JP2003014927A - Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element - Google Patents

Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element

Info

Publication number
JP2003014927A
JP2003014927A JP2001196008A JP2001196008A JP2003014927A JP 2003014927 A JP2003014927 A JP 2003014927A JP 2001196008 A JP2001196008 A JP 2001196008A JP 2001196008 A JP2001196008 A JP 2001196008A JP 2003014927 A JP2003014927 A JP 2003014927A
Authority
JP
Japan
Prior art keywords
film
anisotropic element
optically anisotropic
photosensitive polymer
optical anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001196008A
Other languages
Japanese (ja)
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2001196008A priority Critical patent/JP2003014927A/en
Publication of JP2003014927A publication Critical patent/JP2003014927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an optically anisotropic element making phase difference and its angular dependence arbitrarily emerge in a polymer material by irradiating a film of a mixture of a photosensitive polymer and a low molecular weight compound with light resulting in molecular orientation and a method for manufacturing the same. SOLUTION: The mixture of the photosensitive polymer and the low molecular weight compound is applied to a substrate and is film-formed. The film is irradiated with linearly polarized light from a direction inclined with respect to the film by using an apparatus composed of an ultraviolet lamp and a power source or an optical element to convert natural light into polarized light (i.e., a Glan-Taylor prism). Subsequently the film is irradiated with linearly polarized light having a vibration plane of an electric field in the identical plane from a direction vertical to the film. Thereby the phase difference is induced in the film and the optically anisotropic element effective in widening a viewing angle of a liquid crystal display device is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、感光性の重合体と
低分子化合物の混合体の膜に、直線偏光性の光を照射す
る(偏光露光する)ことによって、位相差とその角度依
存性を任意に発現させた光学異方素子の製造方法に関す
るものである。
TECHNICAL FIELD The present invention relates to a phase difference and its angle dependence by irradiating a film of a mixture of a photosensitive polymer and a low molecular weight compound with linearly polarized light (polarized light exposure). The present invention relates to a method for producing an optically anisotropic element in which

【0002】[0002]

【従来の技術】位相差フィルムは、互いに垂直な主軸方
向に振動する直線偏光成分を通過させ、この二成分間に
必要な位相差を与える複屈折を有する光学異方素子であ
る。このような光学異方素子は液晶表示分野にも活用さ
れてきている。特に、光軸が傾いた光学異方素子は光学
補償フィルムとして液晶表示装置の視野角拡大に役立
ち、液晶表示装置では、正の屈折率楕円体である液晶分
子が液晶セルの基板近傍で斜めに配向していることか
ら、正の屈折率楕円体と逆の複屈折角度依存性を有する
負の屈折率楕円体を傾斜させることが有効とされてい
る。
2. Description of the Related Art A retardation film is an optical anisotropic element having a birefringence that allows linearly polarized light components vibrating in mutually perpendicular principal axis directions to pass therethrough and gives a necessary retardation between the two components. Such an optical anisotropic element has been utilized in the liquid crystal display field. In particular, an optically anisotropic element with an inclined optical axis is useful as an optical compensation film for expanding the viewing angle of a liquid crystal display device. In a liquid crystal display device, liquid crystal molecules, which are positive index ellipsoids, are slanted near the substrate of the liquid crystal cell. Because of the orientation, it is effective to incline a positive refractive index ellipsoid and a negative refractive index ellipsoid having the opposite birefringence angle dependence.

【0003】このような光学異方素子を製造する従来技
術が報告されている。例えば、特許登録2640083
号には、ラビング配向膜、SiO斜方蒸着配向膜により
ディスコティック液晶を傾斜配列させた光学異方素子が
記載されている。また、特開平10−332933号で
は、正の複屈折性を有する液晶性高分子をラビング配向
膜、SiO斜方蒸着配向膜上に傾斜配列させたフィルム
と負の複屈折性の層とによって構成される光学異方素子
が記載されている。
Conventional techniques for manufacturing such an optical anisotropic element have been reported. For example, patent registration 2640083
JP-A No. 2003-242242 describes an optical anisotropic element in which discotic liquid crystal is inclinedly arranged by a rubbing alignment film and an SiO oblique vapor deposition alignment film. Further, in Japanese Patent Laid-Open No. 10-332933, a liquid crystal polymer having a positive birefringence is formed by a rubbing alignment film, a film in which a diagonal alignment is formed on a SiO oblique vapor deposition alignment film, and a negative birefringence layer. An optical anisotropic element is described.

【0004】しかしながら、上記のような配向膜を用い
る方法では、配向膜の塗布工程、配向処理工程、液晶材
料の配向工程など製造工程が煩雑となり、大面積の光軸
を傾斜させた光学異方素子の製造費が高くなる。また、
配向膜が液晶表示装置の表示特性に好ましくない影響を
与える場合には、剥離や溶解などの方法により該配向膜
を除去する必要がある。光軸の傾いた光学異方素子を製
造する他の方法として、無機誘電体を斜方蒸着する方法
が提案されているが、長尺状シート上に連続して蒸着膜
を形成するには、装置が大掛かりになる、工程が煩雑に
なるなどの課題がある。また、液晶表示装置の視野角拡
大効果を十分に発現するには、このような液晶成分を傾
斜配向させた層と一軸性屈折率楕円体層または/および
二軸性屈折率楕円体層などと組み合わせる必要があり、
該両層を光学的に影響のない接着層などで貼り合わせる
ため工程が煩雑になるなどの課題がある。
However, in the method using the alignment film as described above, the manufacturing process such as the alignment film application process, the alignment treatment process, and the liquid crystal material alignment process becomes complicated, and the optical anisotropy in which the optical axis of a large area is tilted is complicated. The manufacturing cost of the device is high. Also,
When the alignment film has an unfavorable influence on the display characteristics of the liquid crystal display device, it is necessary to remove the alignment film by a method such as peeling or melting. As another method for producing an optically anisotropic element with an inclined optical axis, a method of obliquely vapor-depositing an inorganic dielectric has been proposed, but in order to continuously form a vapor-deposited film on a long sheet, There are problems such as large scale of the device and complicated process. Further, in order to fully realize the effect of enlarging the viewing angle of the liquid crystal display device, such a layer in which the liquid crystal component is tilt-aligned and a uniaxial refractive index ellipsoid layer and / or a biaxial refractive index ellipsoid layer are used. Must be combined,
There is a problem that the steps become complicated because the two layers are bonded together by an adhesive layer or the like that has no optical influence.

【0005】[0005]

【発明が解決しようとする課題】高分子フィルムの延伸
配向によって作製された光学異方素子は、分子の配向が
延伸方向に限られ光軸を傾斜させることが著しく困難で
ある。一方、配向処理した基板上で液晶性化合物を配列
させる方法や無機誘電体を斜方蒸着する方法では、光軸
を傾斜させた光学異方素子を作製することは可能である
が、低コストで大面積の光軸を傾斜させた光学異方素子
を得ることはできない上、液晶表示装置の視野角拡大効
果を十分に発現するには一軸性屈折率楕円体層または/
および二軸性屈折率楕円体層を接着層などで貼り合わせ
るため工程が煩雑となる。本発明では、簡便な工程で、
大量生産に適する光学異方素子およびその製造法を提供
する。
In an optically anisotropic element produced by stretch orientation of a polymer film, it is extremely difficult to tilt the optical axis because the orientation of molecules is limited to the stretching direction. On the other hand, although it is possible to produce an optically anisotropic element with an inclined optical axis by a method of arranging a liquid crystalline compound on an alignment-treated substrate or a method of obliquely vapor-depositing an inorganic dielectric, it is possible to produce it at low cost. It is not possible to obtain an optical anisotropic element having a large area with a tilted optical axis, and in order to sufficiently realize the effect of enlarging the viewing angle of a liquid crystal display device, a uniaxial refractive index ellipsoid layer or /
And the process becomes complicated because the biaxial refractive index ellipsoidal layer is attached by an adhesive layer or the like. In the present invention, in a simple process,
An optical anisotropic element suitable for mass production and a manufacturing method thereof are provided.

【0006】[0006]

【課題を解決する手段】本発明の光学異方素子の製造方
法(による光学異方素子)では、感光性の重合体ないし
は感光性の重合体と低分子化合物の混合体の膜を(基板
上に)形成し、直線偏光性の光を膜の法線方向に対して
斜め方向から照射し、次いで電界振動面が同一面内にあ
る直線偏光性の光を膜の法線方向から照射することによ
って、任意な光軸の傾きを有する屈折率楕円体層と光軸
の傾きを有さない屈折率楕円体層を組み合わせた光学異
方素子を形成でき、液晶表示装置の視野角拡大に有効な
光学異方素子を簡便な工程で製造する方法を実現する。
In the method for producing an optical anisotropic element according to the present invention (the optical anisotropic element according to the present invention), a film of a photosensitive polymer or a mixture of a photosensitive polymer and a low molecular compound is formed on a substrate. ), Irradiate linearly polarized light obliquely with respect to the normal direction of the film, and then irradiate linearly polarized light whose electric field vibration plane is in the same plane from the normal direction of the film. This makes it possible to form an optical anisotropic element in which a refractive index ellipsoidal layer having an arbitrary optical axis inclination and an index ellipsoidal layer having no optical axis inclination are formed, which is effective for expanding the viewing angle of a liquid crystal display device. A method for manufacturing an optically anisotropic element by a simple process is realized.

【0007】[0007]

【発明の実施の形態】以下に、本発明の詳細を説明す
る。前述の感光性の重合体は、液晶性高分子のメソゲン
成分として多用されているビフェニル、ターフェニル、
フェニルベンゾエート、アゾベンゼンなどの置換基と、
桂皮酸基(または、その誘導体基)などの感光性基を結
合した構造を含む側鎖を有し、炭化水素、アクリレー
ト、メタクリレート、マレイミド、N−フェニルマレイ
ミド、シロキサンなどの構造を主鎖に有する高分子であ
る。該重合体は同一の繰り返し単位からなる単一重合体
または構造の異なる側鎖を有する単位の共重合体でもよ
く、あるいは感光性基を含まない側鎖を有する単位を共
重合させることも可能である。また、混合する低分子化
合物も、メソゲン成分として多用されているビフェニ
ル、ターフェニル、フェニルベンゾエート、アゾベンゼ
ンなどの置換基を有し、該メソゲン成分とアリル、アク
リレート、メタクリレート、桂皮酸基(または、その誘
導体基)などの官能基を、屈曲性成分を介してまたは、
介さず結合した結晶性または、液晶性を有する化合物で
ある。これら低分子化合物を混合する場合、単一の化合
物のみとは限らず複数種の化合物を混合することも可能
である。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below. The above-mentioned photosensitive polymer is biphenyl, terphenyl, which is often used as a mesogenic component of liquid crystalline polymers,
Substituents such as phenylbenzoate and azobenzene,
It has a side chain containing a structure in which a photosensitive group such as cinnamic acid group (or its derivative group) is bonded, and has a structure such as hydrocarbon, acrylate, methacrylate, maleimide, N-phenylmaleimide, siloxane in the main chain. It is a polymer. The polymer may be a homopolymer of the same repeating unit or a copolymer of units having side chains with different structures, or it is also possible to copolymerize units having side chains containing no photosensitive group. . Further, the low-molecular compound to be mixed also has a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are often used as mesogenic components, and the mesogenic component and allyl, acrylate, methacrylate, cinnamic acid groups (or their A functional group such as a derivative group) via a flexible component, or
It is a compound having crystallinity or liquid crystallinity that is bonded without being interposed. When mixing these low molecular weight compounds, not only a single compound but also a plurality of types of compounds can be mixed.

【0008】図2および図3によって、この種の感光性
の重合体と低分子化合物の混合体を基板上に塗布して形
成した塗布膜20に直線偏光性の光L(矢印mで示す振
動方向を有する)を照射し(また加熱等の配向処理をお
こなった)場合の、塗布膜内に生じる変化を示す(照射
前=図2、照射、配向処理後=図3)。
2 and 3, linearly polarized light L (vibration indicated by arrow m) is applied to a coating film 20 formed by coating a mixture of a photosensitive polymer of this kind and a low molecular weight compound on a substrate. 3 shows the changes that occur in the coating film when irradiated with (having a direction) (or subjected to orientation treatment such as heating) (before irradiation = FIG. 2, after irradiation and orientation treatment = FIG. 3).

【0009】塗布膜20は、製膜時には等方性であり、
感光性の重合体の側鎖部(長楕円で示される)および低
分子化合物(円柱で示される)は特定方向を向いていな
い。この塗布膜20にある特定方向から直線偏光性の光
L(矢印mで示す振動方向を有する)が照射(偏光露
光)する場合、膜内には照射光の振動方向mかつ照射光
進行方向に対し垂直方向に対応した向きにある感光性の
高い配置の側鎖2aと感光性の乏しい配置の側鎖2bが
存在している。また、低分子化合物2cが無秩序に共存
している。この膜を偏光露光すると、照射光の電界振動
方向に平行であり、かつ照射光の進行方向に対し垂直方
向に対応した向きにある配置の側鎖2aの光反応が優先
的に進行する。
The coating film 20 is isotropic during film formation,
The side chains (indicated by a long ellipse) and low molecular weight compounds (indicated by a cylinder) of the photosensitive polymer do not face a specific direction. When the linearly polarized light L (having a vibration direction indicated by an arrow m) is irradiated (polarized light exposure) from a specific direction on the coating film 20, the vibration direction m of the irradiation light and the irradiation light traveling direction are present in the film. On the other hand, there is a side chain 2a having a highly photosensitive arrangement and a side chain 2b having a poor photosensitivity in the direction corresponding to the vertical direction. In addition, the low molecular weight compound 2c coexists randomly. When this film is exposed to polarized light, the photoreaction of the side chain 2a arranged parallel to the electric field oscillation direction of the irradiation light and oriented in the direction corresponding to the direction perpendicular to the traveling direction of the irradiation light preferentially proceeds.

【0010】図3は、図2の膜20に光照射し反応が進
行した後の膜30を示す。偏光露光後の分子運動によ
り、光反応を起こさなかった重合体の側鎖3b(2b)
と低分子化合物3c(2c)も光反応した側鎖3a(2
a)と同じ方向に配向する。その結果、塗布膜全体にお
いて、照射した直線偏光の電界振動方向かつ照射光進行
方向に対し垂直方向に重合体の側鎖と低分子化合物の分
子が配向し、位相差が誘起され光学異方素子となる。光
反応を進めるには、感光基の部分が反応し得る波長の光
の照射を要する。この波長は、感光基の種類によっても
異なるが、一般に200−500nmであり、中でも2
50−400nmの有効性が高い場合が多い。
FIG. 3 shows the film 30 after the reaction has proceeded by irradiating the film 20 of FIG. 2 with light. The side chain 3b (2b) of the polymer that did not cause a photoreaction due to molecular motion after exposure to polarized light
And the low molecular weight compound 3c (2c) also photoreacted with the side chain 3a (2
Orient in the same direction as a). As a result, in the entire coating film, the side chains of the polymer and the molecules of the low molecular weight compound are oriented in the direction of the electric field oscillation of the irradiated linearly polarized light and in the direction perpendicular to the direction of the irradiation light, and the phase difference is induced to induce an optical anisotropic element. Becomes In order to promote the photoreaction, irradiation with light having a wavelength with which the photosensitive group moiety can react is required. This wavelength is generally 200-500 nm, although it depends on the type of photosensitive group,
The effectiveness of 50-400 nm is often high.

【0011】発明者は、感光性の重合体ないし感光性の
重合体と低分子化合物の混合体で形成された塗布膜の上
記のような性質に着目し、図1に示すように、膜11に
対して直線偏光性の光(L)を膜の法線方向に対して
斜め方向から照射すること、および電界振動面が
(L)と同一面内にある直線偏光性の光(L)を膜
に対して法線方向から照射することによって位相差の角
度依存性を任意に制御した全く新しい光学異方素子を調
製できることを見出し本発明に至った。本発明により得
られた光学異方素子では、図4に示すように斜め配向し
た屈折率楕円体41と水平配向した屈折率楕円体42が
混在している。このように屈折率楕円体が混在している
層40を光が通過するとき、互いに垂直な主軸方向に振
動する直線偏光成分間に与えられる位相差は、各々屈折
率楕円体により与えられる位相差を合成したものとな
る。
The inventor has paid attention to the above-mentioned properties of the coating film formed of a photosensitive polymer or a mixture of a photosensitive polymer and a low molecular weight compound, and as shown in FIG. The linearly polarized light (L 1 ) is obliquely applied to the film normal direction, and the linearly polarized light (L 1 ) whose electric field vibration plane is in the same plane as (L 1 ) The inventors have found that a completely new optical anisotropic element in which the angle dependence of the phase difference is arbitrarily controlled can be prepared by irradiating the film with 2 ) from the normal direction to the present invention. In the optically anisotropic element obtained by the present invention, as shown in FIG. 4, the obliquely oriented refractive index ellipsoid 41 and the horizontally oriented refractive index ellipsoid 42 are mixed. Thus, when light passes through the layer 40 in which the refractive index ellipsoids are mixed, the phase difference given between the linearly polarized light components vibrating in the mutually perpendicular principal axis directions is the phase difference given by the refractive index ellipsoids. Is a composite of.

【0012】本発明の光学異方素子2枚50、50’を
その光学的異方性軸を直交させて液晶セル55の上下に
配置させることで液晶表示装置に用いることができる
が、その概念を図5によって説明する。複数の光学素子
(複数の屈折率楕円体)を光が通過するときは、これら
屈折率楕円体を合成して考えることができる。図5にお
いて上側の光学異方素子50の斜め配向した屈折率楕円
体51と下側の光学異方素子50’の水平配向した屈折
率楕円体54とを合わせ、反対に上側の光学異方素子の
水平配向した屈折率楕円体52と下側の光学異方素子の
斜め配向した屈折率楕円体53とを合わせた場合、液晶
表示装置の視野角拡大に効果がある2つの負の屈折率楕
円体5a、5bが傾き、その方向が直交している配置と
同等の光学特性を発現するようになる。さらには、水平
配向した屈折率楕円体成分を増強することにより、負の
屈折率楕円体が傾いた層と一軸性屈折率楕円体層または
/および二軸性屈折率楕円体層とを組み合わせるのと同
等の光学特性を発現するようになる。このような光学異
方素子の光学特性は、該光学異方素子が装着される液晶
表示装置の光学特性によって設計されるものである。ま
た、液晶表示装置の光学補償には、偏光板を含め、装置
を構成する全ての光学系の位相差を考慮し光学異方素子
の位相差を調整する必要がある。
The two optically anisotropic elements 50 and 50 'of the present invention can be used in a liquid crystal display device by arranging them on the upper and lower sides of a liquid crystal cell 55 with their optical anisotropic axes orthogonal to each other. Will be described with reference to FIG. When light passes through a plurality of optical elements (a plurality of refractive index ellipsoids), it can be considered that these refractive index ellipsoids are combined. In FIG. 5, the obliquely oriented refractive index ellipsoid 51 of the upper optical anisotropic element 50 and the horizontally oriented refractive index ellipsoid 54 of the lower optical anisotropic element 50 'are combined, and conversely, the upper optical anisotropic element When the horizontally oriented refractive index ellipsoid 52 and the obliquely oriented refractive index ellipsoid 53 of the lower optical anisotropic element are combined, two negative refractive index ellipses effective for expanding the viewing angle of the liquid crystal display device are obtained. The bodies 5a and 5b are inclined, and the optical characteristics equivalent to the arrangement in which the directions are orthogonal to each other are exhibited. Further, by enhancing the horizontally oriented index ellipsoid component, a layer having a tilted negative index ellipsoid and a uniaxial index ellipsoid layer and / or a biaxial index ellipsoid layer are combined. The optical characteristics equivalent to The optical characteristics of such an optical anisotropic element are designed according to the optical characteristics of the liquid crystal display device in which the optical anisotropic element is mounted. Further, for optical compensation of the liquid crystal display device, it is necessary to adjust the phase difference of the optical anisotropic element in consideration of the phase difference of all the optical systems constituting the device including the polarizing plate.

【0013】感光性の重合体ないしは感光性の重合体と
低分子化合物の混合体は基板上に塗布し製膜されるが、
該基板に一軸性屈折率楕円体層または/および二軸性屈
折率楕円体層を用いることも可能である。該一軸性屈折
率楕円体層または/および二軸性屈折率楕円体層として
は、ポリカーボネートやトリアセチルセルロースなどの
高分子材料を一軸または二軸延伸したもの、本発明のよ
うな感光性材料に光照射し位相差を発現させたものなど
が挙げられる。但し、所望の光学特性を有するものであ
ればこれらに限定されるものではない。
A photosensitive polymer or a mixture of a photosensitive polymer and a low molecular weight compound is coated on a substrate to form a film.
It is also possible to use a uniaxial index ellipsoidal layer and / or a biaxial index ellipsoidal layer on the substrate. As the uniaxial refractive index ellipsoid layer and / or the biaxial refractive index ellipsoid layer, a uniaxially or biaxially stretched polymer material such as polycarbonate or triacetyl cellulose, or a photosensitive material such as the present invention can be used. Examples thereof include those that are irradiated with light to exhibit a phase difference. However, it is not limited to these as long as it has desired optical characteristics.

【0014】前述の偏光露光後の分子運動による配向
は、基板を(介して膜を)加熱することにより促進され
る。基板の加熱温度は、光反応した部分の軟化点より低
く、光反応しなかった側鎖と低分子化合物の軟化点より
高いことが望ましい。このように偏光露光したのち加熱
し未反応側鎖を配向させた膜または加熱下で偏光露光し
配向させた膜を該高分子の軟化点以下まで冷却すると分
子が凍結され、本発明の配向膜が得られる。低分子化合
物が低分子化合物同士、もしくは該重合体に対して熱お
よび/または光反応性を有している場合には、配向が強
固に固定されるため耐熱性の向上が期待される。このよ
うな場合、再配向時の分子運動を妨げないよう、露光量
を抑えるか反応性を調整するなどして、光反応点の密度
を制御する必要がある。
The above-mentioned orientation by molecular motion after polarized light exposure is promoted by heating the substrate (via the film). The heating temperature of the substrate is preferably lower than the softening point of the photoreacted portion and higher than the softening points of the side chains and the low molecular weight compound which are not photoreacted. When the film thus polarized and exposed to light and oriented with unreacted side chains or the film exposed to polarized light and heated under heating is cooled to a temperature not higher than the softening point of the polymer, the molecule is frozen and the oriented film of the present invention. Is obtained. When the low molecular weight compounds have heat and / or photoreactivity with each other or with respect to the polymer, the orientation is firmly fixed, and thus the heat resistance is expected to be improved. In such a case, it is necessary to control the density of photoreactive points by suppressing the exposure dose or adjusting the reactivity so as not to hinder the molecular movement during reorientation.

【0015】また、低分子化合物を混合することは、適
量ならば曇り度を抑制する効果がある反面、過剰に添加
すると曇り度の増加、配向性の低下を引き起こす。この
ような観点から、感光性の重合体または低分子化合物の
種類にもよるが、低分子化合物を0.1wt%〜80w
t%添加しても光学異方素子は製造可能であるが、好ま
しくは5wt%〜50wt%であることが望ましい。こ
こで、感光性の重合体と低分子化合物の相溶性が十分で
ない場合には、製膜時ないしは偏光露光後の基板の加熱
によって相分離や可視光の散乱を誘起しうる大きさの結
晶を生成し曇り度の増加の原因となる。この相分離や微
結晶の生成を抑制するためには、重合体と低分子化合物
の相溶性を調節する必要がある。この相溶性の尺度とし
てPolymer Engineering and
Science,Vol.7,No.2,147(19
74)に記載されているような蒸発エネルギー(ΔE
v)と分子容(V)から計算式(1)をもって算出され
る溶解性パラメーター(σ)を便宜的に利用でき、重合
体と低分子化合物の溶解性パラメーター(σ)の比:z
が、0.93<z<1.06の範囲である場合に相分離
や微結晶の生成を効果的に抑制できることが実験により
判明している。 σ=(ΔEv/V)1/2 計算式(1)
Further, mixing a low molecular weight compound has the effect of suppressing the haze when an appropriate amount is added, but when added in an excessive amount, it causes an increase in haze and a decrease in orientation. From such a point of view, depending on the kind of the photosensitive polymer or the low molecular weight compound, the low molecular weight compound is 0.1 wt% to 80 w.
Although the optical anisotropic element can be manufactured even if t% is added, it is preferably 5 wt% to 50 wt%. Here, when the compatibility between the photosensitive polymer and the low molecular weight compound is not sufficient, a crystal having a size capable of inducing phase separation or visible light scattering by heating the substrate during film formation or after exposure to polarized light is used. It forms and causes an increase in haze. In order to suppress this phase separation and formation of fine crystals, it is necessary to adjust the compatibility between the polymer and the low molecular weight compound. As a measure of this compatibility, Polymer Engineering and
Science, Vol. 7, No. 2,147 (19
74), the evaporation energy (ΔE
The solubility parameter (σ) calculated by the calculation formula (1) from v) and the molecular volume (V) can be conveniently used, and the ratio of the solubility parameter (σ) of the polymer and the low molecular weight compound: z
However, it has been found from experiments that phase separation and formation of fine crystals can be effectively suppressed when 0.93 <z <1.06. σ = (ΔEv / V) 1/2 Calculation formula (1)

【0016】また、曇り度は、膜厚が厚くなり分子配向
が乱れると増加しやすくなる。該曇り度を抑制するに
は、膜厚を薄くすることが有効である。膜厚を薄くする
と位相差の低下に繋がるが、基板の両面に材料溶液を塗
布し、一層当りの膜厚を薄くすることにより、光学異方
素子全体の位相差を低下させることなく曇り度を抑制で
きる。また、大きな位相差を得る手法として、膜を積層
する方法が挙げられる。この場合、先に製膜し、偏光露
光した膜上に材料溶液を塗布し積層するが、この先に形
成された膜の破壊を防ぐために、溶解性を下げた溶媒に
重合体および低分子化合物を溶解し用いることが有効で
ある。また、表面の感光性の重合体と低分子化合物の混
合体の膜側および裏面の基板(もしくは、裏面の感光性
の重合体と低分子化合物の混合体の膜側)からの両側よ
り偏光露光することによって、効率よく位相差を発現さ
せることもできる。用いる基板は感光性の重合体の反応
しうる波長の光の透過性を有している限りどのような材
料でも良いが、光透過率が高い程、露光量が少なくて済
み、製造工程上有利となる。
The haze tends to increase as the film thickness increases and the molecular orientation is disturbed. To suppress the haze, it is effective to reduce the film thickness. Although reducing the film thickness leads to a decrease in the phase difference, by coating the material solution on both sides of the substrate and decreasing the film thickness per layer, the haze can be reduced without decreasing the phase difference of the entire optical anisotropic element. Can be suppressed. Further, as a method of obtaining a large retardation, a method of laminating films can be mentioned. In this case, the film is formed first, and the material solution is applied and laminated on the film that has been subjected to polarized light exposure. It is effective to dissolve and use. Also, polarized exposure from both sides from the film side of the mixture of the photosensitive polymer on the front surface and the low molecular compound and the substrate on the back surface (or the film side of the mixture of the photosensitive polymer on the low molecular compound on the back surface). By doing so, the phase difference can be efficiently expressed. The substrate to be used may be any material as long as it has a property of transmitting light having a wavelength capable of reacting with a photosensitive polymer, but the higher the light transmittance, the less the exposure amount is, which is advantageous in the manufacturing process. Becomes

【0017】本発明における原料化合物の例に関する合
成方法を以下に示す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−(2−ヒドロキシエトキシ)−4’−(6−メ
タクリロイルオキシヘキシルオキシ)ビフェニルを合成
した。最後に、塩基性の条件下において、塩化シンナモ
イルを加え、化学式1に示されるメタクリル酸エステル
を合成した。
The synthetic method for the examples of the raw material compounds in the present invention is shown below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Then, lithium methacrylate was reacted to synthesize 4- (2-hydroxyethoxy) -4 ′-(6-methacryloyloxyhexyloxy) biphenyl. Finally, under basic conditions, cinnamoyl chloride was added to synthesize the methacrylic acid ester represented by Chemical Formula 1.

【化1】 [Chemical 1]

【0018】(重合体1)単量体1をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体1
を得た。この重合体1は、47−75℃の温度領域にお
いて、液晶性を呈した。
(Polymer 1) Polymer 1 is prepared by dissolving Monomer 1 in tetrahydrofuran and adding AIBN (azobisisobutyronitrile) as a reaction initiator to polymerize.
Got This polymer 1 exhibited liquid crystallinity in the temperature range of 47 to 75 ° C.

【0019】(低分子化合物1)4,4’−ビフェニル
ジオールと1,6−ジブロモヘキサンを、アルカリ条件
下で反応させ、4,4’−ビス(6−ブロモヘキシルオ
キシ)ビフェニルを合成した。次いで、リチウムメタク
リレートを反応させ、生成物をカラム精製することによ
り化学式2に示される低分子化合物1を合成した。
(Low molecular weight compound 1) 4,4'-biphenyldiol and 1,6-dibromohexane were reacted under alkaline conditions to synthesize 4,4'-bis (6-bromohexyloxy) biphenyl. Next, the low molecular compound 1 represented by the chemical formula 2 was synthesized by reacting with lithium methacrylate and purifying the product with a column.

【化2】 [Chemical 2]

【0020】[0020]

【実施例】図8には、本発明の光学異方素子を直線偏光
性の紫外光を偏光露光することにより作製する場合の製
造方法(装置)の例を示す。但し、本発明の光学異方素
子の製造方法はこれに限定されるものではない。電源8
2によって励起された紫外線ランプ81で発生した無秩
序光86は、光学素子83(例えば、グランテーラープ
リズム)をもって直線偏光性の紫外線87に変換され、
基板85上に塗布(コート)された感光性材料の膜84
を照射する。本発明の製造法により作製した光学異方素
子の実施例を以下に示す。該光学異方素子の位相差の角
度依存性は、偏光子、1/4波長板および検光子を用い
たセナルモン法により、所定の光学系で測定試料を回転
させながら検光子の消光角を測定することにより求め
た。
EXAMPLE FIG. 8 shows an example of a manufacturing method (apparatus) for manufacturing the optically anisotropic element of the present invention by polarization exposure of linearly polarized ultraviolet light. However, the manufacturing method of the optical anisotropic element of the present invention is not limited to this. Power supply 8
The disordered light 86 generated by the ultraviolet lamp 81 excited by 2 is converted into linearly polarized ultraviolet light 87 by an optical element 83 (for example, a Glan-Taylor prism),
A film 84 of a photosensitive material coated (coated) on a substrate 85
Irradiate. Examples of the optically anisotropic element manufactured by the manufacturing method of the present invention are shown below. The angle dependence of the phase difference of the optically anisotropic element is measured by the Senarmont method using a polarizer, a quarter-wave plate and an analyzer while measuring the extinction angle of the analyzer while rotating the measurement sample with a predetermined optical system. Was obtained by doing.

【0021】3.75重量%の重合体1および1.25
重量%の低分子化合物1をジクロロエタンに溶解し、基
板上に約4μmの厚さで塗布し製膜した。該基板を水平
面に対して45度傾くように配置し、グランテーラープ
リズムを用いて直線偏光に変換した紫外線を、水平面に
対し垂直方向から室温で基板の表裏面側からそれぞれ1
00mJ/cm2、200mJ/cm2ずつ照射した。次
いで、基板を水平にし同じように直線偏光に変換した紫
外線を、水平面に対し垂直方向から室温で基板の表裏面
側からそれぞれ150mJ/cm2、300mJ/cm2
ずつ照射した。続いて、100℃に加熱した後、室温ま
で冷却した。このように作製された光学異方素子の位相
差の角度依存性は、図6に示すようであった。
3.75% by weight of Polymer 1 and 1.25
A low molecular weight compound 1 (wt%) was dissolved in dichloroethane, and the solution was applied onto a substrate to a thickness of about 4 μm to form a film. The substrate is arranged so as to be tilted at 45 degrees with respect to the horizontal plane, and ultraviolet rays converted into linearly polarized light by using a Glan-Taylor prism are respectively applied from the front and back sides of the substrate at a room temperature in a direction perpendicular to the horizontal plane at room temperature.
Irradiation was performed with each of 00 mJ / cm 2 and 200 mJ / cm 2 . Then, each of the ultraviolet converted just as the linearly polarized light in a horizontal substrate, from front and back surfaces of the substrate at room temperature from a vertical direction with respect to the horizontal plane 150mJ / cm 2, 300mJ / cm 2
Irradiate each. Then, after heating at 100 degreeC, it cooled to room temperature. The angle dependence of the phase difference of the optical anisotropic element thus manufactured was as shown in FIG.

【0022】このようにして得られた基板を、カシオ製
液晶カラーテレビEV−510の偏光シートを剥がし、
液晶セルの上下に各1枚、もしくは上側または下側に2
枚重ねて貼り合わせ、次いで、偏光シート(日東電工製
HEG1425DU)を上下1枚ずつ貼り合わせた。
各光学素子の軸配置は、図7に示すようにした。図7に
おいて、71、71’は基板であり、a、a’がそれぞ
れの屈折率楕円体の傾斜方向を示し、72は液晶セルで
あり、b、b’が上下基板のプレチルト方向を示し、7
3、73’は偏光シートであり、c、c’がそれぞれの
光吸収軸方向を示している。このような構成で液晶カラ
ーテレビを駆動し、白表示および黒表示した場合のコン
トラスト比が5になるところを視野角と定義し、上下左
右方向の視野角を測定した。コントラスト比の測定に
は、トプコン製BM−5Aを用いた。結果を表1に示
す。表1のとおり、本発明の実施例で(下方向と左右方
向)視野角が拡大することが確認された。
The substrate thus obtained was peeled off from the polarizing sheet of the Casio liquid crystal color television EV-510,
One each on the top and bottom of the liquid crystal cell, or two on the top or bottom
The sheets were laminated and laminated, and then polarizing sheets (HEG1425DU manufactured by Nitto Denko) were laminated one on top of the other.
The axial arrangement of each optical element was as shown in FIG. In FIG. 7, reference numerals 71 and 71 'denote substrates, a and a'represent tilt directions of respective refractive index ellipsoids, 72 denotes a liquid crystal cell, and b and b'represent pretilt directions of upper and lower substrates. 7
Reference numerals 3 and 73 'denote polarizing sheets, and c and c'represent respective light absorption axis directions. When the liquid crystal color television was driven with such a configuration and the contrast ratio when white display and black display was 5 was defined as the viewing angle, the viewing angle in the vertical and horizontal directions was measured. BM-5A manufactured by Topcon was used for measuring the contrast ratio. The results are shown in Table 1. As shown in Table 1, it was confirmed that the viewing angle was increased in the examples of the present invention (downward and leftward and rightward).

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の光学異方素子およびその製造法
では、偏光露光により位相差を生じた素子に、更に紫外
線を照射することにより未反応の感光性基の光反応を促
進させ、素子中の配向を強固に固定することができる。
このような光学異方素子は、耐熱性、光安定性に優れ実
用に充分であった。従来、液晶表示装置において視野角
拡大用の光学異方素子として活用できるような、光軸の
傾斜した光学素子を製造するには煩雑な工程を要した
が、本発明により、感光性の重合体ないしは感光性の重
合体と低分子化合物の混合体の膜を偏光露光するという
簡便な工程で、液晶表示装置の視野角拡大効果が得られ
る光学異方素子の製造が可能となった。
INDUSTRIAL APPLICABILITY In the optical anisotropic element and the method for producing the same of the present invention, the element having a phase difference caused by the polarized light exposure is further irradiated with ultraviolet rays to promote the photoreaction of the unreacted photosensitive group, The orientation inside can be firmly fixed.
Such an optically anisotropic element was excellent in heat resistance and light stability and was sufficient for practical use. Conventionally, a complicated process was required to manufacture an optical element with an inclined optical axis that can be utilized as an optical anisotropic element for enlarging a viewing angle in a liquid crystal display device. Alternatively, it is possible to manufacture an optically anisotropic element that can obtain a viewing angle expansion effect of a liquid crystal display device by a simple process of exposing a film of a mixture of a photosensitive polymer and a low molecular weight compound to polarized light.

【0024】[0024]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学異方素子の製造方法における偏光
露光方向を示す概念図
FIG. 1 is a conceptual diagram showing polarized light exposure directions in a method for manufacturing an optical anisotropic element of the present invention.

【図2】偏光露光により感光した側鎖の模式図FIG. 2 is a schematic diagram of side chains exposed by polarized light exposure.

【図3】偏光露光後の分子運動により配列した側鎖の模
式図
FIG. 3 is a schematic diagram of side chains arranged by molecular motion after polarized light exposure.

【図4】本発明の光学異方素子の屈折率楕円体の模式図FIG. 4 is a schematic view of an index ellipsoid of the optically anisotropic element of the present invention.

【図5】本発明の光学異方素子を直交させた場合の屈折
率楕円体の模式図
FIG. 5 is a schematic diagram of a refractive index ellipsoid when the optical anisotropic element of the present invention is made orthogonal to each other.

【図6】実施例の光学異方素子の位相差角度依存性の測
定結果を示すグラフ
FIG. 6 is a graph showing measurement results of phase difference angle dependency of the optical anisotropic element of the example.

【図7】視野角特性評価時の光学系を示す模式図FIG. 7 is a schematic diagram showing an optical system when evaluating viewing angle characteristics.

【図8】本発明の光学異方素子の製造方法を示す概念図FIG. 8 is a conceptual diagram showing a method for manufacturing an optical anisotropic element of the present invention.

【符号の説明】[Explanation of symbols]

11・・・塗布膜 L、L・・・直線偏光性の光 81・・・紫外線ランプ 82・・・電源 83・・・光学素子(グランテーラープリズム) 84・・・膜(フィルム) 85・・・基板 86・・・無秩序光 87・・・直線偏光性の紫外線11 ... Coating films L 1 , L 2 ... Linearly polarized light 81 ... UV lamp 82 ... Power source 83 ... Optical element (Glan-Taylor prism) 84 ... Film (film) 85 ... Substrate 86 ... Chaotic light 87 ... Linearly polarized ultraviolet light

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 BA04 BA06 BA42 BB03 BC05 BC09 BC22 2H091 FA11 FB04 FC10 FC22 FC23 FC29 FC30 FD10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2H049 BA04 BA06 BA42 BB03 BC05                       BC09 BC22                 2H091 FA11 FB04 FC10 FC22 FC23                       FC29 FC30 FD10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 感光性の重合体ないしは感光性の重合
体と低分子化合物の混合体で形成された膜に直線偏光性
の光(L)を前記膜の法線方向に対して斜め方向から
照射する操作と、(L)と電界振動面が同一面内にあ
る直線偏光性の光(L)を前記膜に対して法線方向か
ら照射する操作とを含むことを特徴とする、光学異方素
子の製造方法。
1. A film made of a photosensitive polymer or a mixture of a photosensitive polymer and a low-molecular compound is irradiated with linearly polarized light (L 1 ) in an oblique direction with respect to the normal direction of the film. And an operation of irradiating (L 1 ) and linearly polarized light (L 2 ) having an electric field vibration plane in the same plane from the normal direction to the film. , Method for manufacturing optical anisotropic element.
【請求項2】 前記感光性の重合体と低分子化合物の混
合体で形成された膜に対する直線偏光性の光の照射が、
前記感光性の重合体と低分子化合物の混合体で形成され
た膜の表裏面両方向からなされることを特徴とする、請
求項1に記載の光学異方素子の製造方法。
2. Irradiation of linearly polarized light to a film formed of a mixture of the photosensitive polymer and a low molecular weight compound,
The method for producing an optical anisotropic element according to claim 1, wherein the film is formed from a mixture of the photosensitive polymer and a low molecular weight compound from both front and back sides.
【請求項3】 前記感光性の重合体と低分子化合物の混
合体で形成された膜を加熱、および/または冷却する工
程を含むことを特徴とする、請求項1ないし請求項2に
記載の光学異方素子の製造方法。
3. The method according to claim 1, further comprising a step of heating and / or cooling a film formed of a mixture of the photosensitive polymer and the low molecular weight compound. Manufacturing method of optically anisotropic element.
【請求項4】 前記感光性の重合体と低分子化合物の混
合体を架橋する工程を含むことを特徴とする、請求項1
〜請求項3に記載の光学異方素子の製造方法。
4. The method according to claim 1, comprising a step of crosslinking a mixture of the photosensitive polymer and a low molecular weight compound.
~ The method for manufacturing an optical anisotropic element according to claim 3.
【請求項5】 請求項1〜請求項4に記載の製造方法に
よって製造されたことを特徴とする、光学異方素子。
5. An optical anisotropic element manufactured by the manufacturing method according to any one of claims 1 to 4.
【請求項6】 前記感光性の重合体が液晶性を有するこ
とを特徴とする、請求項5に記載の光学異方素子。
6. The optical anisotropic element according to claim 5, wherein the photosensitive polymer has liquid crystallinity.
【請求項7】 請求項1〜請求項4に記載の製造方法に
よって製造された光学異方素子に、一軸性屈折率楕円体
層または/および二軸性屈折率楕円体層を付加して構成
されることを特徴とする光学異方素子。
7. A structure in which a uniaxial refractive index ellipsoidal layer and / or a biaxial refractive index ellipsoidal layer are added to the optical anisotropic element manufactured by the manufacturing method according to any one of claims 1 to 4. An optical anisotropic element characterized by being processed.
【請求項8】 請求項5〜請求項7に記載の光学異方素
子を、少なくとも2層以上その光学的異方性軸が直交す
る配置において積層し構成することを特徴とする、液晶
表示装置。
8. A liquid crystal display device, characterized in that at least two layers or more of the optically anisotropic element according to any one of claims 5 to 7 are laminated in a configuration in which their optical anisotropic axes are orthogonal to each other. .
JP2001196008A 2001-06-28 2001-06-28 Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element Pending JP2003014927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196008A JP2003014927A (en) 2001-06-28 2001-06-28 Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196008A JP2003014927A (en) 2001-06-28 2001-06-28 Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element

Publications (1)

Publication Number Publication Date
JP2003014927A true JP2003014927A (en) 2003-01-15

Family

ID=19033890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196008A Pending JP2003014927A (en) 2001-06-28 2001-06-28 Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element

Country Status (1)

Country Link
JP (1) JP2003014927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106018A (en) * 2013-11-29 2015-06-08 林テレンプ株式会社 Manufacturing method of optical element having optical anisotropy and optical element having optical anisotropy
CN104718471A (en) * 2012-10-26 2015-06-17 林特琅普股份有限公司 Optically anisotropic particles and method for producing same, and complex and display device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718471A (en) * 2012-10-26 2015-06-17 林特琅普股份有限公司 Optically anisotropic particles and method for producing same, and complex and display device using same
JP2015106018A (en) * 2013-11-29 2015-06-08 林テレンプ株式会社 Manufacturing method of optical element having optical anisotropy and optical element having optical anisotropy

Similar Documents

Publication Publication Date Title
KR100852224B1 (en) Retardation film and process for producing the same
EP0864885A1 (en) Optical compensatory sheet, process for preparation of the same and liquid crystal display
JPH11189665A (en) Birefringent film and its production
JPH11326638A (en) Liquid crystal alignment layer, production of the liquid crystal alignment layer and optical element using the same
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP4636353B2 (en) Retardation film
JP2000347190A (en) Liquid crystal display device
JPH10278123A (en) Optical compensating sheet, manufacture thereof, and liquid crystal displaying device using the same
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2003014927A (en) Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP4947532B2 (en) Method for producing retardation film
JP2003073562A (en) Photo-orientation resin composition for liquid crystal orientation, liquid crystal orientation resin film and liquid crystal optical element using liquid crystal orientation resin film
JP2003014924A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002202407A (en) Retardation film and method for manufacturing the same
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2002202408A (en) Retardation film and method for manufacturing the same
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JP2003014925A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP4721023B2 (en) Method for producing birefringent film
JP3163357B2 (en) Liquid crystal tilt alignment film, liquid crystal alignment processing method, and liquid crystal cell
JP4907007B2 (en) Photoreactive polymer liquid crystal for birefringent film and birefringent film using the same
JP2007063155A (en) Liquid-crystalline polymerizable low molecular compound, birefringent film using the compound and birefringent cell, and their production methods