JP4721023B2 - Method for producing birefringent film - Google Patents

Method for producing birefringent film Download PDF

Info

Publication number
JP4721023B2
JP4721023B2 JP2000274353A JP2000274353A JP4721023B2 JP 4721023 B2 JP4721023 B2 JP 4721023B2 JP 2000274353 A JP2000274353 A JP 2000274353A JP 2000274353 A JP2000274353 A JP 2000274353A JP 4721023 B2 JP4721023 B2 JP 4721023B2
Authority
JP
Japan
Prior art keywords
chemical formula
polymer
film
liquid crystalline
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000274353A
Other languages
Japanese (ja)
Other versions
JP2002082224A (en
Inventor
丈也 酒井
正雄 植月
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2000274353A priority Critical patent/JP4721023B2/en
Publication of JP2002082224A publication Critical patent/JP2002082224A/en
Application granted granted Critical
Publication of JP4721023B2 publication Critical patent/JP4721023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感光性の側鎖型高分子液晶(感光性の重合体)と液晶性化合物の混合体の膜に、直線偏光性の紫外線を照射する(以下、偏光露光という)ことによって、分子配向させ該高分子材料内に位相差と光軸方向を任意に発現させた複屈折フィルムおよび、その製造法に関するものである。(特に、光軸がフィルム面に対し傾いた複屈折フィルムは液晶表示装置において視野角拡大に有効である。)
【0002】
【従来の技術】
複屈折フィルムは、互いに垂直な主軸方向に振動する直線偏光成分を通過させ、この二成分間に必要な位相差を与える複屈折を有するフィルムである。このような複屈折フィルムは液晶表示分野にも活用されてきており、特に光軸の傾いた複屈折フィルムは光学補償フィルムとして液晶表示装置の視野角拡大に役立つ。このような複屈折フィルムを製造する従来技術が幾つかある。その一つとして、ポリカーボネートなどの高分子材料を延伸し、高分子鎖を配向させ、延伸方向の屈折率と、延伸方向に対し直交方向の屈折率に差異を生じさせる方法であるが、その課題は、延伸という工程によるため、分子は延伸方向に配向するため光軸を傾斜させることが実質的に不可能である点にある。上記課題にかんがみ、光軸の傾いた複屈折フィルムの製造法として延伸フィルムやラビングや光照射により配向処理した基材上で液晶性化合物を配列させる方法が提案または実用化されつつある。例えば、特開平7−287119号、特開平7−287120号公報では、ラビング配向膜、SiO斜方蒸着配向膜上にディスコティック液晶を配列させる方法が記載されている。また、同様な方法として、特開平10−278123号公報では光配向膜上に光重合開始剤を含有したディスコティック液晶を配向させ光照射によりこの配向を固定する方法が記載されている。上記のような配向膜を用いる方法では、配向膜の配向処理、液晶材料の配向など工程が煩雑になるなどの課題がある。更に、光軸の傾いた複屈折フィルムを製造する他の方法として、無機誘電体を斜方蒸着する方法が提案されているが、長尺状シート上に連続して蒸着膜を形成するには、装置が大掛かりになったり、工程が煩雑になるなどの課題がある。また、本発明者も特願平9−368394号では感光性を有する側鎖型液晶性高分子の偏光露光により、光軸の傾いた複屈折フィルムを製造する方法提案しているが、大きな位相差を発現させるためフィルムを厚くすると曇り度が大きくなるという課題がある。
【0003】
【発明が解決しようとする課題】
高分子フィルムの延伸配向によって作製された複屈折フィルムの位相差は、延伸という工程によるため、分子は延伸方向に配向するため光軸を傾斜させることが著しく困難である。
一方、配向処理した基材上で液晶性化合物を配列させる方法や無機誘電体の斜方蒸着する方法は、光軸を傾斜させた複屈折フィルムを作製することは可能であるが、工程が煩雑となるため低コストで大面積の光軸を傾斜させた複屈折フィルムを得ることはできないという問題点がある。本発明では、簡便な工程で、曇り度が小さく大量生産に適する複屈折フィルムおよびその製造法を提供する。
【0004】
【課題を解決する手段】
本発明では、感光性の側鎖型液晶性高分子と液晶性化合物の混合体の膜に偏光露光することによって、光軸方向を任意に発現させた複屈折フィルムを提供する。本発明の複屈折フィルムおよびその製造方法(による複屈折フィルムは)では、感光性の側鎖型液晶性高分子と液晶性化合物の混合体を製膜し特定の方向から偏光露光することによって、感光性の側鎖型高分子液晶の側鎖と液晶性化合物を照射した直線偏光紫外線の電界振動方向に対し平行方向かつ照射光の進行方向に対して垂直方向に配向させることができる。この照射をフィルム面に対して斜め方向から行なうことによって、光軸を任意に傾斜させて配向させることができる。その結果、光軸を所望の方向に設定した複屈折フィルムを提供できる。
【0005】
【発明の実施の形態】
以下に、本発明の詳細を説明する。前述の感光性の側鎖型液晶性高分子は、液晶性高分子のメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどの置換基と、桂皮酸基(または、その誘導体基)などの感光性基を結合した構造を含む側鎖を有し、炭化水素、アクリレート、メタクリレート、マレイミド、N−フェニルマレイミド、シロキサンなどの構造を主鎖に有する高分子である。
該感光性の側鎖型液晶性高分子と液晶性化合物の溶液を基材上に塗布(スピンコートないしはキャスト)した塗布膜を形成する。該膜は、製膜時には等方性であり、感光性の側鎖型液晶性高分子の側鎖部および液晶性化合物は特定方向を向いていない。この状態を、図2に基づいて説明すると、塗布膜中では、感光性の側鎖(2a)が長楕円で示される感光基を有し照射偏光紫外線(L)の振動方向(m)かつ照射光進行方向に対し垂直方向に配向していると共に、感光性の乏しい配置の側鎖(2b)および円柱で示される液晶性化合物(2c)が無秩序に共存している。
該膜を偏光露光すると、照射直線偏光の電界振動方向かつ照射光進行方向に対し垂直方向に対応した向きにある感光性の高い配置の側鎖(2a)の光反応が優先的に進行する。この光反応を進めるには、化学式1から化学式8の感光性基の部分が反応し得る波長の直線偏光の照射を要する。この波長は、化学式1から化学式8で示された−R1〜−R12の種類によっても異なるが、一般に200-500nmであり、中でも250-400nmの有効性が高い場合が多い。
【0006】
偏光露光後の分子運動により、直線偏光の電界方向かつ照射光進行方向に対し垂直方向に対応した向きにないため、図3に示すように光反応を起こさなかった側鎖(3b)と液晶性化合物(3c)は、光反応した側鎖(3a)と同じ方向に配向する。その結果、塗布膜全体において、照射した直線偏光の電界振動方向かつ照射光進行方向に対し垂直方向に側鎖型液晶性高分子の側鎖と液晶性化合物分子が配向し複屈折が誘起される。
この偏光露光後の分子運動による配向は、基板を加熱することにより促進される。基板の加熱温度は、光反応した部分の軟化点より低く、光反応しなかった側鎖および感光性基を有さない側鎖部分の軟化点より高いことが望ましい。また、加温下(室温からTi+5℃まで)で偏光露光することにより配向を促進することができる。ここで、Tiは感光性の側鎖型液晶性高分子の液晶相から等方相へ変化するときの相転移温度を指す。このように偏光露光したのち加熱し未反応側鎖を配向させた膜または加熱下で偏光露光し配向させた膜を該高分子の軟化点温度以下まで冷却すると分子が凍結され、本発明の配向膜が得られる。液晶性化合物は、再配向時の分子運動の自由度を向上させ、自身の分子配向性により再配向を促進する。また、この液晶化合物は適量を添加することにより曇り度を抑制する効果がある反面、過剰に添加すると曇り度の増加、配向性の低下を引き起こす。このような観点から、感光性の重合体または液晶性化合物の種類にもよるが、0.1wt%〜90wt%添加しても複屈折シートは製造可能であるが、好ましくは3wt%〜75wt%であることが望ましい。更に、液晶性化合物は、反応性を有していても有していなくてもよく、反応性を有している場合、配向が強固に固定されるため耐熱性の向上が期待できる。このような場合、再配向時の分子運動を妨げないよう、偏光露光量を抑えるか反応性を調整するなどして、光反応点の密度を制御する必要がある。耐熱性を高める他の手法として、二官能性化合物のような架橋剤を添加する方法が挙げられ、この場合には、分子の配向を妨げないように添加量を調整する必要がある。
【0007】
感光性の側鎖型液晶性高分子の原料化合物および反応性液晶化合物に関する合成方法を以下に示す。
(単量体1)4,4’−ビフェニルジオールと2−クロロエタノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。最後に、塩基性の条件下において、塩化シンナモイルを加え、化学式11に示されるメタクリル酸エステルを合成した。
【化11】

Figure 0004721023
【0008】
(単量体2)4,4’−ビフェニルジオールと2−クロロヘキサノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。最後に、塩基性の条件下において、4−メトキシ塩化シンナモイルを加え、化学式12に示されるメタクリル酸エステルを合成した。
【化12】
Figure 0004721023
【0009】
(重合体1)
単量体1をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体1を得た。この重合体1は、47−75℃の温度領域において、液晶性を呈した。
【0010】
(重合体2)
単量体2をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体2を得た。この重合体2も液晶性を呈した。
【0011】
(反応性液晶化合物1)
p−ヒドロキシ安息香酸メチルとブロモオクテンを、アルカリ条件下で加熱することにより、4−オクテニルオキシ安息香酸メチルを合成した。この生成物に、アルカリ条件下で加熱し4−オクテニルオキシ安息香酸を合成した。次いで、塩化チオニルと反応させ4−オクテニルオキシ安息香酸クロリドを合成し、メチルヒドロキノンと反応させることにより、化学式13に示される反応性液晶化合物1を合成した。
【化13】
Figure 0004721023
【0012】
【実施例】
本発明に用いた感光性の側鎖型液晶性高分子は、熱分析による相転移温度の発現、液晶温度領域での偏光顕微鏡観察像における複屈折性の光学模様の発現から、液晶性の材料であることを確認した。
化学式9において、n=6、m=2、X=none、W1=化学式1,−R1〜−R7=Hであり、主鎖がメタクリレートである感光性の側鎖型液晶性高分子の熱分析曲線は、昇温過程で47℃と75℃に吸熱ピークが認められ、偏光顕微鏡で観察すると、該温度領域で複屈折性の光学模様を発現する液晶性の材料である。
図1には、本発明の配向膜の製造方法(装置)を示す。電源(12)によって励起された紫外線ランプ(11)で発生した無秩序光(16)は、光学素子(13)(例えば、グランテーラープリズム)をもって直線偏光性の紫外線(17)に変換され、基材(15)上に塗布(コート)された感光性の側鎖型液晶性高分子と液晶性化合物の膜(14)を照射する。
実施例1から6は、本発明の製造法により、光軸の傾いた複屈折フィルムを作製した実施例である。
【0013】
(実施例1)3.75重量%の重合体1および1.25重量%の液晶材料E7(メルクジャパン)をジクロロエタンに溶解し、光学的に等方性の基板上に約3μmの厚さで塗布した。該基板を水平面に対して45度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から室温で120mJ/cm2照射した。続いて、100℃に加熱した後、室温まで冷却した。このようにして得られた基板は、光軸が基板の法線方向から22°傾き、基板面内の位相差は76.5nmであり、曇り度は殆どなく実用に十分耐えうるものであった。
【0014】
(実施例2)3.75重量%の重合体1および1.25重量%の液晶材料E7(メルクジャパン)をジクロロエタンに溶解し、光学的に等方性の基板上に約3μmの厚さで塗布した。該基板を水平面に対して20度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から室温で120mJ/cm2照射した。続いて、100℃に加熱した後、室温まで冷却した。このようにして得られた基板は、光軸が基板の法線方向から9.5°傾き、基板面内の位相差は94.8nmであった。
【0015】
(実施例3)2.5重量%の重合体1および2.5重量%の液晶材料E7(メルクジャパン)をジクロロエタンに溶解し、光学的に等方性の基板上に約3μmの厚さで塗布した。該基板を水平面に対して45度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から室温で120mJ/cm2照射した。続いて、100℃に加熱した後、室温まで冷却した。このようにして得られた基板は、光軸が基板の法線方向から20.5°傾き、基板面内の位相差は72.3nmであった。
【0016】
(実施例4)2.5重量%の重合体2および2.5重量%の液晶材料E7(メルクジャパン)をジクロロエタンに溶解し、光学的に等方性の基板上に約3μmの厚さで塗布した。該基板を水平面に対して45度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から室温で60mJ/cm2照射した。続いて、100℃に加熱した後、室温まで冷却した。このようにして得られた基板は、光軸が基板の法線方向から18°傾き、基板面内の位相差は69.0nmであった。
【0017】
(実施例5)3.75重量%の重合体1および1.25重量%の反応性液晶化合物1をジクロロエタンに溶解し、光学的に等方性の基板上に約3μmの厚さで塗布した。該基板を水平面に対して45度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から室温で60mJ/cm2照射した。続いて、100℃に加熱した後、室温まで冷却した。更に、非偏光の紫外線を、室温で1J/cm2照射した。このようにして得られた基板は、光軸が基板の法線方向から20.5°傾き、基板面内の位相差は38.0nmであった。
【0018】
(実施例6)2.5重量%の重合体1、2.5重量%の液晶材料E7(メルクジャパン)および0.0375重量%の二官能性モノマーHX−620(日本化薬)をジクロロエタンに溶解し、光学的に等方性の基板上に約3μmの厚さで塗布した。該基板を水平面に対して45度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から室温で60mJ/cm2照射した。続いて、100℃に加熱した後、室温まで冷却した。更に、非偏光の紫外線を、室温で1J/cm2照射した。このようにして得られた基板は、光軸が基板の法線方向から20°傾き、基板面内の位相差は55.0nmであった。
【0019】
これらの実施例から、偏光露光により光軸方向を制御したフィルムを作製でき、偏光露光という比較的簡便な方法により、光軸方向を制御した複屈折フィルムの製造が可能であることが立証できた。
本発明の複屈折フィルムおよびその製造法では、偏光露光により複屈折を生じたフィルムに、更に紫外線を照射することにより未反応の感光性基の光反応を促進させ、フィルム中の配向を強固に固定することができる。このような複屈折フィルムは、耐熱性、光安定性に優れ実用に充分であった。
【0020】
【発明の効果】
直線偏光照射という簡便な操作により、従来技術のような延伸工程を用いなくても複屈折フィルムを得ることができる。更に、直線偏光性の紫外線の照射方向を変えることにより同一基板内において、光軸の異なる領域の作製も可能であり、様々な光学素子への活用が期待される。
また、光軸の傾斜した複屈折フィルムは、旋光モード、複屈折モードを利用したねじれネマチック液晶を使った液晶表示装置において視野角拡大用の光学補償フィルムとして活用できる。従来このような、光軸の傾斜した複屈折フィルムを大面積において低コストで作製することができなかったが、本発明によって、斜め方向から偏光露光するという簡便な操作で大面積の作製が可能となった。
【0021】
【図面の簡単な説明】
【図1】本発明の複屈折フィルムの製造方法を示す概念図
【図2】偏光露光により感光した側鎖の模式図
【図3】偏光露光後の分子運動により配列した側鎖の模式図
【符号の説明】
11・・・紫外線ランプ
12・・・電源
14・・・膜
15・・・基材
16・・・無秩序光
17・・・直線偏光性の紫外線[0001]
BACKGROUND OF THE INVENTION
In the present invention, a film of a mixture of a photosensitive side-chain polymer liquid crystal (photosensitive polymer) and a liquid crystalline compound is irradiated with linearly polarized ultraviolet light (hereinafter referred to as polarized light exposure), whereby molecules The present invention relates to a birefringent film that is oriented and has a retardation and an optical axis direction arbitrarily expressed in the polymer material, and a method for producing the same. (In particular, a birefringent film whose optical axis is inclined with respect to the film surface is effective for widening the viewing angle in a liquid crystal display device.)
[0002]
[Prior art]
The birefringent film is a film having birefringence that allows linearly polarized components that vibrate in directions of principal axes perpendicular to each other to pass therethrough and that provides a necessary phase difference between the two components. Such a birefringent film has been used in the field of liquid crystal display. In particular, a birefringent film having an inclined optical axis is useful as an optical compensation film for expanding the viewing angle of a liquid crystal display device. There are several conventional techniques for producing such birefringent films. One of them is a method of stretching a polymer material such as polycarbonate and orienting a polymer chain to make a difference between the refractive index in the stretching direction and the refractive index in the direction perpendicular to the stretching direction. Is due to the process of stretching, and the molecules are oriented in the stretching direction, so that it is substantially impossible to tilt the optical axis. In view of the above problems, as a method for producing a birefringent film having an inclined optical axis, a method of aligning a liquid crystalline compound on a stretched film or a substrate subjected to alignment treatment by rubbing or light irradiation is being proposed or put into practical use. For example, Japanese Patent Application Laid-Open Nos. 7-287119 and 7-287120 describe a method of arranging discotic liquid crystals on a rubbing alignment film and an SiO oblique deposition alignment film. As a similar method, Japanese Patent Application Laid-Open No. 10-278123 describes a method of aligning a discotic liquid crystal containing a photopolymerization initiator on a photo-alignment film and fixing this alignment by light irradiation. In the method using the alignment film as described above, there are problems such as a complicated process such as alignment treatment of the alignment film and alignment of the liquid crystal material. Furthermore, as another method for producing a birefringent film having an inclined optical axis, a method of obliquely depositing an inorganic dielectric has been proposed. In order to continuously form a deposited film on a long sheet. However, there is a problem that the apparatus becomes large and the process becomes complicated. The present inventor has also proposed in Japanese Patent Application No. 9-368394 a method for producing a birefringent film having a tilted optical axis by polarizing exposure of a photosensitive side chain type liquid crystalline polymer. When the film is thickened to develop the phase difference, there is a problem that the haze increases.
[0003]
[Problems to be solved by the invention]
Since the phase difference of the birefringent film produced by stretching orientation of the polymer film is due to a stretching process, it is extremely difficult to tilt the optical axis because the molecules are oriented in the stretching direction.
On the other hand, the method of aligning liquid crystal compounds on an alignment-treated substrate and the method of obliquely depositing an inorganic dielectric can produce a birefringent film with an inclined optical axis, but the process is complicated. Therefore, there is a problem that it is not possible to obtain a birefringent film having a large-area optical axis inclined at a low cost. The present invention provides a birefringent film having a low haze and suitable for mass production by a simple process and a method for producing the same.
[0004]
[Means for solving the problems]
In the present invention, there is provided a birefringent film in which an optical axis direction is arbitrarily expressed by exposing a film of a mixture of a photosensitive side chain type liquid crystalline polymer and a liquid crystalline compound to polarized light. In the birefringent film of the present invention and the method for producing the same (by the birefringent film), a mixture of a photosensitive side chain type liquid crystalline polymer and a liquid crystalline compound is formed and subjected to polarized light exposure from a specific direction. It can be aligned in the direction parallel to the electric field vibration direction of the linearly polarized ultraviolet rays irradiated with the side chain of the photosensitive side chain type polymer liquid crystal and the liquid crystalline compound and in the direction perpendicular to the traveling direction of the irradiation light. By performing this irradiation from an oblique direction with respect to the film surface, the optical axis can be arbitrarily inclined and oriented. As a result, a birefringent film having the optical axis set in a desired direction can be provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below. The above-mentioned photosensitive side chain type liquid crystalline polymer includes a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are frequently used as a mesogenic component of the liquid crystalline polymer, and a cinnamic acid group (or a derivative group thereof). ) And the like, and a polymer having a structure such as hydrocarbon, acrylate, methacrylate, maleimide, N-phenylmaleimide, and siloxane in the main chain.
A coating film is formed by coating (spin coating or casting) a solution of the photosensitive side chain type liquid crystalline polymer and the liquid crystalline compound on a substrate. The film is isotropic during film formation, and the side chain portion of the photosensitive side chain type liquid crystalline polymer and the liquid crystal compound are not oriented in a specific direction. This state will be described with reference to FIG. 2. In the coating film, the photosensitive side chain (2a) has a photosensitive group indicated by an ellipse, and the irradiation direction (m) of the irradiated polarized ultraviolet light (L) is irradiated. The side chain (2b) and the liquid crystalline compound (2c) shown by the cylinders coexist in a disorderly manner while being aligned in a direction perpendicular to the light traveling direction.
When the film is subjected to polarized light exposure, the photoreaction of the side chain (2a) having a high photosensitivity in a direction corresponding to the direction of electric field oscillation of the irradiation linearly polarized light and the direction perpendicular to the irradiation light traveling direction preferentially proceeds. In order to proceed with this photoreaction, irradiation with linearly polarized light having a wavelength capable of reacting with the photosensitive group portion of Chemical Formula 1 to Chemical Formula 8 is required. This wavelength varies depending on the types of -R 1 to -R 12 represented by Chemical Formula 1 to Chemical Formula 8, but is generally 200-500 nm, and in particular, the effectiveness of 250-400 nm is often high.
[0006]
The side chain (3b) which did not cause photoreaction as shown in FIG. 3 due to the molecular motion after polarized light exposure and the direction perpendicular to the electric field direction of linearly polarized light and the direction of travel of irradiation light, and liquid crystallinity The compound (3c) is oriented in the same direction as the photoreacted side chain (3a). As a result, in the whole coating film, the side chain of the side chain type liquid crystalline polymer and the liquid crystalline compound molecule are oriented in the direction of electric field oscillation of the irradiated linearly polarized light and the direction perpendicular to the traveling direction of the irradiated light, and birefringence is induced. .
The orientation by molecular motion after the polarization exposure is promoted by heating the substrate. The heating temperature of the substrate is preferably lower than the softening point of the photoreacted part and higher than the softening point of the side chain part not photoreacted and the side chain part having no photosensitive group. In addition, orientation can be promoted by exposure to polarized light under heating (from room temperature to Ti + 5 ° C.). Here, Ti refers to the phase transition temperature when changing from the liquid crystal phase to the isotropic phase of the photosensitive side chain type liquid crystalline polymer. In this way, when the film exposed to polarized light and heated to align the unreacted side chain or the film exposed to polarized light and aligned under heating to below the softening point temperature of the polymer is frozen, the molecules are frozen. A membrane is obtained. The liquid crystal compound improves the degree of freedom of molecular movement during realignment, and promotes realignment due to its own molecular alignment. In addition, the addition of an appropriate amount of this liquid crystal compound has an effect of suppressing the haze, but when added excessively, the haze increases and the orientation deteriorates. From this point of view, although depending on the type of photosensitive polymer or liquid crystal compound, a birefringent sheet can be produced even when 0.1 wt% to 90 wt% is added, but preferably 3 wt% to 75 wt%. It is desirable that Further, the liquid crystalline compound may or may not have reactivity, and if it has reactivity, the alignment is firmly fixed, and thus improvement in heat resistance can be expected. In such a case, it is necessary to control the density of the photoreactive points by suppressing the amount of polarized light exposure or adjusting the reactivity so as not to hinder the molecular motion during reorientation. As another method for increasing the heat resistance, there is a method of adding a cross-linking agent such as a bifunctional compound. In this case, it is necessary to adjust the addition amount so as not to disturb the molecular orientation.
[0007]
A synthesis method relating to a raw material compound and a reactive liquid crystal compound of a photosensitive side chain type liquid crystalline polymer is shown below.
(Monomer 1) 4-Hydroxy-4′-hydroxyethoxybiphenyl was synthesized by heating 4,4′-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 11.
Embedded image
Figure 0004721023
[0008]
(Monomer 2) 4-Hydroxy-4′-hydroxyethoxybiphenyl was synthesized by heating 4,4′-biphenyldiol and 2-chlorohexanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, 4-methoxycinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 12.
Embedded image
Figure 0004721023
[0009]
(Polymer 1)
Monomer 1 was dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. The polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.
[0010]
(Polymer 2)
The monomer 2 was dissolved in tetrahydrofuran, and polymerized by adding and polymerizing AIBN (azobisisobutyronitrile) as a reaction initiator. This polymer 2 also exhibited liquid crystallinity.
[0011]
(Reactive liquid crystal compound 1)
Methyl 4-octenyloxybenzoate was synthesized by heating methyl p-hydroxybenzoate and bromooctene under alkaline conditions. This product was heated under alkaline conditions to synthesize 4-octenyloxybenzoic acid. Subsequently, it reacted with thionyl chloride to synthesize 4-octenyloxybenzoic acid chloride, and reacted with methylhydroquinone to synthesize reactive liquid crystal compound 1 represented by Chemical Formula 13.
Embedded image
Figure 0004721023
[0012]
【Example】
The photosensitive side-chain liquid crystalline polymer used in the present invention is a liquid crystalline material because of the development of the phase transition temperature by thermal analysis and the expression of the birefringent optical pattern in the polarization microscope observation image in the liquid crystal temperature region. It was confirmed that.
Photosensitive side chain liquid crystalline polymer in which n = 6, m = 2, X = none, W 1 = Chemical formula 1, -R 1 to -R 7 = H, and the main chain is methacrylate. The thermal analysis curve is a liquid crystalline material in which endothermic peaks are observed at 47 ° C. and 75 ° C. during the temperature rising process, and when observed with a polarizing microscope, it exhibits a birefringent optical pattern in the temperature range.
In FIG. 1, the manufacturing method (apparatus) of the oriented film of this invention is shown. The disordered light (16) generated by the ultraviolet lamp (11) excited by the power supply (12) is converted into linearly polarized ultraviolet light (17) by the optical element (13) (for example, Grand Taylor prism), (15) Irradiate a film (14) of a photosensitive side chain type liquid crystalline polymer and liquid crystalline compound coated (coated) thereon.
Examples 1 to 6 are examples in which a birefringent film having an inclined optical axis was produced by the production method of the present invention.
[0013]
Example 1 3.75% by weight of Polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane, and the thickness was about 3 μm on an optically isotropic substrate. Applied. The substrate was disposed so as to be inclined at 45 degrees with respect to the horizontal plane, and ultraviolet rays converted to linearly polarized light using a Grand Taylor prism were irradiated at a room temperature of 120 mJ / cm 2 from a direction perpendicular to the horizontal plane. Then, after heating to 100 degreeC, it cooled to room temperature. The substrate thus obtained had an optical axis tilted by 22 ° from the normal direction of the substrate, the phase difference in the substrate surface was 76.5 nm, had almost no haze, and was sufficiently durable for practical use. .
[0014]
(Example 2) 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane, and the thickness was about 3 μm on an optically isotropic substrate. Applied. The substrate was placed so as to be inclined by 20 degrees with respect to the horizontal plane, and ultraviolet rays converted to linearly polarized light using a Grand Taylor prism were irradiated at 120 mJ / cm 2 from the direction perpendicular to the horizontal plane at room temperature. Then, after heating to 100 degreeC, it cooled to room temperature. The substrate thus obtained had an optical axis tilted by 9.5 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 94.8 nm.
[0015]
(Example 3) 2.5% by weight of Polymer 1 and 2.5% by weight of liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane, and the thickness was about 3 μm on an optically isotropic substrate. Applied. The substrate was disposed so as to be inclined at 45 degrees with respect to the horizontal plane, and ultraviolet rays converted to linearly polarized light using a Grand Taylor prism were irradiated at a room temperature of 120 mJ / cm 2 from a direction perpendicular to the horizontal plane. Then, after heating to 100 degreeC, it cooled to room temperature. The substrate thus obtained had an optical axis inclined by 20.5 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 72.3 nm.
[0016]
(Example 4) 2.5% by weight of polymer 2 and 2.5% by weight of liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane, and the thickness was about 3 μm on an optically isotropic substrate. Applied. The substrate was placed so as to be inclined at 45 degrees with respect to the horizontal plane, and ultraviolet rays converted to linearly polarized light using a Grand Taylor prism were irradiated at 60 mJ / cm 2 from the vertical direction to the horizontal plane at room temperature. Then, after heating to 100 degreeC, it cooled to room temperature. The substrate thus obtained had an optical axis tilted 18 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 69.0 nm.
[0017]
Example 5 3.75% by weight of Polymer 1 and 1.25% by weight of reactive liquid crystal compound 1 were dissolved in dichloroethane and coated on an optically isotropic substrate at a thickness of about 3 μm. . The substrate was placed so as to be inclined at 45 degrees with respect to the horizontal plane, and ultraviolet rays converted to linearly polarized light using a Grand Taylor prism were irradiated at 60 mJ / cm 2 from the vertical direction to the horizontal plane at room temperature. Then, after heating to 100 degreeC, it cooled to room temperature. Furthermore, 1 J / cm 2 was irradiated with non-polarized ultraviolet rays at room temperature. The substrate thus obtained had an optical axis tilted 20.5 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 38.0 nm.
[0018]
(Example 6) 2.5% by weight of polymer 1, 2.5% by weight of liquid crystal material E7 (Merck Japan) and 0.0375% by weight of bifunctional monomer HX-620 (Nippon Kayaku) in dichloroethane It was dissolved and applied to an optically isotropic substrate with a thickness of about 3 μm. The substrate was placed so as to be inclined at 45 degrees with respect to the horizontal plane, and ultraviolet rays converted to linearly polarized light using a Grand Taylor prism were irradiated at 60 mJ / cm 2 from the vertical direction to the horizontal plane at room temperature. Then, after heating to 100 degreeC, it cooled to room temperature. Furthermore, 1 J / cm 2 was irradiated with non-polarized ultraviolet rays at room temperature. The substrate thus obtained had an optical axis tilted by 20 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 55.0 nm.
[0019]
From these examples, it was possible to produce a film in which the optical axis direction was controlled by polarized light exposure, and it was proved that it was possible to produce a birefringent film in which the optical axis direction was controlled by a relatively simple method called polarized light exposure. .
In the birefringent film and the method for producing the same of the present invention, the film in which birefringence is generated by polarized light exposure is further irradiated with ultraviolet rays to promote the photoreaction of unreacted photosensitive groups, thereby strengthening the orientation in the film. Can be fixed. Such a birefringent film was excellent in heat resistance and light stability and was sufficient for practical use.
[0020]
【The invention's effect】
By a simple operation of linearly polarized light irradiation, a birefringent film can be obtained without using a stretching process as in the prior art. Furthermore, by changing the irradiation direction of linearly polarized ultraviolet rays, it is possible to produce regions having different optical axes in the same substrate, and it is expected to be used for various optical elements.
In addition, the birefringent film whose optical axis is inclined can be used as an optical compensation film for widening the viewing angle in a liquid crystal display device using a twisted nematic liquid crystal utilizing an optical rotation mode and a birefringence mode. Conventionally, such a birefringent film with an inclined optical axis could not be produced at a low cost in a large area, but according to the present invention, a large area can be produced by a simple operation of polarizing exposure from an oblique direction. It became.
[0021]
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method for producing a birefringent film of the present invention. FIG. 2 is a schematic diagram of side chains exposed by polarized light exposure. FIG. 3 is a schematic diagram of side chains arranged by molecular motion after polarized light exposure. Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Ultraviolet lamp 12 ... Power supply 14 ... Film | membrane 15 ... Base material 16 ... Disorder light 17 ... Linearly-polarized ultraviolet light

Claims (2)

感光性の側鎖型液晶性高分子からなる感光性の重合体と液晶性化合物の混合体に光照射する操作を含む工程で作製され、前記感光性の側鎖型液晶性高分子からなる感光性の重合体が化学式1から化学式8で表される構造のうちの少なくとも1つを有することを特徴とする、複屈折フィルムの製造方法。
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
但し、−R〜−R11=−H、ハロゲン基、−CN、アルキル基またはメトキシ基などのアルキルオキシ基、またはそれらを弗化した基、−R12=メチル基、エチル基などのアルキル基、またはそれらを弗化した基である。
A photosensitive polymer comprising a photosensitive side chain type liquid crystalline polymer prepared by a process including an operation of irradiating light to a mixture of a photosensitive polymer comprising a photosensitive side chain type liquid crystalline polymer and a liquid crystalline compound. A method for producing a birefringent film, wherein the polymer has at least one of structures represented by Chemical Formulas 1 to 8.
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
Figure 0004721023
However, -R 1 to -R 11 = -H, a halogen group, -CN, an alkyloxy group such as an alkyl group or a methoxy group, or a group obtained by fluorination thereof, -R 12 = an alkyl such as a methyl group or an ethyl group A group, or a group obtained by fluorination thereof.
請求項1における感光性の側鎖型液晶性高分子からなる感光性の重合体が、少なくとも化学式9または化学式10で表される構造を有することを特徴とする、複屈折フィルムの製造方法。
Figure 0004721023
Figure 0004721023
但し、n=1〜12、m=1〜12、X,Y=none、−COO、−OCO−、−N=N−、−C=C−or−C−、W,W=化学式1または化学式2または化学式3または化学式4または化学式5または化学式6または化学式7または化学式8で表される構造である。
The method for producing a birefringent film, wherein the photosensitive polymer comprising the photosensitive side chain liquid crystalline polymer according to claim 1 has a structure represented by at least chemical formula 9 or chemical formula 10.
Figure 0004721023
Figure 0004721023
However, n = 1~12, m = 1~12 , X, Y = none, -COO, -OCO -, - N = N -, - C = C-or-C 6 H 4 -, W 1, W 2 = Structure represented by Chemical Formula 1 or Chemical Formula 2 or Chemical Formula 3 or Chemical Formula 4 or Chemical Formula 5 or Chemical Formula 6 or Chemical Formula 7 or Chemical Formula 8.
JP2000274353A 2000-09-11 2000-09-11 Method for producing birefringent film Expired - Lifetime JP4721023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274353A JP4721023B2 (en) 2000-09-11 2000-09-11 Method for producing birefringent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274353A JP4721023B2 (en) 2000-09-11 2000-09-11 Method for producing birefringent film

Publications (2)

Publication Number Publication Date
JP2002082224A JP2002082224A (en) 2002-03-22
JP4721023B2 true JP4721023B2 (en) 2011-07-13

Family

ID=18760123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274353A Expired - Lifetime JP4721023B2 (en) 2000-09-11 2000-09-11 Method for producing birefringent film

Country Status (1)

Country Link
JP (1) JP4721023B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231293B2 (en) * 2013-04-23 2017-11-15 富士フイルム株式会社 Liquid crystal composition, retardation plate, circularly polarizing plate, and image display device
JP6618043B2 (en) * 2014-11-12 2019-12-11 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102137552B1 (en) * 2017-12-27 2020-07-24 삼성에스디아이 주식회사 Liquid crystal retardation film, laminate comprising the same, polarizing plate comprising the same and light emitting display apparatus compsiring the same
CN113302262A (en) * 2019-01-22 2021-08-24 默克专利股份有限公司 Method for preparing liquid crystal polymer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189665A (en) * 1997-12-25 1999-07-13 Hayashi Telempu Co Ltd Birefringent film and its production
JP2000327924A (en) * 1999-05-25 2000-11-28 Nitto Denko Corp Liquid crystal polymer composition, phase difference plate and oval polarizing plate
JP2002517605A (en) * 1998-06-11 2002-06-18 ロリク アーゲー Optical member, alignment layer and layerable polymerizable mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189665A (en) * 1997-12-25 1999-07-13 Hayashi Telempu Co Ltd Birefringent film and its production
JP2002517605A (en) * 1998-06-11 2002-06-18 ロリク アーゲー Optical member, alignment layer and layerable polymerizable mixture
JP2000327924A (en) * 1999-05-25 2000-11-28 Nitto Denko Corp Liquid crystal polymer composition, phase difference plate and oval polarizing plate

Also Published As

Publication number Publication date
JP2002082224A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3945790B2 (en) Birefringent film and manufacturing method thereof
JP3945789B2 (en) Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film
KR100852224B1 (en) Retardation film and process for producing the same
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
JP2007232934A (en) Photo-alignment material
JP2990270B2 (en) Oriented resin film, method for producing the same, and optical element using the oriented resin film
Kawatsuki et al. Axis-selective photo-Fries rearrangement and photoinduced molecular reorientation in liquid crystalline polymer films
JP4636353B2 (en) Retardation film
JP3163539B2 (en) Liquid crystalline alignment film, method for producing liquid crystalline alignment film, and optical element using the same
JP2000212310A (en) Oriented film, its production and liquid crystal display device
Kawatsuki et al. Photoinduced birefringent pattern and photoinactivation of liquid-crystalline copolymer films with benzoic acid and phenylaldehyde side groups
JP4721023B2 (en) Method for producing birefringent film
JP4333914B2 (en) Method for manufacturing polarization diffraction element
JP2001051279A (en) Alignment film for liquid crystal display device
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2002090750A (en) Alignment film and method for manufacturing the same
JP2003073562A (en) Photo-orientation resin composition for liquid crystal orientation, liquid crystal orientation resin film and liquid crystal optical element using liquid crystal orientation resin film
US6524715B1 (en) Thin-film forming chemical adsorption material, producing method thereof and applications thereof
JP2002202408A (en) Retardation film and method for manufacturing the same
JP7471577B2 (en) Photoreactive composition, liquid crystal cell using photoreactive composition, and method for manufacturing liquid crystal cell
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2001337329A (en) Alignment film and method for manufacturing the same
Furumi et al. Surface-assisted orientational control of discotic liquid crystals by light
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250