JP2002090539A - Optical phase difference film and method for manufacturing the same - Google Patents

Optical phase difference film and method for manufacturing the same

Info

Publication number
JP2002090539A
JP2002090539A JP2000282916A JP2000282916A JP2002090539A JP 2002090539 A JP2002090539 A JP 2002090539A JP 2000282916 A JP2000282916 A JP 2000282916A JP 2000282916 A JP2000282916 A JP 2000282916A JP 2002090539 A JP2002090539 A JP 2002090539A
Authority
JP
Japan
Prior art keywords
film
substrate
phase difference
retardation film
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000282916A
Other languages
Japanese (ja)
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2000282916A priority Critical patent/JP2002090539A/en
Publication of JP2002090539A publication Critical patent/JP2002090539A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical phase difference film arbitrarily giving rise to optical phase difference and an optic axis direction inside a polymer material by making linearly polarized ultraviolet rays irradiate a photosensitive compound film from front and rear film surfaces and orienting molecules in the film and a method for manufacturing the same. SOLUTION: The photosensitive compound is film formed. The linearly polarized ultraviolet rays are made to irradiate the film on the front and rear surfaces by using a device consisting of an ultraviolet ray lamp, a power source and an optical element to convert natural light into polarized light (e.g. Glan- Taylor prism). Thereby the photosensitive compound molecules are efficiently oriented in a direction parallel to a field vibration direction of the irradiating linearly polarized ultraviolet rays and vertical to an advancing direction of the irradiating rays. The optic axis is oriented with an arbitrary inclination by irradiating the film source in an oblique direction. Consequently the optical film the optic axis of which is set to be in a desired direction and which has comparatively large optical phase difference even when the film is thin is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感光性化合物の膜
に、直線偏光性の紫外線を照射する(以下、偏光露光と
いう)ことによって、分子配向させ位相差と光軸方向を
任意に発現させた位相差フィルムおよび、その製造法に
関するものである。(特に、光軸がフィルム面に対し傾
いた位相差フィルムは液晶表示装置において視野角拡大
に有効である。)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a film of a photosensitive compound with a linearly polarized ultraviolet ray (hereinafter referred to as "polarization exposure") to orient the molecule to arbitrarily express a phase difference and an optical axis direction. And a method for producing the same. (Particularly, a retardation film in which the optical axis is inclined with respect to the film surface is effective for expanding the viewing angle in a liquid crystal display device.)

【0002】[0002]

【従来の技術】位相差フィルムは、互いに垂直な主軸方
向に振動する直線偏光成分を通過させ、この二成分間に
必要な位相差を与える複屈折を有するフィルムである。
このような位相差フィルムは液晶表示分野にも活用され
てきており、特に光軸の傾いた位相差フィルムは光学補
償フィルムとして液晶表示装置の視野角拡大に役立つ。
このような位相差フィルムを製造する従来技術が幾つか
ある。その一つとして、ポリカーボネートなどの高分子
材料を延伸し、高分子鎖を配向させ、延伸方向の屈折率
と、延伸方向に対し直交方向の屈折率に差異を生じさせ
る方法であるが、その問題は、延伸という工程によるた
め、分子は延伸方向に配向するため光軸を傾斜させるこ
とが実質的に不可能である点にある。上記課題にかんが
み、光軸の傾いた位相差フィルムの製造法として延伸フ
ィルムやラビングや光照射により配向処理した基材上で
液晶性化合物を配列させる方法が提案または実用化され
つつある。例えば、特開平7−287119号、特開平
7−287120号公報では、ラビング配向膜、SiO斜
方蒸着配向膜上にディスコティック液晶を配列させる方
法が記載されている。また、同様な方法として、特開平
10−278123号公報では光配向膜上に光重合開始
剤を含有したディスコティック液晶を配向させ光照射に
よりこの配向を固定する方法が記載されている。上記の
ような配向膜を用いる方法では、配向膜の配向処理、液
晶材料の配向など工程が煩雑になるなどの問題がある。
更に、光軸の傾いた位相差フィルムを製造する他の方法
として、無機誘電体を斜方蒸着する方法が提案されてい
るが、長尺状シート上に連続して蒸着膜を形成するに
は、装置が大掛かりになったり、工程が煩雑になるなど
の問題がある。また、本発明者も特開平10−2781
23号公報では感光性を有する側鎖型液晶性高分子の偏
光露光により、光軸の傾いた位相差フィルムを製造する
方法提案しているが、大きな位相差を発現させるために
はフィルムを厚くする必要があり、この場合、曇り度が
大きくなるという問題がある。
2. Description of the Related Art A retardation film is a film having a birefringence that allows a linearly polarized light component oscillating in the direction of a main axis perpendicular to each other to pass therethrough and gives a necessary phase difference between the two components.
Such a retardation film has been used in the field of liquid crystal display. In particular, a retardation film having an inclined optical axis is useful as an optical compensation film for expanding the viewing angle of a liquid crystal display device.
There are several conventional techniques for producing such retardation films. One method is to stretch a polymer material such as polycarbonate, orient the polymer chains, and cause a difference between the refractive index in the stretching direction and the refractive index in the direction perpendicular to the stretching direction. Is that, because of the stretching step, molecules are oriented in the stretching direction, so that it is practically impossible to tilt the optical axis. In view of the above problems, a method of arranging a liquid crystalline compound on a stretched film or a substrate that has been subjected to alignment treatment by rubbing or light irradiation has been proposed or put into practical use as a method for producing a retardation film having an inclined optical axis. For example, JP-A-7-287119 and JP-A-7-287120 describe a method of arranging discotic liquid crystals on a rubbing alignment film or a SiO oblique deposition alignment film. As a similar method, Japanese Patent Application Laid-Open No. 10-278123 describes a method in which a discotic liquid crystal containing a photopolymerization initiator is aligned on a photo-alignment film, and the alignment is fixed by light irradiation. The method using an alignment film as described above has problems such as complicating steps such as alignment treatment of the alignment film and alignment of the liquid crystal material.
Furthermore, as another method of manufacturing a retardation film having an inclined optical axis, a method of obliquely vapor-depositing an inorganic dielectric has been proposed, but in order to form a vapor-deposited film continuously on a long sheet. However, there are problems such as an increase in the size of the apparatus and a complicated process. The present inventor has also disclosed in Japanese Patent Laid-Open No.
No. 23 proposes a method for producing a retardation film having a tilted optical axis by polarizing exposure of a side chain type liquid crystalline polymer having photosensitivity. In this case, there is a problem that haze increases.

【0003】[0003]

【発明が解決しようとする課題】高分子フィルムの延伸
配向によって作製された位相差フィルムの位相差は、延
伸という工程によるため、分子は延伸方向に配向するた
め光軸を傾斜させることが著しく困難である。一方、配
向処理した基材上で液晶性化合物を配列させる方法や無
機誘電体の斜方蒸着する方法は、光軸を傾斜させた位相
差フィルムを作製することは可能であるが、工程が煩雑
となるため低コストで大面積の光軸を傾斜させた位相差
フィルムを得ることはできないという問題点がある。本
発明では、簡便な工程で、曇り度が低減された大量生産
に適する位相差フィルムの製造法を提供する。
The retardation of a retardation film produced by stretching and orientation of a polymer film is due to the stretching process, and the molecules are oriented in the stretching direction, so that it is extremely difficult to tilt the optical axis. It is. On the other hand, a method of arranging a liquid crystalline compound on an alignment-treated substrate or a method of obliquely depositing an inorganic dielectric can produce a retardation film with an inclined optical axis, but the process is complicated. Therefore, there is a problem that it is not possible to obtain a large-area retardation film having a large-area optical axis inclined at low cost. The present invention provides a method for producing a retardation film with reduced haze and suitable for mass production with simple steps.

【0004】[0004]

【課題を解決する手段】本発明では、感光性化合物の膜
に表裏面から偏光露光することによって、効率よく複屈
折を発現させ光軸方向を任意に発現させた位相差フィル
ムを提供する。本発明の位相差フィルムの製造方法(に
よる位相差フィルムは)では、感光性の化合物(側鎖型
液晶性高分子または液晶性化合物またはそれらの混合
体)を製膜し、膜の表裏面から偏光露光することによっ
て、膜中の分子を照射した直線偏光紫外線の電界振動方
向に対し平行方向かつ照射光の進行方向に対して垂直方
向に効率良く配向させることができる。この照射をフィ
ルム面に対して斜め方向から行なうことによって、光軸
を任意に傾斜させて配向させることができる。その結
果、光軸を所望の方向に設定した位相差フィルムを提供
できる。
According to the present invention, there is provided a retardation film in which a birefringence is efficiently developed and an optical axis direction is arbitrarily developed by subjecting a photosensitive compound film to polarized light exposure from the front and back surfaces. In the method for producing a retardation film of the present invention (the retardation film is produced), a photosensitive compound (side chain type liquid crystalline polymer or liquid crystalline compound or a mixture thereof) is formed, and from the front and back surfaces of the film. By performing the polarization exposure, the molecules in the film can be efficiently oriented in a direction parallel to the electric field oscillation direction of the linearly polarized ultraviolet light irradiated and perpendicular to the traveling direction of the irradiation light. By performing this irradiation in an oblique direction with respect to the film surface, the optical axis can be arbitrarily inclined and oriented. As a result, a retardation film in which the optical axis is set in a desired direction can be provided.

【0005】[0005]

【発明の実施の形態】本発明の位相差フィルムの製造方
法は、感光性の化合物を製膜し、膜の表裏面より偏光露
光し、必要に応じ加熱し分子配向を促進させ、膜中に位
相差を発現させることにより行われる。感光性の化合物
は支持体上に製膜し、支持体を介して偏光露光してもよ
く、この場合、支持体は感光性の化合物の反応しうる波
長の光の透過性を有している限りどのような材料でも使
用することができる。この場合の透過率が高い程、偏光
露光量が少なくて済み、製造工程上有利となる。また、
剥離性の支持体上に感光性の化合物を製膜し、剥離後、
膜の表裏面より偏光露光することもできる。更には、剥
離性の支持体上に感光性の化合物を製膜し、感光性の化
合物面を偏光露光し、粘着処理した支持体に移行したあ
と剥離面を露光することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a retardation film of the present invention, a photosensitive compound is formed into a film, the film is polarized and exposed from the front and back surfaces of the film, and if necessary, heated to promote molecular orientation. This is performed by expressing a phase difference. The photosensitive compound may be formed into a film on a support, and may be subjected to polarized light exposure through the support. In this case, the support has a transmittance of light having a wavelength to which the photosensitive compound can react. As long as any material can be used. The higher the transmittance in this case, the smaller the amount of polarized light exposure, which is advantageous in the manufacturing process. Also,
Form a photosensitive compound on a peelable support, and after peeling,
Polarized light exposure can be performed from the front and back surfaces of the film. Furthermore, a photosensitive compound may be formed on a peelable support, the photosensitive compound surface may be subjected to polarized light exposure, and after transferring to the adhesive-treated support, the peeled surface may be exposed.

【0006】本発明では、感光性の化合物に偏光露光す
ることにより位相差フィルムが製造される。該感光性の
化合物としては、感光性基を有する液晶性重合体や低分
子液晶性化合物、およびこれらと低分子液晶性化合物と
の混合体などが挙げられる(但し、これらに限定される
ものではない)。更には、液晶性を損なわない程度の低
分子を添加(例えば、配向性を向上させるための配向助
剤や耐熱性を向上させるための架橋剤)することや、液
晶性を損なうことなく液晶性を示さない単量体を共重合
してもかまわない。このような偏光露光により位相差を
発現する化合物としては、液晶性高分子のメソゲン成分
として多用されているビフェニル、ターフェニル、フェ
ニルベンゾエート、アゾベンゼンなどの置換基と、シン
ナモイル基、カルコン基、シンナミリデン基、β−(2
−フリル)アクリロイル(または、それらの誘導体)基
などの感光性基を結合した構造を含む側鎖を有し、炭化
水素、アクリレート、メタクリレート、マレイミド、N
−フェニルマレイミド、シロキサンなどの構造を主鎖に
有する液晶性高分子、もしくは該高分子と液晶性化合物
を混合した材料などが挙げられる。
In the present invention, a retardation film is produced by exposing a photosensitive compound to polarized light. Examples of the photosensitive compound include a liquid crystal polymer having a photosensitive group, a low-molecular liquid crystal compound, and a mixture of these and a low-molecular liquid crystal compound (however, the compounds are not limited thereto. Absent). Further, a small molecule that does not impair the liquid crystallinity is added (for example, an alignment aid for improving the alignment property or a cross-linking agent for improving the heat resistance), or the liquid crystallinity is not impaired. May be copolymerized. Compounds that exhibit a phase difference by such polarized light exposure include substituents such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are frequently used as a mesogen component of a liquid crystalline polymer, and cinnamoyl, chalcone, and cinnamylidene groups. , Β- (2
-Furyl) has a side chain containing a structure to which a photosensitive group such as an acryloyl (or a derivative thereof) is bonded, and contains a hydrocarbon, acrylate, methacrylate, maleimide, N
-A liquid crystalline polymer having a structure such as phenylmaleimide or siloxane in the main chain, or a material obtained by mixing the polymer with a liquid crystalline compound.

【0007】本発明に関する詳細を、例を挙げて説明す
る。前記材料のフィルムを形成する。フィルムは、形成
時には等方性であり、感光性の液晶性高分子の側鎖部
(および液晶性化合物)は特定方向を向いていない。こ
の状態を、図2に基づいて説明すると、フィルム(2
2)中では、長楕円で示される感光基を有する側鎖(2
a)〔および円柱で示される液晶性化合物(2c)〕が
無秩序に存在(共存)している。該フィルムを表裏面偏
光露光(L、L’:電界振動面は紙面と一致)すると、
図3に示すようにフィルム(33)のフィルム表面
(P)近傍と裏面(Q)近傍で照射直線偏光の電界振動
方向かつ照射光進行方向に対し垂直方向に対応した向き
にある感光性の高い配置の側鎖(3a)の光反応が優先
的に進行する。この光反応を進めるには、感光性基の部
分が反応し得る波長の直線偏光の照射を要する。この波
長は、感光性基の種類によっても異なるが、一般に200-
500nmであり、中でも250-400nmの有効性が高い場合が多
い。直線偏光の電界方向かつ照射光進行方向に対し垂直
方向に対応した向きにないため、光反応を起こさなかっ
た側鎖(3b)〔と液晶性化合物(3c)〕は、偏光露
光後の分子運動により、図4に示すようにフィルム(4
4)の表面(P’)近傍と裏面(Q’)近傍で光反応し
た側鎖(4a)と同じ方向に配向する。その結果、フィ
ルム全体において、照射した直線偏光の電界振動方向か
つ照射光進行方向に対し垂直方向に側鎖型液晶性高分子
の側鎖(4b)〔と液晶性化合物分子(4c)〕が配向
し位相差が誘起される。この位相差を効率よく誘起させ
るには感光性基を有さない側鎖を含有させ、光反応点の
密度を下げることにより、再配向時の分子運動の自由度
を向上させることも有効である。本発明の特徴である両
面照射は、フィルム内の分子配向を効果的に促進する。
これは偏光露光によりフィルム表面近傍と基板界面近傍
に異方性部分(p、q)が生じ、該異方性部分で側鎖
〔と液晶性化合物分子〕が無秩序な部分を挟み込むこと
により、側鎖〔と液晶性化合物分子〕の液晶性に起因す
る配向規制力(分子間相互作用などによる)がフィルム
内部まで及び、結果として側鎖〔と液晶性化合物分子〕
の配向がフィルム全体に及ぶためである。一方、片面か
らの照射では、図5に示すようにフィルム(55)の非
照射面〔Q’’:照射面(P’’)の対向面〕における
異方的な光反応が十分に進行せず、非照射面近傍
(Q’’)では側鎖型液晶性高分子の側鎖(5b)〔と
液晶性化合物分子(5c)〕が無秩序のままである。フ
ィルム照射面で生じた異方性による配向規制力は非照射
面近傍(Q’’)まで及ぶことがなく、フィルムの側鎖
〔と液晶性化合物分子〕の配向が不十分となる。このた
め、元来液晶性である側鎖〔と液晶性化合物分子〕は、
微小な結晶領域を無秩序に形成し、該結晶領域が光を散
乱させるためフィルムに曇りが発生する原因となる。ま
た配向が不十分なため効果的に位相差を発現することが
できない。液晶性化合物を混合する場合、液晶性化合物
は反応性を有していても有していなくてもよく、反応性
を有している場合、配向が強固に固定されるため耐熱性
の向上が期待できる。このような場合、再配向時の分子
運動を妨げないよう、偏光露光量を抑えるか反応性を調
整するなどして、光反応点の密度を制御する必要があ
る。耐熱性を高める他の手法として、二官能性化合物の
ような架橋剤を添加する方法が挙げられ、この場合に
は、分子の配向を妨げないように添加量を調整する必要
がある。本発明の位相差フィルムの製造法では、フィル
ムの両照射面で照射光の入射角度を変えることや照射光
の電界振動方向を変えることにより徐々に側鎖〔と液晶
性化合物分子〕の傾き角を変えたハイブリッド配向や配
向方向をフィルム面に垂直な軸の周りに捻ったツイスト
配向なども可能となる。
The details of the present invention will be described by way of examples. Form a film of the material. The film is isotropic at the time of formation, and the side chain portion (and the liquid crystal compound) of the photosensitive liquid crystal polymer is not oriented in a specific direction. This state will be described with reference to FIG.
In 2), a side chain (2) having a photosensitive group represented by a long ellipse
a) [and the liquid crystalline compound (2c) represented by a column] are present (coexist) randomly. When the film is subjected to polarized light exposure on the front and back surfaces (L, L ′: the electric field vibration surface matches the paper surface),
As shown in FIG. 3, a high photosensitivity in the direction corresponding to the electric field oscillation direction of irradiation linearly polarized light and the direction perpendicular to the irradiation light traveling direction near the film surface (P) and the back surface (Q) of the film (33). The photoreaction of the side chain (3a) in the configuration proceeds preferentially. In order to promote this photoreaction, it is necessary to irradiate linearly polarized light having a wavelength at which the photosensitive group can react. This wavelength varies depending on the type of photosensitive group, but is generally 200-
It is 500 nm, and 250-400 nm is particularly effective in many cases. The side chains (3b) [and the liquid crystal compound (3c)], which did not cause a photoreaction because they are not in the direction corresponding to the direction of the electric field of linearly polarized light and the direction perpendicular to the traveling direction of irradiation light, have molecular motion after polarized light exposure. As a result, as shown in FIG.
Orientation in the same direction as the side chain (4a) photoreacted near the front surface (P ') and the back surface (Q') of 4). As a result, in the entire film, the side chains (4b) [and the liquid crystal compound molecules (4c)] of the side chain type liquid crystalline polymer are oriented in the direction of the electric field oscillation of the irradiated linearly polarized light and the direction perpendicular to the direction of the irradiation light. A phase difference is induced. In order to efficiently induce this phase difference, it is also effective to include a side chain having no photosensitive group and to reduce the density of photoreaction points to improve the degree of freedom of molecular motion during reorientation. . The double-sided irradiation, which is a feature of the present invention, effectively promotes the molecular orientation in the film.
This is because anisotropic portions (p, q) are generated near the film surface and near the substrate interface by polarized light exposure, and side chains [and liquid crystal compound molecules] sandwich the disordered portions between the anisotropic portions. The alignment regulating force (due to intermolecular interaction, etc.) due to the liquid crystallinity of the chains [and the liquid crystal compound molecules] extends to the inside of the film, and as a result, the side chains [and the liquid crystal compound molecules]
This is because the orientation of the entire film extends. On the other hand, in the irradiation from one side, as shown in FIG. 5, the anisotropic light reaction on the non-irradiation surface [Q ″: the surface opposite to the irradiation surface (P ″)] of the film (55) sufficiently proceeds. In the vicinity of the non-irradiated surface (Q ''), the side chains (5b) [and the liquid crystal compound molecules (5c)] of the side chain type liquid crystalline polymer remain disordered. The alignment controlling force due to the anisotropy generated on the irradiated surface of the film does not reach near the non-irradiated surface (Q ″), and the alignment of the side chains [and the liquid crystal compound molecules] of the film becomes insufficient. For this reason, the side chain (and the liquid crystal compound molecule) which is originally liquid crystal,
A minute crystal region is randomly formed, and the crystal region scatters light, which causes clouding of the film. Further, since the orientation is insufficient, a retardation cannot be effectively exhibited. When a liquid crystal compound is mixed, the liquid crystal compound may or may not have reactivity, and when it has reactivity, the orientation is firmly fixed, so that the heat resistance is improved. Can be expected. In such a case, it is necessary to control the density of photoreaction points by suppressing the amount of polarized light exposure or adjusting the reactivity so as not to hinder the molecular motion during reorientation. Another method for improving heat resistance is to add a crosslinking agent such as a bifunctional compound. In this case, it is necessary to adjust the amount of addition so as not to hinder molecular orientation. In the method for producing a retardation film of the present invention, the inclination angle of the side chain (and the liquid crystal compound molecule) is gradually changed by changing the incident angle of the irradiation light on both irradiation surfaces of the film or changing the electric field oscillation direction of the irradiation light. It is also possible to perform a hybrid orientation in which the orientation is changed or a twist orientation in which the orientation direction is twisted around an axis perpendicular to the film surface.

【0008】本発明の実施例に用いた感光性の側鎖型液
晶性高分子の原料化合物に関する合成方法を以下に示
す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−ヒドロキシエトキシ−4’−(6−メタクリロ
イルヘキシルオキシ)ビフェニルを合成した。最後に、
塩基性の条件下において、塩化シンナモイルを加え、化
学式1に示されるメタクリル酸エステルを合成した。
A method for synthesizing the starting compound of the photosensitive side-chain type liquid crystalline polymer used in the examples of the present invention will be described below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is added under alkaline conditions with 1,
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Next, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6-methacryloylhexyloxy) biphenyl. Finally,
Under basic conditions, cinnamoyl chloride was added to synthesize a methacrylic ester represented by Chemical Formula 1.

【化1】 Embedded image

【0009】(単量体2)4−ヒドロキシ−4’−シア
ノビフェニルをアルカリ条件下で1,6−ジブロモヘキ
サンと反応させ、4−(6−ブロモヘキシルオキシ)−
4’−シアノビフェニルを合成した。次いで、リチウム
メタクリレートを反応させ、化学式2に示される4−シ
アノ−4’−(6−メタクリロイルヘキシルオキシ)ビ
フェニルを合成した。
(Monomer 2) 4-hydroxy-4'-cyanobiphenyl is reacted with 1,6-dibromohexane under alkaline conditions to give 4- (6-bromohexyloxy)-
4′-cyanobiphenyl was synthesized. Next, lithium methacrylate was reacted to synthesize 4-cyano-4 ′-(6-methacryloylhexyloxy) biphenyl represented by Chemical Formula 2.

【化2】 Embedded image

【0010】(重合体1)この単量体1をテトラヒドロ
フラン中に溶解し、反応開始剤としてAIBN(アゾビスイ
ソブチロニトリル)を添加して重合することにより重合
体1を得た。この重合体1は、47−75℃の温度領域
において、液晶性を呈した。
(Polymer 1) Polymer 1 was obtained by dissolving this monomer 1 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. This polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.

【0011】(重合体2)単量体1と単量体2をテトラ
ヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾ
ビスイソブチロニトリル)を添加して重合することによ
り重合体2を得た(a:b=55:45)。この重合体2
は、44−95℃の温度領域において、液晶性を呈し
た。
(Polymer 2) Polymer 1 is obtained by dissolving Monomer 1 and Monomer 2 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. (A: b = 55: 45). This polymer 2
Exhibited liquid crystallinity in a temperature range of 44 to 95 ° C.

【0012】(反応性液晶化合物1)p−ヒドロキシ安
息香酸メチルとブロモオクテンを、アルカリ条件下で加
熱することにより、4−オクテニルオキシ安息香酸メチ
ルを合成した。この生成物をアルカリ条件下で加熱し4
−オクテニルオキシ安息香酸を合成した。次いで、塩化
チオニルと反応させ4−オクテニルオキシ安息香酸クロ
リドを合成し、メチルヒドロキノンと反応させることに
より、化学式3に示される反応性液晶化合物1を合成し
た。
(Reactive liquid crystal compound 1) Methyl 4-octenyloxybenzoate was synthesized by heating methyl p-hydroxybenzoate and bromooctene under alkaline conditions. The product is heated under alkaline conditions and
-Octenyloxybenzoic acid was synthesized. Next, 4-octenyloxybenzoic acid chloride was synthesized by reacting with thionyl chloride, and reacted with methylhydroquinone to synthesize a reactive liquid crystal compound 1 represented by Chemical Formula 3.

【化3】 Embedded image

【0013】[0013]

【実施例】図1には、本発明の配向膜の製造方法(装
置)を、例を挙げて示す。電源(12、12’)によっ
て励起された紫外線ランプ(11、11’)で発生した
無秩序光(16、16’)は、光学素子(13、1
3’)(例えば、グランテーラープリズム)をもって直
線偏光性の紫外線(17、17’)に変換され、感光性
の化合物の反応しうる波長の光の透過性を有している基
材(15)上に塗布(コート)された感光性の化合物
(14)を照射する。実施例1から5は、本発明の製造
法により光軸の傾いた位相差フィルムを作製した実施例
である。比較例1から5は、それぞれ実施例1から5と
同様な構成の感光性の化合物をもちい塗布膜表面(片
面)からの照射により位相差フィルムを作製した比較例
である。表1にまとめて示す。
FIG. 1 shows an example of a method (apparatus) for producing an alignment film of the present invention. The disordered light (16, 16 ') generated by the ultraviolet lamp (11, 11') excited by the power supply (12, 12 ') is applied to the optical element (13, 1').
3 ') A base material (15) which is converted into linearly polarized ultraviolet rays (17, 17') by a (for example, a Glan-Taylor prism) and has a light-transmitting wavelength at which a photosensitive compound can react. The photosensitive compound (14) applied (coated) thereon is irradiated. Examples 1 to 5 are examples in which a retardation film having an inclined optical axis was produced by the production method of the present invention. Comparative Examples 1 to 5 are comparative examples in which a photosensitive compound having the same configuration as in Examples 1 to 5 was used to produce a retardation film by irradiation from the coating film surface (one side). The results are shown in Table 1.

【表1】 [Table 1]

【0014】(実施例1)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、石英基板上に約3μmの厚
さで塗布した。該基板を水平面に対して45度傾け、塗
布面が照射面となるように配置し、グランテーラープリ
ズムを用いて直線偏光に変換した紫外線を、水平面に対
し垂直方向から室温で120mJ/cm2照射し、続い
て、基板を裏返し同様に直線偏光に変換した紫外線を1
20mJ/cm2照射した。次に、100℃に加熱した
後、室温まで冷却した。このようにして得られた基板
は、光軸が基板の法線方向から20°傾き、基板面内の
位相差は148.7nmであり、曇り度は殆どなく実用
に十分耐えうるものであった。
Example 1 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Subsequently, the substrate is turned upside down and the ultraviolet light converted to linearly
Irradiation was performed at 20 mJ / cm 2 . Next, after heating to 100 ° C., it was cooled to room temperature. The substrate thus obtained had an optical axis inclined by 20 ° from the normal direction of the substrate, had a phase difference of 148.7 nm in the substrate plane, had almost no haze, and was sufficiently practical. .

【0015】(実施例2)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、石英基板上に約3μmの厚
さで塗布した。該基板を水平面に対して45度傾け、塗
布面が照射面となるように配置し、グランテーラープリ
ズムを用いて直線偏光に変換した紫外線を、水平面に対
し垂直方向から室温で120mJ/cm2照射し、続い
て、基板を裏返し同様に直線偏光に変換した紫外線を1
20mJ/cm2照射した。次に、100℃に加熱した
後、室温まで冷却した。このようにして得られた基板
は、光軸が基板の法線方向から13°傾き、基板面内の
位相差は161.1nmであった。
Example 2 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Subsequently, the substrate is turned upside down and the ultraviolet light converted to linearly
Irradiation was performed at 20 mJ / cm 2 . Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis was inclined by 13 ° from the normal direction of the substrate, and the in-plane phase difference of the substrate was 161.1 nm.

【0016】(実施例3)5重量%の重合体2をジクロ
ロエタンに溶解し、石英基板上に約3μmの厚さで塗布
した。該基板を水平面に対して45度傾け、塗布面が照
射面となるように配置し、グランテーラープリズムを用
いて直線偏光に変換した紫外線を、水平面に対し垂直方
向から室温で90mJ/cm2照射し、続いて、基板を
裏返し同様に直線偏光に変換した紫外線を90mJ/c
2照射した。次に、100℃に加熱した後、室温まで
冷却した。このようにして得られた基板は、光軸が基板
の法線方向から23°傾き、基板面内の位相差は72.
2nmであった。
Example 3 5% by weight of polymer 2 was dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coating surface was arranged so as to be the irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 90 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Then, the ultraviolet light obtained by converting the substrate to linearly polarized light by turning the substrate upside down was 90 mJ / c.
m 2 irradiation. Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis is inclined by 23 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 72.
It was 2 nm.

【0017】(実施例4)3.75重量%の重合体1お
よび1.25重量%の反応性液晶化合物1をジクロロエ
タンに溶解し、石英基板上に約3μmの厚さで塗布し
た。該基板を水平面に対して45度傾け、塗布面が照射
面となるように配置し、グランテーラープリズムを用い
て直線偏光に変換した紫外線を、水平面に対し垂直方向
から室温で60mJ/cm2照射し、続いて、基板を裏
返し同様に直線偏光に変換した紫外線を60mJ/cm
2照射した。次に、100℃に加熱した後、室温まで冷
却した。更に、非偏光の紫外線を、室温で1J/cm2
照射した。このようにして得られた基板は、光軸が基板
の法線方向から18°傾き、基板面内の位相差は83.
3nmであった。
Example 4 3.75% by weight of Polymer 1 and 1.25% by weight of Reactive Liquid Crystal Compound 1 were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 ° with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at room temperature from the direction perpendicular to the horizontal plane at 60 mJ / cm 2. Subsequently, the substrate was turned upside down and the ultraviolet light converted to linearly polarized light was turned to 60 mJ / cm.
Two irradiations were performed. Next, after heating to 100 ° C., it was cooled to room temperature. Furthermore, unpolarized ultraviolet light is applied at room temperature to 1 J / cm 2.
Irradiated. In the substrate thus obtained, the optical axis is inclined by 18 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 83.
It was 3 nm.

【0018】(実施例5)2.5重量%の重合体1、
2.5重量%の液晶材料E7(メルクジャパン)および
0.0375重量%の二官能性モノマーHX−620
(日本化薬)をジクロロエタンに溶解し、石英基板上に
約3μmの厚さで塗布した。該基板を水平面に対して4
5度傾け、塗布面が照射面となるように配置し、グラン
テーラープリズムを用いて直線偏光に変換した紫外線
を、水平面に対し垂直方向から室温で60mJ/cm2
照射し、続いて、基板を裏返し同様に直線偏光に変換し
た紫外線を60mJ/cm2照射した。次に、100℃
に加熱した後、室温まで冷却した。更に、非偏光の紫外
線を、室温で1J/cm2照射した。このようにして得
られた基板は、光軸が基板の法線方向から18°傾き、
基板面内の位相差は103.6nmであった。
Example 5 2.5% by weight of polymer 1,
2.5% by weight of liquid crystal material E7 (Merck Japan) and 0.0375% by weight of difunctional monomer HX-620
(Nippon Kayaku) was dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. Place the substrate 4
The ultraviolet light, which was tilted by 5 degrees and arranged so that the application surface became the irradiation surface, and was converted to linearly polarized light by using a Glan-Taylor prism, was irradiated at room temperature from a direction perpendicular to the horizontal plane at room temperature by 60 mJ / cm 2.
Then, the substrate was turned upside down and irradiated with UV light of 60 mJ / cm 2 similarly converted to linearly polarized light. Next, at 100 ° C
And then cooled to room temperature. Further, the substrate was irradiated with unpolarized ultraviolet light at 1 J / cm 2 at room temperature. The substrate thus obtained has an optical axis inclined by 18 ° from the normal direction of the substrate,
The in-plane retardation of the substrate was 103.6 nm.

【0019】(比較例1)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、ガラス基板上に約3μmの
厚さで塗布した。該基板を水平面に対して45度傾け、
塗布面が照射面となるように配置し、グランテーラープ
リズムを用いて直線偏光に変換した紫外線を、水平面に
対し垂直方向から室温で120mJ/cm2照射した。
次に、100℃に加熱した後、室温まで冷却した。この
ようにして得られた基板は、光軸が基板の法線方向から
22°傾き、基板面内の位相差は76.5nmであり、
曇り度は殆どなく実用に十分耐えうるものであった。
Comparative Example 1 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied on a glass substrate to a thickness of about 3 μm. Tilt the substrate 45 degrees with respect to the horizontal plane,
The coated surface was arranged as an irradiation surface, and ultraviolet light converted into linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 from a direction perpendicular to a horizontal plane at room temperature.
Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis is tilted by 22 ° from the normal direction of the substrate, the phase difference in the substrate plane is 76.5 nm,
There was almost no haze, and the film was sufficiently usable for practical use.

【0020】(比較例2)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、ガラス基板上に約3μmの
厚さで塗布した。該基板を水平面に対して30度傾け、
塗布面が照射面となるように配置し、グランテーラープ
リズムを用いて直線偏光に変換した紫外線を、水平面に
対し垂直方向から室温で120mJ/cm2照射した。
次に、100℃に加熱した後、室温まで冷却した。この
ようにして得られた基板は、光軸が基板の法線方向から
15°傾き、基板面内の位相差は82.6nmであっ
た。
Comparative Example 2 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied on a glass substrate to a thickness of about 3 μm. Tilt the substrate 30 degrees with respect to the horizontal plane,
The coated surface was arranged as an irradiation surface, and ultraviolet light converted into linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 from a direction perpendicular to a horizontal plane at room temperature.
Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis was inclined by 15 ° from the normal direction of the substrate, and the in-plane phase difference of the substrate was 82.6 nm.

【0021】(比較例3)重合体2をジクロロエタンに
溶解し、ガラス基板上に約3μmの厚さで塗布した。該
基板を水平面に対して45度傾け、塗布面が照射面とな
るように配置し、グランテーラープリズムを用いて直線
偏光に変換した紫外線を、水平面に対し垂直方向から室
温で90mJ/cm2照射した。次に、100℃に加熱
した後、室温まで冷却した。このようにして得られた基
板は、光軸が基板の法線方向から23°傾き、基板面内
の位相差は48.6nmであった。
Comparative Example 3 Polymer 2 was dissolved in dichloroethane and applied on a glass substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coating surface was arranged so as to be the irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 90 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. did. Next, after heating to 100 ° C., it was cooled to room temperature. The optical axis of the substrate thus obtained was inclined by 23 ° from the normal direction of the substrate, and the in-plane phase difference of the substrate was 48.6 nm.

【0022】(比較例4)3.75重量%の重合体1お
よび1.25重量%の反応性液晶化合物1をジクロロエ
タンに溶解し、ガラス基板上に約3μmの厚さで塗布し
た。該基板を水平面に対して45度傾け、塗布面が照射
面となるように配置し、グランテーラープリズムを用い
て直線偏光に変換した紫外線を、水平面に対し垂直方向
から室温で60mJ/cm2照射した。次に、100℃
に加熱した後、室温まで冷却した。更に、非偏光の紫外
線を、室温で1J/cm2照射した。このようにして得
られた基板は、光軸が基板の法線方向から21°傾き、
基板面内の位相差は38.0nmであった。
Comparative Example 4 3.75% by weight of Polymer 1 and 1.25% by weight of Reactive Liquid Crystal Compound 1 were dissolved in dichloroethane and applied on a glass substrate to a thickness of about 3 μm. The substrate was tilted at 45 ° with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at room temperature from the direction perpendicular to the horizontal plane at 60 mJ / cm 2. did. Next, at 100 ° C
And then cooled to room temperature. Further, the substrate was irradiated with unpolarized ultraviolet light at 1 J / cm 2 at room temperature. The substrate thus obtained has an optical axis inclined by 21 ° from the normal direction of the substrate,
The in-plane retardation of the substrate was 38.0 nm.

【0023】(比較例5)2.5重量%の重合体1、
2.5重量%の液晶材料E7(メルクジャパン)および
0.0375重量%の二官能性モノマーHX−620
(日本化薬)をジクロロエタンに溶解し、ガラス基板上
に約3μmの厚さで塗布した。該基板を水平面に対して
45度傾け、塗布面が照射面となるように配置し、グラ
ンテーラープリズムを用いて直線偏光に変換した紫外線
を、水平面に対し垂直方向から室温で60mJ/cm2
照射した。次に、100℃に加熱した後、室温まで冷却
した。更に、非偏光の紫外線を、室温で1J/cm2
射した。このようにして得られた基板は、光軸が基板の
法線方向から20°傾き、基板面内の位相差は55.0
nmであった。
Comparative Example 5 2.5% by weight of polymer 1,
2.5% by weight of liquid crystal material E7 (Merck Japan) and 0.0375% by weight of difunctional monomer HX-620
(Nippon Kayaku) was dissolved in dichloroethane and applied on a glass substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged so as to be an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was applied at room temperature from a direction perpendicular to the horizontal plane at 60 mJ / cm 2.
Irradiated. Next, after heating to 100 ° C., it was cooled to room temperature. Further, the substrate was irradiated with unpolarized ultraviolet light at 1 J / cm 2 at room temperature. In the substrate thus obtained, the optical axis is inclined by 20 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 55.0.
nm.

【0024】実施例1から5および、比較例1から5の
結果を表1にまとめる。これらの実施例から、フィルム
表裏面からの偏光露光により、効果的に位相差を得られ
る上、光軸方向を制御したフィルムを作製できることが
立証できた。本発明の複屈折フィルムおよびその製造法
では、偏光露光により複屈折を生じたフィルムに、更に
紫外線を照射することにより未反応の感光性基の光反応
を促進させ、フィルム中の配向を強固に固定することが
できる。このような複屈折フィルムは、耐熱性、光安定
性に優れ実用に充分であった。
The results of Examples 1 to 5 and Comparative Examples 1 to 5 are summarized in Table 1. From these examples, it has been proved that the phase difference can be effectively obtained by the polarized light exposure from the front and back surfaces of the film, and that a film whose optical axis direction is controlled can be produced. In the birefringent film of the present invention and the method for producing the same, the film that has caused birefringence by polarized light exposure is further irradiated with ultraviolet light to promote the photoreaction of unreacted photosensitive groups, thereby firmly orienting the orientation in the film. Can be fixed. Such a birefringent film was excellent in heat resistance and light stability and was sufficient for practical use.

【0025】[0025]

【発明の効果】感光性の化合物をフィルム化し、フィル
ム表裏面からの直線偏光照射という簡便な操作により、
フィルム内に効果的に位相差を発現させることができ
る。延伸工程のような従来技術を用いなくても位相差フ
ィルムを得ることができ、更に、直線偏光性の紫外線の
照射方向を変えることにより同一基板内において、光軸
の異なる領域の作製も可能であり、様々な光学素子への
活用が期待される。また、光軸の傾斜した位相差フィル
ムは、旋光モード、複屈折モードを利用したねじれネマ
チック液晶を使った液晶表示装置において視野角拡大用
の光学補償フィルムとして活用できる。従来このよう
な、光軸の傾斜した位相差フィルムを大面積において低
コストで作製することができなかったが、本発明によっ
て、斜め方向から偏光露光するという簡便な操作で大面
積の作製が可能となった。
According to the present invention, a photosensitive compound is formed into a film, and a simple operation of irradiating linearly polarized light from the front and back surfaces of the film is performed.
A retardation can be effectively developed in the film. A retardation film can be obtained without using a conventional technique such as a stretching step. Further, by changing the irradiation direction of linearly polarized ultraviolet rays, it is possible to produce regions having different optical axes within the same substrate. It is expected to be used for various optical elements. Further, the retardation film having an inclined optical axis can be used as an optical compensation film for expanding a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal utilizing an optical rotation mode and a birefringence mode. Conventionally, such a retardation film with an inclined optical axis could not be produced at a low cost in a large area. However, according to the present invention, a large area can be produced by a simple operation of performing polarized light exposure from an oblique direction. It became.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相差フィルムの製造方法を示す概念
FIG. 1 is a conceptual diagram showing a method for producing a retardation film of the present invention.

【図2】フィルム形成時の分子(感光性液晶性高分子の
側鎖および液晶性化合物)状態を示す模式図
FIG. 2 is a schematic diagram showing the state of molecules (side chains of a photosensitive liquid crystalline polymer and a liquid crystalline compound) during film formation.

【図3】フィルム表裏面からの偏光露光により光反応し
た側鎖の模式図
FIG. 3 is a schematic view of a side chain photoreacted by polarized light exposure from the front and back surfaces of the film.

【図4】偏光露光後の分子運動により配列した側鎖およ
び液晶性化合物の模式図
FIG. 4 is a schematic view of a side chain and a liquid crystalline compound arranged by molecular motion after polarized light exposure.

【図5】片面照射により配列した側鎖および液晶性化合
物の模式図
FIG. 5 is a schematic view of a side chain and a liquid crystalline compound arranged by one-sided irradiation.

【符号の説明】[Explanation of symbols]

11,11’・・・紫外線ランプ 12,12’・・・電源 13,13’・・・光学素子(グランテーラープリズ
ム) 14・・・感光性の化合物 15・・・基材 16,16’・・・無秩序光 17,17’・・・直線偏光性の紫外線
11, 11 ': UV lamp 12, 12': Power supply 13, 13 ': Optical element (Glan-Taylor prism) 14: Photosensitive compound 15: Base material 16, 16' ..Disordered light 17,17 ': linearly polarized ultraviolet light

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 感光性化合物のフィルムに表裏面両方向
から光照射する操作を含む工程で作製されることを特徴
とする、位相差フィルムおよびその製造方法。
1. A retardation film and a method for producing the same, which are produced by a process including an operation of irradiating a photosensitive compound film with light from both directions.
【請求項2】 支持体上に形成された感光性化合物のフ
ィルムに表面および支持体を介して裏面の両方向から光
照射する操作を含む工程で作製されることを特徴とす
る、位相差フィルムおよびその製造方法。
2. A retardation film, comprising: a step of irradiating a light-sensitive compound film formed on a support with light from both directions of a front surface and a back surface via the support. Its manufacturing method.
【請求項3】 請求項1において感光性化合物が液晶性
を有する位相差フィルムおよびその製造方法。
3. The retardation film according to claim 1, wherein the photosensitive compound has liquid crystallinity, and a method for producing the same.
【請求項4】 請求項1において感光性化合物が感光性
の重合体と液晶性化合物の混合体である位相差フィルム
およびその製造方法。
4. The retardation film according to claim 1, wherein the photosensitive compound is a mixture of a photosensitive polymer and a liquid crystal compound, and a method for producing the same.
【請求項5】 請求項1において感光性化合物が液晶性
を有する感光性の重合体と液晶性化合物の混合体である
位相差フィルムおよびその製造方法。
5. The retardation film according to claim 1, wherein the photosensitive compound is a mixture of a photosensitive polymer having liquid crystallinity and a liquid crystalline compound, and a method for producing the same.
【請求項6】 請求項4および請求項5において液晶性
化合物が反応性を有する位相差フィルムおよびその製造
方法。
6. The retardation film according to claim 4, wherein the liquid crystalline compound has reactivity, and a method for producing the same.
【請求項7】 請求項1、請求項2、請求項3、請求項
4、請求項5および請求項6において照射する光が、直
線偏光性または部分偏光性である位相差フィルムおよび
その製造方法。
7. A retardation film in which the light applied in claim 1, 2, 3, 4, 5, or 6 is linearly or partially polarized, and a method for producing the same. .
【請求項8】 請求項1から請求項7に記載の位相差フ
ィルムおよびその製造方法において、加熱、および/ま
たは冷却する工程を含むことを特徴とする位相差フィル
ムおよびその製造方法。
8. The retardation film and the method for producing the retardation film according to claim 1, further comprising a step of heating and / or cooling.
【請求項9】 請求項1から請求項8に記載の位相差フ
ィルムおよびその製造方法において、架橋する工程を含
むことを特徴とする位相差フィルムおよびその製造方
法。
9. The retardation film and the method for producing the retardation film according to claim 1, further comprising a step of crosslinking.
JP2000282916A 2000-09-19 2000-09-19 Optical phase difference film and method for manufacturing the same Pending JP2002090539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282916A JP2002090539A (en) 2000-09-19 2000-09-19 Optical phase difference film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282916A JP2002090539A (en) 2000-09-19 2000-09-19 Optical phase difference film and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002090539A true JP2002090539A (en) 2002-03-27

Family

ID=18767346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282916A Pending JP2002090539A (en) 2000-09-19 2000-09-19 Optical phase difference film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002090539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307617A (en) * 2002-04-17 2003-10-31 Hayashi Telempu Co Ltd Phase contrast film, method for manufacturing the same, liquid crystal display device with the phase contrast film attached thereto
JP2003315798A (en) * 2002-04-17 2003-11-06 Eastman Kodak Co Optical compensator and liquid crystal display
JP2006276644A (en) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd Photosensitive composition, optical element using the same and method for manufacturing the same
JP2014215360A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Liquid crystal composition, retardation plate, circular polarization plate, and image display device
CN104423088A (en) * 2013-09-10 2015-03-18 京东方科技集团股份有限公司 Manufacturing method of color film substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170704A (en) * 1985-01-24 1986-08-01 Matsushita Electric Ind Co Ltd Production of optical filter
JPH11189665A (en) * 1997-12-25 1999-07-13 Hayashi Telempu Co Ltd Birefringent film and its production
WO1999064924A1 (en) * 1998-06-11 1999-12-16 Rolic Ag Optical component, orientation layer, and layerable polymerisable mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170704A (en) * 1985-01-24 1986-08-01 Matsushita Electric Ind Co Ltd Production of optical filter
JPH11189665A (en) * 1997-12-25 1999-07-13 Hayashi Telempu Co Ltd Birefringent film and its production
WO1999064924A1 (en) * 1998-06-11 1999-12-16 Rolic Ag Optical component, orientation layer, and layerable polymerisable mixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307617A (en) * 2002-04-17 2003-10-31 Hayashi Telempu Co Ltd Phase contrast film, method for manufacturing the same, liquid crystal display device with the phase contrast film attached thereto
JP2003315798A (en) * 2002-04-17 2003-11-06 Eastman Kodak Co Optical compensator and liquid crystal display
JP4526006B2 (en) * 2002-04-17 2010-08-18 日東電工株式会社 LCD display
JP2006276644A (en) * 2005-03-30 2006-10-12 Dainippon Printing Co Ltd Photosensitive composition, optical element using the same and method for manufacturing the same
JP4580802B2 (en) * 2005-03-30 2010-11-17 大日本印刷株式会社 Photosensitive composition, optical element using the same, and method for producing the same
JP2014215360A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Liquid crystal composition, retardation plate, circular polarization plate, and image display device
CN104423088A (en) * 2013-09-10 2015-03-18 京东方科技集团股份有限公司 Manufacturing method of color film substrate
US9760001B2 (en) 2013-09-10 2017-09-12 Boe Technology Group Co., Ltd. Manufacturing method of color filter substrate

Similar Documents

Publication Publication Date Title
KR100852224B1 (en) Retardation film and process for producing the same
JP3945790B2 (en) Birefringent film and manufacturing method thereof
US6696114B1 (en) Alignment layer and a liquid crystal display using the same
JP2007232934A (en) Photo-alignment material
JP3163539B2 (en) Liquid crystalline alignment film, method for producing liquid crystalline alignment film, and optical element using the same
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP3952662B2 (en) Liquid crystal display element
JP4636353B2 (en) Retardation film
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JPH10278123A (en) Optical compensating sheet, manufacture thereof, and liquid crystal displaying device using the same
JP4640540B2 (en) Alignment film manufacturing method
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2002082224A (en) Birefringent film and method for manufacturing the same
JP2002202408A (en) Retardation film and method for manufacturing the same
JP2003073562A (en) Photo-orientation resin composition for liquid crystal orientation, liquid crystal orientation resin film and liquid crystal optical element using liquid crystal orientation resin film
WO2006064950A1 (en) Preparation of an optical compensation sheet using photosensitive compounds
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP4947532B2 (en) Method for producing retardation film
JP2002202407A (en) Retardation film and method for manufacturing the same
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
WO2020017622A1 (en) Photoreactive composition, liquid crystal cell using photoreactive composition, and method for producing liquid crystal cell
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP3163357B2 (en) Liquid crystal tilt alignment film, liquid crystal alignment processing method, and liquid crystal cell
JP4338001B2 (en) Liquid crystal alignment film
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116