JP3945790B2 - Birefringent film and manufacturing method thereof - Google Patents

Birefringent film and manufacturing method thereof Download PDF

Info

Publication number
JP3945790B2
JP3945790B2 JP36839497A JP36839497A JP3945790B2 JP 3945790 B2 JP3945790 B2 JP 3945790B2 JP 36839497 A JP36839497 A JP 36839497A JP 36839497 A JP36839497 A JP 36839497A JP 3945790 B2 JP3945790 B2 JP 3945790B2
Authority
JP
Japan
Prior art keywords
film
birefringent film
side chain
chemical formula
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36839497A
Other languages
Japanese (ja)
Other versions
JPH11189665A (en
Inventor
喜弘 川月
博司 小野
丈也 酒井
正雄 植月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP36839497A priority Critical patent/JP3945790B2/en
Publication of JPH11189665A publication Critical patent/JPH11189665A/en
Application granted granted Critical
Publication of JP3945790B2 publication Critical patent/JP3945790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感光性の側鎖型高分子液晶の膜に、直線偏光性の紫外線を照射して分子を配向させるすることによって、光軸と光の透過方向による位相差を制御する構造を形成した複屈折フィルム、およびその製造方法に関するものである。
特に、光軸がフィルム面に対し傾いた複屈折フィルムが液晶表示装置において視野角拡大に有効である。
【0002】
【従来の技術】
複屈折フィルムは、互いに垂直な主軸方向に振動する直線偏光成分を透過させ、この二成分間に必要な位相差を与える。
複屈折フィルムは液晶表示分野にも活用されてきており、特に光軸の傾いた複屈折フィルムが光学補償フィルムとして液晶表示装置の視野拡大に有効である。液晶表示装置は、ブラウン管式の表示装置と比較して、「平板状であるため狭い空間でも設置できる」、「軽量で持ち運び易い」、「デジタル映像であるため高速の映像通信に馴染む」、「低電圧で駆動するため消費電力が少ない」などの利点を持っており、有力な映像情報発生手段として急成長の途上にある。現在普及している液晶表示装置の多くは、ねじれネマッチク液晶を利用している。
【0003】
液晶分子は、分子の長軸方向と短軸方向で異なる屈折率を有し、複屈折性を示す。このような複屈折体に垂直に光が入射した場合と、斜めから光が入射した場合では位相差が生じる。
図1によって、液晶内にα軸、β軸、γ軸をもってなる空間をとると、その屈折率は図のような異方性の楕円体(110)で表される。液晶を2枚の偏光子で挟んだ構造から成る液晶表示装置にとって、液晶にこのような光学的異方性があると、見る方向によって表示色や表示コントラストが変化するという視野角特性が生じる。すなわち、同一の出射光であっても屈折率楕円体の長軸(101)方向にある視野(111)と、屈折率楕円体の長軸からずれた方向の視野(112)では見えかたが異なる。この種の視野角特性は液晶表示装置の視認性を低くするため、これを解消するに好適な任意の光学補償作用をもつ複屈折フィルム(およびその合理的製造方法)の開発が課題となっている。
【0004】
この光学補償作用を図2によって説明する。屈折率楕円体の傾斜した長軸(101)を含む液晶層(100)の上方に、この屈折率楕円体(110)の光学的異方性を補償する光学特性、すなわち長軸(201)をもった屈折率楕円体(210)で表される光学的異方性をもった複屈折フィルム(200)を配することによって、視野(111)と視野(112)において感知される明るさ等を同質化するものである。
このような特定の光学異方性を有した複屈折フィルムが偶然得られる可能性は非常に少ないため、任意の光学特性(光軸の傾斜度)をもった複屈折フィルムを製造する技術が必要になる。
【0005】
従来、液晶表示装置の視野角特性を改良する複屈折フィルム(製造方法)がいくつか提案されている。
たとえば、特開平3−3926号、特開平3−291601号公報には、配向膜が形成された基板に高分子液晶を塗布することにより、配向膜にそって液晶分子が配向した光学補償フィルムを得る方法が記載されている。この方法では、分子が基板(配向膜)に対して一様に垂直方向に配向してしまい、任意の光学補償特性を持たせることが困難で、視野角特性を十分に改善するには到らなかった。延伸配向させた高分子(ポリカーボネート)フィルムを用いる例も同様に分子が延伸方向に配向するため光軸を傾斜させることが困難である。また、この方法ではフィルム全面において、延伸度や厚みを正確に制御する必要があり、位相差を精度よく均一に保つのが困難である。
これに対し、光軸を傾斜させ光学補償するフィルム(製造方法)も提案されている。これは、たとえば特開平4−113301号、特開平5−80323号公報に記載されているように、一光軸(配向)性のポリカーボネート板を前記の光軸に対して斜めにスライスする方法である。この方法では、大面積の複屈折フィルムを実用的コストで得ることが困難である。光軸を傾斜させた複屈折素子としては、方解石などの無機結晶を光軸に対して斜めに切り出し、表面を研磨したものも考えられるが、これらの無機結晶は高価であり、低コストで大面積の光軸を傾斜させた複屈折フィルムを得ることはできない。
また、特開平5−5823号公報には、光異性化物質を用いる方法が記載されているが、該方法による複屈折フィルムは熱、光安定性が不足して、用途に適した複屈折フィルムとならない。
さらに、特開平7−287119号、特開平7−287120号公報では、ラビング配向膜、SiO斜方蒸着配向膜にディスコティック液晶を塗布し加熱、冷却する方法も記載されているが、大面積において均一に配向方向を均一に制御した複屈折フィルムを低コストで得ることは難しい。
【0006】
【発明が解決しようとする課題】
本発明では、上記課題を解決した合理的な複屈折フィルムの製造方法を提供する。
【0007】
【課題を解決するための手段】
課題を解決する本発明の手段は、感光性の側鎖型高分子膜に直線偏光性の紫外線を照射して任意の複屈折特性をもった複屈折フィルムを得ることを特徴とする複屈折フィルムの製造方法、(特にこの複屈折特性が光軸方向制御であることを特徴とする複屈折フィルムの製造方法)、
この製造方法において、感光性の側鎖型高分子の構造として、側鎖には少なくとも化学式1、および/または化学式2で表される構造を含み、化学式3ないし化学式4で表される構成をとることを特徴とする複屈折フィルムの製造方法、
この複屈折フィルムの製造方法において、直線偏光性の紫外線を照射する際の感光性の側鎖型高分子膜の温度が、この側鎖型高分子の等方相への転移温度(Ti )との差10℃以内の範囲にあることを特徴とする複屈折フィルムの製造方法、
この複屈折フィルムの製造方法において、感光性の側鎖型高分子膜ないしはその支持体を室温において直線偏光性の紫外線を照射し、その後に加熱、および/または冷却する工程を含むことを特徴とする複屈折フィルムの製造方法、
これらの複屈折フィルムの製造方法によって得られることを特徴とする複屈折フィルムにある。
【0008】
【作用】
本発明の製造方法(による複屈折フィルム)は、以下のような特異的作用をもっている。
直線偏光性の紫外線の照射によって、また共重合組成によって側鎖の配向を制御できる。その結果、光軸がフィルム面に対し傾いた複屈折フィルムを得ることができる。
高分子の側鎖を照射した直線偏光紫外線の電界振動方向に対し平行方向かつ照射光進行方向に対して垂直方向に配列させることができる。
照射をフィルム面に対して斜め方向からおこなうことによって、高分子の側鎖を傾斜させて配向させることができ、この傾斜は、光の照射方向と振動方向を変えることによって任意の方向に設定できる。
側鎖の配向度は直線偏光紫外線の照射量によって制御され、この側鎖の配向度により位相差が制御可能である。
【0009】
【発明の実施の形態】
以下に、本発明の実施形態を説明する。
本発明の複屈折フィルムの原料となる高分子は、液晶性高分子のメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどの置換基と、桂皮酸基(または、その誘導体基)などの感光性基を結合した構造を含む側鎖を有すると共に、感光性基の結合していないメソゲン成分を含む側鎖をある割合で含有した、炭化水素、アクリレート、メタクリレート、シロキサンなどの構造を主鎖に有する高分子である。
該高分子体の溶液を基板上に塗布(スピンコート)した高分子塗布膜を形成する。この高分子塗布膜は、製膜時には無配向であり、化学式1示される感光性の側鎖部は特定方向を向いていない。この状態を図3を参照して説明すると、塗布膜(10)中には長楕円で示される感光基を有し、かつ照射偏光紫外線の振動方向に対応した向きにある感光性の側鎖(11)と感光性の乏しい側鎖(12)が無配向に存在している。
この塗布膜に直線偏光の紫外線を照射すると、照射した直線偏光の電解振動方向かつ照射光進行方向に対し垂直方向に対応した向きにある感光性の側鎖(11)の桂皮酸基(または、その誘導体基)などの感光性基の2量化が最も鋭敏に起こる。この2量化反応は、反応式1に示すようにシクロプロパン結合を形成するものであり、この2量化反応を進めるには、化学式1の桂皮酸基の部分が反応し得る波長の直線偏光の照射をし、光反応部は照射した直線偏光の電界方向に対して垂直な方向に配向する。この反応を誘起する光の波長は、化学式1で示された−R1 〜−R5 の種類によっても異なるが、一般に200 〜500nm であり、中でも250 〜400nm の有効性が高い場合が多い。
【0010】
【化5】

Figure 0003945790
反応式1中に記した長方形は、側鎖型高分子液晶において、高分子の主鎖と感光基をつなぐ分子鎖であり、液晶成分と屈曲成分を含む。
【0011】
紫外線の照射後の塗布膜の配向状態を図4によって説明する。塗布膜(10)の化学式2で示される感光性基を有していないか、化学式1で示される感光性基を有していても(直線偏光の電界方向に向いていないため)2量化を起こさなかった側鎖(12)は、該光照射の終了後の分子運動により、2量化して側鎖(11’)と同じ方向に配列する。その結果、高分子塗布膜全体において、照射した直線偏光の電界振動方向D1かつ照射光進行方向D2に対し垂直に側鎖が配向する。
【0012】
分子運動による配向は、高分子塗膜(塗布する基板)を加熱することにより促進される。加熱温度は、感光反応した部分(すなわち配向の固定された部分)の軟化点より低く、感光反応しなかった側鎖および感光性基を有さない側鎖部分の軟化点より高いことが望ましい。
また、高分子塗布膜をTi ±10℃、好ましくはTi ±5℃、さらに好ましくはTi ±2℃(ここで、Tiは液晶相から等方相へ変化するときの相転移温度)の加温下で偏光紫外線照射することにより配向を促進することができる。例えば、化学式1〜4において、a:b=55:45、n=6、m=2、k=6、X,Y=none、W=−COO−、−R1 〜−R5 =H、−R6 =−CNの例はでは、85〜94℃が適当である。
または、直線偏光紫外線を照射した後で高分子塗膜(塗布する基板)を加熱しても未反応側鎖を配向させた膜、または加熱下で直線偏光性の紫外線を照射し配向させた膜を該高分子の軟化点温度以下まで冷却すると分子の配向が冷却された配向膜が得られる。
また、化学式2で示される感光性基を有さない側鎖は、光2量化反応の架橋点の密度を下げ、配向時の分子運動の自由度を向上させ、自身の分子配向性により再配向を促進する。
このような観点から化学式3ないし化学式4においてa:b=100:0〜0:99で作製可能であるが、a:b=100:0〜30:70であることがより望ましい。
【0013】
高分子材料の原料化合物に関する合成方法を以下に示す。
(単量体1)4,4’−ビフェニルジオールと2−クロロエタノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。最後に、塩基性の条件下において、塩化シンナモイルを加え、化学式5に示されるメタクリル酸エステルを合成した。
【化6】
Figure 0003945790
【0014】
(単量体2)4−ヒドロキシ−4’−シアノビフェニルをアルカリ条件下で1,6−ジブロモヘキサンと反応させ、4−(6−ブロモヘキシルオキシ)−4’−シアノビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−シアノ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。化学式6に示されるメタクリル酸エステルを合成した。
【化7】
Figure 0003945790
【0015】
(単量体3)4,4’−ビフェニルジオールと2−クロロヘキサノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。最後に、塩基性の条件下において、4−メトキシ塩化シンナモイルを加え、化学式7に示されるメタクリル酸エステルを合成した。
【化8】
Figure 0003945790
【0016】
(重合体1)単量体1をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体1を得た。この重合体1は、47−75℃の温度領域において、液晶性を呈した。
【0017】
(重合体2)単量体1と単量体2を様々な割合でテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体2を得た(a:b=55:45)。この重合体2は、44−95℃の温度領域において、液晶性を呈した。
【0018】
(重合体3)単量体1と単量体2を様々な割合でテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体3を得た(a:b=30:70)。この重合体3は、45−101℃の温度領域において、液晶性を呈した。
【0019】
(重合体4)単量体3をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体4を得た。この重合体4も液晶性を呈した。
【0020】
【実施例】
本発明の高分子材料は、熱分析による相転移温度の発現、偏光顕微鏡観察による液晶温度領域での、複屈折性の光学模様の発現から、液晶性の材料であることを確認した。
化学式1〜化学式3において、a:b=55:45、n=6、m=2、k=6、X,Y=none、W=−COO−、R1 〜R5 =H、R6 =−CNである、本発明の高分子材料の熱分析曲線は、昇温過程で44℃に吸熱ピーク、95℃にも吸熱ピークが認められ、偏光顕微鏡観察で、該温度領域で複屈折性の光学模様を発現する液晶性の材料であった。該高分子材料の直線偏光性紫外線の照射による側鎖の配向を、基板に塗布し製膜した高分子塗布膜に直線偏光性偏光紫外線を照射し、高分子塗布膜の照射光の電界振動方向と平行方向、垂直方向の偏光赤外スペクトルを比較することにより検証した。図6には、偏光照射30秒後の照射光の電界振動方向に対する平行方向と垂直方向の偏光赤外の差スペクトルΔAを示した。偏光照射により平行方向の−CN、O−Ph、Phの吸収が大きくなっており、照射光の電界振動方向に側鎖が配向したことを確認した。
高分子塗布膜の複屈折の大きさは直線偏光性紫外線の照射量に依存し、直線偏光性紫外線の照射時間によりたとえば図7のように変化する。図において、横軸が直線偏光性紫外線の照射時間、たて軸が複屈折を示す値dNである。
図5には本発明の配向膜の製造方法(装置)を示す。電源(2)によって励起された紫外線ランプ(1)で発生した無秩序光(6)は、光学素子(3)(例えばグランテーラープリズム)によって直線偏光性紫外線(7)に変換され、基板(5)上に塗布(コート)された樹脂膜(4)を照射角(η)で照射する。
【0021】
(実施例1〜実施例6)
実施例1〜6については、特に液晶表示装置における視野角拡大のための光学補償フィルムを想定し、所要の光軸傾斜をもったフィルムを得ることを目的とした各実施例である。
各重合体をクロロホルムに溶解し、光学的に等方性の基板に、600μmの厚さでスピンコートした。この基板を水平面に対して所要の照射角だけ傾くように配置し、(各温度条件下に)グランテーラープリズムを用いて直線偏光に変換した紫外線を照射した後、室温まで冷却(熱処理)した。
得られた複屈折フィルムの光学特性として光軸の傾斜度を、クリスタルローテーション法で測定し、目標の光軸傾斜が得られたことを確認した。
結果をまとめて表1に示す。
【0022】
(実施例7〜実施例12)
実施例7〜12については、特に液晶表示装置における位相差フィルムを想定し、所要の位相差をもったフィルムを得ることを目的とした各実施例である。
各重合体をクロロホルムに溶解し、光学的に等方性の基板に、10μmの厚さでスピンコートした。こうして調整した樹脂膜にグランテーラープリズムを用いて直線偏光に変換した紫外線を、(各温度条件下に)基板に対し垂直方向(照射角=90°)に照射した。
得られたフィルムの光学特性として位相差を測定し、目的の位相差フィルムが得られたことを確認した。
結果をまとめて表2に示す。
【0023】
【発明の効果】
以上に記述したように、本発明によれば、光反応によって複屈折フィルムが得られる。この複屈折フィルムを液晶ディスプレイ装置の位相差フィルム、その他に応用し、視野角特性等を改善できる。
簡単な操作により得られ、同一平面内に位相差の異なる領域を形成することが可能である。
光軸の傾斜した複屈折フィルムは、旋光モード、複屈折モードを利用したねじれネマチック液晶を用いた液晶表示装置において、視野角拡大用の光学補償板として活用できる。
従来、このような光軸の傾斜した複屈折フィルムを大面積、低コストで製造する方法がなかったが、本発明によって大画面液晶表示装置用の複屈折フィルムが製造可能になった。
本発明の高分子材料の複屈折フィルムでは、直線偏光性紫外線の照射により側鎖の配向したフィルムに、更に紫外線を照射することにより感光性基の2量化反応を促進させ、側鎖の配向を強固に固定することができる。このような複屈折フィルムは、耐熱性や耐光性に優れ実用性に富む。
【0024】
【図面の簡単な説明】
図1は液晶の光学特性を示す屈折率楕円体を示し、図2は図1の液晶上に複屈折フィルムを配して、光学補償する作用を説明する概念図である。
図3は紫外線照射前の高分子塗布膜内の分子(側鎖)状態を示し、図4は直線偏光性紫外線の照射後の側鎖の配向状態を示す。
図5は本発明の複屈折フィルムの製造方法を示す概念図である。
図6は直線偏光性紫外線照射後の照射光の電界振動方向に対する平行方向と垂直方向の赤外の差スペクトルΔAを示すグラフ、図7は直線偏光紫外線の照射時間による複屈折率の変化を示すグラフである。
【符号の説明】
1・・・紫外線ランプ
2・・・電源
3・・・光学素子(グランテーラープリズム)
4・・・樹脂膜
5・・・基板
6・・・無秩序光
7・・・直線偏光性紫外線
η・・・照射角
【表1】
Figure 0003945790
【表2】
Figure 0003945790
[0001]
BACKGROUND OF THE INVENTION
The present invention forms a structure that controls the phase difference depending on the optical axis and light transmission direction by aligning molecules by irradiating the film of photosensitive side chain polymer liquid crystal with linearly polarized ultraviolet rays. The present invention relates to a birefringent film and a method for producing the same.
In particular, a birefringent film whose optical axis is inclined with respect to the film surface is effective for widening the viewing angle in a liquid crystal display device.
[0002]
[Prior art]
The birefringent film transmits linearly polarized light components that vibrate in directions of principal axes perpendicular to each other, and gives a necessary phase difference between the two components.
Birefringent films have been used in the field of liquid crystal displays, and in particular, birefringent films with inclined optical axes are effective as optical compensation films for expanding the field of view of liquid crystal display devices. Compared to CRT type display devices, the liquid crystal display device is flat and can be installed even in a narrow space, “lightweight and easy to carry”, “digital video, adapts to high-speed video communication”, “ It has the advantage of “low power consumption because it is driven at a low voltage” and is rapidly growing as a powerful video information generating means. Many of the currently popular liquid crystal display devices use a twisted nematic liquid crystal.
[0003]
Liquid crystal molecules have different refractive indices in the major axis direction and the minor axis direction of the molecule, and exhibit birefringence. There is a phase difference between the case where light enters the birefringent body perpendicularly and the case where light enters obliquely.
As shown in FIG. 1, when a space having an α axis, a β axis, and a γ axis is taken in the liquid crystal, the refractive index is represented by an anisotropic ellipsoid (110) as shown in the figure. For a liquid crystal display device having a structure in which a liquid crystal is sandwiched between two polarizers, when the liquid crystal has such an optical anisotropy, a viewing angle characteristic that a display color and a display contrast change depending on a viewing direction is generated. That is, even with the same emitted light, the visual field (111) in the major axis (101) direction of the refractive index ellipsoid and the visual field (112) in a direction shifted from the major axis of the refractive index ellipsoid are not visible. Different. Since this type of viewing angle characteristic lowers the visibility of the liquid crystal display device, the development of a birefringent film (and a rational manufacturing method thereof) having an optical compensation function suitable for solving this problem becomes an issue. Yes.
[0004]
This optical compensation action will be described with reference to FIG. Above the liquid crystal layer (100) including the inclined major axis (101) of the refractive index ellipsoid, an optical characteristic for compensating the optical anisotropy of the refractive index ellipsoid (110), that is, the major axis (201) is provided. By arranging the birefringent film (200) having optical anisotropy represented by the refractive index ellipsoid (210), the brightness and the like sensed in the visual field (111) and the visual field (112) can be reduced. Homogeneous.
Since there is very little chance that a birefringent film having such specific optical anisotropy will be obtained by chance, a technique for producing a birefringent film having an arbitrary optical characteristic (tilt of the optical axis) is necessary. become.
[0005]
Conventionally, several birefringent films (manufacturing methods) for improving the viewing angle characteristics of liquid crystal display devices have been proposed.
For example, JP-A-3-3926 and JP-A-3-291601 disclose an optical compensation film in which liquid crystal molecules are aligned along an alignment film by applying a polymer liquid crystal to a substrate on which the alignment film is formed. The method of obtaining is described. In this method, the molecules are uniformly oriented in the vertical direction with respect to the substrate (alignment film), and it is difficult to provide an arbitrary optical compensation characteristic, so that the viewing angle characteristic can be sufficiently improved. There wasn't. Similarly, in the example using the stretched and oriented polymer (polycarbonate) film, it is difficult to tilt the optical axis since the molecules are oriented in the stretching direction. In this method, it is necessary to accurately control the degree of stretching and thickness over the entire surface of the film, and it is difficult to keep the phase difference accurate and uniform.
On the other hand, a film (manufacturing method) that optically compensates by tilting the optical axis has also been proposed. For example, as described in JP-A-4-113301 and JP-A-5-80323, a single optical axis (orientation) polycarbonate plate is sliced obliquely with respect to the optical axis. is there. With this method, it is difficult to obtain a large-area birefringent film at a practical cost. As a birefringent element having an inclined optical axis, an inorganic crystal such as calcite is cut out obliquely with respect to the optical axis and the surface thereof is polished. However, these inorganic crystals are expensive and low in cost and large. A birefringent film in which the optical axis of the area is inclined cannot be obtained.
Japanese Patent Application Laid-Open No. 5-5823 discloses a method using a photoisomerized substance. A birefringent film produced by the method lacks heat and light stability and is suitable for use. Not.
Furthermore, JP-A-7-287119 and JP-A-7-287120 also describe a method of applying a discotic liquid crystal to a rubbing alignment film or SiO oblique deposition alignment film and heating and cooling. It is difficult to obtain a birefringent film whose orientation direction is uniformly controlled at low cost.
[0006]
[Problems to be solved by the invention]
In this invention, the manufacturing method of the rational birefringent film which solved the said subject is provided.
[0007]
[Means for Solving the Problems]
A means of the present invention for solving the problem is to obtain a birefringent film having an arbitrary birefringence characteristic by irradiating a photosensitive side chain polymer film with linearly polarized ultraviolet rays. A manufacturing method of (in particular, a birefringent film manufacturing method characterized in that this birefringence characteristic is optical axis direction control),
In this production method, as the structure of the photosensitive side chain polymer, the side chain includes at least a structure represented by Chemical Formula 1 and / or Chemical Formula 2, and has a structure represented by Chemical Formula 3 to Chemical Formula 4. A method for producing a birefringent film,
In this method for producing a birefringent film, the temperature of the photosensitive side chain polymer film upon irradiation with linearly polarized ultraviolet light is the transition temperature (T i ) of the side chain polymer to the isotropic phase. The method for producing a birefringent film, wherein the difference is within a range of 10 ° C. or less,
The method for producing a birefringent film includes a step of irradiating a photosensitive side chain polymer film or a support thereof with linearly polarized ultraviolet rays at room temperature, and then heating and / or cooling. A method for producing a birefringent film,
The birefringent film is obtained by a method for producing these birefringent films.
[0008]
[Action]
The manufacturing method (birefringent film according to the present invention) has the following specific action.
The orientation of the side chain can be controlled by irradiation with linearly polarized ultraviolet rays and by the copolymer composition. As a result, a birefringent film whose optical axis is inclined with respect to the film surface can be obtained.
It can be arranged in a direction parallel to the electric field oscillation direction of the linearly polarized ultraviolet ray irradiated with the polymer side chain and in a direction perpendicular to the traveling direction of the irradiation light.
By irradiating the film surface obliquely, the polymer side chain can be tilted and oriented, and this tilt can be set in any direction by changing the light irradiation direction and the vibration direction. .
The degree of orientation of the side chain is controlled by the dose of linearly polarized ultraviolet light, and the phase difference can be controlled by the degree of orientation of the side chain.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The polymer used as a raw material for the birefringent film of the present invention includes a substituent such as biphenyl, terphenyl, phenylbenzoate and azobenzene, which are frequently used as a mesogenic component of a liquid crystalline polymer, and a cinnamic acid group (or a derivative group thereof). ) And other structures having a side chain including a structure having a photosensitive group bonded thereto, and containing a side chain including a mesogenic component to which no photosensitive group is bonded, such as hydrocarbons, acrylates, methacrylates, and siloxanes. In the main chain.
A polymer coating film is formed by coating (spin coating) the polymer solution on a substrate. This polymer coating film is non-oriented during film formation, and the photosensitive side chain portion represented by Chemical Formula 1 does not face a specific direction. This state will be described with reference to FIG. 3. A photosensitive side chain having a photosensitive group indicated by an ellipse in the coating film (10) and in a direction corresponding to the vibration direction of irradiated polarized ultraviolet rays ( 11) and the side chain (12) having poor photosensitivity exist in a non-oriented state.
When this coating film is irradiated with linearly polarized ultraviolet light, the cinnamate group of the photosensitive side chain (11) in the direction corresponding to the direction of electrolytic vibration of the irradiated linearly polarized light and the direction perpendicular to the traveling direction of the irradiated light (or Dimerization of photosensitive groups such as their derivative groups) occurs most sensitively. In this dimerization reaction, a cyclopropane bond is formed as shown in Reaction Formula 1, and in order to proceed with this dimerization reaction, irradiation with linearly polarized light having a wavelength at which the cinnamic acid group part of Chemical Formula 1 can react is irradiated. The photoreactive portion is oriented in a direction perpendicular to the direction of the electric field of the linearly polarized light irradiated. The wavelength of light that induces this reaction varies depending on the type of -R 1 to -R 5 represented by Chemical Formula 1, but is generally 200 to 500 nm, and in particular, the effectiveness of 250 to 400 nm is often high.
[0010]
[Chemical formula 5]
Figure 0003945790
The rectangle described in the reaction formula 1 is a molecular chain that connects the main chain of the polymer and the photosensitive group in the side chain polymer liquid crystal, and includes a liquid crystal component and a bending component.
[0011]
The orientation state of the coating film after irradiation with ultraviolet rays will be described with reference to FIG. Even if the coating film (10) does not have the photosensitive group represented by Chemical Formula 2 or has the photosensitive group represented by Chemical Formula 1 (because it does not face the electric field direction of linearly polarized light), dimerization can be performed. The side chain (12) that did not occur is dimerized and arranged in the same direction as the side chain (11 ′) by the molecular motion after the end of the light irradiation. As a result, in the entire polymer coating film, the side chains are oriented perpendicular to the electric field vibration direction D1 of the irradiated linearly polarized light and the irradiation light traveling direction D2.
[0012]
Orientation by molecular motion is promoted by heating the polymer coating (substrate to be coated). It is desirable that the heating temperature is lower than the softening point of the photoreactive portion (that is, the portion where the orientation is fixed) and higher than the softening point of the side chain portion that does not undergo the photoreaction and the side chain portion that does not have the photosensitive group.
Further, the polymer coating film T i ± 10 ℃, (the phase transition temperature in here, Ti is the change into an isotropic phase liquid crystal phase) preferably T i ± 5 ° C., more preferably T i ± 2 ° C. The alignment can be promoted by irradiating with polarized ultraviolet light under the above heating. For example, in chemical formulas 1-4, a: b = 55: 45, n = 6, m = 2, k = 6, X, Y = none, W = —COO—, —R 1 to —R 5 = H, examples of -R 6 = -CN than is suitably 85 to 94 ° C..
Alternatively, a film in which unreacted side chains are aligned even when the polymer coating (substrate to be coated) is heated after irradiation with linearly polarized ultraviolet light, or a film that is aligned by irradiation with linearly polarized ultraviolet light under heating Is cooled to a temperature equal to or lower than the softening point temperature of the polymer to obtain an alignment film in which the molecular orientation is cooled.
In addition, the side chain having no photosensitive group represented by Chemical Formula 2 reduces the density of crosslinking points in the photodimerization reaction, improves the degree of freedom of molecular movement during orientation, and reorients due to its own molecular orientation. Promote.
From such a viewpoint, in formulas 3 to 4, it can be produced at a: b = 100: 0 to 0:99, but more preferably a: b = 100: 0 to 30:70.
[0013]
A synthesis method for the raw material compound of the polymer material is shown below.
(Monomer 1) 4-Hydroxy-4′-hydroxyethoxybiphenyl was synthesized by heating 4,4′-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 5.
[Chemical 6]
Figure 0003945790
[0014]
(Monomer 2) 4-Hydroxy-4′-cyanobiphenyl was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-cyanobiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-cyano-4 ′-(6′-biphenyloxyhexyl) methacrylate. A methacrylic acid ester represented by Chemical Formula 6 was synthesized.
[Chemical 7]
Figure 0003945790
[0015]
(Monomer 3) 4-Hydroxy-4′-hydroxyethoxybiphenyl was synthesized by heating 4,4′-biphenyldiol and 2-chlorohexanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, 4-methoxycinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 7.
[Chemical 8]
Figure 0003945790
[0016]
(Polymer 1) Monomer 1 was dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. The polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.
[0017]
(Polymer 2) Monomer 1 and monomer 2 are dissolved in various proportions in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Obtained (a: b = 55: 45). The polymer 2 exhibited liquid crystallinity in a temperature range of 44 to 95 ° C.
[0018]
(Polymer 3) Monomer 1 and monomer 2 are dissolved in various proportions in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Obtained (a: b = 30: 70). The polymer 3 exhibited liquid crystallinity in a temperature range of 45 to 101 ° C.
[0019]
(Polymer 4) The monomer 3 was dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. This polymer 4 also exhibited liquid crystallinity.
[0020]
【Example】
The polymer material of the present invention was confirmed to be a liquid crystalline material from the expression of the phase transition temperature by thermal analysis and the expression of a birefringent optical pattern in the liquid crystal temperature region by observation with a polarizing microscope.
In Chemical Formulas 1 to 3, a: b = 55: 45, n = 6, m = 2, k = 6, X, Y = none, W = —COO—, R 1 to R 5 = H, R 6 = The thermal analysis curve of the polymer material of the present invention, which is —CN, shows an endothermic peak at 44 ° C. and an endothermic peak at 95 ° C. during the temperature rising process. It was a liquid crystalline material that developed an optical pattern. The direction of the side chain by irradiation of the linearly polarized UV light of the polymer material is applied to the polymer coating film formed by coating on the substrate. This was verified by comparing polarized infrared spectra in the parallel and vertical directions. FIG. 6 shows a difference spectrum ΔA between polarized infrared rays in the parallel direction and the perpendicular direction to the electric field vibration direction of the irradiation light 30 seconds after irradiation with polarized light. The absorption of -CN, O-Ph, and Ph in the parallel direction was increased by the irradiation of polarized light, and it was confirmed that the side chain was oriented in the electric field vibration direction of the irradiated light.
The magnitude of birefringence of the polymer coating film depends on the irradiation amount of the linearly polarized ultraviolet light, and varies depending on the irradiation time of the linearly polarized ultraviolet light, for example, as shown in FIG. In the figure, the horizontal axis is the irradiation time of linearly polarized ultraviolet rays, and the vertical axis is a value dN indicating birefringence.
FIG. 5 shows a method (apparatus) for producing an alignment film of the present invention. The disordered light (6) generated by the ultraviolet lamp (1) excited by the power source (2) is converted into linearly polarized ultraviolet light (7) by the optical element (3) (for example, Grand Taylor prism), and the substrate (5) The resin film (4) coated (coated) is irradiated at an irradiation angle (η).
[0021]
(Example 1 to Example 6)
Examples 1 to 6 are examples in which an optical compensation film for enlarging a viewing angle in a liquid crystal display device is assumed and a film having a required optical axis tilt is obtained.
Each polymer was dissolved in chloroform and spin-coated at a thickness of 600 μm on an optically isotropic substrate. This substrate was disposed so as to be inclined at a required irradiation angle with respect to a horizontal plane, irradiated with ultraviolet rays converted into linearly polarized light using a Grand Taylor prism (under each temperature condition), and then cooled (heat treated) to room temperature.
As the optical characteristics of the obtained birefringent film, the inclination of the optical axis was measured by the crystal rotation method, and it was confirmed that the target optical axis inclination was obtained.
The results are summarized in Table 1.
[0022]
(Example 7 to Example 12)
Examples 7 to 12 are examples for the purpose of obtaining a film having a required retardation, particularly assuming a retardation film in a liquid crystal display device.
Each polymer was dissolved in chloroform and spin-coated at a thickness of 10 μm on an optically isotropic substrate. The resin film thus adjusted was irradiated with ultraviolet rays converted into linearly polarized light using a Grand Taylor prism in a perpendicular direction (irradiation angle = 90 °) to the substrate (under each temperature condition).
The retardation was measured as the optical properties of the obtained film, and it was confirmed that the target retardation film was obtained.
The results are summarized in Table 2.
[0023]
【The invention's effect】
As described above, according to the present invention, a birefringent film can be obtained by photoreaction. This birefringent film can be applied to a retardation film of a liquid crystal display device and others to improve viewing angle characteristics and the like.
It is possible to form regions having different phase differences in the same plane obtained by a simple operation.
A birefringent film having an inclined optical axis can be used as an optical compensator for expanding a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal using an optical rotation mode and a birefringence mode.
Conventionally, there has been no method for producing such a birefringent film having an inclined optical axis in a large area and at a low cost, but the present invention makes it possible to produce a birefringent film for a large-screen liquid crystal display device.
In the birefringent film of the polymer material of the present invention, the dimerization reaction of the photosensitive group is promoted by further irradiating the film having the side chain oriented by the irradiation of the linearly polarized ultraviolet ray, thereby the orientation of the side chain is increased. It can be firmly fixed. Such a birefringent film is excellent in heat resistance and light resistance and is practical.
[0024]
[Brief description of the drawings]
FIG. 1 shows a refractive index ellipsoid showing the optical characteristics of the liquid crystal, and FIG. 2 is a conceptual diagram for explaining the optical compensation effect by arranging a birefringent film on the liquid crystal of FIG.
FIG. 3 shows the state of molecules (side chains) in the polymer coating film before irradiation with ultraviolet rays, and FIG. 4 shows the state of alignment of side chains after irradiation with linearly polarized ultraviolet rays.
FIG. 5 is a conceptual diagram showing a method for producing a birefringent film of the present invention.
FIG. 6 is a graph showing a difference spectrum ΔA between infrared rays in a parallel direction and a perpendicular direction to the electric field vibration direction of irradiated light after irradiation with linearly polarized ultraviolet rays, and FIG. 7 shows a change in birefringence with the irradiation time of linearly polarized ultraviolet rays. It is a graph.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultraviolet lamp 2 ... Power supply 3 ... Optical element (Grant Taylor prism)
4 ... Resin film 5 ... Substrate 6 ... Disordered light 7 ... Linearly polarized ultraviolet light η ... Irradiation angle [Table 1]
Figure 0003945790
[Table 2]
Figure 0003945790

Claims (4)

化学式1および化学式2で表される側鎖構造を含み、化学式3ないし化学式4で表される構成をとる感光性の側鎖型高分子膜に直線偏光性の紫外線を照射して、光軸方向を制御して任意の複屈折特性をもった複屈折フィルムを得ることを特徴とする複屈折フィルムの製造方法。
Figure 0003945790
Figure 0003945790
Figure 0003945790
Figure 0003945790
但し、化学式1〜化学式4において、n、m、k=1〜12、a:b=100:0〜1:99、
1 〜R6 =−H、−CN、−C=C−、−C=C(CN)2 、−C=CH−CN、ハロゲン基、アルキルオキシ基、X、Y=none、−COO、−OCO−、−N=N−、−C=C−、−C64 −、Z=−H、−CH3、−C25 、−C37 、ハロゲン基、W=none、−COO、−OCO−、−(O−CH2)−である。
A photosensitive side chain polymer film including a side chain structure represented by Chemical Formula 1 and Chemical Formula 2 and having a structure represented by Chemical Formula 3 to Chemical Formula 4 is irradiated with linearly polarized ultraviolet light, and the optical axis direction A birefringent film manufacturing method characterized in that a birefringent film having an arbitrary birefringence characteristic is obtained by controlling the above.
Figure 0003945790
Figure 0003945790
Figure 0003945790
Figure 0003945790
However, in Chemical Formula 1 to Chemical Formula 4, n, m, k = 1 to 12, a: b = 100: 0 to 1:99,
R 1 to R 6 = —H, —CN, —C═C—, —C═C (CN) 2 , —C═CH—CN, halogen group, alkyloxy group , X, Y = none, —COO, -OCO -, - N = N - , - C = C -, - C 6 H 4 -, Z = -H, -CH 3, -C 2 H 5, -C 3 H 7, halogen, W = none , -COO, -OCO -, - ( O-CH 2) - a.
請求項1の複屈折フィルムの製造方法において、直線偏光性の紫外線を照射する際の前記感光性の側鎖型高分子膜の温度が、この側鎖型高分子の等方相への転移温度(Ti)との差10℃以内の範囲にあることを特徴とする複屈折フィルムの製造方法。2. The method for producing a birefringent film according to claim 1, wherein the temperature of the photosensitive side chain polymer film upon irradiation with linearly polarized ultraviolet rays is a transition temperature of the side chain polymer to an isotropic phase. The method for producing a birefringent film, wherein the difference from (T i ) is within a range of 10 ° C. or less. 請求項1の複屈折フィルムの製造方法において、前記感光性の側鎖型高分子膜を室温において直線偏光性の紫外線を照射し、その後に前記高分子膜を加熱および/または冷却する工程を含むことを特徴とする複屈折フィルムの製造方法。2. The method for producing a birefringent film according to claim 1, comprising a step of irradiating the photosensitive side chain polymer film with linearly polarized ultraviolet light at room temperature, and then heating and / or cooling the polymer film. A method for producing a birefringent film. 請求項1から請求項3の複屈折フィルムの製造方法によって得られることを特徴とする複屈折フィルム。  A birefringent film obtained by the method for producing a birefringent film according to claim 1.
JP36839497A 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof Expired - Fee Related JP3945790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36839497A JP3945790B2 (en) 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36839497A JP3945790B2 (en) 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11189665A JPH11189665A (en) 1999-07-13
JP3945790B2 true JP3945790B2 (en) 2007-07-18

Family

ID=18491706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36839497A Expired - Fee Related JP3945790B2 (en) 1997-12-25 1997-12-25 Birefringent film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3945790B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9908934D0 (en) * 1999-04-19 1999-06-16 Rolic Ag Liquid crystalline compounds
JP5062457B2 (en) * 2000-08-23 2012-10-31 林テレンプ株式会社 Method for producing film having function of aligning liquid crystalline material
JP4721023B2 (en) * 2000-09-11 2011-07-13 林テレンプ株式会社 Method for producing birefringent film
JP2002090540A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Birefringent film and method for manufacturing the same
JP2002090539A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Optical phase difference film and method for manufacturing the same
JP4640540B2 (en) * 2000-09-19 2011-03-02 林テレンプ株式会社 Alignment film manufacturing method
JP2003014928A (en) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd Method for manufacturing optically anisotropic element and optically anisotropic element
JP2003014925A (en) * 2001-06-28 2003-01-15 Hayashi Telempu Co Ltd Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2003075641A (en) * 2001-09-07 2003-03-12 Hayashi Telempu Co Ltd Optical retardation film, method for manufacturing the same and liquid crystal display device using optical retardation film
KR101230145B1 (en) * 2005-04-07 2013-02-05 메르크 파텐트 게엠베하 Alignment layer
JP2006308878A (en) * 2005-04-28 2006-11-09 Hayashi Telempu Co Ltd Method for manufacturing optical element and optical element
JP4708287B2 (en) * 2006-08-25 2011-06-22 富士フイルム株式会社 Manufacturing method of optical film, optical film, polarizing plate, transfer material, liquid crystal display device, and polarized ultraviolet exposure device
JP4886474B2 (en) * 2006-11-06 2012-02-29 株式会社 日立ディスプレイズ Liquid crystal display
JP2009276652A (en) * 2008-05-16 2009-11-26 Lintec Corp Light irradiation method, method for producing optical film, and light irradiation device
JP5186397B2 (en) * 2009-01-20 2013-04-17 リンテック株式会社 Processing equipment
TWI546597B (en) 2011-06-09 2016-08-21 林技術研究所股份有限公司 Optical film laminate, method for producing the same, and liquid crystal display panel using the same
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
JP2013120350A (en) * 2011-12-08 2013-06-17 Asahi Glass Co Ltd Optical anisotropic film
JP6160073B2 (en) 2011-12-26 2017-07-12 旭硝子株式会社 Method for manufacturing liquid crystal alignment film, method for manufacturing optical element, and method for manufacturing optical recording medium processing apparatus
KR101988377B1 (en) 2012-03-09 2019-06-12 닛산 가가쿠 가부시키가이샤 Polymer, composition containing said polymer, and single-layer-coated horizontally oriented film
KR102128784B1 (en) 2013-03-15 2020-07-01 닛산 가가쿠 가부시키가이샤 Composition and single-coat type film with horizontal alignment
KR102234841B1 (en) 2013-08-23 2021-04-01 닛산 가가쿠 가부시키가이샤 Composition for forming film, and single-layer-coated horizontally oriented film
JP6409780B2 (en) 2013-10-04 2018-10-24 日産化学株式会社 Polymerizable liquid crystal compound, liquid crystal polymer, liquid crystal composition, and single layer coating type horizontal alignment film
JP7077199B2 (en) * 2018-10-01 2022-05-30 富士フイルム株式会社 Optical measuring device and orientation measuring method
JP7517327B2 (en) 2019-03-29 2024-07-17 日産化学株式会社 Polymer composition and single-layer retardation material
KR20210148158A (en) 2019-03-29 2021-12-07 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151084A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20220098362A (en) 2019-11-05 2022-07-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of patterned single-layer retardation material
KR20230079105A (en) 2020-09-30 2023-06-05 닛산 가가쿠 가부시키가이샤 Manufacturing method of single-layer retardation material
KR20240037250A (en) 2021-07-28 2024-03-21 닛산 가가쿠 가부시키가이샤 Polymer compositions and single layer phase contrast materials
WO2023095925A1 (en) 2021-11-29 2023-06-01 日産化学株式会社 Polymer composition and single-layer retardation material

Also Published As

Publication number Publication date
JPH11189665A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
JP3945790B2 (en) Birefringent film and manufacturing method thereof
JP3945789B2 (en) Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film
KR102157012B1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
US6743487B2 (en) Retardation film and process for producing the same
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
JPH04220402A (en) Manufacture of multi-directionally oriented mesogen-containing composition
JP2007232934A (en) Photo-alignment material
JP2990270B2 (en) Oriented resin film, method for producing the same, and optical element using the oriented resin film
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP4636353B2 (en) Retardation film
JP4334028B2 (en) Manufacturing method of liquid crystal display element
JPH1195205A (en) Optically anisotropic film and its production as well as liquid crystal display device
JP2002090750A (en) Alignment film and method for manufacturing the same
JP4674738B2 (en) Manufacturing method of liquid crystal display element
JP4565294B2 (en) Alignment film manufacturing method
JP2002090540A (en) Birefringent film and method for manufacturing the same
JP4721023B2 (en) Method for producing birefringent film
JP2002202406A (en) Retardation film and method for manufacturing the same
JPH09288210A (en) Optical anisotropic body film and its production as well as liquid crystal display device
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2002202408A (en) Retardation film and method for manufacturing the same
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
Syromyatnikov et al. Naphthalene containing polymers as new photoaligning materials for LCs
JP4338001B2 (en) Liquid crystal alignment film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees