained by mixing a chiral liquid crystal with the mixture and irradiating the mixture with ultraviolet rays to obtain a polymer is known (Patent Document 2).
 また、液晶配向膜を必要としない重合性液晶化合物や重合体を用いた配向フィルム(特許文献3,4)、光架橋部位を含む重合体を用いた配向フィルム(特許文献5,6)等、様々な単層塗布型配向フィルムが報告されている。 Further, an alignment film using a polymerizable liquid crystal compound or a polymer that does not require a liquid crystal alignment film (Patent Documents 3 and 4), an alignment film using a polymer containing a photocrosslinking site (Patent Documents 5 and 6), and the like. Various single-layer coating type alignment films have been reported.
 従来、液晶配向膜や位相差材を製造するにあたって、形成に必要な紫外線等の放射線波長は有機化合物の構造によって異なるため、光学異方性を最大化するために有機化合物の構造に由来する紫外光線の吸収ピークが最大となる領域の波長にて露光処理が行われてきた。このとき、短波長領域(250~320nm)に紫外光線の極大吸収ピークを有する化合物を用いた場合、膜厚によっては、短波長光が膜内に十分な露光エネルギーを付与できず、位相差や複屈折量が不十分になるという問題があった。 Conventionally, in manufacturing liquid crystal alignment films and retardation materials, the wavelength of ultraviolet rays and other radiation required for formation differs depending on the structure of the organic compound, so in order to maximize optical anisotropy, ultraviolet rays derived from the structure of the organic compound are used. The exposure process has been performed at a wavelength in the region where the absorption peak of ultraviolet rays is maximum. At this time, when a compound having a maximum absorption peak of ultraviolet rays is used in the short wavelength region (250 to 320 nm), depending on the film thickness, the short wavelength light may not be able to impart sufficient exposure energy to the inside of the film, resulting in a phase difference or a phase difference. There was a problem that the amount of birefringence was insufficient.
特開昭62-70407号公報Japanese Unexamined Patent Publication No. 62-070407 特開平9-208957号公報Japanese Unexamined Patent Publication No. 9-20897 欧州特許出願公開第1090325号明細書European Patent Application Publication No. 1090325 国際公開第2008/031243号International Publication No. 2008/031243 特開2008-164925号公報Japanese Unexamined Patent Publication No. 2008-164925 特開平11-189665号公報Japanese Unexamined Patent Publication No. 11-189665
 本発明は、上記問題に鑑みなされたものであり、位相差値および複屈折の高い単層位相差材の作製を可能とする単層位相差材の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a single-layer retardation material capable of producing a single-layer retardation material having a high retardation value and birefringence.
 本発明者らは、上記課題を解決すべく、偏光紫外線の波長という観点から鋭意検討を重ねた結果、波長365nmの光で光二量化または光異性化する光反応性部位を有する重合体を含む組成物を用いて単層位相差材を作製するにあたって、波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量を所定量以下に制御した偏光紫外線を照射することで、すなわち、従来、液晶配向膜用途で一般的に用いられている波長313nmの光よりも波長365nmの光の割合が多い偏光紫外線を照射することで、高い位相差値および屈折率異方性(Δn)を有する単層位相差材が得られることを見出し、本発明を完成した。 As a result of diligent studies from the viewpoint of the wavelength of polarized ultraviolet rays in order to solve the above problems, the present inventors have a composition containing a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light having a wavelength of 365 nm. In producing a single-layer retardation material using an object, by irradiating polarized ultraviolet rays in which the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm is controlled to a predetermined amount or less. That is, by irradiating polarized ultraviolet rays having a larger proportion of light having a wavelength of 365 nm than light having a wavelength of 313 nm, which is generally used in liquid crystal alignment film applications, high phase difference value and refractive index anisotropy (Δn). ), And completed the present invention.
 すなわち、本発明は、
1. (I)重合体組成物を基板上に塗布し、乾燥して塗膜を形成する工程、および
(II)前記塗膜に、偏光紫外線を照射する工程、を含み、
 前記重合体組成物が、波長365nmの光で光二量化または光異性化する光反応性部位を側鎖に有する重合体を含み、
 前記偏光紫外線における、波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量が、10%以下であることを特徴とする単層位相差材の製造方法、
2. 前記波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量が、5%以下である1の単層位相差材の製造方法、
3. 前記偏光紫外線が、波長313nmの光を含まない1または2の単層位相差材の製造方法、
4. (III)前記偏光紫外線を照射した塗膜を加熱する工程を含む1~3のいずれかの単層位相差材の製造方法、
5. 前記偏光紫外線を照射する塗膜の膜厚が、0.5μm以上である1~3のいずれかの単層位相差材の製造方法、
6. 前記重合体が、下記式(a1)~(a3)で表されるいずれかの光反応性部位を有する側鎖を有する1~5のいずれかの単層位相差材の製造方法、
Figure JPOXMLDOC01-appb-C000005
(式中、A1、A2およびDは、それぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、または-NH-CO-を表し、
 Lは、炭素数1~12のアルキレン基を表し、このアルキレン基の水素原子はそれぞれ独立にハロゲン原子に置き換えられていてもよく、
 Tは、単結合または炭素数1~12のアルキレン基を表し、このアルキレン基の水素原子はハロゲン原子に置き換えられていてもよく、
 Tが単結合であるときはA2も単結合を表し、
 Y1は、2価のベンゼン環を表し、
 P1、Q1およびQ2は、それぞれ独立に、ベンゼン環および炭素数5~8の脂環式炭化水素環からなる群から選ばれる基を表し、
 Rは、水素原子、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基、または炭素数1~5のアルキルオキシ基を表し、
 Y1、P1、Q1およびQ2において、ベンゼン環に結合する水素原子は、それぞれ独立に、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、または炭素数1~5のアルキルオキシ基で置換されていてもよく、
 X1およびX2は、それぞれ独立に、単結合、-O-、-COO-または-OCO-を表し、
 n1およびn2は、それぞれ独立に0、1または2であり、
 X1の数が2となるときは、X1同士は同一でも異なっていてもよく、X2の数が2となるときは、X2同士は同一でも異なっていてもよく、
 Q1の数が2となるときは、Q1同士は同一でも異なっていてもよく、Q2の数が2となるときは、Q2同士は同一でも異なっていてもよく、破線は、結合手を表す。)
7. 前記重合体が、さらに光配向性を示さない側鎖を有する6の単層位相差材の製造方法、
8. 前記光配向性を示さない側鎖が下記式(1)~(12)からなる群から選ばれるいずれか1種の側鎖である7の単層位相差材の製造方法、
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式(1)~(12)中、A3およびA4は、それぞれ独立して、単結合、-O-、-CH2-、-C(=O)-O-、-OC(=O)-、-C(=O)NH-、または-NHC(=O)-を表し、R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、およびこれらを組み合わせて得られる基からなる群から選ばれる基を表し、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基、または炭素数1~5のアルコキシ基で置換されてもよく、R13は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、Eは、-C(=O)O-、または-OC(=O)-を表し、dは、1~12の整数を表し、k1~k5は、それぞれ独立して、0~2の整数であるが、k1~k5の合計は2以上であり、k6およびk7は、それぞれ独立して、0~2の整数であるが、k6およびk7の合計は1以上であり、m1、m2およびm3は、それぞれ独立して、1~3の整数であり、nは、0または1であり、Z1およびZ2は、それぞれ独立して、単結合、-C(=O)-、-CH2O-または-CF2-を表す。破線は結合手を表す。)
9. 前記光反応性部位を有する側鎖が、下記式(a1-1)~(a3-1)で表されるいずれかの基である6~8のいずれかの単層位相差材の製造方法、
Figure JPOXMLDOC01-appb-C000008
(式中、A2、L、T、Y1、P1、Q1、Rおよび破線は、前記と同じ意味を表す。)
を提供する。
That is, the present invention
1. 1. (I) The step of applying the polymer composition on the substrate and drying to form a coating film, and (II) the step of irradiating the coating film with polarized ultraviolet rays are included.
The polymer composition comprises a polymer having a photoreactive moiety in the side chain that is photodimerized or photoisomerized with light having a wavelength of 365 nm.
A method for producing a single-layer retardation material, wherein the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm in the polarized ultraviolet rays is 10% or less.
2. 2. 1. A method for producing a single-layer retardation material, wherein the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm is 5% or less.
3. 3. A method for producing a single-layer retardation material in which the polarized ultraviolet rays do not contain light having a wavelength of 313 nm.
4. (III) The method for producing a single-layer retardation material according to any one of 1 to 3, which comprises a step of heating a coating film irradiated with polarized ultraviolet rays.
5. The method for producing a single-layer retardation material according to any one of 1 to 3, wherein the film thickness of the coating film irradiated with the polarized ultraviolet rays is 0.5 μm or more.
6. The method for producing a single-layer retardation material according to any one of 1 to 5, wherein the polymer has a side chain having any of the photoreactive sites represented by the following formulas (a1) to (a3).
Figure JPOXMLDOC01-appb-C000005
(In the equation, A 1 , A 2 and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH-, or -NH-CO-, respectively.
L represents an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be independently replaced with a halogen atom.
T represents a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be replaced with a halogen atom.
When T is a single bond, A 2 also represents a single bond,
Y 1 represents a divalent benzene ring and represents
P 1 , Q 1 and Q 2 each independently represent a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms.
R is a hydrogen atom, a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkyloxy having 1 to 5 carbon atoms. Represents the group
In Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atom bonded to the benzene ring is independently a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkylcarbonyl group having 1 to 5 carbon atoms. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms.
X 1 and X 2 independently represent single bonds, -O-, -COO- or -OCO-, respectively.
n1 and n2 are 0, 1 or 2, respectively, respectively.
When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different.
When the number of Q 1 is 2, Q 1 may be the same or different, and when the number of Q 2 is 2, Q 2 may be the same or different. Represent a hand. )
7. 6. A method for producing a single-layer retardation material in which the polymer has a side chain that does not further exhibit photoorientity.
8. The method for producing a single-layer retardation material of 7, wherein the side chain that does not exhibit photoalignment is any one of the side chains selected from the group consisting of the following formulas (1) to (12).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
In equations (1) to (12), A 3 and A 4 are independently single-bonded, -O-, -CH 2- , -C (= O) -O-, and -OC (= O). )-, -C (= O) NH-, or -NHC (= O)-, where R 11 is -NO 2 , -CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, 1 A valent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where R 12 is a phenyl group. Represents a group selected from the group consisting of a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these. The hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 13 is a hydrogen atom. -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, 5 to 5 carbon atoms Represents a monovalent alicyclic hydrocarbon group of 8, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where E is -C (= O) O- or -OC (= O). )-, D represents an integer of 1 to 12, k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more, and k6 and k7 are. , Each independently is an integer of 0 to 2, but the sum of k6 and k7 is 1 or more, m1, m2 and m3 are independently integers of 1 to 3, and n is 0. Or 1, where Z 1 and Z 2 independently represent a single bond, -C (= O)-, -CH 2 O- or -CF 2- ; the broken line represents a bond.)
9. The method for producing a single-layer retardation material according to any one of 6 to 8, wherein the side chain having the photoreactive site is any group represented by the following formulas (a1-1) to (a3-1).
Figure JPOXMLDOC01-appb-C000008
(In the formula, A 2 , L, T, Y 1 , P 1 , Q 1 , R and the broken line have the same meanings as described above.)
I will provide a.
 本発明の製造方法によれば、従来、光反応性基を有する有機化合物の露光処理には一般的には用いられていなかった波長365nmの光の占める割合が波長313nmの光よりも多い偏光紫外線を用いているにもかからわず、位相差値および複屈折の高い単層位相差材を得ることができる。 According to the production method of the present invention, polarized ultraviolet light having a wavelength of 365 nm, which has not been generally used for exposure treatment of organic compounds having a photoreactive group, occupies a larger proportion than light having a wavelength of 313 nm. Despite the fact that is used, a single-layer retardation material having a high retardation value and birefringence can be obtained.
 以下、本発明について具体的に説明する。
 本発明の単層位相差材の製造方法は、(I)重合体組成物を基板上に塗布し、乾燥して塗膜を形成する工程、および(II)得られた塗膜に、偏光紫外線を照射する工程、を含み、重合体組成物が、波長365nmの光で光二量化または光異性化する光反応性部位を有する重合体を含み、偏光紫外線における、波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量が、10%以下であることを特徴とする。
Hereinafter, the present invention will be specifically described.
The method for producing a single-layer retardation material of the present invention is a step of (I) applying a polymer composition on a substrate and drying to form a coating film, and (II) polarized ultraviolet light on the obtained coating film. The polymer composition comprises a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light at a wavelength of 365 nm, comprising light at a wavelength of 365 nm and light at a wavelength of 313 nm in polarized ultraviolet light. The amount of light having a wavelength of 313 nm in the total amount of light is 10% or less.
[工程(I)]
 工程(I)は、重合体組成物を基板上に塗布して塗膜を形成する工程である。より具体的には、重合体組成物を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属(例えば、アルミニウム、モリブデン、クロム等)が被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、スピンコート、フローコート、ロールコート、スリットコート、スリットコートに続いたスピンコート、インクジェット法、印刷法等の方法によって塗布する。塗布した後、自然乾燥したり、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により加熱したりして、溶媒を蒸発させて塗膜を得ることができる。加熱手段により加熱する場合、その温度は特に限定されるものではないが、50~200℃が好ましく、50~150℃がより好ましい。
[Step (I)]
Step (I) is a step of applying the polymer composition on the substrate to form a coating film. More specifically, the polymer composition is coated on a substrate (for example, silicon / silicon dioxide coated substrate, silicon nitride substrate, metal (for example, aluminum, molybdenum, chromium, etc.)), a glass substrate, a quartz substrate, and the like. Bar coat, spin coat, flow coat, roll coat, etc. on ITO substrate, etc.) or film (for example, resin film such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film, etc.). It is applied by a method such as a slit coat, a spin coat following the slit coat, an inkjet method, and a printing method. After the coating, it can be naturally dried or heated by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven to evaporate the solvent to obtain a coating film. When heating by a heating means, the temperature is not particularly limited, but is preferably 50 to 200 ° C, more preferably 50 to 150 ° C.
 本発明で用いる重合体組成物は、液晶性を発現し得る感光性の側鎖型重合体、もしくは液晶性側鎖重合体と感光性側鎖重合体とを個別に有する混合側鎖型重合体(以下、単に側鎖型重合体ともいう。)を含むものであり、得られる塗膜も、液晶性と感光性とを含む側鎖型重合体を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(以下、単層位相差材ともいう。)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、側鎖型重合体自体が自己組織化により効率的に再配向する。その結果、単層位相差材として高効率な配向処理が実現し、高い光学異方性が付与された単層位相差材を得ることができる。 The polymer composition used in the present invention is a photosensitive side chain polymer capable of exhibiting liquidity, or a mixed side chain polymer having a liquid crystal side chain polymer and a photosensitive side chain polymer individually. (Hereinafter, also simply referred to as a side-chain type polymer), and the obtained coating film is also a film having a side-chain type polymer including liquidity and photosensitivity. This coating film is not subjected to a rubbing treatment, but is subjected to an orientation treatment by polarization irradiation. Then, after irradiation with polarization, the film is subjected to a step of heating the side chain polymer film to obtain a film to which optical anisotropy is imparted (hereinafter, also referred to as a single-layer retardation material). At this time, the slight anisotropy developed by the polarization irradiation becomes the driving force, and the side chain polymer itself is efficiently reoriented by self-assembly. As a result, highly efficient orientation processing can be realized as a single-layer retardation material, and a single-layer retardation material with high optical anisotropy can be obtained.
 側鎖型重合体としては、波長365nmの光で光二量化または光異性化する光反応性部位を有する重合体が用いられる。
 重合体としては、上記の性質を有する側鎖型重合体であれば特に制限はないが、下記式(a1)~(a3)で表されるいずれかの光反応性部位を有する側鎖(以下、側鎖aともいう。)を有するものが好ましく、下記式(a1-1)~(a3-1)で表されるいずれかの光反応性部位を有する側鎖を有するものがより好ましい。
 なお、溶媒への溶解性の観点から、一つの光反応性部位を有する側鎖が有するベンゼン環の数は3つ以内が好ましい。
As the side chain type polymer, a polymer having a photoreactive moiety that is photodimerized or photoisomerized with light having a wavelength of 365 nm is used.
The polymer is not particularly limited as long as it is a side chain type polymer having the above properties, but a side chain having any of the photoreactive sites represented by the following formulas (a1) to (a3) (hereinafter referred to as “side chain”). , Also referred to as side chain a), and more preferably having a side chain having any of the photoreactive sites represented by the following formulas (a1-1) to (a3-1).
From the viewpoint of solubility in a solvent, the number of benzene rings in the side chain having one photoreactive moiety is preferably 3 or less.
Figure JPOXMLDOC01-appb-C000009
(式中、破線は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, the broken line represents the bond.)
Figure JPOXMLDOC01-appb-C000010
(式中、破線は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, the broken line represents the bond.)
 上記各式において、A1、A2およびDは、それぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、または-NH-CO-を表す。
 Lは、炭素数1~12のアルキレン基を表し、このアルキレン基の水素原子はそれぞれ独立にハロゲン原子に置き換えられていてもよい。
 Tは、単結合または炭素数1~12のアルキレン基を表し、このアルキレン基の水素原子はハロゲン原子に置き換えられていてもよい。なお、Tが単結合であるときはA2も単結合を表す。
 Y1は、2価のベンゼン環を表す。
 P1、Q1およびQ2は、それぞれ独立に、ベンゼン環および炭素数5~8の脂環式炭化水素環からなる群から選ばれる基を表す。
 Rは、水素原子、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基、または炭素数1~5のアルキルオキシ基を表す。
 Y1、P1、Q1およびQ2において、ベンゼン環に結合する水素原子は、それぞれ独立に、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、または炭素数1~5のアルキルオキシ基で置換されていてもよい。
 X1およびX2は、それぞれ独立に、単結合、-O-、-COO-または-OCO-を表す。
 n1およびn2は、それぞれ独立に0、1または2である。
 X1の数が2となるときは、X1同士は同一でも異なっていてもよく、X2の数が2となるときは、X2同士は同一でも異なっていてもよく、Q1の数が2となるときは、Q1同士は同一でも異なっていてもよく、Q2の数が2となるときは、Q2同士は同一でも異なっていてもよい。
In each of the above equations, A 1 , A 2 and D independently represent a single bond, -O-, -CH 2- , -COO-, -OCO-, -CONH-, or -NH-CO-. ..
L represents an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be independently replaced with a halogen atom.
T represents a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be replaced with a halogen atom. When T is a single bond, A 2 also represents a single bond.
Y 1 represents a divalent benzene ring.
P 1 , Q 1 and Q 2 each independently represent a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms.
R is a hydrogen atom, a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkyloxy having 1 to 5 carbon atoms. Represents a group.
In Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atom bonded to the benzene ring is independently a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkylcarbonyl group having 1 to 5 carbon atoms. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms.
X 1 and X 2 independently represent a single bond, -O-, -COO- or -OCO-, respectively.
n1 and n2 are 0, 1 or 2, respectively.
When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different, and the number of Q 1 When is 2, Q 1s may be the same or different, and when the number of Q 2s is 2 , Q 2s may be the same or different.
 炭素数1~12のアルキレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチレン、エチレン、プロパン-1,3-ジイル、ブタン-1,4-ジイル、ペンタン-1,5-ジイル、ヘキサン-1,6-ジイル、ヘプタン-1,7-ジイル、オクタン-1,8-ジイル、ノナン-1,9-ジイル、デカン-1,10-ジイル基等が挙げられる。
 炭素数5~8の脂環式炭化水素環の具体例としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環が挙げられる。
The alkylene group having 1 to 12 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene, ethylene, propane-1,3-diyl, butane-1,4-diyl and pentane. -1,5-diyl, hexane-1,6-diyl, heptane-1,7-diyl, octane-1,8-diyl, nonane-1,9-diyl, decane-1,10-diyl group, etc. Be done.
Specific examples of the alicyclic hydrocarbon ring having 5 to 8 carbon atoms include a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~5のアルキル基は、直鎖状、分岐状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、t-ブチル、n-ペンチル基等が挙げられる。
 炭素数1~5のアルキルカルボニル基の具体例としては、メチルカルボニル(アセチル)、エチルカルボニル、n-プロピルカルボニル、n-ブチルカルボニル、n-ペンチルカルボニル基等が挙げられる。
 炭素数3~7のシクロアルキル基の具体例としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル基等が挙げられる。
 炭素数1~5のアルキルオキシ基の具体例としては、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、n-ペンチルオキシ基等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
The alkyl group having 1 to 5 carbon atoms may be linear or branched, and specific examples thereof include methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl and n-pentyl. Group etc. can be mentioned.
Specific examples of the alkylcarbonyl group having 1 to 5 carbon atoms include methylcarbonyl (acetyl), ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl group and the like.
Specific examples of the cycloalkyl group having 3 to 7 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl group and the like.
Specific examples of the alkyloxy group having 1 to 5 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, n-pentyloxy group and the like.
 特に、重合体としては、下記式(a1-1-1)~(a3-1-1)のいずれかで表される光反応性部位を有する側鎖を有するものがより好ましい。 In particular, as the polymer, a polymer having a side chain having a photoreactive site represented by any of the following formulas (a1-1-1) to (a3-1-1) is more preferable.
Figure JPOXMLDOC01-appb-C000011
(式中、L、Q1、A2、TおよびRは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, L, Q 1 , A 2 , T and R have the same meanings as above.)
 本発明で用いる側鎖型重合体は、主鎖に感光性を有する側鎖が結合しており、波長365nmの光に感応して架橋反応または異性化反応を起こすことができる。感光性の側鎖型重合体の構造は、そのような特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。上記側鎖型重合体を単層位相差材とした際に、安定な光学異方性を得ることができる。 The side chain polymer used in the present invention has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction or an isomerization reaction in response to light having a wavelength of 365 nm. The structure of the photosensitive side chain polymer is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component. Stable optical anisotropy can be obtained when the side chain polymer is used as a single-layer retardation material.
 感光性の側鎖型重合体の構造のより具体的な例としては、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、側鎖aとを有する構造が好ましい。 More specific examples of the structure of the photosensitive side chain polymer include radical polymerizable properties such as (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide and norbornene. A structure having a main chain composed of at least one selected from the group consisting of radicals and siloxane and a side chain a is preferable.
 また、上記側鎖型重合体は、さらに光配向性を示さない側鎖(以下、側鎖bともいう。)を有していてもよい。
 このような側鎖bとしては、下記式(1)~(12)からなる群から選ばれるいずれか1種の側鎖が好ましいが、これらに限定されるものではない。
Further, the side chain type polymer may further have a side chain (hereinafter, also referred to as side chain b) that does not exhibit photoalignment.
As such a side chain b, any one of the side chains selected from the group consisting of the following formulas (1) to (12) is preferable, but the side chain b is not limited thereto.
Figure JPOXMLDOC01-appb-C000012
(破線は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000012
(The dashed line represents the bond.)
Figure JPOXMLDOC01-appb-C000013
(破線は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000013
(The dashed line represents the bond.)
 式(1)~(12)中、A3およびA4は、それぞれ独立して、単結合、-O-、-CH2-、-C(=O)-O-、-OC(=O)-、-C(=O)NH-、または-NHC(=O)-を表し、R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、およびこれらを組み合わせて得られる基からなる群から選ばれる基を表し、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基、または炭素数1~5のアルコキシ基で置換されてもよく、R13は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、Eは、-C(=O)O-、または-OC(=O)-を表し、dは、1~12の整数を表し、k1~k5は、それぞれ独立して、0~2の整数であるが、k1~k5の合計は2以上であり、k6およびk7は、それぞれ独立して、0~2の整数であるが、k6およびk7の合計は1以上であり、m1、m2およびm3は、それぞれ独立して、1~3の整数であり、nは、0または1であり、Z1およびZ2は、それぞれ独立して、単結合、-C(=O)-、-CH2O-、または-CF2-を表す。破線は結合手を表す。 In formulas (1) to (12), A 3 and A 4 are independently single-bonded, -O-, -CH 2- , -C (= O) -O-, and -OC (= O), respectively. -, -C (= O) NH-, or -NHC (= O)-, where R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent. It represents a nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where R 12 is a phenyl group or naphthyl. Represents a group selected from the group consisting of a group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these. The hydrogen atom bonded to may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 13 is a hydrogen atom,-. NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, 5 to 8 carbon atoms Represents a monovalent alicyclic hydrocarbon group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where E is -C (= O) O- or -OC (= O). -Represents, d represents an integer of 1 to 12, k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more, and k6 and k7 are. Each independently is an integer of 0 to 2, but the sum of k6 and k7 is 1 or more, m1, m2 and m3 are independently integers of 1 to 3, and n is 0 or 1 and Z 1 and Z 2 independently represent a single bond, -C (= O)-, -CH 2 O-, or -CF 2- . The dashed line represents the bond.
 上記1価窒素含有複素環基の具体例としては、ピロリジニル、ピペリジニル、ピペラジニル、ピロリル、ピリジル基等が挙げられ、炭素数5~8の1価脂環式炭化水素基の具体例としては、シクロペンチル、シクロヘキシル基等が挙げられる。
 また、アルキル基、アルコキシ基としては、上記R5で例示した基と同様のものが挙げられる。
Specific examples of the monovalent nitrogen-containing heterocyclic group include pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl, and pyridyl group, and specific examples of the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms are cyclopentyl. , Cyclohexyl group and the like.
Examples of the alkyl group and the alkoxy group include the same groups as those exemplified in R5 above.
 これらのうちでも、側鎖bとしては、式(1)~(11)のいずれかで表されるものが好ましい。 Among these, the side chain b preferably represented by any of the formulas (1) to (11).
 本発明で用いる側鎖型重合体は、式(a1)~(a3)のいずれかで表される構造を有するモノマー、必要に応じて側鎖bを与えるモノマーを重合して得ることができる。 The side chain type polymer used in the present invention can be obtained by polymerizing a monomer having a structure represented by any of the formulas (a1) to (a3) and, if necessary, a monomer giving a side chain b.
 式(a1)~(a3)のいずれかで表される構造を有するモノマー(以下、モノマーM1ともいう。)としては、下記式(M1-1)~(M1-3)で表される化合物が挙げられる。 As the monomer having the structure represented by any of the formulas (a1) to (a3) (hereinafter, also referred to as monomer M1), the compounds represented by the following formulas (M1-1) to (M1-3) are used. Can be mentioned.
Figure JPOXMLDOC01-appb-C000014
(式中、A1、A2、D、L、T、Y1、P1、Q1、Q2、R、X1、X2、n1およびn2は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, A 1 , A 2 , D, L, T, Y 1 , P 1 , Q 1 , Q 2 , R, X 1 , X 2 , n 1 and n 2 have the same meanings as above.)
 モノマーM1としては、下記式(M1-1-1)~(M1-3-1)で表されるいずれかの化合物が好ましい。 As the monomer M1, any compound represented by the following formulas (M1-1-1) to (M1-3-1) is preferable.
Figure JPOXMLDOC01-appb-C000015
(式中、A2、L、T、Y1、P1、Q1、およびRは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, A 2 , L, T, Y 1 , P 1 , Q 1 , and R have the same meanings as above.)
 特に、下記式(M1-1-1-1)~(M1-3-1-1)で表されるいずれかの化合物がより好ましい。 In particular, any compound represented by the following formulas (M1-1-1-1) to (M1-3-1-1) is more preferable.
Figure JPOXMLDOC01-appb-C000016
(式中、L、Q1、A2、TおよびRは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, L, Q 1 , A 2 , T and R have the same meanings as above.)
 上記各式中、PGは、重合性基であり、下記式PG1~PG8で表される基から選ばれる基が好ましい。なかでも、重合反応の制御が容易であるという点と重合体の安定性の観点では、PG1で表されるアクリル基またはメタクリル基が好ましい。 In each of the above formulas, PG is a polymerizable group, and a group selected from the groups represented by the following formulas PG1 to PG8 is preferable. Among them, an acrylic group or a methacrylic group represented by PG1 is preferable from the viewpoint of easy control of the polymerization reaction and the stability of the polymer.
Figure JPOXMLDOC01-appb-C000017
(式中、M1は、水素原子またはメチル基を表し、破線は、Lとの結合手を表す。)
Figure JPOXMLDOC01-appb-C000017
(In the formula, M 1 represents a hydrogen atom or a methyl group, and the broken line represents a bond with L.)
 モノマー(M1-1)としては、例えば、下記式A-1-1~A-1-12から選ばれるモノマーが挙げられる。下記式A1-1~A1-12中、PGは、上記式PG1~PG8で表される基から選ばれるいずれかの重合性基を表し、s1はメチレン基の数を表し、2~9の整数である。 Examples of the monomer (M1-1) include monomers selected from the following formulas A-1-1 to A-1-12. In the following formulas A1-1 to A1-12, PG represents any polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups and is an integer of 2 to 9. Is.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 モノマー(M1-2)としては、例えば、下記式A-2-1~A-2-8から選ばれるモノマーが挙げられる。下記式A2-1~A2-8中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1およびs2はそれぞれ独立にメチレン基の数を表し、2~9の整数である。 Examples of the monomer (M1-2) include monomers selected from the following formulas A-2-1 to A-2-8. In the following formulas A2-1 to A2-8, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 and s2 each independently represent the number of methylene groups of 2 to 9. It is an integer.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記各モノマーは、あるものは市販されており、あるものは、例えば国際公開第2014/074785号等に記載の方法で製造できる。 Some of the above-mentioned monomers are commercially available, and some can be produced by the method described in, for example, International Publication No. 2014/07475.
 モノマー(M1-3)としては、例えば、下記式A-3-1~A-3-3から選ばれるモノマーが挙げられる。下記式中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1はメチレン基の数を表し、2~9の整数である。 Examples of the monomer (M1-3) include monomers selected from the following formulas A-3-1 to A-3-3. In the following formula, PG represents a polymerizable group selected from the groups represented by the above formulas PG1 to PG8, and s1 represents the number of methylene groups, which is an integer of 2 to 9.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記モノマー(M1-3)の具体例としては、4-(6-メタクリルオキシヘキシル-1-オキシ)けい皮酸、4-(6-アクリルオキシヘキシル-1-オキシ)けい皮酸、4-(3-メタクリルオキシプロピル-1-オキシ)けい皮酸、4-(4-(6-メタクリルオキシヘキシル-1-オキシ)ベンゾイルオキシ)けい皮酸等が挙げられる。 Specific examples of the above-mentioned monomer (M1-3) include 4- (6-methacryloxyhexyl-1-oxy) cinnamic acid, 4- (6-acrylicoxyhexyl-1-oxy) cinnamic acid, and 4- (6-(6-methacrylicoxyhexyl-1-oxy) cinnamic acid. Examples thereof include 3-methacryloxypropyl-1-oxy) cinnamic acid and 4- (4- (6-methacryloxyhexyl-1-oxy) benzoyloxy) cinnamic acid.
 光配向性を示さない側鎖bを与えるモノマー(以下、モノマーM2ともいう。)は、側鎖部位にメソゲン基を形成することができるモノマーである。 The monomer that gives the side chain b that does not show photo-orientation (hereinafter, also referred to as monomer M2) is a monomer that can form a mesogen group at the side chain site.
 側鎖の有するメソゲン基としては、ビフェニルやフェニルベンゾエート等の単独でメソゲン構造となる基であっても、安息香酸等のように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては、下記の構造が好ましい。 As the mesogen group having a side chain, even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, it is a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. May be good. The following structure is preferable as the mesogen group contained in the side chain.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 モノマーM2のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種に由来する重合性基と、式(1)~(12)の少なくとも1種からなる構造を有する構造であることが好ましい。特に、モノマーM2は、重合性基として(メタ)アクリレートを有するものであるものが好ましく、側鎖の末端が-COOHであるものが好ましい。 More specific examples of the monomer M2 include hydrocarbons, (meth) acrylates, itaconates, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and other radically polymerizable groups and siloxanes. It is preferable that the structure has a structure consisting of a polymerizable group derived from at least one selected from the group and at least one of the formulas (1) to (12). In particular, the monomer M2 preferably has a (meth) acrylate as a polymerizable group, and preferably has a -COOH end in the side chain.
 モノマーM2の好ましい例としては、下記式(M2-1)~(M2-9)で表されるものが挙げられる。 Preferred examples of the monomer M2 include those represented by the following formulas (M2-1) to (M2-9).
Figure JPOXMLDOC01-appb-C000025
(式中、PGおよびs1は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000025
(In the formula, PG and s1 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000026
(式中、PGおよびs1は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, PG and s1 have the same meanings as above.)
 また、光反応性および/または液晶性の発現能を損なわない範囲で、その他のモノマーを共重合することができる。その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。 Further, other monomers can be copolymerized as long as the photoreactiveness and / or liquid crystallinity development ability is not impaired. Examples of other monomers include industrially available radical polymerization-reactive monomers. Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds, vinyl compounds and the like.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。 Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
 アクリル酸エステル化合物の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Specific examples of the acrylic acid ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-. Butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2 -Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, 8-ethyl-8-tricyclodecyl acrylate and the like can be mentioned.
 メタクリル酸エステル化合物の具体例としては、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 Specific examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-. Butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2 Examples thereof include -propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl methacrylate and the like.
 ビニル化合物の具体例としては、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。
 スチレン化合物の具体例としては、スチレン、4-メチルスチレン、4-クロロスチレン、4-ブロモスチレン等が挙げられる。
 マレイミド化合物の具体例としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
Specific examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
Specific examples of the styrene compound include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene and the like.
Specific examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 上記側鎖型重合体において、側鎖aおよび側鎖bの含有量は特に限定されるものではないが、光反応性の観点から、側鎖aは、5~99.9モル%が好ましく、10~95モル%がより好ましい。光反応性の観点から、側鎖bは、95モル%以下が好ましい。 In the above side chain type polymer, the contents of the side chain a and the side chain b are not particularly limited, but the side chain a is preferably 5 to 99.9 mol% from the viewpoint of photoreactivity. 10-95 mol% is more preferred. From the viewpoint of photoreactivity, the side chain b is preferably 95 mol% or less.
 本発明で用いる側鎖型重合体は、その他の側鎖を含んでいてもよい。その他の側鎖の含有量は、側鎖aおよび側鎖bの含有量の合計が100モル%に満たない場合に、その残りの部分である。 The side chain type polymer used in the present invention may contain other side chains. The content of the other side chains is the rest when the total content of the side chains a and b is less than 100 mol%.
 上記側鎖型重合体の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、上述したモノマーM1、必要に応じてモノマーM2およびその他のモノマーのビニル基を利用したラジカル重合、カチオン重合またはアニオン重合により製造することができる。これらの中では、反応制御のしやすさ等の観点からラジカル重合が特に好ましい。 The method for producing the side chain polymer is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by radical polymerization, cationic polymerization or anionic polymerization using the vinyl group of the above-mentioned monomer M1, the monomer M2 and other monomers as needed. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control and the like.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤(ラジカル熱重合開始剤、ラジカル光重合開始剤)や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, a known compound such as a radical polymerization initiator (radical thermal polymerization initiator, radical photopolymerization initiator) or a reversible addition-cleaving chain transfer (RAFT) polymerization reagent shall be used. Can be done.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The radical thermal polymerization initiator is a compound that generates radicals by heating to a temperature higher than the decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation). Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.) Etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, etc.) Examples thereof include sodium persulfate, ammonium persulfate, etc.), azo-based compounds (azobisisobutyronitrile, 2,2'-di (2-hydroxyethyl) azobisisobutyronitrile, etc.). The radical thermal polymerization initiator may be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy. -2-Methylpropiophenone, 2-Hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenylketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthron, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1-( 4-Molholinophenyl) -butanone-1, 4-ethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (tert-butylperoxycarbonyl) benzophenone, 3,4,4'-tri (3,4'-tri ( tert-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphinoxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3' , 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2 -(2'-Methtylyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [P-N, N-di (ethoxycarbonylmethyl)]-2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s- Triazine, 1,3-bis (trichloromethyl) -5- (4'-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-Mercaptobenzothiazole, 3,3'-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-) Dichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl -1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 3-( 2-Methyl-2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexylphenylketone, bis (5-2,4- Cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) Phenylphenylone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3, 4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2- (3-Methyl-3H-benzothiazole-2-iriden) -1-naphthalen-2-yl-etanone, 2- (3-methyl-1,3-benzothiazole-2 (3H) -iriden) -1 -(2-Benzoyl) etanone and the like can be mentioned. The radical photopolymerization initiator may be used alone or in combination of two or more.
 ラジカル重合法としては、特に限定されるものではなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a bulk polymerization method, a solution polymerization method and the like can be used.
 重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。これらの有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The organic solvent used in the polymerization reaction is not particularly limited as long as the produced polymer can be dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, dimethylsulfoxide, and tetramethylurea. , Ppyridine, dimethyl sulfone, hexamethylphosphoramide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, Methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol. -Tert-Butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, Dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethylisobutyl ether, diisobutylene , Amilacetate, butylbutyrate, butyl ether, diisobutylketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, Propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3 -Methoxypropionic acid Ethyl, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionic acid, diglime, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N- Examples thereof include dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like. These organic solvents may be used alone or in combination of two or more.
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。
 なお、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
In radical polymerization, oxygen in the organic solvent causes the polymerization reaction to be inhibited, so it is preferable to use an organic solvent that has been degassed to the extent possible.
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C, but is preferably in the range of 50 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then an organic solvent can be added.
 上述したラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~20モル%が好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。 In the above-mentioned radical polymerization reaction, when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 20 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
 上記反応により得られた反応溶液から生成したポリマーは、反応溶液を貧溶媒に投入して沈殿させて回収することができるが、この再沈殿処理は必須ではない。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。 The polymer produced from the reaction solution obtained by the above reaction can be recovered by pouring the reaction solution into a poor solvent and precipitating it, but this reprecipitation treatment is not essential. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like. The polymer put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure. Further, by repeating the operation of redissolving the recovered polymer in an organic solvent and reprecipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
 本発明で用いる側鎖型重合体は、得られる塗膜の強度、塗膜形成時の作業性および塗膜の均一性を考慮すると、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量は、2,000~2,000,000が好ましく、2,000~1,000,000がより好ましく、5,000~200,000がより一層好ましい。 The side chain polymer used in the present invention has a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film. It is preferably 2,000 to 2,000,000, more preferably 2,000 to 1,000,000, and even more preferably 5,000 to 200,000.
 本発明で用いる重合性組成物は、上述したような側鎖型重合体と、有機溶媒(良溶媒)とを含む。
 有機溶媒は、重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、シクロペンタノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、テトラヒドロフラン、テトラヒドロフルフリルアルコール等が挙げられる。これらは1種単独で使用してもよく、2種以上を混合して使用してもよい。
The polymerizable composition used in the present invention contains the side chain type polymer as described above and an organic solvent (good solvent).
The organic solvent is not particularly limited as long as it is an organic solvent that dissolves the polymer component. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-ε-caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-. Vinyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-Butoxy-N, N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethylamylketone, methylnonylketone, methylethylketone, methylisoamylketone, methylisopropylketone, cyclohexanone, cyclopentanone, ethylene carbonate , Propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, Dipropylene Glycol Monoacetate Monomethyl Ether, Dipropylene Glycol Monomethyl Ether, Dipropylene Glycol Monoethyl Ether, Dipropylene Glycol Monoacetate Monoethyl Ether, Dipropylene Glycol Monopropyl Ether, Dipropylene Glycol Monoacetate Monopropyl Ether, 3-Methyl- Examples thereof include 3-methoxybutyl acetate, tripropylene glycol methyl ether, tetrahydrofuran, tetrahydrofurfuryl alcohol and the like. These may be used alone or in combination of two or more.
 また、上記重合体組成物は、側鎖型重合体および有機溶媒(良溶媒)以外の成分を含んでもよい。その例としては、重合体組成物を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒(貧溶媒)や、化合物、位相差材と基板との密着性を向上させる化合物等が挙げられるが、これらに限定されない。 Further, the polymer composition may contain components other than the side chain type polymer and the organic solvent (good solvent). Examples thereof include a solvent (poor solvent) that improves the film thickness uniformity and surface smoothness when the polymer composition is applied, a compound, and a compound that improves the adhesion between the retardation material and the substrate. However, it is not limited to these.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒等が挙げられる。 Specific examples of solvents (poor solvents) that improve film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, and butyl carbitol. , Ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, di Dipropylene Glycol Monomethyl Ether, Diethylene Glycol, Diethylene Glycol Monoacetate, Diethylene Glycol Dimethyl Ether, Dipropylene Glycol Monoacetate Monomethyl Ether, Dipropylene Glycol Monomethyl Ether, Dipropylene Glycol Monoethyl Ether, Dipropylene Glycol Monoacetate Monoethyl Ether, Dipropylene Glycol Monopropyl Ether , Dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl buty Rate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate, n lactate -Butyl, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxypropion Ethyl ethyl acid, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionic acid, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene Solvents with low surface tension such as recall diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol. And so on.
 これらの貧溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 貧溶媒を用いる場合、その含有量は、重合体の溶解性を著しく低下させることがないように、溶媒中5~80質量%が好ましく、20~60質量%がより好ましい。
These poor solvents may be used alone or in combination of two or more.
When a poor solvent is used, the content thereof is preferably 5 to 80% by mass, more preferably 20 to 60% by mass in the solvent so as not to significantly reduce the solubility of the polymer.
 膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。これらの具体例としては、エフトップ(登録商標)301、EF303、EF352((株)トーケムプロダクツ製)、メガファック(登録商標)F171、F173、F560、F563、R-30、R-40(DIC(株)製)、フロラードFC430、FC431(スリーエム社製)、アサヒガード(登録商標)AG710(AGC(株)製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル(株)製)等が挙げられる。これらの界面活性剤の含有量は、側鎖型重合体100質量部に対し、0.01~2質量部が好ましく、0.01~1質量部がより好ましい。 Examples of the compound that improves the film thickness uniformity and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. Specific examples of these include Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), Megafuck (registered trademark) F171, F173, F560, F563, R-30, R-40 (registered trademark). DIC Co., Ltd.), Florard FC430, FC431 (3M), Asahi Guard (registered trademark) AG710 (AGC Co., Ltd.), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105 , SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) and the like. The content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the side chain polymer.
 位相差材と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物等が挙げられ、その具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-3-トリエトキシシリルプロピルトリエチレンテトラミン、N-3-トリメトキシシリルプロピルトリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。 Specific examples of the compound that improves the adhesion between the retardation material and the substrate include functional silane-containing compounds, and specific examples thereof include 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane. , 2-Aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane , 3-Ureidopropyltrimethoxysilane, 3-Ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilyl Propyltriethylenetetramine, N-3-trimethoxysilylpropyltriethylenetetramine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl -3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N -Phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane and the like can be mentioned.
 さらに、基板と位相差材の密着性の向上に加え、偏光板を構成した時のバックライトによる特性の低下等を防ぐ目的で、フェノプラスト系化合物やエポキシ基含有化合物を、重合体組成物に添加してもよい。 Further, in addition to improving the adhesion between the substrate and the retardation material, a phenoplast-based compound or an epoxy group-containing compound is added to the polymer composition for the purpose of preventing deterioration of the characteristics due to the backlight when the polarizing plate is formed. It may be added.
 フェノプラスト系添加剤の具体例を以下に示すが、これらに限定されない。 Specific examples of the phenoplast-based additive are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of the epoxy group-containing compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol Diglycidyl Ether, Glycerin Diglycidyl Ether, Dibromoneopentyl Glycol Diglycidyl Ether, 1,3,5,6-Tetraglycidyl-2,4-Hexanediol, N, N, N', N'-Tetra Examples thereof include glycidyl-m-xylylene diamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、その含有量は、重合体組成物に含まれる側鎖型重合体100質量部に対し、0.1~30質量部が好ましく、1~20質量部がより好ましい。含有量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves adhesion to the substrate is used, the content thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the side chain type polymer contained in the polymer composition, and 1 to 20 parts by mass. Parts by mass are more preferred. If the content is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal display may deteriorate.
 添加剤として、光増感剤を用いることもできる。光増感剤としては、無色増感剤および三重項増感剤が好ましい。 A photosensitizer can also be used as an additive. As the photosensitizer, a colorless sensitizer and a triplet sensitizer are preferable.
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-またはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン等)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン等)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン等)、ベンゾチアゾール、ニトロアニリン(m-またはp-ニトロアニリン、2,4,6-トリニトロアニリン等)、ニトロアセナフテン(5-ニトロアセナフテン等)、2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン等)、ナフタレン(2-ナフタレンメタノール、2-ナフタレンカルボン酸等)、アントラセン(9-アントラセンメタノール、9-アントラセンカルボン酸等)、ベンゾピラン、アゾインドリジン、メロクマリン等が挙げられる。これらのうち、好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントンおよびアセトフェノンケタールである。 Examples of the photosensitizer include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarin, carbonylbiscmarin, aromatic 2-hydroxyketone, and aromatic 2-hydroxy. Ketone (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthron, thiazolin (2-benzoylmethylene-3-methyl-β- Naftthiazolin, 2- (β-naphthoylmethylene) -3-methylbenzothiazolin, 2- (α-naphthoylmethylene) -3-methylbenzothiazolin, 2- (4-biphenoylmethylene) -3-methylbenzothiazolin , 2- (β-naphthoyl methylene) -3-methyl-β-naphthiazolin, 2- (4-biphenoyl methylene) -3-methyl-β-naphthiazolin, 2- (p-fluorobenzoyl methylene) -3 -Methyl-β-naphthiazoline, etc.), Oxazoline (2-benzoylmethylene-3-methyl-β-naphthooxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-Methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β-naphthoxazoline, etc.), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4) , 6-Trinitroaniline, etc.), Nitroacenaften (5-nitroacenaphten, etc.), 2-[(m-hydroxy-p-methoxy) styryl] benzothiazole, benzoinalkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone, etc.), Naphthalene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, etc.), Anthracene (9-anthracenemethanol, 9-anthracenecarboxylic acid, etc.), benzopyran, azoindridin, merocmarin, etc. Can be mentioned. Of these, aromatic 2-hydroxyketone (benzophenone), coumarin, ketokumarin, carbonylbisquemarin, acetophenone, anthraquinone, xanthone, thioxanthone and acetophenone ketal are preferred.
 上記重合体組成物には、上述したもののほか、本発明の効果が損なわれない範囲であれば、位相差材の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差材にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above-mentioned polymers, the polymer composition includes a dielectric or a conductive substance for the purpose of changing the electrical properties such as the dielectric constant and the conductivity of the retardation material as long as the effect of the present invention is not impaired. Further, a crosslinkable compound may be added for the purpose of increasing the hardness and the density of the film when it is used as a retardation material.
 上記重合体組成物は、単層位相差材の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、側鎖型重合体および上述した膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等が、有機溶媒(良溶媒)に溶解した溶液として調製されることが好ましい。
 ここで、側鎖型重合体の含有量は、組成物中1~20質量%が好ましく、3~20質量%がより好ましい。
The polymer composition is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention includes a side chain type polymer, a solvent or compound that improves the film thickness uniformity and surface smoothness described above, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, and the like. However, it is preferable that the solution is prepared as a solution dissolved in an organic solvent (good solvent).
Here, the content of the side chain type polymer is preferably 1 to 20% by mass, more preferably 3 to 20% by mass in the composition.
 なお、上記重合体組成物は、上述した側鎖型重合体以外に、液晶発現能および感光性能を損なわない範囲でその他の重合体が含まれていてもよい。
 その他の重合体としては、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等の、液晶性を発現し得る感光性の側鎖型重合体ではない重合体等が挙げられる。
 全重合体成分中におけるその他の重合体の含有量は、0.5~80質量%が好ましく、1~50質量%がより好ましい。
In addition to the side chain type polymer described above, the polymer composition may contain other polymers as long as the liquid crystal display ability and photosensitive performance are not impaired.
Examples of other polymers include polymers such as poly (meth) acrylate, polyamic acid, and polyimide, which are not photosensitive side chain polymers capable of exhibiting liquid crystallinity.
The content of the other polymer in the total polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass.
[工程(II)]
 工程(II)では、工程(I)で得られた塗膜に偏光紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光紫外線を照射する。
 本発明では、上記紫外線として、上述のとおり、波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量が10%以下のものを用いる。
 使用する偏光紫外線における、波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量は、10%以下であれば特に制限はないが、得られる位相差材の位相差値および複屈折をより高めるという点から、5%以下が好ましく、3%以下がより好ましく、1%以下がより一層好ましく、波長313nmの光を実質的に含まないことがさらに好ましい。なお、実質的に含まないとは、カットフィルター等で波長313nmの光をカットした偏光紫外線を意味する。
[Step (II)]
In the step (II), the coating film obtained in the step (I) is irradiated with polarized ultraviolet rays. When irradiating the film surface of the coating film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays from a certain direction via a polarizing plate.
In the present invention, as the ultraviolet rays, as described above, the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm is 10% or less.
The amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm in the polarized ultraviolet rays used is not particularly limited as long as it is 10% or less, but the phase difference value of the obtained retardation material is not particularly limited. And from the viewpoint of further enhancing birefringence, 5% or less is preferable, 3% or less is more preferable, 1% or less is even more preferable, and it is further preferable that light having a wavelength of 313 nm is substantially not contained. The term "substantially free" means polarized ultraviolet rays obtained by cutting light having a wavelength of 313 nm with a cut filter or the like.
 紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
 偏光紫外線の波長の割合の調整は、フィルター等を介して最適な波長割合を選択して行うことができる。例えば、365nmを中心波長とするバンドパスフィルタ(BPF)を用いたり、313nmよりも長波長を透過させるロングウェーブパスフィルタ(LWPF)等を用いて、波長313nmの光を減少させればよい。
As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
The wavelength ratio of the polarized ultraviolet rays can be adjusted by selecting the optimum wavelength ratio via a filter or the like. For example, light having a wavelength of 313 nm may be reduced by using a bandpass filter (BPF) having a center wavelength of 365 nm, a long wavepass filter (LWPF) that transmits a wavelength longer than 313 nm, or the like.
 偏光した紫外線の照射量は、使用する塗膜に依存する。すなわち、照射量は、塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 The irradiation amount of polarized ultraviolet rays depends on the coating film used. That is, the irradiation amount is 1 to 70 of the amount of polarized ultraviolet rays that realizes the maximum value of ΔA, which is the difference between the ultraviolet absorptance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorptivity in the vertical direction in the coating film. It is preferably in the range of%, and more preferably in the range of 1 to 50%.
[工程(III)]
 本発明の製造方法では、工程(II)で偏光紫外線を照射された塗膜を加熱する工程(III)を備えていてもよい。加熱により、塗膜に配向制御能を付与することができる。
 加熱手段としては、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等のを用いることができる。
[Step (III)]
The production method of the present invention may include a step (III) of heating the coating film irradiated with polarized ultraviolet rays in the step (II). Orientation control ability can be imparted to the coating film by heating.
As the heating means, a hot plate, a heat circulation type oven, an IR (infrared) type oven or the like can be used.
 加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができ、使用する重合性組成物に含まれる側鎖型重合体が液晶性を発現する温度(以下、液晶発現温度という。)の温度範囲内であることが好ましい。
 塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、側鎖型重合体をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内がより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、側鎖型重合体の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度が好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
The heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is developed, and the temperature at which the side chain type polymer contained in the polymerizable composition to be used develops liquid crystal color (hereinafter, liquid crystal expression). It is preferably within the temperature range of).
In the case of a thin film surface such as a coating film, the liquid crystal development temperature on the coating film surface is expected to be lower than the liquid crystal development temperature when the side chain polymer is observed in bulk. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal display temperature on the surface of the coating film. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays has a lower limit of 10 ° C lower than the lower limit of the temperature range of the liquid crystal development temperature of the side chain polymer, and an upper limit of a temperature 10 ° C lower than the upper limit of the liquid crystal temperature range. The temperature in the range is preferable. If the heating temperature is lower than the above temperature range, the effect of amplifying anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
 なお、液晶発現温度は、重合体または塗膜表面が固体相から液晶相に相転移が起きる液晶転移温度以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。例えば、130℃以下で液晶性を発現するとは、固体相から液晶相に相転移が起きる液晶転移温度が130℃以下であることを意味する。 The liquid crystal development temperature is equal to or higher than the liquid crystal transition temperature at which the surface of the polymer or the coating film undergoes a phase transition from the solid phase to the liquid crystal phase, and the isotropic phase undergoes a phase transition from the liquid crystal phase to the isotropic phase. The temperature below the phase transition temperature (Tiso). For example, exhibiting liquid crystallinity at 130 ° C. or lower means that the liquid crystal transition temperature at which a phase transition occurs from the solid phase to the liquid crystal phase is 130 ° C. or lower.
 本発明の製造方法で作製される単層位相差材の厚みは、使用する基板の段差や光学的、電気的性質を考慮して適宜選択することができ、例えば、0.5~10μmが好適であるが、本発明で用いる偏光紫外線の波長特性では、工程(II)の偏光紫外線照射時の塗膜厚みで0.5μm以上、特に3.0μm以上の膜厚であっても深部まで届くという利点がある。 The thickness of the single-layer retardation material produced by the production method of the present invention can be appropriately selected in consideration of the step of the substrate to be used and the optical and electrical properties, and is preferably 0.5 to 10 μm, for example. However, according to the wavelength characteristics of the polarized ultraviolet rays used in the present invention, the coating film thickness at the time of irradiation with the polarized ultraviolet rays in the step (II) reaches a deep part even if the film thickness is 0.5 μm or more, particularly 3.0 μm or more. There are advantages.
 以上説明した製法で得られた単層位相差材は、表示装置や記録材料等の用途に好適な光学特性を有する材料であり、特に、液晶ディスプレイ用の偏光板および位相差板等の光学補償フィルムとして好適である。 The single-layer retardation material obtained by the above-described manufacturing method is a material having optical characteristics suitable for applications such as display devices and recording materials, and in particular, optical compensation for polarizing plates and retardation plates for liquid crystal displays. Suitable as a film.
 以下、合成例、製造例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to synthetic examples, production examples, examples and comparative examples, but the present invention is not limited to the following examples.
 実施例で使用した光反応性基を有するモノマーとしてm1、m3、m4、m5、m6を、液晶性基を有するモノマーとしてm2を以下に示す。
 m1は、国際公開第2011/084546号に記載された合成法に従って合成した。m2およびm3は、特開平9-118717号公報に記載された合成法に従って合成した。m4は、Polymer, 52(25), 5788-5794; 2011に記載の合成法にて合成した。m5は、Macromolecules 2007, 40, 6355-6360に記載の合成法にて合成した。m6は、非特許文献(Macromolecules 2002, 35, 706-713)に記載の合成法にて合成した。
M1, m3, m4, m5, and m6 are shown below as the monomers having photoreactive groups used in the examples, and m2 is shown below as the monomers having liquidity groups.
m1 was synthesized according to the synthetic method described in International Publication No. 2011/0854546. m2 and m3 were synthesized according to the synthesis method described in JP-A-9-118717. m4 was synthesized by the synthetic method described in Polymer, 52 (25), 5788-5794; 2011. m5 was synthesized by the synthetic method described in Macromolecules 2007, 40, 6355-6360. m6 was synthesized by the synthetic method described in the non-patent document (Macromolecules 2002, 35, 706-713).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 その他、本実施例で用いた試薬の略号を以下に示す。
(有機溶媒)
THF:テトラヒドロフラン
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
PGME:プロピレングリコールモノメチルエーテル
PB:プロピレングリコールモノブチルエーテル
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
(界面活性剤)
R40:メガファックR-40(DIC(株)製)
(シランカップリング剤)
S-1:3-グリシドキシプロピルトリエトキシシラン(LS-4668、信越化学工業(株)製)
In addition, the abbreviations of the reagents used in this example are shown below.
(Organic solvent)
THF: Tetrahydrofuran NMP: N-Methyl-2-pyrrolidone BC: Butyl cellosolve PGME: Propylene glycol monomethyl ether PB: Propylene glycol monobutyl ether (polymerization initiator)
AIBN: 2,2'-azobisisobutyronitrile (surfactant)
R40: Megafuck R-40 (manufactured by DIC Corporation)
(Silane coupling agent)
S-1: 3-glycidoxypropyltriethoxysilane (LS-4668, manufactured by Shin-Etsu Chemical Co., Ltd.)
[1]メタクリレートポリマー粉末の合成
[合成例1]
 m1(13.3g,0.04mol)およびm2(18.4g,0.06mol)をTHF(131.2g)中に溶解させ、ダイアフラムポンプで脱気を行った後、AIBN(0.49g,0.003mol)を加え、再び脱気を行った。この後、60℃で8時間反応させ、メタクリレートポリマー溶液を得た。このポリマー溶液をメタノール(1,000mL)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末P1を得た。
[1] Synthesis of methacrylate polymer powder [Synthesis Example 1]
After dissolving m1 (13.3 g, 0.04 mol) and m2 (18.4 g, 0.06 mol) in THF (131.2 g) and degassing with a diaphragm pump, AIBN (0.49 g, 0) .003 mol) was added, and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 8 hours to obtain a methacrylate polymer solution. This polymer solution was added dropwise to methanol (1,000 mL) and the resulting precipitate was filtered. The precipitate was washed with methanol and dried under reduced pressure to obtain a methacrylate polymer powder P1.
[合成例2~5]
 使用したモノマーと重合溶剤を下記表1のように変更した以外は、合成例1と同様の手順により、メタクリレートポリマー粉末P2~P5を得た。
[Synthesis Examples 2 to 5]
Methacrylate polymer powders P2 to P5 were obtained by the same procedure as in Synthesis Example 1 except that the monomers and polymerization solvents used were changed as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
[2]ポリマー溶液の調製
[製造例1-1]
 NMP(7.5g)にメタクリレートポリマー粉末P1(3g)を加え、室温で1時間撹拌して溶解させた。この溶液に、PB(1.5g)、PGME(1.5g)、BC(1.5g)、R40(0.0015g)およびS-1(0.03g)を加え、撹拌することにより、ポリマー溶液T1を得た。このポリマー溶液T1は、そのまま位相差膜を形成するための位相差材とした。
[2] Preparation of polymer solution [Production Example 1-1]
Methacrylate polymer powder P1 (3 g) was added to NMP (7.5 g), and the mixture was dissolved by stirring at room temperature for 1 hour. To this solution, PB (1.5 g), PGME (1.5 g), BC (1.5 g), R40 (0.0015 g) and S-1 (0.03 g) are added, and the mixture is stirred to obtain a polymer solution. I got T1. This polymer solution T1 was used as a retardation material for forming a retardation film as it was.
[製造例1-2]
 NMP(7.5g)にメタクリレートポリマー粉末P2(3g)を加え、室温で1時間撹拌して溶解させた。この溶液に、PB(1.5g)、PGME(1.5g)、BC(1.5g)、R40(0.0015g)およびS-1(0.03g)を加え、撹拌することにより、ポリマー溶液T2を得た。このポリマー溶液T2は、そのまま位相差膜を形成するための位相差材とした。
[Manufacturing Example 1-2]
Methacrylate polymer powder P2 (3 g) was added to NMP (7.5 g), and the mixture was dissolved by stirring at room temperature for 1 hour. To this solution, PB (1.5 g), PGME (1.5 g), BC (1.5 g), R40 (0.0015 g) and S-1 (0.03 g) are added, and the mixture is stirred to obtain a polymer solution. I got T2. This polymer solution T2 was used as a retardation material for forming a retardation film as it was.
[製造例1-3]
 NMP(7.5g)にメタクリレートポリマー粉末P3(3g)を加え、室温で1時間撹拌して溶解させた。この溶液に、PB(1.5g)、PGME(1.5g)、BC(1.5g)、R40(0.0015g)およびS-1(0.03g)を加え、撹拌することにより、ポリマー溶液T3を得た。このポリマー溶液T3は、そのまま位相差膜を形成するための位相差材とした。
[Manufacturing Example 1-3]
Methacrylate polymer powder P3 (3 g) was added to NMP (7.5 g), and the mixture was dissolved by stirring at room temperature for 1 hour. To this solution, PB (1.5 g), PGME (1.5 g), BC (1.5 g), R40 (0.0015 g) and S-1 (0.03 g) are added, and the mixture is stirred to obtain a polymer solution. I got T3. This polymer solution T3 was used as a retardation material for forming a retardation film as it was.
[製造例1-4]
 NMP(18.1g)にメタクリレートポリマー粉末P4(5.0g)を加え、室温で1時間撹拌して溶解させた。この溶液に、PB(3.3g)、PGME(3.3g)、BC(3.3g)およびR40(0.0025g)を加え、撹拌することにより、ポリマー溶液T4を得た。このポリマー溶液T4は、そのまま位相差膜を形成するための位相差材とした。
[Manufacturing Example 1-4]
Methacrylate polymer powder P4 (5.0 g) was added to NMP (18.1 g), and the mixture was dissolved by stirring at room temperature for 1 hour. PB (3.3 g), PGME (3.3 g), BC (3.3 g) and R40 (0.0025 g) were added to this solution and stirred to obtain a polymer solution T4. This polymer solution T4 was used as a retardation material for forming a retardation film as it was.
[製造例1-5]
 NMP(7.5g)にメタクリレートポリマー粉末P5(3g)を加え、室温で1時間撹拌して溶解させた。この溶液に、PB(1.5g)、PGME(1.5g)、BC(1.5g)、R40(0.0015g)およびS-1(0.03g)を加え、撹拌することにより、ポリマー溶液T5を得た。このポリマー溶液T5は、そのまま位相差膜を形成するための位相差材とした。
[Manufacturing Example 1-5]
Methacrylate polymer powder P5 (3 g) was added to NMP (7.5 g), and the mixture was dissolved by stirring at room temperature for 1 hour. To this solution, PB (1.5 g), PGME (1.5 g), BC (1.5 g), R40 (0.0015 g) and S-1 (0.03 g) are added, and the mixture is stirred to obtain a polymer solution. I got T5. This polymer solution T5 was used as a retardation material for forming a retardation film as it was.
[3]単層位相差材の製造
[実施例1-1]
 ポリマー溶液T1を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコートし、60℃のホットプレート上で4分間乾燥し、膜厚2.0μmの位相差膜を形成した。次いで、偏光板を介して365nmの紫外線を、表3に示されるように、50、100、200、400、600、800、1000mJ/cm2で塗膜面に照射した後に、140℃の熱循環式オーブンで20分間加熱し、位相差膜付きの基板S1を作製した。
[3] Manufacture of single-layer retardation material [Example 1-1]
The polymer solution T1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a non-alkali glass substrate, and dried on a hot plate at 60 ° C. for 4 minutes to form a retardation film having a film thickness of 2.0 μm. Then, as shown in Table 3, the coating film surface was irradiated with ultraviolet rays of 365 nm through the polarizing plate at 50, 100, 200, 400, 600, 800, 1000 mJ / cm 2 , and then heat circulation at 140 ° C. The substrate S1 with a retardation film was prepared by heating in a formula oven for 20 minutes.
[実施例1-2]
 365nmの紫外線を照射する際に、325nmロングウェーブパスフィルタ(325LWPF)を用いた以外は、実施例1-1と同様にして、位相差膜付きの基板S2を作製した。
[Example 1-2]
A substrate S2 with a retardation film was produced in the same manner as in Example 1-1 except that a 325 nm long wave pass filter (325 LWPF) was used when irradiating with ultraviolet rays of 365 nm.
[実施例1-3]
 ポリマー溶液にT2を用いた以外は、実施例1-2と同様にして、位相差膜付きの基板S3を作製した。
[Example 1-3]
A substrate S3 with a retardation film was prepared in the same manner as in Example 1-2 except that T2 was used as the polymer solution.
[実施例1-4]
 ポリマー溶液にT3を用いた以外は、実施例1-2と同様にして、位相差膜付きの基板S4を作製した。
[Example 1-4]
A substrate S4 with a retardation film was prepared in the same manner as in Example 1-2 except that T3 was used as the polymer solution.
[実施例1-5]
 365nmの紫外線を照射する際に、365nmバンドパスフィルタ(365BPF)を用いた以外は、実施例1-1と同様にして、位相差膜付きの基板S5を作製した。
[Example 1-5]
A substrate S5 with a retardation film was produced in the same manner as in Example 1-1 except that a 365 nm bandpass filter (365BPF) was used when irradiating with ultraviolet rays of 365 nm.
[実施例1-6]
 ポリマー溶液にT4を用いて孔径5.0μmのフィルターで濾過した後、基板上にスピンコートし、60℃のホットプレート上で4分間乾燥し、膜厚1.5μmの位相差膜を形成した。次いで、偏光板を介して波長365nmの紫外線を、表4に示されるように、50、100、200、400、800、1500mJ/cm2で塗膜面に照射した後に、130℃の熱循環式オーブンで20分間加熱し、位相差膜付きの基板S9を作製した。
[Example 1-6]
The polymer solution was filtered using T4 with a filter having a pore size of 5.0 μm, spin-coated on the substrate, and dried on a hot plate at 60 ° C. for 4 minutes to form a retardation film having a film thickness of 1.5 μm. Next, as shown in Table 4, ultraviolet rays having a wavelength of 365 nm are irradiated to the coating film surface through a polarizing plate at 50, 100, 200, 400, 800, 1500 mJ / cm 2 , and then a heat circulation method at 130 ° C. is performed. The substrate S9 with a retardation film was prepared by heating in an oven for 20 minutes.
[実施例1-7]
 ポリマー溶液にT5を用いて孔径5.0μmのフィルターで濾過した後、基板上にスピンコートし、60℃のホットプレート上で4分間乾燥し、膜厚2.0μmの位相差膜を形成した。次いで、偏光板を介して波長365nmの紫外線を、325LWPFを用いて、表5に示されるように、250,500,1000,2000,4000,8000,10000mJ/cm2で塗膜面に照射した後に、160℃の熱循環式オーブンで20分間加熱し、位相差膜付きの基板S11を作製した。
[Example 1-7]
The polymer solution was filtered using T5 with a filter having a pore size of 5.0 μm, spin-coated on the substrate, and dried on a hot plate at 60 ° C. for 4 minutes to form a retardation film having a film thickness of 2.0 μm. Then, after irradiating the coating film surface with ultraviolet rays having a wavelength of 365 nm via a polarizing plate at 250,500,1000,2000,4000,8000,10000 mJ / cm 2 as shown in Table 5, using 325 LWPF. , The substrate S11 with a retardation film was prepared by heating in a heat circulation type oven at 160 ° C. for 20 minutes.
[比較例1-1]
 塗膜面に偏光板を介して波長313nmの紫外線を照射した以外は、実施例1-1と同様にして、位相差膜付き基板S6を作製した。
[Comparative Example 1-1]
A substrate S6 with a retardation film was produced in the same manner as in Example 1-1 except that the coating film surface was irradiated with ultraviolet rays having a wavelength of 313 nm via a polarizing plate.
[比較例1-2]
 ポリマー溶液T2を用いた以外は、比較例1-1と同様にして、位相差膜付きの基板S7を作製した。
[Comparative Example 1-2]
A substrate S7 with a retardation film was produced in the same manner as in Comparative Example 1-1 except that the polymer solution T2 was used.
[比較例1-3]
 ポリマー溶液T3を用いた以外は、比較例1-1と同様にして、位相差膜付きの基板S8を作製した。
[Comparative Example 1-3]
A substrate S8 with a retardation film was produced in the same manner as in Comparative Example 1-1 except that the polymer solution T3 was used.
[比較例1-4]
 塗膜面に偏光板を介して波長313nmの紫外線を照射した以外は、実施例1-6と同様にして、位相差膜付きの基板S10を作製した。
[Comparative Example 1-4]
A substrate S10 with a retardation film was produced in the same manner as in Example 1-6 except that the coating film surface was irradiated with ultraviolet rays having a wavelength of 313 nm via a polarizing plate.
[比較例1-5]
 塗膜面に偏光板を介して波長313nmの紫外線をカットフィルターなしで照射した以外は、実施例1-7と同様にして、位相差膜付きの基板S12を作製した。
 上記各実施例および比較例のまとめを表2に示す。
 なお、全照射量における波長313nmの光の占める割合は、下記式により求めた。
 波長313nm光の占める割合(%)=波長313nmの放射強度/(波長313nmの放射強度+波長365nmの放射強度)*100
[Comparative Example 1-5]
A substrate S12 with a retardation film was produced in the same manner as in Example 1-7 except that the coating film surface was irradiated with ultraviolet rays having a wavelength of 313 nm via a polarizing plate without a cut filter.
Table 2 shows a summary of each of the above examples and comparative examples.
The ratio of light having a wavelength of 313 nm to the total irradiation amount was calculated by the following formula.
Ratio (%) of light with wavelength 313 nm = Radiant intensity at wavelength 313 nm / (Radiation intensity at wavelength 313 nm + Radiant intensity at wavelength 365 nm) * 100
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 上記各実施例および比較例で作製した各基板S1~S12について、位相差値およびΔn値について、下記手法により評価した。 The phase difference value and Δn value of the substrates S1 to S12 produced in each of the above Examples and Comparative Examples were evaluated by the following methods.
(1)位相差評価
 Axometrics社製のAxoScanを用いて波長550nmにおける位相差値を評価した。結果を表3~5に示す。
(1) Phase difference evaluation The phase difference value at a wavelength of 550 nm was evaluated using AxoScan manufactured by Axometrics. The results are shown in Tables 3-5.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
(2)Δn値評価
 (1)の値を膜厚で割ることにより、波長550nmにおける配向度(Δn)を算出した。結果を表6~8に示す。
(2) Evaluation of Δn value The degree of orientation (Δn) at a wavelength of 550 nm was calculated by dividing the value of (1) by the film thickness. The results are shown in Tables 6-8.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036

Claims (9)

  1.  (I)重合体組成物を基板上に塗布し、乾燥して塗膜を形成する工程、および
    (II)前記塗膜に、偏光紫外線を照射する工程、を含み、
     前記重合体組成物が、波長365nmの光で光二量化または光異性化する光反応性部位を側鎖に有する重合体を含み、
     前記偏光紫外線における、波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量が、10%以下であることを特徴とする単層位相差材の製造方法。
    (I) The step of applying the polymer composition on the substrate and drying to form a coating film, and (II) the step of irradiating the coating film with polarized ultraviolet rays are included.
    The polymer composition comprises a polymer having a photoreactive moiety in the side chain that is photodimerized or photoisomerized with light having a wavelength of 365 nm.
    A method for producing a single-layer retardation material, wherein the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm in the polarized ultraviolet rays is 10% or less.
  2.  前記波長365nmの光と波長313nmの光との合計量に占める波長313nmの光の量が、5%以下である請求項1記載の単層位相差材の製造方法。 The method for producing a single-layer retardation material according to claim 1, wherein the amount of light having a wavelength of 313 nm in the total amount of light having a wavelength of 365 nm and light having a wavelength of 313 nm is 5% or less.
  3.  前記偏光紫外線が、波長313nmの光を含まない請求項1または2記載の単層位相差材の製造方法。 The method for producing a single-layer retardation material according to claim 1 or 2, wherein the polarized ultraviolet rays do not contain light having a wavelength of 313 nm.
  4.  (III)前記偏光紫外線を照射した塗膜を加熱する工程を含む請求項1~3のいずれか1項記載の単層位相差材の製造方法。 (III) The method for producing a single-layer retardation material according to any one of claims 1 to 3, which comprises a step of heating the coating film irradiated with the polarized ultraviolet rays.
  5.  前記偏光紫外線を照射する塗膜の膜厚が、0.5μm以上である請求項1~3のいずれか1項記載の単層位相差材の製造方法。 The method for producing a single-layer retardation material according to any one of claims 1 to 3, wherein the film thickness of the coating film irradiated with the polarized ultraviolet rays is 0.5 μm or more.
  6.  前記重合体が、下記式(a1)~(a3)で表されるいずれかの光反応性部位を有する側鎖を有する請求項1~5のいずれか1項記載の単層位相差材の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、A1、A2およびDは、それぞれ独立に、単結合、-O-、-CH2-、-COO-、-OCO-、-CONH-、または-NH-CO-を表し、
     Lは、炭素数1~12のアルキレン基を表し、このアルキレン基の水素原子はそれぞれ独立にハロゲン原子に置き換えられていてもよく、
     Tは、単結合または炭素数1~12のアルキレン基を表し、このアルキレン基の水素原子はハロゲン原子に置き換えられていてもよく、
     Tが単結合であるときはA2も単結合を表し、
     Y1は、2価のベンゼン環を表し、
     P1、Q1およびQ2は、それぞれ独立に、ベンゼン環および炭素数5~8の脂環式炭化水素環からなる群から選ばれる基を表し、
     Rは、水素原子、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基、または炭素数1~5のアルキルオキシ基を表し、
     Y1、P1、Q1およびQ2において、ベンゼン環に結合する水素原子は、それぞれ独立に、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、または炭素数1~5のアルキルオキシ基で置換されていてもよく、
     X1およびX2は、それぞれ独立に、単結合、-O-、-COO-または-OCO-を表し、
     n1およびn2は、それぞれ独立に0、1または2であり、
     X1の数が2となるときは、X1同士は同一でも異なっていてもよく、X2の数が2となるときは、X2同士は同一でも異なっていてもよく、
     Q1の数が2となるときは、Q1同士は同一でも異なっていてもよく、Q2の数が2となるときは、Q2同士は同一でも異なっていてもよく、破線は、結合手を表す。)
    The production of the single-layer retardation material according to any one of claims 1 to 5, wherein the polymer has a side chain having any of the photoreactive sites represented by the following formulas (a1) to (a3). Method.
    Figure JPOXMLDOC01-appb-C000001
    (In the equation, A 1 , A 2 and D independently represent single bonds, -O-, -CH 2- , -COO-, -OCO-, -CONH-, or -NH-CO-, respectively.
    L represents an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be independently replaced with a halogen atom.
    T represents a single bond or an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom of this alkylene group may be replaced with a halogen atom.
    When T is a single bond, A 2 also represents a single bond,
    Y 1 represents a divalent benzene ring and represents
    P 1 , Q 1 and Q 2 each independently represent a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms.
    R is a hydrogen atom, a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkyloxy having 1 to 5 carbon atoms. Represents the group
    In Y 1 , P 1 , Q 1 and Q 2 , the hydrogen atom bonded to the benzene ring is independently a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkylcarbonyl group having 1 to 5 carbon atoms. , Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms.
    X 1 and X 2 independently represent a single bond, -O-, -COO- or -OCO-, respectively.
    n1 and n2 are 0, 1 or 2, respectively, respectively.
    When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different.
    When the number of Q 1 is 2, Q 1 may be the same or different, and when the number of Q 2 is 2, Q 2 may be the same or different. Represent a hand. )
  7.  前記重合体が、さらに光配向性を示さない側鎖を有する請求項6記載の単層位相差材の製造方法。 The method for producing a single-layer retardation material according to claim 6, wherein the polymer further has a side chain that does not exhibit photoalignment.
  8.  前記光配向性を示さない側鎖が下記式(1)~(12)からなる群から選ばれるいずれか1種の側鎖である請求項7記載の単層位相差材の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (式(1)~(12)中、A3およびA4は、それぞれ独立して、単結合、-O-、-CH2-、-C(=O)-O-、-OC(=O)-、-C(=O)NH-、または-NHC(=O)-を表し、R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、およびこれらを組み合わせて得られる基からなる群から選ばれる基を表し、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基、または炭素数1~5のアルコキシ基で置換されてもよく、R13は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、Eは、-C(=O)O-、または-OC(=O)-を表し、dは、1~12の整数を表し、k1~k5は、それぞれ独立して、0~2の整数であるが、k1~k5の合計は2以上であり、k6およびk7は、それぞれ独立して、0~2の整数であるが、k6およびk7の合計は1以上であり、m1、m2およびm3は、それぞれ独立して、1~3の整数であり、nは、0または1であり、Z1およびZ2は、それぞれ独立して、単結合、-C(=O)-、-CH2O-または-CF2-を表す。破線は結合手を表す。)
    The method for producing a single-layer retardation material according to claim 7, wherein the side chain that does not exhibit photoalignment is any one of the side chains selected from the group consisting of the following formulas (1) to (12).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    In equations (1) to (12), A 3 and A 4 are independently single-bonded, -O-, -CH 2- , -C (= O) -O-, and -OC (= O). )-, -C (= O) NH-, or -NHC (= O)-, where R 11 is -NO 2 , -CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, 1 A valent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where R 12 is a phenyl group. Represents a group selected from the group consisting of a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these. The hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 13 is a hydrogen atom. -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, 5 to 5 carbon atoms Represents a monovalent alicyclic hydrocarbon group of 8, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, where E is -C (= O) O- or -OC (= O). )-, D represents an integer of 1 to 12, k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more, and k6 and k7 are. , Each independently is an integer of 0 to 2, but the sum of k6 and k7 is 1 or more, m1, m2 and m3 are independently integers of 1 to 3, and n is 0. Or 1, where Z 1 and Z 2 independently represent a single bond, -C (= O)-, -CH 2 O- or -CF 2- ; the broken line represents a bond.)
  9.  前記光反応性部位を有する側鎖が、下記式(a1-1)~(a3-1)で表されるいずれかの基である請求項6~8のいずれか1項記載の単層位相差材の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、A2、L、T、Y1、P1、Q1、Rおよび破線は、前記と同じ意味を表す。)
    The single layer phase difference according to any one of claims 6 to 8, wherein the side chain having the photoreactive site is any group represented by the following formulas (a1-1) to (a3-1). Material manufacturing method.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, A 2 , L, T, Y 1 , P 1 , Q 1 , R and the broken line have the same meanings as described above.)
PCT/JP2021/035905 2020-09-30 2021-09-29 Method for producing single-layer phase difference material WO2022071409A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022554048A JPWO2022071409A1 (en) 2020-09-30 2021-09-29
KR1020237013383A KR20230079105A (en) 2020-09-30 2021-09-29 Manufacturing method of single-layer retardation material
CN202180066988.XA CN116323702A (en) 2020-09-30 2021-09-29 Method for producing single-layer phase difference material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164281 2020-09-30
JP2020164281 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071409A1 true WO2022071409A1 (en) 2022-04-07

Family

ID=80950631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035905 WO2022071409A1 (en) 2020-09-30 2021-09-29 Method for producing single-layer phase difference material

Country Status (5)

Country Link
JP (1) JPWO2022071409A1 (en)
KR (1) KR20230079105A (en)
CN (1) CN116323702A (en)
TW (1) TW202222869A (en)
WO (1) WO2022071409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095925A1 (en) * 2021-11-29 2023-06-01 日産化学株式会社 Polymer composition and single-layer retardation material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242319A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
JP2017146523A (en) * 2016-02-19 2017-08-24 富士フイルム株式会社 Optical film, polarizer, liquid crystal display device, and manufacturing method of optical film
WO2019102922A1 (en) * 2017-11-22 2019-05-31 Dic株式会社 Polymerizable liquid crystal composition, polymer of same, optically anisotropic body, and display element
JP2019085433A (en) * 2017-11-01 2019-06-06 林テレンプ株式会社 Liquid crystal polymer film and manufacturing method therefor
JP2019158953A (en) * 2018-03-08 2019-09-19 シャープ株式会社 Circularly polarizing plate, display device, and laminated retardation plate
WO2019181907A1 (en) * 2018-03-20 2019-09-26 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270407A (en) 1985-09-25 1987-03-31 Fuji Photo Film Co Ltd Preparation of orientated film
JPH09208957A (en) 1996-01-31 1997-08-12 Teijin Ltd Production of optical isomer
JP3945790B2 (en) 1997-12-25 2007-07-18 林テレンプ株式会社 Birefringent film and manufacturing method thereof
ES2494293T3 (en) 2006-09-13 2014-09-15 Rolic Ag Photoaligned Volume Retarder
JP2008164925A (en) 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd Retardation film and method for producing the same
KR101090325B1 (en) 2009-03-18 2011-12-07 동방에프티엘(주) Industrial process of high purity olmesartan medoxomil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242319A (en) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd Optical film, polarizing plate and liquid crystal display device
JP2017146523A (en) * 2016-02-19 2017-08-24 富士フイルム株式会社 Optical film, polarizer, liquid crystal display device, and manufacturing method of optical film
JP2019085433A (en) * 2017-11-01 2019-06-06 林テレンプ株式会社 Liquid crystal polymer film and manufacturing method therefor
WO2019102922A1 (en) * 2017-11-22 2019-05-31 Dic株式会社 Polymerizable liquid crystal composition, polymer of same, optically anisotropic body, and display element
JP2019158953A (en) * 2018-03-08 2019-09-19 シャープ株式会社 Circularly polarizing plate, display device, and laminated retardation plate
WO2019181907A1 (en) * 2018-03-20 2019-09-26 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095925A1 (en) * 2021-11-29 2023-06-01 日産化学株式会社 Polymer composition and single-layer retardation material

Also Published As

Publication number Publication date
TW202222869A (en) 2022-06-16
JPWO2022071409A1 (en) 2022-04-07
CN116323702A (en) 2023-06-23
KR20230079105A (en) 2023-06-05

Similar Documents

Publication Publication Date Title
KR102311484B1 (en) Polarized ultraviolet-anisotropic material
WO2020203631A1 (en) Polymer composition and single-layer retardation material
WO2020203628A1 (en) Polymer composition and mono-layer phase difference material
JP6369942B2 (en) Photoreactive composition, photo-alignment film using the same, and optically anisotropic film
CN108603036B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022071409A1 (en) Method for producing single-layer phase difference material
WO2022080378A1 (en) Method for manufacturing single-layer phase difference material
WO2023008488A1 (en) Polymer composition and single-layer retardation material
TWI668491B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
TW202039769A (en) Liquid crystal orientation agent, liquid crystal orientation film and retardation material
WO2022138932A1 (en) Method for producing single-layer phase difference film and single-layer phase difference film-forming polymer composition
WO2022210639A1 (en) Method for producing patterned single-layer phase difference film, and single-layer phase difference film-forming polymer composition
WO2024038887A1 (en) Polymer composition and single-layer retardation material
WO2024071364A1 (en) Polymer composition and single-layer retardation material
WO2023171757A1 (en) Polymer composition, single layer phase difference material, and liquid crystal alignment agent
WO2020203632A1 (en) Polymer composition and single-layer retardation material
WO2021090832A1 (en) Method for producing patterned single-layer retardation material
WO2023095925A1 (en) Polymer composition and single-layer retardation material
WO2023171760A1 (en) Phase difference film composition and single-layer phase difference material
JP6864251B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2023167636A (en) Method for manufacturing substrate having liquid crystal alignment layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554048

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237013383

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875707

Country of ref document: EP

Kind code of ref document: A1