WO2023171760A1 - Phase difference film composition and single-layer phase difference material - Google Patents

Phase difference film composition and single-layer phase difference material Download PDF

Info

Publication number
WO2023171760A1
WO2023171760A1 PCT/JP2023/009103 JP2023009103W WO2023171760A1 WO 2023171760 A1 WO2023171760 A1 WO 2023171760A1 JP 2023009103 W JP2023009103 W JP 2023009103W WO 2023171760 A1 WO2023171760 A1 WO 2023171760A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
side chain
mmol
substituted
Prior art date
Application number
PCT/JP2023/009103
Other languages
French (fr)
Japanese (ja)
Inventor
友基 玉井
ダニエルアントニオ 櫻葉汀
司 藤枝
隆之 根木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023171760A1 publication Critical patent/WO2023171760A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a composition for a retardation film and a single-layer retardation material.
  • the material has optical properties suitable for use in display devices, recording materials, etc., and in particular, can be suitably used for optical compensation films such as polarizing plates and retardation plates for liquid crystal displays and organic EL (Electro Luminescence) display devices.
  • the present invention relates to a liquid crystalline polymer, a composition containing the polymer, and a single-layer retardation material obtained from the composition.
  • the polymerizable liquid crystal compound used here generally has a polymerizable group and a liquid crystal structure site (a structure site having a spacer part and a mesogen part), and an acrylic group is widely used as this polymerizable group. ing.
  • Such polymerizable liquid crystal compounds are generally made into polymers (films) by polymerizing them by irradiating them with radiation such as ultraviolet rays.
  • radiation such as ultraviolet rays.
  • Patent Document 1 a method of obtaining a polymer by supporting a specific polymerizable liquid crystal compound having an acrylic group between aligned supports and irradiating the compound with radiation while maintaining the compound in a liquid crystal state.
  • Patent Document 2 There is a known method (Patent Document 2) in which a photopolymerization initiator is added to a mixture of two types of polymerizable liquid crystal compounds having an acrylic group or a composition in which a chiral liquid crystal is mixed with this mixture, and the mixture is irradiated with ultraviolet rays to obtain a polymer. It is being
  • Organic EL panels have a reflective metal layer and are prone to problems with external light reflection. Therefore, it is known that these problems can be prevented by providing a circularly polarizing plate composed of a linearly polarizing plate and a retardation plate (film).
  • a conventional retardation plate is used as a circularly polarizing plate, there is a problem in that the antireflection of external light in an oblique direction is insufficient and undesirable coloring occurs.
  • NZ coefficient As a parameter representing the characteristics of the retardation film.
  • the closer this NZ coefficient is to 0.5 the less the viewing angle dependence of the retardation value of the retardation film becomes, and the more the effect of preventing reflection of external light in an oblique direction in a circularly polarizing plate of an organic EL is improved.
  • the present invention was made in view of the above problems, and enables the production of a single-layer retardation material with an NZ coefficient of 0.4 ⁇ NZ ⁇ 0.6 and a high retardation value through a simpler process.
  • the present invention aims to provide a composition for a retardation film and a single-layer retardation material obtained from the composition.
  • the present inventors have found that by using a composition containing a specific polymer, the NZ coefficient can be reduced to 0.4 ⁇ NZ ⁇ without using a liquid crystal alignment film. 0.6, and it was discovered that a single-layer retardation material having a high refractive index anisotropy ( ⁇ n) can be obtained in a thin film, and the present invention was completed.
  • the present invention provides the following composition for a retardation film and a single-layer retardation material.
  • a composition for a retardation film comprising a side chain type copolymer containing a terminal carboxylic acid side chain, and (B) an organic solvent.
  • the side chain type copolymer (A) has a side chain having a photoreactive site represented by the following formula (a) and a side chain having a site represented by the following formula (b).
  • composition for a retardation film according to ⁇ 1> which is a chain polymer.
  • R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group.
  • R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent fused cyclic group.
  • R 4 is a divalent aromatic group, -Ph-Cy-, -Cy-Ph-, or a divalent fused cyclic group (where Ph represents a phenylene group and Cy represents a cyclohexanediyl group). be.
  • R 6 is an alkylene group having 1 to 10 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group.
  • the hydrogen atom in the ring structure and CH ⁇ CH structure in formula (a) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
  • the hydrogen atom in the ring structure in formula (b) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group.
  • a is 0, 1 or 2.
  • b is 0 or 1.
  • c is an integer satisfying 0 ⁇ c ⁇ 2b+4.
  • d is 1 or 2.
  • e is 0 or 1.
  • the hydrogen atom in the benzene ring and in the CH ⁇ CH structure in formula (a1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
  • the broken lines are bonds.
  • ⁇ 5> The composition for a retardation film according to any one of ⁇ 1> to ⁇ 4>, wherein the side chain polymer exhibits liquid crystallinity.
  • ⁇ 6> (I) A step of applying the retardation film composition according to any one of ⁇ 1> to ⁇ 5> onto a substrate to form a coating film, (II) A method for producing a single-layer retardation material, comprising the steps of: (II) irradiating the coating film with polarized ultraviolet rays; and (III) heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
  • ⁇ 7> A single-layer retardation material obtained from the composition according to any one of ⁇ 1> to ⁇ 5>.
  • the present invention it is possible to provide a single-layer retardation material having an NZ coefficient of 0.4 ⁇ NZ ⁇ 0.6 and a high retardation value even if it is a thin film, and a polymer that provides the same.
  • the composition for a retardation film of the present invention (hereinafter also referred to as a polymer composition) has a photosensitive side chain type polymer (hereinafter also simply referred to as a side chain type polymer) capable of exhibiting liquid crystallinity.
  • the coating film obtained using the above polymer composition is a film containing a photosensitive side chain type polymer capable of exhibiting liquid crystallinity. This coating film is subjected to orientation treatment by polarized light irradiation without performing rubbing treatment.
  • the side chain type polymer film After irradiation with polarized light, the side chain type polymer film is heated to become a film imparted with optical anisotropy (hereinafter also referred to as a single-layer retardation material).
  • a single-layer retardation material a film imparted with optical anisotropy
  • the slight anisotropy developed by polarized light irradiation becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization.
  • highly efficient alignment treatment can be achieved as a single-layer retardation material, and a single-layer retardation material imparted with high optical anisotropy can be obtained.
  • the side chain type polymer includes a side chain of a terminal carboxylic acid having a photoalignable site, typified by a side chain represented by the above formula (a), and a side chain of a terminal carboxylic acid represented by the above formula (a).
  • the ring structures of the two rings are on the same plane and the interaction between the side chains is strengthened, which increases liquid crystallinity and photoalignment, promoting alignment in the slow axis direction in the plane.
  • the retardation material obtained from the polymer composition of the present invention exhibits a high retardation value even in a thin film, nx is larger than nz, and due to the effect of the terminal carboxylic acid, nz is approximately equal to nx and ny. Indicates an intermediate value. Note that these include the inventor's opinion regarding the mechanism of the present invention, and do not constrain the present invention.
  • the polymer composition of the present invention is characterized by containing (A) a photosensitive side chain type polymer that exhibits liquid crystallinity in a predetermined temperature range and (B) an organic solvent.
  • Component (A) is a photosensitive side chain type polymer that exhibits liquid crystallinity in a predetermined temperature range, and has two or more rings and a terminal carboxylic acid side chain having a photoreactive site. It is also a side chain type copolymer containing a terminal carboxylic acid side chain in which the two rings on the terminal side have a single bond and are not covalently bonded.
  • the above-mentioned side chain type copolymer has a side chain having a photoreactive moiety represented by the following formula (a) (hereinafter also referred to as side chain a) and a moiety having a photoreactive moiety represented by the following formula (b).
  • a side chain type polymer having a side chain (hereinafter also referred to as side chain b) is preferred.
  • R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent fused cyclic group.
  • the hydrogen atom in the ring structure and CH ⁇ CH structure in formula (a) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
  • a is 0, 1 or 2.
  • b is 0 or 1.
  • c is an integer satisfying 0 ⁇ c ⁇ 2b+4. The broken lines are bonds.
  • R 1 has the same definition as R 1 in formula (a), and R 4 is a divalent aromatic group, -Ph-Cy-, -Cy-Ph-, or a divalent condensed group. It is a cyclic group (where Ph represents a phenylene group and Cy represents a cyclohexanediyl group).
  • R 6 is an alkylene group having 1 to 10 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group.
  • the hydrogen atom in the ring structure in formula (b) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group. When two or more R 4 or R 5 are present, the plurality of R 4 or R 5 may be the same or different.
  • d is 1 or 2.
  • e is 0 or 1.
  • f is 0 or 1.
  • the broken lines are bonds.
  • the alkylene group having 1 to 30 carbon atoms represented by R 1 may be linear, branched, or cyclic, and specific examples include a methylene group, an ethylene group, a propane-1,3-diyl group, Butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9 -diyl group, decane-1,10-diyl group, etc.
  • Examples of the divalent aromatic group represented by R 2 include a phenylene group and a biphenylylene group.
  • Examples of the divalent alicyclic group represented by R 2 include a cyclohexanediyl group.
  • Examples of the divalent heterocyclic group represented by R 2 include furandiyl group.
  • the divalent condensed cyclic group represented by R 2 includes a naphthylene group and the like.
  • Examples of the divalent aromatic group represented by R 4 include a phenylene group and a biphenylylene group.
  • the divalent condensed cyclic group represented by R 4 includes a naphthylene group and the like.
  • the alkylene group having 1 to 10 carbon atoms represented by R 6 may be linear, branched, or cyclic, and specific examples include the groups listed as specific examples of R 1 above.
  • the side chain a is preferably one represented by the following formula (a1) (hereinafter also referred to as side chain a1).
  • R 1 , R 2 and a are the same as above.
  • the hydrogen atom in the benzene ring and in the CH ⁇ CH structure in formula (a1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • -6 may be substituted with a substituent selected from a haloalkoxy group, a cyano group, and a nitro group.
  • the broken lines are bonds.
  • side chain a1 for example, one represented by the following formula (a1-1) is preferable.
  • L is a linear or branched alkylene group having 1 to 16 carbon atoms.
  • the side chain type polymer is preferably one that reacts with light in a wavelength range of 250 to 400 nm and exhibits liquid crystallinity in a temperature range of 100 to 300°C.
  • the side chain type polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
  • the side chain type polymer has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction or an isomerization reaction in response to light.
  • the structure of the photosensitive side chain type polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogenic component.
  • More specific examples of structures of photosensitive side chain polymers that can exhibit liquid crystallinity include (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, It is preferable that the structure has a main chain composed of at least one member selected from the group consisting of a radically polymerizable group such as norbornene and siloxane, and a side chain a.
  • the number of ring structures in the side chain represented by the above formula (b) is preferably 3 or less.
  • the ring structure of the condensed ring is counted as one. That is, the number of ring structures in a phenylene group or a naphthylene group is one, and the number of ring structures in a biphenylylene group or a cyclohexanediyl group is two.
  • side chain b for example, one represented by the following formula (b1) is preferable.
  • R 1 , R 4 to R 6 , d and f are the same as above.
  • the number of ring structures in formula (b1) is three or less.
  • the hydrogen atom in the benzene ring in formula (b1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group.
  • the broken lines are bonds.
  • the side chain type polymer (A) exhibits liquid crystallinity in a temperature range of 100 to 300°C, it is preferable that it further has a side chain (hereinafter also referred to as side chain c) that exhibits only liquid crystallinity.
  • side chain c a side chain that exhibits only liquid crystallinity.
  • the side chain c is preferably one or more liquid crystalline side chains selected from the group consisting of the following formulas (1) to (12).
  • the plural A 2 's may be the same or different from each other.
  • R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon It is an alkyl group having 1 to 12 carbon atoms or an alkyloxy group having 1 to 12 carbon atoms.
  • R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these
  • the hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • R 13 is a hydrogen atom, -NO 2 , -CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon having 5 to 8 carbon atoms group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • d is an integer from 1 to 12.
  • k1 to k5 are each independently an integer of 0 to 2, but the total of k1 to k5 is 2 or more.
  • k6 and k7 are each independently an integer of 0 to 2, but the sum of k6 and k7 is 1 or more.
  • m1, m2 and m3 are each independently an integer of 1 to 3.
  • n is 0 or 1.
  • the side chain c is preferably one represented by any one of formulas (1) to (11).
  • the side chain type polymer of component (A) has a monomer having a structure represented by formula (a), a monomer having a structure represented by formula (b), and, if desired, a structure that exhibits only liquid crystallinity. It can be obtained by polymerizing monomers.
  • Examples of the monomer having the structure represented by formula (a) include a compound represented by formula (M1) below.
  • R 1 , R 2 , R 3 , a and m are the same as above.
  • the monomer M1 one represented by the following formula (M1A) is preferable.
  • R 1 , R 2 , R 3A , R and a are the same as above.
  • PL is a polymerizable group represented by any of the following formulas (PL-1) to (PL-5).
  • Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a halogen A linear or branched alkyl group having 1 to 10 carbon atoms substituted with The broken line is a bond with R 1 or L.
  • Preferred examples of the monomer M1 include those represented by the following formulas (M1-1) to (M1-5). (In the formula, PL is the same as above. p is an integer from 2 to 9.)
  • Examples of the monomer having the structure represented by formula (b) include compounds represented by formula (M2) below.
  • monomer M2 examples include compounds represented by formula (M2) below.
  • the hydrogen atom in the ring structure in the formula is an alkyl group having 1 to 6 carbon atoms, 6 haloalkyl group, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen group, a cyano group, and a nitro group.
  • the monomer M2 is preferably one represented by the following formula (M2A).
  • M2A The monomer M2A is an alkyl group having 1 to 6 carbon atoms, It may be substituted with a substituent selected from a haloalkyl group, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen group, a cyano group, and a nitro group.
  • monomers represented by the following M2-1 to M2-6 are preferable. (In the formula, PL and p are the same as above.)
  • M2-1 synthesizing (M2-1) to (M2-6).
  • M3-1 is synthesized according to the synthesis method described in JP-A-9-118717, and acid chloride (M2-1-1) is obtained using thionyl chloride or oxalyl chloride. be able to.
  • M2-1-3 is obtained by condensing the carboxylic acid terminal-protected compound (M2-1-2) and the acid chloride (M2-1-1) in the presence of a base such as triethylamine. I can do it.
  • PG protecting group
  • M2-1 can be produced by deprotecting the protecting group (PG) of M2-1-3 with an acid.
  • a monomer having a structure that exhibits only liquid crystallinity (hereinafter also referred to as monomer M3) is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at the side chain site. That's true.
  • the mesogenic group having a side chain may be a group that forms a mesogenic structure by itself, such as biphenyl or phenylbenzoate, or a group that forms a mesogenic structure by hydrogen bonding between side chains, such as benzoic acid. Good too.
  • the mesogenic group included in the side chain preferably has the following structure.
  • monomer M3 include hydrocarbons, radically polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, and siloxane. It is preferable that the structure has a polymerizable group derived from at least one selected from the group and at least one of the above formulas (1) to (12).
  • the monomer M3 preferably has (meth)acrylate as a polymerizable group, and preferably has a side chain terminal of -COOH.
  • Preferred examples of monomer M3 include those represented by the following formulas (M3-1) to (M3-9).
  • other monomers can be copolymerized within a range that does not impair the ability to develop photoreactivity and/or liquid crystallinity.
  • Other monomers include, for example, industrially available monomers capable of radical polymerization. Specific examples of other monomers include unsaturated carboxylic acids, acrylic ester compounds, methacrylic ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, and the like.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • acrylic ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl acrylate.
  • methacrylic acid ester compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, and tert-butyl.
  • Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether, and the like.
  • Examples of the styrene compound include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene, and the like.
  • Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.
  • the content of side chain a in the side chain type polymer of the present invention is preferably 5 to 90 mol%, more preferably 5 to 80 mol%, and even more preferably 5 to 50 mol%.
  • the content of side chain b in the side chain type polymer of the present invention is preferably 10 to 95 mol%, more preferably 5 to 70 mol%, and even more preferably 10 to 70 mol%, from the viewpoint of retardation value.
  • the content of side chain c in the side chain type polymer of the present invention is defined as the content of side chain c in the case where the total content of side chain a and side chain b is less than 100 mol%. It is preferably 10 to 100 mol%.
  • the side chain type polymer of the present invention may contain other side chains as described above.
  • the content of other side chains is the remaining portion when the total content of side chains a to c is less than 100 mol%.
  • the method for producing the side chain type polymer of component (A) is not particularly limited, and general industrially used methods can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization using the vinyl groups of monomer M1, monomer M2, optionally monomer M3, and optionally other monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • radical polymerization initiators Radical thermal polymerization initiators, radical photopolymerization initiators
  • RAFT reversible addition-fragmentation chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) ), alkyl peresters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclohex
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(
  • the radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, etc. can be used.
  • the organic solvent used in the polymerization reaction is not particularly limited as long as it dissolves the produced polymer.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, and tetramethylurea.
  • the above organic solvents may be used alone or in combination of two or more. Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • the polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight.
  • the initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large.
  • the amount is preferably 0.1 to 10 mol % based on the monomer to be polymerized.
  • various monomer components, solvents, initiators, etc. can be added during polymerization.
  • the reaction solution may be poured into a poor solvent to precipitate the polymers.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like.
  • the polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating.
  • the amount of impurities in the polymer can be reduced.
  • the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.
  • the side chain type polymer (A) of the present invention has a weight average molecular weight measured by GPC (Gel Permeation Chromatography) method, considering the strength of the resulting coating film, workability during coating film formation, and uniformity of the coating film. is preferably from 2,000 to 2,000,000, more preferably from 2,000 to 1,000,000, even more preferably from 5,000 to 200,000.
  • the organic solvent of component (B) is not particularly limited as long as it can dissolve the polymer component.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N- Vinyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-Butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl
  • the polymer composition of the present invention may contain components other than components (A) and (B). Examples include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the retardation material and the substrate. Not limited.
  • ethyl carbitol ethyl carbitol acetate
  • ethylene glycol ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, diethylene glycol, diethylene glycol monoacetate, Diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3 -Methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl
  • These poor solvents may be used alone or in combination of two or more.
  • its content is preferably 5 to 80% by mass in the solvent, and 20 to 60% by mass so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. It is more preferable that it is mass %.
  • Compounds that improve film thickness uniformity and surface smoothness include fluorosurfactants, silicone surfactants, nonionic surfactants, and the like. Specific examples of these include FTOP (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafac (registered trademark) F171, F173, F560, F563, R-30, R-40, R- 41 (manufactured by DIC), Florado FC430, FC431 (manufactured by 3M), Asahi Guard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) and the like.
  • the content of these surfactants is preferably 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight, per 100 parts by weight of component (A).
  • compounds that improve the adhesion between the retardation material and the substrate include functional silane-containing compounds, such as 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • phenoplast compounds and epoxy group-containing compounds are added to the polymer composition to prevent deterioration of characteristics due to backlight when forming a polarizing plate. May be added.
  • phenoplast additives are shown below, but are not limited thereto.
  • epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N', N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane,
  • its content is preferably 0.1 to 30 parts by mass, and 1 to 20 parts by mass, based on 100 parts by mass of the polymer component contained in the polymer composition. is more preferable. If the content is less than 0.1 part by mass, no effect of improving adhesion can be expected, and if the content is more than 30 parts by mass, the alignment of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive.
  • As the photosensitizer colorless sensitizers and triplet sensitizers are preferred.
  • photosensitizers include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy 4-methylcoumarin), ketocoumarin, carbonylbiscoumarin, aromatic 2-hydroxyketone, aromatic 2-hydroxy Ketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3-methyl- ⁇ - Naphthothiazoline, 2-( ⁇ -naphthoylmethylene)-3-methylbenzothiazoline, 2-( ⁇ -naphthoylmethylene)-3-methylbenzothiazoline, 2-(4-biphenoylmethylene)-3-methylbenzothiazoline , 2-( ⁇ -naphthoylmethylene)-3-methyl- ⁇ -naphth
  • aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone and acetophenone ketal are preferred.
  • the polymer composition of the present invention may also contain dielectric materials for the purpose of changing the electrical properties such as permittivity and conductivity of the retardation material, as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of a conductive substance and, furthermore, a film when used as a retardation material.
  • the polymer composition of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention contains component (A), a solvent or compound that improves the film thickness uniformity and surface smoothness, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, etc.
  • the component (B) is prepared as a solution dissolved in an organic solvent.
  • the content of component (A) in the composition of the present invention is preferably 1 to 30% by mass, more preferably 5 to 30% by mass.
  • the polymer composition of the present invention may contain other polymers as long as they do not impair the ability to develop liquid crystals and photosensitivity.
  • the content of other polymers in the polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass.
  • examples of other polymers include polymers that are not photosensitive side-chain polymers that can exhibit liquid crystallinity, such as poly(meth)acrylate, polyamic acid, and polyimide.
  • the single-layer retardation material of the present invention can be manufactured by a method including the following steps (I) to (III). (I) a step of applying the composition of the present invention onto a substrate to form a coating film; (II) a step of irradiating the coating film with polarized ultraviolet rays; and (III) a step of heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
  • Step (I) is a step of applying the composition of the present invention onto a substrate to form a coating film. More specifically, the composition of the present invention can be applied to substrates (e.g., silicon/silicon dioxide coated substrates, silicon nitride substrates, metal (e.g., aluminum, molybdenum, chromium, etc.) coated substrates, glass substrates, quartz substrates). , ITO substrate, etc.) or films (e.g., resin films such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film, etc.), bar coat, spin coat, flow coat, roll coat.
  • substrates e.g., silicon/silicon dioxide coated substrates, silicon nitride substrates, metal (e.g., aluminum, molybdenum, chromium, etc.) coated substrates, glass substrates, quartz substrates.
  • ITO substrate, etc. or films (e.g., resin films
  • the solvent can be evaporated at 50 to 200°C, preferably 50 to 150°C using a heating means such as a hot plate, hot air circulation oven, or IR (infrared) oven to obtain a coating film.
  • a heating means such as a hot plate, hot air circulation oven, or IR (infrared) oven to obtain a coating film.
  • step (II) the coating film obtained in step (I) is irradiated with polarized ultraviolet light.
  • the substrate is irradiated with polarized ultraviolet rays from a fixed direction via a polarizing plate.
  • ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used.
  • the optimum wavelength is selected via a filter or the like depending on the type of coating film used.
  • ultraviolet light in the wavelength range of 290 to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the amount of polarized ultraviolet radiation depends on the coating used.
  • the irradiation amount is 1 to 70% of the amount of polarized ultraviolet light that achieves the maximum value of ⁇ A, which is the difference between the ultraviolet absorbance in a direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorbance in a direction perpendicular to the polarization direction of the coating film. It is preferably within the range of , and more preferably within the range of 1 to 50%.
  • step (III) the coating film irradiated with polarized ultraviolet rays in step (II) is heated. By heating, orientation controllability can be imparted to the coating film.
  • heating means such as a hot plate, hot air circulation type oven, IR (infrared rays) type oven, etc. can be used.
  • the heating temperature can be determined in consideration of the temperature at which the coating film used exhibits liquid crystallinity.
  • the heating temperature is preferably within the temperature range at which the polymer of component (A) contained in the composition of the present invention develops liquid crystallinity (hereinafter referred to as liquid crystal development temperature).
  • liquid crystal development temperature the temperature at which liquid crystals appear on the surface of the paint film is expected to be lower than the temperature at which liquid crystals appear when the polymer of component (A) is observed in bulk. For this reason, the heating temperature is more preferably within the temperature range of the liquid crystal development temperature on the surface of the coating film.
  • the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is a temperature that is 10°C lower than the lower limit of the liquid crystal development temperature range of the polymer of component (A), and a temperature that is 10°C lower than the upper limit of the liquid crystal temperature range. It is preferable that the temperature is within a range with an upper limit of . If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high than the above temperature range, the condition of the coating film tends to be insufficient. tends to be close to an isotropic liquid state (isotropic phase), in which case it may be difficult to reorient in one direction due to self-organization.
  • the liquid crystal development temperature is the liquid crystal transition temperature at which the polymer or coating surface undergoes a phase transition from a solid phase to a liquid crystal phase, and is an isotropic phase at which a phase transition occurs from a liquid crystal phase to an isotropic phase.
  • a temperature below the phase transition temperature (Tiso) means that the liquid crystal transition temperature at which a phase transition from a solid phase to a liquid crystal phase occurs is 130°C or lower.
  • the thickness of the coating film formed after heating can be appropriately selected in consideration of the level difference and optical properties of the substrate used, and is preferably 0.5 to 10 ⁇ m, for example.
  • the thin film obtained from the composition for retardation film of the present invention has an NZ coefficient of 0.4 ⁇ NZ ⁇ 0.6, preferably 0.41 ⁇ NZ ⁇ 0.58, and even if it is a thin film, the retardation value It is possible to provide a single-layer retardation material with high retardation.
  • the single-layer retardation material of the present invention thus obtained is a material having optical properties suitable for use in display devices, recording materials, etc., and is particularly suitable for polarizing plates and retardation plates for liquid crystal displays and organic EL. It is suitable as an optical compensation film such as.
  • MA1 was synthesized according to the synthesis method described in International Publication No. 2011/084546.
  • MB1 and MC2 were synthesized according to the synthesis method described in International Publication No. 2017/135130.
  • MB3 was synthesized according to the synthesis method described in International Publication No. 2014/054785.
  • MB6 was synthesized according to the synthesis method described in JP-A-2016-128403.
  • MC1 was synthesized according to the synthesis method described in JP-A-9-118717.
  • MC3 was synthesized according to the synthesis method described in JP-A-2009-19117.
  • MD1 was synthesized according to the synthesis method described in JP-A-2012-27354.
  • MB2, MB4, and MB5 are new compounds, and the synthesis method is shown below.
  • the side chain derived from MA1 corresponds to side chain a
  • the side chain derived from MB1 to MB6 corresponds to side chain b
  • the side chain derived from MC1 to MC3 corresponds to side chain c
  • the side chain derived from MB1 to MB6 corresponds to side chain c.
  • the derived side chain does not correspond to any of side chain a, side chain b, and side chain c.
  • the reaction solution was diluted with ethyl acetate (530 g), and the organic phase was washed three times with pure water. After collecting the organic phase, it was concentrated under reduced pressure to obtain a crude product.
  • the obtained crude product was diluted with 2-propanol (76 g) and hexane (70 g), cooled to -20°C to precipitate crystals, filtered, and dried under reduced pressure to obtain [MB2-6] at 43% .9g was obtained (yield: 81%).
  • the obtained MB5-1, MeCN (225 g), and 1N hydrochloric acid (75 g) were added to a 500 mL one-neck flask and stirred at room temperature. After the reaction was completed, the deposited precipitate was filtered off and repulped and washed with MeCN (45 g).
  • the obtained crude product was recrystallized from a mixed solvent of THF (150 g) and MeCN (150 g) to obtain 12.7 g of MB5 (white solid) (yield: 63%).
  • the results of 1 H-NMR of the target product are shown below. From this result, it was confirmed that the obtained solid was the target MB5.
  • the monomer mixed solution was added dropwise to NMP (14.2 g) at 60° C. over 2 hours under a nitrogen atmosphere. After completion of the dropwise addition, reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-15.
  • ⁇ Synthesis example 20> MD1 (17.5 g, 39.9 mmol) and AIBN (0.328 g, 2.00 mmol) were dissolved in THF (50.0 g) to prepare a monomer mixed solution.
  • the monomer mixed solution was added dropwise to THF (21.4 g) over 2 hours at 60° C. under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours. After the reaction was completed, the reaction solution was added to a mixed solution of methanol (450 g) and pure water (180 g) to reprecipitate the polymer. Subsequently, polymer powder P-20 was obtained by filtration, washing with methanol, and drying.
  • Table 1 shows the monomer compositions of the polymer solutions P-1 to P-19 and polymer powder P-20 obtained above.
  • the numbers in parentheses for the composition represent the blending amount (mol parts) of each monomer based on the total of 100 mole parts of the monomers used.
  • Polymer solution T-3 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 ⁇ m.
  • This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 200° C. for 20 minutes to produce a glass substrate S-3 with a retardation film.
  • Polymer solution T-4 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 ⁇ m.
  • This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 200° C. for 20 minutes to produce a glass substrate S-4 with a retardation film.
  • Example 5 Polymer solution T-5 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 ⁇ m. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-5 with a retardation film.
  • Example 7 Polymer solution T-7 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 ⁇ m. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-7 with a retardation film.
  • Example 8 Polymer solution T-8 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 2.0 ⁇ m. This substrate was dried on a hot plate at 60° C. for 4 minutes, and then ultraviolet light (1,000 mJ/cm 2 ) with a wavelength of 365 nm was applied to the substrate from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. was irradiated. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-8 with a retardation film.
  • Example 9 Polymer solution T-9 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 ⁇ m. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-9 with a retardation film.
  • Polymer solution T-10 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 ⁇ m.
  • This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 180° C. for 20 minutes to produce a glass substrate S-10 with a retardation film.
  • Example 11 Polymer solution T-11 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 4.0 ⁇ m. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 140° C. for 20 minutes to produce a glass substrate S-11 with a retardation film.
  • Example 12 Polymer solution T-12 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 ⁇ m. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 160° C. for 20 minutes to produce a glass substrate S-12 with a retardation film.
  • Example 14 Polymer solution T-14 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.2 ⁇ m. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (100 mJ/cm 2 ) with a wavelength of 365 nm were irradiated onto this substrate from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 140° C. for 20 minutes to produce a glass substrate S-14 with a retardation film.
  • Example 15 Polymer solution T-15 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.2 ⁇ m. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-15 with a retardation film.
  • Example 17 Polymer solution T-21 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a bar coater to a film thickness of about 2.5 ⁇ m. This substrate was dried in a thermal circulation oven at 80°C for 4.5 minutes, and then ultraviolet light (1,000 mJ/cm) with a wavelength of 365 nm was applied to the substrate from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. 2 ) was irradiated. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-17 with a retardation film.
  • Polymer solution T-17 was filtered through a filter with a pore size of 5.0 ⁇ m, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 ⁇ m.
  • This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 140° C. for 20 minutes to produce a glass substrate R-1 with a retardation film.
  • the retardation value and NZ coefficient of the substrates S-1 to S-17 and R-1 to R-4 with each retardation film were evaluated by the following method.
  • Phase difference value evaluation The linear phase difference at a wavelength of 550 nm was evaluated using AxoScan manufactured by Axometrics, and the results are summarized in Table 2.
  • NZ coefficient evaluation The refractive index of the retardation film in the three-dimensional direction at a wavelength of 550 nm was measured using AxoScan manufactured by Axometrics, and the NZ coefficient was calculated.
  • the NZ coefficient is an index of the magnitude relationship of three-dimensional refractive index, and is expressed by the following formula.
  • NZ coefficient (nx-nz)/(nx-ny) nx: refractive index in the x-axis direction (slow axis direction) ny: refractive index in the y-axis direction (direction orthogonal to the slow axis) nz: refractive index in the z-axis direction (thickness direction)
  • Glass substrate S with a retardation film For -1 to S-17 and R-1 to R-3, it is assumed that the average refractive index of the retardation film is 1.55, and for the glass substrate R-4 with the retardation film, the average refractive index is 1.60.
  • Table 2 summarizes the results of calculating the NZ coefficient based on this assumption.
  • Retardation films R-1 to R-4 that do not contain terminal carboxylic acid side chains which have two or more ring structures and have a structure in which the two rings on the terminal side are single bonds and are not covalently bonded.
  • the NZ coefficient was close to 0 or 1.
  • the retardation films S-1 to S-17 manufactured with the compositions having the above side chains had NZ coefficients of 0.4 to 0.6.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided, as a phase difference film composition that enables production of a single-layer phase difference material having a high phase difference value an an NZ coefficient such that 0.4 ≤ NZ ≤ 0.6 by a simpler process, a phase difference film composition including (A) a side-chain-type polymer having a side chain having a photoreactive portion represented by formula (a) and a side chain having a portion represented by formula (b), and (B) an organic solvent. Also provided is a single-layer phase difference material obtained from the abovementioned polymer composition.

Description

位相差膜用組成物及び単層位相差材Composition for retardation film and single layer retardation material
 本発明は、位相差膜用組成物及び単層位相差材に関する。詳しくは、表示装置や記録材料等の用途に好適な光学特性を有する材料、特に、液晶ディスプレイや有機EL(Electro Luminescence)表示装置の偏光板及び位相差板等の光学補償フィルムに好適に利用できる液晶性重合体、該重合体を含む組成物、及び該組成物から得られる単層位相差材に関する。 The present invention relates to a composition for a retardation film and a single-layer retardation material. Specifically, the material has optical properties suitable for use in display devices, recording materials, etc., and in particular, can be suitably used for optical compensation films such as polarizing plates and retardation plates for liquid crystal displays and organic EL (Electro Luminescence) display devices. The present invention relates to a liquid crystalline polymer, a composition containing the polymer, and a single-layer retardation material obtained from the composition.
 液晶表示装置や有機EL表示装置の表示品位の向上や軽量化等の要求から、偏光板や位相差板等の光学補償フィルムとして、内部の分子配向構造が制御された高分子フィルムの要求が高まっている。この要求に応えるべく、重合性液晶化合物が有する光学異方性を利用したフィルムの開発がなされている。ここで用いられる重合性液晶化合物は、一般に、重合性基と液晶構造部位(スペーサ部とメソゲン部とを有する構造部位)とを有する液晶化合物であり、この重合性基としてアクリル基が広く用いられている。 Due to demands for improved display quality and weight reduction of liquid crystal display devices and organic EL display devices, there is an increasing demand for polymer films with controlled internal molecular orientation structures as optical compensation films such as polarizing plates and retardation plates. ing. In order to meet this demand, films have been developed that utilize the optical anisotropy of polymerizable liquid crystal compounds. The polymerizable liquid crystal compound used here generally has a polymerizable group and a liquid crystal structure site (a structure site having a spacer part and a mesogen part), and an acrylic group is widely used as this polymerizable group. ing.
 このような重合性液晶化合物は、一般的に、紫外線等の放射線を照射して重合する方法で重合体(フィルム)とされる。例えば、アクリル基を有する特定の重合性液晶化合物を配向処理された支持体間に担持し、この化合物を液晶状態に保持しつつ放射線を照射して重合体を得る方法(特許文献1)や、アクリル基を有する2種類の重合性液晶化合物の混合物又はこの混合物にカイラル液晶を混合した組成物に光重合開始剤を添加し、紫外線を照射して重合体を得る方法(特許文献2)が知られている。 Such polymerizable liquid crystal compounds are generally made into polymers (films) by polymerizing them by irradiating them with radiation such as ultraviolet rays. For example, a method of obtaining a polymer by supporting a specific polymerizable liquid crystal compound having an acrylic group between aligned supports and irradiating the compound with radiation while maintaining the compound in a liquid crystal state (Patent Document 1); There is a known method (Patent Document 2) in which a photopolymerization initiator is added to a mixture of two types of polymerizable liquid crystal compounds having an acrylic group or a composition in which a chiral liquid crystal is mixed with this mixture, and the mixture is irradiated with ultraviolet rays to obtain a polymer. It is being
 また、液晶配向膜を必要としない重合性液晶化合物や重合体を用いた配向フィルム(特許文献3、4)、光架橋部位を含む重合体を用いた配向フィルム(特許文献5、6)等、様々な単層塗布型配向フィルムが報告されてきた。 In addition, oriented films using polymerizable liquid crystal compounds or polymers that do not require a liquid crystal alignment film (Patent Documents 3 and 4), oriented films using polymers containing photocrosslinking sites (Patent Documents 5 and 6), etc. Various single layer coated oriented films have been reported.
 有機ELパネルは反射性のある金属層を有しており、外光反射の問題を生じやすい。そこで、直線偏光板と位相差板(フィルム)から構成される円偏光板を設けることにより、これらの問題を防ぐことが知られている。しかし、従来の位相差板を円偏光板に用いた場合に、斜め方向の外光反射防止特性が不十分であり、所望でない色付きが生じるという問題がある。 Organic EL panels have a reflective metal layer and are prone to problems with external light reflection. Therefore, it is known that these problems can be prevented by providing a circularly polarizing plate composed of a linearly polarizing plate and a retardation plate (film). However, when a conventional retardation plate is used as a circularly polarizing plate, there is a problem in that the antireflection of external light in an oblique direction is insufficient and undesirable coloring occurs.
 ここで、位相差フィルムの特性を表すパラメータとして、NZ係数がある。NZ係数は、位相差フィルムの面内における遅相軸の屈折率をnx、進相軸の屈折率をnyとし、フィルムの厚さ方向の屈折率をnzとして、式{NZ=(nx  nz)/(nx  ny)}により与えられる。このNZ係数が0.5に近いほど、位相差フィルムの位相差値の視野角依存性が少なくなり、有機ELの円偏光板において斜め方向の外光反射防止効果が向上する。 Here, there is an NZ coefficient as a parameter representing the characteristics of the retardation film. The NZ coefficient is calculated using the formula {NZ=(nx nz), where nx is the refractive index of the slow axis in the plane of the retardation film, ny is the refractive index of the fast axis, and nz is the refractive index in the thickness direction of the film. /(nx ny)}. The closer this NZ coefficient is to 0.5, the less the viewing angle dependence of the retardation value of the retardation film becomes, and the more the effect of preventing reflection of external light in an oblique direction in a circularly polarizing plate of an organic EL is improved.
特開昭62-70407号公報Japanese Unexamined Patent Publication No. 62-70407 特開平9-208957号公報Japanese Patent Application Publication No. 9-208957 欧州特許出願公開第1090325号明細書European Patent Application No. 1090325 国際公開第2008/031243号International Publication No. 2008/031243 特開2008-164925号公報Japanese Patent Application Publication No. 2008-164925 特開平11-189665号公報Japanese Patent Application Publication No. 11-189665
 本発明は、上記問題に鑑みなされたものであり、より簡単なプロセスにより、NZ係数が0.4 ≦ NZ ≦ 0.6であり、位相差値の高い単層位相差材作製を可能とする位相差膜用組成物、及び該組成物から得られる単層位相差材を提供することを目的とする。 The present invention was made in view of the above problems, and enables the production of a single-layer retardation material with an NZ coefficient of 0.4 ≦ NZ ≦ 0.6 and a high retardation value through a simpler process. The present invention aims to provide a composition for a retardation film and a single-layer retardation material obtained from the composition.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の重合体を含む組成物を用いることで、液晶配向膜を使用することなく、NZ係数が0.4 ≦ NZ ≦ 0.6であり、薄膜で高い屈折率異方性(Δn)を有する単層位相差材が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that by using a composition containing a specific polymer, the NZ coefficient can be reduced to 0.4 ≦ NZ ≦ without using a liquid crystal alignment film. 0.6, and it was discovered that a single-layer retardation material having a high refractive index anisotropy (Δn) can be obtained in a thin film, and the present invention was completed.
 したがって、本発明は、下記位相差膜用組成物及び単層位相差材を提供する。
<1> (A)光反応性部位を有する末端カルボン酸の側鎖、及び芳香環構造を2環以上有し、またそのうち末端側にある2環の間が単結合で共有結合していない構造をした末端カルボン酸の側鎖を含む側鎖型共重合体、並びに
 (B)有機溶媒
からなる位相差膜用組成物。
<2> 上記(A)側鎖型共重合体が、下記式(a)で表される光反応性部位を有する側鎖及び下記式(b)で表される部位を有する側鎖を有する側鎖型重合体である<1>に記載の位相差膜用組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。
 R2は、2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。
 R3は、単結合、-CH2-、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
 R4は、2価の芳香族基、-Ph-Cy-、-Cy-Ph-又は2価の縮合環式基(ただし、Phはフェニレン基を表し、Cyはシクロヘキサンジイル基を表す。)である。
 R5は、-CH2-、-O-、-NH-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-CH=CH-C(=O)-O-、-C(=O)-NH-、-NH-C(=O)-又は-NH-C(=O)-NH-である。
 R6は、炭素数1~10のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R6中の-CH2-が、-O-、-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。隣接する-CH2-が同時にこれらの基で置換されていてもよい。
 式(a)中の環構造中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 式(b)中の環構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 R2、R3、R4またはR5が2個以上存在する場合、複数個のR2、R3、R4またはR5は互いに同じであっても異なっていてもよい。
 aは、0、1又は2である。
 bは、0又は1である。
 cは、0≦c≦2b+4を満たす整数である。
 dは、1又は2である。
 eは、0又は1である。
 fは、0又は1である。
 破線は、結合手である。)
<3> 上記式(a)で表される光反応性部位を有する側鎖が、下記式(a1)で表されるものである<2>に記載の位相差膜用組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、R1、R2及びaは、上記と同じ。
 R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。R3Aが2個以上存在する場合、複数個のR3Aは互いに同じであっても異なっていてもよい。
 式(a1)中のベンゼン環中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 破線は、結合手である。)
<4> 上記式(b)で表される側鎖中の環構造が3個以下である、<2>又は<3>に記載の重合体組成物および位相差膜用組成物。
<5> 側鎖型重合体が、液晶性を発現する<1>~<4>のいずれかに記載の位相差膜用組成物。
<6> (I)<1>~<5>のいずれかに記載の位相差膜用組成物を、基板上に塗布して塗膜を形成する工程、
(II)上記塗膜に、偏光した紫外線を照射する工程、及び
(III)上記紫外線を照射した塗膜を加熱して、位相差材を得る工程
を含む、単層位相差材の製造方法。
<7> <1>~<5>のいずれかに記載の組成物から得られる単層位相差材。
Therefore, the present invention provides the following composition for a retardation film and a single-layer retardation material.
<1> (A) A structure that has a terminal carboxylic acid side chain having a photoreactive site and two or more aromatic ring structures, and the two rings on the terminal side are not covalently bonded by a single bond. A composition for a retardation film comprising a side chain type copolymer containing a terminal carboxylic acid side chain, and (B) an organic solvent.
<2> The side chain type copolymer (A) has a side chain having a photoreactive site represented by the following formula (a) and a side chain having a site represented by the following formula (b). The composition for a retardation film according to <1>, which is a chain polymer.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. -CH 2 CH 2 - may be substituted with -CH=CH-, and -CH 2 - in R 1 may be substituted with -O-, -NH-C(=O)-, -C(= O) -NH-, -C(=O)-O-, -OC(=O)-, -NH-, -NH-C(=O)-NH- and -C(=O)- may be substituted with a group selected from the group consisting of: However, adjacent --CH 2 -- groups are not substituted with these groups at the same time.
R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent fused cyclic group.
R 3 is a single bond, -CH 2 -, -O-, -C(=O)-O-, -OC(=O)- or -CH=CH-C(=O)-O- be.
R 4 is a divalent aromatic group, -Ph-Cy-, -Cy-Ph-, or a divalent fused cyclic group (where Ph represents a phenylene group and Cy represents a cyclohexanediyl group). be.
R 5 is -CH 2 -, -O-, -NH-, -C(=O)-, -C(=O)-O-, -O-C(=O)-, -CH=CH- C(=O)-O-, -C(=O)-NH-, -NH-C(=O)- or -NH-C(=O)-NH-.
R 6 is an alkylene group having 1 to 10 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Furthermore, -CH 2 - in R 6 may be substituted with a group selected from the group consisting of -O-, -NH- and -C(=O)-. Adjacent --CH 2 -- groups may be substituted with these groups at the same time.
The hydrogen atom in the ring structure and CH═CH structure in formula (a) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
The hydrogen atom in the ring structure in formula (b) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group.
When two or more R 2 , R 3 , R 4 or R 5 are present, the plurality of R 2 , R 3 , R 4 or R 5 may be the same or different.
a is 0, 1 or 2.
b is 0 or 1.
c is an integer satisfying 0≦c≦2b+4.
d is 1 or 2.
e is 0 or 1.
f is 0 or 1.
The broken lines are bonds. )
<3> The composition for a retardation film according to <2>, wherein the side chain having a photoreactive site represented by the above formula (a) is represented by the following formula (a1).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 , R 2 and a are the same as above.
R 3A is a single bond, -O-, -C(=O)-O- or -OC(=O)-. When two or more R 3As exist, the plural R 3As may be the same or different.
The hydrogen atom in the benzene ring and in the CH═CH structure in formula (a1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
The broken lines are bonds. )
<4> The polymer composition and composition for a retardation film according to <2> or <3>, wherein the number of ring structures in the side chain represented by the above formula (b) is 3 or less.
<5> The composition for a retardation film according to any one of <1> to <4>, wherein the side chain polymer exhibits liquid crystallinity.
<6> (I) A step of applying the retardation film composition according to any one of <1> to <5> onto a substrate to form a coating film,
(II) A method for producing a single-layer retardation material, comprising the steps of: (II) irradiating the coating film with polarized ultraviolet rays; and (III) heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
<7> A single-layer retardation material obtained from the composition according to any one of <1> to <5>.
 本発明により、NZ係数が0.4 ≦ NZ ≦ 0.6であり、薄膜であっても位相差値の高い単層位相差材と、それを与える重合体とを提供することができる。 According to the present invention, it is possible to provide a single-layer retardation material having an NZ coefficient of 0.4 ≦ NZ ≦ 0.6 and a high retardation value even if it is a thin film, and a polymer that provides the same.
 本発明者らは、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の位相差膜用組成物(以下、重合体組成物ともいう)は、液晶性を発現し得る感光性の側鎖型重合体(以下、単に側鎖型重合体ともいう。)を有しており、上記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型重合体を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(以下、単層位相差材ともいう。)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性側鎖型重合体自体が自己組織化により効率的に再配向する。その結果、単層位相差材として高効率な配向処理が実現し、高い光学異方性が付与された単層位相差材を得ることができる。
As a result of intensive research, the present inventors obtained the following knowledge and completed the present invention.
The composition for a retardation film of the present invention (hereinafter also referred to as a polymer composition) has a photosensitive side chain type polymer (hereinafter also simply referred to as a side chain type polymer) capable of exhibiting liquid crystallinity. The coating film obtained using the above polymer composition is a film containing a photosensitive side chain type polymer capable of exhibiting liquid crystallinity. This coating film is subjected to orientation treatment by polarized light irradiation without performing rubbing treatment. After irradiation with polarized light, the side chain type polymer film is heated to become a film imparted with optical anisotropy (hereinafter also referred to as a single-layer retardation material). At this time, the slight anisotropy developed by polarized light irradiation becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization. As a result, highly efficient alignment treatment can be achieved as a single-layer retardation material, and a single-layer retardation material imparted with high optical anisotropy can be obtained.
 また、本発明における重合体組成物では、側鎖型重合体が、上記式(a)で表される側鎖に代表される、光配向性部位を有する末端カルボン酸の側鎖とともに、上記式(b)で表される側鎖に代表される、芳香環構造を2環以上有し、またそのうち末端側にある2環の間が単結合で共有結合していない構造をした末端カルボン酸の側鎖を含むことにより、該2環の環構造が同一平面上となり側鎖間での相互作用が強まるため、液晶性及び光配向性が高まり、面内における遅相軸方向への配向が促進し、かつ深さ方向への配向の乱れが低減する。これにより、本発明の重合体組成物から得られる位相差材は、薄膜であっても高い位相差値を示し、nxはnzより大きくなり、末端カルボン酸の効果によりnzはnxとnyのおおよそ中間値を示す。なお、これらは本発明のメカニズムに関する発明者の見解を含むものであり、本発明を拘束するものではない。 In addition, in the polymer composition of the present invention, the side chain type polymer includes a side chain of a terminal carboxylic acid having a photoalignable site, typified by a side chain represented by the above formula (a), and a side chain of a terminal carboxylic acid represented by the above formula (a). A terminal carboxylic acid that has two or more aromatic ring structures, as represented by the side chain represented by (b), and has a structure in which the two rings on the terminal side are single bonds and are not covalently bonded. By including the side chains, the ring structures of the two rings are on the same plane and the interaction between the side chains is strengthened, which increases liquid crystallinity and photoalignment, promoting alignment in the slow axis direction in the plane. At the same time, the disturbance in the orientation in the depth direction is reduced. As a result, the retardation material obtained from the polymer composition of the present invention exhibits a high retardation value even in a thin film, nx is larger than nz, and due to the effect of the terminal carboxylic acid, nz is approximately equal to nx and ny. Indicates an intermediate value. Note that these include the inventor's opinion regarding the mechanism of the present invention, and do not constrain the present invention.
 以下、本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[重合体組成物]
 本発明の重合体組成物は、(A)所定の温度範囲で液晶性を発現する感光性の側鎖型重合体及び(B)有機溶媒を含むことを特徴とする。
[Polymer composition]
The polymer composition of the present invention is characterized by containing (A) a photosensitive side chain type polymer that exhibits liquid crystallinity in a predetermined temperature range and (B) an organic solvent.
[(A)側鎖型重合体]
 (A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型重合体であって、光反応性部位を有する末端カルボン酸の側鎖、及び環構造を2環以上有し、またそのうち末端側にある2環の間が単結合で共有結合していない構造をした末端カルボン酸の側鎖を含む側鎖型共重合体である。上記側鎖型共重合体としては、下記式(a)で表される光反応性部位を有する側鎖(以下、側鎖aともいう。)及び下記式(b)で表される部位を有する側鎖(以下、側鎖bともいう。)を有する側鎖型重合体が好ましい。
Figure JPOXMLDOC01-appb-C000005
[(A) Side chain type polymer]
Component (A) is a photosensitive side chain type polymer that exhibits liquid crystallinity in a predetermined temperature range, and has two or more rings and a terminal carboxylic acid side chain having a photoreactive site. It is also a side chain type copolymer containing a terminal carboxylic acid side chain in which the two rings on the terminal side have a single bond and are not covalently bonded. The above-mentioned side chain type copolymer has a side chain having a photoreactive moiety represented by the following formula (a) (hereinafter also referred to as side chain a) and a moiety having a photoreactive moiety represented by the following formula (b). A side chain type polymer having a side chain (hereinafter also referred to as side chain b) is preferred.
Figure JPOXMLDOC01-appb-C000005
 式(a)中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。
 R2は、2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。
 R3は、単結合、-CH2-、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
 式(a)中の環構造中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 R2またはR3が2個以上存在する場合、複数個のR2またはR3は互いに同じであっても異なっていてもよい。
 aは、0、1又は2である。
 bは、0又は1である。
 cは、0≦c≦2b+4を満たす整数である。
 破線は、結合手である。
In formula (a), R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Furthermore, -CH 2 CH 2 - in R 1 may be substituted with -CH=CH-, and -CH 2 - in R 1 may be substituted with -O-, -NH-C(=O)- , -C(=O)-NH-, -C(=O)-O-, -OC(=O)-, -NH-, -NH-C(=O)-NH- and -C( It may be substituted with a group selected from the group consisting of =O)-. However, adjacent --CH 2 -- groups are not substituted with these groups at the same time.
R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent fused cyclic group.
R 3 is a single bond, -CH 2 -, -O-, -C(=O)-O-, -OC(=O)- or -CH=CH-C(=O)-O- be.
The hydrogen atom in the ring structure and CH═CH structure in formula (a) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
When two or more R 2 or R 3 are present, the plurality of R 2 or R 3 may be the same or different.
a is 0, 1 or 2.
b is 0 or 1.
c is an integer satisfying 0≦c≦2b+4.
The broken lines are bonds.
 式(b)中、R1は式(a)中のR1と同じ定義であり、R4は、2価の芳香族基、-Ph-Cy-、-Cy-Ph-又は2価の縮合環式基(ただし、Phはフェニレン基を表し、Cyはシクロヘキサンジイル基を表す。)である。
 R5は、-CH2-、-O-、-NH-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-CH=CH-C(=O)-O-、-C(=O)-NH-、-NH-C(=O)-又は-NH-C(=O)-NH-である。
 R6は、炭素数1~10のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R6中の-CH2-が、-O-、-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。隣接する-CH2-が同時にこれらの基で置換されていてもよい。
 式(b)中の環構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 R4またはR5が2個以上存在する場合、複数個のR4またはR5は互いに同じであっても異なっていてもよい。
 dは、1又は2である。
 eは、0又は1である。
 fは、0又は1である。
 破線は、結合手である。
In formula (b), R 1 has the same definition as R 1 in formula (a), and R 4 is a divalent aromatic group, -Ph-Cy-, -Cy-Ph-, or a divalent condensed group. It is a cyclic group (where Ph represents a phenylene group and Cy represents a cyclohexanediyl group).
R 5 is -CH 2 -, -O-, -NH-, -C(=O)-, -C(=O)-O-, -O-C(=O)-, -CH=CH- C(=O)-O-, -C(=O)-NH-, -NH-C(=O)- or -NH-C(=O)-NH-.
R 6 is an alkylene group having 1 to 10 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Furthermore, -CH 2 - in R 6 may be substituted with a group selected from the group consisting of -O-, -NH- and -C(=O)-. Adjacent --CH 2 -- groups may be substituted with these groups at the same time.
The hydrogen atom in the ring structure in formula (b) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group.
When two or more R 4 or R 5 are present, the plurality of R 4 or R 5 may be the same or different.
d is 1 or 2.
e is 0 or 1.
f is 0 or 1.
The broken lines are bonds.
 R1で表される炭素数1~30のアルキレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基等が挙げられる。 The alkylene group having 1 to 30 carbon atoms represented by R 1 may be linear, branched, or cyclic, and specific examples include a methylene group, an ethylene group, a propane-1,3-diyl group, Butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9 -diyl group, decane-1,10-diyl group, etc.
 R2で表される2価の芳香族基としては、フェニレン基、ビフェニリレン基等が挙げられる。R2で表される2価の脂環式基としては、シクロヘキサンジイル基等が挙げられる。R2で表される2価の複素環式基としては、フランジイル基等が挙げられる。R2で表される2価の縮合環式基としては、ナフチレン基等が挙げられる。 Examples of the divalent aromatic group represented by R 2 include a phenylene group and a biphenylylene group. Examples of the divalent alicyclic group represented by R 2 include a cyclohexanediyl group. Examples of the divalent heterocyclic group represented by R 2 include furandiyl group. The divalent condensed cyclic group represented by R 2 includes a naphthylene group and the like.
 R4で表される2価の芳香族基としては、フェニレン基、ビフェニリレン基等が挙げられる。R4で表される2価の縮合環式基としては、ナフチレン基等が挙げられる。 Examples of the divalent aromatic group represented by R 4 include a phenylene group and a biphenylylene group. The divalent condensed cyclic group represented by R 4 includes a naphthylene group and the like.
 R6で表される炭素数1~10のアルキレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、上記R1の具体例として挙げた基が挙げられる。 The alkylene group having 1 to 10 carbon atoms represented by R 6 may be linear, branched, or cyclic, and specific examples include the groups listed as specific examples of R 1 above.
 側鎖aとしては下記式(a1)で表されるもの(以下、側鎖a1ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000006
The side chain a is preferably one represented by the following formula (a1) (hereinafter also referred to as side chain a1).
Figure JPOXMLDOC01-appb-C000006
 式(a1)中、R1、R2及びaは、上記と同じ。R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。R3Aが2個以上存在する場合、複数個のR3Aは互いに同じであっても異なっていてもよい。式(a1)中のベンゼン環中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。破線は、結合手である。 In formula (a1), R 1 , R 2 and a are the same as above. R 3A is a single bond, -O-, -C(=O)-O- or -OC(=O)-. When two or more R 3As exist, the plural R 3As may be the same or different. The hydrogen atom in the benzene ring and in the CH═CH structure in formula (a1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. -6 may be substituted with a substituent selected from a haloalkoxy group, a cyano group, and a nitro group. The broken lines are bonds.
 側鎖a1としては、例えば、下記式(a1-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000007
As the side chain a1, for example, one represented by the following formula (a1-1) is preferable.
Figure JPOXMLDOC01-appb-C000007
 式(a1-1)中、Lは、直鎖状又は分岐状の炭素数1~16のアルキレン基である。Xは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。 In formula (a1-1), L is a linear or branched alkylene group having 1 to 16 carbon atoms. X is a single bond, -O-, -C(=O)-O-, or -OC(=O)-.
 (A)側鎖型重合体は、250~400nmの波長範囲の光で反応し、かつ100~300℃の温度範囲で液晶性を示すものが好ましい。(A)側鎖型重合体は、250~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。 (A) The side chain type polymer is preferably one that reacts with light in a wavelength range of 250 to 400 nm and exhibits liquid crystallinity in a temperature range of 100 to 300°C. (A) The side chain type polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 to 400 nm.
 (A)側鎖型重合体は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応又は異性化反応を起こすことができる。液晶性を発現し得る感光性の側鎖型重合体の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。上記側鎖型重合体を単層位相差材とした際に、安定な光学異方性を得ることができる。 (A) The side chain type polymer has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction or an isomerization reaction in response to light. The structure of the photosensitive side chain type polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable that the side chain structure has a rigid mesogenic component. When the above-mentioned side chain type polymer is used as a single layer retardation material, stable optical anisotropy can be obtained.
 液晶性を発現し得る感光性の側鎖型重合体の構造のより具体的な例としては、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、側鎖aとを有する構造であることが好ましい。 More specific examples of structures of photosensitive side chain polymers that can exhibit liquid crystallinity include (meth)acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, It is preferable that the structure has a main chain composed of at least one member selected from the group consisting of a radically polymerizable group such as norbornene and siloxane, and a side chain a.
 上記式(b)で表される側鎖中の環構造の個数は好ましくは3個以下である。ここにおいて、縮合環の環構造は1個として数える。すなわち、フェニレン基やナフチレン基中の環構造は1個であり、ビフェニリレン基やシクロヘキサンジイル基中の環構造は2個である。 The number of ring structures in the side chain represented by the above formula (b) is preferably 3 or less. Here, the ring structure of the condensed ring is counted as one. That is, the number of ring structures in a phenylene group or a naphthylene group is one, and the number of ring structures in a biphenylylene group or a cyclohexanediyl group is two.
 側鎖bとしては、例えば、下記式(b1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000008
As the side chain b, for example, one represented by the following formula (b1) is preferable.
Figure JPOXMLDOC01-appb-C000008
 式(b1)中、R1、R4~R6、d及びfは、上記と同じ。式(b1)中の環構造は3個以下である。式(b1)中のベンゼン環中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。破線は、結合手である。 In formula (b1), R 1 , R 4 to R 6 , d and f are the same as above. The number of ring structures in formula (b1) is three or less. The hydrogen atom in the benzene ring in formula (b1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group. The broken lines are bonds.
 また、(A)側鎖型重合体は、100~300℃の温度範囲で液晶性を示すため、更に液晶性のみを発現する側鎖(以下、側鎖cともいう。)を有することが好ましい。なお、ここで「液晶性のみを発現する」とは、側鎖cのみを有するポリマーは、本発明の位相差材の作製プロセス(すなわち、後述する工程(I)~(III))中に、光配向性を示さず、液晶性のみを発現するという意味である。 Furthermore, since the side chain type polymer (A) exhibits liquid crystallinity in a temperature range of 100 to 300°C, it is preferable that it further has a side chain (hereinafter also referred to as side chain c) that exhibits only liquid crystallinity. . Note that "expressing only liquid crystallinity" here means that a polymer having only side chain c is used during the production process of the retardation material of the present invention (i.e., steps (I) to (III) described below). This means that it does not exhibit photo-alignment properties and only exhibits liquid crystallinity.
 側鎖cとしては、下記式(1)~(12)からなる群から選ばれるいずれか1種または2種以上の液晶性側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000009
The side chain c is preferably one or more liquid crystalline side chains selected from the group consisting of the following formulas (1) to (12).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(1)~(12)中、A1、A2はそれぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。A2が2個以上存在する場合、複数個のA2は互いに同じであっても異なっていてもよい。R11は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルキルオキシ基である。R12は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、及びこれらを組み合わせて得られる基からなる群から選ばれる基であり、これらに結合する水素原子が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。R13は、水素原子、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。Eは、-C(=O)-O-又は-O-C(=O)-である。dは、1~12の整数である。k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。m1、m2及びm3は、それぞれ独立に、1~3の整数である。nは、0又は1である。Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2O-又は-CF2-である。破線は、結合手である。 In formulas (1) to (12), A 1 and A 2 each independently represent a single bond, -O-, -CH 2 -, -C(=O)-O-, -OC(=O) -, -C(=O)-NH- or -NH-C(=O)-. When two or more A 2 's exist, the plural A 2 's may be the same or different from each other. R 11 is -NO 2 , -CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furanyl group, monovalent nitrogen-containing heterocyclic group, monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, carbon It is an alkyl group having 1 to 12 carbon atoms or an alkyloxy group having 1 to 12 carbon atoms. R 12 is a group consisting of a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these The hydrogen atom bonded to these may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. R 13 is a hydrogen atom, -NO 2 , -CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon having 5 to 8 carbon atoms group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. E is -C(=O)-O- or -OC(=O)-. d is an integer from 1 to 12. k1 to k5 are each independently an integer of 0 to 2, but the total of k1 to k5 is 2 or more. k6 and k7 are each independently an integer of 0 to 2, but the sum of k6 and k7 is 1 or more. m1, m2 and m3 are each independently an integer of 1 to 3. n is 0 or 1. Z 1 and Z 2 are each independently a single bond, -C(=O)-, -CH 2 O- or -CF 2 -. The broken lines are bonds.
 これらのうち、側鎖cとしては、式(1)~(11)のいずれかで表されるものが好ましい。 Among these, the side chain c is preferably one represented by any one of formulas (1) to (11).
 (A)成分の側鎖型重合体は、式(a)で表される構造を有するモノマー、式(b)で表される構造を有するモノマー、及び所望により液晶性のみを発現する構造を有するモノマーを重合することによって得ることができる。 The side chain type polymer of component (A) has a monomer having a structure represented by formula (a), a monomer having a structure represented by formula (b), and, if desired, a structure that exhibits only liquid crystallinity. It can be obtained by polymerizing monomers.
 式(a)で表される構造を有するモノマー(以下、モノマーM1ともいう。)としては、下記式(M1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式中、R1、R2、R3、a及びmは、上記と同じ。式中の環構造中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。)
Examples of the monomer having the structure represented by formula (a) (hereinafter also referred to as monomer M1) include a compound represented by formula (M1) below.
Figure JPOXMLDOC01-appb-C000011
(In the formula, R 1 , R 2 , R 3 , a and m are the same as above. The hydrogen atom in the ring structure and CH=CH structure in the formula is an alkyl group having 1 to 6 carbon atoms, (Optionally substituted with a substituent selected from a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen group, a cyano group, and a nitro group.)
 モノマーM1としては、下記式(M1A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式中、R1、R2、R3A、R及びaは、上記と同じ。式中の環構造中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。)
As the monomer M1, one represented by the following formula (M1A) is preferable.
Figure JPOXMLDOC01-appb-C000012
(In the formula, R 1 , R 2 , R 3A , R and a are the same as above. The hydrogen atom in the ring structure and CH=CH structure in the formula is an alkyl group having 1 to 6 carbon atoms, (Optionally substituted with a substituent selected from a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen group, a cyano group, and a nitro group.)
 モノマーM1Aのうち、下記式(M1B)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、L及びXは、上記と同じ。)
Among the monomers M1A, those represented by the following formula (M1B) are more preferable.
Figure JPOXMLDOC01-appb-C000013
(In the formula, L and X are the same as above.)
 式(M1)、(M1A)及び(M1B)中、PLは、下記式(PL-1)~(PL-5)のいずれかで表される重合性基である。
Figure JPOXMLDOC01-appb-C000014
In formulas (M1), (M1A) and (M1B), PL is a polymerizable group represented by any of the following formulas (PL-1) to (PL-5).
Figure JPOXMLDOC01-appb-C000014
 式(PL-1)~(PL-5)中、Q1、Q2及びQ3は、それぞれ独立して、水素原子、直鎖状若しくは分岐状の炭素数1~10のアルキル基、又はハロゲンで置換された直鎖状若しくは分岐状の炭素数1~10のアルキル基である。破線は、R1又はLとの結合手である。これらモノマーのうち、あるものは市販されており、あるものは公知物質から公知の製造方法にて製造することができる。 In formulas (PL-1) to (PL-5), Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, or a halogen A linear or branched alkyl group having 1 to 10 carbon atoms substituted with The broken line is a bond with R 1 or L. Some of these monomers are commercially available, and others can be produced from known substances by known production methods.
 モノマーM1の好ましい例としては、下記式(M1-1)~(M1-5)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、PLは、上記と同じ。pは、2~9の整数である。)
Preferred examples of the monomer M1 include those represented by the following formulas (M1-1) to (M1-5).
Figure JPOXMLDOC01-appb-C000015
(In the formula, PL is the same as above. p is an integer from 2 to 9.)
 式(b)で表される構造を有するモノマー(以下、モノマーM2ともいう。)としては、下記式(M2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、PL、R1、R4~R6、d、e及びfは、上記と同じ。式中の環構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。)
Examples of the monomer having the structure represented by formula (b) (hereinafter also referred to as monomer M2) include compounds represented by formula (M2) below.
Figure JPOXMLDOC01-appb-C000016
(In the formula, PL, R 1 , R 4 to R 6 , d, e, and f are the same as above. The hydrogen atom in the ring structure in the formula is an alkyl group having 1 to 6 carbon atoms, 6 haloalkyl group, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen group, a cyano group, and a nitro group.)
 モノマーM2としては、下記式(M2A)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000017
(式中、PL、R1、R4~R6、d及びfは、上記と同じ。式中のベンゼン環中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。)
The monomer M2 is preferably one represented by the following formula (M2A).
Figure JPOXMLDOC01-appb-C000017
(In the formula, PL, R 1 , R 4 to R 6 , d and f are the same as above. The hydrogen atom in the benzene ring in the formula is an alkyl group having 1 to 6 carbon atoms, It may be substituted with a substituent selected from a haloalkyl group, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen group, a cyano group, and a nitro group.)
 モノマーM2としては、下記M2-1~M2-6で表されるモノマーが好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、PL及びpは、上記と同じ。)
As the monomer M2, monomers represented by the following M2-1 to M2-6 are preferable.
Figure JPOXMLDOC01-appb-C000018
(In the formula, PL and p are the same as above.)
 これらモノマーのうち、あるものは市販されており、あるものは公知物質から公知の製造方法にて製造することができる。 Some of these monomers are commercially available, and some can be produced from known substances by known production methods.
 (M2-1)~(M2-6)を合成する方法に特に制限はない。例えば、下式に示すように、M3-1を特開平9-118717号公報に記載された合成法に従って合成し、塩化チオニルもしくはオキサリルクロリドを用いて酸塩化物(M2-1-1)を得ることができる。続いて、カルボン酸末端が保護された化合物(M2-1-2)と酸塩化物(M2-1-1)をトリエチルアミンなどの塩基存在下で縮合させることにより、M2-1-3を得ることができる。保護基(PG)としては、tert-ブチル基やモノメトキシメチル基等を用いることできる。M2-1-3の保護基(PG)を酸により脱保護することによりM2-1を製造することができる。
Figure JPOXMLDOC01-appb-C000019
There are no particular limitations on the method for synthesizing (M2-1) to (M2-6). For example, as shown in the following formula, M3-1 is synthesized according to the synthesis method described in JP-A-9-118717, and acid chloride (M2-1-1) is obtained using thionyl chloride or oxalyl chloride. be able to. Subsequently, M2-1-3 is obtained by condensing the carboxylic acid terminal-protected compound (M2-1-2) and the acid chloride (M2-1-1) in the presence of a base such as triethylamine. I can do it. As the protecting group (PG), a tert-butyl group, a monomethoxymethyl group, etc. can be used. M2-1 can be produced by deprotecting the protecting group (PG) of M2-1-3 with an acid.
Figure JPOXMLDOC01-appb-C000019
 液晶性のみを発現する構造を有するモノマー(以下、モノマーM3ともいう。)は、該モノマー由来のポリマーが液晶性を発現し、該ポリマーが側鎖部位にメソゲン基を形成することができるモノマーのことである。 A monomer having a structure that exhibits only liquid crystallinity (hereinafter also referred to as monomer M3) is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at the side chain site. That's true.
 側鎖の有するメソゲン基としては、ビフェニルやフェニルベンゾエート等の単独でメソゲン構造となる基であっても、安息香酸等のように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては、下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000020
The mesogenic group having a side chain may be a group that forms a mesogenic structure by itself, such as biphenyl or phenylbenzoate, or a group that forms a mesogenic structure by hydrogen bonding between side chains, such as benzoic acid. Good too. The mesogenic group included in the side chain preferably has the following structure.
Figure JPOXMLDOC01-appb-C000020
 モノマーM3のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種に由来する重合性基と、上記式(1)~(12)の少なくとも1種からなる構造を有する構造であることが好ましい。特に、モノマーM3は、重合性基として(メタ)アクリレートを有するものであるものが好ましく、側鎖の末端が-COOHであるものが好ましい。 More specific examples of monomer M3 include hydrocarbons, radically polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene, and siloxane. It is preferable that the structure has a polymerizable group derived from at least one selected from the group and at least one of the above formulas (1) to (12). In particular, the monomer M3 preferably has (meth)acrylate as a polymerizable group, and preferably has a side chain terminal of -COOH.
 モノマーM3の好ましい例としては、下記式(M3-1)~(M3-9)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000021
Preferred examples of monomer M3 include those represented by the following formulas (M3-1) to (M3-9).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
(式中、PL及びpは、上記と同じ。)
Figure JPOXMLDOC01-appb-C000022
(In the formula, PL and p are the same as above.)
 また、光反応性及び/又は液晶性の発現能を損なわない範囲で、その他のモノマーを共重合することができる。その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。 In addition, other monomers can be copolymerized within a range that does not impair the ability to develop photoreactivity and/or liquid crystallinity. Other monomers include, for example, industrially available monomers capable of radical polymerization. Specific examples of other monomers include unsaturated carboxylic acids, acrylic ester compounds, methacrylic ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, and the like.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。 Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of acrylic ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl acrylate. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Examples include propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 Examples of methacrylic acid ester compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, and tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Examples include propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, and 8-ethyl-8-tricyclodecyl methacrylate.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。スチレン化合物としては、例えば、スチレン、4-メチルスチレン、4-クロロスチレン、4-ブロモスチレン等が挙げられる。マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether, and the like. Examples of the styrene compound include styrene, 4-methylstyrene, 4-chlorostyrene, 4-bromostyrene, and the like. Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.
 本発明の側鎖型重合体における側鎖aの含有量は、光反応性の点から、5~90モル%が好ましく、5~80モル%がより好ましく、5~50モル%が更に好ましい。 From the viewpoint of photoreactivity, the content of side chain a in the side chain type polymer of the present invention is preferably 5 to 90 mol%, more preferably 5 to 80 mol%, and even more preferably 5 to 50 mol%.
 本発明の側鎖型重合体における側鎖bの含有量は、位相差値の観点から、10~95モル%が好ましく、5~70モル%がより好ましく、10~70モル%が更に好ましい。 The content of side chain b in the side chain type polymer of the present invention is preferably 10 to 95 mol%, more preferably 5 to 70 mol%, and even more preferably 10 to 70 mol%, from the viewpoint of retardation value.
 本発明の側鎖型重合体における側鎖cの含有量は、位相差値の観点から、側鎖aと側鎖bの含有量の合計が100モル%に満たない場合に、その残りの部分の10~100モル%であることが好ましい。 From the viewpoint of retardation value, the content of side chain c in the side chain type polymer of the present invention is defined as the content of side chain c in the case where the total content of side chain a and side chain b is less than 100 mol%. It is preferably 10 to 100 mol%.
 本発明の側鎖型重合体は、上述したとおり、その他の側鎖を含んでいてもよい。その他の側鎖の含有量は、側鎖a~cの含有量の合計が100モル%に満たない場合に、その残りの部分である。 The side chain type polymer of the present invention may contain other side chains as described above. The content of other side chains is the remaining portion when the total content of side chains a to c is less than 100 mol%.
 (A)成分の側鎖型重合体の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、上述したモノマーM1、モノマーM2、所望によりモノマーM3及び所望によりその他のモノマーのビニル基を利用したラジカル重合、カチオン重合又はアニオン重合により製造することができる。これらの中では、反応制御のしやすさ等の観点からラジカル重合が特に好ましい。 The method for producing the side chain type polymer of component (A) is not particularly limited, and general industrially used methods can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization using the vinyl groups of monomer M1, monomer M2, optionally monomer M3, and optionally other monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤(ラジカル熱重合開始剤、ラジカル光重合開始剤)や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, known compounds such as radical polymerization initiators (radical thermal polymerization initiators, radical photopolymerization initiators) and reversible addition-fragmentation chain transfer (RAFT) polymerization reagents may be used. I can do it.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 A radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature. Such radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) ), alkyl peresters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclohexanoic acid tert-amyl ester, etc.), persulfates (potassium persulfate, (sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, 2,2'-di(2-hydroxyethyl)azobisisobutyronitrile, etc.), and the like. The radical thermal polymerization initiators may be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di(tert-butylperoxycarbonyl)benzophenone, 3,4,4'-tri( tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3' , 4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2',4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2 -(2'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-pentyloxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 4- [p-N,N-di(ethoxycarbonylmethyl)]-2,6-di(trichloromethyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(2'-chlorophenyl)-s- Triazine, 1,3-bis(trichloromethyl)-5-(4'-methoxyphenyl)-s-triazine, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis(7-diethylaminocoumarin), 2-(o-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2 , 2'-bis(2-chlorophenyl)-4,4',5,5'-tetrakis(4-ethoxycarbonylphenyl)-1,2'-biimidazole, 2,2'-bis(2,4-dichlorophenyl) )-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis(2,4-dibromophenyl)-4,4',5,5'-tetraphenyl- 1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 3-(2 -Methyl-2-dimethylaminopropionyl)carbazole, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenylketone, bis(5-2,4-cyclo Pentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone , 3,3',4,4'-tetra(t-hexylperoxycarbonyl)benzophenone, 3,3'-di(methoxycarbonyl)-4,4'-di(t-butylperoxycarbonyl)benzophenone, 3,4 '-di(methoxycarbonyl)-4,3'-di(t-butylperoxycarbonyl)benzophenone, 4,4'-di(methoxycarbonyl)-3,3'-di(t-butylperoxycarbonyl)benzophenone, 2 -(3-Methyl-3H-benzothiazol-2-ylidene)-1-naphthalen-2-yl-ethanone, 2-(3-methyl-1,3-benzothiazol-2(3H)-ylidene)-1- Examples include (2-benzoyl)ethanone. The radical photopolymerization initiators may be used alone or in combination of two or more.
 ラジカル重合法としては、特に限定されるものではなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, etc. can be used.
 重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 The organic solvent used in the polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, dimethylsulfoxide, and tetramethylurea. , pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve Acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert -Butyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, Propylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, Butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate , methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3- Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N,N-dimethylpropanamide, Examples include 3-ethoxy-N,N-dimethylpropanamide and 3-butoxy-N,N-dimethylpropanamide.
 上記有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。 The above organic solvents may be used alone or in combination of two or more. Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight. The initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
 上述したラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。 In the radical polymerization reaction described above, if the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large. The amount is preferably 0.1 to 10 mol % based on the monomer to be polymerized. Furthermore, various monomer components, solvents, initiators, etc. can be added during polymerization.
 上記反応により得られた反応溶液から生成したポリマーを回収するには、反応溶液を貧溶媒に投入して、それら重合体を沈殿させればよい。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。 In order to recover the polymers produced from the reaction solution obtained by the above reaction, the reaction solution may be poured into a poor solvent to precipitate the polymers. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like. The polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating. Further, by repeating the operation of redissolving the recovered polymer in an organic solvent and reprecipitation recovery 2 to 10 times, the amount of impurities in the polymer can be reduced. Examples of the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.
 本発明の(A)側鎖型重合体は、得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮すると、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2,000~2,000,000であるものが好ましく、2,000~1,000,000であるものがより好ましく、5,000~200,000であるものがより一層好ましい。 The side chain type polymer (A) of the present invention has a weight average molecular weight measured by GPC (Gel Permeation Chromatography) method, considering the strength of the resulting coating film, workability during coating film formation, and uniformity of the coating film. is preferably from 2,000 to 2,000,000, more preferably from 2,000 to 1,000,000, even more preferably from 5,000 to 200,000.
[(B)有機溶媒]
 (B)成分の有機溶媒は、重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは1種単独で使用してもよく、2種以上を混合して使用してもよい。
[(B) Organic solvent]
The organic solvent of component (B) is not particularly limited as long as it can dissolve the polymer component. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-ε-caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N- Vinyl-2-pyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-Butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, Diglyme, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl Examples include ether. These may be used alone or in combination of two or more.
[その他の成分]
 本発明の重合体組成物は、(A)及び(B)成分以外の成分を含んでもよい。その例としては、重合体組成物を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、位相差材と基板との密着性を向上させる化合物等が挙げられるが、これらに限定されない。
[Other ingredients]
The polymer composition of the present invention may contain components other than components (A) and (B). Examples include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the retardation material and the substrate. Not limited.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒等が挙げられる。 Specific examples of solvents (poor solvents) that improve film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol. , ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, diethylene glycol, diethylene glycol monoacetate, Diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3 -Methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, Propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate, methyl acetate, ethyl acetate , n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3- Methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, Propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol, etc. Examples include solvents having low surface tension.
 これらの貧溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。上記貧溶媒を用いる場合、その含有量は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることがないように、溶媒中5~80質量%であることが好ましく、20~60質量%であることがより好ましい。 These poor solvents may be used alone or in combination of two or more. When using the above poor solvent, its content is preferably 5 to 80% by mass in the solvent, and 20 to 60% by mass so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. It is more preferable that it is mass %.
 膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。これらの具体例としては、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、F560、F563、R-30、R-40、R-41(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の含有量は、(A)成分100質量部に対し、0.01~2質量部が好ましく、0.01~1質量部がより好ましい。 Compounds that improve film thickness uniformity and surface smoothness include fluorosurfactants, silicone surfactants, nonionic surfactants, and the like. Specific examples of these include FTOP (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafac (registered trademark) F171, F173, F560, F563, R-30, R-40, R- 41 (manufactured by DIC), Florado FC430, FC431 (manufactured by 3M), Asahi Guard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) and the like. The content of these surfactants is preferably 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight, per 100 parts by weight of component (A).
 位相差材と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物等が挙げられ、その具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリル)プロピルトリエチレンテトラミン、N-(3-トリメトキシシリル)プロピルトリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。 Specific examples of compounds that improve the adhesion between the retardation material and the substrate include functional silane-containing compounds, such as 3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane. , 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane , 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-(3-triethoxysilane) silyl)propyltriethylenetetramine, N-(3-trimethoxysilyl)propyltriethylenetetramine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9 -trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltri Examples include ethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and N-phenyl-3-aminopropyltriethoxysilane.
 さらに、基板と位相差材の密着性の向上に加え、偏光板を構成した時のバックライトによる特性の低下等を防ぐ目的で、フェノプラスト系化合物やエポキシ基含有化合物を、重合体組成物に添加してもよい。 Furthermore, in addition to improving the adhesion between the substrate and the retardation material, phenoplast compounds and epoxy group-containing compounds are added to the polymer composition to prevent deterioration of characteristics due to backlight when forming a polarizing plate. May be added.
 フェノプラスト系添加剤の具体例を以下に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000023
Specific examples of phenoplast additives are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000023
 エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N', N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, etc. can be mentioned.
 基板との密着性を向上させる化合物を使用する場合、その含有量は、重合体組成物に含まれる重合体成分100質量部に対し、0.1~30質量部が好ましく、1~20質量部がより好ましい。含有量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When using a compound that improves adhesion to the substrate, its content is preferably 0.1 to 30 parts by mass, and 1 to 20 parts by mass, based on 100 parts by mass of the polymer component contained in the polymer composition. is more preferable. If the content is less than 0.1 part by mass, no effect of improving adhesion can be expected, and if the content is more than 30 parts by mass, the alignment of the liquid crystal may deteriorate.
 添加剤として、光増感剤を用いることもできる。光増感剤としては、無色増感剤及び三重項増感剤が好ましい。 A photosensitizer can also be used as an additive. As the photosensitizer, colorless sensitizers and triplet sensitizers are preferred.
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-又はジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン等)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン等)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン等)、ベンゾチアゾール、ニトロアニリン(m-又はp-ニトロアニリン、2,4,6-トリニトロアニリン等)、ニトロアセナフテン(5-ニトロアセナフテン等)、2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン等)、ナフタレン(2-ナフタレンメタノール、2-ナフタレンカルボン酸等)、アントラセン(9-アントラセンメタノール、9-アントラセンカルボン酸等)、ベンゾピラン、アゾインドリジン、メロクマリン等が挙げられる。これらのうち、好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン及びアセトフェノンケタールである。 Examples of photosensitizers include aromatic nitro compounds, coumarin (7-diethylamino-4-methylcoumarin, 7-hydroxy 4-methylcoumarin), ketocoumarin, carbonylbiscoumarin, aromatic 2-hydroxyketone, aromatic 2-hydroxy Ketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3-methyl-β- Naphthothiazoline, 2-(β-naphthoylmethylene)-3-methylbenzothiazoline, 2-(α-naphthoylmethylene)-3-methylbenzothiazoline, 2-(4-biphenoylmethylene)-3-methylbenzothiazoline , 2-(β-naphthoylmethylene)-3-methyl-β-naphthothiazoline, 2-(4-biphenoylmethylene)-3-methyl-β-naphthothiazoline, 2-(p-fluorobenzoylmethylene)-3 -methyl-β-naphthothiazoline, etc.), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2-(β-naphthoylmethylene)-3-methylbenzoxazoline, 2-(α-naphthoylmethylene) )-3-Methylbenzoxazoline, 2-(4-biphenoylmethylene)-3-methylbenzoxazoline, 2-(β-naphthoylmethylene)-3-methyl-β-naphthoxazoline, 2-(4-biphenoyl methylene)-3-methyl-β-naphthoxazoline, 2-(p-fluorobenzoylmethylene)-3-methyl-β-naphthoxazoline, etc.), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4 , 6-trinitroaniline, etc.), nitroacenaphthene (5-nitroacenaphthene, etc.), 2-[(m-hydroxy-p-methoxy)styryl]benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone, etc.), naphthalene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, etc.), anthracene (9-anthracenemethanol, 9-anthracenecarboxylic acid, etc.), benzopyran, azoindolizine, merocoumarin, etc. can be mentioned. Among these, aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone and acetophenone ketal are preferred.
 本発明の重合体組成物には、上述したもののほか、本発明の効果が損なわれない範囲であれば、位相差材の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差材にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above-mentioned materials, the polymer composition of the present invention may also contain dielectric materials for the purpose of changing the electrical properties such as permittivity and conductivity of the retardation material, as long as the effects of the present invention are not impaired. A crosslinkable compound may be added for the purpose of increasing the hardness and density of a conductive substance and, furthermore, a film when used as a retardation material.
[重合体組成物の調製]
 本発明の重合体組成物は、単層位相差材の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、(A)成分及び上述した膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等が(B)成分の有機溶媒に溶解した溶液として調製されることが好ましい。ここで、(A)成分の含有量は、本発明の組成物中1~30質量%が好ましく、より好ましくは5~30質量%である。
[Preparation of polymer composition]
The polymer composition of the present invention is preferably prepared as a coating liquid so as to be suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention contains component (A), a solvent or compound that improves the film thickness uniformity and surface smoothness, a compound that improves the adhesion between the liquid crystal alignment film and the substrate, etc. Preferably, the component (B) is prepared as a solution dissolved in an organic solvent. Here, the content of component (A) in the composition of the present invention is preferably 1 to 30% by mass, more preferably 5 to 30% by mass.
 本発明の重合体組成物は、(A)成分の重合体以外に、液晶発現能及び感光性能を損なわない範囲でその他の重合体が含まれていてもよい。その際、重合体成分中におけるその他の重合体の含有量は、好ましくは0.5~80質量%、より好ましくは1~50質量%である。その他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等の、液晶性を発現し得る感光性の側鎖型重合体ではない重合体等が挙げられる。 In addition to the polymer of component (A), the polymer composition of the present invention may contain other polymers as long as they do not impair the ability to develop liquid crystals and photosensitivity. At this time, the content of other polymers in the polymer component is preferably 0.5 to 80% by mass, more preferably 1 to 50% by mass. Examples of other polymers include polymers that are not photosensitive side-chain polymers that can exhibit liquid crystallinity, such as poly(meth)acrylate, polyamic acid, and polyimide.
[単層位相差材]
 本発明の単層位相差材は、下記工程(I)~(III)を含む方法によって製造することができる。
(I)本発明の組成物を、基板上に塗布して塗膜を形成する工程、
(II)上記塗膜に偏光した紫外線を照射する工程、及び
(III)上記紫外線を照射した塗膜を加熱して、位相差材を得る工程。
[Single layer retardation material]
The single-layer retardation material of the present invention can be manufactured by a method including the following steps (I) to (III).
(I) a step of applying the composition of the present invention onto a substrate to form a coating film;
(II) a step of irradiating the coating film with polarized ultraviolet rays; and (III) a step of heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
[工程(I)]
 工程(I)は、本発明の組成物を基板上に塗布して塗膜を形成する工程である。より具体的には、本発明の組成物を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属(例えば、アルミニウム、モリブデン、クロム等)が被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、スピンコート、フローコート、ロールコート、スリットコート、スリットコートに続いたスピンコート、インクジェット法、印刷法等の方法によって塗布する。塗布した後、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン等の加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。
[Step (I)]
Step (I) is a step of applying the composition of the present invention onto a substrate to form a coating film. More specifically, the composition of the present invention can be applied to substrates (e.g., silicon/silicon dioxide coated substrates, silicon nitride substrates, metal (e.g., aluminum, molybdenum, chromium, etc.) coated substrates, glass substrates, quartz substrates). , ITO substrate, etc.) or films (e.g., resin films such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film, etc.), bar coat, spin coat, flow coat, roll coat. , slit coating, slit coating followed by spin coating, inkjet method, printing method, etc. After coating, the solvent can be evaporated at 50 to 200°C, preferably 50 to 150°C using a heating means such as a hot plate, hot air circulation oven, or IR (infrared) oven to obtain a coating film.
[工程(II)]
 工程(II)では、工程(I)で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。上記紫外線としては、波長100~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
[Step (II)]
In step (II), the coating film obtained in step (I) is irradiated with polarized ultraviolet light. When irradiating the surface of a coating film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays from a fixed direction via a polarizing plate. As the above-mentioned ultraviolet rays, ultraviolet rays having a wavelength in the range of 100 to 400 nm can be used. Preferably, the optimum wavelength is selected via a filter or the like depending on the type of coating film used. For example, ultraviolet light in the wavelength range of 290 to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 The amount of polarized ultraviolet radiation depends on the coating used. The irradiation amount is 1 to 70% of the amount of polarized ultraviolet light that achieves the maximum value of ΔA, which is the difference between the ultraviolet absorbance in a direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet absorbance in a direction perpendicular to the polarization direction of the coating film. It is preferably within the range of , and more preferably within the range of 1 to 50%.
[工程(III)]
 工程(III)では、工程(II)で偏光した紫外線を照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
[Step (III)]
In step (III), the coating film irradiated with polarized ultraviolet rays in step (II) is heated. By heating, orientation controllability can be imparted to the coating film.
 加熱は、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。 For heating, heating means such as a hot plate, hot air circulation type oven, IR (infrared rays) type oven, etc. can be used. The heating temperature can be determined in consideration of the temperature at which the coating film used exhibits liquid crystallinity.
 加熱温度は、本発明の組成物に含まれる(A)成分の重合体が液晶性を発現する温度(以下、液晶発現温度という。)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、(A)成分の重合体をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、(A)成分の重合体の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。 The heating temperature is preferably within the temperature range at which the polymer of component (A) contained in the composition of the present invention develops liquid crystallinity (hereinafter referred to as liquid crystal development temperature). In the case of a thin film surface such as a paint film, the temperature at which liquid crystals appear on the surface of the paint film is expected to be lower than the temperature at which liquid crystals appear when the polymer of component (A) is observed in bulk. For this reason, the heating temperature is more preferably within the temperature range of the liquid crystal development temperature on the surface of the coating film. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is a temperature that is 10°C lower than the lower limit of the liquid crystal development temperature range of the polymer of component (A), and a temperature that is 10°C lower than the upper limit of the liquid crystal temperature range. It is preferable that the temperature is within a range with an upper limit of . If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy due to heat in the coating film tends to be insufficient, and if the heating temperature is too high than the above temperature range, the condition of the coating film tends to be insufficient. tends to be close to an isotropic liquid state (isotropic phase), in which case it may be difficult to reorient in one direction due to self-organization.
 なお、液晶発現温度は、重合体又は塗膜表面が固体相から液晶相に相転移が起きる液晶転移温度以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。例えば、130℃以下で液晶性を発現するとは、固体相から液晶相に相転移が起きる液晶転移温度が130℃以下であることを意味する。 The liquid crystal development temperature is the liquid crystal transition temperature at which the polymer or coating surface undergoes a phase transition from a solid phase to a liquid crystal phase, and is an isotropic phase at which a phase transition occurs from a liquid crystal phase to an isotropic phase. A temperature below the phase transition temperature (Tiso). For example, expressing liquid crystallinity at 130°C or lower means that the liquid crystal transition temperature at which a phase transition from a solid phase to a liquid crystal phase occurs is 130°C or lower.
 加熱後に形成される塗膜の厚みは、使用する基板の段差や光学的性質を考慮して適宜選択することができ、例えば、0.5~10μmが好適である。 The thickness of the coating film formed after heating can be appropriately selected in consideration of the level difference and optical properties of the substrate used, and is preferably 0.5 to 10 μm, for example.
 本発明の位相差膜用組成物から得られる薄膜は、NZ係数が0.4 ≦ NZ ≦ 0.6、好ましくは0.41 ≦ NZ ≦ 0.58であり、薄膜であっても位相差値の高い単層位相差材を提供することができる。 The thin film obtained from the composition for retardation film of the present invention has an NZ coefficient of 0.4 ≦ NZ ≦ 0.6, preferably 0.41 ≦ NZ ≦ 0.58, and even if it is a thin film, the retardation value It is possible to provide a single-layer retardation material with high retardation.
 このようにして得られた本発明の単層位相差材は、表示装置や記録材料等の用途に好適な光学特性を有する材料であり、特に、液晶ディスプレイや有機ELの偏光板及び位相差板等の光学補償フィルムとして好適である。 The single-layer retardation material of the present invention thus obtained is a material having optical properties suitable for use in display devices, recording materials, etc., and is particularly suitable for polarizing plates and retardation plates for liquid crystal displays and organic EL. It is suitable as an optical compensation film such as.
 以下、合成例、調製例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be explained in more detail with reference to Synthesis Examples, Preparation Examples, Examples, and Comparative Examples, but the present invention is not limited to the following Examples.
 実施例で使用したモノマーMA1、MB1~MB6、MC1~MC3、及びMD1を以下に示す。
MA1は、国際公開第2011/084546号に記載された合成法に従って合成した。MB1およびMC2は、国際公開第2017/135130号に記載された合成法に従って合成した。
MB3は、国際公開第2014/054785号に記載された合成法に従って合成した。
MB6は、特開2016-128403号公報に記載された合成法に従って合成した。
MC1は、特開平9-118717号公報に記載された合成法に従って合成した。
MC3は、特開2009-19117号公報に記載された合成法に従って合成した。
MD1は、特開2012-27354号公報に記載された合成法に従って合成した。
MB2、MB4、MB5は新規化合物であり、下記に合成法を示す。
なお、MA1に由来する側鎖は側鎖aに該当し、MB1~MB6に由来する側鎖は側鎖bに該当し、MC1~MC3に由来する側鎖は側鎖cに該当し、MD1に由来する側鎖は側鎖a、側鎖b及び側鎖cのいずれにも該当しない。
Figure JPOXMLDOC01-appb-C000024
Monomers MA1, MB1 to MB6, MC1 to MC3, and MD1 used in Examples are shown below.
MA1 was synthesized according to the synthesis method described in International Publication No. 2011/084546. MB1 and MC2 were synthesized according to the synthesis method described in International Publication No. 2017/135130.
MB3 was synthesized according to the synthesis method described in International Publication No. 2014/054785.
MB6 was synthesized according to the synthesis method described in JP-A-2016-128403.
MC1 was synthesized according to the synthesis method described in JP-A-9-118717.
MC3 was synthesized according to the synthesis method described in JP-A-2009-19117.
MD1 was synthesized according to the synthesis method described in JP-A-2012-27354.
MB2, MB4, and MB5 are new compounds, and the synthesis method is shown below.
In addition, the side chain derived from MA1 corresponds to side chain a, the side chain derived from MB1 to MB6 corresponds to side chain b, the side chain derived from MC1 to MC3 corresponds to side chain c, and the side chain derived from MB1 to MB6 corresponds to side chain c. The derived side chain does not correspond to any of side chain a, side chain b, and side chain c.
Figure JPOXMLDOC01-appb-C000024
 その他、本実施例で用いた試薬の略号を以下に示す。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
CPN:シクロペンタノン
THF:テトラヒドロフラン
DMF:N,N-ジメチルホルムアミド
THF:テトラヒドロフラン
MeCN:アセトニトリル
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DMAc:N,N-ジメチルアセトアミド
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
(界面活性剤)
R40:メガファックR-40(DIC社製)
F563:メガファックF-563(DIC社製)
In addition, the abbreviations of reagents used in this example are shown below.
(organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve CPN: Cyclopentanone THF: Tetrahydrofuran DMF: N,N-dimethylformamide THF: Tetrahydrofuran MeCN: Acetonitrile PGME: Propylene glycol monomethyl ether PGMEA: Propylene glycol monomethyl ether acetate DMAc: N , N-dimethylacetamide (polymerization initiator)
AIBN: 2,2'-azobisisobutyronitrile (surfactant)
R40: Megafac R-40 (manufactured by DIC)
F563: Megafac F-563 (manufactured by DIC)
1H-NMRの測定>
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER社製)500MHz。
 溶媒:重水素化ジメチルスルホキシド(DMSO-d6)。
 標準物質:テトラメチルシラン(TMS)。
< 1H -NMR measurement>
Equipment: Fourier transform superconducting nuclear magnetic resonance apparatus (FT-NMR) "AVANCE III" (manufactured by BRUKER) 500 MHz.
Solvent: Deuterated dimethyl sulfoxide (DMSO-d 6 ).
Standard material: Tetramethylsilane (TMS).
[1]モノマーの合成
<<MB2の合成>>
Figure JPOXMLDOC01-appb-C000025
[1] Synthesis of monomer <<Synthesis of MB2>>
Figure JPOXMLDOC01-appb-C000025
<[MB2-1]及び[MB2-2]の合成>
 3,000mL四つ口フラスコに、DMAc(400g)、4-ヒドロキシ-3-メトキシ安息香酸エチル(100g,510mmоl)、炭酸カリウム(98.6g,714mmоl)、及びヨウ化カリウム(8.46g,51.0mmоl)を仕込み、85℃加熱条件下で6-クロロ-1-ヘキサノール(83.6g,612mmоl)を2時間かけて滴下した。滴下後、同温度にて22時間反応させて原料を消失させた。反応終了後、酢酸エチル(1200g)で希釈し、純水で有機相を3回洗浄した。続いて、有機相を回収し減圧濃縮することで[MB2-1]を粗物として得た。
 得られた[MB2-1]の粗物に、メタノール(MeOH,300g)、純水(225g)、及び水酸化カリウム(50.5g)を仕込み、40℃加熱条件下で3時間反応させた。反応終了後、反応溶液に3.0mоl/L塩酸水溶液を加えて結晶を析出させ、濾過により結晶を回収した。続いて、得られた結晶を純水(500g)でスラリー洗浄、続いてMeCN(250g)でスラリー洗浄し、ろ物を減圧乾燥することで[MB2-2]を124g(白色結晶)得た(収率:91%)。
<Synthesis of [MB2-1] and [MB2-2]>
In a 3,000 mL four-necked flask, add DMAc (400 g), ethyl 4-hydroxy-3-methoxybenzoate (100 g, 510 mmol), potassium carbonate (98.6 g, 714 mmol), and potassium iodide (8.46 g, 51 g). 0 mmol) was added thereto, and 6-chloro-1-hexanol (83.6 g, 612 mmol) was added dropwise over 2 hours under heating conditions of 85°C. After dropping, the mixture was reacted at the same temperature for 22 hours to eliminate the raw materials. After the reaction was completed, the mixture was diluted with ethyl acetate (1200 g), and the organic phase was washed three times with pure water. Subsequently, the organic phase was collected and concentrated under reduced pressure to obtain [MB2-1] as a crude product.
Methanol (MeOH, 300 g), pure water (225 g), and potassium hydroxide (50.5 g) were added to the obtained crude [MB2-1], and the mixture was reacted at 40° C. for 3 hours. After the reaction was completed, a 3.0 mol/L aqueous hydrochloric acid solution was added to the reaction solution to precipitate crystals, and the crystals were collected by filtration. Subsequently, the obtained crystals were slurry washed with pure water (500 g), then slurry washed with MeCN (250 g), and the filtered material was dried under reduced pressure to obtain 124 g (white crystals) of [MB2-2] ( Yield: 91%).
<[MB2-3],[MB2-4],[MB2-5]の合成>
 2,000mL四つ口フラスコに、THF(494g)、[MB2-2](82.3g,307mmоl)及びトリエチルアミン(Et3N,80.0g,790mmоl)を仕込み、窒素雰囲気氷冷条件下にてクロロメチルメチルエーテル(27.6g,343mmоl)を滴下した。滴下後、氷冷条件下で2時間反応さることで[MB2-3]を合成した。
 上記の反応溶液に4-ジメチルアミノピリジン(0.966g,7.90mmоl)を添加し、窒素雰囲気氷冷条件下にて塩化メタクリロイル(33.0g,316mmоl)を滴下した。滴下後、室温条件下で20時間反応させて、原料を消失させた。反応終了後、酢酸エチル(1230g)で反応液を希釈後、純水で3回有機相を洗浄した。続いて、有機相を硫酸ナトリウムにて脱水処理後、有機相に2,6-ジ-tert-ブチル-p-クレゾール(291mg,1.32mmоl)添加し、減圧濃縮することで[MB2-4]の粗物を得た。
 得られた[MB2-4]の粗物に、エタノール(EtOH,410g)、p-トルエンスルホン酸ピリジニウム(13.2g,52.7mmоl)を加え、70℃加熱条件下で19時間反応させた。反応終了後、反応液を純水(1500g)に投入し粗結晶を析出させ、濾過により粗結晶を回収した。続いて、酢酸エチル(450g)及びMeCN(200g)で再結晶を行い、結晶を濾別し、減圧乾燥することで[MB2-5]を64.6g(白色結晶)得た(収率:63%)。
<Synthesis of [MB2-3], [MB2-4], [MB2-5]>
THF (494 g), [MB2-2] (82.3 g, 307 mmol), and triethylamine (Et 3 N, 80.0 g, 790 mmol) were placed in a 2,000 mL four-neck flask, and the mixture was heated under ice-cooled conditions in a nitrogen atmosphere. Chloromethyl methyl ether (27.6 g, 343 mmol) was added dropwise. After the dropwise addition, [MB2-3] was synthesized by reacting for 2 hours under ice-cooling conditions.
4-dimethylaminopyridine (0.966 g, 7.90 mmol) was added to the above reaction solution, and methacryloyl chloride (33.0 g, 316 mmol) was added dropwise under ice-cooling conditions in a nitrogen atmosphere. After the dropwise addition, the mixture was reacted at room temperature for 20 hours to eliminate the raw materials. After the reaction was completed, the reaction solution was diluted with ethyl acetate (1230 g), and the organic phase was washed three times with pure water. Subsequently, after dehydrating the organic phase with sodium sulfate, 2,6-di-tert-butyl-p-cresol (291 mg, 1.32 mmol) was added to the organic phase and concentrated under reduced pressure to obtain [MB2-4]. I got some rough stuff.
Ethanol (EtOH, 410 g) and pyridinium p-toluenesulfonate (13.2 g, 52.7 mmol) were added to the obtained crude [MB2-4], and the mixture was reacted at 70° C. for 19 hours. After the reaction was completed, the reaction solution was poured into pure water (1500 g) to precipitate crude crystals, and the crude crystals were collected by filtration. Subsequently, recrystallization was performed with ethyl acetate (450 g) and MeCN (200 g), and the crystals were filtered and dried under reduced pressure to obtain 64.6 g (white crystals) of [MB2-5] (yield: 63 %).
<[MB2-6]の合成>
 1,000mL四つ口フラスコに、THF(213g)、[MB2-5](35.5g,106mmоl)4-ヒドロキシ安息香酸-tert-ブチル(22.1g,114mmоl)、及び4-ジメチルアミノピリジン(DMAP,1.29g,10.6mmоl)を仕込み、窒素雰囲気室温条件で1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl,24.3g,127mmоl)を加えて23時間反応させて原料を消失させた。反応終了後、反応液を酢酸エチル(530g)で希釈し、純水で3回有機相を洗浄した。有機相を回収後、減圧濃縮することで粗物を得た。得られた粗物を2-プロパノール(76g)及びヘキサン(70g)で希釈し、-20℃まで冷却することで結晶を析出させ、濾別し、減圧乾燥することで[MB2-6]を43.9g得た(収率:81%)。
<Synthesis of [MB2-6]>
In a 1,000 mL four-necked flask, add THF (213 g), [MB2-5] (35.5 g, 106 mmol), tert-butyl 4-hydroxybenzoate (22.1 g, 114 mmol), and 4-dimethylaminopyridine ( 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC/HCl, 24.3 g, 127 mmol) was added under nitrogen atmosphere at room temperature for 23 hours. The raw materials were eliminated by the reaction. After the reaction was completed, the reaction solution was diluted with ethyl acetate (530 g), and the organic phase was washed three times with pure water. After collecting the organic phase, it was concentrated under reduced pressure to obtain a crude product. The obtained crude product was diluted with 2-propanol (76 g) and hexane (70 g), cooled to -20°C to precipitate crystals, filtered, and dried under reduced pressure to obtain [MB2-6] at 43% .9g was obtained (yield: 81%).
<[MB2]の合成>
 1,000mL四つ口フラスコに、ギ酸(307g)、[MB2-6](43.9g,85.6mmоl)を仕込み、50℃で1時間反応させ、原料を消失させた。反応終了後、反応液を純水(880g)に投入することで結晶を析出させ、濾別することで粗物を回収した。粗物をTHF(132g)に溶解させ、減圧濃縮により溶液重量を44gとし、MeCN(66g)を加えてスラリー洗浄し、ろ物を減圧乾燥することで[MB2]を22.4g(白色結晶)得た(収率:57%)。目的物の1H-NMRの結果を以下に示す。この結果から、得られた固体が、目的のMB2であることを確認した。
1H-NMR(400MHz,[D6]-DMSO):δ(ppm)=13.1(s,1H),8.02-8.06(m,2H),7.76-7.79(m,1H),7.59(d,1H),7.39-7.42(m,2H),7.16(d,1H),6.02(s,1H),5.67(s,1H),4.07-4.12(m,4H),3.85(s,3H),1.88(s,3H),1.74-1.79(m,2H),1.62-1.69(m,2H),1.38-1.48(m,4H)
<Synthesis of [MB2]>
Formic acid (307 g) and [MB2-6] (43.9 g, 85.6 mmol) were placed in a 1,000 mL four-neck flask and reacted at 50° C. for 1 hour to eliminate the raw materials. After the reaction was completed, the reaction solution was poured into pure water (880 g) to precipitate crystals, and the crude product was collected by filtration. The crude material was dissolved in THF (132 g), concentrated under reduced pressure to a solution weight of 44 g, slurry washed by adding MeCN (66 g), and the filtered material was dried under reduced pressure to obtain 22.4 g of [MB2] (white crystals). (yield: 57%). The results of 1 H-NMR of the target product are shown below. From this result, it was confirmed that the obtained solid was the target MB2.
1 H-NMR (400 MHz, [D 6 ]-DMSO): δ (ppm) = 13.1 (s, 1H), 8.02-8.06 (m, 2H), 7.76-7.79 ( m, 1H), 7.59 (d, 1H), 7.39-7.42 (m, 2H), 7.16 (d, 1H), 6.02 (s, 1H), 5.67 (s , 1H), 4.07-4.12 (m, 4H), 3.85 (s, 3H), 1.88 (s, 3H), 1.74-1.79 (m, 2H), 1. 62-1.69 (m, 2H), 1.38-1.48 (m, 4H)
<<MB4の合成>>
Figure JPOXMLDOC01-appb-C000026
 200mL四つ口フラスコに、MC1(10.0g,32.6mmol)、DMF(50mg)及びTHF(50g)を加え、塩化オキサリル(4.56g,35.9mmol)を滴下して室温で撹拌した。反応終了後、反応液をロータリーエバポレーターにて濃縮して塩素化物(薄黄色液体)を得た。得られた塩素化物にTHF(50g)及び3-(4-ヒドロキシフェニル)プロピオン酸メトキシメチル(7.19g,34.2mmol)を加え、窒素雰囲気下で氷冷し、トリエチルアミン(3.96g,39.1mmol)を滴下して室温で撹拌した。反応終了後、反応液をロータリーエバポレーターにて濃縮した。酢酸エチル(100g)を加え、純水(200g)を用いて抽出を行った。有機層をロータリーエバポレーターにて濃縮し溶媒留去することで、MB4-1(薄褐色液体)を得た。500mL一口フラスコに、得られたMB4-1、MeCN(150g)、及び1規定塩酸(50g)を加え、室温で撹拌した。反応終了後、反応液を純水(200g)に注ぎ、沈殿物を濾別した。得られた粗体をエタノール(50g)から再結晶することで、MB4(白色固体)を11.2g得た(収率76%)。目的物の1H-NMRの結果を以下に示す。この結果から、得られた固体が、目的のMB4であることを確認した。
1H-NMR(400MHz,[D6]-DMSO):δ(ppm)=12.2(s,1H),8.03-8.07(d,2H),7.28-7.32(d,2H),7.13-7.17(d,2H),7.08-7.12(d,2H),6.02(s,1H),5.66(s,1H),4.06-4.13(m,4H),2.82-2.88(m,2H),2.54-2.59(t,2H),1.88(s,3H),1.72-1.80(m,2H),1.61-1.69(m,2H),1.38-1.50(m,4H).
<<Synthesis of MB4>>
Figure JPOXMLDOC01-appb-C000026
MC1 (10.0 g, 32.6 mmol), DMF (50 mg) and THF (50 g) were added to a 200 mL four-necked flask, and oxalyl chloride (4.56 g, 35.9 mmol) was added dropwise, followed by stirring at room temperature. After the reaction was completed, the reaction solution was concentrated using a rotary evaporator to obtain a chlorinated product (pale yellow liquid). THF (50 g) and methoxymethyl 3-(4-hydroxyphenyl)propionate (7.19 g, 34.2 mmol) were added to the obtained chlorinated product, cooled on ice under a nitrogen atmosphere, and triethylamine (3.96 g, 39 mmol) was added to the obtained chlorinated product. .1 mmol) was added dropwise and stirred at room temperature. After the reaction was completed, the reaction solution was concentrated using a rotary evaporator. Ethyl acetate (100 g) was added, and extraction was performed using pure water (200 g). The organic layer was concentrated using a rotary evaporator and the solvent was distilled off to obtain MB4-1 (light brown liquid). The obtained MB4-1, MeCN (150 g), and 1N hydrochloric acid (50 g) were added to a 500 mL one-neck flask and stirred at room temperature. After the reaction was completed, the reaction solution was poured into pure water (200 g), and the precipitate was filtered off. The obtained crude product was recrystallized from ethanol (50 g) to obtain 11.2 g of MB4 (white solid) (yield: 76%). The results of 1 H-NMR of the target product are shown below. From this result, it was confirmed that the obtained solid was the target MB4.
1 H-NMR (400 MHz, [D 6 ]-DMSO): δ (ppm) = 12.2 (s, 1H), 8.03-8.07 (d, 2H), 7.28-7.32 ( d, 2H), 7.13-7.17 (d, 2H), 7.08-7.12 (d, 2H), 6.02 (s, 1H), 5.66 (s, 1H), 4 .06-4.13 (m, 4H), 2.82-2.88 (m, 2H), 2.54-2.59 (t, 2H), 1.88 (s, 3H), 1.72 -1.80 (m, 2H), 1.61-1.69 (m, 2H), 1.38-1.50 (m, 4H).
<<MB5の合成>>
Figure JPOXMLDOC01-appb-C000027
 200mL四つ口フラスコに、MB1(15.0g,35.2mmol)、3-(4-ヒドロキシフェニル)プロピオン酸メトキシメチル(7.78g,37.0mmol)、THF(75g)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(8.09g,42.2mmol)、及び4-ジメチルアミノピリジン(0.43g,3.52mmol)を加えて、室温で撹拌した。反応終了後、純水(450g)に注ぎ、沈殿物を濾別することで、MB5-1(白色固体)を得た。500mL一口フラスコに、得られたMB5-1、MeCN(225g)、及び1規定塩酸(75g)を加え、室温で撹拌した。反応終了後、析出した沈殿物を濾別し、MeCN(45g)でリパルプ洗浄した。得られた粗体をTHF(150g)とMeCN(150g)の混合溶媒から再結晶することで、MB5(白色固体)を12.7g得た(収率63%)。目的物の1H-NMRの結果を以下に示す。この結果から、得られた固体が、目的のMB5であることを確認した。
1H-NMR(400MHz,[D6]-DMSO):δ(ppm)=12.2(s,1H),8.20-8.24(d,2H),8.08-8.12(d,2H),7.50-7.54(d,2H),7.31-7.35(d,2H),7.19-7.23(d,2H),7.11-7.16(d,2H),6.02(s,1H),5.67(s,1H),4.08-4.14(m,4H),2.84-2.89(t,2H),2.54-2.60(t,2H),1.88(s,3H),1.73-1.81(m,2H),1.62-1.69(m,2H),1.38-1.51(m,4H).
<<Synthesis of MB5>>
Figure JPOXMLDOC01-appb-C000027
In a 200 mL four-neck flask, MB1 (15.0 g, 35.2 mmol), methoxymethyl 3-(4-hydroxyphenyl)propionate (7.78 g, 37.0 mmol), THF (75 g), 1-(3- Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (8.09 g, 42.2 mmol) and 4-dimethylaminopyridine (0.43 g, 3.52 mmol) were added and stirred at room temperature. After the reaction was completed, MB5-1 (white solid) was obtained by pouring into pure water (450 g) and filtering off the precipitate. The obtained MB5-1, MeCN (225 g), and 1N hydrochloric acid (75 g) were added to a 500 mL one-neck flask and stirred at room temperature. After the reaction was completed, the deposited precipitate was filtered off and repulped and washed with MeCN (45 g). The obtained crude product was recrystallized from a mixed solvent of THF (150 g) and MeCN (150 g) to obtain 12.7 g of MB5 (white solid) (yield: 63%). The results of 1 H-NMR of the target product are shown below. From this result, it was confirmed that the obtained solid was the target MB5.
1 H-NMR (400 MHz, [D 6 ]-DMSO): δ (ppm) = 12.2 (s, 1H), 8.20-8.24 (d, 2H), 8.08-8.12 ( d, 2H), 7.50-7.54 (d, 2H), 7.31-7.35 (d, 2H), 7.19-7.23 (d, 2H), 7.11-7. 16 (d, 2H), 6.02 (s, 1H), 5.67 (s, 1H), 4.08-4.14 (m, 4H), 2.84-2.89 (t, 2H) , 2.54-2.60 (t, 2H), 1.88 (s, 3H), 1.73-1.81 (m, 2H), 1.62-1.69 (m, 2H), 1 .38-1.51 (m, 4H).
[1]重合体の合成
<合成例1>
 NMP(20.5g)中に、MA1(3.99g、12.0mmol)、MC1(4.90g、16.0mmol)、MB1(5.12g、12.0mmol)及びAIBN(0.66g、4.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.7g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-1を得た。
[1] Synthesis of polymer <Synthesis Example 1>
MA1 (3.99 g, 12.0 mmol), MC1 (4.90 g, 16.0 mmol), MB1 (5.12 g, 12.0 mmol) and AIBN (0.66 g, 4.0 mmol) in NMP (20.5 g). 00 mmol) to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.7 g) over 2 hours at 60° C. under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain a polymer solution P-1.
<合成例2>
 NMP(24.3g)中に、MA1(3.69g、11.1mmol)、MC1(1.13g、3.70mmol)、MB1(9.47g、22.2mmol)及びAIBN(0.61g、3.70mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(10.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-2を得た。
<Synthesis example 2>
In NMP (24.3 g) were MA1 (3.69 g, 11.1 mmol), MC1 (1.13 g, 3.70 mmol), MB1 (9.47 g, 22.2 mmol) and AIBN (0.61 g, 3. 70 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (10.4 g) at 60° C. over 2 hours under a nitrogen atmosphere. After completion of the dropwise addition, the mixture was reacted at 60° C. for 12 hours to obtain a polymer solution P-2.
<合成例3>
 NMP(24.4g)中に、MA1(3.59g、10.8mmol)、MB1(10.8g、25.2mmol)及びAIBN(0.59g、3.60mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(10.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-3を得た。
<Synthesis example 3>
MA1 (3.59 g, 10.8 mmol), MB1 (10.8 g, 25.2 mmol) and AIBN (0.59 g, 3.60 mmol) were dissolved in NMP (24.4 g) to prepare a monomer mixed solution. did. The monomer mixed solution was added dropwise to NMP (10.4 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60°C for 12 hours to obtain a polymer solution P-3.
<合成例4>
 NMP(24.3g)中に、MA1(3.59g、10.8mmol)、MB1(9.98g、23.4mmol)、MC2(0.69g、1.80mmol)及びAIBN(0.59g、3.60mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(10.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-4を得た。
<Synthesis example 4>
In NMP (24.3 g) were MA1 (3.59 g, 10.8 mmol), MB1 (9.98 g, 23.4 mmol), MC2 (0.69 g, 1.80 mmol) and AIBN (0.59 g, 3. 60 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (10.4 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60°C for 12 hours to obtain a polymer solution P-4.
<合成例5>
 NMP(20.0g)中に、MA1(3.69g、11.1mmol)、MC1(2.27g、7.40mmol)、MB1(6.31g、14.8mmol)、MC2(1.42g、3.70mmol)及びAIBN(0.61g、3.70mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.3g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-5を得た。
<Synthesis example 5>
In NMP (20.0 g), MA1 (3.69 g, 11.1 mmol), MC1 (2.27 g, 7.40 mmol), MB1 (6.31 g, 14.8 mmol), MC2 (1.42 g, 3. 70 mmol) and AIBN (0.61 g, 3.70 mmol) were dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.3 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60°C for 12 hours to obtain a polymer solution P-5.
<合成例6>
 NMP(20.8g)中に、MA1(3.89g、11.7mmol)、MC1(2.39g、7.80mmol)、MB1(4.99g、11.7mmol)、MC2(2.98g、7.80mmol)及びAIBN(0.64g、3.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.9g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-6を得た。
<Synthesis example 6>
In NMP (20.8 g), MA1 (3.89 g, 11.7 mmol), MC1 (2.39 g, 7.80 mmol), MB1 (4.99 g, 11.7 mmol), MC2 (2.98 g, 7. 80 mmol) and AIBN (0.64 g, 3.90 mmol) were dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.9 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-6.
<合成例7>
 NMP(20.6g)中に、MA1(2.09g、6.30mmol)、MC1(8.36g、27.3mmol)、MB1(3.58g、8.40mmol)及びAIBN(0.69g、4.20mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.7g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-7を得た。
<Synthesis example 7>
In NMP (20.6 g) were MA1 (2.09 g, 6.30 mmol), MC1 (8.36 g, 27.3 mmol), MB1 (3.58 g, 8.40 mmol) and AIBN (0.69 g, 4. 20 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.7 g) over 2 hours at 60° C. under a nitrogen atmosphere. After completion of the dropwise addition, reaction was carried out at 60°C for 12 hours to obtain polymer solution P-7.
<合成例8>
 NMP(20.5g)中に、MA1(1.94g、5.85mmol)、MC1(5.38g、17.6mmol)、MB1(6.65g、15.6mmol)及びAIBN(0.64g、3.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.6g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-8を得た。
<Synthesis example 8>
In NMP (20.5 g) were MA1 (1.94 g, 5.85 mmol), MC1 (5.38 g, 17.6 mmol), MB1 (6.65 g, 15.6 mmol) and AIBN (0.64 g, 3. 90 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.6 g) over 2 hours at 60° C. under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain a polymer solution P-8.
<合成例9>
 NMP(24.1g)中に、MA1(1.84g、5.55mmol)、MC1(2.83g、9.25mmol)、MB1(9.47g、22.2mmol)及びAIBN(0.61g、3.70mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(10.3g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-9を得た。
<Synthesis example 9>
In NMP (24.1 g) were MA1 (1.84 g, 5.55 mmol), MC1 (2.83 g, 9.25 mmol), MB1 (9.47 g, 22.2 mmol) and AIBN (0.61 g, 3. 70 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (10.3 g) at 60° C. over 2 hours under a nitrogen atmosphere. After completion of the dropwise addition, reaction was carried out at 60°C for 12 hours to obtain polymer solution P-9.
<合成例10>
 NMP(20.6g)中に、MA1(1.94g、5.85mmol)、MC1(5.38g、17.6mmol)、MB1(4.99g、11.7mmol)、MB2(1.78g、3.90mmol)及びAIBN(0.64g、3.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.7g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-10を得た。
<Synthesis example 10>
In NMP (20.6 g), MA1 (1.94 g, 5.85 mmol), MC1 (5.38 g, 17.6 mmol), MB1 (4.99 g, 11.7 mmol), MB2 (1.78 g, 3. 90 mmol) and AIBN (0.64 g, 3.90 mmol) were dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.7 g) over 2 hours at 60° C. under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-10.
<合成例11>
 NMP(21.0g)中に、MA1(2.09g、6.30mmol)、MC1(8.36g、27.3mmol)、MB2(3.83g、8.40mmol)及びAIBN(0.69g、4.20mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(14.0g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-11を得た。
<Synthesis example 11>
In NMP (21.0 g) were MA1 (2.09 g, 6.30 mmol), MC1 (8.36 g, 27.3 mmol), MB2 (3.83 g, 8.40 mmol) and AIBN (0.69 g, 4. 20 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (14.0 g) at 60° C. over 2 hours under a nitrogen atmosphere. After completion of the dropwise addition, reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-11.
<合成例12>
 NMP(20.9g)中に、MA1(1.99g、6.00mmol)、MC1(5.51g、18.0mmol)、MB1(5.12g、12.0mmol)、MC3(1.65g、4.00mmol)及びAIBN(0.66g、4.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.9g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-12を得た。
<Synthesis example 12>
In NMP (20.9 g), MA1 (1.99 g, 6.00 mmol), MC1 (5.51 g, 18.0 mmol), MB1 (5.12 g, 12.0 mmol), MC3 (1.65 g, 4. 00 mmol) and AIBN (0.66 g, 4.00 mmol) were dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.9 g) at 60° C. over 2 hours under a nitrogen atmosphere. After completion of the dropwise addition, reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-12.
<合成例13>
 NMP(20.9g)中に、MA1(2.09g、6.30mmol)、MC1(8.36g、27.3mmol)、MB3(3.80g、8.40mmol)及びAIBN(0.69g、4.20mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(14.0g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-13を得た。
<Synthesis example 13>
In NMP (20.9 g) were MA1 (2.09 g, 6.30 mmol), MC1 (8.36 g, 27.3 mmol), MB3 (3.80 g, 8.40 mmol) and AIBN (0.69 g, 4. 20 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (14.0 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-13.
<合成例14>
 NMP(21.1g)中に、MA1(1.94g、5.85mmol)、MC1(5.38g、17.6mmol)、MB4(7.09g、15.6mmol)及びAIBN(0.64g、3.90mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(14.0g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-14を得た。
<Synthesis example 14>
In NMP (21.1 g) were MA1 (1.94 g, 5.85 mmol), MC1 (5.38 g, 17.6 mmol), MB4 (7.09 g, 15.6 mmol) and AIBN (0.64 g, 3. 90 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (14.0 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-14.
<合成例15>
 NMP(21.3g)中に、MA1(1.99g、6.00mmol)、MC1(7.97g、26.0mmol)、MB5(4.58g、8.00mmol)及びAIBN(0.66g、4.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(14.2g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-15を得た。
<Synthesis example 15>
MA1 (1.99 g, 6.00 mmol), MC1 (7.97 g, 26.0 mmol), MB5 (4.58 g, 8.00 mmol) and AIBN (0.66 g, 4.0 mmol) in NMP (21.3 g). 00 mmol) to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (14.2 g) at 60° C. over 2 hours under a nitrogen atmosphere. After completion of the dropwise addition, reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-15.
<合成例16>
 NMP(21.1g)中に、MA1(2.04g、6.15mmol)、MC1(6.91g、22.6mmol)、MB6(5.41g、12.3mmol)及びAIBN(0.67g、4.10mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(14.0g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-16を得た。
<Synthesis example 16>
In NMP (21.1 g) were MA1 (2.04 g, 6.15 mmol), MC1 (6.91 g, 22.6 mmol), MB6 (5.41 g, 12.3 mmol) and AIBN (0.67 g, 4. 10 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (14.0 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the mixture was reacted at 60° C. for 12 hours to obtain polymer solution P-16.
<合成例17>
 NMP(20.6g)中に、MA1(2.24g、6.75mmol)、MC1(11.7g、38.3mmol)及びAIBN(0.74g、4.50mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.7g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-17を得た。
<Synthesis example 17>
MA1 (2.24 g, 6.75 mmol), MC1 (11.7 g, 38.3 mmol) and AIBN (0.74 g, 4.50 mmol) were dissolved in NMP (20.6 g) to prepare a monomer mixed solution. did. The monomer mixed solution was added dropwise to NMP (13.7 g) over 2 hours at 60° C. under a nitrogen atmosphere. After the dropwise addition was completed, the mixture was reacted at 60° C. for 12 hours to obtain polymer solution P-17.
<合成例18>
 NMP(20.8g)中に、MA1(4.39g、13.2mmol)、MC1(8.09g、26.4mmol)、MC2(1.68g、4.40mmol)及びAIBN(0.72g、4.40mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(13.9g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-18を得た。
<Synthesis example 18>
In NMP (20.8 g) were MA1 (4.39 g, 13.2 mmol), MC1 (8.09 g, 26.4 mmol), MC2 (1.68 g, 4.40 mmol) and AIBN (0.72 g, 4. 40 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (13.9 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours to obtain polymer solution P-18.
<合成例19>
 NMP(21.3g)中に、MA1(4.19g、12.6mmol)、MC1(5.15g、16.8mmol)、MC3(5.20g、12.6mmol)及びAIBN(0.69g、4.20mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、NMP(14.2g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させ、ポリマー溶液P-19を得た。
<Synthesis example 19>
In NMP (21.3 g) were MA1 (4.19 g, 12.6 mmol), MC1 (5.15 g, 16.8 mmol), MC3 (5.20 g, 12.6 mmol) and AIBN (0.69 g, 4. 20 mmol) was dissolved to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to NMP (14.2 g) at 60° C. over 2 hours under a nitrogen atmosphere. After the addition was completed, the mixture was reacted at 60° C. for 12 hours to obtain a polymer solution P-19.
<合成例20>
 THF(50.0g)中に、MD1(17.5g、39.9mmol)、及びAIBN(0.328g、2.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、60℃で、THF(21.4g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、60℃で12時間反応させた。反応終了後、メタノール(450g)と純水(180g)の混合溶液中に反応液を加え、ポリマーを再沈殿させた。続いて、濾過、メタノール洗浄、乾燥することでポリマー粉体P-20を得た。
<Synthesis example 20>
MD1 (17.5 g, 39.9 mmol) and AIBN (0.328 g, 2.00 mmol) were dissolved in THF (50.0 g) to prepare a monomer mixed solution. The monomer mixed solution was added dropwise to THF (21.4 g) over 2 hours at 60° C. under a nitrogen atmosphere. After the dropwise addition was completed, the reaction was carried out at 60° C. for 12 hours. After the reaction was completed, the reaction solution was added to a mixed solution of methanol (450 g) and pure water (180 g) to reprecipitate the polymer. Subsequently, polymer powder P-20 was obtained by filtration, washing with methanol, and drying.
 上記で得られたポリマー溶液P-1~P-19及びポリマー粉体P-20のモノマー組成を表1に示す。表1中、組成の括弧内の数値は、使用したモノマーの合計100モル部に対する、各モノマーの配合量(モル部)を表す。
Figure JPOXMLDOC01-appb-T000028
Table 1 shows the monomer compositions of the polymer solutions P-1 to P-19 and polymer powder P-20 obtained above. In Table 1, the numbers in parentheses for the composition represent the blending amount (mol parts) of each monomer based on the total of 100 mole parts of the monomers used.
Figure JPOXMLDOC01-appb-T000028
[2]位相差膜形成材料の調製
<調製例1>
 合成例1で得られたポリマー溶液P-1(20g)に、NMP(0.4g)、BCS(3.6g)及びR40(3.0mg)を加えて撹拌することで、ポリマー溶液T-1を得た。このポリマー溶液T-1は、そのまま位相差膜を形成するための材料とした。
[2] Preparation of retardation film forming material <Preparation Example 1>
By adding NMP (0.4 g), BCS (3.6 g) and R40 (3.0 mg) to the polymer solution P-1 (20 g) obtained in Synthesis Example 1 and stirring, polymer solution T-1 was prepared. I got it. This polymer solution T-1 was directly used as a material for forming a retardation film.
<調製例2~19>
 使用するポリマー溶液をP-1からP-2~P-19に置き換えたことを除いては調製例1と同様に実施することで、ポリマー溶液T-2~T-19を得た。このポリマー溶液T-2~T-19は、そのまま位相差膜を形成するための材料とした。
<Preparation Examples 2 to 19>
Polymer solutions T-2 to T-19 were obtained by carrying out the same procedure as in Preparation Example 1 except that the polymer solution used was replaced with P-2 to P-19 from P-1. These polymer solutions T-2 to T-19 were used as materials for forming a retardation film as they were.
<調製例20>
 合成例20で得られたポリマー粉体P-20(3.75g)に、CPN(11.3g)、BCS(3.75g)及びR40(2.0mg)を加えて撹拌することで、ポリマー溶液T-20を得た。このポリマー溶液T-20は、そのまま位相差膜を形成するための材料とした。
<Preparation example 20>
By adding CPN (11.3 g), BCS (3.75 g) and R40 (2.0 mg) to the polymer powder P-20 (3.75 g) obtained in Synthesis Example 20 and stirring, a polymer solution was prepared. Obtained T-20. This polymer solution T-20 was directly used as a material for forming a retardation film.
<調製例21>
 合成例8で得られたポリマー溶液P-8(20g)を、メタノール/純水混合溶媒中に注ぎ込み、ポリマーを析出させ、濾過、メタノール洗浄することでポリマー粉体P-8(4.5g)を得た。得られたポリマー粉体P-8(1.8g)に、NMP(2.0g)、PGME(3.5g)、BCS(1.0g)、PGMEA(1.7g)、及びF563(9.0mg)を加えて撹拌することで、ポリマー溶液T-21を得た。このポリマー溶液T-21は、そのまま位相差膜を形成するための材料とした。
<Preparation example 21>
Polymer solution P-8 (20 g) obtained in Synthesis Example 8 was poured into a methanol/pure water mixed solvent to precipitate the polymer, filtered, and washed with methanol to obtain polymer powder P-8 (4.5 g). I got it. NMP (2.0 g), PGME (3.5 g), BCS (1.0 g), PGMEA (1.7 g), and F563 (9.0 mg) were added to the obtained polymer powder P-8 (1.8 g). ) was added and stirred to obtain polymer solution T-21. This polymer solution T-21 was directly used as a material for forming a retardation film.
[3]単層位相差膜の製造
<実施例1>
 ポリマー溶液T-1を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(900mJ/cm2)を照射した。170℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-1を作製した。
[3] Production of single-layer retardation film <Example 1>
Polymer solution T-1 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (900 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-1 with a retardation film.
<実施例2>
 ポリマー溶液T-2を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(600mJ/cm2)を照射した。190℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-2を作製した。
<Example 2>
Polymer solution T-2 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (600 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-2 with a retardation film.
<実施例3>
 ポリマー溶液T-3を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.5μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(400mJ/cm2)を照射した。200℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-3を作製した。
<Example 3>
Polymer solution T-3 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 200° C. for 20 minutes to produce a glass substrate S-3 with a retardation film.
<実施例4>
 ポリマー溶液T-4を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.5μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(800mJ/cm2)を照射した。200℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-4を作製した。
<Example 4>
Polymer solution T-4 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 μm. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 200° C. for 20 minutes to produce a glass substrate S-4 with a retardation film.
<実施例5>
 ポリマー溶液T-5を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(400mJ/cm2)を照射した。190℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-5を作製した。
<Example 5>
Polymer solution T-5 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-5 with a retardation film.
<実施例6>
 ポリマー溶液T-6を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(600mJ/cm2)を照射した。190℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-6を作製した。
<Example 6>
Polymer solution T-6 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (600 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-6 with a retardation film.
<実施例7>
 ポリマー溶液T-7を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.5μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(800mJ/cm2)を照射した。170℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-7を作製した。
<Example 7>
Polymer solution T-7 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 μm. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-7 with a retardation film.
<実施例8>
 ポリマー溶液T-8を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約2.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(1,000mJ/cm2)を照射した。190℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-8を作製した。
<Example 8>
Polymer solution T-8 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 2.0 μm. This substrate was dried on a hot plate at 60° C. for 4 minutes, and then ultraviolet light (1,000 mJ/cm 2 ) with a wavelength of 365 nm was applied to the substrate from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. was irradiated. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-8 with a retardation film.
<実施例9>
 ポリマー溶液T-9を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.5μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(800mJ/cm2)を照射した。170℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-9を作製した。
<Example 9>
Polymer solution T-9 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.5 μm. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-9 with a retardation film.
<実施例10>
 ポリマー溶液T-10を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(400mJ/cm2)を照射した。180℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-10を作製した。
<Example 10>
Polymer solution T-10 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 180° C. for 20 minutes to produce a glass substrate S-10 with a retardation film.
<実施例11>
 ポリマー溶液T-11を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約4.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(200mJ/cm2)を照射した。140℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-11を作製した。
<Example 11>
Polymer solution T-11 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 4.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 140° C. for 20 minutes to produce a glass substrate S-11 with a retardation film.
<実施例12>
 ポリマー溶液T-12を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(200mJ/cm2)を照射した。160℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-12を作製した。
<Example 12>
Polymer solution T-12 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 160° C. for 20 minutes to produce a glass substrate S-12 with a retardation film.
<実施例13>
 ポリマー溶液T-13を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約2.5μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(400mJ/cm2)を照射した。160℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-13を作製した。
<Example 13>
Polymer solution T-13 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 2.5 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (400 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 160° C. for 20 minutes to produce a glass substrate S-13 with a retardation film.
<実施例14>
 ポリマー溶液T-14を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.2μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(100mJ/cm2)を照射した。140℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-14を作製した。
<Example 14>
Polymer solution T-14 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.2 μm. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (100 mJ/cm 2 ) with a wavelength of 365 nm were irradiated onto this substrate from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 140° C. for 20 minutes to produce a glass substrate S-14 with a retardation film.
<実施例15>
 ポリマー溶液T-15を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.2μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(200mJ/cm2)を照射した。170℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-15を作製した。
<Example 15>
Polymer solution T-15 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.2 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 170° C. for 20 minutes to produce a glass substrate S-15 with a retardation film.
<実施例16>
 ポリマー溶液T-16を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約2.3μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(800mJ/cm2)を照射した。120℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-16を作製した。
<Example 16>
Polymer solution T-16 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 2.3 μm. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 120° C. for 20 minutes to produce a glass substrate S-16 with a retardation film.
<実施例17>
 ポリマー溶液T-21を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にバーコーターを用いて膜厚が約2.5μmとなるよう塗布した。この基板を80℃の熱循環オーブンで4.5分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(1,000mJ/cm2)を照射した。190℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-17を作製した。
<Example 17>
Polymer solution T-21 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a bar coater to a film thickness of about 2.5 μm. This substrate was dried in a thermal circulation oven at 80°C for 4.5 minutes, and then ultraviolet light (1,000 mJ/cm) with a wavelength of 365 nm was applied to the substrate from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. 2 ) was irradiated. It was heated in an IR oven at 190° C. for 20 minutes to produce a glass substrate S-17 with a retardation film.
<比較例1>
 ポリマー溶液T-17を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(800mJ/cm2)を照射した。140℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板R-1を作製した。
<Comparative example 1>
Polymer solution T-17 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a 60°C hot plate for 4 minutes, and then ultraviolet rays (800 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 140° C. for 20 minutes to produce a glass substrate R-1 with a retardation film.
<比較例2>
 ポリマー溶液T-18を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(200mJ/cm2)を照射した。160℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板R-2を作製した。
<Comparative example 2>
Polymer solution T-18 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (200 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 160° C. for 20 minutes to produce a glass substrate R-2 with a retardation film.
<比較例3>
 ポリマー溶液T-19を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約3.0μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)および偏光板を介して波長365nmの紫外線(50mJ/cm2)を照射した。110℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板R-3を作製した。
<Comparative example 3>
Polymer solution T-19 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 3.0 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet rays (50 mJ/cm 2 ) with a wavelength of 365 nm were irradiated from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. did. It was heated in an IR oven at 110° C. for 20 minutes to produce a glass substrate R-3 with a retardation film.
<比較例4>
 ポリマー溶液T-20を孔径5.0μmのフィルターで濾過した後、無アルカリガラス基板上にスピンコーターを用いて膜厚が約0.8μmとなるよう塗布した。この基板を60℃のホットプレート上で4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(325nmロングウェーブパスフィルタ)および偏光板を介して波長365nmの紫外線(600mJ/cm2)を照射した。130℃の熱循環式オーブンで20分間加熱し、位相差膜付きのガラス基板R-4を作製した。
<Comparative example 4>
Polymer solution T-20 was filtered through a filter with a pore size of 5.0 μm, and then coated onto an alkali-free glass substrate using a spin coater to a film thickness of about 0.8 μm. This substrate was dried on a hot plate at 60°C for 4 minutes, and then ultraviolet light (600 mJ/cm 2 ) with a wavelength of 365 nm was applied to this substrate from a high-pressure mercury lamp through a cut filter (325 nm long wave pass filter) and a polarizing plate. Irradiated. It was heated for 20 minutes in a thermal circulation oven at 130° C. to produce a glass substrate R-4 with a retardation film.
 各位相差膜付きの基板S-1~S-17、R-1~R-4について、下記方法により位相差値及びNZ係数について評価した。 The retardation value and NZ coefficient of the substrates S-1 to S-17 and R-1 to R-4 with each retardation film were evaluated by the following method.
〔位相差値評価〕
 Axometrics社製のAxoScanを用いて波長550nmにおける直線位相差を評価し、表2にまとめた。
[Phase difference value evaluation]
The linear phase difference at a wavelength of 550 nm was evaluated using AxoScan manufactured by Axometrics, and the results are summarized in Table 2.
〔NZ係数評価〕
 Axometrics社製のAxoScanを用いて波長550nmにおける位相差膜の三次元方向の屈折率を測定し、NZ係数を算出した。NZ係数とは、三次元的屈折率の大小関係の指標であり、以下の式で示される。
   NZ係数=(nx-nz)/(nx-ny)
   nx:x軸方向(遅相軸方向)の屈折率
   ny:y軸方向(遅相軸と直交方向)の屈折率
   nz:z軸方向(厚み方向)の屈折率
位相差膜付きのガラス基板S-1~S-17およびR-1~R-3について、位相差膜の平均屈折率を1.55と仮定し、位相差膜付きのガラス基板R-4について、平均屈折率を1.60と仮定してNZ係数を算出した結果を表2にまとめた。
[NZ coefficient evaluation]
The refractive index of the retardation film in the three-dimensional direction at a wavelength of 550 nm was measured using AxoScan manufactured by Axometrics, and the NZ coefficient was calculated. The NZ coefficient is an index of the magnitude relationship of three-dimensional refractive index, and is expressed by the following formula.
NZ coefficient = (nx-nz)/(nx-ny)
nx: refractive index in the x-axis direction (slow axis direction) ny: refractive index in the y-axis direction (direction orthogonal to the slow axis) nz: refractive index in the z-axis direction (thickness direction) Glass substrate S with a retardation film For -1 to S-17 and R-1 to R-3, it is assumed that the average refractive index of the retardation film is 1.55, and for the glass substrate R-4 with the retardation film, the average refractive index is 1.60. Table 2 summarizes the results of calculating the NZ coefficient based on this assumption.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 環構造を2環以上有し、またそのうち末端側にある2環の間が単結合で共有結合していない構造をした末端カルボン酸の側鎖を含まない位相差膜R-1~R-4は、NZ係数が0または1に近しい値となった。一方、上記側鎖を有する組成で作製した位相差膜S-1~S-17は、NZ係数が0.4~0.6となった。 Retardation films R-1 to R-4 that do not contain terminal carboxylic acid side chains, which have two or more ring structures and have a structure in which the two rings on the terminal side are single bonds and are not covalently bonded. The NZ coefficient was close to 0 or 1. On the other hand, the retardation films S-1 to S-17 manufactured with the compositions having the above side chains had NZ coefficients of 0.4 to 0.6.

Claims (7)

  1.  (A)光反応性部位を有する末端カルボン酸の側鎖、及び芳香環構造を2環以上有し、またそのうち末端側にある2環の間が単結合で共有結合していない構造をした末端カルボン酸の側鎖を含む側鎖型共重合体、並びに
     (B)有機溶媒
    からなる位相差膜用組成物。
    (A) A terminal having a side chain of a terminal carboxylic acid having a photoreactive site and two or more aromatic ring structures, and a structure in which the two rings on the terminal side are single bonds and are not covalently bonded. A composition for a retardation film comprising a side chain type copolymer containing a carboxylic acid side chain, and (B) an organic solvent.
  2.  上記(A)側鎖型共重合体が、下記式(a)で表される光反応性部位を有する側鎖及び下記式(b)で表される部位を有する側鎖を有する側鎖型重合体である請求項1に記載の位相差膜用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、炭素数1~30のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R1中の-CH2CH2-が、-CH=CH-で置換されていてもよく、R1中の-CH2-が、-O-、-NH-C(=O)-、-C(=O)-NH-、-C(=O)-O-、-O-C(=O)-、-NH-、-NH-C(=O)-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。ただし、隣接する-CH2-が同時にこれらの基で置換されることはない。
     R2は、2価の芳香族基、2価の脂環式基、2価の複素環式基又は2価の縮合環式基である。
     R3は、単結合、-CH2-、-O-、-C(=O)-O-、-O-C(=O)-又は-CH=CH-C(=O)-O-である。
     R4は、2価の芳香族基、-Ph-Cy-、-Cy-Ph-又は2価の縮合環式基(ただし、Phはフェニレン基を表し、Cyはシクロヘキサンジイル基を表す。)である。
     R5は、-CH2-、-O-、-NH-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-CH=CH-C(=O)-O-、-C(=O)-NH-、-NH-C(=O)-又は-NH-C(=O)-NH-である。
     R6は、炭素数1~10のアルキレン基であり、該アルキレン基の1つ又は複数の水素原子が、フッ素原子又は有機基で置換されていてもよい。また、R6中の-CH2-が、-O-、-NH-及び-C(=O)-からなる群から選ばれる基で置換されていてもよい。隣接する-CH2-が同時にこれらの基で置換されていてもよい。
     式(a)中の環構造中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     式(b)中の環構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     R2、R3、R4またはR5が2個以上存在する場合、複数個のR2、R3、R4またはR5は互いに同じであっても異なっていてもよい。
     aは、0、1又は2である。
     bは、0又は1である。
     cは、0≦c≦2b+4を満たす整数である。
     dは、1又は2である。
     eは、0又は1である。
     fは、0又は1である。
     破線は、結合手である。)
    The above (A) side chain type copolymer is a side chain type copolymer having a side chain having a photoreactive site represented by the following formula (a) and a side chain having a side chain having a site represented by the following formula (b). The composition for a retardation film according to claim 1, which is a combination.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is an alkylene group having 1 to 30 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. -CH 2 CH 2 - may be substituted with -CH=CH-, and -CH 2 - in R 1 may be substituted with -O-, -NH-C(=O)-, -C(= O) -NH-, -C(=O)-O-, -OC(=O)-, -NH-, -NH-C(=O)-NH- and -C(=O)- may be substituted with a group selected from the group consisting of: However, adjacent --CH 2 -- groups are not substituted with these groups at the same time.
    R 2 is a divalent aromatic group, a divalent alicyclic group, a divalent heterocyclic group, or a divalent fused cyclic group.
    R 3 is a single bond, -CH 2 -, -O-, -C(=O)-O-, -OC(=O)- or -CH=CH-C(=O)-O- be.
    R 4 is a divalent aromatic group, -Ph-Cy-, -Cy-Ph-, or a divalent fused cyclic group (where Ph represents a phenylene group and Cy represents a cyclohexanediyl group). be.
    R 5 is -CH 2 -, -O-, -NH-, -C(=O)-, -C(=O)-O-, -O-C(=O)-, -CH=CH- C(=O)-O-, -C(=O)-NH-, -NH-C(=O)- or -NH-C(=O)-NH-.
    R 6 is an alkylene group having 1 to 10 carbon atoms, and one or more hydrogen atoms of the alkylene group may be substituted with a fluorine atom or an organic group. Furthermore, -CH 2 - in R 6 may be substituted with a group selected from the group consisting of -O-, -NH- and -C(=O)-. Adjacent --CH 2 -- groups may be substituted with these groups at the same time.
    The hydrogen atom in the ring structure and CH═CH structure in formula (a) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
    The hydrogen atom in the ring structure in formula (b) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a haloalkoxy group having 1 to 6 carbon atoms. , a halogen group, a cyano group, and a nitro group.
    When two or more R 2 , R 3 , R 4 or R 5 are present, the plurality of R 2 , R 3 , R 4 or R 5 may be the same or different.
    a is 0, 1 or 2.
    b is 0 or 1.
    c is an integer satisfying 0≦c≦2b+4.
    d is 1 or 2.
    e is 0 or 1.
    f is 0 or 1.
    The broken lines are bonds. )
  3.  上記式(a)で表される光反応性部位を有する側鎖が、下記式(a1)で表されるものである請求項2に記載の位相差膜用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1、R2及びaは、上記と同じ。
     R3Aは、単結合、-O-、-C(=O)-O-又は-O-C(=O)-である。R3Aが2個以上存在する場合、複数個のR3Aは互いに同じであっても異なっていてもよい。
     式(a1)中のベンゼン環中及びCH=CH構造中の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン基、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     破線は、結合手である。)
    The composition for a retardation film according to claim 2, wherein the side chain having a photoreactive site represented by the above formula (a) is represented by the following formula (a1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 , R 2 and a are the same as above.
    R 3A is a single bond, -O-, -C(=O)-O- or -OC(=O)-. When two or more R 3As exist, the plural R 3As may be the same or different.
    The hydrogen atom in the benzene ring and in the CH═CH structure in formula (a1) is an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. -6 may be substituted with a substituent selected from a haloalkoxy group, a halogen group, a cyano group, and a nitro group.
    The broken lines are bonds. )
  4.  上記式(b)で表される側鎖中の環構造が3個以下である、請求項2に記載の重合体組成物および位相差膜用組成物。 The polymer composition and composition for a retardation film according to claim 2, wherein the number of ring structures in the side chain represented by the above formula (b) is 3 or less.
  5.  側鎖型重合体が、液晶性を発現する請求項1に記載の位相差膜用組成物。 The composition for a retardation film according to claim 1, wherein the side chain type polymer exhibits liquid crystallinity.
  6.  (I)請求項1~5のいずれか1項に記載の位相差膜用組成物を、基板上に塗布して塗膜を形成する工程、
    (II)上記塗膜に、偏光した紫外線を照射する工程、及び
    (III)上記紫外線を照射した塗膜を加熱して、位相差材を得る工程
    を含む、単層位相差材の製造方法。
    (I) a step of applying the composition for a retardation film according to any one of claims 1 to 5 on a substrate to form a coating film;
    (II) A method for producing a single-layer retardation material, comprising the steps of: (II) irradiating the coating film with polarized ultraviolet rays; and (III) heating the coating film irradiated with the ultraviolet rays to obtain a retardation material.
  7.  請求項1~5のいずれか1項に記載の組成物から得られる単層位相差材。 A single-layer retardation material obtained from the composition according to any one of claims 1 to 5.
PCT/JP2023/009103 2022-03-10 2023-03-09 Phase difference film composition and single-layer phase difference material WO2023171760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022037378 2022-03-10
JP2022-037378 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171760A1 true WO2023171760A1 (en) 2023-09-14

Family

ID=87935404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009103 WO2023171760A1 (en) 2022-03-10 2023-03-09 Phase difference film composition and single-layer phase difference material

Country Status (1)

Country Link
WO (1) WO2023171760A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162343A1 (en) * 2023-01-31 2024-08-08 日産化学株式会社 Single-layer phase difference material and phase difference film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
WO2017170681A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2020203631A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Polymer composition and single-layer retardation material
US20210221672A1 (en) * 2019-01-14 2021-07-22 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Actuator and Manufacture Method Thereof, Operation Method Thereof, and Movable Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
WO2017170681A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
US20210221672A1 (en) * 2019-01-14 2021-07-22 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Actuator and Manufacture Method Thereof, Operation Method Thereof, and Movable Device
WO2020203631A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Polymer composition and single-layer retardation material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162343A1 (en) * 2023-01-31 2024-08-08 日産化学株式会社 Single-layer phase difference material and phase difference film

Similar Documents

Publication Publication Date Title
JP7517327B2 (en) Polymer composition and single-layer retardation material
KR102448661B1 (en) Composition for production of liquid crystal alignment film for in-plane switching liquid crystal display element, liquid crystal alignment film using same, production method therefor, liquid crystal display element having liquid crystal alignment film, and production method therefor
JP7517326B2 (en) Polymer composition and single-layer retardation material
KR102311484B1 (en) Polarized ultraviolet-anisotropic material
CN109416485B (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and novel monomer
WO2023171760A1 (en) Phase difference film composition and single-layer phase difference material
TW202039769A (en) Liquid crystal orientation agent, liquid crystal orientation film and retardation material
WO2023008488A1 (en) Polymer composition and single-layer retardation material
WO2022080378A1 (en) Method for manufacturing single-layer phase difference material
WO2022071409A1 (en) Method for producing single-layer phase difference material
JP7517328B2 (en) Polymer composition and single-layer retardation material
WO2023171757A1 (en) Polymer composition, single layer phase difference material, and liquid crystal alignment agent
WO2024038887A1 (en) Polymer composition and single-layer retardation material
JP2023167636A (en) Method for manufacturing substrate having liquid crystal alignment layer
WO2022210639A1 (en) Method for producing patterned single-layer phase difference film, and single-layer phase difference film-forming polymer composition
WO2022138932A1 (en) Method for producing single-layer phase difference film and single-layer phase difference film-forming polymer composition
WO2023095925A1 (en) Polymer composition and single-layer retardation material
WO2024071364A1 (en) Polymer composition and single-layer retardation material
WO2021090832A1 (en) Method for producing patterned single-layer retardation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024506406

Country of ref document: JP

Kind code of ref document: A