WO2021090832A1 - Method for producing patterned single-layer retardation material - Google Patents

Method for producing patterned single-layer retardation material Download PDF

Info

Publication number
WO2021090832A1
WO2021090832A1 PCT/JP2020/041189 JP2020041189W WO2021090832A1 WO 2021090832 A1 WO2021090832 A1 WO 2021090832A1 JP 2020041189 W JP2020041189 W JP 2020041189W WO 2021090832 A1 WO2021090832 A1 WO 2021090832A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
side chain
ultraviolet rays
Prior art date
Application number
PCT/JP2020/041189
Other languages
French (fr)
Japanese (ja)
Inventor
司 藤枝
隆之 根木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021554950A priority Critical patent/JPWO2021090832A1/ja
Priority to CN202080074674.XA priority patent/CN114616518A/en
Priority to KR1020227018091A priority patent/KR20220098362A/en
Publication of WO2021090832A1 publication Critical patent/WO2021090832A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F246/00Copolymers in which the nature of only the monomers in minority is defined
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Definitions

  • the present invention relates to a method for producing a patterned single-layer retardation material and a single-layer retardation material.
  • a liquid crystal polymer that can be suitably used for materials having optical characteristics suitable for applications such as display devices and recording materials, particularly optical compensation films such as polarizing plates and retardation plates for liquid crystal displays. It is obtained from a composition containing a polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount.
  • the present invention relates to a patterned single-layer retardation material.
  • the polymerizable liquid crystal compound used here is generally a liquid crystal compound having a polymerizable group and a liquid crystal structural portion (a structural portion having a spacer portion and a mesogen portion), and an acrylic group is widely used as the polymerizable group. ing.
  • Such a polymerizable liquid crystal compound is generally made into a polymer (film) by a method of irradiating with radiation such as ultraviolet rays to polymerize.
  • a method of irradiating with radiation such as ultraviolet rays to polymerize.
  • a method in which a specific polymerizable liquid crystal compound having an acrylic group is supported between supports subjected to orientation treatment, and the compound is kept in a liquid state and irradiated with radiation to obtain a polymer Patent Document 1.
  • a method of adding a photopolymerization initiator to a mixture of two types of polymerizable liquid crystal compounds having an acrylic group or a composition obtained by mixing a chiral liquid crystal with the mixture and irradiating with ultraviolet rays to obtain a polymer. It has been known.
  • Patent Documents 3 and 4 an alignment film using a polymerizable liquid crystal compound or a polymer that does not require a liquid crystal alignment film
  • Patent Documents 5 and 6 an alignment film using a polymer containing a photocrosslinking site
  • Patent Documents 5 and 6 Various single-layer coating type alignment films have been reported.
  • the present invention has been made in view of the above problems, and by a simple process, a high retardation value is expressed in an anisotropic phase, a retardation value of an isotropic phase is suppressed, and turbidity (HAZE) is further suppressed. It is an object of the present invention to provide a method for producing a patterned single-layer retardation material.
  • the present inventors apply the following method for producing a patterned retardation material using a composition containing a specific polymer and a specific additive. Therefore, they have found that it is possible to produce a patterned single-layer retardation material which expresses a high retardation value in an anisotropic phase, suppresses an isotropic phase retardation value, and further suppresses turbidity (HAZE). completed.
  • the present invention provides a method for producing the following patterned single-layer retardation material.
  • 1. (I) A liquid crystal polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount.
  • Patterning also includes a step of irradiating the ultraviolet rays twice with polarized ultraviolet rays at least once; and a step of heating the coating film obtained in the steps (III) and (II) to obtain a retardation material.
  • a method for manufacturing a single-layer retardation material 2.
  • the polymer composition (A) A side chain polymer having a side chain having a photoreactive site represented by the following formula (a); (B) A method for producing a patterned single-layer retardation material, which comprises (B) a silane coupling agent; and (C) an organic solvent.
  • R 1 is an alkylene group having 1 to 30 carbon atoms
  • one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group.
  • R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group.
  • R is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group, and c ⁇ .
  • each R may be the same as or different from each other.
  • a is 0, 1 or 2.
  • b is 0 or 1.
  • c is an integer satisfying 0 ⁇ c ⁇ 2b + 4.
  • the dashed line is the bond.
  • the method for producing a patterned single-layer retardation material in which the side chain having the photoreactive site is represented by the following formula (a1).
  • R 1 , R 2 and a are the same as above.
  • the benzene ring in the formula (a1) includes an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group and the like. It may be substituted with a substituent selected from nitro groups. The dashed line is the bond. ) 4.
  • R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and carbon. It is an alkyl group having a number of 1 to 12 or an alkyloxy group having a carbon number of 1 to 12.
  • R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these groups.
  • d is an integer from 1 to 12.
  • k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more.
  • k6 and k7 are independently integers of 0 to 2, but the total of k6 and k7 is 1 or more.
  • m1, m2 and m3 are independently integers of 1 to 3.
  • n is 0 or 1.
  • the dashed line is the bond.
  • the method for producing a patterned single-layer retardation material of the present invention is a method including the following steps [I] to [III].
  • (I) A liquid crystal polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount.
  • III In the highly anisotropic region having high optical anisotropy by irradiating the coating film obtained in step (I) with polarized ultraviolet rays, and in the region where the amount of ultraviolet rays is less than the optimum exposure amount.
  • the polymer composition is a liquid crystal polymer, and when the exposure amount is less than the optimum exposure amount, the orientation increases as the exposure amount increases, and when the exposure amount exceeds the optimum exposure amount, the orientation increases as the exposure amount increases.
  • the coating film obtained by using the polymer composition contains a polymer having a property of reducing the amount of light (hereinafter, also simply referred to as a side chain type polymer), and the coating film obtained by using the polymer composition is a photosensitive side chain capable of exhibiting liquidity.
  • a film containing a type polymer This coating film is subjected to an orientation treatment by polarization irradiation without performing a rubbing treatment.
  • the film is subjected to a step of heating the coating film to obtain a film having optical anisotropy (hereinafter, also referred to as a single-layer retardation material).
  • a film having optical anisotropy hereinafter, also referred to as a single-layer retardation material.
  • the slight anisotropy developed by the polarization irradiation becomes the driving force, and the liquid crystal side chain polymer itself is efficiently reoriented by self-assembly.
  • highly efficient orientation processing can be realized, and a single-layer retardation material with high optical anisotropy can be obtained.
  • a highly anisotropic region having high optical anisotropy when irradiated with polarized ultraviolet rays and the amount of ultraviolet rays are less than the optimum exposure amount.
  • Mask at least once so that a low anisotropy region with relatively low optical anisotropy occurs due to a shortage in the region and an excess in the region exceeding the optimum exposure.
  • ultraviolet irradiation is performed in both the region having anisotropy and the region where the anisotropy is less than that, and as a result of increasing the hardness of the film, the patterning position is obtained.
  • the retardation material turbidity of the film in a region with low anisotropy, a so-called whitening phenomenon, can be suppressed. This makes it possible to obtain a patterned retardation material in which HAZE is suppressed.
  • the polymer composition used in the production method of the present invention contains (A) a side chain polymer having a side chain having a photoreactive moiety, (B) a silane coupling agent, and (C) an organic solvent.
  • the component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and has a side chain having a photoreactive site represented by the following formula (a) (hereinafter, side chain). It is a side chain polymer having (also referred to as a).
  • R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group.
  • -CH 2- may be the terminal -CH 2- in R 1.
  • R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group.
  • R is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group, and c ⁇ .
  • each R may be the same as or different from each other.
  • a is 0, 1 or 2.
  • b is 0 or 1.
  • c is an integer satisfying 0 ⁇ c ⁇ 2b + 4.
  • the dashed line is the bond.
  • the alkylene group having 1 to 30 carbon atoms represented by R 1 may be linear, branched, or cyclic, and specific examples thereof include a methylene group, an ethylene group, a propane-1,3-diyl group, and the like.
  • Butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9 -Diyl group, decane-1,10-diyl group and the like can be mentioned.
  • Examples of the divalent aromatic group represented by R 2 include a phenylene group and a biphenylylene group.
  • Examples of the divalent alicyclic group represented by R 2 include a cyclohexanediyl group and the like.
  • Examples of the divalent heterocyclic group represented by R 2 include a frangyl group and the like.
  • Examples of the divalent fused cyclic group represented by R 2 include a naphthalene group and the like.
  • the side chain a is preferably one represented by the following formula (a1) (hereinafter, also referred to as side chain a1).
  • R 1, R 2 and a are as defined above.
  • the benzene ring in the formula (a1) includes an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group and the like. It may be substituted with a substituent selected from nitro groups.
  • the dashed line is the bond.
  • side chain a1 for example, one represented by the following formula (a1-1) is preferable.
  • L is a linear or branched alkylene group having 1 to 16 carbon atoms.
  • the side chain polymer (A) preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300 ° C.
  • the side chain polymer (A) preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
  • the side chain polymer (A) has a photosensitive side chain bonded to the main chain, and can cause a cross-linking reaction or an isomerization reaction in response to light.
  • the structure of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component.
  • the side chain polymer is used as a single-layer retardation material, stable optical anisotropy can be obtained.
  • the structure of the photosensitive side chain polymer capable of exhibiting liquidity include (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, and the like. It is preferable that the structure has a main chain composed of at least one selected from the group consisting of a radically polymerizable group such as norbornene and siloxane, and a side chain a.
  • the side chain type polymer (A) exhibits liquid crystallinity in a temperature range of 100 to 300 ° C.
  • a side chain hereinafter, also referred to as side chain b
  • “expressing only liquid crystallinity” means that the polymer having only the side chain b is used in the process for producing the retardation material of the present invention (that is, steps (I) to (III) described later). It means that it does not show photosensitivity and only develops liquid crystallinity.
  • any one liquid crystal side chain selected from the group consisting of the following formulas (1) to (13) is preferable.
  • R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and carbon.
  • R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these groups.
  • the group selected from the above, and the hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more.
  • k6 and k7 are independently integers of 0 to 2, but the total of k6 and k7 is 1 or more.
  • m1, m2 and m3 are independently integers of 1 to 3.
  • n is 0 or 1.
  • the side chain b is preferably one represented by any of the formulas (1) to (11).
  • the side chain polymer of the component (A) can be obtained by polymerizing a monomer having a structure represented by the formula (a) and, if desired, a monomer having a structure expressing only liquid crystallinity.
  • Examples of the monomer having a structure represented by the formula (a) include a compound represented by the following formula (M1). (In the formula, R 1 , R 2 , R 3 , R, a, m and n are the same as above.)
  • PL is a polymerizable group represented by any of the following formulas (PL-1) to (PL-5).
  • Q 1, Q 2 and Q 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or straight-substituted with halogen It is a chain or branched alkyl group having 1 to 10 carbon atoms.
  • the broken line is the bond with R 1 or L.
  • Preferred examples of the monomer M1 include those represented by the following formulas (M1-1) to (M1-5). (In the formula, PL is the same as above. P is an integer from 2 to 9.)
  • a monomer having a structure that expresses only liquid crystal properties (hereinafter, also referred to as monomer M2) is a monomer in which a polymer derived from the monomer expresses liquid crystal properties and the polymer can form a mesogen group at a side chain site. That is.
  • the mesogen group having a side chain even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, it is a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. May be good.
  • the following structure is preferable as the mesogen group contained in the side chain.
  • the monomer M2 consist of radically polymerizable groups such as hydrocarbons, (meth) acrylates, itacones, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and siloxane. It is preferable that the structure has a structure consisting of a polymerizable group derived from at least one selected from the group and at least one of the formulas (1) to (13).
  • the monomer M2 preferably has a (meth) acrylate as a polymerizable group, and preferably has a side chain terminal of ⁇ COOH.
  • Preferred examples of the monomer M2 include those represented by the following formulas (M2-1) to (M2-11).
  • other monomers can be copolymerized as long as the photoreactiveness and / or liquid crystallinity expression ability is not impaired.
  • examples of other monomers include industrially available radical polymerization-reactive monomers.
  • Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds, vinyl compounds and the like.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic acid ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-butyl.
  • Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • Examples of the styrene compound include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene and the like.
  • Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the content of the side chain a in the side chain polymer of the present invention is preferably 20 to 99.9 mol%, more preferably 30 to 95 mol%, and further 40 to 90 mol% from the viewpoint of photoreactivity. preferable.
  • the content of the side chain b in the side chain polymer of the present invention is preferably 0.1 to 80 mol%, more preferably 5 to 70 mol%, and further preferably 10 to 60 mol% from the viewpoint of the retardation value. preferable.
  • the side chain polymer of the present invention may contain other side chains.
  • the content of the other side chain is the remaining portion when the total content of the side chain a and the side chain b is less than 100 mol%.
  • the method for producing the side chain polymer of the component (A) is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by radical polymerization, cationic polymerization or anionic polymerization using the vinyl groups of the above-mentioned monomers M1 and M2 and, if desired, other monomers. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control and the like.
  • a known compound such as a radical polymerization initiator (radical thermal polymerization initiator, radical photopolymerization initiator) or a reversible addition-cleavage chain transfer (RAFT) polymerization reagent shall be used. Can be done.
  • a radical polymerization initiator radiation thermal polymerization initiator, radical photopolymerization initiator
  • RAFT reversible addition-cleavage chain transfer
  • the radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation).
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy.
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a massive polymerization method, a solution polymerization method and the like can be used.
  • the organic solvent used in the polymerization reaction is not particularly limited as long as the produced polymer dissolves. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, and tetramethylurea.
  • the above organic solvent may be used alone or in combination of two or more. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in an organic solvent causes an inhibition of the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C, but is preferably in the range of 50 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high mass, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio of the radical polymerization initiator is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
  • the reaction solution may be put into a poor solvent to precipitate the polymers.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like.
  • the polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the purification efficiency is further improved.
  • the side chain polymer (A) of the present invention has a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of coating film formation, and uniformity of the coating film.
  • GPC Gel Permeation Chromatography
  • it is preferably 2,000 to 2,000,000, more preferably 2,000 to 1,000,000, and even more preferably 5,000 to 200,000.
  • the polymer composition of the present invention contains (B) a silane coupling agent.
  • a silane coupling agent a silane compound represented by the following formula (B) is preferable.
  • R 21 is a reactive functional group.
  • R 22 is a hydrolyzable group.
  • R 23 is a methyl group or an ethyl group.
  • x is an integer of 0 to 3.
  • y is an integer of 1 to 3.
  • Examples of the reactive functional group represented by R 21 include an amino group, a ureido group, a (meth) acryloxy group, a vinyl group, an epoxy group, a mercapto group and a group having an oxetane structure, and examples thereof include an amino group, a ureido group, and a group having an oxetane structure.
  • (Meta) Acryloyloxy groups, groups having an oxetane structure and the like are preferable. Particularly preferably, it is a group having an oxetane structure.
  • Examples of the hydrolyzable group represented by R 22 include a halogen atom, an alkoxy group having 1 to 3 carbon atoms, and an alkoxyalkoxy group having 2 to 4 carbon atoms.
  • Examples of the halogen atom include a chlorine atom and a bromine atom.
  • the alkoxy group having 1 to 3 carbon atoms is preferably linear or branched, and specifically, it is a methoxy group, an ethoxy group, an n-propoxy group and an isopropoxy group.
  • Specific examples of the alkoxyalkoxy group having 2 to 4 carbon atoms are a methoxymethoxy group, a 2-methoxyethoxy group, an ethoxymethoxy group and a 2-ethoxyethoxy group.
  • silane coupling agent examples include 3-aminopropyltrichlorosilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropylmethyldi.
  • silane coupling agent a commercially available product can be used.
  • the content of the (B) silane coupling agent in the polymer composition of the present invention is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, based on 100 parts by mass of the polymer. More preferably, 0.05 to 1 part by mass.
  • the organic solvent of the component (C) is not particularly limited as long as it is an organic solvent that dissolves the polymer component. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, and N-.
  • Vinyl-2-pyrrolidone dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphate triamide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropaneamide, 3-ethoxy-N, N-dimethylpropane Amide, 3-butoxy-N, N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethylamyl ketone, methylnonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene Examples thereof include carbonate, diglime, 4-hydroxy-4-methyl-2-pentanone and the like. These may be used individually by 1 type, or may be used by mixing 2 or more types.
  • the polymer composition of the present invention may contain components other than the components (A) to (C).
  • examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when the polymer composition is applied, compounds that improve the adhesion between the retardation material and the substrate, and the like. Not limited.
  • These poor solvents may be used alone or in combination of two or more.
  • the content thereof is preferably 5 to 80% by mass, preferably 20 to 60% by mass, so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. More preferably, it is by mass%.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples of these include Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafuck (registered trademark) F171, F173, R-30, R-40 (manufactured by DIC), and Florard. FC430, FC431 (manufactured by 3M), Asahi Guard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical), etc. Can be mentioned. The content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the component (A).
  • epoxy group-containing compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N'-tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane,
  • the content thereof is preferably 0.1 to 30 parts by mass and 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the polymer composition. Is more preferable. If the content is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive.
  • a colorless sensitizer and a triplet sensitizer are preferable.
  • Photosensitizers include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarin, carbonylbiscoumarin, aromatic 2-hydroxyketone (2-hydroxybenzophenone, Mono- or di-p- (dimethylamino) -2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xantone, thioxanthone, benzanthron, thiazolin (2-benzoylmethylene-3-methyl- ⁇ -naphthothiazolin, 2- ( ⁇ ) -Naftylmethylene) -3-methylbenzothiazolin, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazolin, 2- (4-biphenoylmethylene) -3-methylbenzothiazolin, 2- ( ⁇ -naphtho) Ilmethylene) -3-methyl- ⁇ -naphthi
  • aromatic 2-hydroxyketones (benzophenone), coumarin, ketocoumarin, carbonyl biscumarin, acetophenone, anthraquinone, xanthone, thioxanthone and acetal phenone ketal are preferred.
  • the polymer composition of the present invention includes a dielectric material for the purpose of changing the electrical characteristics such as the dielectric constant and conductivity of the retardation material as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and the density of the film when it is used as a conductive substance or a retardation material.
  • the polymer composition of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention contains the components (A) and (B), the above-mentioned solvent or compound that improves the film thickness uniformity and surface smoothness, and the adhesion between the liquid crystal alignment film and the substrate. It is preferable that a compound or the like for improving the above is prepared as a solution in which the component (C) is dissolved in an organic solvent.
  • the content of the component (A) is preferably 1 to 30% by mass in the composition of the present invention.
  • the polymer composition of the present invention may contain other polymers in addition to the polymer of the component (A) as long as the liquid crystal expression ability and the photosensitive performance are not impaired.
  • the content of the other polymer in the polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass.
  • other polymers include polymers such as poly (meth) acrylate, polyamic acid, and polyimide, which are not photosensitive side chain polymers capable of exhibiting liquid crystallinity.
  • the method for producing a patterned single-layer retardation material of the present invention includes the following steps (I) to (III).
  • a step of irradiating the ultraviolet rays twice with polarized ultraviolet rays at least once and a step of heating the coating film obtained in the steps (III) and (II) to obtain a retardation material.
  • the step (I) is a liquid crystal polymer, and when the exposure amount is less than the optimum exposure amount, the orientation increases as the exposure amount increases, and when the exposure amount exceeds the optimum exposure amount, the orientation increases as the exposure amount increases.
  • This is a step of applying a polymer composition containing a polymer having a reducing property onto a substrate to form a coating film. More specifically, the composition is coated on a substrate (for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a metal, for example, a substrate coated with aluminum, molybdenum, chromium, etc., a glass substrate, a quartz substrate, an ITO substrate).
  • a substrate for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a metal, for example, a substrate coated with aluminum, molybdenum, chromium, etc., a glass substrate, a quartz substrate, an ITO substrate.
  • Etc. and films
  • resin films such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film
  • bar coat spin coat
  • flow coat roll coat
  • slit coat Slit coating followed by spin coating
  • inkjet method printing method, etc.
  • the solvent is evaporated at preferably 50 to 200 ° C., more preferably 50 to 150 ° C. by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven to obtain a coating film. Can be done.
  • step (II) the coating film obtained in step (I) is irradiated with polarized ultraviolet rays in a highly anisotropic region having high optical anisotropy and in a region where the amount of ultraviolet rays is less than the optimum exposure amount. At least once through the mask so that there is a low anisotropy region with relatively low optical anisotropy due to a shortage and an excess in the region above the optimum exposure. At least once, polarized ultraviolet rays are used to irradiate the ultraviolet rays twice. More specific embodiments of such a step include the following steps (II-1) to (II-3).
  • step (II-1) the first ultraviolet irradiation is performed through a mask so that only the region to which anisotropy is desired to be imparted is covered.
  • the ultraviolet rays at this time may be all-light ultraviolet rays or polarized ultraviolet rays.
  • the mask is removed and polarized ultraviolet rays are irradiated.
  • the portion covered with the mask at the time of the first irradiation is irradiated with polarized ultraviolet rays only once to impart anisotropy, and the region subjected to the first ultraviolet irradiation is subjected to the second ultraviolet rays. Irradiation reduces anisotropy.
  • Step (II-2) In the step (II-2), after the first ultraviolet irradiation using polarized ultraviolet rays, the second ultraviolet irradiation is performed through a mask so that only the region to which anisotropy is desired to be imparted is covered.
  • the ultraviolet rays at the time of the second irradiation may be all-light ultraviolet rays or polarized ultraviolet rays.
  • the portion covered with the mask during the second irradiation is anisotropyed by being irradiated with polarized ultraviolet rays only once, and the region subjected to the second irradiation is anisotropy. Decreases.
  • step (II-3) after the first irradiation with ultraviolet rays using all-light ultraviolet rays, the second irradiation with polarized ultraviolet rays is performed through a mask so that only the region to which anisotropy is not desired to be imparted is covered.
  • the total light ultraviolet rays at the time of the first irradiation are preferably smaller than the second polarized ultraviolet rays.
  • the substrate When irradiating polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays from a certain direction through a polarizing plate.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film used.
  • ultraviolet rays having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet rays for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the irradiation amount is the amount of polarized ultraviolet rays that realizes the maximum value of ⁇ A (hereinafter, also referred to as ⁇ Amax), which is the difference between the ultraviolet absorptance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorptivity in the vertical direction in the coating film.
  • the amount is preferably in the range of 1 to 70%, more preferably in the range of 1 to 50%.
  • the pattern shape and pattern size of the exposure mask used are not particularly limited.
  • Examples of the pattern shape include a line pattern shape, a line / space (L / S) pattern shape, and a dot shape.
  • As the pattern size a micrometer-sized pattern can be formed. For example, by using an exposure mask having a fine pattern having an L / S pattern shape, a fine L / S pattern of about 0.5 to 500 ⁇ m can be formed.
  • step (III) the coating film irradiated with polarized ultraviolet rays in step (II) is heated. Orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is exhibited.
  • the heating temperature is preferably within the range of the temperature at which the polymer contained in the polymer composition exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • liquid crystal expression temperature the temperature at which the polymer contained in the polymer composition exhibits liquid crystallinity
  • the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the surface of the coating film.
  • the range of the heating temperature after irradiation with polarized ultraviolet rays is a range in which the lower limit is 10 ° C lower than the lower limit of the liquid crystal development temperature range of the polymer to be used, and the upper limit is the temperature 10 ° C lower than the upper limit of the liquid crystal temperature range.
  • the temperature is preferably. If the heating temperature is lower than the above temperature range, the effect of amplifying anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
  • the liquid crystal development temperature is equal to or higher than the liquid crystal transition temperature at which the surface of the polymer or coating film undergoes a phase transition from the solid phase to the liquid crystal phase, and the isotropic phase undergoes a phase transition from the liquid crystal phase to the isotropic phase.
  • a temperature below the phase transition temperature (Tiso) means that the liquid crystal transition temperature at which a phase transition occurs from the solid phase to the liquid crystal phase is 130 ° C. or lower.
  • the thickness of the coating film formed after heating can be appropriately selected in consideration of the level difference of the substrate to be used and the optical and electrical properties, and is preferably 0.5 to 10 ⁇ m, for example.
  • the single-layer retardation material of the present invention thus obtained is a material having optical characteristics suitable for applications such as display devices and recording materials, and in particular, polarizing plates and retardation plates for liquid crystal displays and the like. It is suitable as an optical compensation film.
  • M1 which is a monomer having a photoreactive group and M2 which is a monomer having a liquid crystal group used in the examples are shown below.
  • M1 and M2 were synthesized as follows, respectively.
  • M1 was synthesized according to the synthetic method described in International Publication No. 2011/0854546.
  • M2 was synthesized according to the synthesis method described in JP-A-9-118717.
  • the side chain derived from M1 exhibits photoreactivity and liquid crystallinity, and the side chain derived from M2 has only liquid crystallinity.
  • Example 1 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • Example 2 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the exposure mask is removed and polarized ultraviolet rays are 20 mJ / cm 2 (313 nm conversion). Irradiated.
  • the substrate R2 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
  • Example 3 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • Example 4 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion).
  • Example 5 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the exposure mask was removed, and polarized ultraviolet rays were irradiated at 20 mJ / cm 2 (313 nm conversion) so as to be perpendicular to the polarization axis of the first polarized ultraviolet rays.
  • the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate R5 with a retardation film.
  • Example 6 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • Example 7 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • Example 8 The polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • Table 1 summarizes the exposure steps of Examples 1 to 8 and Comparative Example 1 described above.
  • the portion covered by the exposure mask is a highly anisotropic region (hereinafter, also referred to as an anisotropic phase region), and the portion not covered by the exposure mask is low. It became an anisotropic region (hereinafter also referred to as an isotropic region).
  • the region covered by the exposure mask became isotropic.
  • [Preparation of HAZE evaluation board] [Preparation of substrate T1]
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coating film surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (in terms of 313 nm).
  • the substrate T1 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
  • the substrate T1 is a substrate that imitates HAZE in the anisotropic phase region of Examples 1, 2, Examples 4 to 8, and Comparative Example 1.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coating film surface was irradiated with total light ultraviolet rays at 10 mJ / cm 2 (313 nm conversion) and then with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion).
  • the substrate T2 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
  • the substrate T2 is a substrate that imitates HAZE in the anisotropic phase region of Example 3.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coating film surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion) and then with total light ultraviolet rays at 100 mJ / cm 2 (313 nm conversion).
  • the substrate S3 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
  • the substrate T3 is a substrate that imitates HAZE in the isotropic region of Example 1.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coating film surface was irradiated with 100 mJ / cm 2 (313 nm conversion) of total light ultraviolet rays, and then 20 mJ / cm 2 (313 nm conversion) with polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T4 with a retardation film.
  • the substrate T4 is a substrate that imitates HAZE in the isotropic region of Example 2.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coating film surface was irradiated with total light ultraviolet rays at 10 mJ / cm 2 (313 nm conversion). After exposure to ultraviolet rays, it was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T5 with a retardation film.
  • the substrate T5 is a substrate that imitates HAZE in the isotropic region of Example 3.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 20 mJ / cm 2 (313 nm conversion) so as to be perpendicular to the polarization axis of the first polarized ultraviolet rays.
  • the substrate T6 is a substrate that imitates HAZE in the isotropic region of Examples 4 and 5.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 100 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T7 with a retardation film.
  • the substrate T7 is a substrate that imitates HAZE in the isotropic region of Example 6.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 200 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays. After two ultraviolet exposures, the substrate T8 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
  • the substrate T8 is a substrate that imitates HAZE in the isotropic region of Example 7.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. ..
  • the coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 400 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T9 with a retardation film.
  • the substrate T9 is a substrate that imitates HAZE in the isotropic region of Example 8.
  • the polymer solution Q1 was filtered through a filter having a pore size of 5.0 ⁇ m, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 ⁇ m. .. Then, it was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T10 with a retardation film.
  • the substrate T10 is a substrate that imitates HAZE in the isotropic region of Comparative Example 1.
  • HAZE evaluation HAZE of substrates T1 to T10 with a retardation film was evaluated using HAZE Meter HZ-V3 manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 2.
  • the method of the present invention is useful as a method for producing a patterned single-layer retardation material in which the HAZE value in the isotropic region is suppressed.

Abstract

The present invention provides a method for producing a patterned single-layer retardation material, said method comprising: (I) a step for forming a coating film by applying a polymer composition onto a substrate, said polymer composition containing a liquid crystalline polymer having properties such that the alignability increases as the amount of light exposure increases if the amount of light exposure is less than the optimal amount of light exposure, while the alignability decreases as the amount of light exposure increases if the amount of light exposure is more than the optimal amount of light exposure; (II) a step for irradiating the coating film obtained in the step (I) with ultraviolet light twice, namely at least once via a mask and at least once with use of polarized ultraviolet light so that a high anisotropy region having high optical anisotropy is produced by being irradiated with polarized ultraviolet light and a low anisotropy region having relatively low optical anisotropy is produced due to deficient ultraviolet light in a region where the amount of light exposure is less than the optimal amount of light exposure and due to excessive ultraviolet light in a region where the amount of light exposure is more than the optimal amount of light exposure; and (III) a step for obtaining a retardation material by heating the coating film obtained in the step (II).

Description

パターニングされた単層位相差材の製造方法Manufacturing method of patterned single-layer retardation material
 本発明は、パターニングされた単層位相差材の製造方法及び単層位相差材に関する。詳しくは、表示装置や記録材料等の用途に好適な光学特性を有する材料、特に、液晶ディスプレイ用の偏光板及び位相差板等の光学補償フィルムに好適に利用できる液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体を含む組成物から得られるパターニングされた単層位相差材に関する。 The present invention relates to a method for producing a patterned single-layer retardation material and a single-layer retardation material. Specifically, it is a liquid crystal polymer that can be suitably used for materials having optical characteristics suitable for applications such as display devices and recording materials, particularly optical compensation films such as polarizing plates and retardation plates for liquid crystal displays. It is obtained from a composition containing a polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount. The present invention relates to a patterned single-layer retardation material.
 液晶表示装置の表示品位の向上や軽量化等の要求から、偏光板や位相差板等の光学補償フィルムとして、内部の分子配向構造が制御された高分子フィルムの要求が高まっている。この要求に応えるべく、重合性液晶化合物が有する光学異方性を利用したフィルムの開発がなされている。ここで用いられる重合性液晶化合物は、一般に、重合性基と液晶構造部位(スペーサ部とメソゲン部とを有する構造部位)とを有する液晶化合物であり、この重合性基としてアクリル基が広く用いられている。 Due to the demand for improvement of display quality and weight reduction of liquid crystal display devices, there is an increasing demand for polymer films having a controlled internal molecular orientation structure as optical compensation films such as polarizing plates and retardation plates. In order to meet this demand, a film utilizing the optical anisotropy of the polymerizable liquid crystal compound has been developed. The polymerizable liquid crystal compound used here is generally a liquid crystal compound having a polymerizable group and a liquid crystal structural portion (a structural portion having a spacer portion and a mesogen portion), and an acrylic group is widely used as the polymerizable group. ing.
 このような重合性液晶化合物は、一般的に、紫外線等の放射線を照射して重合する方法で重合体(フィルム)とされる。例えば、アクリル基を有する特定の重合性液晶化合物を、配向処理を施した支持体間に担持し、この化合物を液晶状態に保持しつつ放射線を照射して重合体を得る方法(特許文献1)や、アクリル基を有する2種類の重合性液晶化合物の混合物又はこの混合物にカイラル液晶を混合した組成物に光重合開始剤を添加し、紫外線を照射して重合体を得る方法(特許文献2)が知られている。 Such a polymerizable liquid crystal compound is generally made into a polymer (film) by a method of irradiating with radiation such as ultraviolet rays to polymerize. For example, a method in which a specific polymerizable liquid crystal compound having an acrylic group is supported between supports subjected to orientation treatment, and the compound is kept in a liquid state and irradiated with radiation to obtain a polymer (Patent Document 1). Or, a method of adding a photopolymerization initiator to a mixture of two types of polymerizable liquid crystal compounds having an acrylic group or a composition obtained by mixing a chiral liquid crystal with the mixture, and irradiating with ultraviolet rays to obtain a polymer (Patent Document 2). It has been known.
 また、液晶配向膜を必要としない重合性液晶化合物や重合体を用いた配向フィルム(特許文献3、4)、光架橋部位を含有した重合体を用いた配向フィルム(特許文献5、6)等、様々な単層塗布型配向フィルムが報告されてきた。 Further, an alignment film using a polymerizable liquid crystal compound or a polymer that does not require a liquid crystal alignment film (Patent Documents 3 and 4), an alignment film using a polymer containing a photocrosslinking site (Patent Documents 5 and 6), and the like. , Various single-layer coating type alignment films have been reported.
 一方、光架橋部位を含む重合体を用いた配向フィルムにおいて、露光マスクを用いて同材料によるパターニング単層位相差フィルムを製造した際、紫外線未露光部の濁り(HAZE)が問題となることが明らかとなった。 On the other hand, in an alignment film using a polymer containing a photocrosslinked portion, when a patterned single-layer retardation film made of the same material is produced using an exposure mask, turbidity (HAZE) in an ultraviolet unexposed portion may become a problem. It became clear.
特開昭62-70407号公報Japanese Unexamined Patent Publication No. 62-70407 特開平9-208957号公報Japanese Unexamined Patent Publication No. 9-20897 欧州特許出願公開第1090325号明細書European Patent Application Publication No. 1090325 国際公開第2008/031243号International Publication No. 2008/031243 特開2008-164925号公報Japanese Unexamined Patent Publication No. 2008-164925 特開平11-189665号公報Japanese Unexamined Patent Publication No. 11-189665
 本発明は、上記問題に鑑みなされたものであり、簡単なプロセスにより、異方相にて高い位相差値を発現し、等方相の位相差値が抑制され、更に濁り(HAZE)が抑制されたパターニング単層位相差材の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and by a simple process, a high retardation value is expressed in an anisotropic phase, a retardation value of an isotropic phase is suppressed, and turbidity (HAZE) is further suppressed. It is an object of the present invention to provide a method for producing a patterned single-layer retardation material.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の重合体及び特定の添加剤を含有する組成物を用いて、下記パターン化位相差材の製造方法を適用することで、異方相にて高い位相差値を発現し、等方相の位相差値が抑制され、更に濁り(HAZE)が抑制されたパターニング単層位相差材を製造できることを見出し、本発明を完成した。 As a result of diligent studies to solve the above problems, the present inventors apply the following method for producing a patterned retardation material using a composition containing a specific polymer and a specific additive. Therefore, they have found that it is possible to produce a patterned single-layer retardation material which expresses a high retardation value in an anisotropic phase, suppresses an isotropic phase retardation value, and further suppresses turbidity (HAZE). completed.
 すなわち、本発明は、下記パターニングされた単層位相差材の製造方法を提供する。
1.(I)液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体を含む重合体組成物を、基板上に塗布して塗膜を形成する工程;
(II)工程(I)で得られた塗膜に、偏光紫外線を照射されることにより高い光学異方性を有する高異方性領域と、紫外線の量が、最適露光量未満の領域においては不足することにより、また、最適露光量を超える領域においては過剰であることにより、相対的に低い光学異方性を有する低異方性領域とが生じるように、少なくとも1回はマスクを介しつつ、また、少なくとも1回は偏光紫外線を用いて、紫外線を2回照射する工程;及び
(III)工程(II)で得られた塗膜を加熱して、位相差材を得る工程
を含む、パターニングされた単層位相差材の製造方法。
2.前記重合体組成物が、
(A)下記式(a)で表される光反応性部位を有する側鎖を有する側鎖型高分子;
(B)シランカップリング剤;及び
(C)有機溶媒
を含むものである、1のパターニングされた単層位相差材の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。また、-CH2-は、R1中の末端の-CH2-であってもよい。
 R2は、2価の芳香族基、2価の脂環族基、2価の複素環式基又は2価の縮合環式基である。
 R3は、単結合、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
 Rは、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基又はニトロ基であり、c≧2のとき、各Rは、互いに同一であってもよく、異なっていてもよい。
 aは、0、1又は2である。
 bは、0又は1である。
 cは、0≦c≦2b+4を満たす整数である。
 破線は、結合手である。)
3.上記光反応性部位を有する側鎖が、下記式(a1)で表されるものである2のパターニングされた単層位相差材の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、R1、R2及びaは、上記と同じ。
 R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。
 式(a1)中のベンゼン環は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 破線は、結合手である。)
4.(A)側鎖型重合体が、更に、液晶性のみを発現する側鎖を有する2又は3のパターニングされた単層位相差材の製造方法。
5.上記液晶性のみを発現する側鎖が、下記式(1)~(13)のいずれかで表される液晶性側鎖である4のパターニングされた単層位相差材の製造方法。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(式中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。
 R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルキルオキシ基である。
 R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 R13は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 Eは、-C(=O)-O-又は-O-C(=O)-である。
 dは、1~12の整数である。
 k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
 k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
 m1、m2及びm3は、それぞれ独立に、1~3の整数である。
 nは、0又は1である。
 Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-、-CH=N-又は-CF2-である。
 破線は、結合手である。)
6.上記液晶性のみを発現する側鎖が、式(1)~(11)のいずれかで表される液晶性側鎖である5のパターニングされた単層位相差材の製造方法。
7.1~6のいずれかの方法により製造された単層位相差材。
That is, the present invention provides a method for producing the following patterned single-layer retardation material.
1. 1. (I) A liquid crystal polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount. A step of applying a polymer composition containing a polymer having the above on a substrate to form a coating film;
(II) In the highly anisotropic region having high optical anisotropy by irradiating the coating film obtained in step (I) with polarized ultraviolet rays, and in the region where the amount of ultraviolet rays is less than the optimum exposure amount. Through the mask at least once so that a low anisotropy region having a relatively low optical anisotropy occurs due to a shortage and an excess in the region exceeding the optimum exposure amount. Patterning also includes a step of irradiating the ultraviolet rays twice with polarized ultraviolet rays at least once; and a step of heating the coating film obtained in the steps (III) and (II) to obtain a retardation material. A method for manufacturing a single-layer retardation material.
2. The polymer composition
(A) A side chain polymer having a side chain having a photoreactive site represented by the following formula (a);
(B) A method for producing a patterned single-layer retardation material, which comprises (B) a silane coupling agent; and (C) an organic solvent.
Figure JPOXMLDOC01-appb-C000005
(Wherein, R 1 is an alkylene group having 1 to 30 carbon atoms, one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Also, in R 1 of -CH 2 CH 2 - is, may be substituted by -CH = CH-, -CH in R 1 2 - is, -O -, - NH-C (= O) -, - C (= From O) -NH-, -C (= O) -O-, -OC (= O)-, -NH-, -NH-C (= O) -NH- and -C (= O)- It may be substituted with a group selected from the group consisting of: however, the adjacent -CH 2- dos not be substituted with these groups at the same time, and -CH 2- is the terminal-in R 1. It may be CH 2-.
R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group.
R 3 is a single bond, -O-, -C (= O) -O-, -OC (= O)-or -CH = CH-C (= O) -O-.
R is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group, and c ≧. When 2, each R may be the same as or different from each other.
a is 0, 1 or 2.
b is 0 or 1.
c is an integer satisfying 0 ≦ c ≦ 2b + 4.
The dashed line is the bond. )
3. 3. 2. The method for producing a patterned single-layer retardation material in which the side chain having the photoreactive site is represented by the following formula (a1).
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 , R 2 and a are the same as above.
R 3A is a single bond, -O-, -C (= O) -O- or -OC (= O)-.
The benzene ring in the formula (a1) includes an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group and the like. It may be substituted with a substituent selected from nitro groups.
The dashed line is the bond. )
4. (A) A method for producing 2 or 3 patterned single-layer retardation materials in which the side chain polymer further has a side chain that expresses only liquid crystallinity.
5. The method for producing a patterned single-layer retardation material of 4, wherein the side chain expressing only the liquid crystal property is a liquid crystal side chain represented by any of the following formulas (1) to (13).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(In the equation, A 1 and A 2 are independent, single bond, -O-, -CH 2- , -C (= O) -O-, -OC (= O)-, -C (= O) -NH-, -NH-C (= O)-, -CH = CH-C (= O) -O- or -OC (= O) -CH = CH-.
R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and carbon. It is an alkyl group having a number of 1 to 12 or an alkyloxy group having a carbon number of 1 to 12.
R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these groups. The group selected from the above, and the hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
R 13 is a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing complex. It is a ring group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
E is -C (= O) -O- or -OC (= O)-.
d is an integer from 1 to 12.
k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more.
k6 and k7 are independently integers of 0 to 2, but the total of k6 and k7 is 1 or more.
m1, m2 and m3 are independently integers of 1 to 3.
n is 0 or 1.
Z 1 and Z 2 are independently single-bonded, -C (= O)-, -CH 2 O-, -CH = N- or -CF 2- .
The dashed line is the bond. )
6. The method for producing a patterned single-layer retardation material according to 5, wherein the side chain expressing only liquid crystallinity is a liquid crystal side chain represented by any of the formulas (1) to (11).
A single-layer retardation material manufactured by any of the methods 7.1 to 6.
 本発明により、位相差値の高い領域と、位相差値の低い領域とを有するとともに、位相差値の低い領域において、膜の白化が抑制された、パターニングされた位相差材を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a patterned retardation material which has a region having a high retardation value and a region having a low retardation value and in which whitening of a film is suppressed in a region having a low retardation value. it can.
 本発明のパターニングされた単層位相差材の製造方法は、下記工程[I]~[III]を含む方法である。
(I)液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体を含む重合体組成物を、基板上に塗布して塗膜を形成する工程;
(II)工程(I)で得られた塗膜に、偏光紫外線を照射されることにより高い光学異方性を有する高異方性領域と、紫外線の量が、最適露光量未満の領域においては不足することにより、また、最適露光量を超える領域においては過剰であることにより、相対的に低い光学異方性を有する低異方性領域とが生じるように、少なくとも1回はマスクを介しつつ、また、少なくとも1回は偏光紫外線を用いて、紫外線を2回照射する工程;及び
(III)工程(II)で得られた塗膜を加熱して、位相差材を得る工程。
The method for producing a patterned single-layer retardation material of the present invention is a method including the following steps [I] to [III].
(I) A liquid crystal polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount. A step of applying a polymer composition containing a polymer having the above on a substrate to form a coating film;
(II) In the highly anisotropic region having high optical anisotropy by irradiating the coating film obtained in step (I) with polarized ultraviolet rays, and in the region where the amount of ultraviolet rays is less than the optimum exposure amount. Through the mask at least once so that a low anisotropy region having a relatively low optical anisotropy occurs due to a shortage and an excess in the region exceeding the optimum exposure amount. Further, a step of irradiating the ultraviolet rays twice with polarized ultraviolet rays at least once; and a step of heating the coating film obtained in the steps (III) and (II) to obtain a retardation material.
 前記重合体組成物は、液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体(以下、単に側鎖型高分子とも呼ぶ)を含んでおり、前記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型高分子を含む膜である。この塗膜には、ラビング処理を行うことなく、偏光照射によって配向処理を行う。そして、偏光照射の後、前記塗膜を加熱する工程を経て、光学異方性が付与されたフィルム(以下、単層位相差材とも称する)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、高効率な配向処理が実現し、高い光学異方性が付与された単層位相差材を得ることができる。 The polymer composition is a liquid crystal polymer, and when the exposure amount is less than the optimum exposure amount, the orientation increases as the exposure amount increases, and when the exposure amount exceeds the optimum exposure amount, the orientation increases as the exposure amount increases. The coating film obtained by using the polymer composition contains a polymer having a property of reducing the amount of light (hereinafter, also simply referred to as a side chain type polymer), and the coating film obtained by using the polymer composition is a photosensitive side chain capable of exhibiting liquidity. A film containing a type polymer. This coating film is subjected to an orientation treatment by polarization irradiation without performing a rubbing treatment. Then, after the polarization irradiation, the film is subjected to a step of heating the coating film to obtain a film having optical anisotropy (hereinafter, also referred to as a single-layer retardation material). At this time, the slight anisotropy developed by the polarization irradiation becomes the driving force, and the liquid crystal side chain polymer itself is efficiently reoriented by self-assembly. As a result, highly efficient orientation processing can be realized, and a single-layer retardation material with high optical anisotropy can be obtained.
 また、本発明のパターニングされた単層位相差材の製造方法は、偏光紫外線を照射されることにより高い光学異方性を有する高異方性領域と、紫外線の量が、最適露光量未満の領域においては不足することにより、また、最適露光量を超える領域においては過剰であることにより、相対的に低い光学異方性を有する低異方性領域とが生じるように、少なくとも1回はマスクを介しつつ、また、少なくとも1回は偏光紫外線を用いて、紫外線を2回照射する工程を有する。このような工程を有することにより、異方性を有する領域と、それよりも異方性が減少した領域において、ともに紫外線照射がなされることになり、膜の硬度が高まる結果、パターニングされた位相差材において、異方性の低い領域における膜の濁り、いわゆる白化現象を抑制することができる。これにより、HAZEの抑制されたパターニングされた位相差材を得ることができる。 Further, in the method for producing a patterned single-layer retardation material of the present invention, a highly anisotropic region having high optical anisotropy when irradiated with polarized ultraviolet rays and the amount of ultraviolet rays are less than the optimum exposure amount. Mask at least once so that a low anisotropy region with relatively low optical anisotropy occurs due to a shortage in the region and an excess in the region exceeding the optimum exposure. There is a step of irradiating ultraviolet rays twice with polarized ultraviolet rays at least once. By having such a step, ultraviolet irradiation is performed in both the region having anisotropy and the region where the anisotropy is less than that, and as a result of increasing the hardness of the film, the patterning position is obtained. In the retardation material, turbidity of the film in a region with low anisotropy, a so-called whitening phenomenon, can be suppressed. This makes it possible to obtain a patterned retardation material in which HAZE is suppressed.
 以下、本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[重合体組成物]
 本発明の製造方法において用いる重合体組成物は、(A)光反応性部位を有する側鎖を有する側鎖型重合体、(B)シランカップリング剤及び(C)有機溶媒を含むものである。
[Polymer composition]
The polymer composition used in the production method of the present invention contains (A) a side chain polymer having a side chain having a photoreactive moiety, (B) a silane coupling agent, and (C) an organic solvent.
[(A)側鎖型重合体]
 (A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型重合体であって、下記式(a)で表される光反応性部位を有する側鎖(以下、側鎖aともいう。)を有する側鎖型重合体である。
Figure JPOXMLDOC01-appb-C000009
[(A) Side chain polymer]
The component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and has a side chain having a photoreactive site represented by the following formula (a) (hereinafter, side chain). It is a side chain polymer having (also referred to as a).
Figure JPOXMLDOC01-appb-C000009
 式(a)中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。また、-CH2-は、R1中の末端の-CH2-であってもよい。R2は、2価の芳香族基、2価の脂環族基、2価の複素環式基又は2価の縮合環式基である。R3は、単結合、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。Rは、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基又はニトロ基であり、c≧2のとき、各Rは、互いに同一であってもよく、異なっていてもよい。aは、0、1又は2である。bは、0又は1である。cは、0≦c≦2b+4を満たす整数である。破線は、結合手である。 In the formula (a), R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Further, -CH 2 CH 2 in R 1 - it is, may be substituted by -CH = CH-, -CH 2 in R 1 - is, -O -, - NH-C (= O) - , -C (= O) -NH-, -C (= O) -O-, -OC (= O)-, -NH-, -NH-C (= O) -NH- and -C ( It may be substituted with a group selected from the group consisting of = O)-. However, the adjacent -CH 2- dos not be replaced by these groups at the same time. Further, -CH 2- may be the terminal -CH 2- in R 1. R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group. R 3 is a single bond, -O-, -C (= O) -O-, -OC (= O)-or -CH = CH-C (= O) -O-. R is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group, and c ≧. When 2, each R may be the same as or different from each other. a is 0, 1 or 2. b is 0 or 1. c is an integer satisfying 0 ≦ c ≦ 2b + 4. The dashed line is the bond.
 R1で表される炭素数1~30のアルキレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基等が挙げられる。 The alkylene group having 1 to 30 carbon atoms represented by R 1 may be linear, branched, or cyclic, and specific examples thereof include a methylene group, an ethylene group, a propane-1,3-diyl group, and the like. Butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9 -Diyl group, decane-1,10-diyl group and the like can be mentioned.
 R2で表される2価の芳香族基としては、フェニレン基、ビフェニリレン基等が挙げられる。R2で表される2価の脂環族基としては、シクロヘキサンジイル基等が挙げられる。R2で表される2価の複素環式基としては、フランジイル基等が挙げられる。R2で表される2価の縮合環式基としては、ナフチレン基等が挙げられる。 Examples of the divalent aromatic group represented by R 2 include a phenylene group and a biphenylylene group. Examples of the divalent alicyclic group represented by R 2 include a cyclohexanediyl group and the like. Examples of the divalent heterocyclic group represented by R 2 include a frangyl group and the like. Examples of the divalent fused cyclic group represented by R 2 include a naphthalene group and the like.
 側鎖aとしては下記式(a1)で表されるもの(以下、側鎖a1ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000010
The side chain a is preferably one represented by the following formula (a1) (hereinafter, also referred to as side chain a1).
Figure JPOXMLDOC01-appb-C000010
 式(a1)中、R1、R2及びaは、上記と同じ。R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。式(a1)中のベンゼン環は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。破線は、結合手である。 Wherein (a1), R 1, R 2 and a are as defined above. R 3A is a single bond, -O-, -C (= O) -O- or -OC (= O)-. The benzene ring in the formula (a1) includes an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group and the like. It may be substituted with a substituent selected from nitro groups. The dashed line is the bond.
 側鎖a1としては、例えば、下記式(a1-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000011
As the side chain a1, for example, one represented by the following formula (a1-1) is preferable.
Figure JPOXMLDOC01-appb-C000011
 式(a1-1)中、Lは、直鎖状又は分岐状の炭素数1~16のアルキレン基である。Xは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。 In the formula (a1-1), L is a linear or branched alkylene group having 1 to 16 carbon atoms. X is a single bond, —O—, —C (= O) —O— or —OC (= O) −.
 (A)側鎖型重合体は、250~400nmの波長範囲の光で反応し、かつ100~300℃の温度範囲で液晶性を示すものが好ましい。(A)側鎖型重合体は、250~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。 The side chain polymer (A) preferably reacts with light in the wavelength range of 250 to 400 nm and exhibits liquid crystallinity in the temperature range of 100 to 300 ° C. The side chain polymer (A) preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
 (A)側鎖型重合体は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応又は異性化反応を起こすことができる。液晶性を発現し得る感光性の側鎖型重合体の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。上記側鎖型重合体を単層位相差材とした際に、安定な光学異方性を得ることができる。 The side chain polymer (A) has a photosensitive side chain bonded to the main chain, and can cause a cross-linking reaction or an isomerization reaction in response to light. The structure of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogen component. When the side chain polymer is used as a single-layer retardation material, stable optical anisotropy can be obtained.
 液晶性を発現し得る感光性の側鎖型重合体の構造のより具体的な例としては、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、側鎖aとを有する構造であることが好ましい。 More specific examples of the structure of the photosensitive side chain polymer capable of exhibiting liquidity include (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, and the like. It is preferable that the structure has a main chain composed of at least one selected from the group consisting of a radically polymerizable group such as norbornene and siloxane, and a side chain a.
 また、(A)側鎖型重合体は、100~300℃の温度範囲で液晶性を示すため、更に液晶性のみを発現する側鎖(以下、側鎖bともいう。)を有することが好ましい。なお、ここで「液晶性のみを発現する」とは、側鎖bのみを有するポリマーは、本発明の位相差材の作製プロセス(すなわち、後述する工程(I)~(III))中に、感光性を示さず、液晶性のみを発現するという意味である。 Further, since the side chain type polymer (A) exhibits liquid crystallinity in a temperature range of 100 to 300 ° C., it is preferable to have a side chain (hereinafter, also referred to as side chain b) that further expresses only liquid crystallinity. .. Here, "expressing only liquid crystallinity" means that the polymer having only the side chain b is used in the process for producing the retardation material of the present invention (that is, steps (I) to (III) described later). It means that it does not show photosensitivity and only develops liquid crystallinity.
 側鎖bとしては、下記式(1)~(13)からなる群から選ばれるいずれか1種の液晶性側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000012
As the side chain b, any one liquid crystal side chain selected from the group consisting of the following formulas (1) to (13) is preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(1)~(13)中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルキルオキシ基である。R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。R13は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。Eは、-C(=O)-O-又は-O-C(=O)-である。dは、1~12の整数である。k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。m1、m2及びm3は、それぞれ独立に、1~3の整数である。nは、0又は1である。Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-、-CH=N-又は-CF2-である。破線は、結合手である。 In formulas (1) to (13), A 1 and A 2 are independently single-bonded, -O-, -CH 2- , -C (= O) -O-, -OC (= O). -, -C (= O) -NH-, -NH-C (= O)-, -CH = CH-C (= O) -O- or -OC (= O) -CH = CH- is there. R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and carbon. It is an alkyl group having a number of 1 to 12 or an alkyloxy group having a carbon number of 1 to 12. R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these groups. The group selected from the above, and the hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. R 13 is a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing complex. It is a ring group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms. E is -C (= O) -O- or -OC (= O)-. d is an integer from 1 to 12. k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more. k6 and k7 are independently integers of 0 to 2, but the total of k6 and k7 is 1 or more. m1, m2 and m3 are independently integers of 1 to 3. n is 0 or 1. Z 1 and Z 2 are independently single-bonded, -C (= O)-, -CH 2 O-, -CH = N- or -CF 2- . The dashed line is the bond.
 これらのうち、側鎖bとしては、式(1)~(11)のいずれかで表されるものが好ましい。 Of these, the side chain b is preferably one represented by any of the formulas (1) to (11).
 (A)成分の側鎖型重合体は、式(a)で表される構造を有するモノマー、及び所望により液晶性のみを発現する構造を有するモノマーを重合することによって得ることができる。 The side chain polymer of the component (A) can be obtained by polymerizing a monomer having a structure represented by the formula (a) and, if desired, a monomer having a structure expressing only liquid crystallinity.
 式(a)で表される構造を有するモノマー(以下、モノマーM1ともいう。)としては、下記式(M1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式中、R1、R2、R3、R、a、m及びnは、上記と同じ。)
Examples of the monomer having a structure represented by the formula (a) (hereinafter, also referred to as monomer M1) include a compound represented by the following formula (M1).
Figure JPOXMLDOC01-appb-C000014
(In the formula, R 1 , R 2 , R 3 , R, a, m and n are the same as above.)
 モノマーM1としては、下記式(M1A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式中、R1、R2、R3A、R及びaは、上記と同じ。)
As the monomer M1, those represented by the following formula (M1A) are preferable.
Figure JPOXMLDOC01-appb-C000015
(In the formula, R 1 , R 2 , R 3A , R and a are the same as above.)
 モノマーM1Aのうち、下記式(M1B)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000016
(式中、L及びXは、上記と同じ。)
Among the monomers M1A, those represented by the following formula (M1B) are more preferable.
Figure JPOXMLDOC01-appb-C000016
(In the formula, L and X are the same as above.)
 式(M1)、(M1A)及び(M1B)中、PLは、下記式(PL-1)~(PL-5)のいずれかで表される重合性基である。
Figure JPOXMLDOC01-appb-C000017
In the formulas (M1), (M1A) and (M1B), PL is a polymerizable group represented by any of the following formulas (PL-1) to (PL-5).
Figure JPOXMLDOC01-appb-C000017
 式(PL-1)~(PL-5)中、Q1、Q2及びQ3は、水素原子、直鎖状若しくは分岐状の炭素数1~10のアルキル基、又はハロゲンで置換された直鎖状若しくは分岐状の炭素数1~10のアルキル基である。破線は、R1又はLとの結合手である。これらモノマーのうち、あるものは市販されており、あるものは公知物質から公知の製造方法にて製造することができる。 Wherein (PL-1) ~ (PL -5), Q 1, Q 2 and Q 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or straight-substituted with halogen It is a chain or branched alkyl group having 1 to 10 carbon atoms. The broken line is the bond with R 1 or L. Some of these monomers are commercially available, and some can be produced from known substances by known production methods.
 モノマーM1の好ましい例としては、下記式(M1-1)~(M1-5)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000018
(式中、PLは、上記と同じ。pは、2~9の整数である。)
Preferred examples of the monomer M1 include those represented by the following formulas (M1-1) to (M1-5).
Figure JPOXMLDOC01-appb-C000018
(In the formula, PL is the same as above. P is an integer from 2 to 9.)
 液晶性のみを発現する構造を有するモノマー(以下、モノマーM2ともいう。)は、該モノマー由来のポリマーが液晶性を発現し、該ポリマーが側鎖部位にメソゲン基を形成することができるモノマーのことである。 A monomer having a structure that expresses only liquid crystal properties (hereinafter, also referred to as monomer M2) is a monomer in which a polymer derived from the monomer expresses liquid crystal properties and the polymer can form a mesogen group at a side chain site. That is.
 側鎖の有するメソゲン基としては、ビフェニルやフェニルベンゾエート等の単独でメソゲン構造となる基であっても、安息香酸等のように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては、下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000019
As the mesogen group having a side chain, even if it is a group having a mesogen structure by itself such as biphenyl or phenylbenzoate, it is a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid. May be good. The following structure is preferable as the mesogen group contained in the side chain.
Figure JPOXMLDOC01-appb-C000019
 モノマーM2のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種に由来する重合性基と、式(1)~(13)の少なくとも1種からなる構造を有する構造であることが好ましい。特に、モノマーM2は、重合性基として(メタ)アクリレートを有するものであるものが好ましく、側鎖の末端が-COOHであるものが好ましい。 More specific examples of the monomer M2 consist of radically polymerizable groups such as hydrocarbons, (meth) acrylates, itacones, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and siloxane. It is preferable that the structure has a structure consisting of a polymerizable group derived from at least one selected from the group and at least one of the formulas (1) to (13). In particular, the monomer M2 preferably has a (meth) acrylate as a polymerizable group, and preferably has a side chain terminal of −COOH.
 モノマーM2の好ましい例としては、下記式(M2-1)~(M2-11)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000020
Preferred examples of the monomer M2 include those represented by the following formulas (M2-1) to (M2-11).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式中、PL及びpは、上記と同じ。)
Figure JPOXMLDOC01-appb-C000021
(In the formula, PL and p are the same as above.)
 また、光反応性及び/又は液晶性の発現能を損なわない範囲で、その他のモノマーを共重合することができる。その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。 Further, other monomers can be copolymerized as long as the photoreactiveness and / or liquid crystallinity expression ability is not impaired. Examples of other monomers include industrially available radical polymerization-reactive monomers. Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic acid anhydrides, styrene compounds, vinyl compounds and the like.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。 Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of the acrylic acid ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Examples thereof include propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Examples thereof include propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl methacrylate and the like.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。スチレン化合物としては、例えば、スチレン、4-メチルスチレン、4-クロロスチレン、4-ブロモスチレン等が挙げられる。マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like. Examples of the styrene compound include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene and the like. Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 本発明の側鎖型重合体における側鎖aの含有量は、光反応性の点から、20~99.9モル%が好ましく、30~95モル%がより好ましく、40~90モル%が更に好ましい。 The content of the side chain a in the side chain polymer of the present invention is preferably 20 to 99.9 mol%, more preferably 30 to 95 mol%, and further 40 to 90 mol% from the viewpoint of photoreactivity. preferable.
 本発明の側鎖型重合体における側鎖bの含有量は、位相差値の観点から、0.1~80モル%が好ましく、5~70モル%がより好ましく、10~60モル%が更に好ましい。  The content of the side chain b in the side chain polymer of the present invention is preferably 0.1 to 80 mol%, more preferably 5 to 70 mol%, and further preferably 10 to 60 mol% from the viewpoint of the retardation value. preferable.
 本発明の側鎖型重合体は、上述したとおり、その他の側鎖を含んでいてもよい。その他の側鎖の含有量は、側鎖a及び側鎖bの含有量の合計が100モル%に満たない場合に、その残りの部分である。 As described above, the side chain polymer of the present invention may contain other side chains. The content of the other side chain is the remaining portion when the total content of the side chain a and the side chain b is less than 100 mol%.
 (A)成分の側鎖型重合体の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、上述したモノマーM1、モノマーM2及び所望によりその他のモノマーのビニル基を利用したラジカル重合、カチオン重合又はアニオン重合により製造することができる。これらの中では、反応制御のしやすさ等の観点からラジカル重合が特に好ましい。 The method for producing the side chain polymer of the component (A) is not particularly limited, and a general-purpose method that is industrially handled can be used. Specifically, it can be produced by radical polymerization, cationic polymerization or anionic polymerization using the vinyl groups of the above-mentioned monomers M1 and M2 and, if desired, other monomers. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control and the like.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤(ラジカル熱重合開始剤、ラジカル光重合開始剤)や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, a known compound such as a radical polymerization initiator (radical thermal polymerization initiator, radical photopolymerization initiator) or a reversible addition-cleavage chain transfer (RAFT) polymerization reagent shall be used. Can be done.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation). Hydrogen, tert-butylhydroxide, cumenehydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.) Etc.), alkyl peresters (peroxyneodecanic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, etc.) Examples thereof include sodium persulfate, ammonium persulfate, etc.), azo radical compounds (azobisisobutyronitrile, 2,2′-di (2-hydroxyethyl) azobisisobutyronitrile, etc.) and the like. The radical thermal polymerization initiator may be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy. -2-Methylpropiophenone, 2-Hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenylketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthron, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-Molholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (tert-butylperoxycarbonyl) benzophenone, 3,4,4'-tri ( tert-Butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3' , 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2 -(2'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [PN, N-di (ethoxycarbonylmethyl)]-2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s- Triazine, 1,3-bis (trichloromethyl) -5- (4'-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-Mercaptobenzothiazole, 3,3'-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-) Dichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl -1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 3-( 2-Methyl-2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexylphenylketone, bis (5-2,4- Cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) titanium, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) Benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3, 4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2- (3-Methyl-3H-benzothiazole-2-iriden) -1-naphthalen-2-yl-etanone, 2- (3-methyl-1,3-benzothiazole-2 (3H) -iriden) -1 -(2-Benzoyl) etanone and the like can be mentioned. The radical photopolymerization initiator may be used alone or in combination of two or more.
 ラジカル重合法としては、特に限定されるものではなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, a massive polymerization method, a solution polymerization method and the like can be used.
 重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 The organic solvent used in the polymerization reaction is not particularly limited as long as the produced polymer dissolves. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, dimethylsulfoxide, and tetramethylurea. , Ppyridine, dimethyl sulfone, hexamethylphosphate triamide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, Methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol -Tert-Butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, Dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene , Amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, Propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3 -Methoxypropion Ethyl acid, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglime, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N Examples thereof include -dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like.
 上記有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。 The above organic solvent may be used alone or in combination of two or more. Further, even if the solvent does not dissolve the produced polymer, it may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in an organic solvent causes an inhibition of the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 to 150 ° C, but is preferably in the range of 50 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high mass, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then an organic solvent can be added.
 上述したラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。 In the above-mentioned radical polymerization reaction, when the ratio of the radical polymerization initiator is large with respect to the monomer, the molecular weight of the obtained polymer is small, and when the ratio of the radical polymerization initiator is small, the molecular weight of the obtained polymer is large. It is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added at the time of polymerization.
 上記反応により得られた反応溶液から生成したポリマーを回収するには、反応溶液を貧溶媒に投入して、それら重合体を沈殿させればよい。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。 In order to recover the polymer produced from the reaction solution obtained by the above reaction, the reaction solution may be put into a poor solvent to precipitate the polymers. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water and the like. The polymer which has been put into a poor solvent and precipitated can be collected by filtration and then dried at normal temperature or by heating under normal pressure or reduced pressure. Further, by repeating the operation of redistributing the recovered polymer in an organic solvent and reprecipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the purification efficiency is further improved.
 本発明の(A)側鎖型重合体は、得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮すると、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2,000~2,000,000であるものが好ましく、2,000~1,000,000であるものがより好ましく、5,000~200,000であるものがより一層好ましい。 The side chain polymer (A) of the present invention has a weight average molecular weight measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of coating film formation, and uniformity of the coating film. However, it is preferably 2,000 to 2,000,000, more preferably 2,000 to 1,000,000, and even more preferably 5,000 to 200,000.
[(B)シランカップリング剤]
 本発明の重合体組成物は、(B)シランカップリング剤を含む。上記シランカップリング剤としては、下記式(B)で表されるシラン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000022
[(B) Silane coupling agent]
The polymer composition of the present invention contains (B) a silane coupling agent. As the silane coupling agent, a silane compound represented by the following formula (B) is preferable.
Figure JPOXMLDOC01-appb-C000022
 式(B)中、R21は、反応性官能基である。R22は、加水分解性基である。R23は、メチル基又はエチル基である。xは、0~3の整数である。yは、1~3の整数である。 In formula (B), R 21 is a reactive functional group. R 22 is a hydrolyzable group. R 23 is a methyl group or an ethyl group. x is an integer of 0 to 3. y is an integer of 1 to 3.
 R21で表される反応性官能基としては、アミノ基、ウレイド基、(メタ)アクリロキシ基、ビニル基、エポキシ基、メルカプト基及びオキセタン構造を有する基等が挙げられ、アミノ基、ウレイド基、(メタ)アクリロイルオキシ基及びオキセタン構造を有する基等が好ましい。特に好ましくはオキセタン構造を有する基である。 Examples of the reactive functional group represented by R 21 include an amino group, a ureido group, a (meth) acryloxy group, a vinyl group, an epoxy group, a mercapto group and a group having an oxetane structure, and examples thereof include an amino group, a ureido group, and a group having an oxetane structure. (Meta) Acryloyloxy groups, groups having an oxetane structure and the like are preferable. Particularly preferably, it is a group having an oxetane structure.
 R22で表される加水分解性基としては、ハロゲン原子、炭素数1~3のアルコキシ基、炭素数2~4のアルコキシアルコキシ基等が挙げられる。上記ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。炭素数1~3のアルコキシ基は、直鎖状又は分岐状のものが好ましく、具体的には、メトキシ基、エトキシ基、n-プロポキシ基及びイソプロポキシ基である。また、炭素数2~4のアルコキシアルコキシ基として具体的には、メトキシメトキシ基、2-メトキシエトキシ基、エトキシメトキシ基及び2-エトキシエトキシ基である。 Examples of the hydrolyzable group represented by R 22 include a halogen atom, an alkoxy group having 1 to 3 carbon atoms, and an alkoxyalkoxy group having 2 to 4 carbon atoms. Examples of the halogen atom include a chlorine atom and a bromine atom. The alkoxy group having 1 to 3 carbon atoms is preferably linear or branched, and specifically, it is a methoxy group, an ethoxy group, an n-propoxy group and an isopropoxy group. Specific examples of the alkoxyalkoxy group having 2 to 4 carbon atoms are a methoxymethoxy group, a 2-methoxyethoxy group, an ethoxymethoxy group and a 2-ethoxyethoxy group.
 (B)シランカップリング剤として具体的には、3-アミノプロピルトリクロロシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルトリメトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルトリエトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルメチルジメトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルメチルジエトキシシラン等が挙げられる。 (B) Specific examples of the silane coupling agent include 3-aminopropyltrichlorosilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropylmethyldi. Ethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy Propyltrimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl Diethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-( 3-Ethyloxetane-3-ylmethyloxy) Propyltrimethoxysilane, 3- (3-ethyloxetane-3-ylmethyloxy) propyltriethoxysilane, 3- (3-ethyloxetane-3-ylmethyloxy) propyl Examples thereof include methyldimethoxysilane and 3- (3-ethyloxetane-3-ylmethyloxy) propylmethyldiethoxysilane.
 これらのうち、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルトリメトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルトリエトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルメチルジメトキシシラン、3-(3-エチルオキセタン-3-イルメチルオキシ)プロピルメチルジエトキシシラン等が特に好ましい。上記シランカップリング剤としては、市販品を使用し得る。 Of these, 3- (3-ethyloxetane-3-ylmethyloxy) propyltrimethoxysilane, 3- (3-ethyloxetane-3-ylmethyloxy) propyltriethoxysilane, 3- (3-ethyloxetane-) 3-Ilmethyloxy) propylmethyldimethoxysilane, 3- (3-ethyloxetane-3-ylmethyloxy) propylmethyldiethoxysilane and the like are particularly preferable. As the silane coupling agent, a commercially available product can be used.
 本発明の重合体組成物中、(B)シランカップリング剤の含有量は、重合体100質量部に対し、0.001~10質量部が好ましく、0.01~5質量部がより好ましく、0.05~1質量部が更に好ましい。 The content of the (B) silane coupling agent in the polymer composition of the present invention is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, based on 100 parts by mass of the polymer. More preferably, 0.05 to 1 part by mass.
[(C)有機溶媒]
 (C)成分の有機溶媒は、重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して使用してもよい。
[(C) Organic solvent]
The organic solvent of the component (C) is not particularly limited as long as it is an organic solvent that dissolves the polymer component. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-ε-caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, and N-. Vinyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphate triamide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropaneamide, 3-ethoxy-N, N-dimethylpropane Amide, 3-butoxy-N, N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethylamyl ketone, methylnonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene Examples thereof include carbonate, diglime, 4-hydroxy-4-methyl-2-pentanone and the like. These may be used individually by 1 type, or may be used by mixing 2 or more types.
[その他の成分]
 本発明の重合体組成物は、(A)~(C)成分以外の成分を含んでもよい。その例としては、重合体組成物を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、位相差材と基板との密着性を向上させる化合物等が挙げられるが、これらに限定されない。
[Other ingredients]
The polymer composition of the present invention may contain components other than the components (A) to (C). Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when the polymer composition is applied, compounds that improve the adhesion between the retardation material and the substrate, and the like. Not limited.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒等が挙げられる。 Specific examples of the solvent (poor solvent) that improves the uniformity of film thickness and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, and butyl carbitol. , Ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, di Propropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether , Dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl buty Rate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate, n lactate -Butyl, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, 3-methoxypropion Ethyl acid, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol diacetate, propylene glycol Examples thereof include solvents having a low surface tension such as col-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, and 2- (2-ethoxypropoxy) propanol.
 これらの貧溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。上記貧溶媒を用いる場合、その含有量は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることがないように、溶媒中5~80質量%であることが好ましく、20~60質量%であることがより好ましい。 These poor solvents may be used alone or in combination of two or more. When the above-mentioned poor solvent is used, the content thereof is preferably 5 to 80% by mass, preferably 20 to 60% by mass, so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. More preferably, it is by mass%.
 膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。これらの具体例としては、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30、R-40(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の含有量は、(A)成分100質量部に対し、0.01~2質量部が好ましく、0.01~1質量部がより好ましい。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples of these include Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafuck (registered trademark) F171, F173, R-30, R-40 (manufactured by DIC), and Florard. FC430, FC431 (manufactured by 3M), Asahi Guard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical), etc. Can be mentioned. The content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the component (A).
 さらに、基板と位相差材の密着性の向上に加え、バックライト等の光による特性の低下等を防ぐ目的で、フェノプラスト系化合物やエポキシ基含有化合物を、重合体組成物に添加してもよい。 Further, in addition to improving the adhesion between the substrate and the retardation material, even if a phenoplast-based compound or an epoxy group-containing compound is added to the polymer composition for the purpose of preventing deterioration of characteristics due to light such as a backlight. Good.
 フェノプラスト系添加剤の具体例を以下に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000023
Specific examples of the phenoplast-based additive are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000023
 エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of the epoxy group-containing compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N'-tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane, N, N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, etc. Can be mentioned.
 基板との密着性を向上させる化合物を使用する場合、その含有量は、重合体組成物に含まれる重合体成分100質量部に対し、0.1~30質量部が好ましく、1~20質量部がより好ましい。含有量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves the adhesion to the substrate is used, the content thereof is preferably 0.1 to 30 parts by mass and 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the polymer composition. Is more preferable. If the content is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it is more than 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 添加剤として、光増感剤を用いることもできる。光増感剤としては、無色増感剤及び三重項増感剤が好ましい。 A photosensitizer can also be used as an additive. As the photosensitizer, a colorless sensitizer and a triplet sensitizer are preferable.
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-又はジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン等)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン等)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン等)、ベンゾチアゾール、ニトロアニリン(m-又はp-ニトロアニリン、2,4,6-トリニトロアニリン等)、ニトロアセナフテン(5-ニトロアセナフテン等)、2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン等)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、9-アントラセンカルボン酸等)、ベンゾピラン、アゾインドリジン、メロクマリン等が挙げられる。これらのうち、好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン及びアセトフェノンケタールである。 Photosensitizers include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarin, carbonylbiscoumarin, aromatic 2-hydroxyketone (2-hydroxybenzophenone, Mono- or di-p- (dimethylamino) -2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xantone, thioxanthone, benzanthron, thiazolin (2-benzoylmethylene-3-methyl-β-naphthothiazolin, 2- (β) -Naftylmethylene) -3-methylbenzothiazolin, 2- (α-naphthoylmethylene) -3-methylbenzothiazolin, 2- (4-biphenoylmethylene) -3-methylbenzothiazolin, 2- (β-naphtho) Ilmethylene) -3-methyl-β-naphthiazolin, 2- (4-biphenoylmethylene) -3-methyl-β-naphthiazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β-naphthiazoline Etc.), Oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) -3-methylbenzoxazoline , 2- (4-Bifenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoylmethylene) -3-methyl- β-Naftoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β-naphthoxazoline, etc.), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline, etc.) ), Nitroacenaften (5-nitroacenaften, etc.), 2-[(m-hydroxy-p-methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenyl) (Etanone, etc.), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol, 9-anthracenecarboxylic acid, etc.), benzopyran, azoindidine, merocmarin and the like. Of these, aromatic 2-hydroxyketones (benzophenone), coumarin, ketocoumarin, carbonyl biscumarin, acetophenone, anthraquinone, xanthone, thioxanthone and acetal phenone ketal are preferred.
 本発明の重合体組成物には、上述したもののほか、本発明の効果が損なわれない範囲であれば、位相差材の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差材にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above-mentioned ones, the polymer composition of the present invention includes a dielectric material for the purpose of changing the electrical characteristics such as the dielectric constant and conductivity of the retardation material as long as the effects of the present invention are not impaired. A crosslinkable compound may be added for the purpose of increasing the hardness and the density of the film when it is used as a conductive substance or a retardation material.
[重合体組成物の調製]
 本発明の重合体組成物は、単層位相差材の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、(A)成分及び(B)成分、並びに上述した膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等が(C)成分の有機溶媒に溶解した溶液として調製されることが好ましい。ここで、(A)成分の含有量は、本発明の組成物中1~30質量%が好ましい。
[Preparation of polymer composition]
The polymer composition of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention contains the components (A) and (B), the above-mentioned solvent or compound that improves the film thickness uniformity and surface smoothness, and the adhesion between the liquid crystal alignment film and the substrate. It is preferable that a compound or the like for improving the above is prepared as a solution in which the component (C) is dissolved in an organic solvent. Here, the content of the component (A) is preferably 1 to 30% by mass in the composition of the present invention.
 本発明の重合体組成物は、(A)成分の重合体以外に、液晶発現能及び感光性能を損なわない範囲でその他の重合体が含まれていてもよい。その際、重合体成分中におけるその他の重合体の含有量は、好ましくは0.5~80質量%、より好ましくは1~50質量%である。その他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等の、液晶性を発現し得る感光性の側鎖型重合体ではない重合体等が挙げられる。 The polymer composition of the present invention may contain other polymers in addition to the polymer of the component (A) as long as the liquid crystal expression ability and the photosensitive performance are not impaired. At that time, the content of the other polymer in the polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass. Examples of other polymers include polymers such as poly (meth) acrylate, polyamic acid, and polyimide, which are not photosensitive side chain polymers capable of exhibiting liquid crystallinity.
[単層位相差材の製造方法]
 前述したとおり、本発明のパターニングされた単層位相差材の製造方法は、下記工程(I)~(III)を含むものである。
(I)液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体を含む重合体組成物を、基板上に塗布して塗膜を形成する工程;
(II)工程(I)で得られた塗膜に、偏光紫外線を照射されることにより高い光学異方性を有する高異方性領域と、紫外線の量が、最適露光量未満の領域においては不足することにより、また、最適露光量を超える領域においては過剰であることにより、相対的に低い光学異方性を有する低異方性領域とが生じるように、少なくとも1回はマスクを介しつつ、また、少なくとも1回は偏光紫外線を用いて、紫外線を2回照射する工程;及び
(III)工程(II)で得られた塗膜を加熱して、位相差材を得る工程。
[Manufacturing method of single-layer retardation material]
As described above, the method for producing a patterned single-layer retardation material of the present invention includes the following steps (I) to (III).
(I) A liquid crystal polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount. A step of applying a polymer composition containing a polymer having the above on a substrate to form a coating film;
(II) In the highly anisotropic region having high optical anisotropy by irradiating the coating film obtained in step (I) with polarized ultraviolet rays, and in the region where the amount of ultraviolet rays is less than the optimum exposure amount. Through the mask at least once so that a low anisotropy region having a relatively low optical anisotropy occurs due to a shortage and an excess in the region exceeding the optimum exposure amount. Further, a step of irradiating the ultraviolet rays twice with polarized ultraviolet rays at least once; and a step of heating the coating film obtained in the steps (III) and (II) to obtain a retardation material.
[工程(I)]
 工程(I)は、液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体を含む重合体組成物を、基板上に塗布して塗膜を形成する工程である。より具体的には、当該組成物を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属、例えば、アルミニウム、モリブデン、クロム等が被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、スピンコート、フローコート、ロールコート、スリットコート、スリットコートに続いたスピンコート、インクジェット法、印刷法等の方法によって塗布する。塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブン等の加熱手段によって、好ましくは50~200℃、より好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。
[Step (I)]
The step (I) is a liquid crystal polymer, and when the exposure amount is less than the optimum exposure amount, the orientation increases as the exposure amount increases, and when the exposure amount exceeds the optimum exposure amount, the orientation increases as the exposure amount increases. This is a step of applying a polymer composition containing a polymer having a reducing property onto a substrate to form a coating film. More specifically, the composition is coated on a substrate (for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a metal, for example, a substrate coated with aluminum, molybdenum, chromium, etc., a glass substrate, a quartz substrate, an ITO substrate). Etc.) and films (for example, resin films such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film), etc., bar coat, spin coat, flow coat, roll coat, slit coat , Slit coating followed by spin coating, inkjet method, printing method, etc. After coating, the solvent is evaporated at preferably 50 to 200 ° C., more preferably 50 to 150 ° C. by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven to obtain a coating film. Can be done.
[工程(II)]
 工程(II)では、工程(I)で得られた塗膜に、偏光紫外線を照射することによって高い光学異方性を有する高異方性領域と、紫外線の量が最適露光量未満の領域においては不足することにより、また、最適露光量を超える領域においては過剰であることにより、相対的に低い光学異方性を有する低異方性領域とが生じるように、少なくとも1回はマスクを介しつつ、また、少なくとも1回は偏光紫外線を用いて、紫外線を2回照射する。このような工程のより具体的な態様としては下記工程(II-1)~工程(II-3)が挙げられる。
[Step (II)]
In step (II), the coating film obtained in step (I) is irradiated with polarized ultraviolet rays in a highly anisotropic region having high optical anisotropy and in a region where the amount of ultraviolet rays is less than the optimum exposure amount. At least once through the mask so that there is a low anisotropy region with relatively low optical anisotropy due to a shortage and an excess in the region above the optimum exposure. At least once, polarized ultraviolet rays are used to irradiate the ultraviolet rays twice. More specific embodiments of such a step include the following steps (II-1) to (II-3).
[工程(II-1)]
 工程(II-1)は、異方性を付与したい領域のみが覆われるようにマスクを介して、1回目の紫外線照射を行う。この時の紫外線は、全光紫外線であっても偏光紫外線であってもよい。次に、マスクを外して、偏光紫外線を照射する。これにより、1回目の照射時にマスクで覆われた部分は偏光紫外線を1回だけ照射されることにより、異方性が付与されるとともに、1回目の紫外線照射を受けた領域では2回目の紫外線照射が行われることにより、異方性が減少する。
[Step (II-1)]
In step (II-1), the first ultraviolet irradiation is performed through a mask so that only the region to which anisotropy is desired to be imparted is covered. The ultraviolet rays at this time may be all-light ultraviolet rays or polarized ultraviolet rays. Next, the mask is removed and polarized ultraviolet rays are irradiated. As a result, the portion covered with the mask at the time of the first irradiation is irradiated with polarized ultraviolet rays only once to impart anisotropy, and the region subjected to the first ultraviolet irradiation is subjected to the second ultraviolet rays. Irradiation reduces anisotropy.
[工程(II-2)]
 工程(II-2)は、偏光紫外線を用いて1回目の紫外線照射をした後、異方性を付与したい領域のみが覆われるようにマスクを介して、2回目の紫外線照射を行う。2回目の照射するときの紫外線は、全光紫外線であっても偏光紫外線であってもよい。これにより、2回目の照射時にマスクで覆われた部分は偏光紫外線を1回だけ照射されることにより、異方性が付与されるとともに、2回目の紫外線照射を受けた領域では、異方性が減少する。
[Step (II-2)]
In the step (II-2), after the first ultraviolet irradiation using polarized ultraviolet rays, the second ultraviolet irradiation is performed through a mask so that only the region to which anisotropy is desired to be imparted is covered. The ultraviolet rays at the time of the second irradiation may be all-light ultraviolet rays or polarized ultraviolet rays. As a result, the portion covered with the mask during the second irradiation is anisotropyed by being irradiated with polarized ultraviolet rays only once, and the region subjected to the second irradiation is anisotropy. Decreases.
[工程(II-3)]
 工程(II-3)は、全光紫外線を用いて1回目の紫外線照射をした後、異方性を付与させたくない領域のみが覆われるようにマスクを介して、2回目に偏光紫外線照射を行う。1回目の照射するときの全光紫外線は、2回目の偏光紫外線よりも少ない照射量が好ましい。これにより、2回目の照射時にマスクで覆われなかった部分は偏光紫外線を照射されることにより、異方性が付与されるとともに、1回目の紫外線照射のみを受けた領域では、異方性が抑制される。
[Step (II-3)]
In step (II-3), after the first irradiation with ultraviolet rays using all-light ultraviolet rays, the second irradiation with polarized ultraviolet rays is performed through a mask so that only the region to which anisotropy is not desired to be imparted is covered. Do. The total light ultraviolet rays at the time of the first irradiation are preferably smaller than the second polarized ultraviolet rays. As a result, the portion not covered by the mask during the second irradiation is irradiated with polarized ultraviolet rays to impart anisotropy, and the region subjected to only the first ultraviolet irradiation is anisotropy. It is suppressed.
 なお、偏光紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。 When irradiating polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays from a certain direction through a polarizing plate. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film used. Then, for example, ultraviolet rays having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet rays, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 The irradiation amount of polarized ultraviolet rays depends on the coating film used. The irradiation amount is the amount of polarized ultraviolet rays that realizes the maximum value of ΔA (hereinafter, also referred to as ΔAmax), which is the difference between the ultraviolet absorptance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorptivity in the vertical direction in the coating film. The amount is preferably in the range of 1 to 70%, more preferably in the range of 1 to 50%.
 使用する露光マスクのパターン形状、パターンサイズは、特に限定されない。パターン形状としては、ラインパターン形状、ライン/スペース(L/S)パターン形状、ドット形状等が挙げられる。パターンサイズとしては、マイクロメーターサイズのパターンを形成することができる。例えば、L/Sパターン形状の微細パターンを有する露光マスクを用いることで、0.5~500μm程度の微細なL/Sパターンを形成することができる。 The pattern shape and pattern size of the exposure mask used are not particularly limited. Examples of the pattern shape include a line pattern shape, a line / space (L / S) pattern shape, and a dot shape. As the pattern size, a micrometer-sized pattern can be formed. For example, by using an exposure mask having a fine pattern having an L / S pattern shape, a fine L / S pattern of about 0.5 to 500 μm can be formed.
[工程(III)]
 工程(III)では、工程(II)で偏光紫外線を照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
[Step (III)]
In step (III), the coating film irradiated with polarized ultraviolet rays in step (II) is heated. Orientation control ability can be imparted to the coating film by heating.
 加熱は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。 For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystal property of the coating film to be used is exhibited.
 加熱温度は、前記重合体組成物に含まれる重合体が液晶性を発現する温度(以下、液晶発現温度という)の範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、前記重合体をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の範囲は、使用する重合体の液晶発現温度の範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。 The heating temperature is preferably within the range of the temperature at which the polymer contained in the polymer composition exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature). In the case of a thin film surface such as a coating film, the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when the polymer is observed in bulk. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the surface of the coating film. That is, the range of the heating temperature after irradiation with polarized ultraviolet rays is a range in which the lower limit is 10 ° C lower than the lower limit of the liquid crystal development temperature range of the polymer to be used, and the upper limit is the temperature 10 ° C lower than the upper limit of the liquid crystal temperature range. The temperature is preferably. If the heating temperature is lower than the above temperature range, the effect of amplifying anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film is in a state. Tends to be close to an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.
 なお、液晶発現温度は、重合体または塗膜表面が固体相から液晶相に相転移がおきる液晶転移温度以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。例えば、130℃以下で液晶性を発現するとは、固体相から液晶相に相転移がおきる液晶転移温度が130℃以下であることを意味する。 The liquid crystal development temperature is equal to or higher than the liquid crystal transition temperature at which the surface of the polymer or coating film undergoes a phase transition from the solid phase to the liquid crystal phase, and the isotropic phase undergoes a phase transition from the liquid crystal phase to the isotropic phase. A temperature below the phase transition temperature (Tiso). For example, exhibiting liquid crystallinity at 130 ° C. or lower means that the liquid crystal transition temperature at which a phase transition occurs from the solid phase to the liquid crystal phase is 130 ° C. or lower.
 加熱後に形成される塗膜の厚みは、使用する基板の段差や光学的、電気的性質を考慮し適宜選択することができ、例えば、0.5~10μmが好適である。 The thickness of the coating film formed after heating can be appropriately selected in consideration of the level difference of the substrate to be used and the optical and electrical properties, and is preferably 0.5 to 10 μm, for example.
 このようにして得られた本発明の単層位相差材は、表示装置や記録材料等の用途に好適な光学特性を有する材料であり、特に、液晶ディスプレイ用の偏光板及び位相差板等の光学補償フィルムとして好適である。 The single-layer retardation material of the present invention thus obtained is a material having optical characteristics suitable for applications such as display devices and recording materials, and in particular, polarizing plates and retardation plates for liquid crystal displays and the like. It is suitable as an optical compensation film.
 以下、合成例、調製例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to synthetic examples, preparation examples, examples and comparative examples, but the present invention is not limited to the following examples.
 実施例で使用した光反応性基を有するモノマーであるM1及び液晶性基を有するモノマーであるM2を以下に示す。M1、M2は、それぞれ、次のようにして合成した。M1は、国際公開第2011/084546号に記載された合成法に従って合成した。M2は、特開平9-118717号公報に記載された合成法に従って合成した。なお、M1に由来する側鎖は光反応性及び液晶性を発現し、M2に由来する側鎖は液晶性のみを有する。
Figure JPOXMLDOC01-appb-C000024
M1 which is a monomer having a photoreactive group and M2 which is a monomer having a liquid crystal group used in the examples are shown below. M1 and M2 were synthesized as follows, respectively. M1 was synthesized according to the synthetic method described in International Publication No. 2011/0854546. M2 was synthesized according to the synthesis method described in JP-A-9-118717. The side chain derived from M1 exhibits photoreactivity and liquid crystallinity, and the side chain derived from M2 has only liquid crystallinity.
Figure JPOXMLDOC01-appb-C000024
 その他、本実施例で用いた試薬の略号を以下に示す。
(有機溶媒)
THF:テトラヒドロフラン
NMP:N-エチル-2-ピロリドン
BCS:ブチルセロソロブ
PGME:プロピレングリコーモノメチルエーテル
In addition, the abbreviations of the reagents used in this example are shown below.
(Organic solvent)
THF: Tetrahydrofuran NMP: N-Ethyl-2-pyrrolidone BCS: Butyl cellosorb PGME: Propylene glycol monomethyl ether
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
(Polymerization initiator)
AIBN: 2,2'-azobisisobutyronitrile
(重合開始剤)
(添加剤)
TESOX-D:3-エチル-3-[3-(トリエトキシシリル)プロポキシメチル]オキセタン
Figure JPOXMLDOC01-appb-C000025
(Polymerization initiator)
(Additive)
TESOX-D: 3-Ethyl-3- [3- (triethoxysilyl) propoxymethyl] oxetane
Figure JPOXMLDOC01-appb-C000025
[合成例]メタクリレートポリマー粉末P1の合成
 M1(49.9g:150mmol)及びM2(68.9g:225mmol)をTHF(482.2g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(1.23g:7.5mmol)を加え再び脱気を行った。この後、60℃で8時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(3,020g)及び純水(1,200g)の混合溶液に滴下し、得られた沈殿物をろ別した。この沈澱物をメタノールで洗浄し、減圧乾燥することで、メタクリレートポリマー粉末P1を101.1g得た。
[Synthetic example] Synthesis of methacrylate polymer powder P1 M1 (49.9 g: 150 mmol) and M2 (68.9 g: 225 mmol) were dissolved in THF (482.2 g), degassed with a diaphragm pump, and then AIBN. (1.23 g: 7.5 mmol) was added and degassing was performed again. Then, the reaction was carried out at 60 ° C. for 8 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to a mixed solution of methanol (3,020 g) and pure water (1,200 g), and the obtained precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure to obtain 101.1 g of methacrylate polymer powder P1.
[調製例]ポリマー溶液の調製
 NMP(50.0g)にポリマー合成例P1にて得られたメタクリレートポリマー粉末P1(20.0g)を加え、室温で3時間撹拌して溶解させた。この溶液に、PGME(10.0g)、BCS(20.0g)、TESOX-D(1.00g)及びメガファックR-40(0.01g)を加え撹拌することにより、ポリマー溶液Q1を得た。
[Preparation Example] Preparation of Polymer Solution The methacrylate polymer powder P1 (20.0 g) obtained in Polymer Synthesis Example P1 was added to NMP (50.0 g), and the mixture was dissolved by stirring at room temperature for 3 hours. To this solution, PGME (10.0 g), BCS (20.0 g), TESOX-D (1.00 g) and Megafuck R-40 (0.01 g) were added and stirred to obtain a polymer solution Q1. ..
[位相差値評価基板の作製]
[実施例1]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射後、L/S=30μmを有する露光マスクを介して、全光紫外線を100mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R1を得た。
[Manufacturing of phase difference value evaluation board]
[Example 1]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coating film surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion), and then all-light ultraviolet rays were irradiated at 100 mJ / cm 2 (313 nm conversion) through an exposure mask having L / S = 30 μm. After two UV exposures, the substrate R1 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
[実施例2]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、L/S=30μmを有する露光マスクを介して、塗膜面に全光紫外線を100mJ/cm2(313nm換算)照射後、露光マスクを外して偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R2を得た。
[Example 2]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, after irradiating the coating film surface with 100 mJ / cm 2 (313 nm conversion) of total light ultraviolet rays through an exposure mask having L / S = 30 μm, the exposure mask is removed and polarized ultraviolet rays are 20 mJ / cm 2 (313 nm conversion). Irradiated. After two UV exposures, the substrate R2 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
[実施例3]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に全光紫外線を10mJ/cm2(313nm換算)照射後、L/S=30μmを有する露光マスクを介して、偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R3を得た。
[Example 3]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, after irradiating the coating film surface with total light ultraviolet rays at 10 mJ / cm 2 (313 nm conversion), polarized ultraviolet rays were irradiated at 20 mJ / cm 2 (313 nm conversion) through an exposure mask having L / S = 30 μm. After two exposures to ultraviolet rays, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate R3 with a retardation film.
[実施例4]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、L/S=30μmを有する露光マスクを介して、1度目の偏光紫外線の偏光軸から垂直になるように偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R4を得た。
[Example 4]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 20 mJ / cm 2 (313 nm conversion) so as to be perpendicular to the polarization axis of the first polarized ultraviolet rays through an exposure mask having L / S = 30 μm. After two exposures to ultraviolet rays, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate R4 with a retardation film.
[実施例5]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面にL/S=30μmを有する露光マスクを介して、偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、露光マスクを外して、1度目の偏光紫外線の偏光軸から垂直になるように偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R5を得た。
[Example 5]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (in terms of 313 nm) through an exposure mask having L / S = 30 μm. Subsequently, the exposure mask was removed, and polarized ultraviolet rays were irradiated at 20 mJ / cm 2 (313 nm conversion) so as to be perpendicular to the polarization axis of the first polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate R5 with a retardation film.
[実施例6]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、L/S=30μmを有する露光マスクを介して、1度目の偏光紫外線の偏光軸と平行になるように偏光紫外線を100mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R6を得た。
[Example 6]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 100 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays through an exposure mask having L / S = 30 μm. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate R6 with a retardation film.
[実施例7]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、L/S=30μmを有する露光マスクを介して、1度目の偏光紫外線の偏光軸と平行になるように偏光紫外線を200mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R7を得た。
[Example 7]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 200 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays through an exposure mask having L / S = 30 μm. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate R7 with a retardation film.
[実施例8]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、L/S=30μmを有する露光マスクを介して、1度目の偏光紫外線の偏光軸と平行になるように偏光紫外線を400mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板R8を得た。
[Example 8]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 400 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays through an exposure mask having L / S = 30 μm. After two UV exposures, the substrate R8 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
[比較例1]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面にL/S=20μmを有する露光マスクを介して、偏光紫外線を20mJ/cm2(313nm換算)照射した。偏光紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板S1を得た。
[Comparative Example 1]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (in terms of 313 nm) through an exposure mask having L / S = 20 μm. After exposure to polarized ultraviolet rays, the substrate S1 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes.
 以上の実施例1~8及び比較例1の露光工程をまとめると表1の通りとなる。なお、実施例1、2、4~8においては、露光マスクに覆われた部分が高異方性領域(以後、異方相領域とも称する)となり、露光マスクに覆われなかった部分が低異方性領域(以後、等方相領域とも称する)となった。実施例3においては、露光マスクに覆われた領域が等方相となった。 Table 1 summarizes the exposure steps of Examples 1 to 8 and Comparative Example 1 described above. In Examples 1, 2, 4 to 8, the portion covered by the exposure mask is a highly anisotropic region (hereinafter, also referred to as an anisotropic phase region), and the portion not covered by the exposure mask is low. It became an anisotropic region (hereinafter also referred to as an isotropic region). In Example 3, the region covered by the exposure mask became isotropic.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
[HAZE評価基板の作製]
[基板T1の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T1を得た。基板T1は、実施例1、2、実施例4~8、比較例1の異方相領域のHAZEを模した基板である。
[Preparation of HAZE evaluation board]
[Preparation of substrate T1]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coating film surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (in terms of 313 nm). After exposure to ultraviolet rays, the substrate T1 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes. The substrate T1 is a substrate that imitates HAZE in the anisotropic phase region of Examples 1, 2, Examples 4 to 8, and Comparative Example 1.
[基板T2の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に全光紫外線を10mJ/cm2(313nm換算)照射後、偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T2を得た。基板T2は、実施例3の異方相領域のHAZEを模した基板である。
[Preparation of substrate T2]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coating film surface was irradiated with total light ultraviolet rays at 10 mJ / cm 2 (313 nm conversion) and then with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). After two UV exposures, the substrate T2 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes. The substrate T2 is a substrate that imitates HAZE in the anisotropic phase region of Example 3.
[基板T3の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射後、全光紫外線を100mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板S3を得た。基板T3は、実施例1の等方相領域のHAZEを模した基板である。
[Preparation of substrate T3]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coating film surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion) and then with total light ultraviolet rays at 100 mJ / cm 2 (313 nm conversion). After two ultraviolet exposures, the substrate S3 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes. The substrate T3 is a substrate that imitates HAZE in the isotropic region of Example 1.
[基板T4の作製]
ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に全光紫外線を100mJ/cm2(313nm換算)照射後、偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T4を得た。基板T4は、実施例2の等方相領域のHAZEを模した基板である。
[Preparation of substrate T4]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coating film surface was irradiated with 100 mJ / cm 2 (313 nm conversion) of total light ultraviolet rays, and then 20 mJ / cm 2 (313 nm conversion) with polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T4 with a retardation film. The substrate T4 is a substrate that imitates HAZE in the isotropic region of Example 2.
[基板T5の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、塗膜面に全光紫外線を10mJ/cm2(313nm換算)照射した。紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T5を得た。基板T5は、実施例3の等方相領域のHAZEを模した基板である。
[Preparation of substrate T5]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Next, the coating film surface was irradiated with total light ultraviolet rays at 10 mJ / cm 2 (313 nm conversion). After exposure to ultraviolet rays, it was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T5 with a retardation film. The substrate T5 is a substrate that imitates HAZE in the isotropic region of Example 3.
[基板T6の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、1度目の偏光紫外線の偏光軸と垂直になるように偏光紫外線を20mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T6を得た。基板T6は、実施例4,5の等方相領域のHAZEを模した基板である。
[Preparation of substrate T6]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 20 mJ / cm 2 (313 nm conversion) so as to be perpendicular to the polarization axis of the first polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T6 with a retardation film. The substrate T6 is a substrate that imitates HAZE in the isotropic region of Examples 4 and 5.
[基板T7の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、1度目の偏光紫外線の偏光軸と平行になるように偏光紫外線を100mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T7を得た。基板T7は、実施例6の等方相領域のHAZEを模した基板である。
[Preparation of substrate T7]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 100 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T7 with a retardation film. The substrate T7 is a substrate that imitates HAZE in the isotropic region of Example 6.
[基板T8の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、1度目の偏光紫外線の偏光軸と平行になるように偏光紫外線を200mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T8を得た。基板T8は、実施例7の等方相領域のHAZEを模した基板である。
[Preparation of substrate T8]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 200 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays. After two ultraviolet exposures, the substrate T8 with a retardation film was obtained by heating on a hot plate at 140 ° C. for 20 minutes. The substrate T8 is a substrate that imitates HAZE in the isotropic region of Example 7.
[基板T9の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。塗膜面に偏光紫外線を20mJ/cm2(313nm換算)照射した。続いて、1度目の偏光紫外線の偏光軸と平行になるように偏光紫外線を400mJ/cm2(313nm換算)照射した。2度の紫外線露光後、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T9を得た。基板T9は、実施例8の等方相領域のHAZEを模した基板である。
[Preparation of substrate T9]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. The coated surface was irradiated with polarized ultraviolet rays at 20 mJ / cm 2 (313 nm conversion). Subsequently, polarized ultraviolet rays were irradiated at 400 mJ / cm 2 (313 nm conversion) so as to be parallel to the polarization axis of the first polarized ultraviolet rays. After two UV exposures, the mixture was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T9 with a retardation film. The substrate T9 is a substrate that imitates HAZE in the isotropic region of Example 8.
[基板T10の作製]
 ポリマー溶液Q1を孔径5.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、70℃のホットプレート上で240秒間乾燥し、膜厚3.0μmの位相差膜を形成した。次いで、140℃のホットプレートで20分間加熱し、位相差膜付きの基板T10を得た。基板T10は、比較例1の等方相領域のHAZEを模した基板である。
[Preparation of substrate T10]
The polymer solution Q1 was filtered through a filter having a pore size of 5.0 μm, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 70 ° C. for 240 seconds to form a retardation film having a film thickness of 3.0 μm. .. Then, it was heated on a hot plate at 140 ° C. for 20 minutes to obtain a substrate T10 with a retardation film. The substrate T10 is a substrate that imitates HAZE in the isotropic region of Comparative Example 1.
[位相差評価]
 Axo Metrix社製のAxo Stepを用いて、位相差膜付き基板R1~R8及び位相差膜付き基板S1の550nmにおける位相差値を評価した。その結果を表2に示す。
[Phase difference evaluation]
Using an Axo Step manufactured by Axo Metalix, the retardation values of the substrates R1 to R8 with a retardation film and the substrate S1 with a retardation film at 550 nm were evaluated. The results are shown in Table 2.
[HAZE評価]
 スガ試験機株式会社製のHAZE Meter HZ-V3を用いて、位相差膜付き基板T1~T10のHAZEを評価した。その結果を表2に示す。
[HAZE evaluation]
HAZE of substrates T1 to T10 with a retardation film was evaluated using HAZE Meter HZ-V3 manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2の結果より、実施例1~8と比較例1との対比から、等方相領域に紫外線を照射することで等方相領域のHAZE値が抑制された結果が得られた。しかし、照射プロセスの違いにより、実施例1~8の異方相及び等方相の位相差値に違いが生じた。中でも実施例4及び5は、HAZE値の抑制に加えて、異方相と等方相の位相差値の差が大きく、異方相にて高い位相差値を発現し、等方相の位相差値が抑制された非常に良好な結果が得られた。また、実施例6~8より、2度目の偏光露光量増加に伴い、等方相の位相差値が抑制された結果が得られた。これは、メタクリレートポリマー粉末P1が最適露光量を超える露光量においては配向性が減少する性質を有しているためである。 From the results in Table 2, from the comparison between Examples 1 to 8 and Comparative Example 1, the result that the HAZE value in the isotropic region was suppressed by irradiating the isotropic region with ultraviolet rays was obtained. However, due to the difference in the irradiation process, the retardation values of the anisotropic and isotropic phases of Examples 1 to 8 were different. Among them, in Examples 4 and 5, in addition to suppressing the HAZE value, the difference between the anisotropic phase and the isotropic phase is large, and the anisotropic phase expresses a high retardation value, and the isotropic phase position. Very good results were obtained with suppressed phase difference values. Further, from Examples 6 to 8, the result that the phase difference value of the isotropic phase was suppressed with the increase of the polarization exposure amount for the second time was obtained. This is because the methacrylate polymer powder P1 has a property of reducing the orientation at an exposure amount exceeding the optimum exposure amount.
 本発明の方法は、等方相領域のHAZE値が抑制されたパターニングされた単層位相差材の製造方法として有用である。 The method of the present invention is useful as a method for producing a patterned single-layer retardation material in which the HAZE value in the isotropic region is suppressed.

Claims (7)

  1.  (I)液晶性重合体であって、最適露光量未満の露光量においては露光量が多いほど配向性が増加し、最適露光量を超える露光量では露光量が多いほど配向性が減少する性質を有する重合体を含む重合体組成物を、基板上に塗布して塗膜を形成する工程;
    (II)工程(I)で得られた塗膜に、偏光紫外線を照射されることにより高い光学異方性を有する高異方性領域と、紫外線の量が、最適露光量未満の領域においては不足することにより、また、最適露光量を超える領域においては過剰であることにより、相対的に低い光学異方性を有する低異方性領域とが生じるように、少なくとも1回はマスクを介しつつ、また、少なくとも1回は偏光紫外線を用いて、紫外線を2回照射する工程;及び
    (III)工程(II)で得られた塗膜を加熱して、位相差材を得る工程
    を含む、パターニングされた単層位相差材の製造方法。
    (I) A liquid crystal polymer having a property that the orientation increases as the exposure amount increases when the exposure amount is less than the optimum exposure amount, and the orientation decreases as the exposure amount increases when the exposure amount exceeds the optimum exposure amount. A step of applying a polymer composition containing a polymer having the above on a substrate to form a coating film;
    (II) In the highly anisotropic region having high optical anisotropy by irradiating the coating film obtained in step (I) with polarized ultraviolet rays, and in the region where the amount of ultraviolet rays is less than the optimum exposure amount. Through the mask at least once so that a low anisotropy region having a relatively low optical anisotropy occurs due to a shortage and an excess in the region exceeding the optimum exposure amount. Patterning also includes a step of irradiating the ultraviolet rays twice with polarized ultraviolet rays at least once; and a step of heating the coating film obtained in the steps (III) and (II) to obtain a retardation material. A method for manufacturing a single-layer retardation material.
  2.  前記重合体組成物が、
    (A)下記式(a)で表される光反応性部位を有する側鎖を有する側鎖型高分子;
    (B)シランカップリング剤;及び
    (C)有機溶媒
    を含むものである、請求項1記載のパターニングされた単層位相差材の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。また、-CH2-は、R1中の末端の-CH2-であってもよい。
     R2は、2価の芳香族基、2価の脂環族基、2価の複素環式基又は2価の縮合環式基である。
     R3は、単結合、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
     Rは、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基又はニトロ基であり、c≧2のとき、各Rは、互いに同一であってもよく、異なっていてもよい。
     aは、0、1又は2である。
     bは、0又は1である。
     cは、0≦c≦2b+4を満たす整数である。
     破線は、結合手である。)
    The polymer composition
    (A) A side chain polymer having a side chain having a photoreactive site represented by the following formula (a);
    The method for producing a patterned single-layer retardation material according to claim 1, which comprises (B) a silane coupling agent; and (C) an organic solvent.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 is an alkylene group having 1 to 30 carbon atoms, one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Also, in R 1 of -CH 2 CH 2 - is, may be substituted by -CH = CH-, -CH in R 1 2 - is, -O -, - NH-C (= O) -, - C (= From O) -NH-, -C (= O) -O-, -OC (= O)-, -NH-, -NH-C (= O) -NH- and -C (= O)- It may be substituted with a group selected from the group consisting of: however, the adjacent -CH 2- dos not be substituted with these groups at the same time, and -CH 2- is the terminal-in R 1. It may be CH 2-.
    R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group or a divalent fused ring group.
    R 3 is a single bond, -O-, -C (= O) -O-, -OC (= O)-or -CH = CH-C (= O) -O-.
    R is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group or a nitro group, and c ≧. When 2, each R may be the same as or different from each other.
    a is 0, 1 or 2.
    b is 0 or 1.
    c is an integer satisfying 0 ≦ c ≦ 2b + 4.
    The dashed line is the bond. )
  3.  上記光反応性部位を有する側鎖が、下記式(a1)で表されるものである請求項2記載のパターニングされた単層位相差材の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2及びaは、上記と同じ。
     R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。
     式(a1)中のベンゼン環は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     破線は、結合手である。)
    The method for producing a patterned single-layer retardation material according to claim 2, wherein the side chain having the photoreactive site is represented by the following formula (a1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 , R 2 and a are the same as above.
    R 3A is a single bond, -O-, -C (= O) -O- or -OC (= O)-.
    The benzene ring in the formula (a1) includes an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a cyano group and the like. It may be substituted with a substituent selected from nitro groups.
    The dashed line is the bond. )
  4.  (A)側鎖型重合体が、更に、液晶性のみを発現する側鎖を有する請求項2又は3記載のパターニングされた単層位相差材の製造方法。 (A) The method for producing a patterned single-layer retardation material according to claim 2 or 3, wherein the side chain polymer further has a side chain that expresses only liquid crystallinity.
  5.  上記液晶性のみを発現する側鎖が、下記式(1)~(13)のいずれかで表される液晶性側鎖である請求項4記載のパターニングされた単層位相差材の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-C(=O)-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。
     R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルキルオキシ基である。
     R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
     R13は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
     Eは、-C(=O)-O-又は-O-C(=O)-である。
     dは、1~12の整数である。
     k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
     k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
     m1、m2及びm3は、それぞれ独立に、1~3の整数である。
     nは、0又は1である。
     Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-、-CH=N-又は-CF2-である。
     破線は、結合手である。)
    The method for producing a patterned single-layer retardation material according to claim 4, wherein the side chain expressing only the liquid crystal property is a liquid crystal side chain represented by any of the following formulas (1) to (13).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (In the equation, A 1 and A 2 are independent, single bond, -O-, -CH 2- , -C (= O) -O-, -OC (= O)-, -C (= O) -NH-, -NH-C (= O)-, -CH = CH-C (= O) -O- or -OC (= O) -CH = CH-.
    R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and carbon. It is an alkyl group having a number of 1 to 12 or an alkyloxy group having a carbon number of 1 to 12.
    R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these groups. The group selected from the above, and the hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
    R 13 is a hydrogen atom, -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing complex. It is a ring group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms.
    E is -C (= O) -O- or -OC (= O)-.
    d is an integer from 1 to 12.
    k1 to k5 are independently integers of 0 to 2, but the total of k1 to k5 is 2 or more.
    k6 and k7 are independently integers of 0 to 2, but the total of k6 and k7 is 1 or more.
    m1, m2 and m3 are independently integers of 1 to 3.
    n is 0 or 1.
    Z 1 and Z 2 are independently single-bonded, -C (= O)-, -CH 2 O-, -CH = N- or -CF 2- .
    The dashed line is the bond. )
  6.  上記液晶性のみを発現する側鎖が、式(1)~(11)のいずれかで表される液晶性側鎖である請求項5記載のパターニングされた単層位相差材の製造方法。 The method for producing a patterned single-layer retardation material according to claim 5, wherein the side chain that expresses only the liquid crystal property is a liquid crystal side chain represented by any of the formulas (1) to (11).
  7.  請求項1~6のいずれか1項記載の方法により製造された単層位相差材。 A single-layer retardation material manufactured by the method according to any one of claims 1 to 6.
PCT/JP2020/041189 2019-11-05 2020-11-04 Method for producing patterned single-layer retardation material WO2021090832A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021554950A JPWO2021090832A1 (en) 2019-11-05 2020-11-04
CN202080074674.XA CN114616518A (en) 2019-11-05 2020-11-04 Method for manufacturing patterned single-layer phase difference material
KR1020227018091A KR20220098362A (en) 2019-11-05 2020-11-04 Manufacturing method of patterned single-layer retardation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019200918 2019-11-05
JP2019-200918 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021090832A1 true WO2021090832A1 (en) 2021-05-14

Family

ID=75848491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041189 WO2021090832A1 (en) 2019-11-05 2020-11-04 Method for producing patterned single-layer retardation material

Country Status (5)

Country Link
JP (1) JPWO2021090832A1 (en)
KR (1) KR20220098362A (en)
CN (1) CN114616518A (en)
TW (1) TW202134300A (en)
WO (1) WO2021090832A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223001A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Optical material patterned with optical axis direction and phase difference amount
JP2009298075A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Anti-counterfeit medium
JP2013007887A (en) * 2011-06-24 2013-01-10 Fujifilm Corp Method for manufacturing article having birefringence
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2015199052A1 (en) * 2014-06-24 2015-12-30 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
WO2016002691A1 (en) * 2014-06-30 2016-01-07 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2020111193A1 (en) * 2018-11-29 2020-06-04 日立化成株式会社 Semiconductor device manufacturing method, light-absorbing layered body, and temporary-fixing-use layered body
WO2020203628A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Polymer composition and mono-layer phase difference material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270407A (en) 1985-09-25 1987-03-31 Fuji Photo Film Co Ltd Preparation of orientated film
JPH09208957A (en) 1996-01-31 1997-08-12 Teijin Ltd Production of optical isomer
JP3945790B2 (en) 1997-12-25 2007-07-18 林テレンプ株式会社 Birefringent film and manufacturing method thereof
KR101436795B1 (en) 2006-09-13 2014-09-03 롤리크 아게 Volume photo-aligned retarder
JP2008164925A (en) 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd Retardation film and method for producing the same
CN101446769B (en) * 2007-11-27 2011-06-29 四川虹欧显示器件有限公司 Method for selecting exposure conditions of lithography
KR101090325B1 (en) 2009-03-18 2011-12-07 동방에프티엘(주) Industrial process of high purity olmesartan medoxomil
JP2010224247A (en) * 2009-03-24 2010-10-07 Toppan Printing Co Ltd Retardation plate, manufacturing method thereof, and polarizing plate and liquid crystal display device using the same
CN105518036B (en) * 2013-07-04 2018-01-02 日产化学工业株式会社 Polarized UV rays anisotropisation material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223001A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Optical material patterned with optical axis direction and phase difference amount
JP2009298075A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Anti-counterfeit medium
JP2013007887A (en) * 2011-06-24 2013-01-10 Fujifilm Corp Method for manufacturing article having birefringence
WO2014185410A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2015199052A1 (en) * 2014-06-24 2015-12-30 日産化学工業株式会社 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
WO2016002691A1 (en) * 2014-06-30 2016-01-07 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2020111193A1 (en) * 2018-11-29 2020-06-04 日立化成株式会社 Semiconductor device manufacturing method, light-absorbing layered body, and temporary-fixing-use layered body
WO2020203628A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Polymer composition and mono-layer phase difference material

Also Published As

Publication number Publication date
KR20220098362A (en) 2022-07-12
TW202134300A (en) 2021-09-16
JPWO2021090832A1 (en) 2021-05-14
CN114616518A (en) 2022-06-10

Similar Documents

Publication Publication Date Title
CN113557265B (en) Polymer composition and single layer phase difference material
WO2020203631A1 (en) Polymer composition and single-layer retardation material
JP2021140186A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2015002292A1 (en) Polarized UV anisotropy material
JP6369942B2 (en) Photoreactive composition, photo-alignment film using the same, and optically anisotropic film
JPWO2015025937A1 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2023008488A1 (en) Polymer composition and single-layer retardation material
WO2022071409A1 (en) Method for producing single-layer phase difference material
WO2022080378A1 (en) Method for manufacturing single-layer phase difference material
WO2021090832A1 (en) Method for producing patterned single-layer retardation material
JPWO2020111198A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and retardation material
CN113574119B (en) Polymer composition and single layer phase difference material
WO2022210639A1 (en) Method for producing patterned single-layer phase difference film, and single-layer phase difference film-forming polymer composition
WO2022138932A1 (en) Method for producing single-layer phase difference film and single-layer phase difference film-forming polymer composition
WO2024038887A1 (en) Polymer composition and single-layer retardation material
WO2023095925A1 (en) Polymer composition and single-layer retardation material
WO2024071364A1 (en) Polymer composition and single-layer retardation material
WO2023171760A1 (en) Phase difference film composition and single-layer phase difference material
JP6864251B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2023171757A1 (en) Polymer composition, single layer phase difference material, and liquid crystal alignment agent
JP2023167636A (en) Method for manufacturing substrate having liquid crystal alignment layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554950

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227018091

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883975

Country of ref document: EP

Kind code of ref document: A1