WO2024071364A1 - Polymer composition and single-layer retardation material - Google Patents

Polymer composition and single-layer retardation material Download PDF

Info

Publication number
WO2024071364A1
WO2024071364A1 PCT/JP2023/035570 JP2023035570W WO2024071364A1 WO 2024071364 A1 WO2024071364 A1 WO 2024071364A1 JP 2023035570 W JP2023035570 W JP 2023035570W WO 2024071364 A1 WO2024071364 A1 WO 2024071364A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
side chain
polymer
atoms
Prior art date
Application number
PCT/JP2023/035570
Other languages
French (fr)
Japanese (ja)
Inventor
友基 玉井
隆之 根木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024071364A1 publication Critical patent/WO2024071364A1/en

Links

Definitions

  • the present invention relates to a composition containing a polymer and a single-layer retardation material.
  • the demand for improved display quality and lighter weight for liquid crystal display devices has led to an increased demand for polymer films with controlled internal molecular orientation structures as optical compensation films such as polarizing plates and retardation plates.
  • films that utilize the optical anisotropy of polymerizable liquid crystal compounds are being developed.
  • the polymerizable liquid crystal compounds used here are generally liquid crystal compounds that have a polymerizable group and a liquid crystal structural portion (a structural portion having a spacer portion and a mesogen portion), and acrylic groups are commonly used as the polymerizable group.
  • Such polymerizable liquid crystal compounds are generally made into polymers (films) by polymerizing them through exposure to radiation such as ultraviolet light.
  • radiation such as ultraviolet light.
  • a method is known in which a specific polymerizable liquid crystal compound having an acrylic group is supported between supports, and this compound is irradiated with radiation while maintained in a liquid crystal state to obtain a polymer (Patent Document 1), and a method is known in which a photopolymerization initiator is added to a mixture of two types of polymerizable liquid crystal compounds having an acrylic group or a composition in which this mixture is mixed with chiral liquid crystal, and then ultraviolet light is irradiated to obtain a polymer (Patent Document 2).
  • the present invention has been made in consideration of the above problems, and aims to provide a polymer composition that enables the production of a single-layer retardation material with less turbidity through a simpler process, and a single-layer retardation material obtained from the polymer composition.
  • a polymer composition comprising: (A) a block copolymer having (A1) a photosensitive side chain type polymer block capable of exhibiting liquid crystallinity, and (A2) a polymer block consisting of a repeating unit containing neither a photoalignable side chain nor a liquid crystalline side chain; and (B) an organic solvent.
  • L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • a 1 , A 2 and D 1 each independently represent a single bond, -O-, -CH 2 -, -C( ⁇ O)-O-, -O-C( ⁇ O)-, -C( ⁇ O)-NH- or -NH-C( ⁇ O)-, provided that when T 1 is a single bond, A 2 is also a single bond.
  • Y1 and Y2 are a phenylene group or a naphthylene group, and some or all of the hydrogen atoms of the phenylene group and the naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • P 1 , Q 1 and Q 2 are each independently a single bond, a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, in which some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • each Q 1 may be the same as or different from another
  • each Q 2 may be the same as or different from another.
  • R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • each X 1 may be the same as or different from each other, and when the number of X 2 is 2 or more, each X 2 may be the same as or different from each other.
  • Z 1a and Z 2a each independently represent a hydrogen atom, a halogen atom, a cyano group or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of this alkyl group may be substituted with fluorine atoms.
  • G 1 and G 2 are each independently N or CH. The dashed lines represent bonds.) 3.
  • R 1 is --NO 2 , --CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • R2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups may be substituted with -NO2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • a is an integer from 1 to 12.
  • k1 to k5 each independently represent an integer of 0 to 2, provided that the total of k1 to k5 is 2 or more.
  • k6 and k7 each independently represent an integer of 0 to 2, provided that the sum of k6 and k7 is 1 or more.
  • m1, m2, and m3 each independently represents an integer of 1 to 3.
  • n is 0 or 1.
  • Z 1 and Z 2 each independently represent a single bond, --C( ⁇ O)--, --CH 2 --O--, or --CF 2 --.
  • R' represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Q is an alkylene group having 1 to 10 carbon atoms, some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • L represents a single bond, an alkylene group having 1 to 12 carbon atoms, or a divalent linking group in which one or more of the -CH 2 - constituting the alkylene group having 1 to 12 carbon atoms are replaced with -O-, -S-, -C( ⁇ O)-O-, or -O-C( ⁇ O)-, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • Q 1 is a single bond, a phenylene group, a naphthylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group and naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • n1 is 0, 1, 2 or 3.
  • the hydrogen atoms on the benzene ring and the naphthalene ring may be substituted with a substituent selected from an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, and a nitro group.
  • the dashed lines represent bonds.
  • R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyano group.
  • R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • X is a divalent group represented by the following formula (2) or (3).
  • R a5 to R a8 are a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R L3 , R L4 , R L5 , and R L6 are each independently an alkylene group having 1 to 10 carbon atoms.
  • x and y are each independently a positive integer.
  • the polymer composition according to 1, wherein the polymer block (A2) consisting of repeating units containing neither a photoalignable side chain nor a liquid crystalline side chain is a polymer block derived from a polymeric chain transfer agent.
  • the polymeric chain transfer agent is represented by the following formula (4): (In the formula, Y is a linear or branched alkyl group having 1 to 3 carbon atoms, a hydroxyl group, a carboxyl group, or a sulfanyl group. R and R are each independently a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms. x is a positive integer.) 10.
  • the polymer composition of 1, wherein the photosensitive side chain type polymer block (A1) capable of exhibiting liquid crystallinity has a number average molecular weight of 5,000 to 300,000. 11.
  • the polymer composition according to 1, wherein the polymer block (A2) consisting of repeating units containing neither a photoalignable side chain nor a liquid crystalline side chain has a number average molecular weight of 200 to 10,000.
  • II a step of irradiating the coating film with polarized ultraviolet light; and
  • III a step of heating the coating film irradiated with ultraviolet light to obtain a retardation material.
  • a single-layer retardation material obtained from any one of the polymer compositions 1 to 11.
  • the present invention provides a single-layer retardation material that is thin but has little turbidity and exhibits retardation even when fired at a low temperature, as well as a polymer composition that provides it.
  • the polymer composition of the present invention contains a block copolymer (hereinafter also referred to as a side chain type block copolymer) having a photosensitive side chain type polymer block (A1) (hereinafter also referred to as a side chain type polymer block) capable of expressing liquid crystallinity and a polymer block (A2) consisting of a repeating unit not including a photoalignable side chain and a liquid crystal side chain, and the coating film obtained using the polymer composition is a film having a photosensitive side chain capable of expressing liquid crystallinity.
  • a block copolymer (hereinafter also referred to as a side chain type block copolymer) having a photosensitive side chain type polymer block (A1) (hereinafter also referred to as a side chain type polymer block) capable of expressing liquid crystallinity and a polymer block (A2) consisting of a repeating unit not including a photoalignable side chain and a liquid crystal side chain
  • the coating film is not subjected to a rubbing treatment, but is subjected to an orientation treatment by polarized light irradiation. Then, after the polarized light irradiation, the polymer film is heated to become a film (hereinafter also referred to as a single-layer retardation material) to which optical anisotropy has been imparted. At this time, the slight anisotropy expressed by the polarized light irradiation becomes a driving force, and the side chain type block copolymer itself is efficiently reoriented by self-organization. As a result, a highly efficient orientation treatment is realized, and a single-layer retardation material to which high optical anisotropy has been imparted can be obtained.
  • a single-layer retardation material to which high optical anisotropy has been imparted can be obtained.
  • the polymer composition of the present invention is also characterized in that the polymer of component (A) is a block copolymer having a photosensitive side-chain type polymer block capable of expressing liquid crystallinity, and a polymer block (A2) consisting of repeating units that do not contain photoalignable side chains and liquid crystal side chains.
  • This improves the molecular mobility of the side-chain type block copolymer of component (A) in a solvent, and as a result, the molecular crystallinity in the film of the retardation material obtained from the polymer composition of the present invention is suppressed, and visual haze is suppressed.
  • these include the inventor's views on the mechanism of the present invention, and are not restrictive of the present invention.
  • the polymer composition of the present invention is characterized by comprising: (A) a block copolymer having a side chain-type polymer block (A1) having a side chain having a photoreactive site and a polymer block (A2) composed of a repeating unit containing neither a photoalignable side chain nor a liquid crystalline side chain; and (B) an organic solvent.
  • the component (A) is a photosensitive side-chain type block copolymer that exhibits liquid crystallinity in a predetermined temperature range, and includes a side-chain type polymer block (A1) having a side chain with a photoreactive site and a polymer block (A2) consisting of a repeating unit that does not have a photoalignable side chain and a liquid crystal side chain.
  • the side-chain type polymer block (A1) has a photoreactive site that reacts with ultraviolet light in the side chain, and specifically includes a photosensitive side chain that can exhibit liquid crystallinity and a liquid crystal side chain as necessary.
  • the polymer block (A2) consisting of a repeating unit that does not have a photoalignable side chain and a liquid crystal side chain may have a main chain derived from a predetermined polymerization initiator described later.
  • a coating film obtained from a polymer composition containing such a side-chain type block copolymer is a film that has liquid crystallinity and photosensitivity due to the side-chain type polymer block (A1), and high solvent solubility and film flexibility (low glass transition point ability) due to the polymer block (A2) consisting of a repeating unit that does not have a photoalignable side chain and a liquid crystal side chain.
  • the coating film is not subjected to a rubbing treatment, but is subjected to an orientation treatment by polarized light irradiation.
  • the side-chain polymer film is heated to form a film (single-layer retardation film) with optical anisotropy.
  • the slight anisotropy generated by the polarized light irradiation becomes a driving force, and the side-chain block copolymer itself is efficiently reoriented by self-organization.
  • a highly efficient orientation process is realized as a single-layer retardation film, and a single-layer retardation film with high optical anisotropy can be obtained.
  • the side chain type block copolymer is (i) a polymer that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive side chain.
  • the side chain type block copolymer (ii) reacts to light in the wavelength range of 200 to 400 nm, preferably 240 to 400 nm, and exhibits liquid crystallinity in the temperature range of 50 to 300°C.
  • the side chain type block copolymer (iii) preferably has a photoreactive side chain that reacts to light in the wavelength range of 200 to 400 nm, preferably 240 to 400 nm, particularly polarized ultraviolet light.
  • the side chain type block copolymer (iv) preferably has a mesogen group to exhibit liquid crystallinity in the temperature range of 50 to 300°C.
  • the side chain type block copolymer has a photoreactive side chain having photoreactivity as described above.
  • the structure of the side chain is not particularly limited, but has a structure that causes the above-mentioned (A-1), (A-2) and/or (A-3) reactions, and in particular, has a structure that causes (A-1) photocrosslinking reaction and/or (A-2) photoisomerization reaction.
  • the structure that causes (A-1) photocrosslinking reaction is preferable in that the structure after the reaction can stably maintain the orientation of the side chain type polymer block for a long period of time even if it is exposed to external stress such as heat.
  • the structure that causes (A-2) photoisomerization reaction is preferable in that it allows orientation treatment with a lower exposure amount compared to photocrosslinking and photofleece transition, and increases production efficiency when manufacturing retardation films.
  • the side chain structure of the side chain type polymer block preferably has a rigid mesogen component, since this stabilizes the alignment of the liquid crystal.
  • mesogen components include, but are not limited to, a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and the like.
  • the side chain having a photoreactive site that undergoes a photoreaction with ultraviolet light (hereinafter also referred to as side chain a) contained in the side chain type polymer block is preferably one represented by any of the following formulas (a1) to (a6). From the viewpoint of solubility in a solvent, the number of benzene rings in one side chain a is preferably 3 or less.
  • n1 and n2 are each independently 0, 1, 2, or 3.
  • L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • a 1 , A 2 , and D 1 are each independently a single bond, -O-, -CH 2 -, -C( ⁇ O)-O-, -O-C( ⁇ O)-, -C( ⁇ O)-NH-, or -NH-C( ⁇ O)-.
  • T 1 is a single bond
  • a 2 is also a single bond.
  • Y 1 and Y 2 are phenylene or naphthylene groups, and some or all of the hydrogen atoms of the phenylene and naphthylene groups may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • P 1 , Q 1 , and Q 2 are each independently a single bond, a phenylene group, or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • each Q 1 may be the same as or different from each other
  • each Q 2 may be the same as or different from each other.
  • R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • each X 1 When the number of X 1 is 2 or more, each X 1 may be the same or different from each other, and when the number of X 2 is 2 or more, each X 2 may be the same or different from each other.
  • Z 1a and Z 2a are each independently a hydrogen atom, a halogen atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of this alkyl group may be substituted with fluorine atoms.
  • G1 and G2 are each independently N or CH. The dashed lines represent bonds.
  • the alkylene group having 1 to 12 carbon atoms may be linear, branched, or cyclic, and specific examples include a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, an octane-1,8-diyl group, a nonane-1,9-diyl group, and a decane-1,10-diyl group.
  • the halogen atom may be a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like.
  • the alkyl group having 1 to 5 carbon atoms may be either linear or branched, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, and an n-pentyl group.
  • alkylcarbonyl group having 1 to 5 carbon atoms include a methylcarbonyl (acetyl) group, an ethylcarbonyl group, an n-propylcarbonyl group, an n-butylcarbonyl group, and an n-pentylcarbonyl group.
  • alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and an n-pentyloxy group.
  • divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms examples include a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group, and a cyclooctanediyl group.
  • cycloalkyl group having 3 to 7 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the alkyl group having 1 to 3 carbon atoms may be either linear or branched, and specific examples include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • the side chain a is more preferably one represented by the following formula (a1-1), (a1-2), (a2-1), (a3-1), (a4-1), (a5-1) or (a6-1).
  • L, A1 , A2 , Y1 , Y2 , P1 , Q1 , T1 , R, X1 , Z1a , Z2a , Cou, E, G1 , G2 , n1 and the dashed line are the same as above.
  • P2 is a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • the side chain represented by formula (a1-1) is preferably a side chain represented by the following formula (a1-1-1), and the side chain represented by formula (a1-2) is preferably 0 or a side chain represented by formula (a1-2-1).
  • n1, L, Q 1 , X 1 , R and the dashed line are the same as above.
  • the side chain represented by formula (a2-1) is preferably a side chain represented by the following formula (a2-1-1). (In the formula, L, A2 , Q1 , T1 , R and the dashed line are the same as above.)
  • the side chain represented by formula (a3-1) is preferably a side chain represented by the following formula (a3-1-1), (a3-1-2) or (a3-1-3). (In the formula, L, Cou and the dashed line are the same as above.)
  • the side chain represented by formula (a4-1) is preferably a side chain represented by the following formula (a4-1-1), (a4-1-2), (a4-1-3) or (a4-1-4). (In the formula, L, R and the dashed line are the same as above.)
  • the side chain represented by formula (a5-1) is preferably a side chain represented by the following formula (a5-1-1) or (a5-1-2). (In the formula, L, R and the dashed line are the same as above.)
  • the side chain represented by formula (a6-1) is preferably a side chain represented by the following formula (a6-1-1), (a6-1-2) or (a6-1-3). (In the formula, L, R and the dashed line are the same as above.)
  • (A) Side-chain block copolymer has a photosensitive side chain bonded to the main chain of the side-chain polymer block, and can undergo crosslinking, isomerization, or Fries rearrangement in response to optimal light selected from a wavelength range of 200 to 400 nm, particularly light with a wavelength of 254 nm, 313 nm, or 365 nm.
  • the structure of the photosensitive side-chain polymer block is not particularly limited as long as it satisfies such characteristics, but it is preferable for the side-chain structure to have a rigid mesogen component.
  • a more specific example of the structure of the side chain type polymer block is preferably a structure having a main chain composed of at least one selected from the group consisting of radical polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, and siloxane, and a side chain a.
  • radical polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, and siloxane
  • the side chain type polymer block may further include a side chain that does not undergo photodimerization or photoisomerization (hereinafter, also referred to as side chain b).
  • side chain b is preferably one represented by any one of the following formulae (b1) to (b13), but is not limited thereto.
  • each A4 may be the same or different.
  • R 1 is --NO 2 , --CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • R2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups may be substituted with -NO2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • a is an integer from 1 to 12.
  • k1 to k5 each independently represent an integer of 0 to 2, provided that the total of k1 to k5 is 2 or more.
  • k6 and k7 each independently represent an integer of 0 to 2, provided that the sum of k6 and k7 is 1 or more.
  • m1, m2, and m3 each independently represents an integer of 1 to 3.
  • n is 0 or 1.
  • Z 1 and Z 2 each independently represent a single bond, --C( ⁇ O)--, --CH 2 --O--, or --CF 2 --.
  • R' represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Q is an alkylene group having 1 to 10 carbon atoms, some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • L represents a single bond, an alkylene group having 1 to 12 carbon atoms, or a divalent linking group in which one or more of the -CH 2 - constituting the alkylene group having 1 to 12 carbon atoms are replaced with -O-, -S-, -C( ⁇ O)-O-, or -O-C( ⁇ O)-, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
  • Q 1 is a single bond, a phenylene group, a naphthylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group and naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.
  • n1 is 0, 1, 2 or 3.
  • the hydrogen atoms on the benzene ring and the naphthalene ring may be substituted with a substituent selected from an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, and a nitro group.
  • the dashed lines represent bonds.
  • the monovalent nitrogen-containing heterocyclic group examples include a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, a pyrrolyl group, and a pyridyl group.
  • Specific examples of the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkyl group and alkoxy group include the same groups as those exemplified in the explanation of formulas (a1) to (a6).
  • the side chain type polymer block can be obtained by polymerizing a monomer that provides side chain a and, if necessary, a monomer that provides side chain b.
  • Examples of the monomer that provides the side chain a include compounds represented by the following formula (M1), (M2), (M3), (M4), (M5) or (M6).
  • PG is a polymerizable group, and A1 , A2 , D1 , L, T1 , Y1 , Y2 , P1 , Q1 , Q2 , R, Cou, E, X1 , X2 , Z1a , Z2a , G1 , G2 , n1 and n2 are the same as defined above.
  • PG is a polymerizable group, and is preferably a group represented by any one of the following formulae (PG1) to (PG7).
  • PG1 an acrylic group or methacrylic group represented by formula (PG1) is preferred.
  • R is a hydrogen atom or a methyl group, and the dashed line is a bond to L.
  • the compound represented by formula (M1) is preferably one represented by the following formula (M1-1-1) or (M1-2-1). (In the formula, PG, L, Q1 , X1 , Y1 , Z1a , Z2a , P2 and R are the same as defined above.)
  • the compound represented by formula (M2) is preferably one represented by the following formula (M2-1). (In the formula, PG, A2 , L, T1 , Y1 , Z1a , Z2a , P1 , Q1 and R are the same as defined above.)
  • the compound represented by formula (M3) is preferably one represented by the following formula (M3-1). (In the formula, PG, A 1 , L, X 1 , Q 1 , Cou and n1 are the same as defined above.)
  • the compound represented by formula (M4) is preferably one represented by the following formula (M4-1). (In the formula, PG, A1 , L, X1 , Y1 , Y2 , Q1 , E, R and n1 are the same as defined above.)
  • the compound represented by formula (M5) is preferably one represented by the following formula (M5-1). (In the formula, PG, A1 , L, X1 , Y1 , Y2 , Q1 , R and n1 are the same as defined above.)
  • the compound represented by formula (M6) is preferably one represented by the following formula (M6-1). (In the formula, PG, A1 , L, X1 , Y1 , Y2 , Q1 , G1 , G2 , R and n1 are the same as defined above.)
  • the compound represented by formula (M1-1-1) is preferably one represented by the following formula (M1-1-2), and the compound represented by formula (M1-2-1) is preferably one represented by the following formula (M1-2-2).
  • PG, n1, L, Q1 , X1 and R are the same as defined above.
  • the compound represented by formula (M2-1) is preferably one represented by the following formula (M2-2). (In the formula, PG, A2 , L, T1 , Q1 and R are the same as above.)
  • the compound represented by formula (M3-1) is preferably one represented by the following formula (M3-2), (M3-3) or (M3-4). (In the formula, PG, L and Cou are the same as above.)
  • the compound represented by formula (M4-1) is preferably one represented by the following formula (M4-2), (M4-3), (M4-4) or (M4-5). (In the formula, PG, L and R are the same as above.)
  • the compound represented by formula (M5-1) is preferably one represented by the following formula (M5-2) or (M5-3). (In the formula, PG, L and R are the same as above.)
  • the compound represented by formula (M6-1) is preferably one represented by the following formula (M6-2), (M6-3), or (M6-4). (In the formula, PG, L and R are the same as above.)
  • Examples of compounds represented by formula (M1) include those represented by any of the following formulas (A-1-1-1) to (A-1-1-12).
  • PG is a polymerizable group
  • s1 represents the number of methylene groups and is an integer of 2 to 9
  • R 11 is -H, -CH 3 , -OCH 3 , -C(CH 3 ) 3 , -C( ⁇ O)-CH 3 or -CN
  • R 12 is -H, -CH 3 , -CN or -F.
  • examples of the compound represented by formula (M1) include those represented by any of the following formulae (A-1-2-1) to (A-1-2-4):
  • PG is a polymerizable group
  • s1 is the same as defined above.
  • compounds represented by formula (M1) include 4-(6-methacryloxyhexyl-1-oxy)cinnamic acid, 4-(6-acryloxyhexyl-1-oxy)cinnamic acid, 4-(3-methacryloxypropyl-1-oxy)cinnamic acid, and 4-[4-(6-methacryloxyhexyl-1-oxy)benzoyloxy]cinnamic acid.
  • Examples of compounds represented by formula (M2) include those represented by any of the following formulas (A-2-1) to (A-2-9).
  • PG is a polymerizable group
  • s1 and s2 represent the number of methylene groups and are each independently an integer of 2 to 9.
  • R 21 is -CH 3 , -OCH 3 , -C(CH 3 ) 3 , -C( ⁇ O)-CH 3 , -CN or -F.
  • Examples of the compound represented by formula (M3) include those represented by any of the following formulae (A-3-1) to (A-3-5):
  • PG is a polymerizable group
  • s1 is the same as defined above.
  • Examples of the compound represented by formula (M4) include those represented by any of the following formulae (A-4-1) to (A-4-4):
  • PG is a polymerizable group
  • s1 is the same as defined above.
  • Examples of the compound represented by formula (M5) include those represented by any of the following formulae (A-5-1) to (A-5-3):
  • PG is a polymerizable group
  • s1 is the same as defined above.
  • Examples of the compound represented by formula (M6) include those represented by any of the following formulae (A-6-1) to (A-6-3):
  • PG is a polymerizable group
  • s1 is the same as defined above.
  • monomer MB An example of a monomer that provides a side chain b that does not undergo photodimerization or photoisomerization (hereinafter also referred to as monomer MB) is a monomer that can form a mesogenic group in the side chain.
  • the mesogenic group may be a group that forms a mesogenic structure by itself, such as biphenyl or phenylbenzoate, or a group that forms a mesogenic structure by hydrogen bonding between side chains, such as benzoic acid.
  • the mesogenic group in the side chain preferably has the following structure.
  • monomer MB examples include a structure having a polymerizable group derived from at least one selected from the group consisting of radical polymerizable groups such as hydrocarbons, (meth)acrylates, itaconates, fumarates, maleates, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimides, and norbornenes, and siloxanes, and a structure having at least one of the structures represented by formulas (b1) to (b13).
  • the monomer MB has a polymerizable group derived from a (meth)acrylate.
  • Preferred examples of the monomer MB include those represented by the following formulae (MB-1) to (MB-18), in which PG is a polymerizable group, and p is the number of methylene groups and is an integer of 2 to 9.
  • other monomers can be copolymerized to the extent that the photoreactivity and/or liquid crystallinity is not impaired.
  • the other monomers include industrially available monomers capable of radical polymerization.
  • Specific examples of the other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, etc.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • acrylic acid ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclo[5.2.1.0(2,6)]decyl acrylate, 8-ethyl-8-tricyclo[5.2.1.0(2,6)]decyl
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2-propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclo[5.2.1.0(2,6)]decyl methacrylate
  • vinyl compounds include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • styrene compound examples include styrene, 4-methylstyrene, 4-chlorostyrene, and 4-bromostyrene.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the content of side chain a and side chain b is not particularly limited. It may be a homopolymer with 100 mol% side chain a, or two or more types of side chain a may be used.
  • the content of side chain a is preferably 5 to 99.9 mol%, more preferably 5 to 95 mol%, from the viewpoint of photoreactivity, and even more preferably 5 to 50 mol% from the viewpoint of photostability.
  • the content of side chain b is preferably 95 mol% or less, more preferably 5 to 95 mol%, from the viewpoint of photoreactivity, and even more preferably 50 mol% or more from the viewpoint of photostability. Even in the case of a copolymer, two or more types of side chain a and side chain b may be used.
  • the side chain type polymer block may contain other side chains.
  • the content of the other side chains is the remaining portion.
  • the polymer block (A2) consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains is a block that imparts flexibility to the polymer, which is the component (A).
  • a flexible block is preferable, and examples thereof include polyether and polysiloxane.
  • the polymer block (A2) consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains is easily introduced by a polymer type polymerization initiator.
  • the polymer type polymerization initiator means a polymerization initiator having a polymer segment and a polymerization initiation active group.
  • the polymer segment is the portion that becomes the polymer block consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains in the side chain type block copolymer.
  • the polymer type polymerization initiator is preferably one having a repeating unit represented by the following formula (1).
  • R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyano group.
  • R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • X is a divalent group represented by the following formula (2) or (3).
  • R a5 to R a8 are linear or branched alkyl groups having 1 to 6 carbon atoms or aryl groups having 6 to 12 carbon atoms.
  • R L3 , R L4 , R L5 and R L6 are each independently an alkylene group having 1 to 10 carbon atoms.
  • x and y are each independently a positive integer, usually 5 to 2,000, preferably 5 to 1,000, more preferably 10 to 300, and even more preferably 10 to 200.
  • linear or branched alkyl groups having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, cyclopentyl, and cyclohexyl groups.
  • the alkylene group having 1 to 10 carbon atoms may be linear, branched, or cyclic, and specific examples include methylene, ethylene, trimethylene, propylene, tetramethylene, pentamethylene, heptamethylene, octamethylene, nonamethylene, decamethylene, 2-methylpropylene, 1-methylethylidene, and cyclohexylene.
  • Aryl groups having 6 to 12 carbon atoms include phenyl groups, 1-naphthyl groups, 2-naphthyl groups, 1-biphenylyl groups, and 2-biphenylyl groups.
  • R a1 to R a4 are preferably an alkyl group having 1 to 3 carbon atoms or a cyano group, and more preferably a methyl group or a cyano group.
  • R L1 and R L2 are preferably an alkylene group having 1 to 5 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • R a5 to R a8 are preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.
  • R L3 , R L4 , R L5 and R L6 are preferably an alkylene group having 1 to 5 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • polymer type polymerization initiator examples include a polymeric azo polymerization initiator containing a polyethylene glycol unit represented by the following formula (In-1), and a polymeric azo polymerization initiator containing a polydimethylsiloxane unit represented by the following formula (In-2).
  • n is a positive integer, usually 1 to 100, preferably 3 to 50, and more preferably 5 to 30.
  • VPE-0201 as the polymerization initiator represented by the formula (In-1)
  • VPS-1001N as the polymerization initiator represented by the formula (In-2) (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • the polymer block (A2) consisting of repeating units not containing photoalignable side chains and liquid crystalline side chains may be introduced by a polymer chain transfer agent.
  • the polymer chain transfer agent means a chain transfer agent having a polymer segment and a site that receives radicals from a growing polymer chain to generate new radicals.
  • the polymer segment is the portion that becomes the polymer block consisting of repeating units not containing photoalignable side chains and liquid crystalline side chains in the side chain type block copolymer.
  • the polymeric chain transfer agent is preferably one represented by the following formula (4).
  • Y is a linear or branched alkyl group having 1 to 3 carbon atoms, a hydroxyl group, a carboxyl group, or a sulfanyl group.
  • R L7 and R L8 each independently represent a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms.
  • x is a positive integer.
  • the polymer block (A2) consisting of repeating units not including photoalignable side chains and liquid crystal side chains may be introduced by a monomer not including photoalignable side chains and liquid crystal side chains.
  • a monomer not including photoalignable side chains and liquid crystal side chains is added and polymerized to obtain a side chain type block copolymer consisting of each block.
  • the polymerization method is not particularly limited, but examples thereof include living radical polymerization such as living radical polymerization (NMP) using a nitroxide as a dormant species, reversible addition-fragmentation chain transfer (RAFT) polymerization using a sulfur compound as a dormant, and reversible transfer catalyst polymerization (RTCP) using an alkyl iodide compound as a dormant species and a phosphorus compound, alcohol, or the like as a catalyst.
  • living radical polymerization such as living radical polymerization (NMP) using a nitroxide as a dormant species
  • RAFT reversible addition-fragmentation chain transfer
  • RTCP reversible transfer catalyst polymerization
  • the method for producing the side chain type block copolymer is not particularly limited, and a general-purpose method that is used industrially can be used.
  • the side chain type block copolymer can be produced, for example, by a method including the following steps (1) and (2), but is not limited thereto.
  • Step (1) A step of mixing monomer MA, and if necessary monomer MB and other monomers, and a non-polymeric polymerization initiator, and carrying out radical polymerization in a solvent to form a side-chain type polymer block (A1).
  • Step (2) A step of adding a polymeric polymerization initiator to the reaction liquid obtained in step (1), and carrying out radical polymerization in a solvent to incorporate a polymer block (A2) composed of repeating units not containing a photoalignable side chain and a liquid crystalline side chain.
  • non-polymeric polymerization initiator for the radical polymerization in step (1) known compounds such as the radical thermal polymerization initiators and radical photopolymerization initiators shown below, and reversible addition-fragmentation chain transfer (RAFT) polymerization reagents can be used.
  • RAFT reversible addition-fragmentation chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above its decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohexanoic
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by irradiation with light.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, and isopropyl benzoin ether.
  • Butyl benzoin ether 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 4-dimethylaminobenzoic acid ethyl, 4-dimethylaminobenzoic acid isoamyl, 4,4'-bis(tert-butylperoxycarbonyl)benzo Phenone, 3,4,4'-tris(tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4'-dimethoxysty
  • the radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, etc. can be used.
  • the organic solvent used in the polymerization reaction is not particularly limited as long as it dissolves the produced polymer.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethylphosphoric triamide, ⁇ -butyrolactone, ⁇ -valerolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolv
  • the solvent may be mixed with the organic solvent described above to the extent that the polymer produced does not precipitate.
  • the polymerization temperature during radical polymerization can be selected from any temperature in the range of 20 to 150°C, but is preferably in the range of 30 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low it becomes difficult to obtain a high molecular weight polymer, and if the concentration is too high the viscosity of the reaction liquid becomes too high, making uniform stirring difficult, so the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be carried out at a high concentration in the early stages, and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator to the monomer is high, the molecular weight of the resulting polymer will be small, and if the ratio is low, the molecular weight of the resulting polymer will be large, so the ratio of the radical initiator to the monomer to be polymerized is preferably 0.1 to 15 mol %.
  • various monomer components, solvents, initiators, etc. can also be added during polymerization.
  • the amount of polymeric polymerization initiator used is preferably 0.01 to 0.2 per 1 of the total amount of monomers that give the side chain type polymer block, in terms of molar ratio, taking into account the half-life of the polymeric polymerization initiator and in order to smoothly advance the radical polymerization.
  • various monomer components, solvents, initiators, etc. can also be added during polymerization.
  • the side-chain block copolymer produced from the reaction solution obtained by the above reaction can be recovered by precipitating the reaction solution by pouring the reaction solution into a poor solvent, but this reprecipitation process is not essential.
  • poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water.
  • the polymer precipitated by pouring into a poor solvent can be recovered by filtration, and then dried at room temperature or by heating under normal or reduced pressure.
  • the recovered polymer can be redissolved in an organic solvent and the reprecipitation recovery operation can be repeated 2 to 10 times to reduce impurities in the polymer.
  • poor solvents in this case include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more poor solvents selected from these because this further increases the efficiency of purification.
  • the ratio (molar ratio) of the side chain polymer block to the initiator-derived polymer block in the side chain block copolymer is roughly based on the total amount of monomers that give the side chain polymer block and the amount of polymeric polymerization initiator used.
  • the weight average molecular weight (Mw) of the photosensitive side chain type polymer block (A1) capable of expressing liquid crystallinity is preferably 5,000 to 300,000.
  • the number average molecular weight (Mn) of the polymer block (A2) consisting of repeating units that do not contain photoalignable side chains and liquid crystal side chains is preferably 200 to 10,000.
  • the weight average molecular weight (Mw) of the side chain type block copolymer used in the present invention is preferably 5,200 to 310,000, more preferably 5,500 to 250,000, and even more preferably 6,000 to 200,000, taking into consideration the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film.
  • Mn and Mw are values measured in terms of polystyrene using the gel permeation chromatography (GPC) method.
  • the polymer composition of the present invention contains an organic solvent (good solvent).
  • the organic solvent (good solvent) is not particularly limited as long as it is an organic solvent that dissolves the polymer component. Specific examples thereof include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethylphosphoramide, ⁇ -butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethyl amyl ketone, methyl non
  • the polymer composition may also contain components other than the side chain type block copolymer and the organic solvent (good solvent).
  • components include, but are not limited to, solvents (poor solvents) or compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the retardation film and the substrate.
  • the poor solvent may be used alone or in combination of two or more.
  • its content in the solvent is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, so as not to significantly reduce the solubility of the polymer.
  • the compounds that improve the film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples of these include EFTOP (registered trademark) 301, EF303, and EF352 (manufactured by Tochem Products), Megafac (registered trademark) F-171, F-173, F-563, R-30, and R-40 (manufactured by DIC), Fluorad FC430 and FC431 (manufactured by 3M), Asahiguard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, and SC106 (manufactured by AGC Seimi Chemicals).
  • the content of these surfactants is preferably 0.01 to 2 parts by mass, and more preferably 0.01 to 1 part by mass, per 100 parts by mass of the side chain type block copolymer.
  • compounds that improve the adhesion between the retardation film and the substrate include functional silane-containing compounds, and specific examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethoxysilane, Examples include ethylenetriamine,
  • the polymer composition may contain a phenoplast-based compound or an epoxy group-containing compound to improve adhesion between the substrate and the retardation film, as well as to prevent deterioration of characteristics due to backlight when a polarizing plate is formed.
  • phenoplast-based compound examples include, but are not limited to, those shown below.
  • epoxy group-containing compound examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, and N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl
  • its content is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass, per 100 parts by mass of the side-chain block copolymer contained in the polymer composition. If the content is less than 0.1 parts by mass, the effect of improving adhesion cannot be expected, and if it is more than 30 parts by mass, the alignment of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive.
  • a colorless sensitizer and a triplet sensitizer are preferred.
  • Photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3-methyl- ⁇ -naphthothiazolidine, etc.), and benzoylmethylene-3-methyl- ⁇ -naphthothiazolidine.
  • aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
  • the polymer composition may contain dielectric or conductive substances to change the electrical properties of the retardation film, such as the dielectric constant or conductivity, and may also contain crosslinking compounds to increase the hardness and density of the film when made into a retardation film, as long as the effects of the present invention are not impaired.
  • the polymer composition is preferably prepared as a coating liquid suitable for forming a single-layer retardation film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which the side-chain type block copolymer, the compound that improves the film thickness uniformity and surface smoothness described above, and the compound that improves adhesion to the substrate are dissolved in an organic solvent (good solvent).
  • the content of the side chain type block copolymer in the polymer composition is preferably 1 to 30% by mass, and more preferably 3 to 25% by mass.
  • the polymer composition may contain other polymers in addition to the side chain type block copolymer, as long as the liquid crystal expression ability and photosensitive performance are not impaired.
  • the other polymers include polymers that do not contain photosensitive side chains that can express liquid crystallinity, such as poly(meth)acrylate, polyamic acid, and polyimide.
  • the content thereof is preferably 0.5 to 80% by mass, and more preferably 1 to 50% by mass, of the total polymer components.
  • the polymer composition of the present invention may contain dielectric or conductive substances for the purpose of changing the electrical properties of the phase difference material, such as the dielectric constant or conductivity, and may also contain crosslinking compounds for the purpose of increasing the hardness and density of the film when made into a phase difference material, as long as the effects of the present invention are not impaired.
  • the polymer composition of the present invention is preferably prepared as a coating solution suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention is preferably prepared as a solution in which the component (A), the solvent or compound that improves the thickness uniformity and surface smoothness described above, and the compound that improves the adhesion between the liquid crystal alignment film and the substrate are dissolved in the organic solvent of the component (B).
  • the content of the component (A) is preferably 1 to 30% by mass, more preferably 3 to 25% by mass in the polymer composition of the present invention.
  • the single-layer retardation material of the present invention can be produced by a method including the following steps (I) to (III). (I) a step of applying the polymer composition of the present invention onto a substrate to form a coating film; (II) a step of irradiating the coating film with polarized ultraviolet light, and (III) a step of heating the coating film irradiated with ultraviolet light to obtain a retardation material.
  • Step (I) is a step of applying the polymer composition of the present invention onto a substrate to form a coating film. More specifically, the polymer composition of the present invention is applied onto a substrate (e.g., a silicon/silicon dioxide-coated substrate, a silicon nitride substrate, a glass substrate coated with a metal (e.g., aluminum, molybdenum, chromium, etc.), a glass substrate, a quartz substrate, an ITO substrate, etc.) or a film (e.g., a triacetyl cellulose (TAC) film, a cycloolefin polymer film, a polyethylene terephthalate film, an acrylic film, or other resin film) by a method such as bar coating, spin coating, flow coating, roll coating, slit coating, slit coating followed by spin coating, an inkjet method, or a printing method. After application, the solvent is evaporated at 50 to 200°C, preferably 50 to 150°C,
  • a substrate
  • step (II) the coating film obtained in step (I) is irradiated with polarized ultraviolet light.
  • the polarized ultraviolet light is irradiated from a certain direction relative to the substrate through a polarizing plate.
  • the ultraviolet light ultraviolet light having a wavelength in the range of 100 to 400 nm can be used.
  • an optimal wavelength is selected through a filter or the like depending on the type of coating film used.
  • ultraviolet light having a wavelength in the range of 290 to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the amount of polarized UV light to be irradiated depends on the coating film used.
  • the amount of irradiation is preferably within the range of 1 to 70%, and more preferably within the range of 1 to 50%, of the amount of polarized UV light that achieves the maximum value of ⁇ A, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV light and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV light in the coating film.
  • step (III) the coating film irradiated with the polarized ultraviolet light in step (II) is heated. By heating, it is possible to impart an orientation control ability to the coating film.
  • the heating can be performed using a heating means such as a hot plate, a hot air circulation oven, or an IR (infrared) oven.
  • the heating temperature can be determined taking into consideration the temperature at which the liquid crystallinity of the coating film to be used is expressed.
  • the heating temperature is preferably within the temperature range at which the polymer of component (A) contained in the polymer composition of the present invention exhibits liquid crystallinity (hereinafter referred to as the liquid crystal appearance temperature).
  • the liquid crystal appearance temperature of the coating film surface is expected to be lower than the liquid crystal appearance temperature when the polymer of component (A) is observed in bulk. For this reason, it is more preferable that the heating temperature is within the temperature range of the liquid crystal appearance temperature of the coating film surface.
  • the temperature range of the heating temperature after irradiation with polarized ultraviolet light is preferably a temperature range with a lower limit of a temperature 10°C lower than the lower limit of the temperature range of the liquid crystal appearance temperature of the polymer of component (A) and an upper limit of a temperature 10°C lower than the upper limit of the liquid crystal temperature range. If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy by heat in the coating film tends to be insufficient, and if the heating temperature is too high, the state of the coating film tends to become closer to an isotropic liquid state (isotropic phase), in which case it may be difficult to realign in one direction by self-organization.
  • the liquid crystal manifestation temperature refers to a temperature that is equal to or higher than the liquid crystal transition temperature at which a phase transition occurs on the polymer or coating surface from a solid phase to a liquid crystal phase, and is equal to or lower than the isotropic phase transition temperature (Tiso) at which a phase transition occurs from a liquid crystal phase to an isotropic phase.
  • isotropic phase transition temperature Tiso
  • manifesting liquid crystallinity at 130°C or lower means that the liquid crystal transition temperature at which a phase transition occurs from a solid phase to a liquid crystal phase is 130°C or lower.
  • the thickness of the coating film formed after heating can be appropriately selected taking into consideration the unevenness of the substrate used and the optical and electrical properties, and is preferably 0.5 to 10 ⁇ m, for example.
  • the single-layer retardation material of the present invention obtained in this manner has optical properties suitable for applications such as display devices and recording materials, and is particularly suitable as an optical compensation film such as a polarizing plate and a retardation plate for liquid crystal displays.
  • the monomers having a photoreactive group, MA-1 and MA-8, and the monomers having a non-photosensitive group, MA-2 to MA-7, used in the examples are shown below. Note that the side chains derived from MA-1 and MA-8 exhibit both photoreactivity and liquid crystallinity, while the side chains derived from MA-2 to MA-7 exhibit only liquid crystallinity.
  • reaction solution was added to a mixed solution of methanol (250 g) and pure water (50 g), and the resulting precipitate was filtered off.
  • the filtered product was washed with methanol and dried under reduced pressure at 40 ° C. to obtain polymer powder P-9.
  • Preparation Example 12 As shown in Table 2 below, the same operation as in Preparation Example 11 was carried out except that the type of polymer solution was changed, to obtain Polymer Preparation Solution T-12.
  • Polymer preparation solution T-11 was applied to a non-alkali glass substrate by spin coating to a film thickness of about 2.0 ⁇ m.
  • the substrate was dried on a hot plate at 60° C. for 4 minutes, and then irradiated with ultraviolet light (50 to 800 mJ/cm 2 ) having a wavelength of 365 nm from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate.
  • the substrate was heated in an IR oven at 120° C. for 20 minutes to prepare glass substrate R-3 with a retardation film.
  • the retardation, haze, NZ coefficient, and exposure margin of each of the retardation film-coated substrates S-1 to S-8 and R-1 to R-4 were evaluated using the following methods.
  • Phase difference evaluation The linear phase difference at a wavelength of 550 nm was measured using AxoScan manufactured by Axometrics, and ⁇ n was calculated using the following formula. The optimum exposure amount at which ⁇ n was maximized and the value of ⁇ n at that time are shown in Table 4.
  • ⁇ n phase difference value [nm]/film thickness [nm]
  • NZ coefficient evaluation The refractive indexes of the retardation film in the three-dimensional direction at a wavelength of 550 nm were measured using an AxoScan manufactured by Axometrics, and the NZ coefficient was calculated.
  • the NZ coefficient is an index of the magnitude relationship of the three-dimensional refractive index and is expressed by the following formula.
  • NZ coefficient (nx - nz) / (nx - ny)
  • nx refractive index in the x-axis direction (slow axis direction)
  • ny refractive index in the y-axis direction (direction perpendicular to the slow axis)
  • nz refractive index in the z-axis direction (thickness direction).
  • the values of the NZ coefficient were shifted to the positive side compared to the Comparative Examples in which a polymer block consisting of a repeating unit not containing a photoalignable side chain and a liquid crystalline side chain was not introduced. Also, a wide exposure margin for the NZ coefficient was confirmed in the Examples. In Examples 1 to 8, it is considered that the alignment was stabilized and a wide exposure margin was obtained because the block copolymer consisting of a side chain type polymer block and a polymer block consisting of a repeating unit not containing a photoalignable side chain and a liquid crystalline side chain formed microphase separation.

Abstract

Provided is a polymer composition from which a retardation film reduced in turbidity can be produced by a simpler process. The polymer composition comprises: (A) a block copolymer comprising a photosensitive side-chain-type polymer block (A1) capable of exhibiting liquid crystallinity and a polymer block (A2) made up of repeating units containing neither a photo-aligning side chain nor a liquid-crystalline side chain; and (B) an organic solvent.

Description

重合体組成物及び単層位相差材Polymer composition and single-layer retardation material
 本発明は、重合体を含む組成物及び単層位相差材に関する。 The present invention relates to a composition containing a polymer and a single-layer retardation material.
 液晶表示装置の表示品位の向上や軽量化等の要求から、偏光板や位相差板等の光学補償フィルムとして、内部の分子配向構造が制御された高分子フィルムの要求が高まっている。この要求に応えるべく、重合性液晶化合物が有する光学異方性を利用したフィルムの開発がなされている。ここで用いられる重合性液晶化合物は、一般に、重合性基と液晶構造部位(スペーサ部とメソゲン部とを有する構造部位)とを有する液晶化合物であり、この重合性基としてアクリル基が広く用いられている。 The demand for improved display quality and lighter weight for liquid crystal display devices has led to an increased demand for polymer films with controlled internal molecular orientation structures as optical compensation films such as polarizing plates and retardation plates. To meet this demand, films that utilize the optical anisotropy of polymerizable liquid crystal compounds are being developed. The polymerizable liquid crystal compounds used here are generally liquid crystal compounds that have a polymerizable group and a liquid crystal structural portion (a structural portion having a spacer portion and a mesogen portion), and acrylic groups are commonly used as the polymerizable group.
 このような重合性液晶化合物は、一般的に、紫外線等の放射線を照射して重合する方法で重合体(フィルム)とされる。例えば、アクリル基を有する特定の重合性液晶化合物を支持体間に担持し、この化合物を液晶状態に保持しつつ放射線を照射して重合体を得る方法(特許文献1)や、アクリル基を有する2種類の重合性液晶化合物の混合物又はこの混合物にカイラル液晶を混合した組成物に光重合開始剤を添加し、紫外線を照射して重合体を得る方法(特許文献2)が知られている。 Such polymerizable liquid crystal compounds are generally made into polymers (films) by polymerizing them through exposure to radiation such as ultraviolet light. For example, a method is known in which a specific polymerizable liquid crystal compound having an acrylic group is supported between supports, and this compound is irradiated with radiation while maintained in a liquid crystal state to obtain a polymer (Patent Document 1), and a method is known in which a photopolymerization initiator is added to a mixture of two types of polymerizable liquid crystal compounds having an acrylic group or a composition in which this mixture is mixed with chiral liquid crystal, and then ultraviolet light is irradiated to obtain a polymer (Patent Document 2).
 また、液晶配向膜を必要としない重合性液晶化合物や重合体を用いた配向フィルム(特許文献3、4)、光架橋部位を含む重合体を用いた配向フィルム(特許文献5、6)等、様々な単層塗布型配向フィルムが報告されてきた。高配向性を示す重合体は、重合体の溶解性が低く、位相差材料としてHaze(ヘーズ、濁度)や位相差不足等の問題が生じてしまう。このような問題を解決する材料はこれまでに見出されていなかった。 Also, various single-layer coating type alignment films have been reported, such as alignment films using polymerizable liquid crystal compounds or polymers that do not require a liquid crystal alignment film (Patent Documents 3 and 4), and alignment films using polymers containing photocrosslinking sites (Patent Documents 5 and 6). Polymers that exhibit high alignment have low solubility, and as a retardation material, problems such as haze and insufficient retardation occur. Until now, no material that solves these problems has been found.
特開昭62-70407号公報Japanese Patent Application Laid-Open No. 62-70407 特開平9-208957号公報Japanese Patent Application Laid-Open No. 9-208957 欧州特許出願公開第1090325号明細書European Patent Application Publication No. 1090325 国際公開第2008/031243号International Publication No. 2008/031243 特開2008-164925号公報JP 2008-164925 A 特開平11-189665号公報Japanese Patent Application Laid-Open No. 11-189665
 本発明は、前記問題に鑑みなされたものであり、より簡単なプロセスにより、濁りの少ない単層位相差材の作製を可能とする重合体組成物、及び該重合体組成物から得られる単層位相差材を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a polymer composition that enables the production of a single-layer retardation material with less turbidity through a simpler process, and a single-layer retardation material obtained from the polymer composition.
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、特定の重合体及び特定の添加剤を含む組成物を用いることで、液晶配向膜を使用することなく、濁りの少ない異方性(Δn)を有する単層位相差材を低温で作製可能となることを見出し、本発明を完成した。 As a result of extensive research into solving the above problems, the inventors discovered that by using a composition containing a specific polymer and specific additives, it is possible to produce a single-layer retardation material with low turbidity and anisotropy (Δn) at low temperatures without using a liquid crystal alignment film, and thus completed the present invention.
 すなわち、本発明は、下記重合体組成物及び単層位相差材を提供する。
1. (A)液晶性を発現し得る感光性の側鎖型重合体ブロック(A1)と、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)とを有するブロック共重合体、及び(B)有機溶媒を含む重合体組成物。
2. 前記側鎖型重合体ブロック(A1)が、下記式(a1)~(a6)のいずれかで表される側鎖を有する1の重合体組成物。
Figure JPOXMLDOC01-appb-C000009
(式中、n1及びn2は、それぞれ独立に、0、1、2又は3である。
 Lは、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 T1は、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 A1、A2及びD1は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。ただし、T1が単結合のときは、A2も単結合である。
 Y1及びY2は、フェニレン基又はナフチレン基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。
 P1、Q1及びQ2は、それぞれ独立に、単結合、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよく、Q2の数が2以上のとき、各Q2は互いに同一でも異なっていてもよい。
 Rは、水素原子、シアノ基、ハロゲン原子、カルボキシ基、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルコキシ基である。
 X1及びX2は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。X1の数が2以上のとき、各X1は互いに同一でも異なっていてもよく、X2の数が2以上のとき、各X2は互いに同一でも異なっていてもよい。
 Z1a及びZ2aは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基又は炭素数1~3のアルキル基であり、このアルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。
 Couは、クマリン-6-イル基又はクマリン-7-イル基であり、これらに結合する水素原子の一部が-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
 G1及びG2は、それぞれ独立に、N又はCHである。
 破線は、結合手である。)
3. 前記側鎖型重合体ブロック(A1)が、更に、光二量化も光異性化もしない側鎖を有する1又は2の重合体組成物。
4. 前記光二量化も光異性化もしない側鎖が、下記式(b1)~(b13)のいずれかで表されるものである3の重合体組成物。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式中、A3及びA4は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。A4の数が2以上のとき、各A4は互いに同一でも異なっていてもよい。
 R1は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 R2は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基又は炭素数5~8の1価脂環式炭化水素基であり、これらの基の水素原子の一部又は全部が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
 aは、1~12の整数である。
 k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
 k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
 m1、m2及びm3は、それぞれ独立に、1~3の整数である。
 nは、0又は1である。
 Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2-O-、又は-CF2-である。
 W1、W2及びW3は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-N(R’)-又は-N(R’)-C(=O)-である。W2の数が2以上のとき、各W2は互いに同一でも異なっていてもよい。R’は水素原子又は炭素数1~6のアルキル基を表す。
 Qは、炭素数1~10のアルキレン基である。該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 Lは、単結合又は炭素数1~12のアルキレン基、又は、炭素数1~12のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-C(=O)-O-、もしくは-O-C(=O)-に置換された2価の連結基を表し、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 Q1は、単結合、フェニレン基、ナフチレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよい。
 n1は、0、1、2又は3である。
 ベンゼン環及びナフタレン環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン原子、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
 破線は、結合手である。)
5. 前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)が、ポリマー型重合開始剤由来の重合体ブロックである1の重合体組成物。
6. 前記ポリマー型重合開始剤が、下記式(1)で表される繰り返し単位を有する5の重合体組成物。
Figure JPOXMLDOC01-appb-C000013
(式中、Ra1~Ra4は、それぞれ独立に、直鎖状若しくは分枝状の炭素数1~6のアルキル基、又はシアノ基である。RL1及びRL2は、それぞれ独立に、炭素数1~10のアルキレン基である。L1及びL2は、それぞれ独立に、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。Xは、下記式(2)又は(3)で表される2価の基である。)
Figure JPOXMLDOC01-appb-C000014
(式中、Ra5~Ra8は、直鎖状若しくは分枝状の炭素数1~6のアルキル基又は炭素数6~12のアリール基である。RL3、RL4、RL5、及びRL6は、それぞれ独立に、炭素数1~10のアルキレン基である。x及びyは、それぞれ独立に、正の整数である。)
7. 前記ポリマー型重合開始剤が、下記式(In-1)~(In-2)のいずれかで表される6の重合体組成物。
Figure JPOXMLDOC01-appb-C000015
(式中、x及びyは前記と同じ。nは、正の整数である。)
8. 前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)が、ポリマー型連鎖移動剤由来の重合体ブロックである1の重合体組成物。
9. 前記ポリマー型連鎖移動剤が、下記式(4)で表される8の重合体組成物。
Figure JPOXMLDOC01-appb-C000016
(式中、Yは、直鎖状若しくは分枝状の炭素数1~3のアルキル基、ヒドロキシ基、カルボキシ基、又はスルファニル基である。RL7及びRL8は、それぞれ独立に、単結合又は直鎖状若しくは分枝状の炭素数1~6のアルキレン基である。xは、正の整数である。)
10. 前記液晶性を発現し得る感光性の側鎖型重合体ブロック(A1)の数平均分子量が5,000~300,000である1の重合体組成物。
11. 前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)の数平均分子量が200~10,000である1の重合体組成物。
12. (I)1~11のいずれかの重合体組成物を、基板上に塗布して塗膜を形成する工程、
(II)前記塗膜に、偏光した紫外線を照射する工程、及び
(III)前記紫外線を照射した塗膜を加熱して、位相差材を得る工程
を含む、単層位相差材の製造方法。
13. 1~11のいずれかの重合体組成物から得られる単層位相差材。
That is, the present invention provides the following polymer composition and single-layer retardation material.
1. A polymer composition comprising: (A) a block copolymer having (A1) a photosensitive side chain type polymer block capable of exhibiting liquid crystallinity, and (A2) a polymer block consisting of a repeating unit containing neither a photoalignable side chain nor a liquid crystalline side chain; and (B) an organic solvent.
2. The polymer composition according to 1, wherein the side chain type polymer block (A1) has a side chain represented by any one of the following formulas (a1) to (a6):
Figure JPOXMLDOC01-appb-C000009
(In the formula, n1 and n2 each independently represent 0, 1, 2, or 3.
L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
A 1 , A 2 and D 1 each independently represent a single bond, -O-, -CH 2 -, -C(═O)-O-, -O-C(═O)-, -C(═O)-NH- or -NH-C(═O)-, provided that when T 1 is a single bond, A 2 is also a single bond.
Y1 and Y2 are a phenylene group or a naphthylene group, and some or all of the hydrogen atoms of the phenylene group and the naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
P 1 , Q 1 and Q 2 are each independently a single bond, a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, in which some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. When the number of Q 1s is 2 or more, each Q 1 may be the same as or different from another, and when the number of Q 2s is 2 or more, each Q 2 may be the same as or different from another.
R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
X 1 and X 2 are each independently a single bond, -O-, -C(=O)-O-, -O-C(=O)-, -N=N-, -CH=CH-, -C≡C-, -CH=CH-C(=O)-O-, or -O-C(=O)-CH=CH-. When the number of X 1 is 2 or more, each X 1 may be the same as or different from each other, and when the number of X 2 is 2 or more, each X 2 may be the same as or different from each other.
Z 1a and Z 2a each independently represent a hydrogen atom, a halogen atom, a cyano group or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of this alkyl group may be substituted with fluorine atoms.
Cou is a coumarin-6-yl group or a coumarin-7-yl group, and some of the hydrogen atoms bonded to these may be substituted with -NO2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
E is -C(=O)-O-, -OC(=O)-, -C(=O)-S- or -SC(=O)-.
G 1 and G 2 are each independently N or CH.
The dashed lines represent bonds.)
3. The polymer composition of 1 or 2, wherein the side chain type polymer block (A1) further has a side chain that is not photodimerized or photoisomerized.
4. The polymer composition according to 3, wherein the side chain which is neither photodimerized nor photoisomerized is represented by any one of the following formulas (b1) to (b13):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(In the formula, A3 and A4 each independently represent a single bond, -O-, -CH2- , -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, or -NH-C(=O)-. When the number of A4 's is 2 or more, each A4 may be the same or different.
R 1 is --NO 2 , --CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
R2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups may be substituted with -NO2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
R3 is a hydrogen atom, -NO2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
E is -C(=O)-O-, -OC(=O)-, -C(=O)-S- or -SC(=O)-.
a is an integer from 1 to 12.
k1 to k5 each independently represent an integer of 0 to 2, provided that the total of k1 to k5 is 2 or more.
k6 and k7 each independently represent an integer of 0 to 2, provided that the sum of k6 and k7 is 1 or more.
m1, m2, and m3 each independently represents an integer of 1 to 3.
n is 0 or 1.
Z 1 and Z 2 each independently represent a single bond, --C(═O)--, --CH 2 --O--, or --CF 2 --.
W 1 , W 2 and W 3 are each independently a single bond, -O-, -C(=O)-O-, -O-C(=O)-, -C(=O)-N(R')- or -N(R')-C(=O)-. When the number of W 2 is 2 or more, each W 2 may be the same or different. R' represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Q is an alkylene group having 1 to 10 carbon atoms, some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
L represents a single bond, an alkylene group having 1 to 12 carbon atoms, or a divalent linking group in which one or more of the -CH 2 - constituting the alkylene group having 1 to 12 carbon atoms are replaced with -O-, -S-, -C(═O)-O-, or -O-C(═O)-, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
Q 1 is a single bond, a phenylene group, a naphthylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group and naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. When the number of Q 1 is 2 or more, each Q 1 may be the same or different.
n1 is 0, 1, 2 or 3.
The hydrogen atoms on the benzene ring and the naphthalene ring may be substituted with a substituent selected from an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, and a nitro group.
The dashed lines represent bonds.)
5. The polymer composition according to 1, wherein the polymer block (A2) consisting of repeating units containing neither a photoalignable side chain nor a liquid crystalline side chain is a polymer block derived from a polymeric polymerization initiator.
6. The polymer composition according to 5, wherein the polymer type polymerization initiator has a repeating unit represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000013
(In the formula, R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyano group. R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms. L 1 and L 2 are each independently -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, or -NH-C(=O)-. X is a divalent group represented by the following formula (2) or (3).)
Figure JPOXMLDOC01-appb-C000014
(In the formula, R a5 to R a8 are a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. R L3 , R L4 , R L5 , and R L6 are each independently an alkylene group having 1 to 10 carbon atoms. x and y are each independently a positive integer.)
7. The polymer composition according to 6, wherein the polymer type polymerization initiator is represented by any one of the following formulas (In-1) to (In-2):
Figure JPOXMLDOC01-appb-C000015
(In the formula, x and y are the same as above, and n is a positive integer.)
8. The polymer composition according to 1, wherein the polymer block (A2) consisting of repeating units containing neither a photoalignable side chain nor a liquid crystalline side chain is a polymer block derived from a polymeric chain transfer agent.
9. The polymer composition according to 8, wherein the polymeric chain transfer agent is represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000016
(In the formula, Y is a linear or branched alkyl group having 1 to 3 carbon atoms, a hydroxyl group, a carboxyl group, or a sulfanyl group. R and R are each independently a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms. x is a positive integer.)
10. The polymer composition of 1, wherein the photosensitive side chain type polymer block (A1) capable of exhibiting liquid crystallinity has a number average molecular weight of 5,000 to 300,000.
11. The polymer composition according to 1, wherein the polymer block (A2) consisting of repeating units containing neither a photoalignable side chain nor a liquid crystalline side chain has a number average molecular weight of 200 to 10,000.
12. (I) A step of applying any one of the polymer compositions according to 1 to 11 onto a substrate to form a coating film;
(II) a step of irradiating the coating film with polarized ultraviolet light; and (III) a step of heating the coating film irradiated with ultraviolet light to obtain a retardation material.
13. A single-layer retardation material obtained from any one of the polymer compositions 1 to 11.
 本発明により、薄膜であっても濁りが少なく、低温焼成でも位相差を発現する単層位相差材と、それを与える重合体組成物とを提供することができる。 The present invention provides a single-layer retardation material that is thin but has little turbidity and exhibits retardation even when fired at a low temperature, as well as a polymer composition that provides it.
 本発明者らは、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の重合体組成物は、液晶性を発現し得る感光性の側鎖型重合体ブロック(A1)(以下、単に側鎖型重合体ブロックともいう。)と光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)とを有するブロック共重合体(以下、側鎖型ブロック共重合体ともいう。)を含有しており、前記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖を有する膜となる。この塗膜にはラビング処理を行うことなく、偏光照射によって配向処理を行う。そして、偏光照射の後、その重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(以下、単層位相差材ともいう。)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、側鎖型ブロック共重合体自体が自己組織化により効率的に再配向する。その結果、高効率な配向処理が実現し、高い光学異方性が付与された単層位相差材を得ることができる。
As a result of intensive research, the present inventors have obtained the following findings and have completed the present invention.
The polymer composition of the present invention contains a block copolymer (hereinafter also referred to as a side chain type block copolymer) having a photosensitive side chain type polymer block (A1) (hereinafter also referred to as a side chain type polymer block) capable of expressing liquid crystallinity and a polymer block (A2) consisting of a repeating unit not including a photoalignable side chain and a liquid crystal side chain, and the coating film obtained using the polymer composition is a film having a photosensitive side chain capable of expressing liquid crystallinity. The coating film is not subjected to a rubbing treatment, but is subjected to an orientation treatment by polarized light irradiation. Then, after the polarized light irradiation, the polymer film is heated to become a film (hereinafter also referred to as a single-layer retardation material) to which optical anisotropy has been imparted. At this time, the slight anisotropy expressed by the polarized light irradiation becomes a driving force, and the side chain type block copolymer itself is efficiently reoriented by self-organization. As a result, a highly efficient orientation treatment is realized, and a single-layer retardation material to which high optical anisotropy has been imparted can be obtained.
 また、本発明の重合体組成物は、(A)成分の重合体が、液晶性を発現し得る感光性の側鎖型重合体ブロックと、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)とを有するブロック共重合体であることを特徴とする。これにより、(A)成分の側鎖型ブロック共重合体の、溶剤中での分子運動性が向上する結果、本発明の重合体組成物から得られる位相差材は膜内の分子結晶性が抑制されることとなり、視認ヘーズが抑制される。なお、これらは本発明のメカニズムに関する発明者の見解を含むものであり、本発明を拘束するものではない。 The polymer composition of the present invention is also characterized in that the polymer of component (A) is a block copolymer having a photosensitive side-chain type polymer block capable of expressing liquid crystallinity, and a polymer block (A2) consisting of repeating units that do not contain photoalignable side chains and liquid crystal side chains. This improves the molecular mobility of the side-chain type block copolymer of component (A) in a solvent, and as a result, the molecular crystallinity in the film of the retardation material obtained from the polymer composition of the present invention is suppressed, and visual haze is suppressed. Note that these include the inventor's views on the mechanism of the present invention, and are not restrictive of the present invention.
 以下、本発明の実施形態について詳しく説明する。
 本発明の重合体組成物は、(A)光反応性部位を有する側鎖を有する側鎖型重合体ブロック(A1)と光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)とを有するブロック共重合体、及び(B)有機溶媒を含むことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The polymer composition of the present invention is characterized by comprising: (A) a block copolymer having a side chain-type polymer block (A1) having a side chain having a photoreactive site and a polymer block (A2) composed of a repeating unit containing neither a photoalignable side chain nor a liquid crystalline side chain; and (B) an organic solvent.
[(A)側鎖型ブロック共重合体]
 (A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型ブロック共重合体であって、光反応性部位を有する側鎖を有する側鎖型重合体ブロック(A1)と光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)とを含むものである。前記側鎖型重合体ブロック(A1)は、紫外線で光反応する光反応性部位を側鎖に有するものであり、具体的には、液晶性を発現し得る感光性の側鎖及び必要に応じて液晶性側鎖を含むものである。前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)は、後述する所定の重合開始剤を由来とする主鎖を有するものであってもよい。このような側鎖型ブロック共重合体を含む重合体組成物から得られる塗膜は、前記側鎖型重合体ブロック(A1)による液晶性と感光性と、前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)による高溶媒溶解性、膜柔軟性(低ガラス転移点化能)を有する膜となる。この塗膜にはラビング処理を行うことなく、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型重合体膜を加熱する工程を経て、光学異方性が付与されたフィルム(単層位相差膜)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、側鎖型ブロック共重合体自体が自己組織化により効率的に再配向する。その結果、単層位相差膜として高効率な配向処理が実現し、高い光学異方性が付与された単層位相差膜を得ることができる。
[(A) Side Chain Block Copolymer]
The component (A) is a photosensitive side-chain type block copolymer that exhibits liquid crystallinity in a predetermined temperature range, and includes a side-chain type polymer block (A1) having a side chain with a photoreactive site and a polymer block (A2) consisting of a repeating unit that does not have a photoalignable side chain and a liquid crystal side chain. The side-chain type polymer block (A1) has a photoreactive site that reacts with ultraviolet light in the side chain, and specifically includes a photosensitive side chain that can exhibit liquid crystallinity and a liquid crystal side chain as necessary. The polymer block (A2) consisting of a repeating unit that does not have a photoalignable side chain and a liquid crystal side chain may have a main chain derived from a predetermined polymerization initiator described later. A coating film obtained from a polymer composition containing such a side-chain type block copolymer is a film that has liquid crystallinity and photosensitivity due to the side-chain type polymer block (A1), and high solvent solubility and film flexibility (low glass transition point ability) due to the polymer block (A2) consisting of a repeating unit that does not have a photoalignable side chain and a liquid crystal side chain. The coating film is not subjected to a rubbing treatment, but is subjected to an orientation treatment by polarized light irradiation. After the polarized light irradiation, the side-chain polymer film is heated to form a film (single-layer retardation film) with optical anisotropy. At this time, the slight anisotropy generated by the polarized light irradiation becomes a driving force, and the side-chain block copolymer itself is efficiently reoriented by self-organization. As a result, a highly efficient orientation process is realized as a single-layer retardation film, and a single-layer retardation film with high optical anisotropy can be obtained.
 本発明において光反応性とは、(A-1)光架橋(光二量化)反応、(A-2)光異性化、又は(A-3)光フリース転位のいずれかの反応;もしくは複数の反応;を生じる性質をいう。 In the present invention, photoreactivity refers to the property of causing either (A-1) a photocrosslinking (photodimerization) reaction, (A-2) a photoisomerization reaction, or (A-3) a photo-Fries rearrangement reaction; or a combination of these reactions.
 前記側鎖型ブロック共重合体は、(i)所定の温度範囲で液晶性を発現する高分子であって、光反応性側鎖を有する高分子である。前記側鎖型ブロック共重合体は、(ii)200~400nm、好ましくは240~400nmの波長範囲の光で反応し、かつ50~300℃の温度範囲で液晶性を示すのがよい。前記側鎖型ブロック共重合体は、(iii)200~400nm、好ましくは240~400nmの波長範囲の光、特に偏光紫外線に反応する光反応性側鎖を有することが好ましい。前記側鎖型ブロック共重合体は、(iv)50~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。 The side chain type block copolymer is (i) a polymer that exhibits liquid crystallinity in a predetermined temperature range and has a photoreactive side chain. The side chain type block copolymer (ii) reacts to light in the wavelength range of 200 to 400 nm, preferably 240 to 400 nm, and exhibits liquid crystallinity in the temperature range of 50 to 300°C. The side chain type block copolymer (iii) preferably has a photoreactive side chain that reacts to light in the wavelength range of 200 to 400 nm, preferably 240 to 400 nm, particularly polarized ultraviolet light. The side chain type block copolymer (iv) preferably has a mesogen group to exhibit liquid crystallinity in the temperature range of 50 to 300°C.
 前記側鎖型ブロック共重合体は、前述のように、光反応性を有する光反応性側鎖を有する。該側鎖の構造は、特に限定されないが、前記(A-1)、(A-2)及び/又は(A-3)の反応を生じる構造を有し、特に、(A-1)光架橋反応及び/又は(A-2)光異性化反応を生じる構造を有することが好ましい。なお、(A-1)光架橋反応を生じる構造は、その反応後の構造が、熱などの外部ストレスに曝されたとしても側鎖型重合体ブロックの配向性を長期間安定に保持できる点で好ましい。また、(A-2)光異性化反応を生じる構造は、光架橋や光フリース転移と比較して低露光量での配向処理が可能となり、位相差フィルム製造時の生産効率を上げられる点で好ましい。 The side chain type block copolymer has a photoreactive side chain having photoreactivity as described above. The structure of the side chain is not particularly limited, but has a structure that causes the above-mentioned (A-1), (A-2) and/or (A-3) reactions, and in particular, has a structure that causes (A-1) photocrosslinking reaction and/or (A-2) photoisomerization reaction. The structure that causes (A-1) photocrosslinking reaction is preferable in that the structure after the reaction can stably maintain the orientation of the side chain type polymer block for a long period of time even if it is exposed to external stress such as heat. In addition, the structure that causes (A-2) photoisomerization reaction is preferable in that it allows orientation treatment with a lower exposure amount compared to photocrosslinking and photofleece transition, and increases production efficiency when manufacturing retardation films.
 前記側鎖型重合体ブロックの側鎖の構造は、剛直なメソゲン成分を有する方が、液晶の配向が安定するため好ましい。メソゲン成分として、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基等が挙げられるが、これらに限定されない。 The side chain structure of the side chain type polymer block preferably has a rigid mesogen component, since this stabilizes the alignment of the liquid crystal. Examples of mesogen components include, but are not limited to, a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and the like.
 前記側鎖型重合体ブロックに含まれる紫外線で光反応する光反応性部位を有する側鎖(以下、側鎖aともいう。)としては、下記式(a1)~(a6)のいずれかで表されるものが好ましい。なお、溶媒への溶解性の観点から、1つの側鎖aが有するベンゼン環の数は、3つ以内が好ましい。
Figure JPOXMLDOC01-appb-C000017
The side chain having a photoreactive site that undergoes a photoreaction with ultraviolet light (hereinafter also referred to as side chain a) contained in the side chain type polymer block is preferably one represented by any of the following formulas (a1) to (a6). From the viewpoint of solubility in a solvent, the number of benzene rings in one side chain a is preferably 3 or less.
Figure JPOXMLDOC01-appb-C000017
 式(a1)~(a6)中、n1及びn2は、それぞれ独立に、0、1、2又は3である。Lは、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。T1は、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。A1、A2及びD1は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。ただし、T1が単結合のときは、A2も単結合である。Y1及びY2は、フェニレン基又はナフチレン基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。P1、Q1及びQ2は、それぞれ独立に、単結合、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよく、Q2の数が2以上のとき、各Q2は互いに同一でも異なっていてもよい。Rは、水素原子、シアノ基、ハロゲン原子、カルボキシ基、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルコキシ基である。X1及びX2は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。X1の数が2以上のとき、各X1は互いに同一でも異なっていてもよく、X2の数が2以上のとき、各X2は互いに同一でも異なっていてもよい。Z1a及びZ2aは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基又は炭素数1~3のアルキル基であり、このアルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。Couは、クマリン-6-イル基又はクマリン-7-イル基であり、これらに結合する水素原子の一部が-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。G1及びG2は、それぞれ独立に、N又はCHである。破線は、結合手である。 In formulae (a1) to (a6), n1 and n2 are each independently 0, 1, 2, or 3. L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms. T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms. A 1 , A 2 , and D 1 are each independently a single bond, -O-, -CH 2 -, -C(═O)-O-, -O-C(═O)-, -C(═O)-NH-, or -NH-C(═O)-. However, when T 1 is a single bond, A 2 is also a single bond. Y 1 and Y 2 are phenylene or naphthylene groups, and some or all of the hydrogen atoms of the phenylene and naphthylene groups may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. P 1 , Q 1 , and Q 2 are each independently a single bond, a phenylene group, or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. When the number of Q 1s is 2 or more, each Q 1 may be the same as or different from each other, and when the number of Q 2s is 2 or more, each Q 2 may be the same as or different from each other. R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. X 1 and X 2 are each independently a single bond, -O-, -C(=O)-O-, -O-C(=O)-, -N=N-, -CH=CH-, -C≡C-, -CH=CH-C(=O)-O-, or -O-C(=O)-CH=CH-. When the number of X 1 is 2 or more, each X 1 may be the same or different from each other, and when the number of X 2 is 2 or more, each X 2 may be the same or different from each other. Z 1a and Z 2a are each independently a hydrogen atom, a halogen atom, a cyano group, or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of this alkyl group may be substituted with fluorine atoms. Cou is a coumarin-6-yl group or a coumarin-7-yl group, and some of the hydrogen atoms bonded to these may be substituted with -NO2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. E is -C(=O)-O-, -O-C(=O)-, -C(=O)-S-, or -S-C(=O)-. G1 and G2 are each independently N or CH. The dashed lines represent bonds.
 前記炭素数1~12のアルキレン基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基等が挙げられる。 The alkylene group having 1 to 12 carbon atoms may be linear, branched, or cyclic, and specific examples include a methylene group, an ethylene group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, an octane-1,8-diyl group, a nonane-1,9-diyl group, and a decane-1,10-diyl group.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 The halogen atom may be a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like.
 前記炭素数1~5のアルキル基は、直鎖状、分岐状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。 The alkyl group having 1 to 5 carbon atoms may be either linear or branched, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, and an n-pentyl group.
 前記炭素数1~5のアルキルカルボニル基の具体例としては、メチルカルボニル(アセチル)基、エチルカルボニル基、n-プロピルカルボニル基、n-ブチルカルボニル基、n-ペンチルカルボニル基等が挙げられる。 Specific examples of the alkylcarbonyl group having 1 to 5 carbon atoms include a methylcarbonyl (acetyl) group, an ethylcarbonyl group, an n-propylcarbonyl group, an n-butylcarbonyl group, and an n-pentylcarbonyl group.
 前記炭素数1~5のアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、n-ペンチルオキシ基等が挙げられる。 Specific examples of the alkoxy group having 1 to 5 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and an n-pentyloxy group.
 前記炭素数5~8の2価の脂環式炭化水素基の具体例としては、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基が挙げられる。 Specific examples of the divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms include a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group, and a cyclooctanediyl group.
 前記炭素数3~7のシクロアルキル基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Specific examples of the cycloalkyl group having 3 to 7 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
 前記炭素数1~3のアルキル基は、直鎖状、分岐状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。 The alkyl group having 1 to 3 carbon atoms may be either linear or branched, and specific examples include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
 側鎖aとしては、下記式(a1-1)、(a1-2)、(a2-1)、(a3-1)、(a4-1)、(a5-1)又は(a6-1)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000018
(式中、L、A1、A2、Y1、Y2、P1、Q1、T1、R、X1、Z1a、Z2a、Cou、E、G1、G2、n1及び破線は、前記と同じ。P2は、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。)
The side chain a is more preferably one represented by the following formula (a1-1), (a1-2), (a2-1), (a3-1), (a4-1), (a5-1) or (a6-1).
Figure JPOXMLDOC01-appb-C000018
(In the formula, L, A1 , A2 , Y1 , Y2 , P1 , Q1 , T1 , R, X1 , Z1a , Z2a , Cou, E, G1 , G2 , n1 and the dashed line are the same as above. P2 is a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms.)
 式(a1-1)で表される側鎖としては、下記式(a1-1-1)で表される側鎖が好ましく、式(a1-2)で表される側鎖としては0、式(a1-2-1)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中、n1、L、Q1、X1、R及び破線は、前記と同じ。)
The side chain represented by formula (a1-1) is preferably a side chain represented by the following formula (a1-1-1), and the side chain represented by formula (a1-2) is preferably 0 or a side chain represented by formula (a1-2-1).
Figure JPOXMLDOC01-appb-C000019
(In the formula, n1, L, Q 1 , X 1 , R and the dashed line are the same as above.)
 式(a2-1)で表される側鎖としては、下記式(a2-1-1)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000020
(式中、L、A2、Q1、T1、R及び破線は、前記と同じ。)
The side chain represented by formula (a2-1) is preferably a side chain represented by the following formula (a2-1-1).
Figure JPOXMLDOC01-appb-C000020
(In the formula, L, A2 , Q1 , T1 , R and the dashed line are the same as above.)
 式(a3-1)で表される側鎖としては、下記式(a3-1-1)、(a3-1-2)又は(a3-1-3)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000021
(式中、L、Cou及び破線は、前記と同じ。)
The side chain represented by formula (a3-1) is preferably a side chain represented by the following formula (a3-1-1), (a3-1-2) or (a3-1-3).
Figure JPOXMLDOC01-appb-C000021
(In the formula, L, Cou and the dashed line are the same as above.)
 式(a4-1)で表される側鎖としては、下記式(a4-1-1)、(a4-1-2)、(a4-1-3)又は(a4-1-4)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000022
(式中、L、R及び破線は、前記と同じ。)
The side chain represented by formula (a4-1) is preferably a side chain represented by the following formula (a4-1-1), (a4-1-2), (a4-1-3) or (a4-1-4).
Figure JPOXMLDOC01-appb-C000022
(In the formula, L, R and the dashed line are the same as above.)
 式(a5-1)で表される側鎖としては、下記式(a5-1-1)又は(a5-1-2)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000023
(式中、L、R及び破線は、前記と同じ。)
The side chain represented by formula (a5-1) is preferably a side chain represented by the following formula (a5-1-1) or (a5-1-2).
Figure JPOXMLDOC01-appb-C000023
(In the formula, L, R and the dashed line are the same as above.)
 式(a6-1)で表される側鎖としては、下記式(a6-1-1)、(a6-1-2)又は(a6-1-3)で表される側鎖が好ましい。
Figure JPOXMLDOC01-appb-C000024
(式中、L、R及び破線は、前記と同じ。)
The side chain represented by formula (a6-1) is preferably a side chain represented by the following formula (a6-1-1), (a6-1-2) or (a6-1-3).
Figure JPOXMLDOC01-appb-C000024
(In the formula, L, R and the dashed line are the same as above.)
 (A)側鎖型ブロック共重合体は、側鎖型重合体ブロックの主鎖に感光性を有する側鎖が結合しており、波長200~400nmから選択された最適な光、特に、波長254nm、313nm又は365nmの光に感応して架橋反応、異性化反応又はフリース転位を起こすことができる。感光性の側鎖型重合体ブロックの構造は、そのような特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。前記側鎖型ブロック共重合体を単層位相差膜とした際に、安定な光学異方性を得ることができる。 (A) Side-chain block copolymer has a photosensitive side chain bonded to the main chain of the side-chain polymer block, and can undergo crosslinking, isomerization, or Fries rearrangement in response to optimal light selected from a wavelength range of 200 to 400 nm, particularly light with a wavelength of 254 nm, 313 nm, or 365 nm. The structure of the photosensitive side-chain polymer block is not particularly limited as long as it satisfies such characteristics, but it is preferable for the side-chain structure to have a rigid mesogen component. When the side-chain block copolymer is formed into a single-layer retardation film, stable optical anisotropy can be obtained.
 前記側鎖型重合体ブロックの構造のより具体的な例としては、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、側鎖aとを有する構造が好ましい。 A more specific example of the structure of the side chain type polymer block is preferably a structure having a main chain composed of at least one selected from the group consisting of radical polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene, and siloxane, and a side chain a.
 また、前記側鎖型重合体ブロックは、更に、光二量化も光異性化もしない側鎖(以下、側鎖bともいう。)を含んでもよい。このような側鎖bとしては、下記式(b1)~(b13)のいずれかで表されるものが好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000025
The side chain type polymer block may further include a side chain that does not undergo photodimerization or photoisomerization (hereinafter, also referred to as side chain b). Such side chain b is preferably one represented by any one of the following formulae (b1) to (b13), but is not limited thereto.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(b1)~(b13)中、A3及びA4は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。A4の数が2以上のとき、各A4は互いに同一でも異なっていてもよい。
 R1は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 R2は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基又は炭素数5~8の1価脂環式炭化水素基であり、これらの基の水素原子の一部又は全部が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
 R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
 Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
 aは、1~12の整数である。
 k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
 k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
 m1、m2及びm3は、それぞれ独立に、1~3の整数である。
 nは、0又は1である。
 Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2-O-、又は-CF2-である。
 W1、W2及びW3は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-N(R’)-又は-N(R’)-C(=O)-である。W2の数が2以上のとき、各W2は互いに同一でも異なっていてもよい。R’は水素原子又は炭素数1~6のアルキル基を表す。
 Qは、炭素数1~10のアルキレン基である。該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 Lは、単結合又は炭素数1~12のアルキレン基、又は、炭素数1~12のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-C(=O)-O-、もしくは-O-C(=O)-に置換された2価の連結基を表し、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
 Q1は、単結合、フェニレン基、ナフチレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよい。
 n1は、0、1、2又は3である。
 ベンゼン環及びナフタレン環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン原子、シアノ基及びニトロ基から選ばれる置換基で置換されていても良い。
 破線は、結合手である。
In formulae (b1) to (b13), A3 and A4 each independently represent a single bond, -O-, -CH2- , -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, or -NH-C(=O)-. When the number of A4 is 2 or more, each A4 may be the same or different.
R 1 is --NO 2 , --CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
R2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups may be substituted with -NO2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
R3 is a hydrogen atom, -NO2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
E is -C(=O)-O-, -OC(=O)-, -C(=O)-S- or -SC(=O)-.
a is an integer from 1 to 12.
k1 to k5 each independently represent an integer of 0 to 2, provided that the total of k1 to k5 is 2 or more.
k6 and k7 each independently represent an integer of 0 to 2, provided that the sum of k6 and k7 is 1 or more.
m1, m2, and m3 each independently represents an integer of 1 to 3.
n is 0 or 1.
Z 1 and Z 2 each independently represent a single bond, --C(═O)--, --CH 2 --O--, or --CF 2 --.
W 1 , W 2 and W 3 are each independently a single bond, -O-, -C(=O)-O-, -O-C(=O)-, -C(=O)-N(R')- or -N(R')-C(=O)-. When the number of W 2 is 2 or more, each W 2 may be the same or different. R' represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Q is an alkylene group having 1 to 10 carbon atoms, some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
L represents a single bond, an alkylene group having 1 to 12 carbon atoms, or a divalent linking group in which one or more of the -CH 2 - constituting the alkylene group having 1 to 12 carbon atoms are replaced with -O-, -S-, -C(═O)-O-, or -O-C(═O)-, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
Q 1 is a single bond, a phenylene group, a naphthylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group and naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. When the number of Q 1 is 2 or more, each Q 1 may be the same or different.
n1 is 0, 1, 2 or 3.
The hydrogen atoms on the benzene ring and the naphthalene ring may be substituted with a substituent selected from an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, and a nitro group.
The dashed lines represent bonds.
 前記1価窒素含有複素環基の具体例としては、ピロリジニル基、ピペリジニル基、ピペラジニル基、ピロリル基、ピリジル基等が挙げられる。前記炭素数5~8の1価脂環式炭化水素基の具体例としては、シクロペンチル、シクロヘキシル基等が挙げられる。また、前記アルキル基及びアルコキシ基としては、式(a1)~(a6)の説明において例示した基と同様のものが挙げられる。 Specific examples of the monovalent nitrogen-containing heterocyclic group include a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, a pyrrolyl group, and a pyridyl group. Specific examples of the monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms include a cyclopentyl group and a cyclohexyl group. Examples of the alkyl group and alkoxy group include the same groups as those exemplified in the explanation of formulas (a1) to (a6).
 前記側鎖型重合体ブロックは、側鎖aを与えるモノマー、及び必要に応じて側鎖bを与えるモノマーを重合して得ることができる。 The side chain type polymer block can be obtained by polymerizing a monomer that provides side chain a and, if necessary, a monomer that provides side chain b.
 側鎖aを与えるモノマー(以下、モノマーMAともいう。)としては、下記式(M1)、(M2)、(M3)、(M4)、(M5)又は(M6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
(式中、PGは、重合性基であり、A1、A2、D1、L、T1、Y1、Y2、P1、Q1、Q2、R、Cou、E、X1、X2、Z1a、Z2a、G1、G2、n1及びn2は、前記と同じ。)
Examples of the monomer that provides the side chain a (hereinafter also referred to as the monomer MA) include compounds represented by the following formula (M1), (M2), (M3), (M4), (M5) or (M6).
Figure JPOXMLDOC01-appb-C000028
(In the formula, PG is a polymerizable group, and A1 , A2 , D1 , L, T1 , Y1 , Y2 , P1 , Q1 , Q2 , R, Cou, E, X1 , X2 , Z1a , Z2a , G1 , G2 , n1 and n2 are the same as defined above.)
 式(M1)~(M6)中、PGは、重合性基であるが、下記式(PG1)~(PG7)のいずれかで表される基が好ましい。なかでも、重合反応の制御が容易であるという点及び重合体の安定性の観点から、式(PG1)で表されるアクリル基又はメタクリル基が好ましい。
Figure JPOXMLDOC01-appb-C000029
(式中、RAは、水素原子又はメチル基であり、破線は、Lとの結合手である。)
In formulae (M1) to (M6), PG is a polymerizable group, and is preferably a group represented by any one of the following formulae (PG1) to (PG7). Among them, from the viewpoint of ease of control of the polymerization reaction and stability of the polymer, an acrylic group or methacrylic group represented by formula (PG1) is preferred.
Figure JPOXMLDOC01-appb-C000029
(In the formula, R is a hydrogen atom or a methyl group, and the dashed line is a bond to L.)
 式(M1)で表される化合物としては、下記式(M1-1-1)又は(M1-2-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000030
(式中、PG、L、Q1、X1、Y1、Z1a、Z2a、P2及びRは、前記と同じ。)
The compound represented by formula (M1) is preferably one represented by the following formula (M1-1-1) or (M1-2-1).
Figure JPOXMLDOC01-appb-C000030
(In the formula, PG, L, Q1 , X1 , Y1 , Z1a , Z2a , P2 and R are the same as defined above.)
 式(M2)で表される化合物としては、下記式(M2-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000031
(式中、PG、A2、L、T1、Y1、Z1a、Z2a、P1、Q1及びRは、前記と同じ。)
The compound represented by formula (M2) is preferably one represented by the following formula (M2-1).
Figure JPOXMLDOC01-appb-C000031
(In the formula, PG, A2 , L, T1 , Y1 , Z1a , Z2a , P1 , Q1 and R are the same as defined above.)
 式(M3)で表される化合物としては、下記式(M3-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000032
(式中、PG、A1、L、X1、Q1、Cou及びn1は、前記と同じ。)
The compound represented by formula (M3) is preferably one represented by the following formula (M3-1).
Figure JPOXMLDOC01-appb-C000032
(In the formula, PG, A 1 , L, X 1 , Q 1 , Cou and n1 are the same as defined above.)
 式(M4)で表される化合物としては、下記式(M4-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000033
(式中、PG、A1、L、X1、Y1、Y2、Q1、E、R及びn1は、前記と同じ。)
The compound represented by formula (M4) is preferably one represented by the following formula (M4-1).
Figure JPOXMLDOC01-appb-C000033
(In the formula, PG, A1 , L, X1 , Y1 , Y2 , Q1 , E, R and n1 are the same as defined above.)
 式(M5)で表される化合物としては、下記式(M5-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、PG、A1、L、X1、Y1、Y2、Q1、R及びn1は、前記と同じ。)
The compound represented by formula (M5) is preferably one represented by the following formula (M5-1).
Figure JPOXMLDOC01-appb-C000034
(In the formula, PG, A1 , L, X1 , Y1 , Y2 , Q1 , R and n1 are the same as defined above.)
 式(M6)で表される化合物としては、下記式(M6-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000035
(式中、PG、A1、L、X1、Y1、Y2、Q1、G1、G2、R及びn1は、前記と同じ。)
The compound represented by formula (M6) is preferably one represented by the following formula (M6-1).
Figure JPOXMLDOC01-appb-C000035
(In the formula, PG, A1 , L, X1 , Y1 , Y2 , Q1 , G1 , G2 , R and n1 are the same as defined above.)
 式(M1-1-1)で表される化合物としては、下記式(M1-1-2)で表されるものが好ましく、式(M1-2-1)で表される化合物としては、下記式(M1-2-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000036
(式中、PG、n1、L、Q1、X1及びRは、前記と同じ。)
The compound represented by formula (M1-1-1) is preferably one represented by the following formula (M1-1-2), and the compound represented by formula (M1-2-1) is preferably one represented by the following formula (M1-2-2).
Figure JPOXMLDOC01-appb-C000036
(In the formula, PG, n1, L, Q1 , X1 and R are the same as defined above.)
 式(M2-1)で表される化合物としては、下記式(M2-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000037
(式中、PG、A2、L、T1、Q1及びRは、前記と同じ。)
The compound represented by formula (M2-1) is preferably one represented by the following formula (M2-2).
Figure JPOXMLDOC01-appb-C000037
(In the formula, PG, A2 , L, T1 , Q1 and R are the same as above.)
 式(M3-1)で表される化合物としては、下記式(M3-2)、(M3-3)又は(M3-4)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000038
(式中、PG、L及びCouは、前記と同じ。)
The compound represented by formula (M3-1) is preferably one represented by the following formula (M3-2), (M3-3) or (M3-4).
Figure JPOXMLDOC01-appb-C000038
(In the formula, PG, L and Cou are the same as above.)
 式(M4-1)で表される化合物としては、下記式(M4-2)、(M4-3)、(M4-4)又は(M4-5)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中、PG、L及びRは、前記と同じ。)
The compound represented by formula (M4-1) is preferably one represented by the following formula (M4-2), (M4-3), (M4-4) or (M4-5).
Figure JPOXMLDOC01-appb-C000039
(In the formula, PG, L and R are the same as above.)
 式(M5-1)で表される化合物としては、下記式(M5-2)又は(M5-3)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000040
(式中、PG、L及びRは、前記と同じ。)
The compound represented by formula (M5-1) is preferably one represented by the following formula (M5-2) or (M5-3).
Figure JPOXMLDOC01-appb-C000040
(In the formula, PG, L and R are the same as above.)
 式(M6-1)で表される化合物としては、下記式(M6-2)、(M6-3)、又は(M6-4)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000041
(式中、PG、L及びRは、前記と同じ。)
The compound represented by formula (M6-1) is preferably one represented by the following formula (M6-2), (M6-3), or (M6-4).
Figure JPOXMLDOC01-appb-C000041
(In the formula, PG, L and R are the same as above.)
 式(M1)で表される化合物としては、例えば、下記式(A-1-1-1)~(A-1-1-12)のいずれかで表されるものが挙げられる。下記式(A-1-1-1)~(A-1-1-12)中、PGは、重合性基であり、s1は、メチレン基の数を表し、2~9の整数である。R11は、-H、-CH3、-OCH3、-C(CH33、-C(=O)-CH3又は-CNであり、R12は、-H、-CH3、-CN又は-Fである。
Figure JPOXMLDOC01-appb-C000042
Examples of compounds represented by formula (M1) include those represented by any of the following formulas (A-1-1-1) to (A-1-1-12). In the following formulas (A-1-1-1) to (A-1-1-12), PG is a polymerizable group, s1 represents the number of methylene groups and is an integer of 2 to 9, R 11 is -H, -CH 3 , -OCH 3 , -C(CH 3 ) 3 , -C(═O)-CH 3 or -CN, and R 12 is -H, -CH 3 , -CN or -F.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 更に、式(M1)で表される化合物としては、例えば、下記式(A-1-2-1)~(A-1-2-4)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000046
Further, examples of the compound represented by formula (M1) include those represented by any of the following formulae (A-1-2-1) to (A-1-2-4): In the following formulae, PG is a polymerizable group, and s1 is the same as defined above.
Figure JPOXMLDOC01-appb-C000046
 式(M1)で表される化合物の具体例としては、4-(6-メタクリルオキシヘキシル-1-オキシ)ケイ皮酸、4-(6-アクリルオキシヘキシル-1-オキシ)ケイ皮酸、4-(3-メタクリルオキシプロピル-1-オキシ)ケイ皮酸、4-[4-(6-メタクリルオキシヘキシル-1-オキシ)ベンゾイルオキシ]ケイ皮酸等が挙げられる。 Specific examples of compounds represented by formula (M1) include 4-(6-methacryloxyhexyl-1-oxy)cinnamic acid, 4-(6-acryloxyhexyl-1-oxy)cinnamic acid, 4-(3-methacryloxypropyl-1-oxy)cinnamic acid, and 4-[4-(6-methacryloxyhexyl-1-oxy)benzoyloxy]cinnamic acid.
 式(M2)で表される化合物としては、例えば、下記式(A-2-1)~(A-2-9)のいずれかで表されるものが挙げられる。下記式(A-2-1)~(A-2-9)中、PGは、重合性基であり、s1及びs2は、メチレン基の数を表し、それぞれ独立に、2~9の整数である。R21は、-CH3、-OCH3、-C(CH33、-C(=O)-CH3、-CN又は-Fである。
Figure JPOXMLDOC01-appb-C000047
Examples of compounds represented by formula (M2) include those represented by any of the following formulas (A-2-1) to (A-2-9). In the following formulas (A-2-1) to (A-2-9), PG is a polymerizable group, and s1 and s2 represent the number of methylene groups and are each independently an integer of 2 to 9. R 21 is -CH 3 , -OCH 3 , -C(CH 3 ) 3 , -C(═O)-CH 3 , -CN or -F.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 式(M3)で表される化合物としては、例えば、下記式(A-3-1)~(A-3-5)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000050
Examples of the compound represented by formula (M3) include those represented by any of the following formulae (A-3-1) to (A-3-5): In the following formula, PG is a polymerizable group, and s1 is the same as defined above.
Figure JPOXMLDOC01-appb-C000050
 式(M4)で表される化合物としては、例えば、下記式(A-4-1)~(A-4-4)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000051
Examples of the compound represented by formula (M4) include those represented by any of the following formulae (A-4-1) to (A-4-4): In the following formula, PG is a polymerizable group, and s1 is the same as defined above.
Figure JPOXMLDOC01-appb-C000051
 式(M5)で表される化合物としては、例えば、下記式(A-5-1)~(A-5-3)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000052
Examples of the compound represented by formula (M5) include those represented by any of the following formulae (A-5-1) to (A-5-3): In the following formula, PG is a polymerizable group, and s1 is the same as defined above.
Figure JPOXMLDOC01-appb-C000052
 式(M6)で表される化合物としては、例えば、下記式(A-6-1)~(A-6-3)のいずれかで表されるものが挙げられる。下記式中、PGは、重合性基であり、s1は、前記と同じである。
Figure JPOXMLDOC01-appb-C000053
Examples of the compound represented by formula (M6) include those represented by any of the following formulae (A-6-1) to (A-6-3): In the following formula, PG is a polymerizable group, and s1 is the same as defined above.
Figure JPOXMLDOC01-appb-C000053
 前記各モノマーは、あるものは市販されており、あるものは、例えば、国際公開第2015/002292号等に記載の方法で製造できる。 Some of the above monomers are commercially available, and others can be produced by methods described, for example, in International Publication No. WO 2015/002292.
 光二量化も光異性化もしない側鎖bを与えるモノマー(以下、モノマーMBともいう。)の一例としては、側鎖にメソゲン基を形成することができるモノマーが挙げられる。 An example of a monomer that provides a side chain b that does not undergo photodimerization or photoisomerization (hereinafter also referred to as monomer MB) is a monomer that can form a mesogenic group in the side chain.
 前記メソゲン基としては、ビフェニルやフェニルベンゾエート等の単独でメソゲン構造となる基であっても、安息香酸等のように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては、下記の構造が好ましい。
Figure JPOXMLDOC01-appb-C000054
The mesogenic group may be a group that forms a mesogenic structure by itself, such as biphenyl or phenylbenzoate, or a group that forms a mesogenic structure by hydrogen bonding between side chains, such as benzoic acid. The mesogenic group in the side chain preferably has the following structure.
Figure JPOXMLDOC01-appb-C000054
 モノマーMBの具体例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基及びシロキサンからなる群から選択される少なくとも1種に由来する重合性基と、式(b1)~(b13)の少なくとも1種からなる構造を有する構造であることが好ましい。特に、モノマーMBは、(メタ)アクリレートに由来する重合性基を有するものが好ましい。 Specific examples of monomer MB include a structure having a polymerizable group derived from at least one selected from the group consisting of radical polymerizable groups such as hydrocarbons, (meth)acrylates, itaconates, fumarates, maleates, α-methylene-γ-butyrolactone, styrene, vinyl, maleimides, and norbornenes, and siloxanes, and a structure having at least one of the structures represented by formulas (b1) to (b13). In particular, it is preferable that the monomer MB has a polymerizable group derived from a (meth)acrylate.
 モノマーMBの好ましい例としては、下記式(MB-1)~(MB-18)で表されるものが挙げられる。なお、下記式中、PGは、重合性基であり、pは、メチレン基の数を表し、2~9の整数である。
Figure JPOXMLDOC01-appb-C000055
Preferred examples of the monomer MB include those represented by the following formulae (MB-1) to (MB-18), in which PG is a polymerizable group, and p is the number of methylene groups and is an integer of 2 to 9.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 また、光反応性及び/又は液晶性の発現能を損なわない範囲で、その他のモノマーを共重合することができる。前記その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。前記その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。 Furthermore, other monomers can be copolymerized to the extent that the photoreactivity and/or liquid crystallinity is not impaired. Examples of the other monomers include industrially available monomers capable of radical polymerization. Specific examples of the other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, vinyl compounds, etc.
 前記不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。 Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
 前記アクリル酸エステル化合物の具体例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロ[5.2.1.0(2,6)]デシルアクリレート、8-エチル-8-トリシクロ[5.2.1.0(2,6)]デシルアクリレート等が挙げられる。 Specific examples of the acrylic acid ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclo[5.2.1.0(2,6)]decyl acrylate, 8-ethyl-8-tricyclo[5.2.1.0(2,6)]decyl acrylate, and the like.
 前記メタクリル酸エステル化合物の具体例としては、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロ[5.2.1.0(2,6)]デシルメタクリレート、8-エチル-8-トリシクロ[5.2.1.0(2,6)]デシルメタクリレート等が挙げられる。 Specific examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2-propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclo[5.2.1.0(2,6)]decyl methacrylate, and 8-ethyl-8-tricyclo[5.2.1.0(2,6)]decyl methacrylate.
 前記ビニル化合物の具体例としては、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。 Specific examples of the vinyl compounds include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
 前記スチレン化合物の具体例としては、スチレン、4-メチルスチレン、4-クロロスチレン、4-ブロモスチレン等が挙げられる。 Specific examples of the styrene compound include styrene, 4-methylstyrene, 4-chlorostyrene, and 4-bromostyrene.
 前記マレイミド化合物の具体例としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。 Specific examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 前記側鎖型重合体ブロックにおいて、側鎖a及び側鎖bの含有量は特に限定されない。側鎖aが100モル%のホモポリマーでもよく、側鎖aを2種類以上用いてもよい。側鎖aと側鎖bのコポリマーとする場合、側鎖aは、光反応性の点から、5~99.9モル%が好ましく、5~95モル%がより好ましく、光安定性の観点から5~50モル%がより一層好ましい。また、側鎖bは、光反応性の観点から、95モル%以下が好ましく、5~95モル%がより好ましく、光安定性の観点から50モル%以上がより一層好ましい。コポリマーの場合でも、側鎖aや側鎖bを2種類以上用いてもよい。 In the side chain type polymer block, the content of side chain a and side chain b is not particularly limited. It may be a homopolymer with 100 mol% side chain a, or two or more types of side chain a may be used. In the case of a copolymer of side chain a and side chain b, the content of side chain a is preferably 5 to 99.9 mol%, more preferably 5 to 95 mol%, from the viewpoint of photoreactivity, and even more preferably 5 to 50 mol% from the viewpoint of photostability. Moreover, the content of side chain b is preferably 95 mol% or less, more preferably 5 to 95 mol%, from the viewpoint of photoreactivity, and even more preferably 50 mol% or more from the viewpoint of photostability. Even in the case of a copolymer, two or more types of side chain a and side chain b may be used.
 前記側鎖型重合体ブロックには、その他の側鎖を含んでいてもよい。その他の側鎖の含有量は、側鎖a及び側鎖bの含有量の合計が100モル%に満たない場合に、その残りの部分である。 The side chain type polymer block may contain other side chains. When the total content of side chain a and side chain b is less than 100 mol %, the content of the other side chains is the remaining portion.
 光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)は、(A)成分であるポリマーに柔軟性を付与するブロックである。このような光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)としては、柔軟性があるブロックが好ましく、例えば、ポリエーテルやポリシロキサンが挙げられる。光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)は、ポリマー型重合開始剤により導入するのが簡便である。本発明において、ポリマー型重合開始剤とは、高分子セグメント及び重合開始活性基を有する重合開始剤を意味する。なお、前記高分子セグメントは、側鎖型ブロック共重合体において光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロックになる部分である。 The polymer block (A2) consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains is a block that imparts flexibility to the polymer, which is the component (A). As the polymer block (A2) consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains, a flexible block is preferable, and examples thereof include polyether and polysiloxane. The polymer block (A2) consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains is easily introduced by a polymer type polymerization initiator. In the present invention, the polymer type polymerization initiator means a polymerization initiator having a polymer segment and a polymerization initiation active group. The polymer segment is the portion that becomes the polymer block consisting of repeating units that do not contain photo-alignable side chains and liquid crystal side chains in the side chain type block copolymer.
 前記ポリマー型重合開始剤としては、下記式(1)で表される繰り返し単位を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000057
 式(1)中、Ra1~Ra4は、それぞれ独立に、直鎖状若しくは分枝状の炭素数1~6のアルキル基、又はシアノ基である。RL1及びRL2は、それぞれ独立に、炭素数1~10のアルキレン基である。L1及びL2は、それぞれ独立に、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。Xは、下記式(2)又は(3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000058
 式(2)及び(3)中、Ra5~Ra8は、直鎖状若しくは分枝状の炭素数1~6のアルキル基又は炭素数6~12のアリール基である。RL3、RL4、RL5及びRL6は、それぞれ独立に、炭素数1~10のアルキレン基である。x及びyは、それぞれ独立に、正の整数であり、通常5~2,000、好ましくは5~1,000、より好ましくは10~300、より一層好ましくは10~200である
The polymer type polymerization initiator is preferably one having a repeating unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000057
In formula (1), R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyano group. R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms. L 1 and L 2 are each independently -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, or -NH-C(=O)-. X is a divalent group represented by the following formula (2) or (3).
Figure JPOXMLDOC01-appb-C000058
In formulas (2) and (3), R a5 to R a8 are linear or branched alkyl groups having 1 to 6 carbon atoms or aryl groups having 6 to 12 carbon atoms. R L3 , R L4 , R L5 and R L6 are each independently an alkylene group having 1 to 10 carbon atoms. x and y are each independently a positive integer, usually 5 to 2,000, preferably 5 to 1,000, more preferably 10 to 300, and even more preferably 10 to 200.
 直鎖状若しくは分枝状の炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 Examples of linear or branched alkyl groups having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, cyclopentyl, and cyclohexyl groups.
 炭素数1~10のアルキレン基としては、直鎖状、分岐状、環状のいずれでもよく、具体例としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、2-メチルプロピレン基、1-メチルエチリデン基、シクロヘキシレン基等が挙げられる。 The alkylene group having 1 to 10 carbon atoms may be linear, branched, or cyclic, and specific examples include methylene, ethylene, trimethylene, propylene, tetramethylene, pentamethylene, heptamethylene, octamethylene, nonamethylene, decamethylene, 2-methylpropylene, 1-methylethylidene, and cyclohexylene.
 炭素数6~12のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-ビフェニリル基、2-ビフェニリル基等が挙げられる。 Aryl groups having 6 to 12 carbon atoms include phenyl groups, 1-naphthyl groups, 2-naphthyl groups, 1-biphenylyl groups, and 2-biphenylyl groups.
 Ra1~Ra4は、炭素数1~3のアルキル基、又はシアノ基が好ましく、メチル基又はシアノ基がより好ましい。
 RL1及びRL2は、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
 L1は、-C(=O)-O-又は-C(=O)-NH-が好ましい。L2は、-O-C(=O)-又は-NH-C(=O)-が好ましい。特に、L1が-C(=O)-O-、L2が-O-C(=O)-の組み合わせ、及び、L1が-C(=O)-NH-、L2が-NH-C(=O)-の組み合わせがより好ましい。
 Xに関し、Ra5~Ra8は、炭素数1~3のアルキル基が好ましく、メチル基又はエチル基がより好ましい。
 RL3、RL4、RL5及びRL6は、炭素数1~5のアルキレン基が好ましく、炭素数1~3のアルキレン基がより好ましい。
R a1 to R a4 are preferably an alkyl group having 1 to 3 carbon atoms or a cyano group, and more preferably a methyl group or a cyano group.
R L1 and R L2 are preferably an alkylene group having 1 to 5 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
L 1 is preferably -C(=O)-O- or -C(=O)-NH-. L 2 is preferably -O-C(=O)- or -NH-C(=O)-. In particular, a combination of L 1 being -C(=O)-O- and L 2 being -O-C(=O)-, and a combination of L 1 being -C(=O)-NH- and L 2 being -NH-C(=O)- are more preferred.
With regard to X, R a5 to R a8 are preferably an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.
R L3 , R L4 , R L5 and R L6 are preferably an alkylene group having 1 to 5 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
 ポリマー型重合開始剤の具体例としては、下記式(In-1)で表されるポリエチレングリコールユニット含有高分子アゾ重合開始剤、下記式(In-2)で表されるポリジメチルシロキサンユニット含有高分子アゾ重合開始剤等を挙げることができる。
Figure JPOXMLDOC01-appb-C000059
Specific examples of the polymer type polymerization initiator include a polymeric azo polymerization initiator containing a polyethylene glycol unit represented by the following formula (In-1), and a polymeric azo polymerization initiator containing a polydimethylsiloxane unit represented by the following formula (In-2).
Figure JPOXMLDOC01-appb-C000059
 式(In-1)及び式(In-2)中、x及びyは、前記と同じである。nは、正の整数であり、通常1~100、好ましくは3~50、より好ましくは5~30である。 In formula (In-1) and formula (In-2), x and y are the same as above. n is a positive integer, usually 1 to 100, preferably 3 to 50, and more preferably 5 to 30.
 ポリマー型重合開始剤としては、市販品を用いることができ、例えば、前記式(In-1)で表される重合開始剤としてVPE-0201、及び前記式(In-2)で表される重合開始剤としてVPS-1001N(いずれも富士フイルム和光純薬社製)が挙げられる。 As the polymer type polymerization initiator, commercially available products can be used, for example, VPE-0201 as the polymerization initiator represented by the formula (In-1) and VPS-1001N as the polymerization initiator represented by the formula (In-2) (both manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
 また、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)は、ポリマー型連鎖移動剤により導入してもよい。本発明において、ポリマー型連鎖移動剤とは、成長ポリマー鎖からラジカルを受け取って新たなラジカルを発生させる部位及び高分子セグメントを有する連鎖移動剤を意味する。なお、前記高分子セグメントは、側鎖型ブロック共重合体において光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロックになる部分である。 The polymer block (A2) consisting of repeating units not containing photoalignable side chains and liquid crystalline side chains may be introduced by a polymer chain transfer agent. In the present invention, the polymer chain transfer agent means a chain transfer agent having a polymer segment and a site that receives radicals from a growing polymer chain to generate new radicals. The polymer segment is the portion that becomes the polymer block consisting of repeating units not containing photoalignable side chains and liquid crystalline side chains in the side chain type block copolymer.
 前記ポリマー型連鎖移動剤としては、下記式(4)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000060
 式(4)中、Yは、直鎖状若しくは分枝状の炭素数1~3のアルキル基、ヒドロキシ基、カルボキシ基、又はスルファニル基である。RL7及びRL8は、それぞれ独立に、単結合又は直鎖状若しくは分枝状の炭素数1~6のアルキレン基である。xは、正の整数である。
The polymeric chain transfer agent is preferably one represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000060
In formula (4), Y is a linear or branched alkyl group having 1 to 3 carbon atoms, a hydroxyl group, a carboxyl group, or a sulfanyl group. R L7 and R L8 each independently represent a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms. x is a positive integer.
また、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)は、光配向性側鎖及び液晶性側鎖をもたないモノマーによって導入してもよい。側鎖型重合体ブロック(A1)を合成したのちに、光配向性側鎖及び液晶性側鎖をもたないモノマーを添加して重合することで、それぞれのブロックからなる側鎖型ブロック共重合体を得ることができる。重合法は特に限定する必要はないが、ニトロキシドをドーマント種として使用するリビングラジカル重合(NMP)や、硫黄化合物をドーマントとして使用する可逆的付加-開裂連鎖移動(RAFT)重合、ドーマント種にヨウ化アルキル化合物を使用し、リン化合物やアルコール等を触媒として使用する可逆移動触媒重合(RTCP)等のリビングラジカル重合が挙げられる。 The polymer block (A2) consisting of repeating units not including photoalignable side chains and liquid crystal side chains may be introduced by a monomer not including photoalignable side chains and liquid crystal side chains. After synthesizing the side chain type polymer block (A1), a monomer not including photoalignable side chains and liquid crystal side chains is added and polymerized to obtain a side chain type block copolymer consisting of each block. The polymerization method is not particularly limited, but examples thereof include living radical polymerization such as living radical polymerization (NMP) using a nitroxide as a dormant species, reversible addition-fragmentation chain transfer (RAFT) polymerization using a sulfur compound as a dormant, and reversible transfer catalyst polymerization (RTCP) using an alkyl iodide compound as a dormant species and a phosphorus compound, alcohol, or the like as a catalyst.
 前記側鎖型ブロック共重合体の製造方法は、特に限定されず、工業的に扱われている汎用な方法が利用できる。具体的には、例えば、下記工程(1)~(2)を含む方法によって製造することができるが、これに限定されない。
工程(1) モノマーMA、必要に応じてモノマーMB及びその他のモノマー、並びに非ポリマー型重合開始剤を混合して、溶媒中でラジカル重合させることにより側鎖型重合体ブロック(A1)を形成させる工程
工程(2) 前記工程(1)で得られた反応液にポリマー型重合開始剤を加えて、溶媒中でラジカル重合させることにより、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)を組み込む工程
The method for producing the side chain type block copolymer is not particularly limited, and a general-purpose method that is used industrially can be used. Specifically, the side chain type block copolymer can be produced, for example, by a method including the following steps (1) and (2), but is not limited thereto.
Step (1): A step of mixing monomer MA, and if necessary monomer MB and other monomers, and a non-polymeric polymerization initiator, and carrying out radical polymerization in a solvent to form a side-chain type polymer block (A1). Step (2): A step of adding a polymeric polymerization initiator to the reaction liquid obtained in step (1), and carrying out radical polymerization in a solvent to incorporate a polymer block (A2) composed of repeating units not containing a photoalignable side chain and a liquid crystalline side chain.
 前記工程(1)におけるラジカル重合の非ポリマー型重合開始剤としては、下記に示すラジカル熱重合開始剤やラジカル光重合開始剤、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。  As the non-polymeric polymerization initiator for the radical polymerization in step (1), known compounds such as the radical thermal polymerization initiators and radical photopolymerization initiators shown below, and reversible addition-fragmentation chain transfer (RAFT) polymerization reagents can be used.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシ シクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ 2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(2,2’-アゾビスイソブチロニトリル、及び2,2’-ビス(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 A radical thermal polymerization initiator is a compound that generates radicals when heated above its decomposition temperature. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane, etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), and azo compounds (2,2'-azobisisobutyronitrile, 2,2'-bis(2-hydroxyethyl)azobisisobutyronitrile, etc.). Such radical thermal polymerization initiators can be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ビス(エトキシカルボニルメチル)]-2,6-ビス(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラキス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(メトキシカルボニル)-4,4’-ビス(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ビス(メトキシカルボニル)-4,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ビス(メトキシカルボニル)-3,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は、1種単独で使用してもよく、2種以上を混合して使用することもできる。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by irradiation with light. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, and isopropyl benzoin ether. Butyl benzoin ether, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 4-dimethylaminobenzoic acid ethyl, 4-dimethylaminobenzoic acid isoamyl, 4,4'-bis(tert-butylperoxycarbonyl)benzo Phenone, 3,4,4'-tris(tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2',4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine styryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-pentyloxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 4-[p-N,N-bis(ethoxycarbonylmethyl)]-2,6-bis(trichloromethyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(2'-chlorophenyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(4'-methoxyphenyl)-s-triazine, 2-(p-dimethylamino styryl)benzoxazole, 2-(p-dimethylaminostyryl)benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis(7-diethylaminocoumarin), 2-(o-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetrakis(4-ethoxycarbonylphenyl)-1,2'-biimidazole, 2,2'-bis(2,4-dichlorophenyl)-4 ,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4-dibromophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 3-(2-methyl-2-dimethylaminopropionyl)carbazole, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n-dodecylcarbazole, 1-hydroxyphenyl Cyclohexyl phenyl ketone, bis(5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, 3,3',4,4'-tetrakis(tert-butylperoxycarbonyl)benzophenone, 3,3',4,4'-tetrakis(tert-hexylperoxycarbonyl)benzophenone, 3,3'-bis(methoxycarbonyl)-4,4'-bis(t-butylperoxycarbonyl)benzophenone , 3,4'-bis(methoxycarbonyl)-4,3'-bis(tert-butylperoxycarbonyl)benzophenone, 4,4'-bis(methoxycarbonyl)-3,3'-bis(tert-butylperoxycarbonyl)benzophenone, 2-(3-methyl-3H-benzothiazol-2-ylidene)-1-naphthalen-2-yl-ethanone, or 2-(3-methyl-1,3-benzothiazol-2(3H)-ylidene)-1-(2-benzoyl)ethanone. These compounds may be used alone or in combination of two or more.
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, etc. can be used.
 重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルリン酸トリアミド、γ-ブチロラクトン、γ-バレロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、シクロペンタノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。これらの有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The organic solvent used in the polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethylphosphoric triamide, γ-butyrolactone, γ-valerolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, Ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol Licorice monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, cyclopentanone, ethylene carbonate Examples of the organic solvent include propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, and 3-butoxy-N,N-dimethylpropanamide. These organic solvents may be used alone or in combination of two or more.
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、前述した有機溶媒に混合して使用してもよい。 Furthermore, even if the solvent does not dissolve the polymer produced, it may be mixed with the organic solvent described above to the extent that the polymer produced does not precipitate.
 なお、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。 In addition, since oxygen in an organic solvent during radical polymerization can inhibit the polymerization reaction, it is preferable to use an organic solvent that has been degassed to the extent possible.
 ラジカル重合の際の重合温度は、20~150℃の範囲の任意の温度を選択することができるが、好ましくは30~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature during radical polymerization can be selected from any temperature in the range of 20 to 150°C, but is preferably in the range of 30 to 100°C. The reaction can be carried out at any concentration, but if the concentration is too low it becomes difficult to obtain a high molecular weight polymer, and if the concentration is too high the viscosity of the reaction liquid becomes too high, making uniform stirring difficult, so the monomer concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The reaction can be carried out at a high concentration in the early stages, and then an organic solvent can be added.
 前記工程(1)におけるラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~15モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。 In the radical polymerization reaction in step (1) above, if the ratio of the radical polymerization initiator to the monomer is high, the molecular weight of the resulting polymer will be small, and if the ratio is low, the molecular weight of the resulting polymer will be large, so the ratio of the radical initiator to the monomer to be polymerized is preferably 0.1 to 15 mol %. In addition, various monomer components, solvents, initiators, etc. can also be added during polymerization.
 前記工程(2)におけるラジカル重合反応においては、ポリマー型重合開始剤の使用量は、ポリマー型重合開始剤の半減期を考慮し、ラジカル重合の進行を円滑に進めるために、モル比で、側鎖型重合体ブロックを与えるモノマーの総量1に対して0.01~0.2であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。 In the radical polymerization reaction in step (2), the amount of polymeric polymerization initiator used is preferably 0.01 to 0.2 per 1 of the total amount of monomers that give the side chain type polymer block, in terms of molar ratio, taking into account the half-life of the polymeric polymerization initiator and in order to smoothly advance the radical polymerization. In addition, various monomer components, solvents, initiators, etc. can also be added during polymerization.
 前記反応により得られた反応溶液から生成した側鎖型ブロック共重合体は、反応溶液を貧溶媒に投入して沈殿させて回収することができるが、この再沈殿処理は必須ではない。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。 The side-chain block copolymer produced from the reaction solution obtained by the above reaction can be recovered by precipitating the reaction solution by pouring the reaction solution into a poor solvent, but this reprecipitation process is not essential. Examples of poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer precipitated by pouring into a poor solvent can be recovered by filtration, and then dried at room temperature or by heating under normal or reduced pressure. In addition, the recovered polymer can be redissolved in an organic solvent and the reprecipitation recovery operation can be repeated 2 to 10 times to reduce impurities in the polymer. Examples of poor solvents in this case include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more poor solvents selected from these because this further increases the efficiency of purification.
 前記側鎖型ブロック共重合体における側鎖型重合体ブロックと開始剤由来重合体ブロックとの比率(モル比)は、おおむね側鎖型重合体ブロックを与えるモノマーの総量とポリマー型重合開始剤の使用量に準ずる。 The ratio (molar ratio) of the side chain polymer block to the initiator-derived polymer block in the side chain block copolymer is roughly based on the total amount of monomers that give the side chain polymer block and the amount of polymeric polymerization initiator used.
 液晶性を発現し得る感光性の側鎖型重合体ブロック(A1)の重量平均分子量(Mw)は、5,000~300,000であることが好ましい。前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)の数平均分子量(Mn)は、200~10,000であることが好ましい。 The weight average molecular weight (Mw) of the photosensitive side chain type polymer block (A1) capable of expressing liquid crystallinity is preferably 5,000 to 300,000. The number average molecular weight (Mn) of the polymer block (A2) consisting of repeating units that do not contain photoalignable side chains and liquid crystal side chains is preferably 200 to 10,000.
 本発明で用いる側鎖型ブロック共重合体の重量平均分子量(Mw)は、得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮すると、5,200~310,000が好ましく、5,500~250,000がより好ましく、6,000~200,000がより一層好ましい。なお、本発明においてMn、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算測定値である。 The weight average molecular weight (Mw) of the side chain type block copolymer used in the present invention is preferably 5,200 to 310,000, more preferably 5,500 to 250,000, and even more preferably 6,000 to 200,000, taking into consideration the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film. Note that in the present invention, Mn and Mw are values measured in terms of polystyrene using the gel permeation chromatography (GPC) method.
[(B)有機溶媒]
 本発明の重合体組成物には、有機溶媒(良溶媒)を含む。前記有機溶媒(良溶媒)は、重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-2-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、シクロペンタノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、テトラヒドロフラン、テトラヒドロフルフリルアルコール等が挙げられる。これらは1種単独で使用してもよく、2種以上を混合して使用してもよい。
[(B) Organic Solvent]
The polymer composition of the present invention contains an organic solvent (good solvent). The organic solvent (good solvent) is not particularly limited as long as it is an organic solvent that dissolves the polymer component. Specific examples thereof include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methyl-ε-caprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, tetramethylurea, pyridine, dimethyl sulfone, hexamethylphosphoramide, γ-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl-2-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, cyclopentanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, tetrahydrofuran, and tetrahydrofurfuryl alcohol. These may be used alone or in combination of two or more.
 また、前記重合体組成物は、側鎖型ブロック共重合体及び前記有機溶媒(良溶媒)以外の成分を含んでもよい。その例としては、重合体組成物を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒(貧溶媒)や化合物、位相差膜と基板との密着性を向上させる化合物等が挙げられるが、これらに限定されない。 The polymer composition may also contain components other than the side chain type block copolymer and the organic solvent (good solvent). Examples of such components include, but are not limited to, solvents (poor solvents) or compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the retardation film and the substrate.
 前記膜厚均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール等の低表面張力を有する溶媒が挙げられる。 Specific examples of solvents (poor solvents) that improve the film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethyl pentanol, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl -3-Methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate , ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol, and other solvents with low surface tension.
 前記貧溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。貧溶媒を用いる場合、その含有量は、重合体の溶解性を著しく低下させることがないように、溶媒中5~80質量%が好ましく、10~60質量%がより好ましい。 The poor solvent may be used alone or in combination of two or more. When a poor solvent is used, its content in the solvent is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, so as not to significantly reduce the solubility of the polymer.
 前記膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。これらの具体例としては、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F-171、F-173、F-563、R-30、R-40(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガード(登録商標)AG710(AGC社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の含有量は、側鎖型ブロック共重合体100質量部に対し、0.01~2質量部が好ましく、0.01~1質量部がより好ましい。 The compounds that improve the film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples of these include EFTOP (registered trademark) 301, EF303, and EF352 (manufactured by Tochem Products), Megafac (registered trademark) F-171, F-173, F-563, R-30, and R-40 (manufactured by DIC), Fluorad FC430 and FC431 (manufactured by 3M), Asahiguard (registered trademark) AG710 (manufactured by AGC), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, and SC106 (manufactured by AGC Seimi Chemicals). The content of these surfactants is preferably 0.01 to 2 parts by mass, and more preferably 0.01 to 1 part by mass, per 100 parts by mass of the side chain type block copolymer.
 前記位相差膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物等が挙げられ、その具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。 Specific examples of compounds that improve the adhesion between the retardation film and the substrate include functional silane-containing compounds, and specific examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethoxysilane, Examples include ethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis(oxyethylene)-3-aminopropyltrimethoxysilane, and N-bis(oxyethylene)-3-aminopropyltriethoxysilane.
 前記重合体組成物は、基板と位相差膜の密着性の向上に加え、偏光板を構成した時のバックライトによる特性の低下等を防ぐ目的で、フェノプラスト系化合物やエポキシ基含有化合物を含んでもよい。 The polymer composition may contain a phenoplast-based compound or an epoxy group-containing compound to improve adhesion between the substrate and the retardation film, as well as to prevent deterioration of characteristics due to backlight when a polarizing plate is formed.
 前記フェノプラスト系化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000061
Specific examples of the phenoplast-based compound include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000061
 前記エポキシ基含有化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of the epoxy group-containing compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, and N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane.
 基板との密着性を向上させる化合物を使用する場合、その含有量は、重合体組成物に含まれる側鎖型ブロック共重合体100質量部に対し、0.1~30質量部が好ましく、1~20質量部がより好ましい。含有量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves adhesion to the substrate is used, its content is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass, per 100 parts by mass of the side-chain block copolymer contained in the polymer composition. If the content is less than 0.1 parts by mass, the effect of improving adhesion cannot be expected, and if it is more than 30 parts by mass, the alignment of the liquid crystal may deteriorate.
 添加剤として、光増感剤を用いることもできる。光増感剤としては、無色増感剤及び三重項増感剤が好ましい。 A photosensitizer can also be used as an additive. As the photosensitizer, a colorless sensitizer and a triplet sensitizer are preferred.
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-又はジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン等)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン等)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン等)、ベンゾチアゾール、ニトロアニリン(m-又はp-ニトロアニリン、2,4,6-トリニトロアニリン等)、ニトロアセナフテン(5-ニトロアセナフテン等)、2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン等)、ナフタレン(2-ナフタレンメタノール、2-ナフタレンカルボン酸等)、アントラセン(9-アントラセンメタノール、9-アントラセンカルボン酸等)、ベンゾピラン、アゾインドリジン、メロクマリン等が挙げられる。これらのうち、好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン及びアセトフェノンケタールである。 Photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone, etc.), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3-methyl-β-naphthothiazolidine, etc.), and benzoylmethylene-3-methyl-β-naphthothiazolidine. benzothiazoline, 2-(β-naphthoylmethylene)-3-methylbenzothiazoline, 2-(α-naphthoylmethylene)-3-methylbenzothiazoline, 2-(4-biphenoylmethylene)-3-methylbenzothiazoline, 2-(β-naphthoylmethylene)-3-methyl-β-naphthothiazoline, 2-(4-biphenoylmethylene)-3-methyl-β-naphthothiazoline, 2-(p-fluorobenzoylmethylene)-3-methyl-β-naphthothiazoline, etc.), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline , 2-(β-naphthoylmethylene)-3-methylbenzoxazoline, 2-(α-naphthoylmethylene)-3-methylbenzoxazoline, 2-(4-biphenoylmethylene)-3-methylbenzoxazoline, 2-(β-naphthoylmethylene)-3-methyl-β-naphthoxazoline, 2-(4-biphenoylmethylene)-3-methyl-β-naphthoxazoline, 2-(p-fluorobenzoylmethylene)-3-methyl-β-naphthoxazoline, etc.), benzothiazole, nitroaniline (m- or p-nitroaniline , 2,4,6-trinitroaniline, etc.), nitroacenaphthene (5-nitroacenaphthene, etc.), 2-[(m-hydroxy-p-methoxy)styryl]benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone, etc.), naphthalene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, etc.), anthracene (9-anthracenemethanol, 9-anthracenecarboxylic acid, etc.), benzopyran, azoindolizine, merocoumarin, etc. Among these, aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonylbiscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
 前記重合体組成物には、前述したもののほか、本発明の効果が損なわれない範囲であれば、位相差膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above, the polymer composition may contain dielectric or conductive substances to change the electrical properties of the retardation film, such as the dielectric constant or conductivity, and may also contain crosslinking compounds to increase the hardness and density of the film when made into a retardation film, as long as the effects of the present invention are not impaired.
 前記重合体組成物は、単層位相差膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、側鎖型ブロック共重合体及び前述した膜厚均一性や表面平滑性を向上させる化合物、基板との密着性を向上させる化合物等が、有機溶媒(良溶媒)に溶解した溶液として調製されることが好ましい。 The polymer composition is preferably prepared as a coating liquid suitable for forming a single-layer retardation film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which the side-chain type block copolymer, the compound that improves the film thickness uniformity and surface smoothness described above, and the compound that improves adhesion to the substrate are dissolved in an organic solvent (good solvent).
 前記重合体組成物中、前記側鎖型ブロック共重合体の含有量は、1~30質量%が好ましく、3~25質量%がより好ましい。 The content of the side chain type block copolymer in the polymer composition is preferably 1 to 30% by mass, and more preferably 3 to 25% by mass.
 なお、前記重合体組成物は、前記側鎖型ブロック共重合体以外に、液晶発現能及び感光性能を損なわない範囲でその他の重合体を含んでもよい。前記その他の重合体としては、例えば、ポリ(メタ)アクリレート、ポリアミック酸、ポリイミド等の、液晶性を発現し得る感光性の側鎖を含まない重合体等が挙げられる。前記その他の重合体を含む場合、その含有量は、全重合体成分中、0.5~80質量%が好ましく、1~50質量%がより好ましい。 The polymer composition may contain other polymers in addition to the side chain type block copolymer, as long as the liquid crystal expression ability and photosensitive performance are not impaired. Examples of the other polymers include polymers that do not contain photosensitive side chains that can express liquid crystallinity, such as poly(meth)acrylate, polyamic acid, and polyimide. When the other polymers are contained, the content thereof is preferably 0.5 to 80% by mass, and more preferably 1 to 50% by mass, of the total polymer components.
 本発明の重合体組成物には、上述したもののほか、本発明の効果が損なわれない範囲であれば、位相差材の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、位相差材にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to the above, the polymer composition of the present invention may contain dielectric or conductive substances for the purpose of changing the electrical properties of the phase difference material, such as the dielectric constant or conductivity, and may also contain crosslinking compounds for the purpose of increasing the hardness and density of the film when made into a phase difference material, as long as the effects of the present invention are not impaired.
[重合体組成物の調製]
 本発明の重合体組成物は、単層位相差材の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、(A)成分、並びに上述した膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等が(B)成分の有機溶媒に溶解した溶液として調製されることが好ましい。ここで、(A)成分の含有量は、本発明の重合体組成物中1~30質量%が好ましく、3~25質量%がより好ましい。
[Preparation of polymer composition]
The polymer composition of the present invention is preferably prepared as a coating solution suitable for forming a single-layer retardation material. That is, the polymer composition used in the present invention is preferably prepared as a solution in which the component (A), the solvent or compound that improves the thickness uniformity and surface smoothness described above, and the compound that improves the adhesion between the liquid crystal alignment film and the substrate are dissolved in the organic solvent of the component (B). Here, the content of the component (A) is preferably 1 to 30% by mass, more preferably 3 to 25% by mass in the polymer composition of the present invention.
[単層位相差材]
 本発明の単層位相差材は、下記工程(I)~(III)を含む方法によって製造することができる。
(I)本発明の重合体組成物を、基板上に塗布して塗膜を形成する工程、
(II)前記塗膜に偏光した紫外線を照射する工程、及び
(III)前記紫外線を照射した塗膜を加熱して、位相差材を得る工程。
[Single-layer retardation material]
The single-layer retardation material of the present invention can be produced by a method including the following steps (I) to (III).
(I) a step of applying the polymer composition of the present invention onto a substrate to form a coating film;
(II) a step of irradiating the coating film with polarized ultraviolet light, and (III) a step of heating the coating film irradiated with ultraviolet light to obtain a retardation material.
[工程(I)]
 工程(I)は、本発明の重合体組成物を基板上に塗布して塗膜を形成する工程である。より具体的には、本発明の重合体組成物を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属(例えば、アルミニウム、モリブデン、クロム等)が被覆されたガラス基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、スピンコート、フローコート、ロールコート、スリットコート、スリットコートに続いたスピンコート、インクジェット法、印刷法等の方法によって塗布する。塗布した後、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン等の加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。
[Step (I)]
Step (I) is a step of applying the polymer composition of the present invention onto a substrate to form a coating film. More specifically, the polymer composition of the present invention is applied onto a substrate (e.g., a silicon/silicon dioxide-coated substrate, a silicon nitride substrate, a glass substrate coated with a metal (e.g., aluminum, molybdenum, chromium, etc.), a glass substrate, a quartz substrate, an ITO substrate, etc.) or a film (e.g., a triacetyl cellulose (TAC) film, a cycloolefin polymer film, a polyethylene terephthalate film, an acrylic film, or other resin film) by a method such as bar coating, spin coating, flow coating, roll coating, slit coating, slit coating followed by spin coating, an inkjet method, or a printing method. After application, the solvent is evaporated at 50 to 200°C, preferably 50 to 150°C, by a heating means such as a hot plate, a hot air circulation oven, or an IR (infrared) oven, to obtain a coating film.
[工程(II)]
 工程(II)では、工程(I)で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。前記紫外線としては、波長100~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
[Step (II)]
In step (II), the coating film obtained in step (I) is irradiated with polarized ultraviolet light. When irradiating the film surface of the coating film with polarized ultraviolet light, the polarized ultraviolet light is irradiated from a certain direction relative to the substrate through a polarizing plate. As the ultraviolet light, ultraviolet light having a wavelength in the range of 100 to 400 nm can be used. Preferably, an optimal wavelength is selected through a filter or the like depending on the type of coating film used. Then, for example, ultraviolet light having a wavelength in the range of 290 to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値を実現する偏光紫外線の量の1~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 The amount of polarized UV light to be irradiated depends on the coating film used. The amount of irradiation is preferably within the range of 1 to 70%, and more preferably within the range of 1 to 50%, of the amount of polarized UV light that achieves the maximum value of ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV light and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV light in the coating film.
[工程(III)]
 工程(III)では、工程(II)で偏光した紫外線を照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
[Step (III)]
In step (III), the coating film irradiated with the polarized ultraviolet light in step (II) is heated. By heating, it is possible to impart an orientation control ability to the coating film.
 加熱は、ホットプレート、熱風循環型オーブン、IR(赤外線)型オーブン等の加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。 The heating can be performed using a heating means such as a hot plate, a hot air circulation oven, or an IR (infrared) oven. The heating temperature can be determined taking into consideration the temperature at which the liquid crystallinity of the coating film to be used is expressed.
 加熱温度は、本発明の重合体組成物に含まれる(A)成分の重合体が液晶性を発現する温度(以下、液晶発現温度という。)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、(A)成分の重合体をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、(A)成分の重合体の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、前記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、前記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。 The heating temperature is preferably within the temperature range at which the polymer of component (A) contained in the polymer composition of the present invention exhibits liquid crystallinity (hereinafter referred to as the liquid crystal appearance temperature). In the case of a thin film surface such as a coating film, the liquid crystal appearance temperature of the coating film surface is expected to be lower than the liquid crystal appearance temperature when the polymer of component (A) is observed in bulk. For this reason, it is more preferable that the heating temperature is within the temperature range of the liquid crystal appearance temperature of the coating film surface. In other words, the temperature range of the heating temperature after irradiation with polarized ultraviolet light is preferably a temperature range with a lower limit of a temperature 10°C lower than the lower limit of the temperature range of the liquid crystal appearance temperature of the polymer of component (A) and an upper limit of a temperature 10°C lower than the upper limit of the liquid crystal temperature range. If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy by heat in the coating film tends to be insufficient, and if the heating temperature is too high, the state of the coating film tends to become closer to an isotropic liquid state (isotropic phase), in which case it may be difficult to realign in one direction by self-organization.
 なお、液晶発現温度は、重合体又は塗膜表面が固体相から液晶相に相転移が起きる液晶転移温度以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。例えば、130℃以下で液晶性を発現するとは、固体相から液晶相に相転移が起きる液晶転移温度が130℃以下であることを意味する。 The liquid crystal manifestation temperature refers to a temperature that is equal to or higher than the liquid crystal transition temperature at which a phase transition occurs on the polymer or coating surface from a solid phase to a liquid crystal phase, and is equal to or lower than the isotropic phase transition temperature (Tiso) at which a phase transition occurs from a liquid crystal phase to an isotropic phase. For example, manifesting liquid crystallinity at 130°C or lower means that the liquid crystal transition temperature at which a phase transition occurs from a solid phase to a liquid crystal phase is 130°C or lower.
 加熱後に形成される塗膜の厚みは、使用する基板の段差や光学的、電気的性質を考慮して適宜選択することができ、例えば、0.5~10μmが好適である。 The thickness of the coating film formed after heating can be appropriately selected taking into consideration the unevenness of the substrate used and the optical and electrical properties, and is preferably 0.5 to 10 μm, for example.
 このようにして得られた本発明の単層位相差材は、表示装置や記録材料等の用途に好適な光学特性を有する材料であり、特に、液晶ディスプレイ用の偏光板及び位相差板等の光学補償フィルムとして好適である。 The single-layer retardation material of the present invention obtained in this manner has optical properties suitable for applications such as display devices and recording materials, and is particularly suitable as an optical compensation film such as a polarizing plate and a retardation plate for liquid crystal displays.
 以下、合成例、調製例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。 The present invention will be explained in more detail below with reference to synthesis examples, preparation examples, working examples and comparative examples, but the present invention is not limited to the following examples.
 実施例で使用した光反応性基を有するモノマーとしてMA-1及びMA-8を、非感光性基のモノマーとしてMA-2~MA-7を以下に示す。なお、MA-1及びMA-8に由来する側鎖は光反応性及び液晶性を発現し、MA-2~MA-7に由来する側鎖は液晶性のみを発現する。
Figure JPOXMLDOC01-appb-C000062
The monomers having a photoreactive group, MA-1 and MA-8, and the monomers having a non-photosensitive group, MA-2 to MA-7, used in the examples are shown below. Note that the side chains derived from MA-1 and MA-8 exhibit both photoreactivity and liquid crystallinity, while the side chains derived from MA-2 to MA-7 exhibit only liquid crystallinity.
Figure JPOXMLDOC01-appb-C000062
 その他、本実施例で用いた試薬の略号を以下に示す。
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
PGME:1-メトキシ-2-プロパノール
PGMEA:プロピレングリコールモノメチルエーテルアセテート
CPN:シクロペンタノン
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
VPE:前記式(In-1)で表される、ポリエチレングリコールユニット含有高分子アゾ重合開始剤(富士フイルム和光純薬社製 VPE-0201、ポリエチレングリコールユニットの分子量:約2,000)
(界面活性剤)
F563:メガファックF-563(DIC社製)
R40:メガファックR-40(DIC社製)
The abbreviations of the reagents used in this example are as follows:
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve PGME: 1-methoxy-2-propanol PGMEA: Propylene glycol monomethyl ether acetate CPN: Cyclopentanone (polymerization initiator)
AIBN: 2,2'-azobisisobutyronitrile VPE: polyethylene glycol unit-containing polymeric azo polymerization initiator represented by the formula (In-1) (VPE-0201 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight of polyethylene glycol unit: about 2,000)
(Surfactant)
F563: Megafac F-563 (manufactured by DIC)
R40: Megafac R-40 (manufactured by DIC)
(分子量の測定)
 ポリマーの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(CBM-20A)(島津製作所製)、カラム(Shodex(登録商標)KF-804L及びKF-803Lの直列)(昭和電工社製)用いて、以下のようにして測定した。
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 流速:1.0mL/分
 検量線作成用標準サンプル:標準ポリスチレン(分子量;197,000、55,100、12,800、3,950、1,260)(東ソー社製)
(Measurement of molecular weight)
The molecular weight of the polymer was measured using a room temperature gel permeation chromatography (GPC) apparatus (CBM-20A) (manufactured by Shimadzu Corporation) and a column (Shodex (registered trademark) KF-804L and KF-803L in series) (manufactured by Showa Denko KK) as follows.
Column temperature: 40°C
Eluent: tetrahydrofuran Flow rate: 1.0 mL/min Standard sample for creating calibration curve: standard polystyrene (molecular weight: 197,000, 55,100, 12,800, 3,950, 1,260) (manufactured by Tosoh Corporation)
[1]重合体の合成
<合成例1>
 NMP(22.4g)中に、M-1(3.79g、11.4mmol)、M-2(2.33g、7.60mmol)、M-3(4.23g、15.2mmol)、M-4(1.45g、3.80mmol)及びAIBN(0.62g、3.80mmol)を溶解させ、モノマー混合溶液を調製した。また、NMP(1.86g)中にVPE(0.62g)を溶解させ、追加添加溶液を調製した。窒素雰囲気下、70℃に加熱したNMP(14.9g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了から70℃で3時間反応させ、側鎖型重合体ブロック(A1)に相当する重合体(重量平均分子量Mw:45,700)の溶液を得た。さらに、窒素雰囲気下、80℃で、前記の溶液中に追加添加溶液を60分かけて滴下した。滴下終了後、80℃で12時間反応させた。反応終了後、メタノール(300g)中に反応液を加え、生成した沈殿物をろ別した。このろ物をメタノール洗浄し、40℃で減圧乾燥することでポリマー粉体P-1を得た。
[1] Polymer synthesis <Synthesis Example 1>
M-1 (3.79 g, 11.4 mmol), M-2 (2.33 g, 7.60 mmol), M-3 (4.23 g, 15.2 mmol), M-4 (1.45 g, 3.80 mmol) and AIBN (0.62 g, 3.80 mmol) were dissolved in NMP (22.4 g) to prepare a monomer mixed solution. In addition, VPE (0.62 g) was dissolved in NMP (1.86 g) to prepare an additional addition solution. Under a nitrogen atmosphere, the monomer mixed solution was dropped into NMP (14.9 g) heated to 70 ° C. over 2 hours. After the end of the dropwise addition, the reaction was carried out at 70 ° C. for 3 hours to obtain a solution of a polymer (weight average molecular weight Mw: 45,700) corresponding to the side chain type polymer block (A1). Furthermore, under a nitrogen atmosphere, the additional addition solution was dropped into the above solution at 80 ° C. over 60 minutes. After the end of the dropwise addition, the reaction was carried out at 80 ° C. for 12 hours. After the reaction was completed, the reaction solution was added to methanol (300 g) and the resulting precipitate was filtered off. The filtered product was washed with methanol and dried under reduced pressure at 40° C. to obtain polymer powder P-1.
<合成例2~8>
 下記表1に示すように、使用するモノマーの種類と量、及び重合開始剤VPEの量を変更した以外は合成例1と同様の操作を行うことで、ポリマー粉体P-2~P-8を得た。
<Synthesis Examples 2 to 8>
As shown in Table 1 below, polymer powders P-2 to P-8 were obtained by carrying out the same operations as in Synthesis Example 1, except that the type and amount of the monomer used and the amount of the polymerization initiator VPE were changed.
<合成例9>
 NMP(22.4g)中に、M-1(3.79g、11.4mmol)、M-2(2.33g、7.60mmol)、M-3(4.23g、15.2mmol)、M-4(1.45g、3.80mmol)及びAIBN(0.62g、3.80mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、70℃に加熱したNMP(14.9g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、70℃で12時間反応させた。反応終了後、メタノール(250g)と純水(50g)の混合溶液中に反応液を加え、生成した沈殿物をろ別した。このろ物をメタノール洗浄し、40℃で減圧乾燥することでポリマー粉体P-9を得た。
<Synthesis Example 9>
M-1 (3.79 g, 11.4 mmol), M-2 (2.33 g, 7.60 mmol), M-3 (4.23 g, 15.2 mmol), M-4 (1.45 g, 3.80 mmol) and AIBN (0.62 g, 3.80 mmol) were dissolved in NMP (22.4 g) to prepare a monomer mixed solution. The monomer mixed solution was dropped into NMP (14.9 g) heated to 70 ° C. over 2 hours under a nitrogen atmosphere. After the dropwise addition, the reaction was allowed to proceed at 70 ° C. for 12 hours. After the reaction was completed, the reaction solution was added to a mixed solution of methanol (250 g) and pure water (50 g), and the resulting precipitate was filtered off. The filtered product was washed with methanol and dried under reduced pressure at 40 ° C. to obtain polymer powder P-9.
<合成例10>
 下記表1に示すように、使用するモノマーの種類と量を変更した以外は合成例9と同様の操作を行うことで、ポリマー粉体P-10を得た。
<Synthesis Example 10>
Polymer powder P-10 was obtained by carrying out the same procedure as in Synthesis Example 9, except that the types and amounts of the monomers used were changed as shown in Table 1 below.
<合成例11>
 NMP(18.3g)中に、M-1(1.99g、6.00mmol)、M-2(10.4g、34.0mmol)、及びAIBN(0.66g、4.00mmol)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、70℃に加熱したNMP(9.5g)中にモノマー混合溶液を2時間かけて滴下した。滴下終了後、70℃で12時間反応させた。反応終了後、溶液を室温に戻し、ポリマー溶液P-11を得た。
<Synthesis Example 11>
M-1 (1.99 g, 6.00 mmol), M-2 (10.4 g, 34.0 mmol), and AIBN (0.66 g, 4.00 mmol) were dissolved in NMP (18.3 g) to prepare a monomer mixture solution. The monomer mixture solution was added dropwise to NMP (9.5 g) heated to 70° C. under a nitrogen atmosphere over a period of 2 hours. After completion of the addition, the mixture was reacted at 70° C. for 12 hours. After completion of the reaction, the solution was returned to room temperature to obtain polymer solution P-11.
<合成例12>
 NMP(38.1g)中に、M-1(1.99g、6.00mmol)、M-2(10.4g、34.0mmol)、及びVPE(8.0g)を溶解させ、モノマー混合溶液を調製した。窒素雰囲気下、80℃に加熱したNMP(9.5g)中にモノマー混合溶液を1.5時間かけて滴下した。滴下終了後、80℃で20時間反応させた。反応終了後、溶液を室温に戻し、ポリマー溶液P-12を得た。
<Synthesis Example 12>
M-1 (1.99 g, 6.00 mmol), M-2 (10.4 g, 34.0 mmol), and VPE (8.0 g) were dissolved in NMP (38.1 g) to prepare a monomer mixture solution. The monomer mixture solution was added dropwise to NMP (9.5 g) heated to 80° C. under a nitrogen atmosphere over 1.5 hours. After the dropwise addition was completed, the mixture was reacted at 80° C. for 20 hours. After the reaction was completed, the solution was returned to room temperature to obtain polymer solution P-12.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
[2]位相差膜形成材料の調製
<調製例1>
 合成例1で得られたポリマー粉体P-1(1.8g)に、NMP(1.0g)、BCS(1.0g)、PGME(3.5g)、PGMEA(2.7g)及びF563(9.0mg)を加えて撹拌した。これを孔径5.0μmのフィルターで濾過し、ポリマー調製液T-1を得た。このポリマー調製液T-1は、そのまま位相差膜を形成するための材料とした。
[2] Preparation of retardation film forming material <Preparation Example 1>
NMP (1.0 g), BCS (1.0 g), PGME (3.5 g), PGMEA (2.7 g) and F563 (9.0 mg) were added to the polymer powder P-1 (1.8 g) obtained in Synthesis Example 1 and stirred. This was filtered through a filter with a pore size of 5.0 μm to obtain a polymer preparation solution T-1. This polymer preparation solution T-1 was used as it is as a material for forming a retardation film.
<調製例2~10>
 下記表2に示すように、ポリマー粉体の種類と量、及び溶媒や添加剤の導入量を変更させた以外は、調製例1と同様の操作を行うことで、ポリマー調製液T-2~T-10を得た。
<Preparation Examples 2 to 10>
As shown in Table 2 below, polymer preparation solutions T-2 to T-10 were obtained by carrying out the same operation as in Preparation Example 1, except that the type and amount of polymer powder and the amount of solvent and additives introduced were changed.
<調製例11>
 合成例11で得られたポリマー溶液P-11(6.7g)に、BCS(2.0g)、CPN(1.3g)及びR40(10.0mg)を加えて撹拌した。これを孔径5.0μmのフィルターで濾過し、ポリマー調製液T-11を得た。このポリマー調製液T-11は、そのまま位相差膜を形成するための材料とした。
<Preparation Example 11>
To the polymer solution P-11 (6.7 g) obtained in Synthesis Example 11, BCS (2.0 g), CPN (1.3 g) and R40 (10.0 mg) were added and stirred. This was filtered through a filter with a pore size of 5.0 μm to obtain a polymer preparation solution T-11. This polymer preparation solution T-11 was used as it is as a material for forming a retardation film.
<調製例12>
 下記表2に示すように、ポリマー溶液の種類を変更させた以外は、調製例11と同様の操作を行うことで、ポリマー調製液T-12を得た。
<Preparation Example 12>
As shown in Table 2 below, the same operation as in Preparation Example 11 was carried out except that the type of polymer solution was changed, to obtain Polymer Preparation Solution T-12.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
[3]単層位相差膜の製造
<実施例1>
 ポリマー調製液T-1を、無アルカリガラス基板上にバーコーターを用いて膜厚が約3.8μmとなるよう塗布した。この基板を80℃の熱風循環オーブンで3.5分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)及び偏光板を介して波長365nmの紫外線(100~1,200mJ/cm2)を照射した。160℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板S-1を作製した。
[3] Production of single-layer retardation film <Example 1>
Polymer preparation solution T-1 was applied to a non-alkali glass substrate using a bar coater to a film thickness of about 3.8 μm. The substrate was dried in a hot air circulating oven at 80° C. for 3.5 minutes, and then irradiated with ultraviolet light (100 to 1,200 mJ/cm 2 ) having a wavelength of 365 nm from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. The substrate was heated in an IR oven at 160° C. for 20 minutes to prepare glass substrate S-1 with a retardation film.
<実施例2~8、比較例1~2>
 下記表3に示すように、ポリマー調製液の種類及び膜厚、焼成条件を変更させた以外は、実施例1と同様の操作を行うことで、位相差膜付きのガラス基板S-2~S-8、R-1~R-2を得た。
<Examples 2 to 8, Comparative Examples 1 and 2>
As shown in Table 3 below, glass substrates with retardation films S-2 to S-8 and R-1 to R-2 were obtained by performing the same operation as in Example 1, except that the type of polymer preparation solution, the film thickness, and the baking conditions were changed.
<比較例3>
 ポリマー調製液T-11を、無アルカリガラス基板上にスピンコートを用いて膜厚が約2.0μmとなるよう塗布した。この基板を60℃のホットプレートで4分間乾燥させ、続いて、この基板に高圧水銀灯からカットフィルター(365nmバンドパスフィルター)及び偏光板を介して波長365nmの紫外線(50~800mJ/cm2)を照射した。120℃のIR式オーブンで20分間加熱し、位相差膜付きのガラス基板R-3を作製した。
<Comparative Example 3>
Polymer preparation solution T-11 was applied to a non-alkali glass substrate by spin coating to a film thickness of about 2.0 μm. The substrate was dried on a hot plate at 60° C. for 4 minutes, and then irradiated with ultraviolet light (50 to 800 mJ/cm 2 ) having a wavelength of 365 nm from a high-pressure mercury lamp through a cut filter (365 nm bandpass filter) and a polarizing plate. The substrate was heated in an IR oven at 120° C. for 20 minutes to prepare glass substrate R-3 with a retardation film.
<比較例4>
 下記表3に示すように、ポリマー調製液の種類を変更させた以外は、比較例3と同様の操作を行うことで、位相差膜付きのガラス基板R-4を得た。
<Comparative Example 4>
As shown in Table 3 below, except that the type of the polymer preparation solution was changed, the same operation as in Comparative Example 3 was carried out to obtain a glass substrate R-4 with a retardation film.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 各位相差膜付きの基板S-1~S-8及びR-1~R-4について、下記方法により位相差、ヘーズ、NZ係数及び露光マージンについて評価した。 The retardation, haze, NZ coefficient, and exposure margin of each of the retardation film-coated substrates S-1 to S-8 and R-1 to R-4 were evaluated using the following methods.
〔位相差評価〕
 Axometrics社製のAxoScanを用いて波長550nmにおける直線位相差を計測し、以下の式を用いてΔnを算出し、Δnが最大となる最適露光量とその時のΔnの値を表4にまとめた。
 Δn=位相差値[nm]/膜厚[nm]
 位相差値:Axo Scanより計測された直線位相差
 膜厚:計測した位相差膜の膜厚
[Phase difference evaluation]
The linear phase difference at a wavelength of 550 nm was measured using AxoScan manufactured by Axometrics, and Δn was calculated using the following formula. The optimum exposure amount at which Δn was maximized and the value of Δn at that time are shown in Table 4.
Δn=phase difference value [nm]/film thickness [nm]
Retardation value: Linear retardation measured by Axo Scan Film thickness: Measured film thickness of retardation film
〔ヘーズ評価〕
 スガ試験機製 HAZE METER HZ-V3を用いて、光源光が基板に対して垂直になるように基板を設置し、室温でヘーズを計測し、表4にまとめた。
[Haze evaluation]
Using a HAZE METER HZ-V3 manufactured by Suga Test Instruments, the substrate was placed so that the light from the light source was perpendicular to the substrate, and the haze was measured at room temperature. The results are summarized in Table 4.
〔NZ係数評価〕
 Axometrics社製のAxoScanを用いて波長550nmにおける位相差膜の三次元方向の屈折率を測定し、NZ係数を算出した。NZ係数とは、三次元的屈折率の大小関係の指標であり、以下の式で示される。
 NZ係数=(nx-nz)/(nx-ny)
 nx:x軸方向(遅相軸方向)の屈折率
 ny:y軸方向(遅相軸と直交方向)の屈折率
 nz:z軸方向(厚み方向)の屈折率
位相差膜付きのガラス基板S-1~S-8及びR-1~R-4について、位相差膜の平均屈折率を1.55と仮定して算出した結果を表4にまとめた。
[NZ coefficient evaluation]
The refractive indexes of the retardation film in the three-dimensional direction at a wavelength of 550 nm were measured using an AxoScan manufactured by Axometrics, and the NZ coefficient was calculated. The NZ coefficient is an index of the magnitude relationship of the three-dimensional refractive index and is expressed by the following formula.
NZ coefficient = (nx - nz) / (nx - ny)
nx: refractive index in the x-axis direction (slow axis direction), ny: refractive index in the y-axis direction (direction perpendicular to the slow axis), and nz: refractive index in the z-axis direction (thickness direction). The results of calculations for the glass substrates S-1 to S-8 and R-1 to R-4 with retardation films, assuming that the average refractive index of the retardation film is 1.55, are summarized in Table 4.
〔露光マージン評価〕
 Δnが最大となる最適露光量から露光量を200mJ/cm2増減した際に、NZ係数の変化量が0.05以下の場合を「◎」とし、0.05より大きく0.15以下の場合を「〇」とし、0.15より大きい場合を「×」として評価した結果を表4にまとめた。
[Exposure Margin Evaluation]
When the exposure dose was increased or decreased by 200 mJ/ cm2 from the optimal exposure dose at which Δn was maximized, a change in the NZ coefficient of 0.05 or less was evaluated as "◎", a change in the NZ coefficient of more than 0.05 and 0.15 or less was evaluated as "◯", and a change in the NZ coefficient of more than 0.15 was evaluated as "×". The results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 表4の比較例3と比較例4の結果より、重合開始剤をすべて(比較例3で使用している低分子重合開始剤から比較例4で使用している)ポリマー型重合開始剤に置き換えるとヘーズは抑制されるが、Δnが大幅に低下した。一方、実施例1~8のようにポリマー型重合開始剤を追加添加した場合では、Δnが高い値を維持しつつ、ヘーズが抑制された。十分な位相差を発現するためには側鎖成分が連続したブロックを形成している必要があり、ポリマー型重合開始剤を導入する前にも重合反応が進行している実施例1~8は、高いΔnを維持したと考えられる。また側鎖型重合体ブロックに光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロックが組み込まれることで、ポリドメインの形成が阻害されて膜中を透過する光の散乱が減少し、ヘーズが抑制されたと考えられる。
 さらに実施例は、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロックを導入しなかった比較例に比べ、NZ係数の値がプラス側にシフトした。また、実施例ではNZ係数に対する広い露光マージンが確認された。実施例1~8では、側鎖型重合体ブロックと光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロックから成るブロック共重合体がミクロ相分離を形成したために、配向が安定し、広い露光マージンが得られたと考えられる。
From the results of Comparative Example 3 and Comparative Example 4 in Table 4, when all the polymerization initiators were replaced with polymeric polymerization initiators (from the low molecular weight polymerization initiator used in Comparative Example 3 to the polymeric polymerization initiator used in Comparative Example 4), the haze was suppressed, but Δn was significantly reduced. On the other hand, when a polymeric polymerization initiator was additionally added as in Examples 1 to 8, the haze was suppressed while maintaining a high value of Δn. In order to express a sufficient retardation, it is necessary for the side chain components to form a continuous block, and it is considered that Examples 1 to 8, in which the polymerization reaction proceeded even before the introduction of the polymeric polymerization initiator, maintained a high Δn. In addition, it is considered that the formation of polydomains was inhibited by incorporating a polymer block consisting of a repeating unit that does not contain a photoalignable side chain and a liquid crystal side chain into the side chain type polymer block, and the scattering of light transmitted through the film was reduced, thereby suppressing the haze.
Furthermore, in the Examples, the values of the NZ coefficient were shifted to the positive side compared to the Comparative Examples in which a polymer block consisting of a repeating unit not containing a photoalignable side chain and a liquid crystalline side chain was not introduced. Also, a wide exposure margin for the NZ coefficient was confirmed in the Examples. In Examples 1 to 8, it is considered that the alignment was stabilized and a wide exposure margin was obtained because the block copolymer consisting of a side chain type polymer block and a polymer block consisting of a repeating unit not containing a photoalignable side chain and a liquid crystalline side chain formed microphase separation.

Claims (13)

  1.  (A)液晶性を発現し得る感光性の側鎖型重合体ブロック(A1)と、光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)とを有するブロック共重合体、及び(B)有機溶媒を含む重合体組成物。 A polymer composition comprising: (A) a block copolymer having a photosensitive side-chain type polymer block (A1) capable of exhibiting liquid crystallinity and a polymer block (A2) consisting of repeating units that do not contain photoalignable side chains or liquid crystal side chains; and (B) an organic solvent.
  2.  前記側鎖型重合体ブロック(A1)が、下記式(a1)~(a6)のいずれかで表される側鎖を有する請求項1記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、n1及びn2は、それぞれ独立に、0、1、2又は3である。
     Lは、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
     T1は、単結合又は炭素数1~12のアルキレン基であり、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
     A1、A2及びD1は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。ただし、T1が単結合のときは、A2も単結合である。
     Y1及びY2は、フェニレン基又はナフチレン基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。
     P1、Q1及びQ2は、それぞれ独立に、単結合、フェニレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよく、Q2の数が2以上のとき、各Q2は互いに同一でも異なっていてもよい。
     Rは、水素原子、シアノ基、ハロゲン原子、カルボキシ基、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルコキシ基である。
     X1及びX2は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-C(=O)-O-又は-O-C(=O)-CH=CH-である。X1の数が2以上のとき、各X1は互いに同一でも異なっていてもよく、X2の数が2以上のとき、各X2は互いに同一でも異なっていてもよい。
     Z1a及びZ2aは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基又は炭素数1~3のアルキル基であり、このアルキル基の水素原子の一部または全部はフッ素原子により置換されていてもよい。
     Couは、クマリン-6-イル基又はクマリン-7-イル基であり、これらに結合する水素原子の一部が-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
     Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
     G1及びG2は、それぞれ独立に、N又はCHである。
     破線は、結合手である。)
    The polymer composition according to claim 1, wherein the side chain type polymer block (A1) has a side chain represented by any one of the following formulas (a1) to (a6):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, n1 and n2 each independently represent 0, 1, 2, or 3.
    L is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
    T 1 is a single bond or an alkylene group having 1 to 12 carbon atoms, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
    A 1 , A 2 and D 1 each independently represent a single bond, -O-, -CH 2 -, -C(═O)-O-, -O-C(═O)-, -C(═O)-NH- or -NH-C(═O)-, provided that when T 1 is a single bond, A 2 is also a single bond.
    Y1 and Y2 are a phenylene group or a naphthylene group, and some or all of the hydrogen atoms of the phenylene group and the naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
    P 1 , Q 1 and Q 2 are each independently a single bond, a phenylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, in which some or all of the hydrogen atoms of the phenylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. When the number of Q 1s is 2 or more, each Q 1 may be the same as or different from another, and when the number of Q 2s is 2 or more, each Q 2 may be the same as or different from another.
    R is a hydrogen atom, a cyano group, a halogen atom, a carboxy group, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms, a cycloalkyl group having 3 to 7 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
    X 1 and X 2 are each independently a single bond, -O-, -C(=O)-O-, -O-C(=O)-, -N=N-, -CH=CH-, -C≡C-, -CH=CH-C(=O)-O-, or -O-C(=O)-CH=CH-. When the number of X 1 is 2 or more, each X 1 may be the same as or different from each other, and when the number of X 2 is 2 or more, each X 2 may be the same as or different from each other.
    Z 1a and Z 2a each independently represent a hydrogen atom, a halogen atom, a cyano group or an alkyl group having 1 to 3 carbon atoms, and some or all of the hydrogen atoms of this alkyl group may be substituted with fluorine atoms.
    Cou is a coumarin-6-yl group or a coumarin-7-yl group, and some of the hydrogen atoms bonded to these may be substituted with -NO2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
    E is -C(=O)-O-, -OC(=O)-, -C(=O)-S- or -SC(=O)-.
    G 1 and G 2 are each independently N or CH.
    The dashed lines represent bonds.)
  3.  前記側鎖型重合体ブロック(A1)が、更に、光二量化も光異性化もしない側鎖を有する請求項1記載の重合体組成物。 The polymer composition according to claim 1, wherein the side chain type polymer block (A1) further has a side chain that does not undergo photodimerization or photoisomerization.
  4.  前記光二量化も光異性化もしない側鎖が、下記式(b1)~(b13)のいずれかで表されるものである請求項3記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、A3及びA4は、それぞれ独立に、単結合、-O-、-CH2-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、又は-NH-C(=O)-である。A4の数が2以上のとき、各A4は互いに同一でも異なっていてもよい。
     R1は、-NO2、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
     R2は、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基又は炭素数5~8の1価脂環式炭化水素基であり、これらの基の水素原子の一部又は全部が、-NO2、-CN、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基で置換されてもよい。
     R3は、水素原子、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基である。
     Eは、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-又は-S-C(=O)-である。
     aは、1~12の整数である。
     k1~k5は、それぞれ独立に、0~2の整数であるが、k1~k5の合計は2以上である。
     k6及びk7は、それぞれ独立に、0~2の整数であるが、k6及びk7の合計は1以上である。
     m1、m2及びm3は、それぞれ独立に、1~3の整数である。
     nは、0又は1である。
     Z1及びZ2は、それぞれ独立に、単結合、-C(=O)-、-CH2-O-、又は-CF2-である。
     W1、W2及びW3は、それぞれ独立に、単結合、-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-N(R’)-又は-N(R’)-C(=O)-である。W2の数が2以上のとき、各W2は互いに同一でも異なっていてもよい。R’は水素原子又は炭素数1~6のアルキル基を表す。
     Qは、炭素数1~10のアルキレン基である。該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
     Lは、単結合又は炭素数1~12のアルキレン基、又は、炭素数1~12のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-C(=O)-O-、もしくは-O-C(=O)-に置換された2価の連結基を表し、該アルキレン基の水素原子の一部又は全部がハロゲン原子で置換されていてもよい。
     Q1は、単結合、フェニレン基、ナフチレン基又は炭素数5~8の2価の脂環式炭化水素基であり、該フェニレン基及びナフチレン基の水素原子の一部又は全部が、シアノ基、ハロゲン原子、炭素数1~5のアルキル基、炭素数1~5のアルキルカルボニル基又は炭素数1~5のアルコキシ基で置換されていてもよい。Q1の数が2以上のとき、各Q1は互いに同一でも異なっていてもよい。
     n1は、0、1、2又は3である。
     ベンゼン環及びナフタレン環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロアルコキシ基、ハロゲン原子、シアノ基及びニトロ基から選ばれる置換基で置換されていてもよい。
     破線は、結合手である。)
    The polymer composition according to claim 3, wherein the side chain which is neither photodimerized nor photoisomerized is represented by any one of the following formulas (b1) to (b13):
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, A3 and A4 each independently represent a single bond, -O-, -CH2- , -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, or -NH-C(=O)-. When the number of A4 's is 2 or more, each A4 may be the same or different.
    R 1 is --NO 2 , --CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
    R2 is a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, or a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups may be substituted with -NO2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
    R3 is a hydrogen atom, -NO2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
    E is -C(=O)-O-, -OC(=O)-, -C(=O)-S- or -SC(=O)-.
    a is an integer from 1 to 12.
    k1 to k5 each independently represent an integer of 0 to 2, provided that the total of k1 to k5 is 2 or more.
    k6 and k7 each independently represent an integer of 0 to 2, provided that the sum of k6 and k7 is 1 or more.
    m1, m2, and m3 each independently represents an integer of 1 to 3.
    n is 0 or 1.
    Z 1 and Z 2 each independently represent a single bond, --C(═O)--, --CH 2 --O--, or --CF 2 --.
    W 1 , W 2 and W 3 are each independently a single bond, -O-, -C(=O)-O-, -O-C(=O)-, -C(=O)-N(R')- or -N(R')-C(=O)-. When the number of W 2 is 2 or more, each W 2 may be the same or different. R' represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
    Q is an alkylene group having 1 to 10 carbon atoms, some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
    L represents a single bond, an alkylene group having 1 to 12 carbon atoms, or a divalent linking group in which one or more of the -CH 2 - constituting the alkylene group having 1 to 12 carbon atoms are replaced with -O-, -S-, -C(═O)-O-, or -O-C(═O)-, and some or all of the hydrogen atoms of the alkylene group may be substituted with halogen atoms.
    Q 1 is a single bond, a phenylene group, a naphthylene group or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and some or all of the hydrogen atoms of the phenylene group and naphthylene group may be substituted with a cyano group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkylcarbonyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms. When the number of Q 1 is 2 or more, each Q 1 may be the same or different.
    n1 is 0, 1, 2 or 3.
    The hydrogen atoms on the benzene ring and the naphthalene ring may be substituted with a substituent selected from an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a haloalkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, and a nitro group.
    The dashed lines represent bonds.)
  5.  前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)が、ポリマー型重合開始剤由来の重合体ブロックである請求項1記載の重合体組成物。 The polymer composition according to claim 1, wherein the polymer block (A2) consisting of repeating units not containing a photoalignable side chain and a liquid crystal side chain is a polymer block derived from a polymeric polymerization initiator.
  6.  前記ポリマー型重合開始剤が、下記式(1)で表される繰り返し単位を有する請求項5記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Ra1~Ra4は、それぞれ独立に、直鎖状若しくは分枝状の炭素数1~6のアルキル基、又はシアノ基である。RL1及びRL2は、それぞれ独立に、炭素数1~10のアルキレン基である。L1及びL2は、それぞれ独立に、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-又は-NH-C(=O)-である。Xは、下記式(2)又は(3)で表される2価の基である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Ra5~Ra8は、直鎖状若しくは分枝状の炭素数1~6のアルキル基又は炭素数6~12のアリール基である。RL3、RL4、RL5及びRL6は、それぞれ独立に、炭素数1~10のアルキレン基である。x及びyは、それぞれ独立に、正の整数である。)
    The polymer composition according to claim 5 , wherein the polymer type polymerization initiator has a repeating unit represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R a1 to R a4 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyano group. R L1 and R L2 are each independently an alkylene group having 1 to 10 carbon atoms. L 1 and L 2 are each independently -C(=O)-O-, -O-C(=O)-, -C(=O)-NH-, or -NH-C(=O)-. X is a divalent group represented by the following formula (2) or (3).)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R a5 to R a8 are a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. R L3 , R L4 , R L5 and R L6 are each independently an alkylene group having 1 to 10 carbon atoms. x and y are each independently a positive integer.)
  7.  前記ポリマー型重合開始剤が、下記式(In-1)~(In-2)のいずれかで表される請求項6記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式中、x及びyは前記と同じ。nは、正の整数である。)
    The polymer composition according to claim 6, wherein the polymer type polymerization initiator is represented by any one of the following formulas (In-1) to (In-2):
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, x and y are the same as above, and n is a positive integer.)
  8.  前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)が、ポリマー型連鎖移動剤由来の重合体ブロックである請求項1記載の重合体組成物。 The polymer composition according to claim 1, wherein the polymer block (A2) consisting of repeating units not containing a photoalignable side chain and a liquid crystalline side chain is a polymer block derived from a polymeric chain transfer agent.
  9.  前記ポリマー型連鎖移動剤が、下記式(4)で表される請求項8記載の重合体組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式中、Yは、直鎖状若しくは分枝状の炭素数1~3のアルキル基、ヒドロキシ基、カルボキシ基、又はスルファニル基である。RL7及びRL8は、それぞれ独立に、単結合又は直鎖状若しくは分枝状の炭素数1~6のアルキレン基である。xは、正の整数である。)
    The polymer composition according to claim 8, wherein the polymeric chain transfer agent is represented by the following formula (4):
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, Y is a linear or branched alkyl group having 1 to 3 carbon atoms, a hydroxyl group, a carboxyl group, or a sulfanyl group. R and R are each independently a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms. x is a positive integer.)
  10.  前記液晶性を発現し得る感光性の側鎖型重合体ブロック(A1)の数平均分子量が5,000~300,000である請求項1記載の重合体組成物。 The polymer composition according to claim 1, wherein the photosensitive side-chain polymer block (A1) capable of exhibiting liquid crystallinity has a number average molecular weight of 5,000 to 300,000.
  11.  前記光配向性側鎖及び液晶性側鎖を含まない繰り返し単位からなる重合体ブロック(A2)の数平均分子量が200~10,000である請求項1記載の重合体組成物。 The polymer composition according to claim 1, wherein the number average molecular weight of the polymer block (A2) consisting of repeating units that do not contain photoalignable side chains and liquid crystalline side chains is 200 to 10,000.
  12.  (I)請求項1~11のいずれか1項記載の重合体組成物を、基板上に塗布して塗膜を形成する工程、
    (II)前記塗膜に、偏光した紫外線を照射する工程、及び
    (III)前記紫外線を照射した塗膜を加熱して、位相差材を得る工程
    を含む、単層位相差材の製造方法。
    (I) a step of applying the polymer composition according to any one of claims 1 to 11 onto a substrate to form a coating film;
    (II) a step of irradiating the coating film with polarized ultraviolet light; and (III) a step of heating the coating film irradiated with ultraviolet light to obtain a retardation material.
  13.  請求項1~11のいずれか1項記載の重合体組成物から得られる単層位相差材。 A single-layer retardation material obtained from the polymer composition according to any one of claims 1 to 11.
PCT/JP2023/035570 2022-09-29 2023-09-29 Polymer composition and single-layer retardation material WO2024071364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156701 2022-09-29
JP2022-156701 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071364A1 true WO2024071364A1 (en) 2024-04-04

Family

ID=90478073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035570 WO2024071364A1 (en) 2022-09-29 2023-09-29 Polymer composition and single-layer retardation material

Country Status (1)

Country Link
WO (1) WO2024071364A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535196A (en) * 2000-05-31 2003-11-25 バイエル アクチェンゲゼルシャフト Block copolymer for optical data storage
JP2004124088A (en) * 2002-09-11 2004-04-22 Rikogaku Shinkokai Block copolymer and method for manufacturing micro phase separation structure membrane
JP2015000896A (en) * 2013-06-14 2015-01-05 富士フイルム株式会社 Composition, micro phase separation structure membrane using the same, and method for producing the micro phase separation structure membrane
CN111499817A (en) * 2020-02-26 2020-08-07 苏州大学 Supermolecule chiral azobenzene assembly and in-situ construction method
WO2023008488A1 (en) * 2021-07-28 2023-02-02 日産化学株式会社 Polymer composition and single-layer retardation material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535196A (en) * 2000-05-31 2003-11-25 バイエル アクチェンゲゼルシャフト Block copolymer for optical data storage
JP2004124088A (en) * 2002-09-11 2004-04-22 Rikogaku Shinkokai Block copolymer and method for manufacturing micro phase separation structure membrane
JP2015000896A (en) * 2013-06-14 2015-01-05 富士フイルム株式会社 Composition, micro phase separation structure membrane using the same, and method for producing the micro phase separation structure membrane
CN111499817A (en) * 2020-02-26 2020-08-07 苏州大学 Supermolecule chiral azobenzene assembly and in-situ construction method
WO2023008488A1 (en) * 2021-07-28 2023-02-02 日産化学株式会社 Polymer composition and single-layer retardation material

Similar Documents

Publication Publication Date Title
JP6502006B2 (en) Method of manufacturing substrate having liquid crystal alignment film for transverse electric field drive type liquid crystal display device
CN113557265B (en) Polymer composition and single layer phase difference material
WO2020203631A1 (en) Polymer composition and single-layer retardation material
WO2015002292A1 (en) Polarized ultraviolet-anisotropic material
JP6369942B2 (en) Photoreactive composition, photo-alignment film using the same, and optically anisotropic film
CN108603036B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2015025937A1 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2023008488A1 (en) Polymer composition and single-layer retardation material
WO2022071409A1 (en) Method for producing single-layer phase difference material
WO2022080378A1 (en) Method for manufacturing single-layer phase difference material
WO2024071364A1 (en) Polymer composition and single-layer retardation material
WO2022138932A1 (en) Method for producing single-layer phase difference film and single-layer phase difference film-forming polymer composition
WO2024038887A1 (en) Polymer composition and single-layer retardation material
WO2022210639A1 (en) Method for producing patterned single-layer phase difference film, and single-layer phase difference film-forming polymer composition
CN113574119B (en) Polymer composition and single layer phase difference material
WO2023171757A1 (en) Polymer composition, single layer phase difference material, and liquid crystal alignment agent
WO2023095925A1 (en) Polymer composition and single-layer retardation material
WO2021090832A1 (en) Method for producing patterned single-layer retardation material
WO2023171760A1 (en) Phase difference film composition and single-layer phase difference material