JP7077199B2 - Optical measuring device and orientation measuring method - Google Patents

Optical measuring device and orientation measuring method Download PDF

Info

Publication number
JP7077199B2
JP7077199B2 JP2018186510A JP2018186510A JP7077199B2 JP 7077199 B2 JP7077199 B2 JP 7077199B2 JP 2018186510 A JP2018186510 A JP 2018186510A JP 2018186510 A JP2018186510 A JP 2018186510A JP 7077199 B2 JP7077199 B2 JP 7077199B2
Authority
JP
Japan
Prior art keywords
light
measurement
orientation
irradiation unit
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018186510A
Other languages
Japanese (ja)
Other versions
JP2020056648A (en
Inventor
洋平 ▲濱▼地
貴之 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2018186510A priority Critical patent/JP7077199B2/en
Publication of JP2020056648A publication Critical patent/JP2020056648A/en
Application granted granted Critical
Publication of JP7077199B2 publication Critical patent/JP7077199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、偏光板の製造における配向度を測定するための光学測定装置、および、配向度測定方法に関する。 The present invention relates to an optical measuring device for measuring the degree of orientation in the manufacture of a polarizing plate, and a method for measuring the degree of orientation.

有機エレクトロルミネセンス表示装置に用いられる反射防止板、および、液晶ディスプレイ等に、一方向の直線偏光のみを選択的に透過する偏光板が用いられている。 A polarizing plate that selectively transmits only unidirectional linear polarization is used in an antireflection plate used in an organic electroluminescence display device, a liquid crystal display, and the like.

偏光板は、一例として、以下のように作製される。
まず、基材の表面に配向膜を形成する。次いで、この配向膜に、棒状液晶化合物と二色性色素等の二色性物質を含む組成物を塗布して、乾燥することで、塗膜を形成する。次いで、塗膜を加熱処理することで、二色性物質を配向させる配向促進工程(熟成工程)を行う。配向促進工程を終了したら、紫外線照射等によって塗膜(組成物)を硬化して、偏光板を作製する。
As an example, the polarizing plate is manufactured as follows.
First, an alignment film is formed on the surface of the base material. Next, a composition containing a rod-shaped liquid crystal compound and a dichroic substance such as a dichroic dye is applied to the alignment film and dried to form a coating film. Next, by heat-treating the coating film, an orientation promoting step (aging step) for orienting the dichroic substance is performed. After the alignment promotion step is completed, the coating film (composition) is cured by irradiation with ultraviolet rays or the like to prepare a polarizing plate.

このような偏光板において、高い偏光度を得るためには、配向度を高くする必要が有る。そのためには、偏光板の配向度を測定する必要がある。
配向度(偏光二色性)の測定装置として、例えば特許文献1には、互いに異なる偏光方向で配置された3個以上の偏光板と、この偏光板に対抗させた光センサと、光センサの出力に対して、偏光方向と偏光板、試料透過光強度との間の連続関係式から透過光強度の最大値および最小値、その値に対する偏光方向を算出するデータ処理装置とを有し、偏光板と光センサとの間に試料を配置する装置が記載されている。
In such a polarizing plate, it is necessary to increase the degree of orientation in order to obtain a high degree of polarization. For that purpose, it is necessary to measure the degree of orientation of the polarizing plate.
As a device for measuring the degree of orientation (polarization dichroism), for example, Patent Document 1 describes three or more polarizing plates arranged in different polarization directions, an optical sensor opposed to the polarizing plate, and an optical sensor. It has a data processing device that calculates the maximum and minimum values of transmitted light intensity and the polarization direction for those values from the continuous relational expression between the polarization direction, the polarizing plate, and the sample transmitted light intensity with respect to the output. A device for placing a sample between a plate and an optical sensor is described.

特開平6-229909号公報Japanese Unexamined Patent Publication No. 6-229909

配向度の高い偏光板を得るためには、配向促進工程における配向度の変化すなわち分子挙動を把握する必要がある。例えば、上述した二色性物質を用いる偏光板であれば、塗膜の加熱処理を行う配向促進工程における配向度の変化すなわち二色性物質の挙動を把握する必要が有る。
そのためには、配向促進工程における配向度の変化を、時間経過に応じてリアルタイムで測定する必要が有る。
しかしながら、現状では、偏光板の製造における配向促進工程において、配向度の変化をリアルタイムに測定できる技術は、実現されていない。
In order to obtain a polarizing plate with a high degree of orientation, it is necessary to understand the change in the degree of orientation, that is, the molecular behavior in the alignment promotion step. For example, in the case of a polarizing plate using the above-mentioned dichroic substance, it is necessary to grasp the change in the degree of orientation in the orientation promoting step of heat-treating the coating film, that is, the behavior of the dichroic substance.
For that purpose, it is necessary to measure the change in the degree of orientation in the orientation promotion step in real time according to the passage of time.
However, at present, a technique capable of measuring a change in the degree of orientation in real time in an orientation promoting step in the manufacture of a polarizing plate has not been realized.

本発明の目的は、このような従来技術の問題点を解決することにあり、偏光板の製造における配向促進工程での配向度の変化を、リアルタイムに測定することを可能にする光学測定装置、および、配向度の測定方法を提供することにある。 An object of the present invention is to solve such a problem of the prior art, and an optical measuring device capable of measuring a change in the degree of orientation in an orientation promoting step in the manufacture of a polarizing plate in real time. And to provide a method for measuring the degree of orientation.

この課題を解決するために、本発明は、以下の構成を有する。
[1]測定対象を保持する保持部と、
保持部に、直線偏光を照射する第1光照射部と、
保持部に、直線偏光を照射する第2光照射部と、
保持部を挟んで、第1光照射部が照射した光を受光する第1受光部と、
保持部を挟んで、第2光照射部が照射した光を受光する第2受光部と、
第1受光部および第2受光部が受光した光を分光して測光する分光光度計と、
保持部に保持された測定対象の温度調節を行う温度調節手段、保持部に保持された測定対象を延伸する延伸手段、および、保持部に保持された測定対象に光を照射する光照射手段の、少なくとも1つと、を有し、かつ、
第1光照射部および第2光照射部は、保持部における測定対象の保持面において、偏光方向が互いに直交する直線偏光を照射する、光学測定装置。
[2] 第1光照射部および第2光照射部が、P波を保持部に照射する、または、第1光照射部および第2光照射部が、S波を保持部に照射する、[1]に記載の光学測定装置。
[3] 第1光照射部および第2光照射部が、P波を保持部に照射する、[2]に記載の光学測定装置。
[4] 温度調節手段を有する、[1]~[3]のいずれかに記載の光学測定装置。
[5] 第1光照射部および第2光照射部が、可視光の全波長域を含む直線偏光を保持部に照射する、[1]~[4]のいずれかに記載の光学測定装置。
[6] 第1光照射部および第2光照射部が、保持部に保持される測定対象の垂線に対して1°以上の角度で、保持部に直線偏光を照射する、[1]~[5]のいずれかに記載の光学測定装置。
[7] 分光光度計による測光結果から、第1光照射部および第2光照射部が出射した光の透過率を算出する透過率算出手段と、透過率算出手段が算出した透過率から、吸光度を算出する吸光度算出手段と、吸光度算出手段が算出した吸光度から、配向度を算出する配向度算出手段と、を有する、[1]~[6]のいずれかに記載の光学測定装置。
[8] 偏光板となる測定対象に、偏光板の透過軸方向または吸収軸方向の直線偏光である第1の測定光、および、偏光板の第1の測定光とは異なる軸方向の直線偏光である第2の測定光を入射し、測定対象を透過した第1の測定光および第2の測定光を分光して測光することを、配向を促進する配向促進処理を測定対象に施しつつ行い、
測定対象を透過した第1の測定光および第2の測定光の測光結果から、測定対象に対する第1の測定光および第2の測定光の透過率を算出し、
算出した透過率から、測定対象の吸光度を算出し、
算出した吸光度から、測定対象の配向度を算出することを特徴とする、配向度測定方法。
[9] 第1の測定光および第2の測定光として、測定対象にP波を入射する、または、第1の測定光および第2の測定光として、測定対象にS波を入射する、[8]に記載の配向度測定方法。
[10] 第1の測定光および第2の測定光として、測定対象にP波を入射する、[9]に記載の配向度測定方法。
[11] 配向促進処理として、測定対象の加熱および冷却の少なくとも一方を行う、[8]~[10]のいずれかに記載の配向度測定方法。
[12] 第1の測定光および第2の測定光が、可視光の全波長域を含む、[8]~[11]のいずれかに記載の配向度測定方法。
[13] 測定対象が、二色性物質および棒状液晶化合物を含有する塗膜を有する積層体である、[8]~[12]のいずれかに記載の配向度測定方法。
[14] 積層体から塗膜を除いた基準サンプルを用い、
測定対象と同様にして、基準サンプルを透過した第1の測定光および第2の測定光を測光し、基準サンプルの透過光の測光結果を用いて、測定対象を透過した第1の測定光および第2の測定光の測光結果から、測定対象に対する第1の測定光および第2の測定光の透過率を算出する、[13]に記載の配向度測定方法。
In order to solve this problem, the present invention has the following configurations.
[1] A holding unit that holds the measurement target and
A first light irradiation unit that irradiates the holding unit with linear polarization,
A second light irradiation unit that irradiates the holding unit with linear polarization,
The first light receiving part that receives the light emitted by the first light irradiation part across the holding part, and the first light receiving part.
A second light receiving part that receives the light emitted by the second light irradiating part across the holding part, and a second light receiving part.
A spectrophotometer that separates and measures the light received by the first light receiving unit and the second light receiving unit, and a spectrophotometer.
A temperature control means for controlling the temperature of the measurement target held in the holding portion, a stretching means for stretching the measurement target held in the holding portion, and a light irradiation means for irradiating the measurement target held in the holding portion with light. , With at least one, and
The first light irradiation unit and the second light irradiation unit are optical measuring devices that irradiate linearly polarized light whose polarization directions are orthogonal to each other on the holding surface of the measurement target in the holding unit.
[2] The first light irradiation unit and the second light irradiation unit irradiate the holding unit with the P wave, or the first light irradiation unit and the second light irradiation unit irradiate the holding unit with the S wave. 1] The optical measuring device according to the above.
[3] The optical measuring device according to [2], wherein the first light irradiation unit and the second light irradiation unit irradiate the holding unit with P waves.
[4] The optical measuring device according to any one of [1] to [3], which has a temperature controlling means.
[5] The optical measuring apparatus according to any one of [1] to [4], wherein the first light irradiation unit and the second light irradiation unit irradiate the holding unit with linearly polarized light including the entire wavelength range of visible light.
[6] The first light irradiation unit and the second light irradiation unit irradiate the holding portion with linearly polarized light at an angle of 1 ° or more with respect to the perpendicular line of the measurement target held by the holding portion. 5] The optical measuring device according to any one of.
[7] Absorbance from the transmittance calculation means for calculating the transmittance of the light emitted by the first light irradiation unit and the second light irradiation unit from the light measurement result by the spectrophotometer, and the transmittance calculated by the transmittance calculation means. The optical measuring apparatus according to any one of [1] to [6], further comprising an absorbance calculating means for calculating the degree of orientation and an orientation degree calculating means for calculating the degree of orientation from the absorbance calculated by the absorbance calculating means.
[8] The measurement target to be the polarizing plate is the first measurement light which is linearly polarized light in the transmission axis direction or the absorption axis direction of the polarizing plate, and the linear polarization in the axial direction different from the first measurement light of the polarizing plate. The second measurement light is incident, and the first measurement light and the second measurement light transmitted through the measurement target are separated and measured, while the orientation promotion treatment for promoting the orientation is applied to the measurement target. ,
From the measurement results of the first measurement light and the second measurement light transmitted through the measurement target, the transmittance of the first measurement light and the second measurement light with respect to the measurement target is calculated.
From the calculated transmittance, calculate the absorbance of the object to be measured,
A method for measuring the degree of orientation, which comprises calculating the degree of orientation of a measurement target from the calculated absorbance.
[9] A P wave is incident on the measurement target as the first measurement light and the second measurement light, or an S wave is incident on the measurement target as the first measurement light and the second measurement light. 8] The method for measuring the degree of orientation.
[10] The method for measuring the degree of orientation according to [9], wherein a P wave is incident on the measurement target as the first measurement light and the second measurement light.
[11] The method for measuring the degree of orientation according to any one of [8] to [10], wherein at least one of heating and cooling of the measurement target is performed as the orientation promotion treatment.
[12] The method for measuring orientation according to any one of [8] to [11], wherein the first measurement light and the second measurement light include the entire wavelength range of visible light.
[13] The method for measuring the degree of orientation according to any one of [8] to [12], wherein the measurement target is a laminate having a coating film containing a dichroic substance and a rod-shaped liquid crystal compound.
[14] Using a reference sample from which the coating film was removed from the laminate,
In the same manner as the measurement target, the first measurement light and the second measurement light transmitted through the reference sample are measured, and the measurement result of the transmitted light of the reference sample is used to measure the first measurement light and the first measurement light transmitted through the measurement target. The method for measuring the degree of orientation according to [13], wherein the transmittance of the first measurement light and the second measurement light with respect to the measurement target is calculated from the measurement result of the second measurement light.

本発明によれば、偏光板の製造における配向促進工程での配向度の変化を、リアルタイムに測定できる。 According to the present invention, the change in the degree of orientation in the alignment promotion step in the manufacture of the polarizing plate can be measured in real time.

本発明の光学測定装置の一例を概念的に示す図である。It is a figure which conceptually shows an example of the optical measuring apparatus of this invention. 図1に示す光学測定装置を説明するための概念図である。It is a conceptual diagram for demonstrating the optical measuring apparatus shown in FIG. 図1に示す光学測定装置を説明するための概念図である。It is a conceptual diagram for demonstrating the optical measuring apparatus shown in FIG. 本発明の光学測定装置の別の例を説明するための概念図である。It is a conceptual diagram for demonstrating another example of the optical measuring apparatus of this invention. 配向促進処理の処理時間と、温度および配向度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the processing time of the alignment promotion treatment, and the temperature and the degree of orientation.

以下、本発明の光学測定装置および配向度測定方法について、添付の図面に示される好適実施例を基に、詳細に説明する。 Hereinafter, the optical measuring apparatus and the method for measuring the degree of orientation of the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.

図1に、本発明の配向度の測定方法を実施する、本発明の光学測定装置の一例を概念的に示す。
図1に示す光学測定装置10は、保持部12に保持されたサンプルSの配向度を測定するための装置で、光照射光学系14と、受光光学系16と、第1分光光度計18aおよび第2分光光度計18bと、温度調節手段20と、温度測定手段24と、信号発生器26と、データ処理部30とを有して構成される。
FIG. 1 conceptually shows an example of the optical measuring device of the present invention that implements the method of measuring the degree of orientation of the present invention.
The optical measuring device 10 shown in FIG. 1 is a device for measuring the degree of orientation of the sample S held in the holding unit 12, and includes a light irradiation optical system 14, a light receiving optical system 16, a first spectrophotometer 18a, and a first spectrophotometer. It includes a second spectrophotometer 18b, a temperature adjusting means 20, a temperature measuring means 24, a signal generator 26, and a data processing unit 30.

本発明において、測定対象であるサンプルSは、偏光板(偏光子、偏光フィルム)の製造において、配向を促進するための配向促進工程(配向度付与工程)に供される状態のものである。サンプルSには、制限はなく、偏光板(直線偏光板)の製造において配向促進工程に供される状態の公知の物が、各種、利用可能である。一例として、透明な基材と、基材の一面に形成された配向膜と、配向膜の表面に形成された二色性物質および棒状液晶化合物を含む組成物の塗膜と、を有するサンプルSが例示される。なお、二色性物質とは、二色性色素のように二色性を発現する物質である。
配向促進工程としては、加熱および冷却等の温度調節を行う熟成による配向促進工程、延伸による配向促進工程、および、紫外線照射等の光照射による配向促進工程等が例示される。従って、サンプルSとしては、上述した二色性色素等の加熱によって配向される化合物を含有する塗膜を有するサンプルに加え、ヨウ素を含有するポリビニルアルコールフィルムのように延伸によって配向される化合物を含むプラスチックフィルム、および、光照射によって配向される光配向性の化合物を含有する塗膜を有するサンプル、等が例示される。
図示例の光学測定装置10は、一例として、サンプルSの温度調節を行うことにより、サンプルSに配向促進処理を行う装置であり、サンプルSの加熱および/または冷却を行う温度調節手段20を有する。
In the present invention, the sample S to be measured is in a state of being subjected to an orientation promoting step (alignment degree imparting step) for promoting orientation in the production of a polarizing plate (polarizer, polarizing film). The sample S is not limited, and various known substances that are subjected to the orientation promotion step in the production of the polarizing plate (straight polarizing plate) can be used. As an example, Sample S having a transparent substrate, an alignment film formed on one surface of the substrate, and a coating film of a composition containing a bicolor substance and a rod-shaped liquid crystal compound formed on the surface of the alignment film. Is exemplified. The dichroic substance is a substance that develops dichroism, such as a dichroic pigment.
Examples of the orientation promoting step include an orientation promoting step by aging that controls the temperature such as heating and cooling, an orientation promoting step by stretching, and an orientation promoting step by light irradiation such as ultraviolet irradiation. Therefore, the sample S includes, in addition to the sample having a coating film containing a compound oriented by heating such as the above-mentioned dichroic dye, a compound oriented by stretching such as a polyvinyl alcohol film containing iodine. Examples thereof include a plastic film and a sample having a coating film containing a photo-oriented compound oriented by light irradiation.
As an example, the optical measuring device 10 of the illustrated example is a device that performs orientation promotion processing on the sample S by controlling the temperature of the sample S, and has a temperature controlling means 20 that heats and / or cools the sample S. ..

保持部12は、サンプルSを保持する部位である。
保持部12によるサンプルSの保持方法には、制限はなく、公知のシート状物の保持方法が、各種利用可能である。保持部12としては、一例として、サンプルSを載置して保持する台、サンプルSの端部全周を把持する枠体、および、サンプルSの端部を部分的に把持して張力を掛けて平面状に保持する冶具等が例示される。中でも、サンプルSを載置する台は、保持部12として好適に利用される。以下の説明では、サンプルSを載置して保持する台を、便宜的に『サンプル台』とも言う。
ここで、後述するが、光学測定装置10は、サンプルSの透過光を測光して、配向度を測定する。従って、サンプルSを載置するサンプル台は、光照射光学系14が照射する直線偏光に対して、十分な透過性を有するのが好ましい。一例として、光学測定装置10は、可視光の全波長域で配向度を算出するのが好ましいので、サンプルSを載置するサンプル台としては、石英ガラス製のサンプル台が好適に例示される。
The holding portion 12 is a portion for holding the sample S.
There is no limitation on the method for holding the sample S by the holding unit 12, and various known methods for holding the sheet-like material can be used. As the holding portion 12, as an example, a table on which the sample S is placed and held, a frame body that grips the entire circumference of the end portion of the sample S, and a frame body that partially grips the end portion of the sample S and tension is applied. An example is a jig that is held flat. Above all, the table on which the sample S is placed is suitably used as the holding portion 12. In the following description, the table on which the sample S is placed and held is also referred to as a "sample table" for convenience.
Here, as will be described later, the optical measuring device 10 measures the transmitted light of the sample S to measure the degree of orientation. Therefore, it is preferable that the sample table on which the sample S is placed has sufficient transparency with respect to the linear polarization irradiated by the light irradiation optical system 14. As an example, since the optical measuring device 10 preferably calculates the degree of orientation in the entire wavelength range of visible light, a quartz glass sample table is preferably exemplified as a sample table on which the sample S is placed.

光照射光学系14は、保持部12に保持されたサンプルSに、サンプルSの表面において偏光方向が互いに直交する2つの直線偏光を照射する光学系である。
図示例において、光照射光学系14は、光源34と、第1光照射部36aおよび第2光照射部36bとを有する。
The light irradiation optical system 14 is an optical system that irradiates the sample S held by the holding portion 12 with two linear polarizations whose polarization directions are orthogonal to each other on the surface of the sample S.
In the illustrated example, the light irradiation optical system 14 has a light source 34, a first light irradiation unit 36a, and a second light irradiation unit 36b.

光源34は、サンプルSの配向度を測定するための測定光を照射する光源である。
光源34には、制限はなく、サンプルSが対応する偏光板が対象とする波長域を含む光を照射可能であれば、公知の光源が、各種、利用可能である。
すなわち、サンプルSが対応する偏光板が可視光全域を直線偏光とする用途に用いられる場合には、可視光の波長域を全て含む光を照射可能な光源が利用される。また、サンプルSが対応する偏光板が紫外線を選択的に直線偏光とする用途に用いられる場合には、対応する紫外線の波長域を全て含む光を照射可能な光源が利用される。なお、本発明において、可視光とは、380~780nmの波長域の光である。
The light source 34 is a light source that irradiates a measurement light for measuring the degree of orientation of the sample S.
The light source 34 is not limited, and various known light sources can be used as long as the sample S can irradiate light including the target wavelength range of the corresponding polarizing plate.
That is, when the polarizing plate corresponding to the sample S is used for the purpose of linearly polarizing the entire visible light range, a light source capable of irradiating light including the entire wavelength range of visible light is used. Further, when the polarizing plate corresponding to the sample S is used for the purpose of selectively converting ultraviolet rays into linear polarization, a light source capable of irradiating light including the entire wavelength range of the corresponding ultraviolet rays is used. In the present invention, the visible light is light in the wavelength range of 380 to 780 nm.

なお、本発明においては、可視光の全波長域を対象として、サンプルSの透過光を各波長に分光してサンプルSの透過光量を測光して、後述するように各波長毎に配向度を算出し、各波長毎の配向度から、サンプルSの配向度を算出するのが好ましい。
従って、光源34としては、可視光の全波長域を含む光を照射可能な光源が好適に用いられる。このような光源34としては、ハロゲンランプおよびキセノンランプ等が例示される。
In the present invention, the transmitted light of the sample S is separated into each wavelength to measure the amount of transmitted light of the sample S in the entire wavelength range of visible light, and the degree of orientation is determined for each wavelength as described later. It is preferable to calculate and calculate the degree of orientation of the sample S from the degree of orientation for each wavelength.
Therefore, as the light source 34, a light source capable of irradiating light including the entire wavelength range of visible light is preferably used. Examples of such a light source 34 include halogen lamps and xenon lamps.

光源34が照射した光は、光ファイバ38によって伝搬されて、分波器40によって等光量に二分割される。分波器40によって分波された光は、一方は光ファイバ42aによって第1光照射部36aに伝搬され、もう一方は、光ファイバ42bによって第2光照射部36bに伝搬される。
第1光照射部36aおよび第2光照射部36bは、直線偏光(測定光)をサンプルSに照射するものである。第1光照射部36aおよび第2光照射部36bは、共に、光源34が照射した光を直線偏光にする偏光板と、偏光板による直線偏光を保持部12が保持したサンプルSに照射する投光レンズ(集光レンズ)とを有する。
第1光照射部36aおよび第2光照射部36bで、用いる偏光板および投光レンズは、共に、公知のものが全て利用可能である。
The light emitted by the light source 34 is propagated by the optical fiber 38 and divided into two equal amounts by the demultiplexer 40. One of the light demultiplexed by the demultiplexer 40 is propagated to the first light irradiation unit 36a by the optical fiber 42a, and the other is propagated to the second light irradiation unit 36b by the optical fiber 42b.
The first light irradiation unit 36a and the second light irradiation unit 36b irradiate the sample S with linearly polarized light (measurement light). Both the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the polarizing plate that converts the light irradiated by the light source 34 into linear polarization and the sample S held by the holding unit 12 with the linear polarization by the polarizing plate. It has an optical lens (condensing lens).
As the polarizing plate and the projection lens used in the first light irradiation unit 36a and the second light irradiation unit 36b, all known ones can be used.

なお、図1においては、光学測定装置10の構成を明確にするために、第1光照射部36aおよび第2光照射部36bは、対面するように示している。しかしながら、実際には、第1光照射部36aおよび第2光照射部36bは、図2に概念的に示すように、出射する直線偏光(一点鎖線)がサンプルS(保持部12)の表面において直交するように、配置される。すなわち、第1光照射部36aおよび第2光照射部36bは、投光レンズの光軸が直交するように、配置される。 In FIG. 1, in order to clarify the configuration of the optical measuring device 10, the first light irradiation unit 36a and the second light irradiation unit 36b are shown facing each other. However, in reality, as shown conceptually in FIG. 2, the first light irradiation unit 36a and the second light irradiation unit 36b emit linearly polarized light (dashed line) on the surface of the sample S (holding unit 12). Arranged so as to be orthogonal. That is, the first light irradiation unit 36a and the second light irradiation unit 36b are arranged so that the optical axes of the light projecting lenses are orthogonal to each other.

第1光照射部36aおよび第2光照射部36bは、保持部12が保持したサンプルSの表面において、偏光方向が互いに直交する方向の直線偏光を照射する。従って、第1光照射部36aおよび第2光照射部36bは、サンプルSの表面において、照射する直線偏光の偏光方向が互いに直交するように、偏光板の透過軸の方向、および、光の照射方向を設定される。
なお、本発明において、保持部12が保持したサンプルSの表面とは、サンプルSを載置するサンプル台の表面、および、サンプルSの端部全周を把持する枠体が成す面などの、保持部12によるサンプルSの保持面と、同義に扱うことができる。以下の説明では、保持部12が保持したサンプルSの表面を、単に『サンプルSの表面』とも言う。
光学測定装置10においては、図2および図3に概念的に示すように、第1光照射部36aは、矢印x方向の直線偏光(第1の測定光)をサンプルSに照射する。また、第2光照射部36bは、矢印x方向と直交する矢印y方向の直線偏光(第2の測定光)をサンプルSに照射する。
The first light irradiation unit 36a and the second light irradiation unit 36b irradiate the surface of the sample S held by the holding unit 12 with linearly polarized light in a direction in which the polarization directions are orthogonal to each other. Therefore, the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the surface of the sample S with the direction of the transmission axis of the polarizing plate and the irradiation of light so that the polarization directions of the linearly polarized light to be irradiated are orthogonal to each other. The direction is set.
In the present invention, the surface of the sample S held by the holding portion 12 is the surface of the sample table on which the sample S is placed, the surface formed by the frame body that grips the entire circumference of the end portion of the sample S, and the like. It can be treated synonymously with the holding surface of the sample S by the holding portion 12. In the following description, the surface of the sample S held by the holding portion 12 is also simply referred to as “the surface of the sample S”.
In the optical measuring device 10, as conceptually shown in FIGS. 2 and 3, the first light irradiation unit 36a irradiates the sample S with linearly polarized light (first measurement light) in the arrow x direction. Further, the second light irradiation unit 36b irradiates the sample S with linearly polarized light (second measurement light) in the arrow y direction orthogonal to the arrow x direction.

これに対応して、サンプルSは、吸収軸の方向を、第1光照射部36aが照射する直線偏光の偏光方向(x方向)に一致して、保持部12に配置される。従って、サンプルSは、透過軸の方向を、第2光照射部36bが照射する直線偏光の偏光方向(y方向)と一致して配置される。あるいは、保持部12に保持されるサンプルSは、透過軸および吸収軸の方向を、上記と逆にして配置されてもよい。
一般的に、偏光板においては、配向膜における配向方向が吸収軸方向で、吸収軸と直交する方向が透過軸となる。
Correspondingly, the sample S is arranged in the holding unit 12 so that the direction of the absorption axis coincides with the polarization direction (x direction) of the linearly polarized light irradiated by the first light irradiation unit 36a. Therefore, the sample S is arranged so that the direction of the transmission axis coincides with the polarization direction (y direction) of the linearly polarized light irradiated by the second light irradiation unit 36b. Alternatively, the sample S held in the holding portion 12 may be arranged with the directions of the transmission axis and the absorption axis reversed from the above.
Generally, in a polarizing plate, the orientation direction of the alignment film is the absorption axis direction, and the direction orthogonal to the absorption axis is the transmission axis.

好ましくは、第1光照射部36aおよび第2光照射部36bは、共にP波(P偏光)をサンプルSに照射する。または、好ましくは、第1光照射部36aおよび第2光照射部36bは、共にS波(S偏光)をサンプルSに照射する。より好ましくは、図2および図3に示すように、第1光照射部36aおよび第2光照射部36bは、共にP波をサンプルSに照射する。
従って、第1光照射部36aおよび第2光照射部36bは、図2および図3に示すように、互いが照射する直線偏光が、サンプルSの表面で直交するように配置されるのが好ましい。
Preferably, both the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the sample S with a P wave (P polarization). Alternatively, preferably, both the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the sample S with an S wave (S-polarized light). More preferably, as shown in FIGS. 2 and 3, both the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the sample S with P waves.
Therefore, as shown in FIGS. 2 and 3, it is preferable that the first light irradiation unit 36a and the second light irradiation unit 36b are arranged so that the linear polarizations irradiated with each other are orthogonal to each other on the surface of the sample S. ..

本発明においては、サンプルSの表面において、第1光照射部36aおよび第2光照射部36bが出射する直線偏光の偏光方向が直交すれば、第1光照射部36aおよび第2光照射部36bの位置関係は、各種の構成が利用可能である。
例えば、第1光照射部36aおよび第2光照射部36bを直線上で対向するように配置して、図4に概念的に示されるように、互いが照射する直線偏光がサンプルSの表面で直線状となるようにしてもよい。
In the present invention, if the polarization directions of the linearly polarized light emitted by the first light irradiation unit 36a and the second light irradiation unit 36b are orthogonal to each other on the surface of the sample S, the first light irradiation unit 36a and the second light irradiation unit 36b Various configurations are available for the positional relationship of.
For example, the first light irradiation unit 36a and the second light irradiation unit 36b are arranged so as to face each other on a straight line, and as conceptually shown in FIG. 4, the linear polarization irradiated with each other is on the surface of the sample S. It may be linear.

ここで、図4に示される例では、サンプルSの表面で、第1光照射部36aおよび第2光照射部36bが出射する直線偏光の偏光方向が直交するためには、第1光照射部36aが照射するx方向の直線偏光はP波になり、第2光照射部36bが照射するy方向の直線偏光はS波になる。周知のように、P波とS波とでは、媒体に入射した際の反射率が異なり、S波の方が反射率が高い。すなわち、P波とS波とでは、媒体に入射した際の透過率は、P波の方が高い。
後述するが、本発明においては、配向促進処理をサンプルSに行いつつ、吸収軸方向および透過軸方向の直線偏光をサンプルSに入射して、サンプルSを透過した透過光を測光することで、配向度を測定する。従って、サンプルSに、P波およびS波を入射すると、2つの直線偏光の透過率が異なるために、透過軸と吸収軸との間で、評価すべき数値に根本的な差異が生じてしまう。
すなわち、第1光照射部36aと第2光照射部36bとで、照射する直線偏光の入射面と直線偏光の偏光方向(すなわち偏波面)とが成す角度が互いに異なると、測定された配向度に誤差が生じてしまい、測定結果の補正等が必要になる。
Here, in the example shown in FIG. 4, in order for the polarization directions of the linearly polarized waves emitted by the first light irradiation unit 36a and the second light irradiation unit 36b to be orthogonal to each other on the surface of the sample S, the first light irradiation unit is used. The linear polarization in the x direction irradiated by 36a becomes a P wave, and the linear polarization in the y direction irradiated by the second light irradiation unit 36b becomes an S wave. As is well known, the reflectance of the P wave and the S wave are different when they are incident on the medium, and the S wave has a higher reflectance. That is, of the P wave and the S wave, the transmittance of the P wave when it is incident on the medium is higher than that of the P wave.
As will be described later, in the present invention, the alignment promotion treatment is performed on the sample S, linear polarization in the absorption axis direction and the transmission axis direction is incident on the sample S, and the transmitted light transmitted through the sample S is photometrically measured. Measure the degree of orientation. Therefore, when the P wave and the S wave are incident on the sample S, the transmittances of the two linearly polarized waves are different, so that there is a fundamental difference in the numerical value to be evaluated between the transmission axis and the absorption axis. ..
That is, when the angle formed by the incident surface of the linearly polarized light to be irradiated and the polarization direction (that is, the polarization plane) of the linearly polarized light is different between the first light irradiation unit 36a and the second light irradiation unit 36b, the measured degree of orientation is measured. An error will occur in the light, and it will be necessary to correct the measurement results.

これに対して、本発明においては、好ましくは、図2および図3に示すように、第1光照射部36aおよび第2光照射部36bが、共にP波をサンプルSに照射し、または、共にS波をサンプルSに照射する。これにより、入射面と偏波面とが成す角度の違いに起因する、2つの直線偏光の透過率の差を無くして、配向度の測定を正確に行うことが可能になる。
より好ましくは、第1光照射部36aおよび第2光照射部36bがサンプルSに照射する直線偏光を、共にP波とすることにより、サンプルSを透過する直線偏光の透過率を高くして、より高効率な配向度の測定を行うことができる。
第1光照射部36aおよび第2光照射部36bが出射する直線偏光は、P波同士またはS波同士が最も好ましい。すなわち、本発明においては、第1光照射部36aおよび第2光照射部36bが出射する直線偏光は、入射面と偏波面とが成す角度が、0°(p波)または90°(S波)であるのが最も好ましい。しかしながら、第1光照射部36aおよび第2光照射部36bが出射する直線偏光は、入射面と偏波面とが成す角度が、好ましくは0°±5°または90°±5°の範囲、より好ましくは0°±2.5°または90°±2.5°の範囲であれば、後述するように配向度の変化の傾向を知見するのに十分な精度で配向度を測定できる。
On the other hand, in the present invention, preferably, as shown in FIGS. 2 and 3, the first light irradiation unit 36a and the second light irradiation unit 36b both irradiate the sample S with a P wave or or. Both irradiate the sample S with an S wave. This makes it possible to accurately measure the degree of orientation by eliminating the difference in transmittance between the two linearly polarized light due to the difference in the angle formed by the incident surface and the polarization surface.
More preferably, the linear polarization irradiated by the first light irradiation unit 36a and the second light irradiation unit 36b to the sample S is both P waves, so that the transmittance of the linear polarization transmitted through the sample S is increased. It is possible to measure the degree of orientation with higher efficiency.
The linear polarization emitted by the first light irradiation unit 36a and the second light irradiation unit 36b is most preferably P waves or S waves. That is, in the present invention, the linearly polarized light emitted by the first light irradiation unit 36a and the second light irradiation unit 36b has an angle formed by the incident surface and the polarization surface of 0 ° (p wave) or 90 ° (S wave). ) Is the most preferable. However, in the linear polarization emitted by the first light irradiation unit 36a and the second light irradiation unit 36b, the angle formed by the incident surface and the polarization surface is preferably in the range of 0 ° ± 5 ° or 90 ° ± 5 °. Preferably, if it is in the range of 0 ° ± 2.5 ° or 90 ° ± 2.5 °, the degree of orientation can be measured with sufficient accuracy to find out the tendency of the degree of change in the degree of orientation, as will be described later.

本発明において、第1光照射部36aが照射する直線偏光の偏光方向と、第2光照射部36bが照射する直線偏光の偏光方向とが成す角度は、サンプルS上において、直交すなわち90°から、若干、ズレていてもよい。
すなわち、第1光照射部36aが照射する直線偏光の偏光方向と、第2光照射部36bが照射する直線偏光の偏光方向とは、サンプルSの透過軸方向および/または吸収軸方向と、若干、ズレていてもよい。また、第1光照射部36aが照射する直線偏光と、第2光照射部36bが照射する直線偏光とが成す角度は、90°から、若干、ズレてもよい。
In the present invention, the angle formed by the polarization direction of the linearly polarized light irradiated by the first light irradiation unit 36a and the polarization direction of the linearly polarized light irradiated by the second light irradiation unit 36b is orthogonal, that is, from 90 ° on the sample S. , May be slightly off.
That is, the polarization direction of the linearly polarized light irradiated by the first light irradiation unit 36a and the polarization direction of the linearly polarized light irradiated by the second light irradiation unit 36b are slightly different from the transmission axis direction and / or the absorption axis direction of the sample S. , May be misaligned. Further, the angle formed by the linear polarization irradiated by the first light irradiation unit 36a and the linear polarization irradiated by the second light irradiation unit 36b may be slightly different from 90 °.

後述するが、本発明は、透過軸方向の直線偏光と吸収軸方向の直線偏光をサンプルSに入射して、透過光の測光結果からサンプルSの配向度を測定することを、サンプルSに配向促進処理を施しつつ行う。配向促進処理とは、偏光板の製造における配向促進工程と同様の処理である。図示例においては、配向促進処理として、サンプルSの加熱および/または冷却(熟成)を行う。
本発明によれば、これにより、偏光板の製造における配向促進工程での配向度の変化を検出できる。その結果、本発明を用いることで、偏光板の製造において、高い配向度すなわち高い偏光度が得られるように、配向促進工程における処理条件を決定できる。
従って、本発明においては、配向促進処理における処理時間の経過および処理条件の変化に対する、配向度の変化の傾向が知見できれば、ある程度の目的を達成できる。
以上の点を考慮すると、本発明において、第1光照射部36aと第2光照射部36bとが照射する直線偏光の偏光方向は、サンプルSの表面において、完全に直交(90°)していなくてもよい。
すなわち、本発明において、サンプルSの表面において第1光照射部36aと第2光照射部36bとが照射する直線偏光の偏光方向が直交するとは、実質的には、サンプルSの表面において、2つの直線偏光の偏光方向が成す角度が90°±10°以内であることを示す。サンプルSの表面において、2つの直線偏光の偏光方向が成す角度は90°±5°以内であるのが好ましく、90°すなわち直交が最も好ましい。
As will be described later, in the present invention, linear polarization in the transmission axis direction and linear polarization in the absorption axis direction are incident on the sample S, and the degree of orientation of the sample S is measured from the photometric result of the transmitted light. Perform while applying accelerated treatment. The alignment promotion treatment is the same treatment as the orientation promotion step in the production of the polarizing plate. In the illustrated example, the sample S is heated and / or cooled (aged) as an orientation promoting treatment.
According to the present invention, it is possible to detect a change in the degree of orientation in the alignment promotion step in the manufacture of the polarizing plate. As a result, by using the present invention, it is possible to determine the processing conditions in the alignment promotion step so that a high degree of orientation, that is, a high degree of polarization can be obtained in the production of the polarizing plate.
Therefore, in the present invention, if the tendency of the change in the degree of orientation with respect to the passage of the treatment time and the change in the treatment conditions in the orientation promotion treatment can be known, a certain degree of object can be achieved.
In consideration of the above points, in the present invention, the polarization directions of the linearly polarized light irradiated by the first light irradiation unit 36a and the second light irradiation unit 36b are completely orthogonal (90 °) on the surface of the sample S. It does not have to be.
That is, in the present invention, the fact that the polarization directions of the linearly polarized light irradiated by the first light irradiation unit 36a and the second light irradiation unit 36b are orthogonal to each other on the surface of the sample S is substantially 2 on the surface of the sample S. It is shown that the angle formed by the polarization directions of the two linearly polarized light is within 90 ° ± 10 °. On the surface of the sample S, the angle formed by the polarization directions of the two linearly polarized light is preferably within 90 ° ± 5 °, and 90 °, that is, orthogonality is most preferable.

第1光照射部36aおよび第2光照射部36bからの直線偏光の出射方向は、サンプルSを透過した2つの透過光を、個々に独立して測定できれば、制限はない。
具体的には、第1光照射部36aおよび第2光照射部36bは、サンプルSの表面の垂線(法線)に対して、1°以上の角度でサンプルSに直線偏光を照射するのが好ましい。
ここで、透過率を考慮すれば、第1光照射部36aおよび第2光照射部36bは、P波をブリュースター角で入射するのが好ましい。しかしながら、サンプルSは、例えば、基材に配向膜を形成し、配向膜に組成物の塗膜を形成したものである。このようなサンプルSに、大きな角度で光を入射すると、屈折率の異なる各層の界面で光が反射されて、測定される透過率に誤差を生じてしまう。
この点を考慮すると、第1光照射部36aおよび第2光照射部36bは、サンプルSの表面の垂線に対して15°~45°の角度でサンプルSに直線偏光を照射するのが好ましく、25°~35°の角度でサンプルSに直線偏光を照射するのがより好ましい。
The emission direction of the linearly polarized light from the first light irradiation unit 36a and the second light irradiation unit 36b is not limited as long as the two transmitted lights transmitted through the sample S can be individually and independently measured.
Specifically, the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the sample S with linearly polarized light at an angle of 1 ° or more with respect to the perpendicular line (normal line) on the surface of the sample S. preferable.
Here, in consideration of the transmittance, it is preferable that the first light irradiation unit 36a and the second light irradiation unit 36b incident the P wave at the Brewster angle. However, in the sample S, for example, an alignment film is formed on the base material, and a coating film of the composition is formed on the alignment film. When light is incident on such a sample S at a large angle, the light is reflected at the interface of each layer having a different refractive index, and an error occurs in the measured transmittance.
Considering this point, it is preferable that the first light irradiation unit 36a and the second light irradiation unit 36b irradiate the sample S with linearly polarized light at an angle of 15 ° to 45 ° with respect to the perpendicular line on the surface of the sample S. It is more preferable to irradiate the sample S with linearly polarized light at an angle of 25 ° to 35 °.

第1光照射部36aおよび第2光照射部36bが照射した直線偏光は、サンプルSおよび保持部12を透過して、受光光学系16に受光される。
受光光学系16は、第1光照射部36aが照射してサンプルSを透過した透過光を受光する第1受光部48aと、第2光照射部36bが照射してサンプルSを透過した透過光を受光する第2受光部48bとを有する。従って、第1光照射部36aと第1受光部48aとは、光軸を一致するのが好ましい。同様に、第2光照射部36bと第2受光部48bとは、光軸を一致するのが好ましい。
第1受光部48aは、受光レンズ50aと光ファイバ52aとを有する。第2受光部48bは、受光レンズ50bと光ファイバ52bとを有する。受光レンズ(集光レンズ)および光ファイバは、公知のものを用いればよい。
The linearly polarized light irradiated by the first light irradiation unit 36a and the second light irradiation unit 36b passes through the sample S and the holding unit 12 and is received by the light receiving optical system 16.
The light receiving optical system 16 includes a first light receiving unit 48a that is irradiated by the first light irradiation unit 36a and receives the transmitted light transmitted through the sample S, and a transmitted light that is irradiated by the second light irradiation unit 36b and transmitted through the sample S. It has a second light receiving unit 48b that receives light. Therefore, it is preferable that the first light irradiation unit 36a and the first light receiving unit 48a have the same optical axis. Similarly, it is preferable that the second light irradiation unit 36b and the second light receiving unit 48b have the same optical axis.
The first light receiving unit 48a has a light receiving lens 50a and an optical fiber 52a. The second light receiving unit 48b has a light receiving lens 50b and an optical fiber 52b. As the light receiving lens (condensing lens) and the optical fiber, known ones may be used.

第1受光部48aが受光した透過光は、受光レンズ50aによって集光されて、光ファイバ52aによって伝搬されて、第1分光光度計18aによって測光される。他方、第2受光部48bが受光した透過光は、受光レンズ50bによって集光されて、光ファイバ52bによって伝搬されて、第2分光光度計18bによって測光される。
第1分光光度計18aおよび第2分光光度計18bは、共に、公知の分光光度計であり、受光したサンプルSの透過光を分光して、各波長毎の強度を測光する。
なお、第1分光光度計18aおよび第2分光光度計18bが測光する波長の間隔、すなわち分光の程度には、制限はなく、公知の偏光板の配向度の測定方法と同様に、適宜、決定すればよい。第1分光光度計18aおよび第2分光光度計18bが測光する波長の間隔は、10nm間隔以下が好ましく、5nm間隔以下がより好ましい。
The transmitted light received by the first light receiving unit 48a is collected by the light receiving lens 50a, propagated by the optical fiber 52a, and measured by the first spectrophotometer 18a. On the other hand, the transmitted light received by the second light receiving unit 48b is collected by the light receiving lens 50b, propagated by the optical fiber 52b, and photometrically measured by the second spectrophotometer 18b.
Both the first spectrophotometer 18a and the second spectrophotometer 18b are known spectrophotometers, and the transmitted light of the received sample S is separated to measure the intensity of each wavelength.
The wavelength interval measured by the first spectrophotometer 18a and the second spectrophotometer 18b, that is, the degree of spectroscopy is not limited, and is appropriately determined in the same manner as the known method for measuring the orientation of the polarizing plate. do it. The wavelength interval measured by the first spectrophotometer 18a and the second spectrophotometer 18b is preferably 10 nm or less, and more preferably 5 nm or less.

第1分光光度計18aおよび第2分光光度計18bによる測光結果は、データ処理部30に供給される。
データ処理部30については、後に詳述する。
The photometric results of the first spectrophotometer 18a and the second spectrophotometer 18b are supplied to the data processing unit 30.
The data processing unit 30 will be described in detail later.

光学測定装置10は温度調節手段を有する。温度調節手段20は、保持部12に保持されたサンプルSの温度を調節するものである。
すなわち、サンプルSは、偏光板の製造における配向促進工程において、加熱および/または冷却による熟成によって配向を促進される偏光板に対応するものである。これに対応して、光学測定装置10は、偏光板の製造における配向促進工程を模したサンプルSの加熱および/または冷却を行うことによって、サンプルSの配向促進処理を行う。
The optical measuring device 10 has a temperature controlling means. The temperature adjusting means 20 adjusts the temperature of the sample S held by the holding portion 12.
That is, the sample S corresponds to a polarizing plate whose orientation is promoted by aging by heating and / or cooling in the orientation promoting step in the production of the polarizing plate. Correspondingly, the optical measuring device 10 performs the orientation promotion treatment of the sample S by heating and / or cooling the sample S which imitates the alignment promotion step in the production of the polarizing plate.

温度調節手段20によるサンプルSの温度調節方法には、制限はなく、温風供給手段、冷風供給手段、赤外線ヒータ等の各種のヒータ、ペルチェ素子による冷却手段、保持部12を含む経路で加熱媒体を循環する手段、保持部12を含む経路で冷却媒体を循環する手段等、公知のシート状物の温度調節手段が、各種、利用可能である。
また、温度調節手段20によるサンプルSの温度調節の範囲にも、制限はなく、サンプルSに応じて、適宜、設定すればよい。例えば、サンプルSが、上述したように二色性物質および棒状液晶化合物を含有する塗膜を有する場合には、温度調節の範囲としては、一例として、20~200℃の範囲が例示される。
There is no limitation on the temperature control method of the sample S by the temperature control means 20, and the heating medium is a path including a hot air supply means, a cold air supply means, various heaters such as an infrared heater, a cooling means by a Pelche element, and a holding portion 12. Various known temperature control means for sheet-like objects such as means for circulating the cooling medium and means for circulating the cooling medium through a path including the holding portion 12 can be used.
Further, the range of temperature control of the sample S by the temperature control means 20 is not limited, and may be appropriately set according to the sample S. For example, when the sample S has a coating film containing a dichroic substance and a rod-shaped liquid crystal compound as described above, the temperature control range is, for example, 20 to 200 ° C. as an example.

なお、上述したように、本発明においては、偏光板に対応するサンプルPの配向促進処理は、温度調節による熟成以外にも、延伸による配向促進処理および紫外線照射等の光照射による配向促進処理も利用可能である。
また、このような配向促進処理の複数を行ってもよい。この際には、複数の配向促進処理は、同時に行っても、順次、行ってもよい。
As described above, in the present invention, the orientation-promoting treatment of the sample P corresponding to the polarizing plate includes not only aging by temperature control but also orientation-promoting treatment by stretching and light irradiation such as ultraviolet irradiation. It is available.
Further, a plurality of such orientation promotion treatments may be performed. At this time, the plurality of orientation promotion treatments may be performed simultaneously or sequentially.

これに対応して、本発明の光学測定装置10は、偏光板の製造における延伸による配向促進工程を模して保持部12が保持したサンプルSを延伸する、延伸手段を有してもよい。また、本発明の光学測定装置10は、偏光板の製造における光照射による配向促進工程を模して保持部12が保持したサンプルSに光を照射する、光照射手段を有してもよい。
本発明の光学測定装置10は、延伸手段および光照射手段の一方のみを有するものでも。両方を有するものでもよい。また、延伸手段および/または光照射手段は、温度調節手段20に変えて設けてもよく、温度調節手段20に加えて設けてもよい。
Correspondingly, the optical measuring device 10 of the present invention may have a stretching means for stretching the sample S held by the holding portion 12 in imitation of the orientation promoting step by stretching in the production of the polarizing plate. Further, the optical measuring device 10 of the present invention may have a light irradiation means for irradiating the sample S held by the holding unit 12 with light, simulating the alignment promotion step by light irradiation in the manufacture of the polarizing plate.
The optical measuring device 10 of the present invention may have only one of the stretching means and the light irradiation means. It may have both. Further, the stretching means and / or the light irradiation means may be provided in place of the temperature controlling means 20, or may be provided in addition to the temperature controlling means 20.

延伸手段には、制限はなく、偏光板の製造において、配向促進工程で用いられる延伸手段が、各種、利用可能である。
また、光照射手段にも、制限はなく、偏光板の製造において、配向促進工程で用いられる光照射手段が、各種、利用可能である。なお、本発明の光学測定装置において、サンプルSの配向促進処理に光照射手段を用いる場合には、光照射手段が照射した光が、第1受光部48aの受光レンズ50a、および、第2受光部48bの受光レンズ50bに入射しないようにするのが好ましい。また、本発明の光学測定装置において、サンプルSの配向促進に光照射手段を用いる場合には、光照射光学系14と、配向促進処理を行う光照射手段とで、異なる波長の光を照射するようにするのも好ましい。
The stretching means is not limited, and various stretching means used in the orientation promoting step can be used in the production of the polarizing plate.
Further, the light irradiation means is not limited, and various light irradiation means used in the orientation promoting step can be used in the production of the polarizing plate. In the optical measuring apparatus of the present invention, when the light irradiating means is used for the alignment promotion processing of the sample S, the light irradiated by the light irradiating means is the light receiving lens 50a of the first light receiving unit 48a and the second light receiving. It is preferable not to enter the light receiving lens 50b of the portion 48b. Further, in the optical measuring apparatus of the present invention, when the light irradiation means is used to promote the orientation of the sample S, the light irradiation optical system 14 and the light irradiation means for performing the alignment promotion treatment irradiate light having different wavelengths. It is also preferable to do so.

温度測定手段24は、保持部12に保持されたサンプルSの温度を測定して、測定結果をデータ処理部30に供給するものである。
温度測定手段24によるサンプルSの温度測定方法には、制限はなく、熱電対および放射温度計等の公知の温度測定方法が、各種、利用可能である。
なお、本発明では、サンプルSを載置するサンプル台などの保持部12の温度を測定して、保持部12の温度をサンプルSの温度としてもよい。
The temperature measuring means 24 measures the temperature of the sample S held in the holding unit 12 and supplies the measurement result to the data processing unit 30.
There is no limitation on the temperature measuring method of the sample S by the temperature measuring means 24, and various known temperature measuring methods such as a thermocouple and a radiation thermometer can be used.
In the present invention, the temperature of the holding portion 12 such as the sample table on which the sample S is placed may be measured, and the temperature of the holding portion 12 may be used as the temperature of the sample S.

信号発生器26は、第1分光光度計18aおよび第2分光光度計28b、ならびに、温度測定手段24に、計測を行うことを指示する、サンプリング信号を送るものである。サンプリング信号には、制限はないが、例えば、パルス信号が例示される。
信号発生器26は、第1分光光度計18a、第2分光光度計28bおよび温度測定手段24に、同じタイミングでサンプリング信号を出力する。第1分光光度計18aおよび第2分光光度計28bは、信号発生器26からサンプリング信号を受けた時点で、受光した透過光の測光を行い、温度測定手段24は、信号発生器26からサンプリング信号を受けた時点で、サンプルSの温度測定を行う。
上述したように、第1分光光度計18aおよび第2分光光度計28bは、透過光の測光結果を、温度測定手段24はサンプルSの温度測定結果を、共に、データ処理部30に供給する。
The signal generator 26 sends a sampling signal instructing the first spectrophotometer 18a, the second spectrophotometer 28b, and the temperature measuring means 24 to perform the measurement. The sampling signal is not limited, but a pulse signal is exemplified.
The signal generator 26 outputs a sampling signal to the first spectrophotometer 18a, the second spectrophotometer 28b, and the temperature measuring means 24 at the same timing. The first spectrophotometer 18a and the second spectrophotometer 28b measure the transmitted light received when the sampled signal is received from the signal generator 26, and the temperature measuring means 24 measures the sampled signal from the signal generator 26. At the time of receiving, the temperature of the sample S is measured.
As described above, the first spectrophotometer 18a and the second spectrophotometer 28b supply the measurement result of the transmitted light, and the temperature measuring means 24 supplies the temperature measurement result of the sample S to the data processing unit 30.

本発明の光学測定装置10において、データ処理部30は、好ましい態様として設けられるものである。
データ処理部30は、第1分光光度計18aおよび第2分光光度計28bが測光したサンプルSの透過光の各波長毎の測光結果から、第1光照射部36aおよび第2光照射部36bが照射した直線偏光のサンプルSの透過率を、各波長毎に算出する。次いで、データ処理部30は、算出した透過率から、第1光照射部36aおよび第2光照射部36bが照射した直線偏光のサンプルSによる吸光度を、各波長毎に算出する。次いで、データ処理部30は、算出した吸光度から、サンプルSの配向度を、各波長毎に算出する。さらに、データ処理部30は、算出したサンプルSの各波長毎の配向度から、サンプルSの配向度を算出する。
さらに、データ処理部30は、サンプルSの配向度を算出したら、配向促進処理の処理時間と、算出したサンプルSの配向度と、温度測定手段24から供給された温度測定結果とを対応付けして、出力する。
以上の点については、後に詳述する。
In the optical measuring device 10 of the present invention, the data processing unit 30 is provided as a preferred embodiment.
In the data processing unit 30, the first light irradiation unit 36a and the second light irradiation unit 36b are based on the measurement results of the transmitted light of the sample S measured by the first spectrophotometer 18a and the second spectrophotometer 28b for each wavelength. The transmittance of the irradiated linearly polarized sample S is calculated for each wavelength. Next, the data processing unit 30 calculates the absorbance of the linearly polarized light sample S irradiated by the first light irradiation unit 36a and the second light irradiation unit 36b for each wavelength from the calculated transmittance. Next, the data processing unit 30 calculates the degree of orientation of the sample S for each wavelength from the calculated absorbance. Further, the data processing unit 30 calculates the degree of orientation of the sample S from the calculated degree of orientation of the sample S for each wavelength.
Further, when the data processing unit 30 calculates the degree of orientation of the sample S, the data processing unit 30 associates the processing time of the orientation promotion process with the calculated degree of orientation of the sample S and the temperature measurement result supplied from the temperature measuring means 24. And output.
The above points will be described in detail later.

このようなデータ処理部30は、例えば、パーソナルコンピュータ、ノート型コンピュータおよびタブレットコンピュータ等を利用して構成すればよい。
また、透過率の算出、または、透過率の算出および吸光度の算出は、データ処理部30ではなく、第1分光光度計18aおよび第2分光光度計28bで行ってもよい。
Such a data processing unit 30 may be configured by using, for example, a personal computer, a notebook computer, a tablet computer, or the like.
Further, the transmittance, the transmittance, and the absorbance may be calculated by the first spectrophotometer 18a and the second spectrophotometer 28b instead of the data processing unit 30.

以下、光学測定装置10の作用を説明することにより、本発明の光学測定装置および配向度測定方法について、より詳細に説明する。 Hereinafter, the optical measuring device and the orientation measuring method of the present invention will be described in more detail by explaining the operation of the optical measuring device 10.

まず、サンプルSを保持部12に保持させる。保持部12は、一例として、サンプルSを載置して保持するサンプル台とする。
本例においては、一例として、サンプルSは、基材の表面に配向膜を有し、配向膜の表面に、二色性物質と棒状液晶化合物とを含有する組成物を塗布して乾燥した塗膜を形成したものとする。
サンプルSは、一例として、吸収軸の方向を、第1光照射部36aが照射する直線偏光の偏光方向(矢印x方向)に一致し、透過軸の方向を、第2光照射部36bが照射する直線偏光の偏光方向(矢印y方向)に一致してサンプル台に載置される。
また、本例では、サンプルSは、可視光全域を直線偏光にする偏光板に対応するものであり、可視光全域に対応して、サンプルSの配向度を測定する。
First, the sample S is held by the holding portion 12. As an example, the holding unit 12 is a sample table on which the sample S is placed and held.
In this example, as an example, the sample S has an alignment film on the surface of the base material, and a composition containing a bicolor substance and a rod-shaped liquid crystal compound is applied to the surface of the alignment film and dried. It is assumed that a film is formed.
In the sample S, as an example, the direction of the absorption axis coincides with the polarization direction (arrow x direction) of the linearly polarized light irradiated by the first light irradiation unit 36a, and the direction of the transmission axis is irradiated by the second light irradiation unit 36b. It is placed on the sample table in accordance with the polarization direction (arrow y direction) of the linearly polarized light.
Further, in this example, the sample S corresponds to a polarizing plate that linearly polarizes the entire visible light range, and measures the degree of orientation of the sample S corresponding to the entire visible light range.

サンプル台にサンプルSを載置したら、光源34すなわち第1光照射部36aおよび第2光照射部36bを駆動する。これにより、第1光照射部36aが照射したサンプルSの吸収軸方向の直線偏光(第1の測定光)、および、第2光照射部が照射したサンプルSの透過軸方向の直線偏光(第2の測定光)が、サンプルSに入射する。
第1光照射部36aが照射したサンプルSの吸収軸方向の直線偏光は、サンプルSおよびサンプル台を透過して、第1受光部48aの受光レンズ50aに入射し、光ファイバ52aを伝搬して、第1分光光度計18aに入射する。
他方、第2光照射部36bが照射したサンプルSの吸収軸方向の直線偏光は、サンプルSおよびサンプル台を透過して、第2受光部48bの受光レンズ50bに入射し、光ファイバ52bを伝搬して、第2分光光度計18bに入射する。
After the sample S is placed on the sample table, the light source 34, that is, the first light irradiation unit 36a and the second light irradiation unit 36b are driven. As a result, the linear polarization of the sample S irradiated by the first light irradiation unit 36a in the absorption axis direction (first measurement light) and the linear polarization of the sample S irradiated by the second light irradiation unit in the transmission axis direction (first). The measurement light of 2) is incident on the sample S.
The linear polarization of the sample S irradiated by the first light irradiation unit 36a in the absorption axis direction passes through the sample S and the sample table, enters the light receiving lens 50a of the first light receiving unit 48a, and propagates through the optical fiber 52a. , Is incident on the first spectrophotometer 18a.
On the other hand, the linear polarization in the absorption axis direction of the sample S irradiated by the second light irradiation unit 36b passes through the sample S and the sample table, enters the light receiving lens 50b of the second light receiving unit 48b, and propagates through the optical fiber 52b. Then, it is incident on the second spectrophotometer 18b.

第1光照射部36aおよび第2光照射部36bを駆動したら、次いで、温度調節手段20を駆動して、サンプルSを加熱および/または冷却して配向を促進する、配向促進処理を開始する。
サンプルSの温度調節には制限はなく、実際の偏光板の製造における、配向促進工程(熟成工程)での加熱および/または冷却を模した、各種の態様が利用可能である。従って、サンプルSの温度調節は、加熱(昇温)のみでもよく、加熱後に冷却(降温)してもよく、加熱および冷却後に、再度、加熱するものでもよく、加熱と冷却とを、複数回、繰り返すものでもよい。
配向促進処理を開始したら、信号発生器26が、パルス信号等のサンプリング信号を、第1分光光度計18a、第2分光光度計18bおよび温度測定手段24に、同時に出力する。また、データ処理部30は、配向促進処理を開始からの経過時間を計測する。
サンプリング信号を受けた第1分光光度計18aは、第1光照射部36aが出射して、サンプルSおよびサンプル台を透過した、吸収軸方向の直線偏光の透過光を、可視光全域で各波長毎に分光して測光し、測光結果をデータ処理部30に供給する。
また、サンプリング信号を受けた第2分光光度計18bは、第2光照射部36bが出射して、サンプルSおよびサンプル台を透過した、透過軸方向の直線偏光の透過光を、可視光全域で各波長毎に分光して測光し、測光結果をデータ処理部30に供給する。
さらに、サンプリング信号を受けた温度測定手段24は、その時点におけるサンプルSの温度を測定して、温度測定結果をデータ処理部30に供給する。
After driving the first light irradiation unit 36a and the second light irradiation unit 36b, the temperature control means 20 is then driven to start an orientation promotion process in which the sample S is heated and / or cooled to promote orientation.
There is no limitation on the temperature control of the sample S, and various embodiments simulating heating and / or cooling in the orientation promoting step (aging step) in the actual production of the polarizing plate can be used. Therefore, the temperature of the sample S may be adjusted only by heating (heating), cooling (lowering) after heating, or heating again after heating and cooling, and heating and cooling may be performed a plurality of times. , May be repeated.
After starting the orientation promotion process, the signal generator 26 simultaneously outputs a sampling signal such as a pulse signal to the first spectrophotometer 18a, the second spectrophotometer 18b, and the temperature measuring means 24. Further, the data processing unit 30 measures the elapsed time from the start of the orientation promotion process.
The first spectrophotometer 18a that received the sampling signal emits the first light irradiation unit 36a and transmits the transmitted light of linearly polarized light in the absorption axis direction transmitted through the sample S and the sample table at each wavelength in the entire visible light range. The light is measured by splitting each time, and the light measurement result is supplied to the data processing unit 30.
Further, in the second spectrophotometer 18b that received the sampling signal, the second spectrophotometer 36b emits the transmitted light of linearly polarized light in the transmission axis direction transmitted through the sample S and the sample table over the entire visible light. The light is separated and measured for each wavelength, and the light measurement result is supplied to the data processing unit 30.
Further, the temperature measuring means 24 that has received the sampling signal measures the temperature of the sample S at that time and supplies the temperature measurement result to the data processing unit 30.

データ処理部30は、第1分光光度計18aから供給された透過光の測光結果から、各波長毎に、サンプルSを透過した吸収軸方向の直線偏光の透過率を算出する。
また、データ処理部30は、第2分光光度計18bから供給された透過光の測光結果から、各波長毎に、サンプルSを透過した透過軸方向の直線偏光の透過率を算出する。
透過率の算出は、公知の方法で行えばよい。例えば、入射光量I0および透過光量Iを用いて『透過率T=I/I0』で算出すればよい。
The data processing unit 30 calculates the transmittance of the linearly polarized light transmitted through the sample S in the absorption axis direction for each wavelength from the photometric result of the transmitted light supplied from the first spectrophotometer 18a.
Further, the data processing unit 30 calculates the transmittance of the linearly polarized light transmitted through the sample S in the transmission axis direction for each wavelength from the photometric result of the transmitted light supplied from the second spectrophotometer 18b.
The transmittance may be calculated by a known method. For example, it may be calculated by "transmittance T = I / I 0 " using the incident light amount I 0 and the transmitted light amount I.

ここで、前述のように、サンプルSは、基材の表面に配向膜を有し、配向膜の表面に、二色性物質と棒状液晶化合物とを含有する組成物を塗布して乾燥した塗膜を形成したものである。
そのため、予め、塗膜を有さない、基材および配向膜のみの基準サンプルを作製して、基準サンプルの透過光を第1分光光度計18aおよび第2分光光度計18bで測光しておき、データ処理部30は、この基準サンプルの測光結果を用いて、透過率を算出するのが好ましい。
一例として、上述の透過率の算出において、入射光量I0として、基準サンプルの測光結果を用いる方法が例示される。別の方法として、基準サンプルの測光結果を透過率100%として、基準サンプルの測光結果とサンプルSの測光結果との比から、透過率を算出する方法も利用可能である。
Here, as described above, the sample S has an alignment film on the surface of the base material, and a composition containing a bicolor substance and a rod-shaped liquid crystal compound is applied to the surface of the alignment film and dried. It formed a film.
Therefore, a reference sample having no coating film and only the base material and the alignment film is prepared in advance, and the transmitted light of the reference sample is measured by the first spectrophotometer 18a and the second spectrophotometer 18b. The data processing unit 30 preferably calculates the transmittance using the photometric result of this reference sample.
As an example, in the above-mentioned calculation of the transmittance, a method of using the photometric result of the reference sample as the incident light amount I 0 is exemplified. As another method, a method of calculating the transmittance from the ratio between the photometric result of the reference sample and the photometric result of the sample S can be used, assuming that the photometric result of the reference sample is 100%.

データ処理部30は、可視光全域において、各波長毎に、吸収軸方向の直線偏光の透過率、および、透過軸方向の直線偏光の透過率を算出したら、次いで、各波長毎に、吸収軸と透過軸の吸光度を算出する。
吸光度Aの算出は、透過率を先と同様にTとして、『吸光度A=-log10T』で算出すればよい。
After the data processing unit 30 calculates the transmittance of the linear polarization in the absorption axis direction and the transmittance of the linear polarization in the transmission axis direction for each wavelength in the entire visible light range, the data processing unit 30 then calculates the transmittance of the linear polarization in the transmission axis direction, and then the absorption axis for each wavelength. And the absorbance of the transmission axis is calculated.
The absorbance A may be calculated by "absorbance A = -log 10 T", where T is the same as above.

データ処理部30は、可視光全域の各波長毎に、吸収軸と透過軸の吸光度を算出したら、下記式によって、各波長毎の配向度Sを算出する。
配向度S=(Aa-At)/(2At+Aa
上記の式において、『At』は透過軸の吸光度、『Aa』は吸収軸の吸光度である。
After calculating the absorbance of the absorption axis and the transmission axis for each wavelength in the entire visible light range, the data processing unit 30 calculates the degree of orientation S for each wavelength by the following formula.
Degree of orientation S = (A a -A t ) / (2A t + A a )
In the above formula, "A t " is the absorbance of the transmission axis, and "A a " is the absorbance of the absorption axis.

このようにして、可視光全域の各波長毎の配向度を算出したら、各波長毎の配向度を用いて、サンプルSの配向度を算出する。
各波長毎の配向度を用いたサンプルSの配向度の算出は、各波長毎に算出した配向度Sに、視感度補正と呼ばれる感度補正をかけることによって、視感度補正配向度として算出すればよい。
After calculating the degree of orientation for each wavelength in the entire visible light in this way, the degree of orientation for the sample S is calculated using the degree of orientation for each wavelength.
The degree of orientation of the sample S using the degree of orientation for each wavelength can be calculated as the degree of visibility correction by applying a sensitivity correction called the degree of visibility correction to the degree of orientation S calculated for each wavelength. good.

データ処理部30は、サンプルSの配向促進処理が終了したら、算出したサンプルSの配向度と、サンプルSの温度測定結果と、配向促進処理の時間経過とを対応付けして、出力する。
一例として、データ処理部30は、例えば、図5に示すような、配向促進処理の処理時間を横軸にして、処理時間(秒[s])と、サンプルSの温度および配向度(視感度補正配向度)との関係を示すグラフを作成して、出力する。
このグラフから、配向促進処理における、処理時間と、サンプルPの温度変化と、配向度の変化との関係を把握できる。従って、本発明によれば、偏光板の製造での配向促進工程における配向度の変化を適正に把握して、高い配向度すなわち高い偏光度を得られる配向促進工程の処理条件を設定することが可能になる。
When the alignment promotion process of the sample S is completed, the data processing unit 30 outputs the calculated degree of orientation of the sample S, the temperature measurement result of the sample S, and the time lapse of the alignment promotion process in association with each other.
As an example, the data processing unit 30 has, for example, the processing time (seconds [s]) and the temperature and orientation degree (visual sensitivity) of the sample S with the processing time of the orientation promotion processing as the horizontal axis as shown in FIG. Create a graph showing the relationship with the corrected orientation) and output it.
From this graph, the relationship between the treatment time, the temperature change of the sample P, and the change in the degree of orientation in the orientation promotion treatment can be grasped. Therefore, according to the present invention, it is possible to properly grasp the change in the degree of orientation in the alignment promotion step in the manufacture of the polarizing plate, and set the processing conditions for the alignment promotion step in which a high degree of orientation, that is, a high degree of polarization can be obtained. It will be possible.

上述したように、偏光板において、配向度の算出には、透過軸の吸光度および吸収軸の吸光度が必要である。そのためには、透過軸方向の直線偏光の透過率と、吸収軸方向の直線偏光の透過率が必要である。
しかも、図5に示すように、配向促進処理(配向促進工程)において、配向度は、時間と共に、刻々と変化する。
従って、配向促進処理を行いつつ、正確に配向度を測定するためには、透過軸方向の直線偏光の透過率と、吸収軸方向の直線偏光の透過率とを、同時に測定する必要がある。
As described above, in the polarizing plate, the absorbance on the transmission axis and the absorbance on the absorption axis are required to calculate the degree of orientation. For that purpose, the transmittance of linearly polarized light in the transmission axis direction and the transmittance of linearly polarized light in the absorption axis direction are required.
Moreover, as shown in FIG. 5, in the orientation promotion treatment (alignment promotion step), the degree of orientation changes from moment to moment with time.
Therefore, in order to accurately measure the degree of orientation while performing the orientation promotion treatment, it is necessary to simultaneously measure the transmittance of the linearly polarized light in the transmission axis direction and the transmittance of the linearly polarized light in the absorption axis direction.

従来の偏光板における配向度の測定では、配向促進処理を行いつつ、透過軸方向の直線偏光の透過率と、吸収軸方向の直線偏光の透過率とを、同時に測定できない。 In the measurement of the degree of orientation in the conventional polarizing plate, the transmittance of the linearly polarized light in the transmission axis direction and the transmittance of the linearly polarized light in the absorption axis direction cannot be measured at the same time while performing the orientation promotion treatment.

これに対して、本発明では、サンプルSに、サンプルSの表面において互いに偏光方向が直交する2つの直線偏光を入射し、サンプルSを透過した2つの直線偏光の透過光を測光することを、サンプルSに配向促進工程を模した配向促進処理を施しつつ行う。
そのため、本発明によれば、配向促進処理を行いつつ、透過軸方向の直線偏光の透過率と、吸収軸方向の直線偏光の透過率とを、同時に、かつ、リアルタイムで測定することができる。そのため、本発明によれば、図5に示すように、配向促進処理における、処理時間の経過および処理条件の変化と、配向度の変化との関係を適正に把握できる。
特に、上述したように、サンプルSに入射する2つ直線偏光を、S偏光同士またはP偏光同士とすることにより、偏波に起因する2つの直掩偏光の透過率(反射率)を均一にできるので、より正確な配向度の測定を行うことが可能になる。
On the other hand, in the present invention, two linearly polarized lights whose polarization directions are orthogonal to each other are incident on the sample S on the surface of the sample S, and the transmitted light of the two linearly polarized light transmitted through the sample S is measured. The sample S is subjected to an orientation promotion treatment that imitates the orientation promotion step.
Therefore, according to the present invention, the transmittance of the linearly polarized light in the transmission axis direction and the transmittance of the linearly polarized light in the absorption axis direction can be measured simultaneously and in real time while performing the orientation promotion treatment. Therefore, according to the present invention, as shown in FIG. 5, the relationship between the passage of the treatment time and the change in the treatment conditions and the change in the degree of orientation in the orientation promotion treatment can be appropriately grasped.
In particular, as described above, by making the two linear polarizations incident on the sample S between the S polarizations or the P polarizations, the transmittance (reflectance) of the two direct polarizations caused by the polarization is made uniform. Therefore, it becomes possible to measure the degree of orientation more accurately.

以上、本発明の光学測定装置および配向度測定方法について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんのことである。 Although the optical measuring device and the orientation measuring method of the present invention have been described in detail above, the present invention is not limited to the above-mentioned examples, and various improvements and changes are made without departing from the gist of the present invention. Of course, you may.

偏光板の製造における配向促進工程の条件設定等に、好適に用いられる。 It is suitably used for setting conditions for an orientation promotion step in the manufacture of a polarizing plate.

10 光学測定装置
12 保持部
14 光照射光学系
16 受光光学系
18a 第1分光光度計
18b 第2分光光度計
20 温度調節手段
24 温度測定手段
26 信号発生器
30 データ処理部
34 光源
36a 第1光照射部
36b 第2光照射部
38,42a,42b,52a,52b 光ファイバ
40 分波器
48a 第1受光部
48b 第2受光部
50a,50b 受光レンズ
10 Optical measuring device 12 Holding unit 14 Light irradiation optical system 16 Light receiving optical system 18a First spectrophotometer 18b Second spectrophotometer 20 Temperature control means 24 Temperature measuring means 26 Signal generator 30 Data processing unit 34 Light source 36a First light Irradiation part 36b Second light irradiation part 38, 42a, 42b, 52a, 52b Optical fiber 40 demultiplexer 48a First light receiving part 48b Second light receiving part 50a, 50b Light receiving lens

Claims (12)

測定対象を保持する保持部と、
前記保持部に、直線偏光を照射する第1光照射部と、
前記保持部に、直線偏光を照射する第2光照射部と、
前記保持部を挟んで、前記第1光照射部が照射した光を受光する第1受光部と、
前記保持部を挟んで、前記第2光照射部が照射した光を受光する第2受光部と、
前記第1受光部および第2受光部が受光した光を分光して測光する分光光度計と、
前記保持部に保持された測定対象の温度調節を行う温度調節手段、前記保持部に保持された測定対象を延伸する延伸手段、および、前記保持部に保持された測定対象に光を照射する光照射手段の、少なくとも1つと、を有し、かつ、
前記第1光照射部および前記第2光照射部は、前記保持部における前記測定対象の保持面において、偏光方向が互いに直交するように、P波を前記保持部に照射し、または、S波を前記保持部に照射するものであり、
さらに、前記第1光照射部および前記第2光照射部は、出射するP波またはS波が、前記保持部の保持面において直交するように配置される、光学測定装置。
A holding unit that holds the measurement target and
A first light irradiation unit that irradiates the holding unit with linearly polarized light,
A second light irradiation unit that irradiates the holding unit with linearly polarized light,
A first light receiving unit that receives the light emitted by the first light irradiation unit and a first light receiving unit that sandwiches the holding unit.
A second light receiving unit that receives the light emitted by the second light irradiation unit and a second light receiving unit that sandwiches the holding unit.
A spectrophotometer that separates and measures the light received by the first light receiving unit and the second light receiving unit, and a spectrophotometer.
A temperature control means for controlling the temperature of the measurement target held in the holding portion, a stretching means for stretching the measurement target held in the holding portion, and light for irradiating the measurement target held in the holding portion with light. It has at least one of the irradiation means and
The first light irradiation unit and the second light irradiation unit irradiate the holding unit with P waves or S waves so that the polarization directions are orthogonal to each other on the holding surface of the measurement target in the holding unit. Is to irradiate the holding portion.
Further, the first light irradiation unit and the second light irradiation unit are optical measuring devices in which emitted P waves or S waves are arranged so as to be orthogonal to each other on the holding surface of the holding unit.
前記第1光照射部および前記第2光照射部が、P波を前記保持部に照射する、請求項に記載の光学測定装置。 The optical measuring device according to claim 1 , wherein the first light irradiation unit and the second light irradiation unit irradiate the holding unit with P waves. 前記温度調節手段を有する、請求項1または2に記載の光学測定装置。 The optical measuring device according to claim 1 or 2 , which has the temperature controlling means. 前記第1光照射部および前記第2光照射部が、可視光の全波長域を含む直線偏光を前記保持部に照射する、請求項1~のいずれか1項に記載の光学測定装置。 The optical measuring apparatus according to any one of claims 1 to 3 , wherein the first light irradiation unit and the second light irradiation unit irradiate the holding unit with linearly polarized light including the entire wavelength range of visible light. 前記第1光照射部および前記第2光照射部が、前記保持部に保持される前記測定対象の垂線に対して1°以上の角度で、前記保持部に直線偏光を照射する、請求項1~のいずれか1項に記載の光学測定装置。 The first light irradiation unit and the second light irradiation unit irradiate the holding portion with linearly polarized light at an angle of 1 ° or more with respect to the perpendicular line of the measurement target held by the holding portion. The optical measuring device according to any one of 4 to 4 . 前記分光光度計による測光結果から、前記第1光照射部および前記第2光照射部が出射した光の透過率を算出する透過率算出手段と、
前記透過率算出手段が算出した透過率から、吸光度を算出する吸光度算出手段と、
前記吸光度算出手段が算出した吸光度から、配向度を算出する配向度算出手段と、を有する、請求項1~のいずれか1項に記載の光学測定装置。
A transmittance calculation means for calculating the transmittance of light emitted by the first light irradiation unit and the second light irradiation unit from the photometric results of the spectrophotometer.
An absorbance calculating means for calculating the absorbance from the transmittance calculated by the transmittance calculating means, and an absorbance calculating means.
The optical measuring apparatus according to any one of claims 1 to 5 , further comprising an orientation degree calculation means for calculating an orientation degree from the absorbance calculated by the absorbance calculation means.
偏光板となる測定対象に、前記偏光板の透過軸方向または吸収軸方向に偏光するS波またはP波である第1の測定光、および、前記偏光板の前記第1の測定光とは異なる軸方向の直線偏光であり、かつ、入射面に対する偏光方向が前記第1の測定光と等しい第2の測定光を、前記偏光板の表面において直交するように入射し、前記測定対象を透過した前記第1の測定光および前記第2の測定光を分光して測光することを、配向を促進する配向促進処理を前記測定対象に施しつつ行い、
前記測定対象を透過した前記第1の測定光および前記第2の測定光の測光結果から、前記測定対象に対する前記第1の測定光および前記第2の測定光の透過率を算出し、
前記算出した透過率から、前記測定対象の吸光度を算出し、
前記算出した吸光度から、前記測定対象の配向度を算出することを特徴とする、配向度測定方法。
The measurement target to be the polarizing plate is different from the first measurement light which is an S wave or P wave polarized in the transmission axis direction or the absorption axis direction of the polarizing plate and the first measurement light of the polarizing plate. A second measurement light, which is linearly polarized in the axial direction and whose polarization direction with respect to the incident surface is equal to that of the first measurement light, is incident on the surface of the polarizing plate so as to be orthogonal to the surface of the polarizing plate and is transmitted through the measurement target. The first measurement light and the second measurement light were separated and measured by subjecting the measurement target to an orientation promotion treatment for promoting orientation.
From the measurement results of the first measurement light and the second measurement light transmitted through the measurement target, the transmittance of the first measurement light and the second measurement light with respect to the measurement target is calculated.
From the calculated transmittance, the absorbance of the measurement target is calculated.
A method for measuring the degree of orientation, which comprises calculating the degree of orientation of the object to be measured from the calculated absorbance.
前記第1の測定光および前記第2の測定光として、前記測定対象にP波を入射する、請求項に記載の配向度測定方法。 The method for measuring the degree of orientation according to claim 7 , wherein a P wave is incident on the measurement target as the first measurement light and the second measurement light. 前記配向促進処理として、前記測定対象の加熱および冷却の少なくとも一方を行う、請求項7または8に記載の配向度測定方法。 The method for measuring the degree of orientation according to claim 7 or 8 , wherein at least one of heating and cooling of the measurement target is performed as the alignment promotion treatment. 前記第1の測定光および前記第2の測定光が、可視光の全波長域を含む、請求項7~9のいずれか1項に記載の配向度測定方法。 The method for measuring orientation according to any one of claims 7 to 9 , wherein the first measurement light and the second measurement light include the entire wavelength range of visible light. 前記測定対象が、二色性物質および棒状液晶化合物を含有する塗膜を有する積層体である、請求項7~10のいずれか1項に記載の配向度測定方法。 The method for measuring the degree of orientation according to any one of claims 7 to 10 , wherein the measurement target is a laminate having a coating film containing a dichroic substance and a rod-shaped liquid crystal compound. 前記積層体から前記塗膜を除いた基準サンプルを用い、
前記測定対象と同様にして、前記基準サンプルを透過した前記第1の測定光および前記第2の測定光を測光し、
前記基準サンプルの透過光の測光結果を用いて、前記測定対象を透過した前記第1の測定光および前記第2の測定光の測光結果から、前記測定対象に対する前記第1の測定光および前記第2の測定光の透過率を算出する、請求項11に記載の配向度測定方法。
Using a reference sample obtained by removing the coating film from the laminate,
In the same manner as the measurement target, the first measurement light and the second measurement light transmitted through the reference sample are measured.
Using the measurement result of the transmitted light of the reference sample, the first measurement light and the first measurement light with respect to the measurement target are obtained from the measurement results of the first measurement light and the second measurement light transmitted through the measurement target. The method for measuring the degree of orientation according to claim 11 , which calculates the transmission rate of the measurement light of 2.
JP2018186510A 2018-10-01 2018-10-01 Optical measuring device and orientation measuring method Active JP7077199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018186510A JP7077199B2 (en) 2018-10-01 2018-10-01 Optical measuring device and orientation measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018186510A JP7077199B2 (en) 2018-10-01 2018-10-01 Optical measuring device and orientation measuring method

Publications (2)

Publication Number Publication Date
JP2020056648A JP2020056648A (en) 2020-04-09
JP7077199B2 true JP7077199B2 (en) 2022-05-30

Family

ID=70107046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018186510A Active JP7077199B2 (en) 2018-10-01 2018-10-01 Optical measuring device and orientation measuring method

Country Status (1)

Country Link
JP (1) JP7077199B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111472A (en) 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
US20060215159A1 (en) 2003-11-26 2006-09-28 Smith Matthew H Method and apparatus for determining liquid crystal cell parameters from full Mueller matrix measurements
JP2008151559A (en) 2006-12-15 2008-07-03 Yokogawa Electric Corp Infrared thickness/orientation meter, and infrared thickness/orientation measuring method
US20090227782A1 (en) 2005-06-08 2009-09-10 Fujifilm Corporation Method for producing cellulose acylate film, and cellulose acylate film using the same, and optical compensation film for liquid crystal display plate
JP2010033050A (en) 2008-06-30 2010-02-12 Fujifilm Corp Polarizing plate, and liquid crystal display using the same
US20120314159A1 (en) 2011-06-09 2012-12-13 Hayashi Engineering Inc. Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JP2014211426A (en) 2013-04-02 2014-11-13 リソテック ジャパン株式会社 Measuring method of light transmittance
JP2016017907A (en) 2014-07-10 2016-02-01 ポリプラスチックス株式会社 Method of evaluating molecular orientation of resin molding
WO2018043438A1 (en) 2016-08-29 2018-03-08 学校法人慶應義塾 Optical measurement device, optical measurement method, and stress inspection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887445A (en) * 1981-11-20 1983-05-25 Unitika Ltd Measuring method for degree of multirefraction of clear film and device thereof
JPH04216922A (en) * 1990-12-18 1992-08-07 Mitsubishi Heavy Ind Ltd Orientation-degree in-line measuring device for film-sheet
SE500323C2 (en) * 1992-11-17 1994-06-06 Dyno Industrier As Low-energy tube and means for its production
JP3945790B2 (en) * 1997-12-25 2007-07-18 林テレンプ株式会社 Birefringent film and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111472A (en) 1998-09-30 2000-04-21 Mitsui Chemicals Inc Device for measuring birefringence and device for measuring orientation of film
US20060215159A1 (en) 2003-11-26 2006-09-28 Smith Matthew H Method and apparatus for determining liquid crystal cell parameters from full Mueller matrix measurements
US20090227782A1 (en) 2005-06-08 2009-09-10 Fujifilm Corporation Method for producing cellulose acylate film, and cellulose acylate film using the same, and optical compensation film for liquid crystal display plate
JP2008151559A (en) 2006-12-15 2008-07-03 Yokogawa Electric Corp Infrared thickness/orientation meter, and infrared thickness/orientation measuring method
JP2010033050A (en) 2008-06-30 2010-02-12 Fujifilm Corp Polarizing plate, and liquid crystal display using the same
US20120314159A1 (en) 2011-06-09 2012-12-13 Hayashi Engineering Inc. Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JP2014211426A (en) 2013-04-02 2014-11-13 リソテック ジャパン株式会社 Measuring method of light transmittance
JP2016017907A (en) 2014-07-10 2016-02-01 ポリプラスチックス株式会社 Method of evaluating molecular orientation of resin molding
WO2018043438A1 (en) 2016-08-29 2018-03-08 学校法人慶應義塾 Optical measurement device, optical measurement method, and stress inspection method

Also Published As

Publication number Publication date
JP2020056648A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
KR920008783B1 (en) Control method of heat treatment apparatus for substrate
JP2008076324A (en) Optical anisotropy parameter measuring apparatus
JP7077199B2 (en) Optical measuring device and orientation measuring method
JP2015518183A5 (en)
JP2005208046A (en) Device and method for measuring cured state of reactive curable resin
KR0171637B1 (en) Apparatus for evaluating orientation film
CN103604751B (en) The device of property measuring period chiral structure transparent membrane optical activity and corresponding method
JP2937004B2 (en) Method and apparatus for measuring thin film thickness, method for producing optical filter, and method for producing polymer film
Den Engelsen Transmission ellipsometry and polarization spectrometry of thin layers
JP2015521367A5 (en)
JP4146558B2 (en) Substrate heat treatment method and substrate heat treatment apparatus
Mühlig et al. Laser induced deflection (LID) method for absolute absorption measurements of optical materials and thin films
JPH01124726A (en) Heating device
FR2891477B1 (en) METHOD FOR COLORING A LENS BY CENTRIFUGATION ("SPIN-COATING") AND COLORED LENS OBTAINED BY THIS PROCESS
TWI360678B (en) Examining device and examining method
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2004212125A (en) Birefringence measuring device
JP2003156687A (en) Polarized light irradiation device
JPH1090517A (en) Iodine base polarizing plate
JPS6370940A (en) Heat treatment device for resist master disk
Sengupta et al. Simple optical setup for the undergraduate experimental measurement of the refractive indices and attenuation coefficient of liquid samples and characterization of laser beam profile
JPH11344314A (en) Film thickness measuring device
WO2020026600A1 (en) Laser energy measuring device, and laser energy measuring method
KR102255960B1 (en) Gas sensing apparatus and its calibration method
JP3196656U (en) Polarization exposure equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150