JPH09208957A - Production of optical isomer - Google Patents

Production of optical isomer

Info

Publication number
JPH09208957A
JPH09208957A JP1521996A JP1521996A JPH09208957A JP H09208957 A JPH09208957 A JP H09208957A JP 1521996 A JP1521996 A JP 1521996A JP 1521996 A JP1521996 A JP 1521996A JP H09208957 A JPH09208957 A JP H09208957A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymerizable liquid
curing
mixture
crystal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1521996A
Other languages
Japanese (ja)
Inventor
Akihiko Uchiyama
昭彦 内山
Toshiaki Yatabe
俊明 谷田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1521996A priority Critical patent/JPH09208957A/en
Publication of JPH09208957A publication Critical patent/JPH09208957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical isomer slight in light scattering, excellent in optically anisotropic characteristics, suitable as an optically compensating film for a liquid crystal display apparatus having high-quality complicated optical anisotropy, by polymerizing and curing a mixture of specific polymerizable liquid crystal compounds in an orientated state of liquid crystal. SOLUTION: This optical isomer is obtained by polymerizing and curing a mixture (A) of polymerizable liquid crystal compounds comprising a a mixture of acrylic acid 6-[(4'-cyanobiphenyl-4-yl)oxy]hexyl ester of formula I (A1 ) and acrylic acid 4'-cyanobiphenyl-4-yl ester of formula II (A2 ) in the ratio of 45-80wt.% of the component A1 in the mixture. The component A contains a chiral liquid crystal in <=10wt.% blending ratio besides the composition A1 and A2 . A photoinitiator in an amount of <=3wt.% based on the component A is used in the polymerization and curing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重合性液晶化合物
を液晶配向状態において重合硬化させることにより、光
学異方体を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an optically anisotropic substance by polymerizing and curing a polymerizable liquid crystal compound in a liquid crystal alignment state.

【0002】[0002]

【従来の技術】液晶表示素子は、薄型軽量、低消費電力
という大きな利点を持つため、パーソナルコンピュータ
やワードプロセッサ、携帯型電子手帳等の表示装置に積
極的に用いられている。液晶表示素子の原理は数多く提
案されているが、現在普及している液晶表示素子のほと
んどは、ねじれネマチック型の液晶を用いている。この
ような液晶を用いた表示方式は、複屈折モードと旋光モ
ードの2つの方式に大別される。
2. Description of the Related Art Liquid crystal display devices have the great advantages of thinness, light weight and low power consumption, and are therefore actively used for display devices such as personal computers, word processors and portable electronic notebooks. Many principles of liquid crystal display elements have been proposed, but most of the liquid crystal display elements currently in widespread use use twisted nematic liquid crystals. The display system using such a liquid crystal is roughly classified into a birefringence mode and an optical rotation mode.

【0003】複屈折モードであるスーパーツイストネマ
チック(STN)方式は、急峻な電気光学特性を持つ。
これにより単純マトリックスで駆動できるため、比較的
低価格で市場に供給されている。しかしかかる方式で
は、偏光板を介して直線偏光とした入射光が、液晶セル
による複屈折で楕円偏光となり、それをさらに偏光板を
介して見た場合にはデイスプレイが着色して見えるとい
った課題がある。
The super twisted nematic (STN) system, which is a birefringence mode, has steep electro-optical characteristics.
Since it can be driven by a simple matrix, it is supplied to the market at a relatively low price. However, in such a system, incident light linearly polarized through the polarizing plate becomes elliptically polarized light due to birefringence by the liquid crystal cell, and when it is further viewed through the polarizing plate, the display appears to be colored. is there.

【0004】そのため、液晶セル透過後の楕円偏光を直
線に戻して着色を防止すべく、位相差板としての光学異
方体を、液晶セルと偏光板の間に介在させるF−STN
方式が提案されている。
Therefore, in order to return the elliptically polarized light after passing through the liquid crystal cell to a straight line and prevent coloring, an optical anisotropic body as a retardation plate is interposed between the liquid crystal cell and the polarizing plate.
A scheme has been proposed.

【0005】このような位相差板としての光学異方体に
は、ポリカーボネートフィルム等を一軸延伸した一軸配
向フィルムや、特開平3−87720号公報に記載があ
るような高分子液晶を用いたねじれネマチック構造を配
向固定したもの等がすでに提案されている。
As the optically anisotropic body as such a retardation plate, a uniaxially oriented film obtained by uniaxially stretching a polycarbonate film or the like, or a twist using a polymer liquid crystal as described in JP-A-3-87720 is used. A nematic structure having a fixed orientation has already been proposed.

【0006】あるいは、ネマチック状態をとるアクリレ
ート液晶である重合性液晶を配向処理されたガラスセル
の間に挟持し、配向状態のまま紫外線硬化させ、硬化後
にガラスセルの少なくとも一方を剥がし、光学補償フィ
ルムとしての光学異方体を得るといった方法が、第20
回液晶討論会講演予稿集p216〜p219(199
4)において報告されている。
Alternatively, a polymerizable liquid crystal, which is an acrylate liquid crystal having a nematic state, is sandwiched between glass cells that have been subjected to an alignment treatment, and UV curing is performed in the aligned state, and after curing, at least one of the glass cells is peeled off to obtain an optical compensation film. The method of obtaining an optically anisotropic body as
Proceedings of the Annual Meeting of the Liquid Crystal Symposium p216-p219 (199
4).

【0007】[0007]

【発明が解決しようとする課題】重合性液晶を液晶配向
状態に保ちながら、重合硬化させることにより光学異方
体を得る場合においては、重合性液晶の特性が非常に重
要であり、重合後にも重合前の配向状態がある程度保存
される必要のあること、配向硬化物の状態が均一な配向
を得るためには重合性液晶が10℃から90℃の範囲に
おいて液晶状態をとること、重合後に偏光解消の原因と
なる光散乱が小さいこと等、要求特性を満たす重合性液
晶及びその混合物は非常に少ないのが現状である。
When an optically anisotropic substance is obtained by polymerizing and curing a polymerizable liquid crystal while keeping the liquid crystal in a liquid crystal alignment state, the characteristics of the polymerizable liquid crystal are very important and even after the polymerization. It is necessary that the alignment state before the polymerization is preserved to some extent, that the polymerizable liquid crystal has a liquid crystal state in the range of 10 ° C. to 90 ° C. in order to obtain a uniform alignment cured product, At present, there are very few polymerizable liquid crystals and mixtures thereof that satisfy the required characteristics, such as small light scattering that causes elimination.

【0008】本発明はかかる課題を解決するべくなされ
たものであり、液晶表示装置における光学補償板として
好適な、光散乱が小さく優れた光学異方特性を有する光
学異方体を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain an optical anisotropic body having a small light scattering and an excellent optical anisotropic property, which is suitable as an optical compensation plate in a liquid crystal display device. And

【0009】[0009]

【課題を解決するための手段】本発明は、重合性液晶化
合物を液晶配向状態において重合硬化させることによ
り、光学異方体を製造する方法において、重合性液晶化
合物は、化学式(1)で表される重合性液晶化合物と化
学式(2)で表される重合性液晶化合物とからなる混合
物であり、かつ混合物中で化学式(1)で表される化合
物の混合比率が45〜80重量%であることを特徴とし
ている。
The present invention is a method for producing an optically anisotropic substance by polymerizing and curing a polymerizable liquid crystal compound in a liquid crystal alignment state, wherein the polymerizable liquid crystal compound is represented by the chemical formula (1). Is a mixture of the polymerizable liquid crystal compound represented by the formula (2) and the polymerizable liquid crystal compound represented by the chemical formula (2), and the mixing ratio of the compound represented by the formula (1) in the mixture is 45 to 80% by weight. It is characterized by that.

【0010】[0010]

【化3】 Embedded image

【0011】[0011]

【化4】 Embedded image

【0012】本発明で用いる重合性液晶としては、液晶
状態が少なくとも10〜90℃の領域において発現する
物を用いることが好ましい。10℃未満の領域でしか液
晶状態をとらない重合性液晶混合物では製造上、冷却工
程を必要とすることや低温領域では重合性液晶の粘度が
上昇する傾向にあり、均一な配向状態を得ることが困難
である場合が多い。一方、90℃より高温領域でのみ液
晶相が発現するような重合性液晶では、液晶相にするた
めに90℃より高温度にする必要がありこの温度に保持
している間に熱重合が進行してしまい、配向の制御性が
困難である場合が多い。なおこの温度領域としては、1
5〜70℃の物であることがより好ましい。
As the polymerizable liquid crystal used in the present invention, it is preferable to use a liquid crystal that exhibits a liquid crystal state in the region of at least 10 to 90 ° C. A polymerizable liquid crystal mixture that takes a liquid crystal state only in a region of less than 10 ° C. requires a cooling step in production, and the viscosity of the polymerizable liquid crystal tends to increase in a low temperature region, so that a uniform alignment state is obtained. Is often difficult. On the other hand, in the case of a polymerizable liquid crystal that exhibits a liquid crystal phase only in a temperature range higher than 90 ° C., it is necessary to raise the temperature to higher than 90 ° C. in order to form a liquid crystal phase, and thermal polymerization proceeds while maintaining this temperature. In many cases, it is difficult to control the orientation. The temperature range is 1
It is more preferable that the temperature is 5 to 70 ° C.

【0013】また本発明で用る重合性液晶としては、液
晶状態が発現する温度領域のいずれかにおいて液晶状態
となる温度範囲が、10℃以上の温度幅を持つ物を用い
ることが好ましい。これはさらにより好ましくは15℃
以上の温度幅の物である。この液晶状態の温度範囲はで
きるだけ広い方が製造上好ましい。液晶の相転移挙動は
昇温過程と降温過程では異なる場合があるが、いずれか
の過程で上記温度範囲で液晶相を発現すればよい。
As the polymerizable liquid crystal used in the present invention, it is preferable to use a polymerizable liquid crystal having a temperature range of 10 ° C. or more in a liquid crystal state in any temperature range where the liquid crystal state is exhibited. This is even more preferably 15 ° C
It has the above temperature range. It is preferable in manufacturing that the temperature range of the liquid crystal state is as wide as possible. The phase transition behavior of the liquid crystal may be different in the temperature rising process and the temperature lowering process, but the liquid crystal phase may be expressed in the above temperature range in either process.

【0014】あるいはまた、本発明で用いられる重合性
液晶としては、液晶状態より高い温度領域では等方状態
となることが好ましい。
Alternatively, the polymerizable liquid crystal used in the present invention is preferably in an isotropic state in a temperature range higher than the liquid crystal state.

【0015】そしてまた本発明の重合硬化法としては、
光硬化であることが好ましい。熱重合でも不可能ではな
いが、重合温度において重合性液晶が液晶状態をとる必
要があり、製膜条件が限定される。
Further, as the polymerization and curing method of the present invention,
Light curing is preferable. Although it is not impossible even by thermal polymerization, the polymerizable liquid crystal needs to be in a liquid crystal state at the polymerization temperature, and the film forming conditions are limited.

【0016】ここで液晶状態としては、特に限定はない
が、好ましくはネマチック状態、カイラルネマチック状
態である。これらは配向の制御性が容易である点で、他
の液晶状態より優れている場合が多い。光硬化前に結晶
状態または等方状態である場合には、硬化後に液晶表示
装置として用いられる光学補償板として十分な配向状態
を得ることは困難である。また、光硬化前は良好な配向
状態をしていても、硬化後に配向が大きく乱れてしま
い、液晶表示装置用光学補償板として必要な光学異方性
を保持できないような硬化性液晶は使用することができ
ない。
The liquid crystal state is not particularly limited, but is preferably a nematic state or a chiral nematic state. These are often superior to other liquid crystal states in terms of easy controllability of alignment. When it is in a crystalline state or an isotropic state before photo-curing, it is difficult to obtain a sufficiently aligned state as an optical compensator used as a liquid crystal display device after curing. Also, use a curable liquid crystal that has a good alignment state before photo-curing, but the alignment is largely disturbed after curing, and cannot retain the optical anisotropy necessary as an optical compensator for liquid crystal display devices. I can't.

【0017】カイラルネマチック状態を得るためには、
ネマチック状態をとる重合性液晶にカイラル液晶を混合
させることによっても得られる。すなわち重合性液晶化
合物は、前述の化学式(1)で表される重合性液晶化合
物と化学式(2)で表される重合性液晶化合物とからな
る混合物を主成分とし、カイラル液晶を副成分とする混
合物を用いる。主成分中では、化学式(1)で表される
化合物の混合比率が45〜80重量%である。そして主
成分に対する副成分の混合比率を10重量%以下とす
る。カイラル液晶の混合比率が、ネマチック液晶に対し
て10重量%以下であるならば、このカイラル液晶は必
ずしも重合性である必要はない。
To obtain the chiral nematic state,
It can also be obtained by mixing a chiral liquid crystal with a polymerizable liquid crystal having a nematic state. That is, the polymerizable liquid crystal compound contains a mixture of the polymerizable liquid crystal compound represented by the chemical formula (1) and the polymerizable liquid crystal compound represented by the chemical formula (2) as a main component and a chiral liquid crystal as a subcomponent. Use the mixture. In the main component, the mixing ratio of the compound represented by the chemical formula (1) is 45 to 80% by weight. The mixing ratio of the subcomponents to the main component is 10% by weight or less. If the mixing ratio of the chiral liquid crystal is 10% by weight or less with respect to the nematic liquid crystal, the chiral liquid crystal does not necessarily have to be polymerizable.

【0018】重合性液晶混合物がとる配向状態として
は、ホモジニアス配向、ねじれ配向、ホメオトロピック
配向、傾斜配向及びこれらの複合体が考えられる。適当
な重合性液晶混合物を選択することにより、これらの配
向状態は光硬化後にはほぼ配向固定される。
As the alignment state of the polymerizable liquid crystal mixture, homogeneous alignment, twisted alignment, homeotropic alignment, tilted alignment and a composite of these are considered. By selecting an appropriate polymerizable liquid crystal mixture, these alignment states are almost fixed after photocuring.

【0019】また、重合性液晶混合物には光開始剤を添
加することが好ましい。光開始剤を添加した場合、液晶
の配向性や相転移温度等に影響を与える場合があるの
で、重合性液晶に対して3重量%以下とすることが好ま
しい。なお光開始剤の量が少なすぎても反応の効率が悪
くなるので、光開始剤量の下限は0.01重量%以上が
好ましく、より好ましくは0.05重量%以上である。
A photoinitiator is preferably added to the polymerizable liquid crystal mixture. When the photoinitiator is added, it may affect the orientation of the liquid crystal, the phase transition temperature and the like, so that it is preferably 3% by weight or less with respect to the polymerizable liquid crystal. It should be noted that since the reaction efficiency becomes poor even if the amount of the photoinitiator is too small, the lower limit of the amount of the photoinitiator is preferably 0.01% by weight or more, and more preferably 0.05% by weight or more.

【0020】この光開始剤としては、液晶の配向性が添
加しない場合に比べてできるだけ変化しないものを用い
た方が好ましい。光開始剤は、硬化させるために用いら
れる光波長において効率的に反応を起こし得るものであ
ればよく上記条件を満足すれば公知のものを使用でき
る。
As the photoinitiator, it is preferable to use a photoinitiator that does not change as much as possible as compared with the case where the orientation of the liquid crystal is not added. The photoinitiator may be any one as long as it can efficiently react at the light wavelength used for curing, and known ones can be used as long as the above conditions are satisfied.

【0021】重合性液晶混合物を硬化させる方法として
は、液晶を配向させる手段としてはすでに公知の液晶表
示用ガラスセルに重合性液晶混合物を注入し配向状態と
した後に硬化させる方法が好ましいが、これに限定され
ない。もちろん、フィルムセルでも良い。硬化後は必要
に応じて熱処理しても良い。また、使用される形態とし
てはそのまま用いても良く、片側の基板のみ剥がす等し
て用いても良い。
As a method of curing the polymerizable liquid crystal mixture, a method of injecting the polymerizable liquid crystal mixture into a glass cell for liquid crystal display, which is already known as a means for aligning liquid crystals, and setting it and then curing, is preferable. Not limited to. Of course, it may be a film cell. After curing, heat treatment may be performed if necessary. Further, as a form to be used, it may be used as it is, or only one substrate may be peeled off and used.

【0022】得られた光学異方体の光学特性としては、
ヘーズ値で1.5%以下、透過率が80%以上であるこ
とが好ましく、より好ましくはヘーズ値で1.0%以
下、透過率で85%以上である。可視光領域で透過率が
これらを満足することが好ましい。ヘーズ値がこれ以上
の場合には、偏光性能に影響を与えるし、透過率が低い
と液晶表示装置において用いたときの明るさ損失といっ
た点で許容することができない。
The optical characteristics of the obtained optical anisotropic body are as follows:
The haze value is preferably 1.5% or less and the transmittance is 80% or more, more preferably 1.0% or less and the transmittance is 85% or more. It is preferable that the transmittance satisfies these in the visible light region. If the haze value is more than this value, the polarizing performance is affected, and if the transmittance is low, it is unacceptable in terms of brightness loss when used in a liquid crystal display device.

【0023】なお後述の実施例と比較例において、光学
特性の評価法は次のようにして行った。(1)リタデー
ションは、日本分光(株)製の多波長複屈折率測定装置
である商品名「M−150」により評価した。その際に
測定波長は、590nmとした。(2)透過率は、
(株)日立製作所製の分光光度計である商品名「U−3
500」を用いて評価した。その際に測定波長は550
nmとした。(3)ヘイズ値は、日本電色工業(株)の
商品名「COH−300A」を用いて評価した。
In Examples and Comparative Examples described later, the evaluation method of the optical characteristics was performed as follows. (1) Retardation was evaluated with a trade name “M-150”, which is a multi-wavelength birefringence measuring device manufactured by JASCO Corporation. At that time, the measurement wavelength was 590 nm. (2) The transmittance is
Product name "U-3", which is a spectrophotometer manufactured by Hitachi, Ltd.
It was evaluated using "500". At that time, the measurement wavelength is 550
nm. (3) The haze value was evaluated using "COH-300A", a trade name of Nippon Denshoku Industries Co., Ltd.

【0024】[0024]

【実施例1】化学式(1)で表される重合性液晶化合物
は、次の方法で合成した。まず400mlメタノールに
水酸化カリウム17gを溶解させた。この溶液に4−ヒ
ドロキシ−4’−シアノビフェニル50gと、6−ブロ
モ−1−ヘキサノール47gを加えた。そして13時間
加熱環流した後、氷水にあけ酢酸エチルエステルを用い
て抽出した。この抽出液をエバポレーターを用い減圧濃
縮した。さらにその後、カラムクロマトグラフィー処理
を行った。このカラム処理は、担体をシリカゲル、展開
溶媒をヘキサン/テトラヒドロフランとして行われた。
こうして4−(6−ヒドロキシヘキシルオキシ)−4’
−シアノビフェニル29gを得た。
Example 1 A polymerizable liquid crystal compound represented by the chemical formula (1) was synthesized by the following method. First, 17 g of potassium hydroxide was dissolved in 400 ml of methanol. To this solution, 50 g of 4-hydroxy-4'-cyanobiphenyl and 47 g of 6-bromo-1-hexanol were added. After heating under reflux for 13 hours, the mixture was poured into ice water and extracted with ethyl acetate. This extract was concentrated under reduced pressure using an evaporator. After that, column chromatography treatment was performed. This column treatment was performed using silica gel as the carrier and hexane / tetrahydrofuran as the developing solvent.
Thus 4- (6-hydroxyhexyloxy) -4 '
29 g of cyanobiphenyl were obtained.

【0025】この4−(6−ヒドロキシヘキシルオキ
シ)−4’−シアノビフェニル29gとトリエチルアミ
ン14gを、300mlのテトラヒドロフランに溶解し
た。この溶液を5℃に冷却し、アクリル酸クロライド1
1gを20分間かけて滴下し、1時間反応させた後、氷
水にあけ酢酸エチルエステルで抽出した。この抽出液を
濃縮して得た固体を、ヘキサンとテトラヒドロフランの
混合溶媒より再結晶し、化学式(1)で表される重合性
液晶化合物を20g得た。
29 g of this 4- (6-hydroxyhexyloxy) -4'-cyanobiphenyl and 14 g of triethylamine were dissolved in 300 ml of tetrahydrofuran. This solution is cooled to 5 ° C. and acrylic acid chloride 1 is added.
1 g of the solution was added dropwise over 20 minutes, reacted for 1 hour, poured into ice water and extracted with ethyl acetate. The solid obtained by concentrating the extract was recrystallized from a mixed solvent of hexane and tetrahydrofuran to obtain 20 g of a polymerizable liquid crystal compound represented by the chemical formula (1).

【0026】化学式(2)で表される重合性液晶化合物
は、次の方法で合成した。まず4−ヒドロキシ−4’−
シアノビフェニル40gとトリエチルアミン53gを、
テトラヒドロフラン400mlに溶解させた。この溶液
を5℃に冷却した。これにアクリル酸クロライド25g
のテトラヒドロフラン溶液200mlを15分間かけ滴
下した後、1時間反応させた。反応終了後、酢酸エチル
1000mlを加えて抽出し、有機層を希炭酸水素ナト
リウム水溶液で洗った後、さらに水洗した。その後、無
水硫酸ナトリウムを用いて有機層を乾燥させ、さらに溶
媒を留去して粗生成物45gを得た。これをカラムクロ
マトグラフィー(担体はシリカゲル、展開溶媒は酢酸エ
チル:n−ヘキサン=1:5)処理し、さらにメタノー
ルから再結晶させて、化学式(2)で表される重合性液
晶化合物を20g得た。
The polymerizable liquid crystal compound represented by the chemical formula (2) was synthesized by the following method. First, 4-hydroxy-4'-
40 g of cyanobiphenyl and 53 g of triethylamine,
It was dissolved in 400 ml of tetrahydrofuran. The solution was cooled to 5 ° C. 25g of acrylic acid chloride
200 ml of tetrahydrofuran solution of was added dropwise over 15 minutes and then reacted for 1 hour. After completion of the reaction, 1000 ml of ethyl acetate was added for extraction, the organic layer was washed with a dilute aqueous solution of sodium hydrogen carbonate, and then further washed with water. Then, the organic layer was dried using anhydrous sodium sulfate, and the solvent was further distilled off to obtain 45 g of a crude product. This is subjected to column chromatography (silica gel as a carrier, ethyl acetate: n-hexane = 1: 5 as a developing solvent), and recrystallized from methanol to obtain 20 g of a polymerizable liquid crystal compound represented by the chemical formula (2). It was

【0027】こうして得られた化学式(1)と(2)か
らなる重合性液晶化合物を、50:50(重量%)の割
合で混合した。こうして得られた重合性液晶混合物は、
昇温過程においては、57℃で結晶からネマチック相に
転移し、80℃でネマチック相から等方相へ転移する物
であった。逆に降温過程においては、80℃で等方相か
らネマチック相へ転移し、30℃でネマチック相から結
晶相へ転移する物であった。
The polymerizable liquid crystal compounds having the chemical formulas (1) and (2) thus obtained were mixed at a ratio of 50:50 (% by weight). The polymerizable liquid crystal mixture thus obtained,
In the temperature rising process, it was a substance that transitioned from a crystal to a nematic phase at 57 ° C, and from a nematic phase to an isotropic phase at 80 ° C. On the contrary, in the temperature lowering process, it was a substance that was transformed from an isotropic phase to a nematic phase at 80 ° C. and was transformed from a nematic phase to a crystalline phase at 30 ° C.

【0028】この重合性液晶混合物に、光開始剤を重合
性液晶成分に対して0.5重量%の比率で添加した。こ
こで光開始剤としては、チバガイギー社製の商品名「イ
ルガキュアー651」として市販されている、2,2−
ジメトキシ−2−フェニルアセトフェノンを用いた。
A photoinitiator was added to the polymerizable liquid crystal mixture in a ratio of 0.5% by weight based on the polymerizable liquid crystal component. As the photoinitiator, 2,2-, which is commercially available under the trade name “Irgacure 651” manufactured by Ciba Geigy, Inc.
Dimethoxy-2-phenylacetophenone was used.

【0029】この光開始剤を添加した重合性液晶混合物
を、セルギャップ4μmのアンチパラレルの配向処理し
たガラスセルに等方相へ転移する温度(等方温度)で注
入し、57℃に冷却した後、一軸配向させた。次に57
℃に保ったまま、紫外線を光強度8mW/平方cmで3
分間照射し、重合硬化させた。
The polymerizable liquid crystal mixture containing the photoinitiator was poured into a glass cell having an antiparallel alignment treatment with a cell gap of 4 μm at a temperature at which it transforms to an isotropic phase (isotropic temperature) and cooled to 57 ° C. Then, it was uniaxially oriented. Then 57
Keeping the temperature at ℃, UV light intensity of 8mW / square cm 3
It was irradiated for minutes to polymerize and cure.

【0030】紫外線硬化前の一軸配向した重合性液晶混
合物は、Δn・dが57℃で859.6nmであった。
そして紫外線硬化後では、Δn・dが25℃で491.
9nm、ヘーズ値が0.3%、光線透過率が90%であ
った。また、硬化後の配向状態は均一であった。すなわ
ち光散乱が小さく、優れた光学異方特性を有する光学異
方体を得ることができた。
The uniaxially oriented polymerizable liquid crystal mixture before ultraviolet curing had a Δnd of 579.6 ° C. of 859.6 nm.
After the UV curing, Δn · d was 491.
The haze value was 9 nm, the light transmittance was 90%. The orientation state after curing was uniform. That is, an optical anisotropic body having a small light scattering and excellent optical anisotropic properties could be obtained.

【0031】[0031]

【実施例2】実施例1と同様にして、化学式(1)と
(2)の重合性液晶化合物をそれぞれ合成した。これら
化学式(1)と(2)の重合性液晶化合物を、80:2
0(重量%)の割合で混合した。こうして得られた重合
性液晶混合物は、昇温過程においては、55℃で結晶か
らネマチック相に転移し、62℃でネマチック相から等
方相へ転移する物であった。逆に降温過程においては、
61℃で等方相からネマチック相へ転移し、32℃でネ
マチック相から結晶相へ転移する物であった。
Example 2 In the same manner as in Example 1, the polymerizable liquid crystal compounds of the chemical formulas (1) and (2) were synthesized. The polymerizable liquid crystal compounds represented by the chemical formulas (1) and (2) are mixed at 80: 2.
It mixed in the ratio of 0 (weight%). The polymerizable liquid crystal mixture thus obtained was a substance which, in the temperature rising process, transitioned from a crystal to a nematic phase at 55 ° C., and from a nematic phase to an isotropic phase at 62 ° C. On the contrary, in the temperature decreasing process,
It was a substance that transitioned from an isotropic phase to a nematic phase at 61 ° C. and from a nematic phase to a crystalline phase at 32 ° C.

【0032】この重合性液晶混合物に、光開始剤を重合
性液晶成分に対して0.5重量%の比率で添加した。こ
こで光開始剤としては、チバガイギー社製の商品名「イ
ルガキュアー651」として市販されている、2,2−
ジメトキシ−2−フェニルアセトフェノンを用いた。
A photoinitiator was added to the polymerizable liquid crystal mixture at a ratio of 0.5% by weight based on the polymerizable liquid crystal component. As the photoinitiator, 2,2-, which is commercially available under the trade name “Irgacure 651” manufactured by Ciba Geigy, Inc.
Dimethoxy-2-phenylacetophenone was used.

【0033】この光開始剤を添加した重合性液晶混合物
を、セルギャップ4μmのアンチパラレルの配向処理し
たガラスセルに等方温度で注入し、50℃に冷却した
後、一軸配向させた。次に50℃に保ったまま、紫外線
を光強度8mW/平方cmで3分間照射し、重合硬化さ
せた。
The polymerizable liquid crystal mixture containing the photoinitiator was injected into an antiparallel alignment-treated glass cell having a cell gap of 4 μm at an isotropic temperature, cooled to 50 ° C., and then uniaxially aligned. Next, while maintaining the temperature at 50 ° C., ultraviolet rays were irradiated at a light intensity of 8 mW / square cm for 3 minutes to polymerize and cure.

【0034】紫外線硬化前の一軸配向した重合性液晶混
合物は、Δn・dが50℃で669.8nmであった。
そして紫外線硬化後では、Δn・dが25℃で650.
3nm、ヘーズ値が0.3%、光線透過率が89%であ
った。また、硬化後の配向状態は均一であった。すなわ
ち光散乱が小さく、優れた光学異方特性を有する光学異
方体を得ることができた。
The uniaxially oriented polymerizable liquid crystal mixture before UV curing had a Δnd of 669.8 nm at 50 ° C.
After UV curing, Δn · d was 650 at 25 ° C.
The thickness was 3 nm, the haze value was 0.3%, and the light transmittance was 89%. The orientation state after curing was uniform. That is, an optical anisotropic body having a small light scattering and excellent optical anisotropic properties could be obtained.

【0035】[0035]

【実施例3】実施例1と同様にして、化学式(1)と
(2)の重合性液晶化合物をそれぞれ合成した。これら
化学式(1)と(2)の重合性液晶化合とカイラル液晶
を、49.8:49.8:0.4(重量%)の割合で混
合した。ここでカイラル液晶としては、メルク社製の商
品名「S811」を用いた。こうして得られた重合性液
晶混合物は、昇温過程においては、57℃で結晶からネ
マチック相に転移し、80℃でネマチック相から等方相
へ転移する物であった。逆に降温過程においては、80
℃で等方相からネマチック相へ転移し、29℃でネマチ
ック相から結晶相へ転移する物であった。
Example 3 In the same manner as in Example 1, the polymerizable liquid crystal compounds of the chemical formulas (1) and (2) were synthesized. The polymerizable liquid crystal compounds represented by the chemical formulas (1) and (2) and the chiral liquid crystal were mixed at a ratio of 49.8: 49.8: 0.4 (% by weight). Here, as the chiral liquid crystal, a product name “S811” manufactured by Merck Ltd. was used. The polymerizable liquid crystal mixture thus obtained was a substance that, during the temperature rising process, transitioned from a crystal to a nematic phase at 57 ° C., and from a nematic phase to an isotropic phase at 80 ° C. On the contrary, in the temperature decreasing process, 80
It was a substance that transitioned from an isotropic phase to a nematic phase at ℃, and from a nematic phase to a crystalline phase at 29 ℃.

【0036】この重合性液晶混合物に、光開始剤を重合
性液晶成分に対して0.5重量%の比率で添加した。こ
こで光開始剤としては、チバガイギー社製の商品名「イ
ルガキュアー651」として市販されている、2,2−
ジメトキシ−2−フェニルアセトフェノンを用いた。
A photoinitiator was added to the polymerizable liquid crystal mixture in a ratio of 0.5% by weight based on the polymerizable liquid crystal component. As the photoinitiator, 2,2-, which is commercially available under the trade name “Irgacure 651” manufactured by Ciba Geigy, Inc.
Dimethoxy-2-phenylacetophenone was used.

【0037】この光開始剤を添加した重合性液晶混合物
を、セルギャップ8μmのアンチパラレルの配向処理し
たガラスセルに等方温度で注入し、57℃に冷却した
後、180゜のねじれ構造にさせた。次に57℃に保っ
たまま、紫外線を光強度8mW/平方cmで3分間照射
し、重合硬化させた。
The polymerizable liquid crystal mixture containing the photoinitiator was injected into an antiparallel alignment-treated glass cell having a cell gap of 8 μm at an isotropic temperature, cooled to 57 ° C., and then allowed to have a twist structure of 180 °. It was Next, while maintaining the temperature at 57 ° C., ultraviolet rays were irradiated at a light intensity of 8 mW / square cm for 3 minutes to polymerize and cure.

【0038】紫外線硬化後にもねじれ構造を保持してお
り、ヘーズ値は0.7%、光線透過率は89%であっ
た。また、硬化後の配向状態は均一であった。すなわち
光散乱が小さく、優れた光学異方特性を有する光学異方
体を得ることができた。
It retained the twisted structure even after being cured by ultraviolet rays, and had a haze value of 0.7% and a light transmittance of 89%. The orientation state after curing was uniform. That is, an optical anisotropic body having a small light scattering and excellent optical anisotropic properties could be obtained.

【0039】[0039]

【実施例4】実施例1と同様にして、化学式(1)と
(2)からなる重合性液晶化合物を、50:50(重量
%)の割合で混合した。さらに、実施例1と同様にして
光開始剤を添加した重合性液晶混合物を、透明電極付ア
ンチパラレル配向セルに等方状態において注入し、57
℃に冷却した後60Hzで10Vを印加した状態で、実
施例1と同様に紫外線硬化させた。得られた硬化物はΔ
n・dの角度依存性測定から傾斜配向していることを確
認した。ヘーズ値は0.4%、光線透過率は90%であ
った。すなわち光散乱が小さく、優れた光学異方特性を
有する光学異方体を得ることができた。
Example 4 In the same manner as in Example 1, the polymerizable liquid crystal compounds represented by the chemical formulas (1) and (2) were mixed at a ratio of 50:50 (% by weight). Further, the polymerizable liquid crystal mixture added with the photoinitiator was injected into the antiparallel alignment cell with the transparent electrode in the isotropic state in the same manner as in Example 1, 57
After cooling to 0 ° C., UV curing was performed in the same manner as in Example 1 while applying 10 V at 60 Hz. The obtained cured product is Δ
From the angle dependence measurement of n · d, it was confirmed that the orientation was tilted. The haze value was 0.4% and the light transmittance was 90%. That is, an optical anisotropic body having a small light scattering and excellent optical anisotropic properties could be obtained.

【0040】[0040]

【比較例1】実施例1と同様にして、化学式(1)と
(2)の重合性液晶化合物を合成した。これら化学式
(1)と(2)の重合性液晶化合を、40:60(重量
%)の割合で混合した。こうして得られた重合性液晶混
合物は、昇温過程においては、70℃で結晶からネマチ
ック相に転移し、88℃でネマチック相から等方相へ転
移する物であった。逆に降温過程においては、88℃で
等方相からネマチック相へ転移し、47℃でネマチック
相から結晶相へ転移する物であった。
Comparative Example 1 In the same manner as in Example 1, the polymerizable liquid crystal compounds represented by the chemical formulas (1) and (2) were synthesized. The polymerizable liquid crystal compounds represented by the chemical formulas (1) and (2) were mixed at a ratio of 40:60 (% by weight). The polymerizable liquid crystal mixture thus obtained was a substance that, during the temperature rising process, transitioned from a crystal to a nematic phase at 70 ° C. and from a nematic phase to an isotropic phase at 88 ° C. On the contrary, in the temperature-decreasing process, it was a substance that transitioned from the isotropic phase to the nematic phase at 88 ° C and from the nematic phase to the crystalline phase at 47 ° C.

【0041】この重合性液晶混合物に、光開始剤を重合
性液晶成分に対して0.5重量%の比率で添加した。こ
こで光開始剤としては、チバガイギー社製の商品名「イ
ルガキュアー651」として市販されている、2,2−
ジメトキシ−2−フェニルアセトフェノンを用いた。
A photoinitiator was added to the polymerizable liquid crystal mixture in a ratio of 0.5% by weight based on the polymerizable liquid crystal component. As the photoinitiator, 2,2-, which is commercially available under the trade name “Irgacure 651” manufactured by Ciba Geigy, Inc.
Dimethoxy-2-phenylacetophenone was used.

【0042】この光開始剤を添加した重合性液晶混合物
を、セルギャップ4μmのアンチパラレルの配向処理し
たガラスセルに等方温度で注入し、67℃に冷却した
後、一軸配向させた。次に67℃に保ったまま、紫外線
を光強度8mW/平方cmで3分間照射し、重合硬化さ
せた。
The polymerizable liquid crystal mixture containing the photoinitiator was poured into an antiparallel alignment-treated glass cell having a cell gap of 4 μm at an isotropic temperature, cooled to 67 ° C., and then uniaxially aligned. Next, while maintaining the temperature at 67 ° C., ultraviolet rays were irradiated at a light intensity of 8 mW / square cm for 3 minutes to polymerize and cure.

【0043】紫外線硬化前の一軸配向した重合性液晶混
合物は、Δn・dが67℃で871.2nmであった。
しかし紫外線硬化後では、Δn・dが25℃で39.7
nmであった。このように紫外線硬化後にはΔn・dが
大きく減少してしまい、十分な異方性を確保することが
できなかった。
The uniaxially oriented polymerizable liquid crystal mixture before ultraviolet curing had a Δn · d of 871.2 nm at 67 ° C.
However, after UV curing, Δn · d was 39.7 at 25 ° C.
was nm. As described above, Δn · d was greatly reduced after ultraviolet curing, and sufficient anisotropy could not be secured.

【0044】[0044]

【比較例2】実施例1と同様にして、化学式(1)の重
合性液晶化合物を合成した。この化学式(1)の重合性
液晶化合物は、昇温過程においては、55℃で結晶から
ネマチック相に転移し、67℃でネマチック相から等方
相へ転移する物であった。逆に降温過程においては、5
1℃で等方相からネマチック相へ転移し、43℃でネマ
チック相から結晶相へ転移する物であった。
Comparative Example 2 In the same manner as in Example 1, a polymerizable liquid crystal compound represented by the chemical formula (1) was synthesized. The polymerizable liquid crystal compound of the chemical formula (1) was a substance that, in the temperature rising process, transitioned from a crystal to a nematic phase at 55 ° C., and from a nematic phase to an isotropic phase at 67 ° C. On the contrary, in the temperature decreasing process, 5
It was a substance that transitioned from an isotropic phase to a nematic phase at 1 ° C. and a transition from a nematic phase to a crystalline phase at 43 ° C.

【0045】この重合性液晶化合物に、光開始剤を重合
性液晶成分に対して0.5重量%の比率で添加した。こ
こで光開始剤としては、チバガイギー社製の商品名「イ
ルガキュアー651」として市販されている、2,2−
ジメトキシ−2−フェニルアセトフェノンを用いた。
A photoinitiator was added to the polymerizable liquid crystal compound at a ratio of 0.5% by weight based on the polymerizable liquid crystal component. As the photoinitiator, 2,2-, which is commercially available under the trade name “Irgacure 651” manufactured by Ciba Geigy, Inc.
Dimethoxy-2-phenylacetophenone was used.

【0046】この光開始剤を添加した重合性液晶化合物
を、セルギャップ4μmのアンチパラレルの配向処理し
たガラスセルに等方温度で注入し、47℃に冷却した
後、一軸配向にしようとしたが均一に配向させることが
できなかった。さらにその状態で実施例1と同様に紫外
線硬化したが均一に配向硬化させることができなかっ
た。
The polymerizable liquid crystal compound to which the photoinitiator was added was injected into an antiparallel alignment-treated glass cell having a cell gap of 4 μm at an isotropic temperature, and after cooling to 47 ° C., uniaxial alignment was attempted. It could not be oriented uniformly. Further, in that state, ultraviolet curing was performed as in Example 1, but uniform orientation curing could not be performed.

【0047】[0047]

【発明の効果】本発明は、特定された化学構造、混合比
を有する重合性液晶混合物を配向状態において重合硬化
させることにより得られる光学異方体に関するものであ
り、この発明により高品質でかつ複雑な光学異方性を有
する液晶表示装置用光学補償フィルムとして好適な、光
散乱が小さく優れた光学異方特性を有する光学異方体を
得ることができる。
INDUSTRIAL APPLICABILITY The present invention relates to an optical anisotropic body obtained by polymerizing and curing a polymerizable liquid crystal mixture having a specified chemical structure and a mixing ratio in an aligned state. It is possible to obtain an optical anisotropic body having small optical scattering and excellent optical anisotropic characteristics, which is suitable as an optical compensation film for a liquid crystal display device having complicated optical anisotropy.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重合性液晶化合物を液晶配向状態におい
て重合硬化させることにより、光学異方体を製造する方
法において、重合性液晶化合物は、化学式(1)で表さ
れる重合性液晶化合物と化学式(2)で表される重合性
液晶化合物とからなる混合物であり、かつ混合物中で化
学式(1)で表される化合物の混合比率が45〜80重
量%であることを特徴とする光学異方体の製造方法。 【化1】 【化2】
1. A method for producing an optically anisotropic substance by polymerizing and curing a polymerizable liquid crystal compound in a liquid crystal alignment state, wherein the polymerizable liquid crystal compound is a polymerizable liquid crystal compound represented by the chemical formula (1) and a chemical formula: (2) An optically anisotropic substance which is a mixture comprising a polymerizable liquid crystal compound represented by (2) and in which the mixture ratio of the compound represented by the chemical formula (1) is 45 to 80% by weight. Body manufacturing method. Embedded image Embedded image
【請求項2】 重合性液晶化合物を液晶配向状態におい
て重合硬化させることにより、光学異方体を製造する方
法において、重合性液晶化合物は、化学式(1)で表さ
れる重合性液晶化合物と化学式(2)で表される重合性
液晶化合物とからなる混合物を主成分とし、カイラル液
晶を副成分とする混合物であり、かつ主成分中で化学式
(1)で表される化合物の混合比率が45〜80重量%
であり、さらに主成分に対する副成分の混合比率が10
重量%以下であることを特徴とする光学異方体の製造方
法。
2. A method for producing an optically anisotropic substance by polymerizing and curing a polymerizable liquid crystal compound in a liquid crystal alignment state, wherein the polymerizable liquid crystal compound is a polymerizable liquid crystal compound represented by the chemical formula (1) and a chemical formula: A mixture containing a polymerizable liquid crystal compound represented by (2) as a main component and a chiral liquid crystal as an auxiliary component, and the mixing ratio of the compound represented by the chemical formula (1) in the main component is 45. ~ 80% by weight
And the mixing ratio of the accessory component to the main component is 10
A method for producing an optically anisotropic body, characterized in that the content is at most% by weight.
【請求項3】 重合性液晶化合物を液晶配向状態におい
て重合硬化させる際に、光開始剤が重合性液晶成分に対
して3重量%以下の比率で添加されていることを特徴と
する請求項1〜2のいずれかに記載の光学異方体の製造
方法。
3. A photoinitiator is added at a ratio of 3% by weight or less with respect to the polymerizable liquid crystal component when the polymerizable liquid crystal compound is polymerized and cured in a liquid crystal alignment state. 3. The method for producing an optically anisotropic body according to any one of 2 to 3.
JP1521996A 1996-01-31 1996-01-31 Production of optical isomer Pending JPH09208957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1521996A JPH09208957A (en) 1996-01-31 1996-01-31 Production of optical isomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1521996A JPH09208957A (en) 1996-01-31 1996-01-31 Production of optical isomer

Publications (1)

Publication Number Publication Date
JPH09208957A true JPH09208957A (en) 1997-08-12

Family

ID=11882767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1521996A Pending JPH09208957A (en) 1996-01-31 1996-01-31 Production of optical isomer

Country Status (1)

Country Link
JP (1) JPH09208957A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006501A1 (en) * 1997-07-31 1999-02-11 Asahi Glass Company Ltd. Liquid-crystal composition and polymeric liquid crystal obtained by polymerizing the same
US6656384B1 (en) * 1998-06-04 2003-12-02 Kent State University Production of filaments via phase separation and polymerization
WO2008044536A1 (en) 2006-10-05 2008-04-17 Nissan Chemical Industries, Ltd. Bifunctional polymerizable compound, polymerizable liquid crystal composition, and oriented film
WO2008072652A1 (en) 2006-12-15 2008-06-19 Nissan Chemical Industries, Ltd. Polymerizable liquid crystal compound, polymerizable liquid crystal composition, and alignment film
WO2011034118A1 (en) 2009-09-16 2011-03-24 日産化学工業株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, and oriented film
WO2013143333A1 (en) * 2012-03-28 2013-10-03 京东方科技集团股份有限公司 Complex, alignment material, alignment film and preparation method, and application
KR20140031176A (en) 2011-02-25 2014-03-12 닛산 가가쿠 고교 가부시키 가이샤 Polymeric liquid crystal compound, polymeric liquid crystal composition, and oriented film
KR20140062483A (en) 2011-09-15 2014-05-23 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal composition and alignment film
KR20140133511A (en) 2012-03-09 2014-11-19 닛산 가가쿠 고교 가부시키 가이샤 Polymer, composition containing said polymer, and single-layer-coated horizontally oriented film
KR20150131129A (en) 2013-03-15 2015-11-24 닛산 가가쿠 고교 가부시키 가이샤 Composition and single-coat type film with horizontal alignment
KR20160046829A (en) 2013-08-23 2016-04-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming film, and single-layer-coated horizontally oriented film
KR20160067875A (en) 2013-10-04 2016-06-14 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal compound, liquid crystalline polymer, liquid crystalline composition, and single-layer-coated horizontally oriented film
JP2019007009A (en) * 2015-09-01 2019-01-17 Dic株式会社 Powder mixture
KR20210148158A (en) 2019-03-29 2021-12-07 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151083A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151084A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20220098362A (en) 2019-11-05 2022-07-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of patterned single-layer retardation material
KR20230079105A (en) 2020-09-30 2023-06-05 닛산 가가쿠 가부시키가이샤 Manufacturing method of single-layer retardation material
KR20240037250A (en) 2021-07-28 2024-03-21 닛산 가가쿠 가부시키가이샤 Polymer compositions and single layer phase contrast materials

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180028B1 (en) 1997-07-31 2001-01-30 Asahi Glass Company Ltd. Liquid-crystal composition and polymeric liquid crystal obtained by polymerizing the same
WO1999006501A1 (en) * 1997-07-31 1999-02-11 Asahi Glass Company Ltd. Liquid-crystal composition and polymeric liquid crystal obtained by polymerizing the same
US6656384B1 (en) * 1998-06-04 2003-12-02 Kent State University Production of filaments via phase separation and polymerization
WO2008044536A1 (en) 2006-10-05 2008-04-17 Nissan Chemical Industries, Ltd. Bifunctional polymerizable compound, polymerizable liquid crystal composition, and oriented film
US7862867B2 (en) 2006-10-05 2011-01-04 Nissan Chemical Industries, Ltd. Bifunctional polymerizable compound, polymerizable liquid crystal composition, and oriented film
JP5201352B2 (en) * 2006-10-05 2013-06-05 日産化学工業株式会社 Bifunctional polymerizable compound, polymerizable liquid crystal composition and alignment film
TWI405759B (en) * 2006-10-05 2013-08-21 Nissan Chemical Ind Ltd A difunctional polymerizable compound, a polymerizable liquid crystal composition and an alignment film
WO2008072652A1 (en) 2006-12-15 2008-06-19 Nissan Chemical Industries, Ltd. Polymerizable liquid crystal compound, polymerizable liquid crystal composition, and alignment film
WO2011034118A1 (en) 2009-09-16 2011-03-24 日産化学工業株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, and oriented film
US8535769B2 (en) 2009-09-16 2013-09-17 Nissan Chemical Industries, Ltd. Polymerizable liquid crystal compound, polymerizable liquid crystal composition, and oriented film
KR20140031176A (en) 2011-02-25 2014-03-12 닛산 가가쿠 고교 가부시키 가이샤 Polymeric liquid crystal compound, polymeric liquid crystal composition, and oriented film
KR20140062483A (en) 2011-09-15 2014-05-23 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal composition and alignment film
KR20140133511A (en) 2012-03-09 2014-11-19 닛산 가가쿠 고교 가부시키 가이샤 Polymer, composition containing said polymer, and single-layer-coated horizontally oriented film
WO2013143333A1 (en) * 2012-03-28 2013-10-03 京东方科技集团股份有限公司 Complex, alignment material, alignment film and preparation method, and application
KR20150131129A (en) 2013-03-15 2015-11-24 닛산 가가쿠 고교 가부시키 가이샤 Composition and single-coat type film with horizontal alignment
KR20160046829A (en) 2013-08-23 2016-04-29 닛산 가가쿠 고교 가부시키 가이샤 Composition for forming film, and single-layer-coated horizontally oriented film
KR20160067875A (en) 2013-10-04 2016-06-14 닛산 가가쿠 고교 가부시키 가이샤 Polymerizable liquid crystal compound, liquid crystalline polymer, liquid crystalline composition, and single-layer-coated horizontally oriented film
JP2019007009A (en) * 2015-09-01 2019-01-17 Dic株式会社 Powder mixture
KR20210148158A (en) 2019-03-29 2021-12-07 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151083A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20210151084A (en) 2019-03-29 2021-12-13 닛산 가가쿠 가부시키가이샤 Polymer composition and single-layer retardation material
KR20220098362A (en) 2019-11-05 2022-07-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of patterned single-layer retardation material
KR20230079105A (en) 2020-09-30 2023-06-05 닛산 가가쿠 가부시키가이샤 Manufacturing method of single-layer retardation material
KR20240037250A (en) 2021-07-28 2024-03-21 닛산 가가쿠 가부시키가이샤 Polymer compositions and single layer phase contrast materials

Similar Documents

Publication Publication Date Title
JPH09208957A (en) Production of optical isomer
Kikuchi et al. 39.1: Invited Paper: Optically Isotropic Nano‐Structured Liquid Crystal Composites for Display Applications
US8501285B2 (en) Optically isotropic liquid crystal medium and optical device
JP4592005B2 (en) Polarizing element, liquid crystal panel, liquid crystal television, liquid crystal display device, and manufacturing method of polarizing element
JP2692035B2 (en) Thin film manufacturing method
JP4847673B2 (en) Liquid crystal display using compensation plates containing positive and negative birefringence retardation films
EP1611188B1 (en) Optical film inside a liquid crystal display
US20080106689A1 (en) Display Element And Display Device
JP3315476B2 (en) Optical compensation sheet, method for producing the same, and liquid crystal display device using the same
JP2922394B2 (en) Polymer liquid crystal composite
US20060049381A1 (en) Polymerizable mesogenic cyclohexyl derivatives
EP2725085B1 (en) A composite comprising a polymer and a blue phase liquid crystal, a method for preparing the composite, and a liquid crystal display device comprising the composite
US20090147211A1 (en) Liquid crystal optical device and process for its production
EP0825176A1 (en) Azine derivative, process for the preparation thereof, nematic liquid crystal composition and liquid crystal display system comprising same
CN106281361B (en) Polymer network liquid crystal display
JPH083111A (en) Polymerizable liquid crystal composition and optically antisotropic substance using the same
JP2001330725A (en) Optical compensation sheet, elliptically polarizing plate and liquid crystal display device
JP2004059772A (en) Polymerizable liquid-crystal composition and optically anisotropic body
JP2641086B2 (en) Manufacturing method of optical compensation sheet
JP2006098460A (en) Retardation film, polarizing plate, liquid crystal panel, liquid crystal display device, and method for manufacturing retardation film
JP4131296B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
Van De Witte et al. Preparation of retarders with a tilted optic axis
US5356561A (en) Carboxylate compounds, liquid crystal compositions and liquid crystal elements containing said compounds and method of optical modulation using said elements
JP4003091B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JPH09281481A (en) Production of optically anisotropic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A02 Decision of refusal

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A02