JP3945789B2 - Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film - Google Patents

Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film Download PDF

Info

Publication number
JP3945789B2
JP3945789B2 JP36520297A JP36520297A JP3945789B2 JP 3945789 B2 JP3945789 B2 JP 3945789B2 JP 36520297 A JP36520297 A JP 36520297A JP 36520297 A JP36520297 A JP 36520297A JP 3945789 B2 JP3945789 B2 JP 3945789B2
Authority
JP
Japan
Prior art keywords
alignment film
liquid crystal
alignment
polymer
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36520297A
Other languages
Japanese (ja)
Other versions
JPH11181127A (en
Inventor
喜弘 川月
博司 小野
丈也 酒井
正雄 植月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP36520297A priority Critical patent/JP3945789B2/en
Publication of JPH11181127A publication Critical patent/JPH11181127A/en
Application granted granted Critical
Publication of JP3945789B2 publication Critical patent/JP3945789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、感光性の側鎖型高分子膜に、直線偏光性の紫外線を照射する配向膜の製造方法に関する。この配向膜は液晶パネルに封入した液晶の配向を促進し、液晶表示装置の(製造方法の)改良に役立つものである。
【0002】
【従来の技術】
液晶表示装置は、ブラウン管式の表示装置と比較して、「平板状であるため狭い空間でも設置できる」、「軽量で持ち運び易い」、「デジタル映像であるため高速の映像通信に馴染む」、「低電圧で駆動するため消費電力が少ない」などの利点を持っており、有力な映像情報発生手段として急成長の途上にある。現在普及している液晶表示装置の多くは、ねじれネマッチク液晶を利用している。
【0003】
図2の模式断面図によって、液晶表示装置の一般的構造を説明する。液晶表示装置(120)は、2枚のパネル(121、121)に液晶(122)を挟み封入してなる。パネル(121、121)の構成は、偏光板(123、123)、ガラス基板(124、124)、透明電極(125、125)、配向膜(126、126)を積層してなる。
一方の偏光板(123)の外側にある不図示の光源からの光線は、液晶表示装置を透過し、他方の偏光板(123)側へ透過する。液晶表示装置は、液晶分子(122)の配列状態を透明電極(125、125)からの加電圧によって変化させ、その結果液晶に生じた光学的性質の変化を偏光板(123、123)で顕在化させることにある。無電圧状態では液晶分子は、厚さ方向に順次角度を変えながらねじれ配列している。配向膜は(126、126)液晶の界面(配向膜と接する面)での配向方向を制御する作用をなし、液晶表示装置の構成上必要不可欠である。
【0004】
図3に従来の最も一般的な配向膜の製造方法の一例(ラビング法)を示す。基板(131)にポリイミト などの高分子化合物(132)を塗布し、表面をナイロンやポリエステル繊維を植毛した布(134)を巻きつけたドラム(133)で擦り、表面に極微細な溝を形成した配向膜とする製造方法である。この配向膜は溝の方向にそって液晶の配向方向を制御する作用がある。ラビング法では、微細な埃や静電気による放電が生じやすく、液晶パネルの製造工程において問題となっている。
ラビング法以外では、酸化珪素を基板に対して斜めから蒸着して得られる斜方蒸着法が採用されてきた。この配向膜は蒸着した酸化珪素の傾斜方向にそって液晶の配向方向を制御する作用がある。この方法では基板上での蒸着角や蒸着膜厚の均一性を保つことが難しいことやプロセスが大掛かりになってしまうなどの問題点があった。
また、これらの配向膜の製造方法では、全面において配向方向は一定一方向のみに限られており、配向方向や程度を任意に異ならせた領域を形成することはできなかった。このように配向方向が限定された配向膜を液晶表示装置に用いると、液晶を見る方向によって位相差が大きくなり(結果として視野角依存性の大きなものとなり)可視角が狭くなる。
【0005】
【発明が解決しようとする課題】
近年、上記のような従来法の問題点を解決する配向膜の製法として光照射を利用して(高分子)液晶を配向させる液晶光配向技術が注目されてきている。この技術には大きく分けて光2量体反応を用いる方法、アゾ系ポリマーの光異性化を用いる方法、アルキル側鎖付ポリイミドの液晶垂直配向膜に直線偏光紫外線をする方法がある。従来の液晶光配向技術には以下の課題がある。
光2量体反応ないしアゾ系ポリマーの光異性化を用いる方法では、照射直線偏光紫外線の電界方向と配向膜の分子配向方向が直交してしまい、液晶パネルにおいて液晶配向の欠陥を防ぐのに必要なプレチルト角の発現が困難である。アルキル側鎖付ポリイミドを用いる方法では、プレチルト角の発現は可能なものの、この方法では紫外線によりアルキル側鎖を切断するため、微小な塵が発生し液晶パネルの製造において問題である。
本発明では、液晶光配向技術の上記課題を解決した配向膜の製造方法を提供する。
【0006】
【課題を解決するための手段】
課題を解決する本発明の手段は、液晶パネルの液晶の配向を促進する高分子の配向膜の製造方法であって、感光性の側鎖型高分子膜に直線偏光性の紫外線を照射して任意の配向特性をもった配向膜を得ることを特徴とする配向膜の製造方法、感光性の側鎖型高分子の構造として、側鎖には少なくとも化学式1、および/または化学式2で表される構造を含み、化学式3ないし化学式4で表される構成をとることを特徴とする配向膜の製造方法、感光性の側鎖型高分子が、主鎖に、炭化水素、アクリレート、メタクリレート、シロキサンから選択される構造を含む単独重合体または共重合体であることを特徴とする配向膜の製造方法、直線偏光性の紫外線を照射する際の感光性の側鎖型高分子膜の温度が、この側鎖型高分子の等方相への転移温度との差10℃以内の範囲にあることを特徴とする配向膜の製造方法、感光性の側鎖型高分子膜ないしはその支持体を加熱、および/または冷却する工程を含むことを特徴とする配向膜の製造方法、およびこの配向膜の製造方法によって得られることを特徴とする配向膜とこの配向膜を備えたことを特徴とする液晶表示装置にある。
【0007】
【作用】
本発明の製造方法(による配向膜は)、以下のような特異の作用をもっている。
直線偏光性の紫外線の照射時間によって、また共重合組成によって(側鎖の)配向方向を変える制御が自由にできること。その結果、配向膜の任意の部位を任意の配向特性に配向させた配向膜を得ることができ、このような配向膜を液晶表示装置に組み合わせることで、液晶のプレチルト角をはじめ、所要の特性を改善することができる。
本発明の配向膜は、高分子を基板に塗布(スピンコート)して製膜し、特定の方向から直線偏光(紫外線)を照射することによって、高分子の側鎖を照射した直線偏光紫外線の電界振動方向に対し平行方向かつ照射光進行方向に対して垂直方向に配列させることができる。この照射を基板面に対して斜め方向からおこなうことによって、高分子の側鎖を傾斜させて配列させることができる。この傾斜は、光の照射方向を変えることによって任意の方向に設定できる。また、光反応により生成する2量体を直線偏光紫外線の電界振動方向の垂直方向にも配向させることができる。このように配向させた高分子膜に液晶分子が接触すると、配向膜側の高分子側鎖ないし桂皮酸基の2量体との相互作用によって、液晶を配向させることができる。また側鎖を傾けて配向させることにより液晶側のチルト角の制御も可能である。図6は、これを模式的に示しており、上方の液晶パネル(61)と下方の配向膜(62)の接する界面(63)において、配向膜の側鎖(64)が配向、傾斜していると、界面近傍の液晶パネル内の液晶分子(65)はこの作用を受けチルト角αをもって界面に傾斜、配向する。
【0008】
マスク露光により、同一の配向膜内に照射光の電界振動方向、照射方向、照射時間の異なる複数の領域を設けると、界面近傍の液晶パネル内の液晶分子にも対応した配向方向の異なる複数の領域を設定できる。たとえば図7は配向膜(70)と基板(75)の一部領域を拡大表示しているが、4つの隣合う領域(70a、70b、70c、70d)に、それぞれ電界振動方向が90度づつ異なる直線偏光性の紫外線(71a、71b、71c、71d)を照射することによって、各領域にある不図示の側鎖がそれぞれ異なる方向に配向した結果、これに接する液晶パネル内の液晶分子(72a、72b、72c、72d)はそれぞれ異なる配向状態を呈している。また、図8は図7と同様の配向膜(80)と基板(85)の一部領域の拡大表示であり、2つの隣り合う領域(80a、80b)に対して照射角度の異なる直線偏光性の紫外線(81a、81b)を照射することによって、両領域にある側鎖が異なる角度に配向した結果、これに接する液晶パネル内の液晶分子(82a、82b)は異なるチルト角β、γをもって配向している状態を示す。液晶表示装置において、1画素内の隣接する任意の領域の側鎖を任意の配向方向、角度に配向させた液晶が得られると、液晶を見る方向による位相差ずれを解消でき、視野角の拡大などに役立つ。
【0009】
【発明の実施の形態】
以下に、本発明の実施形態を説明する。
本発明の単独重合体または共重合体は、液晶性高分子のメソゲン成分として多用されているビフェニル、ターフェニル、フェニルベンゾエート、アゾベンゼンなどの置換基と、桂皮酸基(または、その誘導体基)などの感光性基を結合した構造を含む側鎖を有すると共に、感光性基の結合していないメソゲン成分を含む側鎖をある割合で含有した、炭化水素、アクリレート、メタクリレート、シロキサンなどの構造を主鎖に有する高分子である。
これらの高分子体を溶液状に基板上に塗布(スピンコート)し、乾燥させて高分子の塗布膜を形成する。この高分子塗布膜は、製膜時には無配向であり、化学式1示される感光性の側鎖部は特定方向を向いていない。この状態を図4を参照して説明すると、塗布膜(40)中には長楕円で示される感光基を有し照射偏光紫外線の振動方向に対応した向きにある感光性の側鎖(41)と感光性の乏しい側鎖(42)が無配向に存在している。
この塗布膜に直線偏光の紫外線を照射すると、感光性の側鎖(41)において照射直線偏光の電界振動方向に沿い配置されている桂皮酸基(または、その誘導体基)などの感光性基の2量化が最も鋭敏に起こる。この2量化反応は、反応式1に示すようにシクロプロパン結合を直線状に形成し、照射した直線偏光の電界方向と垂直方向に配列する。
【0010】
【化5】

Figure 0003945789
反応式1中に記した長方形は、側鎖型高分子液晶において、高分子の主鎖と感光基をつなぐ分子鎖であり、液晶成分と屈曲成分を含む。
この2量化反応を進めるには、化学式1の桂皮酸基の部分が反応し得る波長の直線偏光の照射を要する。この波長は、化学式1で示された−R1 〜−R5 の種類によっても異なるが、一般に200 〜500nm であり、中でも250 〜400nm の有効性が高い場合が多い。
【0011】
紫外線の照射後の比較的2量化反応が進行していない塗布膜の配向状態を図5によって説明する。塗布膜(50)内には、2量化反応のなされた側鎖(51)と、化学式2で示される感光性基を有していないか、化学式1で示される感光性基を有していても(直線偏光の電界方向に配列していないため)2量化を起こさなかった側鎖(52)がある。2量化した側鎖は照射した直線偏光の電界方向と垂直に配向している。また2量化を起こさなかった側鎖(52)も2量化した側鎖(51)と同じ方向に配向する。
結果、高分子塗布膜全体において、照射した直線偏光の電界振動方向に側鎖が配列している。次に紫外線の照射後、2量化反応が十分に進行した状態になると、2量体の配向が側鎖の配向よりも優勢になる。図10は、このような配向膜内の配向態様の紫外線照射時間に対する変化を示すものである。図において横軸に紫外線の照射時間をとり、縦軸に複屈折度を表す値ΔNをとると、照射時間100秒までは、ΔNが単調に増大するが、照射時間が100秒を越えたあたりから、ΔNは減少し始める。これは側鎖の配向度の減少を意味するものではなく、高分子膜内において紫外線の照射によって形成された2量体の密度が高くなり、2量体の配向が優勢になるという配向の態様変化が起こったことによる。
【0012】
この分子運動による配列は、高分子(塗布する基板)を加熱することにより分子が運動しやすくなり促進される。加熱温度は、感光反応した部分(すなわち配向の固定された部分)の軟化点より低く、感光反応しなかった側鎖および感光性基を有さない側鎖部分の軟化点より高いことが望ましい。たとえば側鎖(化学式1)においてn=6、m=2、k=6、R 1 〜R 5 =H、R 6 =CN、X=none、Y=none、主鎖(化学式3)においてZ=CH 3 、W=COO−、a:b=45:55の例では、75〜77℃が適当である。また、高分子塗布膜(塗布する基板)をT i ±10℃、好ましくはT i ±5℃、さらに好ましくはT i ±2℃(ここで、 Ti は液晶相から等方相へ変化するときの相転移温度)の加温下で偏光紫外線照射することにより配向を促進することができる。このように偏光照射したのち加熱し未反応側鎖を配向させた膜または加熱下で偏光露光し配向させた膜を該高分子の軟化点温度以下まで冷却すると分子が凍結され、分子の配向が固定された配向膜が得られる。また、化学式2で示される感光性基を有さない側鎖は、光2量化反応の架橋点の密度を下げ、再配向時の分子運動の自由度を向上させ、自身の分子配向性により再配向を促進する。
【0013】
高分子材料の原料化合物に関する合成方法を以下に示す。
(単量体1)4,4’−ビフェニルジオールと2−クロロエタノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。最後に、塩基性の条件下において、塩化シンナモイルを加え、化学式5に示されるメタクリル酸エステルを合成した。
【化6】
Figure 0003945789
【0014】
(単量体2)4−ヒドロキシ−4’−シアノビフェニルをアルカリ条件下で1,6−ジブロモヘキサンと反応させ、4−(6−ブロモヘキシルオキシ)−4’−シアノビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−シアノ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。化学式6に示されるメタクリル酸エステルを合成した。
【化7】
Figure 0003945789
【0015】
(単量体3)4,4’−ビフェニルジオールと2−クロロヘキサノールを、アルカリ条件下で加熱することにより、4−ヒドロキシ−4’−ヒドロキシエトキシビフェニルを合成した。この生成物に、アルカリ条件下で1,6−ジブロモヘキサンを反応させ、4−(6−ブロモヘキシルオキシ)−4’−ヒドロキシエトキシビフェニルを合成した。次いで、リチウムメタクリレートを反応させ、4−ヒドロキシエトキシ−4’−(6’−ビフェニルオキシヘキシル)メタクリレートを合成した。最後に、塩基性の条件下において、4−メトキシ塩化シンナモイルを加え、化学式7に示されるメタクリル酸エステルを合成した。
【化8】
Figure 0003945789
【0016】
(重合体1)単量体1をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体1を得た。この重合体1は、47−75℃の温度領域において、液晶性を呈した。
【0017】
(重合体2)単量体1と単量体2を様々な割合でテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体2を得た(a:b=55:45)。この重合体2は、44−95℃の温度領域において、液晶性を呈した。
【0018】
(重合体3)単量体1と単量体2を様々な割合でテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体3を得た(a:b=30:70)。この重合体3は、45−101℃の温度領域において、液晶性を呈した。
【0019】
(重合体4)単量体3をテトラヒドロフラン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体4を得た。この重合体4も液晶性を呈した。
【0020】
【実施例】
本発明の高分子材料は、熱分析による相転移温度の発現、偏光顕微鏡観察による液晶温度領域での、複屈折性の光学模様の発現から、液晶性の材料であることを確認した。
化学式1〜化学式3において、a:b=55:45、n=6、m=2、k=6、X,Y=none、W=−COO−、R1 〜R5 =H、R6 =−CNである、本発明の高分子材料の熱分析曲線は、昇温過程で44℃に吸熱ピーク、95℃にも吸熱ピークが認められ、偏光顕微鏡観察で、該温度領域で複屈折性の光学模様を発現する液晶性の材料であった。該高分子材料の直線偏光紫外線照射による側鎖の配向を、基板に塗布し製膜した高分子塗布膜に偏光紫外線照射し、高分子塗布膜の照射光の電界振動方向と平行方向、垂直方向の偏光赤外スペクトルを比較することにより検証した。図9には、偏光照射30秒後の照射光の電界振動方向と平行方向と垂直方向の偏光赤外の差スペクトルΔAを示した。偏光照射により平行方向の−CN、O−Ph、Phの吸収が大きくなっており、照射光の電界振動方向に側鎖が配向したことを確認した。このとき、高分子塗布膜の複屈折は最大となり、更に露光すると図10に示すように複屈折が低下してくる。この複屈折の低下は、シンナモイル基が2量体を形成し直線偏光の電界振動方向と垂直に配向したことを示唆している。
図1には本発明の配向膜の製造方法(装置)を示す。電源(2)によって励起された紫外線ランプ(1)で発生した無秩序光(6)は、光学素子(3)(例えばグランテーラープリズム)をもって直線偏光紫外線(7)に変換され、基板(5)上に塗布(コート)された樹脂膜(4)を照射する。
【0021】
(実施例1)重合体1をクロロホルムに溶解し、光学的に等方性の基板に、約100 nm の厚さでスピンコートした。こうして調製した樹脂膜に、グランテーラープリズムを用いて直線偏光に変換した紫外線を、室温で30秒間照射した。次いでマスクパターンを用い、マスクされた領域以外のみ電界方向の等しい直線偏光を更に20分間照射した。該基板を150℃まで加熱し、100℃まで冷却して10分間保持後、室温まで冷却した。この基板と通常の配向膜の基板を用い、メルクジャパン(株)製の液晶E7を挟持した液晶セルを組み立てた。該液晶セルを直交ニコル、平行ニコル下で観察したところ、マスクパターンと合致した模様の明暗反転が観察された。
【0022】
(実施例2)重合体2をクロロホルムに溶解し、光学的に等方性の基板に、約100 nm の厚さでスピンコートした。こうして調製した樹脂膜に、グランテーラープリズムを用いて直線偏光に変換した紫外線を、室温で30秒間照射した。次いでマスクパターンを用い、マスクされた領域以外のみ電界方向の等しい直線偏光を更に20分間照射した。該基板を150℃まで加熱し、100℃まで冷却して10分間保持後、室温まで冷却した。この基板と通常の配向膜の基板を用い、メルクジャパン(株)製の液晶E7を挟持した液晶セルを組み立てた。該液晶セルを直交ニコル、平行ニコル下で観察したところ、マスクパターンと合致した模様の明暗反転が観察された。
【0023】
(実施例3)重合体4をクロロホルムに溶解し、光学的に等方性の基板に、約100 nm の厚さでスピンコートした。こうして調製した樹脂膜に、グランテーラープリズムを用いて直線偏光に変換した紫外線を、室温で30秒間照射した。次いでマスクパターンを用い、マスクされた領域以外のみ電界方向の等しい直線偏光を更に20分間照射した。該基板を150℃まで加熱し、100℃まで冷却して10分間保持後、室温まで冷却した。この基板と通常の配向膜の基板を用い、メルクジャパン(株)製の液晶E7を挟持した液晶セルを組み立てた。該液晶セルを直交ニコル、平行ニコル下で観察したところ、マスクパターンと合致した模様の明暗反転が観察された。
【0024】
(実施例4)重合体1をクロロホルムに溶解し、光学的に等方性の基板に、約100 nm の厚さでスピンコートした。こうして調整した樹脂膜を72℃に加温して、グランテーラープリズムを用いて直線偏光に変換した紫外線を、30秒間照射した。次いでマスクパターンを用い、マスクされた領域以外のみ電界方向の等しい直線偏光を更に10分間照射した。該基板を150℃まで加熱し、100℃まで冷却して10分間保持後、室温まで冷却した。この基板と通常の配向膜の基板をもちい、メルクジャパン(株)製の液晶E7をを挟持した液晶セルを組み立てた。該液晶セルを直交ニコル、平行ニコル下でで観察したところマスクパターンと合致した模様の明暗反転が観察された。
【0025】
これら実施例1から実施例4において、マスクパターンに一致した明暗反転が観察されたことから、それぞれの領域の液晶の配向方向が相互に異なる領域が1枚の配向膜(液晶)に同時に形成されたことを立証するものである。
【0026】
(実施例5)重合体1をクロロホルムに溶解し、ITO (インジウム錫酸化物)で覆った基板上に約100 nm の厚さでスピンコートした。該基板を水平面に対して30度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から72℃で30秒間照射し室温まで冷却した。この基板を用い、メルクジャパン(株)製の液晶ZLI 2061をコートし、クリスタルローテーション法でプレチルト角を測定をした。該基板を用いたときの液晶のプレチルト角は3.6°であった。このような基板を2枚作製して液晶ZLI 2061を挟持することにより、厚さ12μmのTN型液晶セルを組み立てた。このTN型液晶セルの駆動電圧は2V であった。液晶セル全面にわたり配向欠陥の無いことが確認された。
【0027】
(実施例6)重合体2をクロロホルムに溶解し、ITO (インジウム錫酸化物)で覆った基板上に約100 nm の厚さでスピンコートした。該基板を水平面に対して30度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から、雰囲気温度89℃で5分間照射後、室温まで冷却した。この基板を用い、メルクジャパン(株)製の液晶ZLI 2061をコートし、クリスタルローテーション法でプレチルト角を測定した。該基板を用いたときの液晶のプレチルト角は4.2°であった。
【0028】
(実施例7)重合体3をクロロホルムに溶解し、ITO (インジウム錫酸化物)で覆った基板上に約100 nm の厚さでスピンコートした。該基板を水平面に対して30度傾くように配置し、グランテーラープリズムを用いて直線偏光に変換した紫外線を、水平面に対し垂直方向から、雰囲気温度89℃で5分間照射後、室温まで冷却した。この基板を用い、メルクジャパン(株)製の液晶ZLI 2061をコートし、クリスタルローテーション法でプレチルト角を測定した。該基板を用いたときの液晶のプレチルト角は1.7°であった。
【0029】
【発明の効果】
以上に記述したように、本発明によれば、光反応によって配向膜が得られると共に、この膜を液晶ディスプレイ用の配向膜に応用できる。該配向膜では、ラビングなど、液晶分子の配向操作が不要な配向膜が調製されるので、液晶表示装置の組立工程で生じる欠陥が著しく低減される。
液晶表示装置における視野角の拡大においては、1画素を分割し液晶配向方向を変えたり、低チルト角と高チルト角の配向状態を発現させたり、チルト角を反転させる画素分割配向が有効な技術である。本発明の高分子材料では、照射光の電界振動方向、光照射量、照射方向を変えることにより液晶分子の配向方向、プレチルト角が異なる膜を同一基板上に作製することもでき、該画素分割配向も可能となる。更に、直線偏光の照射量により液晶分子の配向を90°回転させることができ、1つのマスクパターンで2方向に配向方向を制御できるので、マスクパターンを2つ必要とぜず位置合せも不要とすることができる。
光架橋で耐熱性がすぐれる配向膜になる。
【0030】
【図面の簡単な説明】
図1は、本発明の配向膜の製造方法を示す概念図である。図2は、液晶表示装置の構成図。図3は、従来の配向膜の製造方法を示す例図。図4は、偏光照射により感光した側鎖の模式図。図5は、偏光照射後の分子運動により配列した側鎖の模式図。図6は、本発明の高分子材料による液晶の配向状態の模式図。図7、8は、本発明の配向膜による画素分割した液晶配向の模式図である。
図9は、偏光照射後の照射光の電界振動方向と平行方向と垂直方向の赤外の差スペクトルΔAを測定したグラフ。図10は、偏光照射時間による複屈折率の変化を示すグラフである。
【符号の説明】
1・・・紫外線ランプ
2・・・電源
3・・・光学素子(グランテーラープリズム)
4・・・樹脂膜
5・・・基板
6・・・無秩序光
7・・・直線偏光紫外線
120・・・液晶表示装置
122・・・液晶
123・・・偏光板
124・・・ガラス基板
125・・・透明電極
126・・・配向膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alignment film in which a linear side-polarizing ultraviolet ray is irradiated onto a photosensitive side chain polymer film. This alignment film promotes the alignment of the liquid crystal sealed in the liquid crystal panel, and is useful for improving the liquid crystal display device (manufacturing method).
[0002]
[Prior art]
Compared to CRT type display devices, the liquid crystal display device is flat and can be installed even in a narrow space, “lightweight and easy to carry”, “digital video, adapts to high-speed video communication”, “ It has the advantage of “low power consumption because it is driven at a low voltage” and is rapidly growing as a powerful video information generating means. Many of the currently popular liquid crystal display devices use a twisted nematic liquid crystal.
[0003]
The general structure of the liquid crystal display device will be described with reference to the schematic cross-sectional view of FIG. The liquid crystal display device (120) is formed by sandwiching a liquid crystal (122) between two panels (121, 121). The panel (121, 121) is formed by laminating polarizing plates (123, 123), glass substrates (124, 124), transparent electrodes (125, 125), and alignment films (126, 126).
Light rays from a light source (not shown) outside one polarizing plate (123) are transmitted through the liquid crystal display device and transmitted to the other polarizing plate (123) side. In the liquid crystal display device, the alignment state of the liquid crystal molecules (122) is changed by the applied voltage from the transparent electrodes (125, 125), and as a result, the change in the optical properties generated in the liquid crystal is manifested by the polarizing plates (123, 123). There is to make it. In the no-voltage state, the liquid crystal molecules are twisted and arranged while sequentially changing the angle in the thickness direction. The alignment film (126, 126) functions to control the alignment direction at the liquid crystal interface (the surface in contact with the alignment film) and is indispensable for the configuration of the liquid crystal display device.
[0004]
FIG. 3 shows an example (rubbing method) of the conventional most common method for producing an alignment film. The substrate (131) is coated with a polymer compound (132) such as polyimito, and the surface is rubbed with a drum (133) wrapped with a cloth (134) in which nylon or polyester fiber is implanted to form extremely fine grooves on the surface. It is a manufacturing method which makes the oriented film. This alignment film functions to control the alignment direction of the liquid crystal along the direction of the groove. In the rubbing method, discharge due to fine dust or static electricity is likely to occur, which is a problem in the manufacturing process of the liquid crystal panel.
Other than the rubbing method, an oblique vapor deposition method obtained by vapor-depositing silicon oxide with respect to the substrate has been adopted. This alignment film functions to control the alignment direction of the liquid crystal along the tilt direction of the deposited silicon oxide. This method has problems that it is difficult to maintain the uniformity of the vapor deposition angle and vapor deposition film thickness on the substrate and that the process becomes large.
Further, in these alignment film manufacturing methods, the alignment direction is limited to only one fixed direction on the entire surface, and it has been impossible to form a region in which the alignment direction and the degree are arbitrarily different. When an alignment film having a limited alignment direction is used in a liquid crystal display device, the phase difference increases depending on the direction in which the liquid crystal is viewed (resulting in a large viewing angle dependency) and the visible angle is narrowed.
[0005]
[Problems to be solved by the invention]
In recent years, a liquid crystal photo-alignment technique for aligning a (polymer) liquid crystal using light irradiation has attracted attention as a method for producing an alignment film that solves the problems of the conventional methods as described above. This technique is broadly classified into a method using a photodimer reaction, a method using photoisomerization of an azo polymer, and a method of applying linearly polarized ultraviolet light to a liquid crystal vertical alignment film of an alkyl side chain-attached polyimide. The conventional liquid crystal photo-alignment technology has the following problems.
In the method using photodimer reaction or photoisomerization of an azo polymer, the electric field direction of irradiated linearly polarized ultraviolet rays and the molecular alignment direction of the alignment film are orthogonal to each other, which is necessary to prevent liquid crystal alignment defects in the liquid crystal panel. It is difficult to develop a pretilt angle. In the method using the alkyl side chain-attached polyimide, the pretilt angle can be expressed. However, in this method, the alkyl side chain is cut by ultraviolet rays, so that minute dust is generated, which is a problem in manufacturing a liquid crystal panel.
The present invention provides a method for producing an alignment film that solves the above-described problems of liquid crystal photo-alignment technology.
[0006]
[Means for Solving the Problems]
The means of the present invention for solving the problem is a method for producing a polymer alignment film that promotes the alignment of liquid crystal in a liquid crystal panel, and irradiates a photosensitive side chain polymer film with linearly polarized ultraviolet rays. A method for producing an alignment film characterized by obtaining an alignment film having an arbitrary alignment characteristic, and the structure of a photosensitive side chain polymer, wherein the side chain is represented by at least chemical formula 1 and / or chemical formula 2. A method for producing an alignment film, wherein the photosensitive side chain type polymer has a main chain of hydrocarbon, acrylate, methacrylate, siloxane. A method for producing an alignment film, which is a homopolymer or copolymer containing a structure selected from: a temperature of a photosensitive side chain polymer film when irradiated with linearly polarized ultraviolet light, Transition temperature to isotropic phase of this side chain polymer The method includes a method for producing an alignment film, a step of heating and / or cooling a photosensitive side chain polymer film or a support thereof, characterized in that the difference is within 10 ° C. An alignment film obtained by the alignment film manufacturing method, the alignment film manufacturing method, and a liquid crystal display device including the alignment film are provided.
[0007]
[Action]
The manufacturing method (alignment film according to the present invention) of the present invention has the following specific actions.
It is possible to freely control the change of the orientation direction (of the side chain) according to the irradiation time of the linearly polarized ultraviolet rays and the copolymer composition. As a result, it is possible to obtain an alignment film in which an arbitrary part of the alignment film is aligned to an arbitrary alignment characteristic. By combining such an alignment film with a liquid crystal display device, the required characteristics including the pretilt angle of the liquid crystal are obtained. Can be improved.
The alignment film of the present invention is formed by applying a polymer to a substrate (spin coating) to form a film, and irradiating linearly polarized light (ultraviolet light) from a specific direction, thereby irradiating the side chain of the polymer. They can be arranged in a direction parallel to the direction of electric field vibration and in a direction perpendicular to the direction of travel of irradiation light. By performing this irradiation from an oblique direction with respect to the substrate surface, the side chains of the polymer can be tilted and arranged. This inclination can be set in an arbitrary direction by changing the light irradiation direction. Moreover, the dimer produced | generated by a photoreaction can be orientated also to the orthogonal | vertical direction of the electric field vibration direction of a linearly polarized ultraviolet ray. When liquid crystal molecules come into contact with the polymer film thus aligned, the liquid crystal can be aligned by the interaction with the polymer side chain on the alignment film side or the dimer of the cinnamic acid group. In addition, the tilt angle on the liquid crystal side can be controlled by tilting the side chain. FIG. 6 schematically shows this, and at the interface (63) where the upper liquid crystal panel (61) and the lower alignment film (62) contact each other, the side chain (64) of the alignment film is aligned and inclined. Then, the liquid crystal molecules (65) in the liquid crystal panel in the vicinity of the interface receive this action and are tilted and oriented at the interface with a tilt angle α.
[0008]
By providing a plurality of regions with different field oscillation directions, irradiation directions, and irradiation times in the same alignment film by mask exposure, a plurality of alignment directions corresponding to the liquid crystal molecules in the liquid crystal panel near the interface are also provided. You can set the area. For example, FIG. 7 shows an enlarged view of a partial region of the alignment film (70) and the substrate (75), but the electric field oscillation direction is 90 degrees in each of four adjacent regions (70a, 70b, 70c, 70d). By irradiating different linearly polarized ultraviolet rays (71a, 71b, 71c, 71d), the side chains (not shown) in each region are aligned in different directions. As a result, liquid crystal molecules (72a , 72b, 72c, 72d) have different alignment states. FIG. 8 is an enlarged view of a partial region of the alignment film (80) and the substrate (85) similar to FIG. 7, and linear polarization with different irradiation angles with respect to two adjacent regions (80a, 80b). By irradiating the ultraviolet rays (81a, 81b), the side chains in both regions are aligned at different angles, so that the liquid crystal molecules (82a, 82b) in the liquid crystal panel in contact with them are aligned with different tilt angles β, γ. Indicates the state of In a liquid crystal display device, when a liquid crystal is obtained by aligning the side chain of any adjacent region in one pixel in any orientation direction and angle, the phase difference due to the viewing direction of the liquid crystal can be eliminated, and the viewing angle can be expanded. Useful for.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The homopolymer or copolymer of the present invention includes a substituent such as biphenyl, terphenyl, phenylbenzoate, and azobenzene, which are frequently used as a mesogenic component of a liquid crystalline polymer, a cinnamic acid group (or a derivative group thereof), and the like. The main structures are hydrocarbons, acrylates, methacrylates, siloxanes, etc. that contain a side chain containing a structure to which a photosensitive group is bonded, and a certain proportion of side chains containing a mesogenic component to which no photosensitive group is bonded. It is a polymer in the chain.
These polymer bodies are coated (spin coated) on the substrate in the form of a solution and dried to form a polymer coating film. This polymer coating film is non-oriented during film formation, and the photosensitive side chain portion represented by Chemical Formula 1 does not face a specific direction. This state will be described with reference to FIG. 4. A photosensitive side chain (41) having a photosensitive group indicated by an ellipse in the coating film (40) and having a direction corresponding to the vibration direction of irradiated polarized ultraviolet rays. The side chain (42) having poor photosensitivity exists in a non-oriented state.
When this coating film is irradiated with linearly polarized ultraviolet rays, photosensitive groups such as cinnamic acid groups (or their derivative groups) arranged along the electric field vibration direction of the irradiated linearly polarized light in the photosensitive side chain (41). Dimerization occurs most sensitively. In this dimerization reaction, cyclopropane bonds are linearly formed as shown in Reaction Formula 1, and arranged in a direction perpendicular to the electric field direction of the irradiated linearly polarized light.
[0010]
[Chemical formula 5]
Figure 0003945789
The rectangle described in the reaction formula 1 is a molecular chain that connects the main chain of the polymer and the photosensitive group in the side chain polymer liquid crystal, and includes a liquid crystal component and a bending component.
In order to proceed with the dimerization reaction, irradiation with linearly polarized light having a wavelength with which the cinnamic acid group portion of Chemical Formula 1 can react is required. This wavelength varies depending on the types of -R 1 to -R 5 represented by Chemical Formula 1, but is generally 200 to 500 nm, and in particular, the effectiveness of 250 to 400 nm is often high.
[0011]
The orientation state of the coating film in which the dimerization reaction does not proceed relatively after the irradiation with ultraviolet rays will be described with reference to FIG. The coating film (50) does not have the side chain (51) subjected to the dimerization reaction and the photosensitive group represented by Chemical Formula 2 or has the photosensitive group represented by Chemical Formula 1. There is also a side chain (52) that did not cause dimerization (because it is not arranged in the electric field direction of linearly polarized light). The dimerized side chain is oriented perpendicular to the electric field direction of the irradiated linearly polarized light. Further, the side chain (52) that has not undergone dimerization is also oriented in the same direction as the dimerized side chain (51).
As a result, in the entire polymer coating film, side chains are arranged in the electric field vibration direction of the irradiated linearly polarized light. Next, when the dimerization reaction proceeds sufficiently after irradiation with ultraviolet rays, the orientation of the dimer becomes dominant over the orientation of the side chain. FIG. 10 shows the change of the alignment mode in the alignment film with respect to the ultraviolet irradiation time. In the figure, when the irradiation time of ultraviolet rays is taken on the horizontal axis and the value ΔN representing the birefringence is taken on the vertical axis, ΔN increases monotonously up to the irradiation time of 100 seconds, but the irradiation time exceeds 100 seconds. From this, ΔN begins to decrease. This does not mean a decrease in the degree of orientation of the side chain, but the density of the dimer formed by irradiation with ultraviolet rays in the polymer film is increased, and the orientation of the dimer becomes dominant. It depends on what happened.
[0012]
This arrangement by molecular motion is facilitated by heating the polymer (substrate to be coated) so that the molecules can move easily. It is desirable that the heating temperature is lower than the softening point of the photoreactive portion (that is, the portion where the orientation is fixed) and higher than the softening point of the side chain portion that does not undergo the photoreaction and the side chain portion that does not have the photosensitive group. For example, n = 6, m = 2, k = 6, R 1 to R 5 = H, R 6 = CN, X = none, Y = none in the side chain (Chemical Formula 1), Z = in the main chain (Chemical Formula 3) CH 3 In the example of W = COO- and a: b = 45: 55, 75 to 77 ° C. is appropriate. Further, the polymer coating film (substrate to be coated) is T i ± 10 ° C., preferably T i ± 5 ° C., more preferably T i ± 2 ° C. (where Ti changes from a liquid crystal phase to an isotropic phase) The alignment can be promoted by irradiating with polarized ultraviolet rays under the temperature of (the phase transition temperature). When the film irradiated with polarized light and heated to align the unreacted side chains or the film exposed to polarized light under heating and aligned to below the softening point temperature of the polymer is frozen, the molecules are frozen. A fixed alignment film is obtained. In addition, the side chain having no photosensitive group represented by Chemical Formula 2 reduces the density of the cross-linking points in the photodimerization reaction, improves the degree of freedom of molecular movement during reorientation, and re-adheres by its own molecular orientation. Promote orientation.
[0013]
A synthesis method for the raw material compound of the polymer material is shown below.
(Monomer 1) 4-Hydroxy-4′-hydroxyethoxybiphenyl was synthesized by heating 4,4′-biphenyldiol and 2-chloroethanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 5.
[Chemical 6]
Figure 0003945789
[0014]
(Monomer 2) 4-Hydroxy-4′-cyanobiphenyl was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-cyanobiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-cyano-4 ′-(6′-biphenyloxyhexyl) methacrylate. A methacrylic acid ester represented by Chemical Formula 6 was synthesized.
[Chemical 7]
Figure 0003945789
[0015]
(Monomer 3) 4-Hydroxy-4′-hydroxyethoxybiphenyl was synthesized by heating 4,4′-biphenyldiol and 2-chlorohexanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to synthesize 4- (6-bromohexyloxy) -4′-hydroxyethoxybiphenyl. Subsequently, lithium methacrylate was reacted to synthesize 4-hydroxyethoxy-4 ′-(6′-biphenyloxyhexyl) methacrylate. Finally, 4-methoxycinnamoyl chloride was added under basic conditions to synthesize a methacrylic acid ester represented by Chemical Formula 7.
[Chemical 8]
Figure 0003945789
[0016]
(Polymer 1) Monomer 1 was dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. The polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.
[0017]
(Polymer 2) Monomer 1 and monomer 2 are dissolved in various proportions in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Obtained (a: b = 55: 45). The polymer 2 exhibited liquid crystallinity in a temperature range of 44 to 95 ° C.
[0018]
(Polymer 3) Monomer 1 and monomer 2 are dissolved in various proportions in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Obtained (a: b = 30: 70). The polymer 3 exhibited liquid crystallinity in a temperature range of 45 to 101 ° C.
[0019]
(Polymer 4) The monomer 3 was dissolved in tetrahydrofuran, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. This polymer 4 also exhibited liquid crystallinity.
[0020]
【Example】
The polymer material of the present invention was confirmed to be a liquid crystalline material from the expression of the phase transition temperature by thermal analysis and the expression of a birefringent optical pattern in the liquid crystal temperature region by observation with a polarizing microscope.
In Chemical Formulas 1 to 3, a: b = 55: 45, n = 6, m = 2, k = 6, X, Y = none, W = —COO—, R 1 to R 5 = H, R 6 = The thermal analysis curve of the polymer material of the present invention, which is —CN, shows an endothermic peak at 44 ° C. and an endothermic peak at 95 ° C. during the temperature rising process. It was a liquid crystalline material that developed an optical pattern. The orientation of the side chain of the polymer material by irradiation with linearly polarized UV light is irradiated on the polymer coating film formed on the substrate by applying polarized UV light, parallel to the direction of electric field oscillation of the irradiation light of the polymer coating film, and perpendicular direction. This was verified by comparing the polarized infrared spectra. FIG. 9 shows a difference spectrum ΔA between polarized infrared rays in the direction parallel to and perpendicular to the direction of electric field vibration of irradiated light 30 seconds after irradiation with polarized light. The absorption of -CN, O-Ph, and Ph in the parallel direction was increased by the irradiation of polarized light, and it was confirmed that the side chain was oriented in the electric field vibration direction of the irradiated light. At this time, the birefringence of the polymer coating film is maximized, and when it is further exposed, the birefringence decreases as shown in FIG. This decrease in birefringence suggests that the cinnamoyl group formed a dimer and was aligned perpendicular to the electric field oscillation direction of linearly polarized light.
FIG. 1 shows a method (apparatus) for producing an alignment film of the present invention. The disordered light (6) generated by the ultraviolet lamp (1) excited by the power source (2) is converted into linearly polarized ultraviolet light (7) by the optical element (3) (for example, a Grand Taylor prism), and is converted onto the substrate (5). The resin film (4) coated (coated) is irradiated.
[0021]
Example 1 Polymer 1 was dissolved in chloroform and spin-coated on an optically isotropic substrate with a thickness of about 100 nm. The resin film thus prepared was irradiated with ultraviolet rays converted to linearly polarized light using a Grand Taylor prism at room temperature for 30 seconds. Next, using the mask pattern, linearly polarized light having the same electric field direction was irradiated for another 20 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a normal alignment film substrate, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan Ltd. was assembled. When the liquid crystal cell was observed under crossed Nicols and parallel Nicols, light / dark reversal of the pattern matched with the mask pattern was observed.
[0022]
(Example 2) The polymer 2 was dissolved in chloroform and spin-coated at a thickness of about 100 nm on an optically isotropic substrate. The resin film thus prepared was irradiated with ultraviolet rays converted to linearly polarized light using a Grand Taylor prism at room temperature for 30 seconds. Next, using the mask pattern, linearly polarized light having the same electric field direction was irradiated for another 20 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a normal alignment film substrate, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan Ltd. was assembled. When the liquid crystal cell was observed under crossed Nicols and parallel Nicols, light / dark reversal of the pattern matched with the mask pattern was observed.
[0023]
(Example 3) The polymer 4 was dissolved in chloroform and spin-coated on an optically isotropic substrate with a thickness of about 100 nm. The resin film thus prepared was irradiated with ultraviolet rays converted to linearly polarized light using a Grand Taylor prism at room temperature for 30 seconds. Next, using the mask pattern, linearly polarized light having the same electric field direction was irradiated for another 20 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a normal alignment film substrate, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan Ltd. was assembled. When the liquid crystal cell was observed under crossed Nicols and parallel Nicols, light / dark reversal of the pattern matched with the mask pattern was observed.
[0024]
Example 4 Polymer 1 was dissolved in chloroform and spin-coated on an optically isotropic substrate with a thickness of about 100 nm. The resin film thus prepared was heated to 72 ° C. and irradiated with ultraviolet rays converted to linearly polarized light using a Grand Taylor prism for 30 seconds. Then, using the mask pattern, linearly polarized light having the same electric field direction was irradiated for another 10 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a normal alignment film substrate, a liquid crystal cell sandwiching a liquid crystal E7 made by Merck Japan was assembled. When the liquid crystal cell was observed under crossed Nicols and parallel Nicols, light / dark reversal of the pattern matched with the mask pattern was observed.
[0025]
In these Examples 1 to 4, since the light and dark inversion corresponding to the mask pattern was observed, regions having different alignment directions of the liquid crystals in the respective regions were simultaneously formed on one alignment film (liquid crystal). It proves that.
[0026]
(Example 5) Polymer 1 was dissolved in chloroform and spin-coated at a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was placed so as to be inclined at 30 degrees with respect to the horizontal plane, and ultraviolet rays converted into linearly polarized light using a Grand Taylor prism were irradiated from the direction perpendicular to the horizontal plane at 72 ° C. for 30 seconds and cooled to room temperature. Using this substrate, liquid crystal ZLI 2061 manufactured by Merck Japan Co., Ltd. was coated, and the pretilt angle was measured by the crystal rotation method. The pretilt angle of the liquid crystal when the substrate was used was 3.6 °. Two such substrates were fabricated and a liquid crystal ZLI 2061 was sandwiched between them to assemble a TN type liquid crystal cell having a thickness of 12 μm. The driving voltage of this TN type liquid crystal cell was 2V. It was confirmed that there was no alignment defect over the entire liquid crystal cell.
[0027]
(Example 6) The polymer 2 was dissolved in chloroform and spin-coated at a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was placed at an angle of 30 degrees with respect to the horizontal plane, and ultraviolet rays converted into linearly polarized light using a Grand Taylor prism were irradiated for 5 minutes at an ambient temperature of 89 ° C. from the direction perpendicular to the horizontal plane, and then cooled to room temperature. . Using this substrate, liquid crystal ZLI 2061 manufactured by Merck Japan Co., Ltd. was coated, and the pretilt angle was measured by the crystal rotation method. The pretilt angle of the liquid crystal when using the substrate was 4.2 °.
[0028]
(Example 7) Polymer 3 was dissolved in chloroform and spin-coated at a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was placed at an angle of 30 degrees with respect to the horizontal plane, and ultraviolet rays converted into linearly polarized light using a Grand Taylor prism were irradiated for 5 minutes at an ambient temperature of 89 ° C. from the direction perpendicular to the horizontal plane, and then cooled to room temperature. . Using this substrate, liquid crystal ZLI 2061 manufactured by Merck Japan Co., Ltd. was coated, and the pretilt angle was measured by the crystal rotation method. When this substrate was used, the pretilt angle of the liquid crystal was 1.7 °.
[0029]
【The invention's effect】
As described above, according to the present invention, an alignment film can be obtained by photoreaction, and this film can be applied to an alignment film for a liquid crystal display. In the alignment film, an alignment film that does not require alignment operation of liquid crystal molecules such as rubbing is prepared, so that defects generated in the assembly process of the liquid crystal display device are remarkably reduced.
In the expansion of the viewing angle in a liquid crystal display device, a technology in which one pixel is divided and the liquid crystal alignment direction is changed, an alignment state with a low tilt angle and a high tilt angle is developed, or a pixel division alignment that inverts the tilt angle is effective. It is. In the polymer material of the present invention, films having different alignment directions and pretilt angles of liquid crystal molecules can be formed on the same substrate by changing the electric field vibration direction, the light irradiation amount, and the irradiation direction of the irradiation light. Orientation is also possible. Furthermore, the orientation of liquid crystal molecules can be rotated by 90 ° depending on the amount of irradiation of linearly polarized light, and the orientation direction can be controlled in two directions with one mask pattern, so two mask patterns are required and alignment is unnecessary. can do.
An alignment film with excellent heat resistance by photocrosslinking.
[0030]
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method for producing an alignment film of the present invention. FIG. 2 is a configuration diagram of a liquid crystal display device. FIG. 3 is an example showing a conventional method for producing an alignment film. FIG. 4 is a schematic diagram of a side chain exposed by polarized light irradiation. FIG. 5 is a schematic diagram of side chains arranged by molecular motion after polarized light irradiation. FIG. 6 is a schematic view of an alignment state of liquid crystal by the polymer material of the present invention. 7 and 8 are schematic views of liquid crystal alignment in which pixels are divided by the alignment film of the present invention.
FIG. 9 is a graph obtained by measuring an infrared difference spectrum ΔA in the direction parallel to and perpendicular to the electric field oscillation direction of the irradiation light after irradiation with polarized light. FIG. 10 is a graph showing the change in birefringence with the irradiation time of polarized light.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultraviolet lamp 2 ... Power supply 3 ... Optical element (Grant Taylor prism)
4 ... resin film 5 ... substrate 6 ... disordered light 7 ... linearly polarized ultraviolet light 120 ... liquid crystal display device 122 ... liquid crystal 123 ... polarizing plate 124 ... glass substrate 125 ..Transparent electrode 126 ... Alignment film

Claims (5)

液晶パネルの液晶の配向を促進する高分子の配向膜の製造方法であって、化学式1および化学式2で表される側鎖構造を含み、化学式3ないし化学式4で表される構成をとる感光性の側鎖型高分子膜に、水平面から傾けた向きから直線偏光性の紫外線を照射して任意のプレチルト角をもった配向特性の配向膜を得ることを特徴とする配向膜の製造方法。
Figure 0003945789
Figure 0003945789
Figure 0003945789
Figure 0003945789
但し、化学式1〜化学式4において、n、m、k=1〜12、a:b=100:0〜1:99(但しb≠0)、
1 〜R6 =−H、−CN、−C=C−、−C=C(CN)2 、−C=CH−CN、ハロゲン基、アルキルオキシ基、X、Y=none、−COO、−OCO−、−N=N−、−C=C−、−C64 −、Z=−H、−CH3、−C25 、−C37 、ハロゲン基、W=none、−COO、−OCO−、−(O−CH2)−である。
A method for producing a polymer alignment film that promotes liquid crystal alignment of a liquid crystal panel, comprising a side chain structure represented by Chemical Formula 1 and Chemical Formula 2, and having a structure represented by Chemical Formula 3 to Chemical Formula 4 A method for producing an alignment film, characterized in that an alignment film having an alignment characteristic having an arbitrary pretilt angle is obtained by irradiating the side-chain polymer film with linearly polarized ultraviolet rays from a direction inclined from a horizontal plane.
Figure 0003945789
Figure 0003945789
Figure 0003945789
Figure 0003945789
However, in Chemical Formula 1 to Chemical Formula 4, n, m, k = 1 to 12, a: b = 100: 0 to 1:99 (where b ≠ 0),
R 1 to R 6 = —H, —CN, —C═C—, —C═C (CN) 2 , —C═CH—CN, halogen group, alkyloxy group , X, Y = none, —COO, -OCO -, - N = N - , - C = C -, - C 6 H 4 -, Z = -H, -CH 3, -C 2 H 5, -C 3 H 7, halogen, W = none , -COO, -OCO -, - ( O-CH 2) - a.
請求項1の配向膜の製造方法において、直線偏光性の紫外線を照射する際の前記感光性の側鎖型高分子膜の温度が、この側鎖型高分子の等方相への転移温度との差10℃以内の範囲にあることを特徴とする配向膜の製造方法。  2. The method for producing an alignment film according to claim 1, wherein the temperature of the photosensitive side chain polymer film when irradiating with linearly polarized ultraviolet rays is the transition temperature of the side chain polymer to the isotropic phase. A method for producing an alignment film, wherein the difference is within a range of 10 ° C. or less. 請求項1の配向膜の製造方法において、前記感光性の側鎖型高分子膜を加熱、および/または冷却する工程を含むことを特徴とする配向膜の製造方法。2. The method for producing an alignment film according to claim 1, further comprising a step of heating and / or cooling the photosensitive side chain polymer film . 請求項1から請求項3の配向膜の製造方法によって得られることを特徴とする配向膜。  An alignment film obtained by the method for manufacturing an alignment film according to claim 1. 請求項4の配向膜を備えたことを特徴とする液晶表示装置。  A liquid crystal display device comprising the alignment film according to claim 4.
JP36520297A 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film Expired - Fee Related JP3945789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36520297A JP3945789B2 (en) 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36520297A JP3945789B2 (en) 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film

Publications (2)

Publication Number Publication Date
JPH11181127A JPH11181127A (en) 1999-07-06
JP3945789B2 true JP3945789B2 (en) 2007-07-18

Family

ID=18483688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36520297A Expired - Fee Related JP3945789B2 (en) 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film

Country Status (1)

Country Link
JP (1) JP3945789B2 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070839B2 (en) 1998-09-16 2006-07-04 Matsushita Electric Industrial Co., Ltd. Functional film, method of fabricating the same, liquid crystal display device using functional film, and method of fabricating the same
EP1223604A1 (en) 1999-10-12 2002-07-17 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element, optically anisotropic film, and methods for manufacturing them
JP2001290155A (en) * 2000-04-10 2001-10-19 Agency Of Ind Science & Technol Method for forming liquid crystal alignment layer
JP4565294B2 (en) * 2000-05-30 2010-10-20 林テレンプ株式会社 Alignment film manufacturing method
JP5062457B2 (en) * 2000-08-23 2012-10-31 林テレンプ株式会社 Method for producing film having function of aligning liquid crystalline material
KR100762832B1 (en) * 2004-12-03 2007-10-02 주식회사 엘지화학 Photoreactive compounds, liquid crystal alignment layer using the same, method for manufacturing thereof, and liquid crystal display device containing the alignment layer
JP4549833B2 (en) * 2004-12-13 2010-09-22 富士フイルム株式会社 Alignment film, manufacturing technique thereof, and liquid crystal device
KR100789247B1 (en) 2005-01-05 2008-01-02 주식회사 엘지화학 Photoreactive polymer and process of making the same
CN1989226B (en) 2005-01-20 2010-05-19 Lg化学株式会社 Alignment film for LCD using photoreactive polymer and LCD comprising the same
KR100850630B1 (en) 2005-05-30 2008-08-05 주식회사 엘지화학 Composition for liquid crystal aligning layers and liquid crystal display
TWI305287B (en) 2005-09-22 2009-01-11 Lg Chemical Ltd Multi-functional monomer having a photoreactive group, alignment film for lcd using the monomer, and lcd comprising the alignment film
WO2007052979A1 (en) * 2005-11-07 2007-05-10 Lg Chem. Ltd. Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer
JP4863355B2 (en) * 2006-01-19 2012-01-25 独立行政法人科学技術振興機構 Liquid crystal display element using nematic liquid crystal
JP4950514B2 (en) * 2006-02-27 2012-06-13 株式会社 日立ディスプレイズ Manufacturing method and manufacturing apparatus for liquid crystal display device
KR100784460B1 (en) 2006-06-27 2007-12-12 (주)엔디스 Photosensitive polymer for liquid crystal aligning, liquid crystal aligning layer comprising the same and liquid crystal display comprising the same
KR101002763B1 (en) 2007-03-06 2010-12-21 주식회사 엘지화학 Cyclic olefins compounds, polymers comprising the same and liquid crystal alignment films including the photoreactive polymer
CN101641389B (en) 2007-03-22 2013-03-27 Lg化学株式会社 Photoreactive exo-rich norbornene polymer and method for preparing the same
US20100093955A1 (en) 2007-03-22 2010-04-15 Dai-Seung Choi Photoreactive polymer and method for preparing the same
WO2009025388A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
US8216649B2 (en) 2007-08-21 2012-07-10 Jsr Corporation Liquid crystal aligning agent, method of producing a liquid crystal alignment film and liquid crystal display device
WO2009025386A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
KR101442878B1 (en) * 2007-10-19 2014-09-22 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, method for forming liquid crystal alignment film and liquid crystal display device
JP5454772B2 (en) * 2008-11-17 2014-03-26 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for forming the same, and liquid crystal display element
EP2386588B1 (en) 2009-01-12 2015-08-19 LG Chem, Ltd. Norbornene polymer including photoreactive functional group that has halogen substituent, method for preparing the same, and alignment layer using the same
TW201036991A (en) * 2009-04-01 2010-10-16 Seaen Special Material Co Ltd Polymer liquid crystal alignment polymer and method for manufacturing liquid crystal display applying the same
JP5668577B2 (en) * 2010-05-06 2015-02-12 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and polyorganosiloxane compound
KR101071401B1 (en) 2010-07-07 2011-10-07 주식회사 엘지화학 Photoreactive norbornene polymer, its preparation method and alignment layer comprising the same
KR101307494B1 (en) * 2010-07-07 2013-09-11 주식회사 엘지화학 Compound having photoreactive group, photoreactive polymer and alignment layer comprising the same
US8946366B2 (en) 2010-09-27 2015-02-03 Lg Chem, Ltd. Cyclic olefin compound, photoreactive polymer, and alignment layer comprising the same
US9150678B2 (en) 2010-09-27 2015-10-06 Lg Chem, Ltd. Photoreactive polymer and alignment layer comprising the same
JP5854205B2 (en) * 2011-11-21 2016-02-09 Jsr株式会社 Liquid crystal alignment agent
KR101574734B1 (en) 2012-05-11 2015-12-07 주식회사 엘지화학 Optical film and display device comprising the same
JP6146100B2 (en) * 2012-06-21 2017-06-14 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, retardation film, liquid crystal display element and method for producing retardation film
KR101515527B1 (en) 2012-08-21 2015-04-27 주식회사 엘지화학 Optical anistropic film
TWI487742B (en) 2012-09-10 2015-06-11 Lg Chemical Ltd Composition for photo-alignment layer and photo-alignment layer
KR20150016133A (en) * 2013-08-02 2015-02-11 주식회사 엘지화학 Process for purification of photoreactive compound and photoreactive compound
KR101719686B1 (en) 2013-09-30 2017-03-24 주식회사 엘지화학 Photoreactive copolymer and alignment layer comprising the same
JP6518934B2 (en) * 2014-09-19 2019-05-29 林テレンプ株式会社 Method for producing liquid crystal polymer film
CN105093686B (en) * 2015-02-06 2018-01-12 深圳市华星光电技术有限公司 Liquid crystal orienting film preparation method and reaction board
TWI732994B (en) 2017-02-09 2021-07-11 日商住友電木股份有限公司 Photoalignment film forming composition and lcd devices derived therefrom
JP2019152835A (en) * 2018-03-06 2019-09-12 シャープ株式会社 Method for manufacturing substrate with alignment film
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith
JP2022154781A (en) * 2021-03-30 2022-10-13 株式会社ジャパンディスプレイ Orientation film material and liquid crystal display device

Also Published As

Publication number Publication date
JPH11181127A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
JP3945789B2 (en) Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film
JP3945790B2 (en) Birefringent film and manufacturing method thereof
KR102157012B1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
KR101073781B1 (en) Liquid crystal display device
JP5007771B2 (en) Liquid crystal display element
JP5505566B2 (en) Liquid crystal display element
US7553521B2 (en) Liquid crystal displays
JP4520314B2 (en) Liquid crystal display element
JP2990270B2 (en) Oriented resin film, method for producing the same, and optical element using the oriented resin film
JP2000212310A (en) Oriented film, its production and liquid crystal display device
JP4676214B2 (en) Liquid crystal display element
JP4334028B2 (en) Manufacturing method of liquid crystal display element
JPH1087859A (en) Alignment layer and its production
JP4640540B2 (en) Alignment film manufacturing method
JPH11501359A (en) Liquid crystal polymer
JP4565294B2 (en) Alignment film manufacturing method
JP4338001B2 (en) Liquid crystal alignment film
JP2001072976A (en) Liquid crystal cell and its preparation
JP2002090540A (en) Birefringent film and method for manufacturing the same
JP4992198B2 (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JP2002229071A (en) Method of manufacturing liquid crystal display element
JP2001049010A (en) Liquid crystal orientation film, its manufacture and liquid crystal display
JP2012053491A (en) Liquid crystal display element and manufacturing method of liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees