JP2002082224A - Birefringent film and method for manufacturing the same - Google Patents

Birefringent film and method for manufacturing the same

Info

Publication number
JP2002082224A
JP2002082224A JP2000274353A JP2000274353A JP2002082224A JP 2002082224 A JP2002082224 A JP 2002082224A JP 2000274353 A JP2000274353 A JP 2000274353A JP 2000274353 A JP2000274353 A JP 2000274353A JP 2002082224 A JP2002082224 A JP 2002082224A
Authority
JP
Japan
Prior art keywords
film
birefringent film
liquid crystal
side chain
embedded image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000274353A
Other languages
Japanese (ja)
Other versions
JP4721023B2 (en
Inventor
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Yoshihiro Kawatsuki
喜弘 川月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP2000274353A priority Critical patent/JP4721023B2/en
Publication of JP2002082224A publication Critical patent/JP2002082224A/en
Application granted granted Critical
Publication of JP4721023B2 publication Critical patent/JP4721023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a birefringent film which is subjected to molecular orientation so as to arbitrarily exhibit retardation and an optic axis direction inside a polymer material, by making linearly polarized ultraviolet rays irradiate a film composed of a mixture of a photosensitive side chain polymer liquid crystal and a liquid crystalline compound and a method for manufacturing the same. SOLUTION: The mixture of the photosensitive side chain polymer liquid crystal and the liquid crystalline compound is applied on a substrate and is film formed. The linearly polarized ultraviolet rays are made to irradiate the film by using a device consisting of an ultraviolet ray lamp, a power supply, and an optical element converting natural light to polarized light (e.g. Glan-Taylor prism). By an anisotropic photoreaction of the side chain of the photosensitive side chain polymer liquid crystal, the side chain of the photosensitive side chain polymer liquid crystal and the liquid crystalline compound are aligned in a direction parallel to a filed vibration direction of the irradiating linearly polarized ultraviolet rays and perpendicular to an irradiating ray advancing direction. By making the rays irradiate the film from a direction inclined with respect to he film surface, the liquid crystalline compound is aligned with the optical axis arbitrary inclined. As a result, the berefringent film with the optic axis set to be in a desired direction is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感光性の側鎖型高
分子液晶(感光性の重合体)と液晶性化合物の混合体の
膜に、直線偏光性の紫外線を照射する(以下、偏光露光
という)ことによって、分子配向させ該高分子材料内に
位相差と光軸方向を任意に発現させた複屈折フィルムお
よび、その製造法に関するものである。(特に、光軸が
フィルム面に対し傾いた複屈折フィルムは液晶表示装置
において視野角拡大に有効である。)
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a film of a mixture of a photosensitive side-chain polymer liquid crystal (photosensitive polymer) and a liquid crystal compound with linearly polarized ultraviolet rays (hereinafter referred to as "polarized light"). (Referred to as exposure) and a birefringent film in which the polymer is oriented so that the retardation and the optical axis direction are arbitrarily developed in the polymer material, and a method for producing the birefringent film. (Especially, a birefringent film whose optical axis is inclined with respect to the film surface is effective for expanding the viewing angle in a liquid crystal display device.)

【0002】[0002]

【従来の技術】複屈折フィルムは、互いに垂直な主軸方
向に振動する直線偏光成分を通過させ、この二成分間に
必要な位相差を与える複屈折を有するフィルムである。
このような複屈折フィルムは液晶表示分野にも活用され
てきており、特に光軸の傾いた複屈折フィルムは光学補
償フィルムとして液晶表示装置の視野角拡大に役立つ。
このような複屈折フィルムを製造する従来技術が幾つか
ある。その一つとして、ポリカーボネートなどの高分子
材料を延伸し、高分子鎖を配向させ、延伸方向の屈折率
と、延伸方向に対し直交方向の屈折率に差異を生じさせ
る方法であるが、その課題は、延伸という工程によるた
め、分子は延伸方向に配向するため光軸を傾斜させるこ
とが実質的に不可能である点にある。上記課題にかんが
み、光軸の傾いた複屈折フィルムの製造法として延伸フ
ィルムやラビングや光照射により配向処理した基材上で
液晶性化合物を配列させる方法が提案または実用化され
つつある。例えば、特開平7−287119号、特開平
7−287120号公報では、ラビング配向膜、SiO斜
方蒸着配向膜上にディスコティック液晶を配列させる方
法が記載されている。また、同様な方法として、特開平
10−278123号公報では光配向膜上に光重合開始
剤を含有したディスコティック液晶を配向させ光照射に
よりこの配向を固定する方法が記載されている。上記の
ような配向膜を用いる方法では、配向膜の配向処理、液
晶材料の配向など工程が煩雑になるなどの課題がある。
更に、光軸の傾いた複屈折フィルムを製造する他の方法
として、無機誘電体を斜方蒸着する方法が提案されてい
るが、長尺状シート上に連続して蒸着膜を形成するに
は、装置が大掛かりになったり、工程が煩雑になるなど
の課題がある。また、本発明者も特開平10−2781
23号公報では感光性を有する側鎖型液晶性高分子の偏
光露光により、光軸の傾いた複屈折フィルムを製造する
方法提案しているが、大きな位相差を発現させるためフ
ィルムを厚くすると曇り度が大きくなるという課題があ
る。
2. Description of the Related Art A birefringent film is a film having a birefringence that allows a linearly polarized light component oscillating in a direction of a principal axis perpendicular to each other to pass therethrough and gives a necessary phase difference between the two components.
Such birefringent films have been utilized in the field of liquid crystal displays. In particular, a birefringent film having an inclined optical axis is useful as an optical compensation film for expanding the viewing angle of a liquid crystal display device.
There are several prior art techniques for producing such birefringent films. One method is to stretch a polymer material such as polycarbonate, orient the polymer chains, and cause a difference between the refractive index in the stretching direction and the refractive index in the direction perpendicular to the stretching direction. Is that, because of the stretching step, molecules are oriented in the stretching direction, so that it is practically impossible to tilt the optical axis. In view of the above problems, as a method for producing a birefringent film having a tilted optical axis, a method of arranging a liquid crystalline compound on a stretched film or a substrate subjected to alignment treatment by rubbing or light irradiation has been proposed or put into practical use. For example, JP-A-7-287119 and JP-A-7-287120 describe a method of arranging discotic liquid crystals on a rubbing alignment film or a SiO oblique deposition alignment film. As a similar method, Japanese Patent Application Laid-Open No. 10-278123 describes a method in which a discotic liquid crystal containing a photopolymerization initiator is aligned on a photo-alignment film, and the alignment is fixed by light irradiation. The method using the alignment film as described above has problems such as complicated processes such as alignment treatment of the alignment film and alignment of the liquid crystal material.
Furthermore, as another method of manufacturing a birefringent film having an inclined optical axis, a method of obliquely vapor-depositing an inorganic dielectric has been proposed, but in order to form a vapor-deposited film continuously on a long sheet. However, there are problems such as an increase in the size of the apparatus and a complicated process. The present inventor has also disclosed in Japanese Patent Laid-Open No.
No. 23 proposes a method for producing a birefringent film having a tilted optical axis by polarizing exposure of a side chain type liquid crystalline polymer having photosensitivity. There is a problem that the degree increases.

【0003】[0003]

【発明が解決しようとする課題】高分子フィルムの延伸
配向によって作製された複屈折フィルムの位相差は、延
伸という工程によるため、分子は延伸方向に配向するた
め光軸を傾斜させることが著しく困難である。一方、配
向処理した基材上で液晶性化合物を配列させる方法や無
機誘電体の斜方蒸着する方法は、光軸を傾斜させた複屈
折フィルムを作製することは可能であるが、工程が煩雑
となるため低コストで大面積の光軸を傾斜させた複屈折
フィルムを得ることはできないという問題点がある。本
発明では、簡便な工程で、曇り度が小さく大量生産に適
する複屈折フィルムおよびその製造法を提供する。
The retardation of a birefringent film produced by stretching and orientation of a polymer film is due to the stretching process, and the molecules are oriented in the stretching direction, so that it is extremely difficult to tilt the optical axis. It is. On the other hand, a method of arranging a liquid crystalline compound on an alignment-treated substrate or a method of obliquely depositing an inorganic dielectric can produce a birefringent film with an inclined optical axis, but the process is complicated. Therefore, there is a problem that a birefringent film having a large-area optical axis inclined at a low cost cannot be obtained. The present invention provides a birefringent film having a low haze and suitable for mass production by a simple process, and a method for producing the birefringent film.

【0004】[0004]

【課題を解決する手段】本発明では、感光性の側鎖型液
晶性高分子と液晶性化合物の混合体の膜に偏光露光する
ことによって、光軸方向を任意に発現させた複屈折フィ
ルムを提供する。本発明の複屈折フィルムおよびその製
造方法(による複屈折フィルムは)では、感光性の側鎖
型液晶性高分子と液晶性化合物の混合体を製膜し特定の
方向から偏光露光することによって、感光性の側鎖型高
分子液晶の側鎖と液晶性化合物を照射した直線偏光紫外
線の電界振動方向に対し平行方向かつ照射光の進行方向
に対して垂直方向に配向させることができる。この照射
をフィルム面に対して斜め方向から行なうことによっ
て、光軸を任意に傾斜させて配向させることができる。
その結果、光軸を所望の方向に設定した複屈折フィルム
を提供できる。
According to the present invention, a birefringent film having an optical axis direction arbitrarily developed by subjecting a film of a mixture of a photosensitive side-chain type liquid crystalline polymer and a liquid crystalline compound to polarized light exposure. provide. In the birefringent film and the method for producing the same (birefringent film according to the present invention), a mixture of a photosensitive side chain type liquid crystalline polymer and a liquid crystalline compound is formed and polarized light exposure is performed from a specific direction. The side chain of the photosensitive side-chain type polymer liquid crystal and the liquid crystal compound can be oriented in a direction parallel to the electric field vibration direction of the linearly polarized ultraviolet light irradiated with the liquid crystal compound and in a direction perpendicular to the traveling direction of the irradiation light. By performing this irradiation in an oblique direction with respect to the film surface, the optical axis can be arbitrarily inclined and oriented.
As a result, a birefringent film in which the optical axis is set in a desired direction can be provided.

【0005】[0005]

【発明の実施の形態】以下に、本発明の詳細を説明す
る。前述の感光性の側鎖型液晶性高分子は、液晶性高分
子のメソゲン成分として多用されているビフェニル、タ
ーフェニル、フェニルベンゾエート、アゾベンゼンなど
の置換基と、桂皮酸基(または、その誘導体基)などの
感光性基を結合した構造を含む側鎖を有し、炭化水素、
アクリレート、メタクリレート、マレイミド、N−フェ
ニルマレイミド、シロキサンなどの構造を主鎖に有する
高分子である。該感光性の側鎖型液晶性高分子と液晶性
化合物の溶液を基材上に塗布(スピンコートないしはキ
ャスト)した塗布膜を形成する。該膜は、製膜時には等
方性であり、感光性の側鎖型液晶性高分子の側鎖部およ
び液晶性化合物は特定方向を向いていない。この状態
を、図2に基づいて説明すると、塗布膜中では、感光性
の側鎖(2a)が長楕円で示される感光基を有し照射偏
光紫外線(L)の振動方向(m)かつ照射光進行方向に
対し垂直方向に配向していると共に、感光性の乏しい配
置の側鎖(2b)および円柱で示される液晶性化合物
(2c)が無秩序に共存している。該膜を偏光露光する
と、照射直線偏光の電界振動方向かつ照射光進行方向に
対し垂直方向に対応した向きにある感光性の高い配置の
側鎖(2a)の光反応が優先的に進行する。この光反応
を進めるには、化学式1から化学式8の感光性基の部分
が反応し得る波長の直線偏光の照射を要する。この波長
は、化学式1から化学式8で示された−R1〜−R12
種類によっても異なるが、一般に200-500nmであり、中
でも250-400nmの有効性が高い場合が多い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. The photosensitive side-chain type liquid crystalline polymer described above includes a substituent such as biphenyl, terphenyl, phenylbenzoate, or azobenzene, which is frequently used as a mesogen component of the liquid crystalline polymer, and a cinnamic acid group (or a derivative group thereof). ) Has a side chain containing a structure to which a photosensitive group is bonded, such as a hydrocarbon,
It is a polymer having a main chain structure such as acrylate, methacrylate, maleimide, N-phenylmaleimide, and siloxane. A solution of the photosensitive side-chain type liquid crystalline polymer and the liquid crystalline compound is applied (spin-coated or cast) on a substrate to form a coating film. The film is isotropic at the time of film formation, and the side chain portion of the photosensitive side chain type liquid crystalline polymer and the liquid crystal compound are not oriented in a specific direction. This state will be described with reference to FIG. 2. In the coating film, the photosensitive side chain (2a) has a photosensitive group represented by a long ellipse and has a vibration direction (m) of irradiated polarized ultraviolet (L) and irradiation. In addition to being oriented in the direction perpendicular to the light traveling direction, the side chains (2b) having poor photosensitivity and the liquid crystal compound (2c) represented by a cylinder coexist randomly. When the film is subjected to polarized light exposure, the photoreaction of the side chain (2a) having high photosensitivity arranged in a direction corresponding to the electric field oscillation direction of the irradiation linearly polarized light and the direction perpendicular to the irradiation light traveling direction proceeds preferentially. In order to promote this photoreaction, it is necessary to irradiate linearly polarized light having a wavelength at which the portions of the photosensitive groups of Chemical Formulas 1 to 8 can react. This wavelength varies from Formula 1 according to the type of -R 1 ~-R 12 shown by the chemical formula 8, typically a 200-500 nm, among them is high is often the effectiveness of the 250-400Nm.

【0006】偏光露光後の分子運動により、直線偏光の
電界方向かつ照射光進行方向に対し垂直方向に対応した
向きにないため、図3に示すように光反応を起こさなか
った側鎖(3b)と液晶性化合物(3c)は、光反応し
た側鎖(3a)と同じ方向に配向する。その結果、塗布
膜全体において、照射した直線偏光の電界振動方向かつ
照射光進行方向に対し垂直方向に側鎖型液晶性高分子の
側鎖と液晶性化合物分子が配向し複屈折が誘起される。
この偏光露光後の分子運動による配向は、基板を加熱す
ることにより促進される。基板の加熱温度は、光反応し
た部分の軟化点より低く、光反応しなかった側鎖および
感光性基を有さない側鎖部分の軟化点より高いことが望
ましい。また、加温下(室温からTi+5℃まで)で偏光
露光することにより配向を促進することができる。ここ
で、Tiは感光性の側鎖型液晶性高分子の液晶相から等方
相へ変化するときの相転移温度を指す。このように偏光
露光したのち加熱し未反応側鎖を配向させた膜または加
熱下で偏光露光し配向させた膜を該高分子の軟化点温度
以下まで冷却すると分子が凍結され、本発明の配向膜が
得られる。液晶性化合物は、再配向時の分子運動の自由
度を向上させ、自身の分子配向性により再配向を促進す
る。また、この液晶化合物は適量を添加することにより
曇り度を抑制する効果がある反面、過剰に添加すると曇
り度の増加、配向性の低下を引き起こす。このような観
点から、感光性の重合体または液晶性化合物の種類にも
よるが、0.1wt%〜90wt%添加しても複屈折シ
ートは製造可能であるが、好ましくは3wt%〜75w
t%であることが望ましい。更に、液晶性化合物は、反
応性を有していても有していなくてもよく、反応性を有
している場合、配向が強固に固定されるため耐熱性の向
上が期待できる。このような場合、再配向時の分子運動
を妨げないよう、偏光露光量を抑えるか反応性を調整す
るなどして、光反応点の密度を制御する必要がある。耐
熱性を高める他の手法として、二官能性化合物のような
架橋剤を添加する方法が挙げられ、この場合には、分子
の配向を妨げないように添加量を調整する必要がある。
As shown in FIG. 3, the side chain (3b) which did not cause a photoreaction due to the molecular motion after the polarized light exposure was not in the direction corresponding to the direction of the electric field of the linearly polarized light and the direction perpendicular to the traveling direction of the irradiation light. And the liquid crystalline compound (3c) are oriented in the same direction as the photoreacted side chain (3a). As a result, in the entire coating film, the side chains of the side chain type liquid crystalline polymer and the liquid crystal compound molecules are oriented in the direction of the electric field oscillation of the irradiated linearly polarized light and in the direction perpendicular to the direction of the irradiation light, and birefringence is induced. .
The orientation by molecular motion after the polarized light exposure is promoted by heating the substrate. The heating temperature of the substrate is desirably lower than the softening point of the photoreacted portion and higher than the softening points of the unreacted side chains and the side chain portions having no photosensitive group. In addition, alignment can be promoted by performing polarized light exposure under heating (from room temperature to Ti + 5 ° C.). Here, Ti refers to a phase transition temperature when the photosensitive side chain type liquid crystalline polymer changes from a liquid crystal phase to an isotropic phase. When the film exposed to polarized light in this way is heated and the unreacted side chain is oriented or the film subjected to polarized light exposure and oriented under heating is cooled to a temperature equal to or lower than the softening point temperature of the polymer, the molecules are frozen, and the orientation of the present invention is reduced. A film is obtained. The liquid crystal compound improves the degree of freedom of molecular motion at the time of realignment, and promotes realignment by its own molecular alignment. The addition of an appropriate amount of this liquid crystal compound has the effect of suppressing the haze, but the excessive addition thereof causes an increase in the haze and a decrease in the alignment. From such a viewpoint, although depending on the type of the photosensitive polymer or the liquid crystal compound, a birefringent sheet can be produced by adding 0.1 wt% to 90 wt%, but preferably 3 wt% to 75 w%.
It is desirably t%. Further, the liquid crystal compound may or may not have reactivity, and if it has reactivity, the orientation is firmly fixed, so that improvement in heat resistance can be expected. In such a case, it is necessary to control the density of photoreactive points by suppressing the amount of polarized light exposure or adjusting the reactivity so as not to hinder the molecular motion during reorientation. Another method for improving heat resistance is to add a crosslinking agent such as a bifunctional compound. In this case, it is necessary to adjust the amount of addition so as not to hinder the molecular orientation.

【0007】感光性の側鎖型液晶性高分子の原料化合物
および反応性液晶化合物に関する合成方法を以下に示
す。 (単量体1)4,4’−ビフェニルジオールと2−クロ
ロエタノールを、アルカリ条件下で加熱することによ
り、4−ヒドロキシ−4’−ヒドロキシエトキシビフェ
ニルを合成した。この生成物に、アルカリ条件下で1,
6−ジブロモヘキサンを反応させ、4−(6−ブロモヘ
キシルオキシ)−4’−ヒドロキシエトキシビフェニル
を合成した。次いで、リチウムメタクリレートを反応さ
せ、4−ヒドロキシエトキシ−4’−(6’−ビフェニ
ルオキシヘキシル)メタクリレートを合成した。最後
に、塩基性の条件下において、塩化シンナモイルを加
え、化学式11に示されるメタクリル酸エステルを合成
した。
A method for synthesizing a raw material compound of a photosensitive side chain type liquid crystalline polymer and a reactive liquid crystal compound will be described below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product is added under alkaline conditions with 1,
6-Dibromohexane was reacted to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Next, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 11.

【化11】 Embedded image

【0008】(単量体2)4,4’−ビフェニルジオー
ルと2−クロロヘキサノールを、アルカリ条件下で加熱
することにより、4−ヒドロキシ−4’−ヒドロキシエ
トキシビフェニルを合成した。この生成物に、アルカリ
条件下で1,6−ジブロモヘキサンを反応させ、4−
(6−ブロモヘキシルオキシ)−4’−ヒドロキシエト
キシビフェニルを合成した。次いで、リチウムメタクリ
レートを反応させ、4−ヒドロキシエトキシ−4’−
(6’−ビフェニルオキシヘキシル)メタクリレートを
合成した。最後に、塩基性の条件下において、4−メト
キシ塩化シンナモイルを加え、化学式12に示されるメ
タクリル酸エステルを合成した。
(Monomer 2) 4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chlorohexanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to obtain 4-
(6-Bromohexyloxy) -4′-hydroxyethoxybiphenyl was synthesized. Next, lithium methacrylate was reacted to give 4-hydroxyethoxy-4′-
(6′-biphenyloxyhexyl) methacrylate was synthesized. Finally, under basic conditions, 4-methoxycinnamoyl chloride was added to synthesize a methacrylic ester represented by Chemical Formula 12.

【化12】 Embedded image

【0009】(重合体1)単量体1をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体1
を得た。この重合体1は、47−75℃の温度領域にお
いて、液晶性を呈した。
(Polymer 1) Monomer 1 is dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing.
I got This polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.

【0010】(重合体2)単量体2をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体2
を得た。この重合体2も液晶性を呈した。
(Polymer 2) Polymer 2 is dissolved by dissolving monomer 2 in tetrahydrofuran and adding AIBN (azobisisobutyronitrile) as a reaction initiator to carry out polymerization.
I got This polymer 2 also exhibited liquid crystallinity.

【0011】(反応性液晶化合物1)p−ヒドロキシ安
息香酸メチルとブロモオクテンを、アルカリ条件下で加
熱することにより、4−オクテニルオキシ安息香酸メチ
ルを合成した。この生成物に、アルカリ条件下で加熱し
4−オクテニルオキシ安息香酸を合成した。次いで、塩
化チオニルと反応させ4−オクテニルオキシ安息香酸ク
ロリドを合成し、メチルヒドロキノンと反応させること
により、化学式13に示される反応性液晶化合物1を合
成した。
(Reactive liquid crystal compound 1) Methyl 4-octenyloxybenzoate was synthesized by heating methyl p-hydroxybenzoate and bromooctene under alkaline conditions. This product was heated under alkaline conditions to synthesize 4-octenyloxybenzoic acid. Next, 4-octenyloxybenzoic acid chloride was synthesized by reacting with thionyl chloride, and reacted with methylhydroquinone to synthesize a reactive liquid crystal compound 1 represented by Chemical Formula 13.

【化13】 Embedded image

【0012】[0012]

【実施例】本発明に用いた感光性の側鎖型液晶性高分子
は、熱分析による相転移温度の発現、液晶温度領域での
偏光顕微鏡観察像における複屈折性の光学模様の発現か
ら、液晶性の材料であることを確認した。化学式9にお
いて、n=6、m=2、X=none、W1=化学式
1,−R1〜−R7=Hであり、主鎖がメタクリレートで
ある感光性の側鎖型液晶性高分子の熱分析曲線は、昇温
過程で47℃と75℃に吸熱ピークが認められ、偏光顕
微鏡で観察すると、該温度領域で複屈折性の光学模様を
発現する液晶性の材料である。図1には、本発明の配向
膜の製造方法(装置)を示す。電源(12)によって励
起された紫外線ランプ(11)で発生した無秩序光(1
6)は、光学素子(13)(例えば、グランテーラープ
リズム)をもって直線偏光性の紫外線(17)に変換さ
れ、基材(15)上に塗布(コート)された感光性の側
鎖型液晶性高分子と液晶性化合物の膜(14)を照射す
る。実施例1から6は、本発明の製造法により、光軸の
傾いた複屈折フィルムを作製した実施例である。
EXAMPLES The photosensitive side-chain type liquid crystalline polymer used in the present invention exhibits a phase transition temperature by thermal analysis and a birefringent optical pattern in a polarizing microscope observation image in a liquid crystal temperature range. It was confirmed that the material was a liquid crystal material. In Chemical Formula 9, n = 6, m = 2, X = none, W 1 = Chemical Formula 1, -R 1 to -R 7 = H, and a photosensitive side-chain type liquid crystalline polymer in which a main chain is methacrylate. Is a liquid crystal material which shows endothermic peaks at 47 ° C. and 75 ° C. in the course of temperature rise, and exhibits a birefringent optical pattern in the temperature range when observed with a polarizing microscope. FIG. 1 shows a method (apparatus) for producing an alignment film of the present invention. Disordered light (1) generated by an ultraviolet lamp (11) excited by a power supply (12)
6) is a photosensitive side-chain liquid crystal liquid which is converted into linearly polarized ultraviolet light (17) by an optical element (13) (for example, a Glan-Taylor prism) and applied (coated) on a substrate (15). The film (14) of the polymer and the liquid crystal compound is irradiated. Examples 1 to 6 are examples in which a birefringent film having an inclined optical axis was produced by the production method of the present invention.

【0013】(実施例1)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、光学的に等方性の基板上に
約3μmの厚さで塗布した。該基板を水平面に対して4
5度傾くように配置し、グランテーラープリズムを用い
て直線偏光に変換した紫外線を、水平面に対し垂直方向
から室温で120mJ/cm2照射した。続いて、10
0℃に加熱した後、室温まで冷却した。このようにして
得られた基板は、光軸が基板の法線方向から22°傾
き、基板面内の位相差は76.5nmであり、曇り度は
殆どなく実用に十分耐えうるものであった。
Example 1 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied to an optically isotropic substrate in a thickness of about 3 μm. Place the substrate 4
Ultraviolet rays, which were arranged so as to be inclined by 5 degrees and converted into linearly polarized light using a Glan-Taylor prism, were irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Then, 10
After heating to 0 ° C., it was cooled to room temperature. The substrate thus obtained had an optical axis inclined by 22 ° from the normal direction of the substrate, had a phase difference of 76.5 nm in the substrate plane, had little haze, and was sufficiently durable for practical use. .

【0014】(実施例2)3.75重量%の重合体1お
よび1.25重量%の液晶材料E7(メルクジャパン)
をジクロロエタンに溶解し、光学的に等方性の基板上に
約3μmの厚さで塗布した。該基板を水平面に対して2
0度傾くように配置し、グランテーラープリズムを用い
て直線偏光に変換した紫外線を、水平面に対し垂直方向
から室温で120mJ/cm2照射した。続いて、10
0℃に加熱した後、室温まで冷却した。このようにして
得られた基板は、光軸が基板の法線方向から9.5°傾
き、基板面内の位相差は94.8nmであった。
Example 2 3.75% by weight of polymer 1 and 1.25% by weight of liquid crystal material E7 (Merck Japan)
Was dissolved in dichloroethane and applied to an optically isotropic substrate in a thickness of about 3 μm. Place the substrate 2
Ultraviolet rays, which were arranged so as to be inclined at 0 degrees and converted into linearly polarized light using a Glan-Taylor prism, were irradiated at 120 mJ / cm 2 at room temperature from a direction perpendicular to the horizontal plane. Then, 10
After heating to 0 ° C., it was cooled to room temperature. The optical axis of the substrate thus obtained was inclined by 9.5 ° from the normal direction of the substrate, and the in-plane phase difference of the substrate was 94.8 nm.

【0015】(実施例3)2.5重量%の重合体1およ
び2.5重量%の液晶材料E7(メルクジャパン)をジ
クロロエタンに溶解し、光学的に等方性の基板上に約3
μmの厚さで塗布した。該基板を水平面に対して45度
傾くように配置し、グランテーラープリズムを用いて直
線偏光に変換した紫外線を、水平面に対し垂直方向から
室温で120mJ/cm2照射した。続いて、100℃
に加熱した後、室温まで冷却した。このようにして得ら
れた基板は、光軸が基板の法線方向から20.5°傾
き、基板面内の位相差は72.3nmであった。
Example 3 2.5% by weight of Polymer 1 and 2.5% by weight of a liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane and placed on an optically isotropic substrate at about 3%.
It was applied in a thickness of μm. The substrate was arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays converted to linearly polarized light using a Glan-Taylor prism at room temperature from the vertical direction at room temperature at 120 mJ / cm 2 . Subsequently, at 100 ° C
And then cooled to room temperature. In the substrate thus obtained, the optical axis was inclined by 20.5 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 72.3 nm.

【0016】(実施例4)2.5重量%の重合体2およ
び2.5重量%の液晶材料E7(メルクジャパン)をジ
クロロエタンに溶解し、光学的に等方性の基板上に約3
μmの厚さで塗布した。該基板を水平面に対して45度
傾くように配置し、グランテーラープリズムを用いて直
線偏光に変換した紫外線を、水平面に対し垂直方向から
室温で60mJ/cm2照射した。続いて、100℃に
加熱した後、室温まで冷却した。このようにして得られ
た基板は、光軸が基板の法線方向から18°傾き、基板
面内の位相差は69.0nmであった。
Example 4 2.5% by weight of polymer 2 and 2.5% by weight of a liquid crystal material E7 (Merck Japan) were dissolved in dichloroethane and placed on an optically isotropic substrate at about 3%.
It was applied in a thickness of μm. The substrate was arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays converted to linearly polarized light using a Glan-Taylor prism from the vertical direction at room temperature at 60 mJ / cm 2 . Subsequently, after heating to 100 ° C., it was cooled to room temperature. The optical axis of the substrate thus obtained was inclined by 18 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 69.0 nm.

【0017】(実施例5)3.75重量%の重合体1お
よび1.25重量%の反応性液晶化合物1をジクロロエ
タンに溶解し、光学的に等方性の基板上に約3μmの厚
さで塗布した。該基板を水平面に対して45度傾くよう
に配置し、グランテーラープリズムを用いて直線偏光に
変換した紫外線を、水平面に対し垂直方向から室温で6
0mJ/cm2照射した。続いて、100℃に加熱した
後、室温まで冷却した。更に、非偏光の紫外線を、室温
で1J/cm2照射した。このようにして得られた基板
は、光軸が基板の法線方向から20.5°傾き、基板面
内の位相差は38.0nmであった。
Example 5 3.75% by weight of Polymer 1 and 1.25% by weight of Reactive Liquid Crystal Compound 1 are dissolved in dichloroethane, and a thickness of about 3 μm is formed on an optically isotropic substrate. Was applied. The substrate was arranged at an angle of 45 degrees with respect to the horizontal plane, and the ultraviolet light converted to linearly polarized light using a Glan-Taylor prism was applied at room temperature from a direction perpendicular to the horizontal plane at room temperature.
Irradiation was performed at 0 mJ / cm 2 . Subsequently, after heating to 100 ° C., it was cooled to room temperature. Further, the substrate was irradiated with unpolarized ultraviolet light at 1 J / cm 2 at room temperature. In the substrate thus obtained, the optical axis was inclined by 20.5 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 38.0 nm.

【0018】(実施例6)2.5重量%の重合体1、
2.5重量%の液晶材料E7(メルクジャパン)および
0.0375重量%の二官能性モノマーHX−620
(日本化薬)をジクロロエタンに溶解し、光学的に等方
性の基板上に約3μmの厚さで塗布した。該基板を水平
面に対して45度傾くように配置し、グランテーラープ
リズムを用いて直線偏光に変換した紫外線を、水平面に
対し垂直方向から室温で60mJ/cm2照射した。続
いて、100℃に加熱した後、室温まで冷却した。更
に、非偏光の紫外線を、室温で1J/cm2照射した。
このようにして得られた基板は、光軸が基板の法線方向
から20°傾き、基板面内の位相差は55.0nmであ
った。
Example 6 2.5% by weight of polymer 1,
2.5% by weight of liquid crystal material E7 (Merck Japan) and 0.0375% by weight of difunctional monomer HX-620
(Nippon Kayaku) was dissolved in dichloroethane and applied to an optically isotropic substrate at a thickness of about 3 μm. The substrate was arranged so as to be inclined at 45 degrees with respect to the horizontal plane, and irradiated with ultraviolet rays converted to linearly polarized light using a Glan-Taylor prism from the vertical direction at room temperature at 60 mJ / cm 2 . Subsequently, after heating to 100 ° C., it was cooled to room temperature. Further, the substrate was irradiated with unpolarized ultraviolet light at 1 J / cm 2 at room temperature.
In the substrate thus obtained, the optical axis was inclined by 20 ° from the normal direction of the substrate, and the phase difference in the substrate plane was 55.0 nm.

【0019】これらの実施例から、偏光露光により光軸
方向を制御したフィルムを作製でき、偏光露光という比
較的簡便な方法により、光軸方向を制御した複屈折フィ
ルムの製造が可能であることが立証できた。本発明の複
屈折フィルムおよびその製造法では、偏光露光により複
屈折を生じたフィルムに、更に紫外線を照射することに
より未反応の感光性基の光反応を促進させ、フィルム中
の配向を強固に固定することができる。このような複屈
折フィルムは、耐熱性、光安定性に優れ実用に充分であ
った。
From these examples, it is possible to produce a film whose optical axis direction is controlled by polarized light exposure, and to manufacture a birefringent film whose optical axis direction is controlled by a relatively simple method called polarized light exposure. I was able to prove it. In the birefringent film of the present invention and the method for producing the same, the film that has caused birefringence by polarized light exposure is further irradiated with ultraviolet light to promote the photoreaction of unreacted photosensitive groups, thereby firmly orienting the orientation in the film. Can be fixed. Such a birefringent film was excellent in heat resistance and light stability and was sufficient for practical use.

【0020】[0020]

【発明の効果】直線偏光照射という簡便な操作により、
従来技術のような延伸工程を用いなくても複屈折フィル
ムを得ることができる。更に、直線偏光性の紫外線の照
射方向を変えることにより同一基板内において、光軸の
異なる領域の作製も可能であり、様々な光学素子への活
用が期待される。また、光軸の傾斜した複屈折フィルム
は、旋光モード、複屈折モードを利用したねじれネマチ
ック液晶を使った液晶表示装置において視野角拡大用の
光学補償フィルムとして活用できる。従来このような、
光軸の傾斜した複屈折フィルムを大面積において低コス
トで作製することができなかったが、本発明によって、
斜め方向から偏光露光するという簡便な操作で大面積の
作製が可能となった。
According to the simple operation of irradiating linearly polarized light,
A birefringent film can be obtained without using a stretching step as in the prior art. Furthermore, by changing the irradiation direction of the linearly polarized ultraviolet light, regions having different optical axes can be formed on the same substrate, and it is expected to be used for various optical elements. Further, the birefringent film having an inclined optical axis can be used as an optical compensation film for expanding a viewing angle in a liquid crystal display device using a twisted nematic liquid crystal utilizing an optical rotation mode and a birefringence mode. Conventionally,
Although the birefringent film with an inclined optical axis could not be produced at a low cost in a large area, according to the present invention,
A large area can be manufactured by a simple operation of performing polarized light exposure from an oblique direction.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複屈折フィルムの製造方法を示す概念
FIG. 1 is a conceptual diagram showing a method for producing a birefringent film of the present invention.

【図2】偏光露光により感光した側鎖の模式図FIG. 2 is a schematic view of a side chain exposed by polarized light exposure.

【図3】偏光露光後の分子運動により配列した側鎖の模
式図
FIG. 3 is a schematic view of side chains arranged by molecular motion after polarized light exposure.

【符号の説明】[Explanation of symbols]

11・・・紫外線ランプ 12・・・電源 14・・・膜 15・・・基材 16・・・無秩序光 17・・・直線偏光性の紫外線 DESCRIPTION OF SYMBOLS 11 ... Ultraviolet lamp 12 ... Power supply 14 ... Film 15 ... Base material 16 ... Disordered light 17 ... Linearly polarized ultraviolet light

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年9月13日(2000.9.1
3)
[Submission date] September 13, 2000 (2009.1)
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 複屈折フィルムおよびその製造方
Patent application title: Birefringent film and method for producing the same

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 感光性の重合体と液晶性化合物の混合体
に光照射する操作を含む工程で作製されることを特徴と
する、複屈折フィルムおよびその製造方法。
1. A birefringent film and a method for producing the birefringent film, which are produced by a process including an operation of irradiating a mixture of a photosensitive polymer and a liquid crystalline compound with light.
【請求項2】 請求項1において感光性の重合体が液晶
性を有する複屈折フィルムおよびその製造方法。
2. The birefringent film according to claim 1, wherein the photosensitive polymer has liquid crystallinity, and a method for producing the same.
【請求項3】 請求項1において液晶性化合物が反応性
を有する複屈折フィルムおよびその製造方法。
3. The birefringent film according to claim 1, wherein the liquid crystalline compound has reactivity, and a method for producing the birefringent film.
【請求項4】 請求項1、請求項2および請求項3にお
いて感光性の重合体が化学式1から化学式8で表される
構造のうちの少なくとも1つを有する複屈折フィルムお
よびその製造方法。 【化1】 【化2】 【化3】 【化4】 【化5】 【化6】 【化7】 【化8】 但し、−R1〜−R11=−H、ハロゲン基、−CN、ア
ルキル基またはメトキシ基などのアルキルオキシ基、ま
たはそれらを弗化した基、−R12=メチル基、エチル基
などのアルキル基、またはそれらを弗化した基である。
4. The birefringent film according to claim 1, wherein the photosensitive polymer has at least one of the structures represented by Chemical Formulas 1 to 8, and a method for producing the same. Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image Embedded image However, -R 1 ~-R 11 = -H, halogen, -CN, alkyl such as an alkyl group or their fluoride and groups, -R 12 = methyl group, an ethyl group, such as an alkyl group or a methoxy group Or a fluorinated group thereof.
【請求項5】 請求項1、請求項2、請求項3および請
求項4において感光性の重合体が、少なくとも化学式9
または化学式10で表される構造を有する複屈折フィル
ムおよびその製造方法。 【化9】 【化10】 但し、n=1〜12、m=1〜12、X,Y=non
e、−COO、−OCO−、−N=N−、−C=C−or
−C64−、W1,W2=化学式1または化学式2または
化学式3または化学式4または化学式5または化学式6
または化学式7または化学式8で表される構造である。
5. The photosensitive polymer according to claim 1, 2, 3 or 4, wherein at least
Or a birefringent film having a structure represented by Chemical Formula 10 and a method for producing the same. Embedded image Embedded image However, n = 1 to 12, m = 1 to 12, X, Y = non
e, -COO, -OCO-, -N = N-, -C = C-or
—C 6 H 4 —, W 1 , W 2 = Chemical Formula 1 or Chemical Formula 2 or Chemical Formula 3 or Chemical Formula 4 or Chemical Formula 5 or Chemical Formula 6
Or, it is a structure represented by Chemical Formula 7 or Chemical Formula 8.
【請求項6】 請求項1、請求項2、請求項3および請
求項4において照射する光が、直線偏光性または部分偏
光性である複屈折フィルムおよびその製造方法。
6. A birefringent film according to claim 1, wherein the light applied is linearly polarized light or partially polarized light, and a method for producing the birefringent film.
【請求項7】 請求項1から請求項6に記載の複屈折フ
ィルムおよびその製造方法において、加熱、および/ま
たは冷却する工程を含むことを特徴とする複屈折フィル
ムおよびその製造方法。
7. A birefringent film and a method for producing the same according to claim 1, further comprising a step of heating and / or cooling.
【請求項8】 請求項1から請求項7に記載の複屈折フ
ィルムおよびその製造方法において、架橋する工程を含
むことを特徴とする複屈折フィルムおよびその製造方
法。
8. The birefringent film and the method for producing the birefringent film according to claim 1, further comprising a cross-linking step.
JP2000274353A 2000-09-11 2000-09-11 Method for producing birefringent film Expired - Lifetime JP4721023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274353A JP4721023B2 (en) 2000-09-11 2000-09-11 Method for producing birefringent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274353A JP4721023B2 (en) 2000-09-11 2000-09-11 Method for producing birefringent film

Publications (2)

Publication Number Publication Date
JP2002082224A true JP2002082224A (en) 2002-03-22
JP4721023B2 JP4721023B2 (en) 2011-07-13

Family

ID=18760123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274353A Expired - Lifetime JP4721023B2 (en) 2000-09-11 2000-09-11 Method for producing birefringent film

Country Status (1)

Country Link
JP (1) JP4721023B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215360A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Liquid crystal composition, retardation plate, circular polarization plate, and image display device
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20190079451A (en) * 2017-12-27 2019-07-05 삼성에스디아이 주식회사 Liquid crystal retardation film, laminate comprising the same, polarizing plate comprising the same and light emitting display apparatus compsiring the same
CN113302262A (en) * 2019-01-22 2021-08-24 默克专利股份有限公司 Method for preparing liquid crystal polymer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189665A (en) * 1997-12-25 1999-07-13 Hayashi Telempu Co Ltd Birefringent film and its production
JP2000327924A (en) * 1999-05-25 2000-11-28 Nitto Denko Corp Liquid crystal polymer composition, phase difference plate and oval polarizing plate
JP2002517605A (en) * 1998-06-11 2002-06-18 ロリク アーゲー Optical member, alignment layer and layerable polymerizable mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189665A (en) * 1997-12-25 1999-07-13 Hayashi Telempu Co Ltd Birefringent film and its production
JP2002517605A (en) * 1998-06-11 2002-06-18 ロリク アーゲー Optical member, alignment layer and layerable polymerizable mixture
JP2000327924A (en) * 1999-05-25 2000-11-28 Nitto Denko Corp Liquid crystal polymer composition, phase difference plate and oval polarizing plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215360A (en) * 2013-04-23 2014-11-17 富士フイルム株式会社 Liquid crystal composition, retardation plate, circular polarization plate, and image display device
WO2016076348A1 (en) * 2014-11-12 2016-05-19 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20190079451A (en) * 2017-12-27 2019-07-05 삼성에스디아이 주식회사 Liquid crystal retardation film, laminate comprising the same, polarizing plate comprising the same and light emitting display apparatus compsiring the same
KR102137552B1 (en) * 2017-12-27 2020-07-24 삼성에스디아이 주식회사 Liquid crystal retardation film, laminate comprising the same, polarizing plate comprising the same and light emitting display apparatus compsiring the same
CN113302262A (en) * 2019-01-22 2021-08-24 默克专利股份有限公司 Method for preparing liquid crystal polymer film

Also Published As

Publication number Publication date
JP4721023B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP3945790B2 (en) Birefringent film and manufacturing method thereof
KR100852224B1 (en) Retardation film and process for producing the same
JP3945789B2 (en) Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
JP2007232934A (en) Photo-alignment material
JP2990270B2 (en) Oriented resin film, method for producing the same, and optical element using the oriented resin film
JP4636353B2 (en) Retardation film
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JPH11326638A (en) Liquid crystal alignment layer, production of the liquid crystal alignment layer and optical element using the same
JP3952662B2 (en) Liquid crystal display element
JP4333914B2 (en) Method for manufacturing polarization diffraction element
JP2002082224A (en) Birefringent film and method for manufacturing the same
JP2002202406A (en) Retardation film and method for manufacturing the same
JP2002090539A (en) Optical phase difference film and method for manufacturing the same
JP2002090750A (en) Alignment film and method for manufacturing the same
JP2002202408A (en) Retardation film and method for manufacturing the same
JP2003014928A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2004170595A (en) Manufacture method of retardation film and the retardation film
JP2003014930A (en) Method for manufacturing optically anisotropic element, and optically anisotropic element
JP2002202407A (en) Retardation film and method for manufacturing the same
JP2003073562A (en) Photo-orientation resin composition for liquid crystal orientation, liquid crystal orientation resin film and liquid crystal optical element using liquid crystal orientation resin film
JP4947532B2 (en) Method for producing retardation film
JP2002090540A (en) Birefringent film and method for manufacturing the same
JP2003014929A (en) Method for manufacturing optically anisotropic element and optically anisotropic element
JP2003014927A (en) Method for manufacturing optically anisotropic element, optically anisotropic element and liquid crystal display device using the optically anisotropic element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250