JP2002202408A - Retardation film and method for manufacturing the same - Google Patents

Retardation film and method for manufacturing the same

Info

Publication number
JP2002202408A
JP2002202408A JP2000400355A JP2000400355A JP2002202408A JP 2002202408 A JP2002202408 A JP 2002202408A JP 2000400355 A JP2000400355 A JP 2000400355A JP 2000400355 A JP2000400355 A JP 2000400355A JP 2002202408 A JP2002202408 A JP 2002202408A
Authority
JP
Japan
Prior art keywords
film
retardation film
light
polymer
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000400355A
Other languages
Japanese (ja)
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2000400355A priority Critical patent/JP2002202408A/en
Publication of JP2002202408A publication Critical patent/JP2002202408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a retardation film having significant wavelength dispersion and temperature compensation effect to transmitted light and a controlled opti cal axis direction and a method for manufacturing the same by exposing and orienting in a molecular level a film of a mixture of a photosensitive polymer and a low molecular weight compound. SOLUTION: The film of the mixture of the photosensitive polymer and the low molecular weight compound is formed. The retardation film having the significant wavelength dispersion and the temperature compensation effect toward the transmitted light is obtained by exposing the film using a device consisting of an ultraviolet lamp and a power source or an optical element transforming natural light to polarized light (e.g. a Glan-Taylor prism) and enhancing a photoreaction of photosensitive groups aligned in a specified direction. The optical axis is oriented with arbitrary inclination by carrying out the irradiation from a direction inclined with respect to the film surface. As a result, the retardation film having the significant wavelength dispersion and the temperature compensation effect toward the transmitted light and the optic axis set to a desired direction is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感光性の重合体と
低分子化合物の混合体の膜に、紫外線を照射する(以
下、露光という)ことによって、分子配向させ、大きな
波長分散性、温度補償効果および、光軸方向を任意に発
現させた位相差フィルムおよび、その製造法に関するも
のである。(特に、光軸がフィルム面に対し傾いた位相
差フィルムは液晶表示装置において視野角拡大に有効で
ある。)
The present invention relates to a film of a mixture of a photosensitive polymer and a low-molecular compound, which is irradiated with ultraviolet rays (hereinafter referred to as "exposure") to orient the molecules, thereby providing a large wavelength dispersion and a high temperature. The present invention relates to a retardation film in which a compensation effect and an optical axis direction are arbitrarily expressed, and a method for producing the same. (Particularly, a retardation film in which the optical axis is inclined with respect to the film surface is effective for expanding the viewing angle in a liquid crystal display device.)

【0002】[0002]

【従来の技術】STN型の液晶表示装置における白黒、又
はカラー化では位相差フィルムが必要である。この位相
差フィルムは、互いに垂直な主軸方向に振動する直線偏
光成分を通過させ、この二成分間に必要な位相差を与え
る複屈折を有するフィルムであり、STN型の液晶セルを
透過してきたR、G、Bの楕円偏光の楕円率を減少させた
り、R、G、Bの楕円偏光の主軸を一定方向に回転させ白
黒、又はカラー化を可能にしている。このような位相差
フィルムとして、ポリカーボネートなどの高分子材料を
延伸し、高分子鎖を配向させ、延伸方向の屈折率と、延
伸方向に対し直交方向の屈折率に差異を生じさせたもの
がある。しかしながら、高速応答性を要求される液晶表
示装置では複屈折の大きな液晶材料が用いられるため液
晶セルの波長分散性が大きくなり、これを補償するため
により波長分散性の大きな位相差フィルムが望まれてい
る。また、温度上昇にともないSTN型液晶セルのレター
デーションが変化するため、液晶表示装置を車載用とし
て用いる場合、高温下で色ずれが生じ表示特性が低下す
る。これは、STN型の液晶表示装置の液晶セルでは温度
の上昇により液晶分子の配向の緩和が生じるためであ
る。これらの課題に対し、光学補償のために液晶セルを
用いた、二層式STN型液晶表示装置が考えられるが、液
晶表示装置の重量が増す、厚くなる、コストが高くなる
などの問題がある。ポリカーボネートなどの高分子材料
を延伸した位相差フィルムでは、波長分散性が小さく光
学補償効果が十分に得られない。波長分散性の大きい位
相差フィルムとしては、ポリアリレート、ポリスルホ
ン、ポリエーテルスルホン、芳香族ポリエステル等の高
分子材料を延伸した位相差フィルムが挙げられる。しか
しながら、これらの高分子を配向させた位相差フィルム
では高温下での分子配向の緩和が小さく、室温で最も良
好な表示特性を示すよう調整された液晶セルと位相差フ
ィルムのレターデーションが高温下では最適条件から外
れることにより、光学補償効果が十分に得られない。更
に、液晶表示装置の視野角特性の改善において位相差フ
ィルムにおける屈折率の三次元制御も重要であり、光軸
が傾いていることが液晶表示装置の視野角拡大に役立つ
が、高分子材料を延伸した位相差フィルムでは、分子が
延伸方向に配向するため、光軸を傾斜させることが実質
的に不可能であり、視野角拡大の効果が不十分となる。
偏光露光により位相差を発現させる方法として、特開平
7−138308号にポリビニルシンナメートなどの感
光性重合体を偏光UV光で照射する方法が記載されている
が、該方法では照射した偏光UV光の電界振動と垂直方向
に異方性が発現するため光軸を傾けることができないた
め視野角を拡大し難い。上記課題を解決する方法とし
て、液晶性高分子や液晶性化合物を配向処理した基材上
で配向固定したものも考えられ、特開平8−15681
号ではUV光を偏光照射、ラビング処理もしくは、SiO
を斜方蒸着して得られる配向膜上に液晶性モノマーを配
向させ固定する方法が提案されているが、配向処理層を
設けているため工程が煩雑となり大面積の光軸を傾斜さ
せた位相差フィルムの製造費が高くなる。
2. Description of the Related Art A phase difference film is required for monochrome or color conversion in an STN type liquid crystal display device. This retardation film is a film having a birefringence that allows a linearly polarized light component oscillating in a main axis direction perpendicular to each other to pass and provides a necessary phase difference between the two components, and has been transmitted through an STN type liquid crystal cell. , G, B elliptically polarized light is reduced, or the principal axes of R, G, B elliptically polarized light are rotated in a certain direction, thereby enabling monochrome or colorization. As such a retardation film, there is a film in which a polymer material such as polycarbonate is stretched, polymer chains are oriented, and a difference is caused between a refractive index in a stretching direction and a refractive index in a direction orthogonal to the stretching direction. . However, in a liquid crystal display device requiring high-speed response, a liquid crystal material having a large birefringence is used, so that the wavelength dispersion of the liquid crystal cell becomes large. To compensate for this, a retardation film having a large wavelength dispersion is desired. ing. Further, since the retardation of the STN-type liquid crystal cell changes with an increase in temperature, when the liquid crystal display device is used for a vehicle, color shift occurs at a high temperature and the display characteristics deteriorate. This is because, in a liquid crystal cell of an STN liquid crystal display device, the temperature rise causes relaxation of the alignment of liquid crystal molecules. To solve these problems, a two-layer STN type liquid crystal display device using a liquid crystal cell for optical compensation can be considered, but there are problems such as an increase in the weight, thickness, and cost of the liquid crystal display device. . In a retardation film obtained by stretching a polymer material such as polycarbonate, the wavelength dispersion is small and the optical compensation effect cannot be sufficiently obtained. Examples of the retardation film having a large wavelength dispersion include retardation films obtained by stretching a polymer material such as polyarylate, polysulfone, polyethersulfone, and aromatic polyester. However, in the retardation film in which these polymers are oriented, the relaxation of the molecular orientation at high temperature is small, and the retardation of the liquid crystal cell and the retardation film adjusted to show the best display characteristics at room temperature is high. In such a case, the optical compensation effect is not sufficiently obtained due to deviation from the optimum condition. Furthermore, three-dimensional control of the refractive index of the retardation film is also important in improving the viewing angle characteristics of the liquid crystal display device, and tilting the optical axis is useful for expanding the viewing angle of the liquid crystal display device. In the stretched retardation film, since the molecules are oriented in the stretching direction, it is substantially impossible to tilt the optical axis, and the effect of expanding the viewing angle becomes insufficient.
As a method for developing a phase difference by polarized light exposure, JP-A-7-138308 describes a method of irradiating a photosensitive polymer such as polyvinyl cinnamate with polarized UV light. Since the optical axis cannot be tilted due to the occurrence of anisotropy in the direction perpendicular to the electric field vibration, it is difficult to enlarge the viewing angle. As a method for solving the above-mentioned problem, a method in which a liquid crystalline polymer or a liquid crystalline compound is fixed on a substrate on which an alignment treatment has been performed can be considered.
No .: UV irradiation with polarized light, rubbing treatment, or SiO
There is proposed a method of aligning and fixing a liquid crystalline monomer on an alignment film obtained by obliquely vapor-depositing, however, since an alignment treatment layer is provided, the process is complicated and a large area optical axis is inclined. The production cost of the retardation film increases.

【0003】[0003]

【発明が解決しようとする課題】高分子フィルムの延伸
配向によって作製された位相差フィルムの位相差は、高
温下での光学補償効果が低下する上、分子が延伸方向に
配向するため光軸を傾斜させることが著しく困難であ
る。一方、配向処理した基材上で液晶性高分子や液晶性
化合物を配列させる方法では、光軸を傾斜させた位相差
フィルムを作製することは可能であるが、工程が煩雑と
なるため低コストで大面積の光軸を傾斜させた位相差フ
ィルムを得ることはできない。
SUMMARY OF THE INVENTION The retardation of a retardation film produced by stretching orientation of a polymer film not only reduces the optical compensation effect at high temperature but also causes the optical axis to be oriented because molecules are oriented in the stretching direction. It is extremely difficult to tilt. On the other hand, in the method of arranging a liquid crystalline polymer or a liquid crystalline compound on an alignment-treated substrate, it is possible to produce a retardation film in which the optical axis is inclined, but the process is complicated and low cost. However, it is not possible to obtain a retardation film having a large-area optical axis inclined.

【0004】[0004]

【課題を解決する手段】本発明では、感光性の重合体と
低分子化合物の混合体の膜を露光するという簡便な工程
で、大きな波長分散性、温度補償効果および、光軸方向
を任意に発現させた位相差フィルムを提供する。本発明
の位相差フィルムの製造方法(による位相差フィルム)
では、感光性の重合体と低分子化合物の混合体を製膜
し、該膜を露光することによって膜中の分子を配向させ
ることができる上、大きな波長分散性、複屈折の温度依
存性を付与できる。この照射をフィルム面に対して斜め
方向から行なうと、光軸を任意に傾斜させて配向させる
ことができるので、大きな波長分散性、温度補償効果お
よび、光軸を所望の方向に設定した位相差フィルムが作
製される。
According to the present invention, a simple process of exposing a film of a mixture of a photosensitive polymer and a low-molecular compound to provide a large wavelength dispersion, a temperature compensation effect, and an arbitrary optical axis direction. The developed retardation film is provided. Method for producing retardation film of the present invention (retardation film)
Then, a mixture of a photosensitive polymer and a low molecular compound is formed into a film, and by exposing the film, the molecules in the film can be oriented. In addition, large wavelength dispersion and temperature dependence of birefringence can be achieved. Can be granted. When this irradiation is performed in an oblique direction with respect to the film surface, the optical axis can be arbitrarily inclined for orientation, so that a large wavelength dispersion, a temperature compensation effect, and a phase difference in which the optical axis is set in a desired direction can be obtained. A film is made.

【0005】[0005]

【発明の実施の形態】以下に、本発明の詳細を説明す
る。前述の感光性の重合体は、液晶性高分子のメソゲン
成分として多用されているビフェニル、ターフェニル、
フェニルベンゾエート、アゾベンゼンなどの置換基と、
桂皮酸基(または、その誘導体基)などの感光性基を結
合した構造を含む側鎖を有し、炭化水素、アクリレー
ト、メタクリレート、マレイミド、N−フェニルマレイ
ミド、シロキサンなどの構造を主鎖に有する高分子であ
る。このようなビフェニルなどのメソゲン成分を含有す
る材料は透過光の波長分散性が大きいので、該材料を配
向させたフィルムは光学補償に有効な位相差フィルムと
なり得る。該感光性の重合体と低分子化合物の混合溶液
を基材上に塗布(スピンコートないしはキャスト)した
塗布膜(フィルム)を形成する。該膜は、製膜時には等
方性であり、感光性の重合体の側鎖部および低分子化合
物は特定方向を向いていない。偏光露光した場合につい
て、この状態を図2に基づいて説明する。塗布膜20中
では、長楕円で示される感光基2a、2bを有し照射偏
光紫外線Lの振動方向mかつ照射光進行方向に対し垂直
方向に対応した向きにある感光性の高い配置の側鎖2a
と感光性の乏しい配置の側鎖2bおよび円柱で示される
低分子化合物2cが無秩序に共存している。該膜を偏光
露光すると、照射光の電界振動方向かつ進行方向に対し
垂直方向に対応した向きにある配置の側鎖2aの光反応
が優先的に進行する。この光反応を進めるには、感光性
基の部分が反応し得る波長の光の照射を要する。この波
長は、感光性基の種類によっても異なるが、一般に20
0−500nmであり、中でも250−400nmの有
効性が高い場合が多い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. The aforementioned photosensitive polymer is biphenyl, terphenyl, which is frequently used as a mesogen component of a liquid crystalline polymer,
Substituents such as phenylbenzoate and azobenzene,
It has a side chain containing a structure to which a photosensitive group such as a cinnamic acid group (or a derivative group) is bonded, and has a structure such as a hydrocarbon, acrylate, methacrylate, maleimide, N-phenylmaleimide, or siloxane in a main chain. It is a polymer. Since a material containing a mesogen component such as biphenyl has large wavelength dispersion of transmitted light, a film in which the material is oriented can be a retardation film effective for optical compensation. A mixed solution of the photosensitive polymer and the low molecular compound is applied (spin-coated or cast) on a substrate to form a coating film (film). The film is isotropic at the time of film formation, and the side chain portion of the photosensitive polymer and the low molecular compound are not oriented in a specific direction. This state will be described with reference to FIGS. In the coating film 20, side chains having a high photosensitivity arrangement having photosensitive groups 2a and 2b represented by oblong ellipses and having a direction corresponding to a vibration direction m of the irradiation polarized ultraviolet light L and a direction perpendicular to the irradiation light traveling direction. 2a
And the low-molecular compound 2c represented by a column and the side chain 2b having a poor photosensitivity coexist randomly. When the film is subjected to polarized light exposure, the photoreaction of the side chains 2a arranged in a direction corresponding to the direction of the electric field oscillation of the irradiation light and the direction perpendicular to the direction of travel proceeds preferentially. In order to promote this photoreaction, irradiation with light having a wavelength at which the photosensitive group can react is required. Although this wavelength varies depending on the type of the photosensitive group, it is generally 20 nm.
It is 0-500 nm, and especially, the effectiveness of 250-400 nm is high in many cases.

【0006】図3は図2の膜に光照射して反応が進行し
た後の、膜30を示す。偏光露光後の分子運動により、
図3に示すように、光反応を起こさなかった重合体の側
鎖3b(2b)と低分子化合物3c(2c)は再配向す
る。即ち、偏光の電界振動方向と照射光進行方向の双方
に対し垂直方向を向いていなかったため、光反応を起こ
さなかった重合体の側鎖3bと低分子化合物3cは、光
反応した側鎖3a(2a)と同じ方向に再配向する。そ
の結果、塗布膜全体において、照射した直線偏光の電界
振動方向かつ照射光進行方向に対し垂直方向に重合体の
側鎖と低分子化合物の分子が配向し、複屈折が誘起さ
れ、波長分散の大きな位相差を有するフィルムとなる。
偏光露光時と非偏光露光時ではその方向が異なる。非偏
光露光時には、照射光の進行方向に対し垂直方向に対応
した向きにある配置の側鎖の光反応が優先的に進行す
る。露光後の分子運動により、照射光進行方向に対して
平行方向に配置していたため、光反応を起こさなかった
重合体の側鎖と同じ方向に膜中の重合体の側鎖と低分子
化合物の分子が配向し、複屈折が誘起され位相差フィル
ムとなる。この露光を膜面に対して斜め方向から行なう
ことによって、光軸を任意に傾斜させて配向させること
ができる。その結果、光軸を所望の方向に設定した位相
差フィルムを提供できる。光軸の傾斜の測定には、Ja
panese Journal Applied Ph
ysics,Vol.19,2013(1980)に記
載された測定試料を回転させながら偏光の透過強度を測
定するクリスタルローテーション法を用いた。該測定法
では、偏光の透過率の角度依存性から測定試料の立体的
な複屈折の測定ができる。露光後の分子運動による配向
は、基板を加熱することにより促進される。基板の加熱
温度は、光反応した部分の軟化点より低く、光反応しな
かった側鎖と低分子化合物の軟化点より高いことが望ま
しい。このように露光したのち加熱し未反応側鎖と低分
子化合物を配向させた膜または加熱下で露光し配向させ
た膜を該高分子の軟化点温度以下まで冷却すると分子が
配向する。この分子運動による配向後、再度露光し更に
架橋を促進したフィルムでは、可逆的な複屈折の温度依
存性を有する。これは、熱によりフィルム中の分子配向
の緩和が進行するものの、冷却時には架橋によってフィ
ルム中に固定されている側鎖または分子に沿って配向が
起こるためである。STN型の液晶表示装置の液晶セルに
おいて、この複屈折の温度依存性を有するフィルムを用
いると、温度上昇により生ずる液晶分子の配向の緩和に
追従し、色ずれなどの表示特性の低下を抑制できる。更
に、本発明の位相差フィルムでは、重合体もしくは低分
子化合物の種類、熱的特性を変化させることにより、複
屈折の温度依存性を制御でき、種々の液晶材料において
温度補償が可能である。本発明において混合する低分子
化合物は、低分子化合物同士、もしくは該高分子に対し
て熱および/または光反応性を有している場合には、配
向が強固に固定されるため耐熱性の向上が期待できる。
このような場合、露光後の配向時における分子運動を妨
げないよう、露光量を抑えるか反応性を調整するなどし
て、光反応点の密度を制御する必要がある。
FIG. 3 shows the film 30 after irradiating the film of FIG. 2 with light and allowing the reaction to proceed. Due to molecular motion after polarized light exposure,
As shown in FIG. 3, the side chain 3b (2b) of the polymer that did not cause a photoreaction and the low molecular compound 3c (2c) are reoriented. That is, the polymer side chain 3b and the low molecular weight compound 3c, which did not cause photoreaction, were not oriented perpendicular to both the polarization electric field oscillation direction and the irradiation light traveling direction, and the photoreacted side chain 3a ( Reorient in the same direction as in 2a). As a result, in the entire coating film, the side chains of the polymer and the molecules of the low-molecular compound are oriented in the direction of the electric field oscillation of the irradiated linearly polarized light and in the direction perpendicular to the direction of the irradiation light, birefringence is induced, and the wavelength dispersion is reduced. The resulting film has a large retardation.
The direction is different between polarized light exposure and non-polarized light exposure. At the time of non-polarized light exposure, the photoreaction of the side chains arranged in a direction corresponding to the direction perpendicular to the traveling direction of the irradiation light proceeds preferentially. Because of the molecular motion after exposure, the polymer was arranged in a direction parallel to the direction of irradiation light, so that the side chains of the polymer and the low-molecular compound in the film in the same direction as the side chains of the polymer that did not cause photoreaction. The molecules are oriented and birefringence is induced to form a retardation film. By performing this exposure in an oblique direction with respect to the film surface, the optical axis can be arbitrarily inclined for orientation. As a result, a retardation film in which the optical axis is set in a desired direction can be provided. For measuring the tilt of the optical axis, Ja
panese Journal Applied Ph
ysics, Vol. 19, 2013 (1980), a crystal rotation method for measuring the transmission intensity of polarized light while rotating a measurement sample was used. In this measuring method, the stereoscopic birefringence of the measurement sample can be measured from the angle dependence of the transmittance of polarized light. The orientation by molecular motion after exposure is promoted by heating the substrate. The heating temperature of the substrate is desirably lower than the softening point of the photoreacted portion and higher than the softening points of the unreacted side chains and the low molecular weight compounds. After the exposure, the film is heated and the unreacted side chains and the low molecular weight compound are oriented or the film exposed and oriented under heating is cooled to the softening point temperature of the polymer or less, whereby the molecule is oriented. A film that has been re-exposed after further alignment by molecular motion and has further promoted crosslinking has reversible birefringence temperature dependence. This is because although the relaxation of the molecular orientation in the film is promoted by heat, the orientation occurs along the side chains or molecules fixed in the film by crosslinking during cooling. In a liquid crystal cell of an STN-type liquid crystal display device, when a film having the temperature dependence of birefringence is used, it is possible to follow the relaxation of the orientation of liquid crystal molecules caused by a rise in temperature and to suppress a decrease in display characteristics such as color shift. . Further, in the retardation film of the present invention, the temperature dependence of birefringence can be controlled by changing the type of polymer or low molecular weight compound and the thermal characteristics, and temperature compensation can be performed in various liquid crystal materials. When the low-molecular compound to be mixed in the present invention has heat and / or photoreactivity with each other or with the high-molecular compound, the orientation is firmly fixed and the heat resistance is improved. Can be expected.
In such a case, it is necessary to control the density of the photoreaction points by suppressing the exposure dose or adjusting the reactivity so as not to hinder the molecular motion during the alignment after the exposure.

【0007】低分子化合物は、適量ならば曇り度を抑制
する効果がある反面、過剰に添加すると曇り度の増加、
配向性の低下を引き起こす。このような観点から、感光
性の重合体または低分子化合物の種類にもよるが、低分
子化合物を0.1wt%〜80wt%添加しても位相差
フィルムは製造可能であるが、好ましくは5wt%〜5
0wt%であることが望ましい。ここで、重合体と低分
子化合物の相溶性が十分でない場合には、製膜時ないし
は露光後の基板の加熱により相分離や可視光を散乱する
のに十分な大きさの微細な結晶を生成し曇り度の増加の
原因となる。
The low molecular weight compound has an effect of suppressing the haze when it is in an appropriate amount, but increases the haze when added in excess,
This causes a decrease in orientation. From such a viewpoint, although depending on the type of the photosensitive polymer or the low-molecular compound, a retardation film can be produced even when the low-molecular compound is added in an amount of 0.1 wt% to 80 wt%, but preferably 5 wt%. % To 5
Desirably, it is 0 wt%. Here, if the compatibility between the polymer and the low molecular weight compound is not sufficient, fine crystals large enough to phase separate or scatter visible light are generated by heating the substrate during film formation or after exposure. It causes an increase in cloudiness.

【0008】膜厚を厚くしより大きな位相差を得る手法
として、膜を積層する方法が挙げられる。この場合、先
に製膜し露光した膜上に材料溶液を塗布し積層するが、
この先に形成された膜の破壊を防ぐために、溶解性を下
げた溶媒に重合体および低分子化合物を溶解し用いるこ
とが有効である。また、感光性の重合体と低分子化合物
の混合体の膜に表裏面から露光することによって、複屈
折がより効率よく発現するようになる。この場合、感光
性の重合体と低分子化合物の混合体は支持体上に塗布す
るなどして製膜され、露光は膜面に直接または支持体を
介してもよい。支持体を介する場合には、支持体は感光
性の重合体の反応しうる波長の光の透過性を有している
限りどのような材料でも良いが、光透過率が高い程、露
光量が少なくて済み、製造工程上有利となる。また、剥
離性の支持体上で感光性の重合体と低分子化合物の混合
体を製膜し、剥離後、膜の表裏面より露光することもで
きる。
As a technique for increasing the film thickness and obtaining a larger phase difference, there is a method of laminating films. In this case, a material solution is applied and laminated on the film that has been formed and exposed,
In order to prevent the destruction of the previously formed film, it is effective to dissolve the polymer and the low molecular compound in a solvent having reduced solubility. By exposing a film of a mixture of a photosensitive polymer and a low-molecular compound from the front and back surfaces, birefringence can be more efficiently developed. In this case, a mixture of a photosensitive polymer and a low-molecular compound is formed into a film by coating on a support or the like, and the exposure may be performed directly on the film surface or via the support. When the support is interposed, the support may be made of any material as long as it has a property of transmitting light having a wavelength that can react with the photosensitive polymer. Less is required, which is advantageous in the manufacturing process. Alternatively, a mixture of a photosensitive polymer and a low-molecular compound may be formed on a peelable support, and after peeling, the mixture may be exposed from the front and back surfaces of the film.

【0009】本発明の実施例に用いた感光性の側鎖型液
晶性高分子の原料化合物に関する合成方法を以下に示
す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−ヒドロキシエトキシ−4’−(6−メタクリロ
イルヘキシルオキシ)ビフェニルを合成した。最後に、
塩基性の条件下において、塩化シンナモイルを加え、化
学式1に示される単量体1を合成した。
A method for synthesizing the starting compound of the photosensitive side-chain type liquid crystalline polymer used in the examples of the present invention will be described below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is added under alkaline conditions with 1,
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Next, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6-methacryloylhexyloxy) biphenyl. Finally,
Under basic conditions, cinnamoyl chloride was added to synthesize Monomer 1 shown in Chemical Formula 1.

【化1】 Embedded image

【0010】(重合体1)この単量体1をテトラヒドロ
フラン中に溶解し、反応開始剤としてAIBN(アゾビスイ
ソブチロニトリル)を添加して重合することにより重合
体1を得た。この重合体1は、47−75℃の温度領域
において、液晶性を呈した。
(Polymer 1) Polymer 1 was obtained by dissolving this monomer 1 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. This polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.

【0011】(重合体2)この単量体1とメタクリル酸
ステアリルエステルとを0.85:0.15のモル比で
テトラヒドロフラン中に溶解し、反応開始剤としてAIBN
を添加して重合することにより重合体2を得た。この重
合体2も液晶性を呈した。
(Polymer 2) This monomer 1 and stearyl methacrylate are dissolved in tetrahydrofuran at a molar ratio of 0.85: 0.15, and AIBN is used as a reaction initiator.
Was added and polymerized to obtain a polymer 2. This polymer 2 also exhibited liquid crystallinity.

【0012】(低分子化合物1)4,4’−ビフェニル
ジオールと6−ブロモヘキサノールを、アルカリ条件下
で反応させ、4,4’− ビス(6−ブロモヘキシルオ
キシ)ビフェニルを合成した。次いで、塩基性の条件下
において、塩化シンナモイルを加え反応させ、生成物を
カラム精製することにより化学式2に示される低分子化
合物1を合成した。
(Low molecular weight compound 1) 4,4'-biphenyldiol and 6-bromohexanol were reacted under alkaline conditions to synthesize 4,4'-bis (6-bromohexyloxy) biphenyl. Then, under basic conditions, cinnamoyl chloride was added and reacted, and the product was purified by column to synthesize a low-molecular compound 1 represented by Chemical Formula 2.

【化2】 Embedded image

【0013】(低分子化合物2)4,4’−ビフェニル
ジオールと1,6−ジブロモヘキサンを、アルカリ条件
下で反応させ、4,4’− ビス(6−ブロモヘキシル
オキシ)ビフェニルを合成した。次いで、リチウムメタ
クリレートを反応させ、生成物をカラム精製することに
より化学式3に示される低分子化合物2を合成した。
(Low molecular weight compound 2) 4,4'-biphenyldiol and 1,6-dibromohexane were reacted under alkaline conditions to synthesize 4,4'-bis (6-bromohexyloxy) biphenyl. Next, a low molecular compound 2 represented by Chemical Formula 3 was synthesized by reacting lithium methacrylate and purifying the product by a column.

【化3】 Embedded image

【0014】(低分子化合物3)4,4’−ビフェニル
ジオールと1,6−ジブロモデカンを、アルカリ条件下
で反応させ、4,4’− ビス (6−ブロモデカニル)
ビフェニルを合成した。次いで、リチウムメタクリレー
トを反応させ、生成物をカラム精製することにより化学
式4に示される低分子化合物3を合成した。
(Low molecular weight compound 3) 4,4'-biphenyldiol is reacted with 1,6-dibromodecane under alkaline conditions to give 4,4'-bis (6-bromodecanyl)
Biphenyl was synthesized. Next, a low molecular compound 3 represented by Chemical Formula 4 was synthesized by reacting lithium methacrylate and purifying the product with a column.

【化4】 Embedded image

【0015】[0015]

【実施例】図1には、本発明の位相差フィルムを直線偏
光性の紫外光を露光することにより作製した場合の製造
方法(装置)の例を示す。但し、本発明の位相差フィル
ムの製造方法はこれに限定されるものではない。電源1
2によって励起された紫外線ランプ11で発生した無秩
序光16は、光学素子13(例えば、グランテーラープ
リズム)をもって直線偏光性の紫外線17に変換され、
基材15上に塗布(コート)された感光性の重合体と低
分子化合物の混合体の膜14を照射する。
FIG. 1 shows an example of a production method (apparatus) when a retardation film of the present invention is produced by exposing a linearly polarized ultraviolet light. However, the method for producing the retardation film of the present invention is not limited to this. Power supply 1
The disordered light 16 generated by the ultraviolet lamp 11 excited by the light 2 is converted into linearly polarized ultraviolet light 17 by an optical element 13 (for example, a Glan-Taylor prism).
A film 14 of a mixture of a photosensitive polymer and a low molecular compound applied (coated) on a substrate 15 is irradiated.

【0016】(実施例1)3.75重量%の重合体1お
よび1.25重量%の低分子化合物1をジクロロエタン
に溶解し、石英基板上に約3μmの厚さで塗布した。該
基板を水平面に対して45度傾け、塗布面が照射面とな
るように配置し、グランテーラープリズムを用いて直線
偏光に変換した紫外線を、水平面に対し垂直方向から室
温で200mJ/cm2照射し、続いて、基板を裏返し
同様に直線偏光に変換した紫外線を200mJ/cm2
照射した。次に、100℃に加熱した後、室温まで冷却
した。このようにして得られた基板は、光軸が基板の法
線方向から67°傾いており、基板面内の位相差は10
4nmであり、曇り度は殆どなく実用に十分耐えうるも
のであった。また、t℃における面内位相差をRt℃
すると、R60℃/R30℃=0.88、R80℃/R
30℃=0.29、R100℃/R30℃=0.08、
120℃/R30℃=0.06であり位相差の温度依
存性が確認された。図4に、実施例1の複屈折温度依存
性を示す。更に、400nmの波長で測定した位相差と
550nmの波長で測定した位相差の比(R400 nm
/R550nm)は、R400nm/R550nm
1.23であり大きな波長分散性を有していることが確
認された。
(Example 1) 3.75% by weight of polymer 1 and 1.25% by weight of low molecular weight compound 1 were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted into linearly polarized light using a Glan-Taylor prism was irradiated at room temperature from a direction perpendicular to the horizontal plane at 200 mJ / cm 2. Subsequently, the substrate was turned upside down and the ultraviolet light converted to linearly polarized light was turned to 200 mJ / cm 2.
Irradiated. Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis is inclined by 67 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 10 °.
The thickness was 4 nm, and there was almost no haze, which was sufficient for practical use. When the in-plane retardation at t ° C. is R t ° C. , R 60 ° C./R 30 ° C. = 0.88, R 80 ° C./R
30 ° C. = 0.29, R 100 ° C./R 30 ° C. = 0.08,
R 120 ° C./R 30 ° C. = 0.06, and the temperature dependence of the phase difference was confirmed. FIG. 4 shows the birefringence temperature dependence of the first embodiment. Further, the ratio of the phase difference measured at a wavelength of 400 nm to the phase difference measured at a wavelength of 550 nm (R 400 nm
/ R 550 nm ) is R 400 nm / R 550 nm =
1.23, indicating that the film had a large wavelength dispersion.

【0017】(実施例2)3.75重量%の重合体1お
よび1.25重量%の低分子化合物2をジクロロエタン
に溶解し、石英基板上に約3μmの厚さで塗布した。該
基板を水平面に対して45度傾け、塗布面が照射面とな
るように配置し、グランテーラープリズムを用いて直線
偏光に変換した紫外線を、水平面に対し垂直方向から室
温で120mJ/cm2照射し、続いて、基板を裏返し
同様に直線偏光に変換した紫外線を120mJ/cm2
照射した。次に、100℃に加熱した後、室温まで冷却
した。このようにして得られた基板は、光軸が基板の法
線方向から67°傾いており、基板面内の位相差は23
8nmであった。また、R60℃/R 0℃=0.9
9、R80℃/R30℃=0.91、R100℃/R
30℃=0.74、R120℃/R30℃=0.44で
あり位相差の温度依存性が確認された。更に、R
400nm/R550nm=1.25であった。
Example 2 3.75% by weight of polymer 1 and 1.25% by weight of low molecular weight compound 2 were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Subsequently, the substrate was turned upside down and the ultraviolet light converted to linearly polarized light was turned to 120 mJ / cm 2.
Irradiated. Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis is inclined by 67 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 23 °.
It was 8 nm. Also, R 60 ° C./R 30 ° C. = 0.9
9, R 80 ℃ / R 30 ℃ = 0.91, R 100 ℃ / R
30 ° C. = 0.74, R 120 ° C./R 30 ° C. = 0.44, and the temperature dependence of the phase difference was confirmed. Further, R
400 nm / R 550 nm = 1.25.

【0018】(実施例3)3.75重量%の重合体1お
よび1.25重量%の低分子化合物3をジクロロエタン
に溶解し、石英基板上に約3μmの厚さで塗布した。該
基板を水平面に対して45度傾け、塗布面が照射面とな
るように配置し、グランテーラープリズムを用いて直線
偏光に変換した紫外線を、水平面に対し垂直方向から室
温で120mJ/cm2照射し、続いて、基板を裏返し
同様に直線偏光に変換した紫外線を120mJ/cm2
照射した。次に、100℃に加熱した後、室温まで冷却
した。このようにして得られた基板は、光軸が基板の法
線方向から67°傾いており、基板面内の位相差は65
nmであった。また、R60℃/R30 =0.95、
80℃/R30℃=0.48、R100℃/R30℃
=0.40、R120℃/R30℃=0.30であり位
相差の温度依存性が確認された。更に、R400nm
550nm=1.24であった。
Example 3 3.75% by weight of polymer 1 and 1.25% by weight of low molecular weight compound 3 were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Subsequently, the substrate was turned upside down and the ultraviolet light converted to linearly polarized light was turned to 120 mJ / cm 2.
Irradiated. Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis is inclined by 67 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 65 °.
nm. R 60 ° C./R 30 ° C. = 0.95;
R80 ° C / R30 ° C = 0.48, R100 ° C / R30 ° C
= 0.40, R120 ° C / R30 ° C = 0.30, and the temperature dependence of the phase difference was confirmed. Further, R 400 nm /
R550nm = 1.24.

【0019】(実施例4)3.75重量%の重合体2お
よび1.25重量%の低分子化合物1をジクロロエタン
に溶解し、石英基板上に約3μmの厚さで塗布した。該
基板を水平面に対して45度傾け、塗布面が照射面とな
るように配置し、グランテーラープリズムを用いて直線
偏光に変換した紫外線を、水平面に対し垂直方向から室
温で120mJ/cm2照射し、続いて、基板を裏返し
同様に直線偏光に変換した紫外線を120mJ/cm2
照射した。次に、100℃に加熱した後、室温まで冷却
した。このようにして得られた基板は、光軸が基板の法
線方向から67°傾いており、基板面内の位相差は10
4nmであり、曇り度は殆どなく実用に十分耐えうるも
のであった。また、R60℃/R30℃=0.23、R
80℃/R30℃=0.02、R100℃/R30℃
0.0、R120℃/R30℃=0.0であり位相差の
温度依存性が確認された。更に、R400nm/R
550 nm=1.24であった。
Example 4 3.75% by weight of polymer 2 and 1.25% by weight of low molecular weight compound 1 were dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Subsequently, the substrate was turned upside down and the ultraviolet light converted to linearly polarized light was turned to 120 mJ / cm 2.
Irradiated. Next, after heating to 100 ° C., it was cooled to room temperature. In the substrate thus obtained, the optical axis is inclined by 67 ° from the normal direction of the substrate, and the phase difference in the substrate plane is 10 °.
The thickness was 4 nm, and there was almost no haze, which was sufficient for practical use. Also, R 60 ° C./R 30 ° C. = 0.23, R
80 ° C / R30 ° C = 0.02, R100 ° C / R30 ° C =
0.0, R 120 ° C./R 30 ° C. = 0.0, confirming the temperature dependence of the phase difference. Further, R 400 nm / R
550 nm = 1.24.

【0020】(実施例5)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、石英基板上に約3μmの厚
さで塗布した。該基板を水平面に対して45度傾け、塗
布面が照射面となるように配置し、グランテーラープリ
ズムを用いて直線偏光に変換した紫外線を、水平面に対
し垂直方向から室温で120mJ/cm2照射し、続い
て、基板を裏返し同様に直線偏光に変換した紫外線を1
20mJ/cm2照射した。次に、100℃に加熱した
後、室温まで冷却した。このようにして得られた基板
は、光軸が基板の法線方向から67°傾いており、基板
面内の位相差は152nmであった。また、R60℃
30℃=0.99、R80℃/R30℃=0.94、
100℃/R30℃=0.92、R120℃/R
30℃=0.82であり位相差の温度依存性が確認され
た。更に、R400nm/R550nm=1.24であ
った。
Example 5 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied on a quartz substrate to a thickness of about 3 μm. The substrate was tilted at 45 degrees with respect to the horizontal plane, the coated surface was arranged as an irradiation surface, and ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Subsequently, the substrate is turned upside down and the ultraviolet light converted to linearly
Irradiation was performed at 20 mJ / cm 2 . Next, after heating to 100 ° C., it was cooled to room temperature. The optical axis of the substrate thus obtained was inclined by 67 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 152 nm. In addition, R 60 ° C /
R 30 ° C. = 0.99, R 80 ° C./R 30 ° C. = 0.94,
R 100 ° C./R 30 ° C. = 0.92, R 120 ° C./R
30 ° C. = 0.82, and the temperature dependence of the phase difference was confirmed. Further, R 400 nm / R 550 nm = 1.24.

【0021】これらの実施例から、露光により、大きな
波長分散性、温度補償効果を発現させた位相差を得られ
る上、光軸方向を制御したフィルムを作製できることが
立証できた。
From these examples, it was proved that a phase difference exhibiting a large wavelength dispersion and a temperature compensation effect was obtained by exposure, and that a film having a controlled optical axis direction could be produced.

【0022】[0022]

【発明の効果】感光性の化合物をフィルム化し、露光と
いう簡便な操作により、フィルム中の分子を配向させる
ことができると共に、透過光に対して大きな波長分散性
と複屈折の温度依存性を付与することができる。本方法
によれば延伸工程のような従来技術を用いなくても位相
差フィルムを得ることができる上、斜め方向から露光す
ることにより光軸を傾けることもできる。また、紫外線
の照射方向を変えることにより、同一基板内において、
光軸の異なる領域の作製も可能である。光軸の傾斜した
位相差フィルムは、旋光モード、複屈折モードを利用し
たねじれネマチック液晶を使った液晶表示装置において
視野角拡大用の光学補償フィルムとして活用できる。従
来このような、光軸の傾斜した位相差フィルムを大面積
において低コストで作製することができなかったが、本
発明によって、露光するという簡便な操作で、透過光に
対して大きな波長分散性や温度補償効果を有し、光軸方
向を制御したフィルムの作製が可能となった。
According to the present invention, a photosensitive compound is formed into a film, and the molecules in the film can be oriented by a simple operation of exposure, and at the same time, a large wavelength dispersion and a temperature dependency of birefringence are imparted to transmitted light. can do. According to the present method, a retardation film can be obtained without using a conventional technique such as a stretching step, and the optical axis can be inclined by exposing the film from an oblique direction. Also, by changing the irradiation direction of the ultraviolet light, within the same substrate,
It is also possible to produce regions having different optical axes. A retardation film having an inclined optical axis can be used as an optical compensation film for expanding a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal utilizing an optical rotation mode and a birefringence mode. Conventionally, such a retardation film having an inclined optical axis could not be produced at a low cost in a large area. However, according to the present invention, a simple operation of exposing the light has a large wavelength dispersion property for transmitted light. This has made it possible to produce a film having an optical axis direction controlled and a temperature compensation effect.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相差フィルムの製造方法を示す概念
FIG. 1 is a conceptual diagram showing a method for producing a retardation film of the present invention.

【図2】偏光露光により感光した側鎖の模式図FIG. 2 is a schematic view of a side chain exposed by polarized light exposure.

【図3】偏光露光後の分子運動により配列した側鎖の模
式図
FIG. 3 is a schematic view of side chains arranged by molecular motion after polarized light exposure.

【図4】実施例1の位相差の温度依存性FIG. 4 shows the temperature dependence of the phase difference in the first embodiment.

【符号の説明】[Explanation of symbols]

11・・・紫外線ランプ 12・・・電源 13・・・光学素子(グランテーラープリズム) 14・・・膜(フィルム) 15・・・基材 16・・・無秩序光 17・・・直線偏光性の紫外線 DESCRIPTION OF SYMBOLS 11 ... Ultraviolet lamp 12 ... Power supply 13 ... Optical element (Gran Taylor prism) 14 ... Film (film) 15 ... Substrate 16 ... Disordered light 17 ... Linear polarization UV light

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 感光性の重合体と低分子化合物の混合体
のフィルムに光照射する操作を含む工程で作製されると
共に、可視光の平均波長領域に関して30℃での位相差
と80℃における位相差の比(R80℃/R30℃)が
0.01<R 80℃/R30℃<0.97で、400n
mの波長で測定した位相差と550nmの波長で測定し
た位相差の比(R400nm/R550nm)が1.1
5<R 400nm/R550nmであり、クリスタルロ
ーテーション法で測定される光軸の傾き(θ)が0°≦
θ<90°であることを特徴とする位相差フィルムおよ
びその製造方法。
1. A mixture of a photosensitive polymer and a low molecular weight compound
When it is made in a process including the operation of irradiating the film with light
In both cases, the phase difference at 30 ° C with respect to the average wavelength region of visible light
And the ratio of the phase difference at 80 ° C (R80 ℃/ R30 ° C)But
0.01 <R 80 ℃/ R30 ° C<0.97, 400n
phase difference measured at a wavelength of m and a wavelength of 550 nm
Phase difference ratio (R400nm/ R550 nm) Is 1.1
5 <R 400nm/ R550 nmIt is Crystallo
The inclination (θ) of the optical axis measured by the partitioning method is 0 ° ≦
a retardation film characterized by θ <90 ° and
And its manufacturing method.
【請求項2】 感光性の重合体と低分子化合物の混合体
のフィルムに表裏面両方向から光照射する操作を含む工
程で作製されることを特徴とする、請求項1の位相差フ
ィルムおよびその製造方法。
2. The retardation film according to claim 1, wherein the film is produced by a process including an operation of irradiating a film of a mixture of a photosensitive polymer and a low-molecular compound with light from both front and back sides. Production method.
【請求項3】 支持体上に形成された感光性の重合体と
低分子化合物の混合体のフィルムに表面および支持体を
介して裏面の両方向から光照射する操作を含む工程で作
製されることを特徴とする、請求項1の位相差フィルム
およびその製造方法。
3. A process comprising irradiating a film of a mixture of a photosensitive polymer and a low-molecular compound formed on a support with light from both directions of a front surface and a back surface via the support and the support. The retardation film according to claim 1 and a method for producing the same.
【請求項4】 請求項1、請求項2、および請求項3に
おいて照射する光が、直線偏光性または部分偏光性であ
る位相差フィルムおよびその製造方法。
4. A retardation film according to claim 1, wherein the light applied is linearly polarized light or partially polarized light, and a method for producing the same.
【請求項5】 請求項1、請求項2、請求項3および請
求項4に記載の位相差フィルムおよびその製造方法にお
いて、加熱、および/または冷却する工程を含むことを
特徴とする位相差フィルムおよびその製造方法。
5. The retardation film according to claim 1, 2, 3, or 4, and a method for producing the retardation film, comprising a step of heating and / or cooling. And its manufacturing method.
JP2000400355A 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same Pending JP2002202408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400355A JP2002202408A (en) 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400355A JP2002202408A (en) 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002202408A true JP2002202408A (en) 2002-07-19

Family

ID=18864963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400355A Pending JP2002202408A (en) 2000-12-28 2000-12-28 Retardation film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002202408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026795A1 (en) * 2003-09-12 2005-03-24 Nitto Denko Corporation Method for producing anisotropic film
WO2005026794A1 (en) * 2003-09-12 2005-03-24 Nitto Denko Corporation Method for producing anisotropic film
JP2006308878A (en) * 2005-04-28 2006-11-09 Hayashi Telempu Co Ltd Method for manufacturing optical element and optical element
JP2009199087A (en) * 2009-03-26 2009-09-03 Nitto Denko Corp Method for manufacturing anisotropic film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170704A (en) * 1985-01-24 1986-08-01 Matsushita Electric Ind Co Ltd Production of optical filter
JPH0391718A (en) * 1989-09-04 1991-04-17 Dainippon Ink & Chem Inc Production of liquid crystal device
JPH07294736A (en) * 1994-04-26 1995-11-10 Fuji Photo Film Co Ltd Optically anisotropic element and liquid crystal display element formed by using the same
JPH07306318A (en) * 1994-05-13 1995-11-21 Teijin Ltd Phase difference plate and liquid crystal display device
JPH085839A (en) * 1994-04-22 1996-01-12 Sumitomo Chem Co Ltd Phase difference film, its production and liquid crystal display device
JPH11183722A (en) * 1997-12-19 1999-07-09 Sumitomo Chem Co Ltd Optical compensating sheet
WO1999064924A1 (en) * 1998-06-11 1999-12-16 Rolic Ag Optical component, orientation layer, and layerable polymerisable mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170704A (en) * 1985-01-24 1986-08-01 Matsushita Electric Ind Co Ltd Production of optical filter
JPH0391718A (en) * 1989-09-04 1991-04-17 Dainippon Ink & Chem Inc Production of liquid crystal device
JPH085839A (en) * 1994-04-22 1996-01-12 Sumitomo Chem Co Ltd Phase difference film, its production and liquid crystal display device
JPH07294736A (en) * 1994-04-26 1995-11-10 Fuji Photo Film Co Ltd Optically anisotropic element and liquid crystal display element formed by using the same
JPH07306318A (en) * 1994-05-13 1995-11-21 Teijin Ltd Phase difference plate and liquid crystal display device
JPH11183722A (en) * 1997-12-19 1999-07-09 Sumitomo Chem Co Ltd Optical compensating sheet
WO1999064924A1 (en) * 1998-06-11 1999-12-16 Rolic Ag Optical component, orientation layer, and layerable polymerisable mixture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026795A1 (en) * 2003-09-12 2005-03-24 Nitto Denko Corporation Method for producing anisotropic film
WO2005026794A1 (en) * 2003-09-12 2005-03-24 Nitto Denko Corporation Method for producing anisotropic film
KR100742149B1 (en) * 2003-09-12 2007-07-24 닛토덴코 가부시키가이샤 Method for producing anisotropic film
KR100742150B1 (en) * 2003-09-12 2007-07-24 닛토덴코 가부시키가이샤 Method for producing anisotropic film
JP2006308878A (en) * 2005-04-28 2006-11-09 Hayashi Telempu Co Ltd Method for manufacturing optical element and optical element
JP2009199087A (en) * 2009-03-26 2009-09-03 Nitto Denko Corp Method for manufacturing anisotropic film

Similar Documents

Publication Publication Date Title
KR100852224B1 (en) Retardation film and process for producing the same
US6215539B1 (en) Photo-oriented polymer network material having desired azimuthal orientation and tilt angle and method for its production
JP3945790B2 (en) Birefringent film and manufacturing method thereof
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
JP2007232934A (en) Photo-alignment material
JP2990270B2 (en) Oriented resin film, method for producing the same, and optical element using the oriented resin film
JP3952662B2 (en) Liquid crystal display element
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP4636353B2 (en) Retardation film
US6608661B1 (en) Photo-oriented polymer network material having desired azimuthal orientation and tilt angle and method for its production
JP2002202408A (en) Retardation film and method for manufacturing the same
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2002090750A (en) Alignment film and method for manufacturing the same
JP2003073562A (en) Photo-orientation resin composition for liquid crystal orientation, liquid crystal orientation resin film and liquid crystal optical element using liquid crystal orientation resin film
JP4721023B2 (en) Method for producing birefringent film
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP4947532B2 (en) Method for producing retardation film
JP2001337329A (en) Alignment film and method for manufacturing the same
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002202407A (en) Retardation film and method for manufacturing the same
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2007063155A (en) Liquid-crystalline polymerizable low molecular compound, birefringent film using the compound and birefringent cell, and their production methods
JP2002090540A (en) Birefringent film and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116