JP2002202407A - Retardation film and method for manufacturing the same - Google Patents

Retardation film and method for manufacturing the same

Info

Publication number
JP2002202407A
JP2002202407A JP2000400354A JP2000400354A JP2002202407A JP 2002202407 A JP2002202407 A JP 2002202407A JP 2000400354 A JP2000400354 A JP 2000400354A JP 2000400354 A JP2000400354 A JP 2000400354A JP 2002202407 A JP2002202407 A JP 2002202407A
Authority
JP
Japan
Prior art keywords
retardation film
light
film
chemical formula
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000400354A
Other languages
Japanese (ja)
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2000400354A priority Critical patent/JP2002202407A/en
Publication of JP2002202407A publication Critical patent/JP2002202407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a retardation film and a method for manufacturing the same by irradiation of ultraviolet rays, being a mixture of a completely polar ized component and an unpolarized component. SOLUTION: A mixture of a photosensitive polymer and a low molecular weight compound is applied (by spin coating or casting) on a substrate and film formed. Side chains in the photosensitive polymer and the low molecular weight compound are not oriented in the film, however, on irradiation of the ultraviolet rays, being a mixture of a completely polarized component and an unpolarized component, a photoreaction in a specified direction is suppressed, and at the same time with heating subsequent to the irradiation, orientation throughout the film takes place and birefringence is realized. Furthermore, as the inclination of the optical axis is freely set by the direction of the ultraviolet rays irradiation the film is useful as the retardation film enlarging a viewing angle of a liquid crystal display device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】感光性の重合体と低分子化合
物の混合体の膜(フィルム)に完全偏光成分と非偏光成
分が混在する光を照射することによって、光軸を傾斜さ
せた位相差を発現させた、位相差フィルムおよびその製
造方法に関するものである。(特に、光軸がフィルム面
に対し傾いた位相差フィルムは液晶表示装置において視
野角拡大に有効である。)
BACKGROUND OF THE INVENTION A phase difference in which an optical axis is inclined by irradiating a film (film) of a mixture of a photosensitive polymer and a low-molecular compound with light in which a completely polarized component and a non-polarized component are mixed. And a method for producing the same. (Particularly, a retardation film in which the optical axis is inclined with respect to the film surface is effective for expanding the viewing angle in a liquid crystal display device.)

【0002】[0002]

【従来の技術】位相差フィルムは、互いに垂直な主軸方
向に振動する直線偏光成分を透過させ、この二成分間に
必要な位相差を与える複屈折を有するフィルムである。
このような位相差フィルムは液晶表示分野にも活用され
てきており、特に光軸の傾いた位相差フィルムは光学補
償フィルムとして液晶表示装置の視野角拡大に役立つ。
このような位相差フィルムを製造する従来技術が幾つか
報告されている。その一つとして、ポリカーボネートな
どの高分子材料を延伸し、高分子鎖を配向させ、延伸方
向の屈折率と、延伸方向に対し直交方向の屈折率に差異
を生じさせる方法であるが、分子が延伸方向に配向する
ため、光軸を傾斜させることは実質的に不可能である。
上記課題にかんがみ、光軸の傾いた位相差フィルムの製
造法として延伸フィルムやラビング、光照射により配向
処理した基材上で液晶性化合物を配列させる方法が提案
または実用化されつつある。例えば、特開平7−287
119号、特開平7−287120号公報では、ラビン
グ配向膜、SiO斜方蒸着配向膜上にディスコティック液
晶を配列させる方法が記載されている。また、同様な方
法として、特開平10−278123号公報では光配向
膜上に光重合開始剤を含有したディスコティック液晶を
配向させ光照射によりこの配向を固定する方法が記載さ
れている。上記のような配向膜を用いる方法では、配向
膜の配向処理、液晶材料の配向など工程が煩雑になるな
どの問題がある。更に、光軸の傾いた位相差フィルムを
製造する他の方法として、無機誘電体を斜方蒸着する方
法が提案されているが、長尺状シート上に連続して蒸着
膜を形成するには、装置が大掛かりになったり、工程が
煩雑になるなどの問題がある。光照射により位相差を発
現させる方法として、特開平7−138308号にポリ
ビニルシンナメートなどの感光性重合体に直線偏光性の
(UV)光を照射する方法が記載されているが、該方法では
照射した偏光UV光の電界振動と垂直方向に異方性が発現
し、光軸を傾けることができないため、視野角を拡大し
難い。また、本発明者も特開平10−278123号公
報では感光性を有する側鎖型液晶性高分子への直線偏光
性の紫外線照射により、光軸の傾いた位相差フィルムを
製造する方法を提案した。しかし、光照射によって位相
差を発現させる方法では、非偏光性の紫外線を直線偏光
性に変換して照射する必要がある。このような偏光変換
に用いられる一般的な2色性偏光子としては、PVA(ポ
リビニルアルコール)を一軸延伸したシートにヨードを
含浸させたものをTAC(トリアセチルセルロース)で挟
んだものがある。しかし、このようにヨードを含浸させ
た2色性偏光子では、紫外域の光の透過率や耐熱性が低
いため液晶光配向技術としては使用に耐えない。このよ
うな理由から、紫外域の光を偏光させるには複屈折型プ
リズムが用いられているが、複屈折型プリズムでは方解
石の自然結晶をプリズムとして用いるため、LCDに用い
るような基板全面を照射できるような大型プリズムはな
い。
2. Description of the Related Art A retardation film is a film having a birefringence that transmits a linearly polarized light component oscillating in a direction of a main axis perpendicular to each other and gives a necessary phase difference between the two components.
Such a retardation film has been used in the field of liquid crystal display. In particular, a retardation film having an inclined optical axis is useful as an optical compensation film for expanding the viewing angle of a liquid crystal display device.
Several conventional techniques for producing such a retardation film have been reported. One method is to stretch a polymer material such as polycarbonate, orient the polymer chains, and cause a difference between the refractive index in the stretching direction and the refractive index in the direction perpendicular to the stretching direction. Since the optical axis is oriented in the stretching direction, it is substantially impossible to tilt the optical axis.
In view of the above problems, as a method for producing a retardation film having an inclined optical axis, a method of arranging a liquid crystalline compound on a stretched film, rubbing, or a substrate that has been subjected to an alignment treatment by light irradiation has been proposed or put into practical use. For example, JP-A-7-287
No. 119 and JP-A-7-287120 describe a method of arranging discotic liquid crystals on a rubbing alignment film and a SiO oblique deposition alignment film. As a similar method, Japanese Patent Application Laid-Open No. 10-278123 describes a method in which a discotic liquid crystal containing a photopolymerization initiator is aligned on a photo-alignment film, and the alignment is fixed by light irradiation. The method using an alignment film as described above has problems such as complicated processes such as alignment treatment of the alignment film and alignment of the liquid crystal material. Furthermore, as another method of manufacturing a retardation film having an inclined optical axis, a method of obliquely vapor-depositing an inorganic dielectric has been proposed, but in order to form a vapor-deposited film continuously on a long sheet. However, there are problems such as an increase in the size of the apparatus and a complicated process. Japanese Patent Application Laid-Open No. 7-138308 discloses a method for developing a phase difference by light irradiation.
A method of irradiating (UV) light is described, but this method develops anisotropy in the vertical direction with the electric field vibration of the irradiated polarized UV light, and cannot tilt the optical axis, so that the viewing angle is increased. Difficult to do. Further, the present inventor also proposed in Japanese Patent Application Laid-Open No. 10-278123 a method for producing a retardation film having an inclined optical axis by irradiating linearly polarized ultraviolet rays to a photosensitive side chain type liquid crystalline polymer. . However, in the method of expressing a phase difference by light irradiation, it is necessary to convert non-polarized ultraviolet light into linearly polarized light before irradiation. As a general dichroic polarizer used for such polarization conversion, there is a sheet obtained by impregnating a sheet obtained by uniaxially stretching PVA (polyvinyl alcohol) with iodine by TAC (triacetyl cellulose). However, a dichroic polarizer impregnated with iodine in this way has a low transmittance of ultraviolet light and a low heat resistance, and thus cannot be used as a liquid crystal light alignment technique. For this reason, birefringent prisms are used to polarize ultraviolet light.However, birefringent prisms use a natural crystal of calcite as a prism, so that the entire surface of the substrate used for LCDs is illuminated. There is no large prism that can be made.

【0003】[0003]

【発明が解決しようとする課題】高分子フィルムの延伸
配向によって作製された位相差フィルムの位相差では、
分子が延伸方向に配向するため光軸を傾斜させることが
著しく困難である。一方、配向処理した基材上で液晶性
化合物を配列させる方法や無機誘電体を斜方蒸着する方
法は、光軸を傾斜させた位相差フィルムを作製すること
は可能であるが、工程が煩雑となるため低コストで大面
積の光軸を傾斜させた位相差フィルムを得ることは容易
でない。また、直線偏光性の紫外線照射により位相差フ
ィルムを製造する方法では偏光素子を介して照射光を直
線偏光とする必要があるが、大面積を照射する場合の実
用的な偏光素子を作製するのは困難である。
The retardation of a retardation film produced by stretching orientation of a polymer film is as follows.
Since the molecules are oriented in the stretching direction, it is extremely difficult to tilt the optical axis. On the other hand, a method of arranging a liquid crystalline compound on an alignment-treated substrate or a method of obliquely depositing an inorganic dielectric can produce a retardation film with an inclined optical axis, but the process is complicated. Therefore, it is not easy to obtain a large-area retardation film having a large-area optical axis inclined at low cost. Further, in the method of manufacturing a retardation film by irradiating linearly polarized ultraviolet light, it is necessary to make the irradiation light linearly polarized through a polarizing element, but it is necessary to produce a practical polarizing element when irradiating a large area. It is difficult.

【0004】[0004]

【課題を解決する手段】本発明では、低い偏光度の紫外
光で異方性を発現する感光性の重合体と低分子化合物の
混合体との組み合わせにより、完全偏光成分と非偏光成
分が混在する光を照射して得られる位相差と光軸を任意
に発現させた位相差フィルムの製造方法を創案した。該
製造法(による位相差フィルム)では、感光性の重合体
と低分子化合物の混合体を製膜し、特定の方向から完全
偏光成分と非偏光成分が混在する光を照射することによ
って、感光性の重合体の側鎖と低分子化合物分子を完全
偏光成分の電界振動方向に配向させることができる。ま
た、膜面に対して斜め方向から照射することによって、
光軸を任意に傾斜させて配向させ、光軸を所望の方向に
設定した位相差フィルムを提供できる。
According to the present invention, a completely polarized component and a non-polarized component are mixed by a combination of a photosensitive polymer which exhibits anisotropy with ultraviolet light having a low degree of polarization and a low molecular compound. We have devised a method for manufacturing a retardation film that arbitrarily expresses a retardation and an optical axis obtained by irradiating light. In the production method (retardation film), a mixture of a photosensitive polymer and a low-molecular compound is formed and irradiated with light in which a completely polarized component and a non-polarized component coexist from a specific direction. And the low molecular weight compound molecules can be oriented in the direction of the electric field vibration of the completely polarized component. In addition, by irradiating the film surface obliquely,
It is possible to provide a retardation film in which the optical axis is arbitrarily inclined and oriented, and the optical axis is set in a desired direction.

【0005】[0005]

【発明の実施の形態】以下に、本発明の詳細を説明す
る。前述の感光性の重合体の例としては、液晶性高分子
のメソゲン成分として多用されているビフェニル、ター
フェニル、フェニルベンゾエート、アゾベンゼンなどの
置換基と、シンナモイル基、カルコン基、シンナミリデ
ン基、β−(2−フリル)アクリロイル基(または、そ
れらの誘導体)などの感光性基を結合した構造を含む側
鎖を有し、炭化水素、アクリレート、メタクリレート、
マレイミド、N−フェニルマレイミド、シロキサンなど
の構造を主鎖に有する高分子が挙げられる。該重合体は
同一の繰り返し単位からなる単一重合体または構造の異
なる側鎖を有する単位の共重合体でもよく、あるいは感
光性基を含まない側鎖を有する単位を共重合させること
も可能である。また、混合する低分子化合物も、メソゲ
ン成分として多用されているビフェニル、ターフェニ
ル、フェニルベンゾエート、アゾベンゼンなどの置換基
を有する結晶性または、液晶性を有する化合物が挙げら
れ、混合する低分子化合物は、単一の化合物のみとは限
らず複数種の化合物を混合することも可能である。更に
は、液晶性を損なわない程度に、配向性を向上させるた
めの配向助剤や耐熱性を向上させるための架橋剤などを
添加することや、液晶性を損なうことなく液晶性を示さ
ない単量体を感光性の重合体に共重合してもかまわな
い。但し、感光性の重合体と低分子化合物の例は、上記
に限定されるものではない。これら感光性の重合体と低
分子化合物の混合体の膜に、完全偏光成分と非偏光成分
が混在する紫外光を照射することで重合体の感光性基の
部分を2量化によって異方的に架橋せしめ、高い直線偏
光性の紫外線を得るための偏光素子を用いることなく目
的とする位相差フィルムを形成し得る。なお、本発明に
おいて用いられる、位相差を発現するのに必要な完全偏
光成分と非偏光成分が混在する紫外光は、図1に示すよ
うに、紫外線ランプ13、集光鏡15、平面鏡16、イ
ンテグレータレンズ17、コリメーターレンズ18など
から成る通常の光照射装置の光路中ないしは光出射装置
と基板11に塗布した高分子化合物12(塗布膜、フィ
ルム)の間に、少なくとも1枚の石英板などの透明板1
4を傾斜配置するという比較的容易な手段により得られ
(より好ましくは透明板に誘電体や金属薄膜をコーティ
ングする)、製造方法に面積の制約が無く、大面積の液
晶配向膜を高い生産性で製造できる。完全偏光成分と非
偏光成分が混在する光の照射方法について好ましい態様
を説明する。非偏光線が、空気と石英板のような二つの
媒質界面を一部が透過し、一部が反射するとき、透過光
中に完全偏光成分と非偏光成分が混在する性質がある。
いま、非偏光線が石英板(屈折率:1.4585)に入
射する場合を考えると、石英板に入射する非偏光線のP
成分とS成分の透過率および透過光の偏光度:P−S/
P+S(PとSは、それぞれP成分とS成分の透過光の
強度であり、完全偏光成分の強度はP−Sで示され、P
+Sは完全偏光成分と非偏光成分を合わせた全透過光の
強度である。)は、石英板への非偏光線の入射角度によ
って変化し、図4に示す関係がある(入射角θは基板の
垂線と光の入射方向がなす角であり、光の入射方向が基
板に垂直のときθは0°である)。P成分の利用効率を
高めるには、透明板への入射角は、P成分の透過率が
1.0となる、透明板の屈折率により決まるブルースタ
ー角であることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. Examples of the aforementioned photosensitive polymer include substituents such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are frequently used as a mesogen component of a liquid crystalline polymer, and a cinnamoyl group, a chalcone group, a cinnamylidene group, and β- (2-furyl) has a side chain including a structure in which a photosensitive group such as an acryloyl group (or a derivative thereof) is bonded, and includes a hydrocarbon, an acrylate, a methacrylate,
Examples include polymers having a structure such as maleimide, N-phenylmaleimide, or siloxane in the main chain. The polymer may be a homopolymer composed of the same repeating unit or a copolymer of a unit having a side chain having a different structure, or a unit having a side chain containing no photosensitive group may be copolymerized. . Further, the low-molecular compound to be mixed also includes a compound having a crystalline or liquid crystalline property having a substituent such as biphenyl, terphenyl, phenylbenzoate, or azobenzene, which is frequently used as a mesogen component. In addition, not only a single compound but also a mixture of plural kinds of compounds is possible. Furthermore, to the extent that the liquid crystallinity is not impaired, an alignment aid for improving the alignment, a crosslinking agent for improving the heat resistance, or the like may be added. The monomer may be copolymerized with a photosensitive polymer. However, examples of the photosensitive polymer and the low-molecular compound are not limited to the above. The film of the mixture of the photosensitive polymer and the low-molecular compound is irradiated with ultraviolet light in which a completely polarized component and a non-polarized component are mixed, thereby anisotropically dimerizing the photosensitive group portion of the polymer. The desired retardation film can be formed without using a polarizing element for crosslinking and obtaining a highly linearly polarized ultraviolet ray. In addition, the ultraviolet light used in the present invention, in which a completely polarized component and a non-polarized component necessary to express a phase difference are mixed, is an ultraviolet lamp 13, a condenser mirror 15, a plane mirror 16, At least one quartz plate or the like is provided in the optical path of a normal light irradiation device including an integrator lens 17 and a collimator lens 18 or between the light emitting device and the polymer compound 12 (coated film, film) applied to the substrate 11. Transparent plate 1
4 can be obtained by a relatively easy means of tilting arrangement (more preferably, a transparent plate is coated with a dielectric or metal thin film), and there is no area limitation in the manufacturing method, and a large-area liquid crystal alignment film can be produced with high productivity. It can be manufactured by A preferred embodiment of a method of irradiating light in which a completely polarized component and a non-polarized component are mixed will be described. When a part of the non-polarized light passes through the interface between two media such as air and a quartz plate and partially reflects, there is a property that a completely polarized component and a non-polarized component are mixed in the transmitted light.
Now, assuming that the non-polarized light is incident on the quartz plate (refractive index: 1.4585), the P of the non-polarized light incident on the quartz plate is considered.
Transmittance of component and S component and degree of polarization of transmitted light: PS /
P + S (P and S are the intensities of the transmitted light of the P component and the S component, respectively, and the intensity of the completely polarized light component is indicated by P−S.
+ S is the intensity of the total transmitted light including the completely polarized component and the non-polarized component. ) Changes according to the incident angle of the non-polarized light on the quartz plate, and has a relationship shown in FIG. 4 (the incident angle θ is the angle between the perpendicular of the substrate and the incident direction of light, and the incident direction of light is Θ is 0 ° when vertical). In order to increase the utilization efficiency of the P component, it is desirable that the incident angle on the transparent plate is a Brewster's angle determined by the refractive index of the transparent plate at which the transmittance of the P component becomes 1.0.

【0006】本発明の位相差フィルムの製造方法につい
て、図2により説明する。まず、感光性の重合体と低分
子化合物の混合体を不図示の基板の一面に塗布(スピン
コートないしキャスト)し、膜(フィルム)20を製膜
する。光の照射を受ける前、膜20中にある感光性の重
合体の側鎖部(楕円球2a、2bで示す)および低分子
化合物(円柱2cで示す)は特定方向を向くことがな
く、無配向に共存している。次に、この膜20に対して
透明板24を介して、非偏紫外光Lnを照射する。この
際、Lnの光路軸に対して透明板24を傾斜(入射角θ
が0°でない状態に)配置すると、入射光Lnの一部は
反射光Lsとして透明板に反射されるが、入射光Lnの残
余の成分は透明板を透過して完全偏光成分と非偏光成分
が混在する光Lpとなって膜20に対して斜め(入射角
ψが0°でない状態)に照射する。この際、膜20内に
おいて無秩序に共存している感光性の重合体の側鎖部の
中には、感光性の高い配置にある側鎖2aと、感光性の
低い配置にある側鎖2bが生じる。側鎖2aは、その長
軸(分子鎖方向)がLpの光路軸(照射方向)に対し
て、またLpとの電界振動方向Qに対して、ともに垂直
に配置している。このような配置の側鎖は感光しやす
く、光反応性は他の配置にある側鎖2bに比べて極大に
なる。特定の配置にある側鎖2aにおいて選択的に(2
量化)反応が生じる結果、膜20全体として異方性とな
る。光反応を進めるには、化学式1から化学式8の感光
性基の部分が反応し得る波長の光の照射を要する。この
波長は、化学式1から化学式8で示された−R1〜−R
12の種類によっても異なるが、一般に200-500nmであ
り、中でも250-400nmの有効性が高い場合が多い。
The method for producing a retardation film of the present invention will be described with reference to FIG. First, a mixture of a photosensitive polymer and a low-molecular compound is applied (spin-coated or cast) on one surface of a substrate (not shown) to form a film (film) 20. Before being irradiated with light, the side chains (shown by ellipsoidal spheres 2a and 2b) and the low-molecular compounds (shown by cylinders 2c) of the photosensitive polymer in the film 20 do not turn in a specific direction. Coexist in orientation. Then, via the transparent plate 24 with respect to the film 20 is irradiated with non-polarized ultraviolet light L n. In this case, tilt the transparent plate 24 with respect to the optical path axis of L n (incident angle θ
When There is state) disposed not 0 °, a part of the incident light L n is reflected in the transparent plate as reflected light L s, The remaining component of the incident light L n is a completely polarized component passes through the transparent plate non-polarized light component is irradiated obliquely to the film 20 become the light L p of a mixture (state incident angle ψ is not 0 °). At this time, in the side chain portion of the photosensitive polymer randomly coexisting in the film 20, a side chain 2a having a high photosensitivity configuration and a side chain 2b having a low photosensitivity configuration are included. Occurs. Side chains 2a, relative to the major axis (the molecular chain direction) the optical path axis L p (irradiation direction), also to the electric field vibration direction Q with L p, are arranged both vertically. The side chain in such an arrangement is easily exposed, and the photoreactivity is maximized as compared with the side chain 2b in another arrangement. Selectively (2
As a result, the film 20 becomes anisotropic as a whole. In order to promote the photoreaction, it is necessary to irradiate light having a wavelength at which the portions of the photosensitive groups of Chemical Formulas 1 to 8 can react. This wavelength, -R 1 ~-R from formula 1 shown in Formula 8
Although it varies depending on the 12 types, it is generally 200-500 nm, and in particular, the effectiveness of 250-400 nm is often high.

【0007】図3は、図2の膜20に光照射し、反応が
進んだ後の膜30の状態を示す。光照射後の分子運動に
より、光反応を起こさなかった感光性の重合体の側鎖3
b(2b)と低分子化合物3c(2c)は、光反応した
側鎖3a(2a)と同じ方向に配向する。これは、側鎖
同士および低分子化合物との相互作用による。結果、膜
全体において、照射した紫外線の完全偏光成分の電界振
動方向Qおよび照射光進行方向に対し平行あるいは傾斜
して感光性の重合体の側鎖部および低分子化合物分子が
配向し複屈折が誘起される。この照射を膜面に対して斜
め方向から行なうことによって、光軸を任意に傾斜させ
て配向させることができるので、光軸を所望の方向に設
定した位相差フィルムが作製される。光軸の傾斜の測定
には、Japan Journal Applied
Physics,Vol.19,2013(1980)
に記載された、測定試料を回転させながら偏光の透過強
度を測定するクリスタルローテーション法を用いた。該
測定法では、偏光の透過率の角度依存性から測定試料の
立体的な複屈折の測定ができる。完全偏光成分と非偏光
成分が混在する紫外光の照射後の分子運動による配向
は、膜を加熱すると促進される。膜の加熱温度は、光反
応した部分の軟化点より低く、光反応しなかった側鎖と
低分子化合物の軟化点より高いことが望ましい。また、
膜の配向を促進するには加熱下(室温からTi+5℃ま
で)で完全偏光成分と非偏光成分が混在する紫外光を照
射することも有効である。ここで、Tiは液晶相から等
方相へ変化するときの相転移温度を指す。好ましくはT
i前後で照射することが有効である。このように完全偏
光成分と非偏光成分が混在する紫外線を照射したのち加
熱したフィルムまたは加熱下で完全偏光成分と非偏光成
分が混在する紫外線を照射した膜を該高分子の軟化点温
度以下まで冷却すると分子が凍結され、本発明の位相差
フィルムが得られる。
FIG. 3 shows a state of the film 30 after the film 20 of FIG. 2 has been irradiated with light and the reaction has proceeded. Side chain 3 of a photosensitive polymer that did not cause photoreaction by molecular motion after light irradiation
b (2b) and the low molecular compound 3c (2c) are oriented in the same direction as the side chain 3a (2a) that has undergone photoreaction. This is due to the interaction between side chains and with low molecular weight compounds. As a result, in the entire film, the side chains of the photosensitive polymer and the low-molecular compound molecules are oriented parallel or inclined to the electric field vibration direction Q of the completely polarized component of the irradiated ultraviolet light and the direction of the irradiation light, and the birefringence is reduced. Induced. By performing this irradiation in an oblique direction with respect to the film surface, the optical axis can be arbitrarily tilted and oriented, so that a retardation film in which the optical axis is set in a desired direction is produced. For measuring the tilt of the optical axis, Japan Journal Applied
Physics, Vol. 19, 2013 (1980)
The crystal rotation method for measuring the transmission intensity of polarized light while rotating the measurement sample, described in the above section, was used. In this measuring method, the stereoscopic birefringence of the measurement sample can be measured from the angle dependence of the transmittance of polarized light. The orientation by molecular motion after irradiation with ultraviolet light in which a completely polarized component and a non-polarized component are mixed is promoted by heating the film. The heating temperature of the film is desirably lower than the softening point of the photoreacted portion and higher than the softening points of the unreacted side chains and the low molecular weight compounds. Also,
In order to promote the orientation of the film, it is effective to irradiate ultraviolet light in which a completely polarized component and a non-polarized component are mixed under heating (from room temperature to Ti + 5 ° C.). Here, Ti indicates a phase transition temperature when the phase changes from a liquid crystal phase to an isotropic phase. Preferably T
Irradiating around i is effective. As described above, a film heated after irradiating the ultraviolet ray in which the completely polarized component and the non-polarized component are mixed or a film irradiated with the ultraviolet ray in which the completely polarized component and the non-polarized component are mixed under heating to the softening point temperature of the polymer or lower. Upon cooling, the molecules are frozen, and the retardation film of the present invention is obtained.

【0008】本発明において感光性の重合体に混合する
低分子化合物が低分子化合物同士、もしくは該重合体に
対して熱および/または光反応性を有している場合に
は、配向が強固に固定されるため耐熱性の向上が期待さ
れる。このような場合、再配向時の分子運動を妨げない
よう、照射量を抑えるか反応性を調整するなどして、光
反応点の密度を制御する必要がある。低分子化合物は、
適量ならば曇り度を抑制する効果がある反面、過剰に添
加すると曇り度の増加、配向性の低下を引き起こす。こ
のような観点から、感光性の重合体または低分子化合物
の種類にもよるが、低分子化合物を0.1wt%〜80
wt%添加しても位相差シートは製造可能であるが、好
ましくは5wt%〜50wt%であることが望ましい。
ここで、感光性の重合体と低分子化合物の相溶性が十分
でない場合には、フィルム化した時ないしは完全偏光成
分と非偏光成分が混在する紫外線を照射後、フィルムを
加熱すると相分離や可視光の散乱を誘起しうる大きさの
結晶を生成し曇り度の増加の原因となる。
In the present invention, when the low-molecular compound mixed with the photosensitive polymer has heat and / or photoreactivity with each other or with the low-molecular compound, the orientation becomes strong. Since it is fixed, improvement in heat resistance is expected. In such a case, it is necessary to control the density of the photoreaction points by suppressing the irradiation dose or adjusting the reactivity so as not to hinder the molecular movement at the time of reorientation. Low molecular compounds are
An appropriate amount has the effect of suppressing the haze, but if added in excess, causes an increase in haze and a decrease in orientation. From such a viewpoint, depending on the type of the photosensitive polymer or the low-molecular compound, the low-molecular compound is contained in an amount of 0.1 wt% to 80 wt%.
Although the retardation sheet can be manufactured even if it is added by wt%, it is preferably 5 wt% to 50 wt%.
Here, if the compatibility between the photosensitive polymer and the low molecular weight compound is not sufficient, the film is heated when the film is heated or after the film is irradiated with ultraviolet light in which a completely polarized component and a non-polarized component are mixed, and phase separation or visible light is visible. Crystals of a size capable of inducing light scattering are formed, causing an increase in haze.

【0009】膜厚を厚くしより大きな位相差を得る手法
として、膜を積層する方法が挙げられる。この場合に
は、先に製膜して紫外線を照射した膜上に再び材料溶液
を塗布し積層する工程で、この先に形成された膜の破壊
を防ぐために、溶解性を下げた溶媒に重合体および低分
子化合物を溶解し用いることが有効である。また、感光
性の重合体と低分子化合物の混合体膜に表裏面から完全
偏光成分と非偏光成分が混在する紫外線を照射すると、
複屈折がより効率よく発現するようになる。完全偏光成
分と非偏光成分が混在する紫外線の照射は化合物に直接
または支持体を介して照射してもよい。支持体を介する
場合には、支持体は感光性の重合体の反応しうる波長の
光の透過性を有している限りどのような材料でも良い
が、光透過率が高い程、照射量が少なくて済み、製造工
程上有利となる。また、剥離性の支持体上で感光性の重
合体と低分子化合物の混合体を製膜し、剥離後、膜の表
裏面より完全偏光成分と非偏光成分が混在する紫外線を
照射することもできる。
As a method of increasing the film thickness and obtaining a larger phase difference, there is a method of laminating films. In this case, in the process of applying the material solution again on the film that has been formed and irradiated with ultraviolet rays and then laminating, in order to prevent the destruction of the previously formed film, the polymer is added to a solvent having reduced solubility. It is effective to dissolve and use the low molecular weight compound. In addition, when a mixed film of a photosensitive polymer and a low-molecular compound is irradiated with ultraviolet light in which a completely polarized component and a non-polarized component are mixed from the front and back surfaces,
Birefringence appears more efficiently. Irradiation with ultraviolet light in which a completely polarized component and a non-polarized component are mixed may be applied to the compound directly or via a support. When the support is interposed, the support may be made of any material as long as it has light transmittance of a wavelength at which the photosensitive polymer can react, but the higher the light transmittance, the more the irradiation amount. Less is required, which is advantageous in the manufacturing process. Alternatively, a mixture of a photosensitive polymer and a low-molecular compound may be formed on a peelable support, and after peeling, ultraviolet light containing a mixture of a completely polarized component and a non-polarized component may be irradiated from the front and back surfaces of the film. it can.

【0010】感光性の重合体の原料化合物および低分子
化合物に関する合成方法を以下に示す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−ヒドロキシエトキシ−4’−(6−メタクリロ
イルヘキシルオキシ)ビフェニルを合成した。最後に、
塩基性の条件下において、塩化シンナモイルを加え、化
学式10に示される単量体1を合成した。
The synthesis method for the starting compound and the low molecular weight compound of the photosensitive polymer is shown below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is added under alkaline conditions with 1,
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Next, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6-methacryloylhexyloxy) biphenyl. Finally,
Under basic conditions, cinnamoyl chloride was added to synthesize Monomer 1 represented by Chemical Formula 10.

【化10】 Embedded image

【0011】(重合体1)この単量体1をテトラヒドロ
フラン中に溶解し、反応開始剤としてAIBN(アゾビスイ
ソブチロニトリル)を添加して重合することにより重合
体1を得た。この重合体1は、47−75℃の温度領域
において、液晶性を呈した。
(Polymer 1) Polymer 1 was obtained by dissolving this monomer 1 in tetrahydrofuran and adding AIBN (azobisisobutyronitrile) as a reaction initiator to carry out polymerization. This polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.

【0012】(低分子化合物1)4,4’−ビフェニル
ジオールと1,6−ジブロモヘキサンを、アルカリ条件
下で反応させ、4,4’− ビス(6−ブロモヘキシル
オキシ)ビフェニルを合成した。次いで、リチウムメタ
クリレートを反応させ、生成物をカラム精製することに
より化学式11に示される低分子化合物1を合成した。
(Low molecular weight compound 1) 4,4'-biphenyldiol and 1,6-dibromohexane were reacted under alkaline conditions to synthesize 4,4'-bis (6-bromohexyloxy) biphenyl. Next, lithium methacrylate was reacted, and the product was purified by column to synthesize a low molecular compound 1 represented by Chemical Formula 11.

【化11】 Embedded image

【0013】[0013]

【実施例】(実施例1)3.75重量%の重合体1およ
び1.25重量%の液晶材料E7(メルクジャパン)を
ジクロロエタンに溶解し、石英基板上に約3μmの厚さ
で塗布した。該基板を水平面に対して45度傾け塗布面
が照射面となるように配置し、水平面に対し57度傾く
ように4枚を重ねて配置した石英板を介して、10mW
/cm2の非偏紫外線を垂直方向から室温で10秒間照
射し、続いて、基板を裏返し同様に10秒間照射した。
このときの偏光度:P−S/P+S×100(%)は、
54(%)と計算される。次に、100℃に加熱した
後、室温まで冷却した。このようにして得られた基板
は、光軸が基板の法線方向から67°の方向に傾いてお
り、基板面内の位相差は55nmであった。
(Example 1) 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. . The substrate is arranged at an angle of 45 degrees with respect to the horizontal plane so that the application surface is the irradiation surface, and 10 mW is passed through a quartz plate in which four substrates are arranged so as to be inclined at 57 degrees with respect to the horizontal plane
/ Cm 2 of non-polarized ultraviolet light was irradiated from the vertical direction at room temperature for 10 seconds, and then the substrate was turned upside down and irradiated similarly for 10 seconds.
The degree of polarization at this time: P−S / P + S × 100 (%) is
Calculated as 54 (%). Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis was inclined in a direction of 67 ° from the normal direction of the substrate, and the in-plane phase difference was 55 nm.

【0014】(実施例2)3.75重量%の重合体1お
よび1.25重量%の低分子化合物1をジクロロエタン
に溶解し、石英基板上に約3μmの厚さで塗布した。該
基板を水平面に対して45度傾け塗布面が照射面となる
ように配置し、水平面に対し57度傾くように4枚を重
ねて配置した石英板を介して、10mW/cm2の非偏
紫外線を垂直方向から室温で10秒間照射し、続いて、
基板を裏返し同様に10秒間照射した。次に、100℃
に加熱した後、室温まで冷却した。このようにして得ら
れた基板は、光軸が基板の法線方向から67°の方向に
傾いており、基板面内の位相差は46nmであった。
Example 2 3.75% by weight of polymer 1 and 1.25% by weight of low molecular weight compound 1 were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate is arranged at an angle of 45 degrees with respect to the horizontal plane so that the application surface is the irradiation surface, and is placed at a non-unbiased position of 10 mW / cm 2 through a quartz plate in which four substrates are arranged so as to be inclined at an angle of 57 degrees with respect to the horizontal plane. UV light is irradiated from the vertical direction at room temperature for 10 seconds,
The substrate was irradiated upside down for 10 seconds in the same manner. Next, at 100 ° C
And then cooled to room temperature. In the substrate thus obtained, the optical axis was inclined at 67 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 46 nm.

【0015】[0015]

【発明の効果】通常用いられている光照射装置の光路中
ないしは光照射装置と被照射体の間に、石英板などの透
明基板または、誘電体、金属薄膜をコーティングした基
板を傾斜配置して得た完全偏光成分と非偏光成分が混在
する紫外線を照射するという簡便な操作により、従来技
術のような延伸工程を用いなくても位相差フィルムを得
ることができた。更に、紫外線の照射方向を変えること
により同一基板内において、光軸の異なる領域の作製も
可能であり、様々な光学素子への活用が期待される。ま
た、光軸の傾斜した位相差フィルムは、旋光モード、複
屈折モードを利用したねじれネマチック液晶を使った液
晶表示装置において視野角拡大用の光学補償フィルムと
して活用できる。従来このような、光軸の傾斜した位相
差フィルムを低コストで作製することができなかった
が、本発明によって、斜め方向から完全偏光成分と非偏
光成分が混在する紫外線を照射するという簡便な操作で
大面積化が可能となった。
According to the present invention, a transparent substrate such as a quartz plate or a substrate coated with a dielectric material or a metal thin film is inclinedly arranged in an optical path of a commonly used light irradiation device or between the light irradiation device and an object to be irradiated. By a simple operation of irradiating the obtained ultraviolet ray in which the completely polarized component and the non-polarized component are mixed, a retardation film could be obtained without using a stretching step as in the prior art. Furthermore, by changing the irradiation direction of the ultraviolet light, it is possible to produce regions having different optical axes in the same substrate, and it is expected to be used for various optical elements. Further, the retardation film having an inclined optical axis can be used as an optical compensation film for expanding a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal utilizing an optical rotation mode and a birefringence mode. Conventionally, such a retardation film having an inclined optical axis could not be produced at low cost. However, according to the present invention, a simple and easy method of irradiating an ultraviolet ray in which a completely polarized component and a non-polarized component are mixed from an oblique direction. The operation has made it possible to increase the area.

【0016】[0016]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相差フィルムの製造方法を示す概念
FIG. 1 is a conceptual diagram showing a method for producing a retardation film of the present invention.

【図2】完全偏光成分と非偏光成分が混在する紫外線の
照射により感光した側鎖を示す模式図
FIG. 2 is a schematic diagram showing a side chain exposed by irradiation of ultraviolet light in which a completely polarized component and a non-polarized component are mixed.

【図3】完全偏光成分と非偏光成分が混在する紫外線の
照射後の分子運動により配向した膜を示す模式図
FIG. 3 is a schematic diagram showing a film oriented by molecular motion after irradiation with ultraviolet light in which a completely polarized component and a non-polarized component are mixed.

【図4】石英板(屈折率:1.4585)に入射する非
偏光線の入射角度とP成分とS成分の透過率および透過
光の偏光度:P−S/(P+S)×100(%)
FIG. 4 shows the angle of incidence of non-polarized light incident on a quartz plate (refractive index: 1.4585), the transmittance of P and S components, and the degree of polarization of transmitted light: PS / (P + S) × 100 (%). )

【符号の説明】[Explanation of symbols]

11・・・基板 12・・・混合体膜(フィルム) 13・・・紫外線ランプ 14・・・透明板 15・・・集合鏡 16・・・平面鏡 17・・・インテグレータレンズ 18・・・コリメーターレンズ DESCRIPTION OF SYMBOLS 11 ... Substrate 12 ... Mixed film (film) 13 ... Ultraviolet lamp 14 ... Transparent plate 15 ... Collective mirror 16 ... Plane mirror 17 ... Integrator lens 18 ... Collimator lens

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 1/04 G02B 1/04 // G02F 1/13363 G02F 1/13363 Fターム(参考) 2H049 BA06 BA42 BB42 BC01 BC05 BC22 2H091 FA11X FA11Z FB02 FB04 FB12 FC23 LA12 4F071 AA04 AA33 AC10 AF35 AH16 BA02 BB02 BC02 4J002 AA031 BG071 EH076 FD146 GP03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 1/04 G02B 1/04 // G02F 1/13363 G02F 1/13363 F-term (Reference) 2H049 BA06 BA42 BA42 BB42 BC01 BC05 BC22 2H091 FA11X FA11Z FB02 FB04 FB12 FC23 LA12 4F071 AA04 AA33 AC10 AF35 AH16 BA02 BB02 BC02 4J002 AA031 BG071 EH076 FD146 GP03

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 感光性の重合体と低分子化合物の混合体
フィルムに、完全偏光成分と非偏光成分が混在する光を
照射する操作を含む工程で作製されることを特徴とす
る、位相差フィルムおよびその製造方法。
1. A phase difference produced by a process including an operation of irradiating a mixed film of a photosensitive polymer and a low-molecular compound with light in which a completely polarized component and a non-polarized component are mixed. Film and method for producing the film.
【請求項2】 請求項1に記載の位相差フィルムおよび
その製造方法において、光照射装置から出射した非偏光
性の紫外線を少なくとも1枚の光透過性の基板を斜めに
介することにより完全偏光成分と非偏光成分が混在した
光に変換していることを特徴とする、位相差フィルムお
よびその製造方法。
2. The retardation film and the method for producing the retardation film according to claim 1, wherein the non-polarized ultraviolet light emitted from the light irradiation device is obliquely passed through at least one light-transmitting substrate to completely polarize the component. And a method for producing the retardation film, wherein the retardation film is converted into light having a mixture of light and non-polarized light.
【請求項3】 請求項1または請求項2において、完全
偏光成分と非偏光成分が混在する光を斜め方向より照射
することを特徴とする、位相差フィルムおよびその製造
方法。
3. The retardation film according to claim 1 or 2, wherein a light in which a completely polarized component and a non-polarized component are mixed is irradiated from an oblique direction.
【請求項4】 請求項1、請求項2または請求項3にお
いて、感光性の重合体と低分子化合物の混合体フィルム
に表裏面両方から光照射する操作を含む工程で作製され
ることを特徴とする、位相差フィルムおよびその製造方
法。
4. The method according to claim 1, wherein the film is prepared by a process including an operation of irradiating a mixed film of a photosensitive polymer and a low molecular compound with light from both the front and back surfaces. And a method for producing the same.
【請求項5】 請求項1、請求項2、請求項3または請
求項4において、感光性の重合体が液晶性を有する位相
差フィルムおよびその製造方法。
5. The retardation film according to claim 1, wherein the photosensitive polymer has liquid crystallinity, and a method for producing the same.
【請求項6】 請求項1、請求項2、請求項3、請求項
4または請求項5において、低分子化合物が結晶性また
は液晶性を有する位相差フィルムおよびその製造方法。
6. The retardation film according to claim 1, wherein the low molecular compound has crystalline or liquid crystal properties, and a method for producing the same.
【請求項7】 請求項1、請求項2、請求項3、請求項
4、請求項5または請求項6において、低分子化合物が
反応性を有する位相差フィルムおよびその製造方法。
7. The retardation film according to claim 1, 2, 3, 4, 5, or 6, wherein the low-molecular compound has reactivity, and a method for producing the same.
【請求項8】 請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6または請求項7に記載の位相差
フィルムおよびその製造方法において、加熱ならびに冷
却する工程を含んで、作製されることを特徴とする位相
差フィルムおよびその製造方法。
8. The retardation film and the method for manufacturing the retardation film according to claim 1, 2, 3, 4, 5, 6, or 7, wherein the steps of heating and cooling are performed. A retardation film and a method for producing the retardation film, wherein the retardation film is produced by including the same.
【請求項9】 請求項1、請求項2、請求項3、請求項
4、請求項5、請求項6、請求項7、請求項8に記載の
位相差フィルムおよびその製造方法において、架橋する
工程を含むことを特徴とする位相差フィルムおよびその
製造方法。
9. The retardation film according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, or claim 8, and cross-linking. A retardation film and a method for producing the same, comprising the steps of:
【請求項10】 請求項1および請求項9において感光
性の重合体が少なくとも1つは化学式1から化学式8で
表される構造を有する共に、化学式9で表される主鎖が
炭化水素、アクリレート、メタクリレート、マレイミ
ド、N−フェニルマレイミド、シロキサンなどである感
光性の単独重合体または共重合体で表される構造を有す
ることを特徴とする位相差フィルムおよびその製造方
法。 【化1】 【化2】 【化3】 【化4】 【化5】 【化6】 【化7】 【化8】 【化9】 但し、−R1〜−R11=−H、ハロゲン基、−CN、ア
ルキル基またはメトキシ基などのアルキルオキシ基、ま
たはそれらを弗化した基、−R12=メチル基、エチル基
などのアルキル基、またはそれらを弗化した基であり、
x:y=100〜0:0〜100、n=1〜12、m=
1〜12、h=1〜12、X,Y=none、−COO、−
OCO−、−N=N−、−C=C−or−C64−、W1
2=化学式1または化学式2または化学式3または化
学式4または化学式5または化学式6または化学式7ま
たは化学式8で表される構造である。
10. The photosensitive polymer according to claim 1, wherein at least one of the photosensitive polymers has a structure represented by Chemical Formula 1 to Chemical Formula 8, and a main chain represented by Chemical Formula 9 is hydrocarbon or acrylate. A retardation film having a structure represented by a photosensitive homopolymer or copolymer such as methacrylate, maleimide, maleimide, N-phenylmaleimide, or siloxane, and a method for producing the same. Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image However, -R 1 ~-R 11 = -H, halogen, -CN, alkyl such as an alkyl group or their fluoride and groups, -R 12 = methyl group, an ethyl group, such as an alkyl group or a methoxy group A group or a group obtained by fluorinating them;
x: y = 100-0: 0-100, n = 1-12, m =
1 to 12, h = 1 to 12, X, Y = none, -COO,-
OCO -, - N = N - , - C = C-or-C 6 H 4 -, W 1,
W 2 = a structure represented by Chemical Formula 1, Chemical Formula 2, Chemical Formula 3, Chemical Formula 4, Chemical Formula 5, Chemical Formula 6, Chemical Formula 7, or Chemical Formula 8.
【請求項11】 請求項2において、光透過性の基板に
誘電体ないし金属薄膜をコーティングしていることを特
徴とする、位相差フィルムおよびその製造方法。
11. The retardation film according to claim 2, wherein a light-transmitting substrate is coated with a dielectric or metal thin film, and a method for manufacturing the same.
JP2000400354A 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same Pending JP2002202407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400354A JP2002202407A (en) 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400354A JP2002202407A (en) 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002202407A true JP2002202407A (en) 2002-07-19

Family

ID=18864962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400354A Pending JP2002202407A (en) 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002202407A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202406A (en) * 2000-12-28 2002-07-19 Hayashi Telempu Co Ltd Retardation film and method for manufacturing the same
JP2014215360A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Liquid crystal composition, retardation plate, circular polarization plate, and image display device
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US9348073B2 (en) 2012-02-13 2016-05-24 Samsung Display Co., Ltd. Photoreactive material layer and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278123A (en) * 1997-02-07 1998-10-20 Fuji Photo Film Co Ltd Optical compensating sheet, manufacture thereof, and liquid crystal displaying device using the same
JPH1114830A (en) * 1997-06-25 1999-01-22 Nippon Kayaku Co Ltd Production of polarizing plate
JPH11236451A (en) * 1998-02-19 1999-08-31 Chisso Corp Polymer dimerized by ultraviolet light, liquid crystal aligned film using the polymer, and liquid crystal display element using the aligned film
JP2002517605A (en) * 1998-06-11 2002-06-18 ロリク アーゲー Optical member, alignment layer and layerable polymerizable mixture
JP2002202406A (en) * 2000-12-28 2002-07-19 Hayashi Telempu Co Ltd Retardation film and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10278123A (en) * 1997-02-07 1998-10-20 Fuji Photo Film Co Ltd Optical compensating sheet, manufacture thereof, and liquid crystal displaying device using the same
JPH1114830A (en) * 1997-06-25 1999-01-22 Nippon Kayaku Co Ltd Production of polarizing plate
JPH11236451A (en) * 1998-02-19 1999-08-31 Chisso Corp Polymer dimerized by ultraviolet light, liquid crystal aligned film using the polymer, and liquid crystal display element using the aligned film
JP2002517605A (en) * 1998-06-11 2002-06-18 ロリク アーゲー Optical member, alignment layer and layerable polymerizable mixture
JP2002202406A (en) * 2000-12-28 2002-07-19 Hayashi Telempu Co Ltd Retardation film and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202406A (en) * 2000-12-28 2002-07-19 Hayashi Telempu Co Ltd Retardation film and method for manufacturing the same
US9348073B2 (en) 2012-02-13 2016-05-24 Samsung Display Co., Ltd. Photoreactive material layer and method of manufacturing the same
JP2014215360A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Liquid crystal composition, retardation plate, circular polarization plate, and image display device
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Similar Documents

Publication Publication Date Title
KR100852224B1 (en) Retardation film and process for producing the same
KR101436795B1 (en) Volume photo-aligned retarder
TWI257508B (en) Methods of making polarization rotators and articles containing the polarization rotators
JP2011076120A (en) Method of imparting preferred alignment in liquid crystal cell
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP2022541609A (en) Photo-orientable positive c-plate retarder
JP4824856B2 (en) Method for producing liquid crystal polymer element
JP4636353B2 (en) Retardation film
JP2005049866A (en) Phase difference layer and liquid crystal display device using the same
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2002202407A (en) Retardation film and method for manufacturing the same
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2004170595A (en) Manufacture method of retardation film and the retardation film
KR20070090946A (en) Preparation of an optical compensation sheet using photosensitive compounds
JP4947532B2 (en) Method for producing retardation film
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002082224A (en) Birefringent film and method for manufacturing the same
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2002202408A (en) Retardation film and method for manufacturing the same
JP4907007B2 (en) Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same
JP2003014927A (en) Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element
JP2004258427A (en) Birefringence inducing material, retardation film, method for manufacturing retardation film, and photosensitive polymer
JP2003014924A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002090540A (en) Birefringent film and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720