WO2019181907A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2019181907A1
WO2019181907A1 PCT/JP2019/011350 JP2019011350W WO2019181907A1 WO 2019181907 A1 WO2019181907 A1 WO 2019181907A1 JP 2019011350 W JP2019011350 W JP 2019011350W WO 2019181907 A1 WO2019181907 A1 WO 2019181907A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
monomer
aligning agent
crystal aligning
Prior art date
Application number
PCT/JP2019/011350
Other languages
French (fr)
Japanese (ja)
Inventor
永井 健太郎
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020507818A priority Critical patent/JP7302591B2/en
Publication of WO2019181907A1 publication Critical patent/WO2019181907A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent containing a specific polymer and a specific additive, a liquid crystal alignment film using the same, and a method for producing a substrate having the alignment film. Further, the present invention relates to a novel method for manufacturing a liquid crystal display element having excellent tilt angle characteristics.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
  • This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • an organic film used for the liquid crystal alignment film a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
  • a photo-alignment method has been actively studied as another method for aligning the liquid crystal alignment film without rubbing.
  • Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
  • a photo-alignment type photo-alignment method is known.
  • polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light.
  • a pretilt angle appears by irradiating polarized ultraviolet rays in an oblique direction (see Non-Patent Document 1).
  • Non-Patent Document 2 when a side chain polymer having coumarin in the side chain is used, polarized UV light is irradiated to cause a photocrosslinking reaction in the coumarin part of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction parallel to the polarization direction.
  • the liquid crystal alignment film also has a role of providing a certain tilt angle (pretilt angle) to the liquid crystal, and the provision of the pretilt angle has become an important issue in the development of liquid crystal alignment films (patents).
  • pretilt angle a certain tilt angle
  • an object of the present invention is to provide a twisted nematic liquid crystal display element and an OCB liquid crystal display element having improved tilt angle characteristics, and a liquid crystal alignment film for the element.
  • a liquid crystal aligning agent comprising: an amine compound in which a group and a hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  • A An acrylic polymer having a photo-alignment group and a carboxyl group is obtained from a monomer mixture containing the following monomer (A-1), monomer (A-2) and monomer (A-3) Liquid crystal aligning agent which is a copolymer.
  • Monomer (A-1) a monomer having one cinnamoyl moiety, 2 to 4 benzene rings not constituting the cinnamoyl moiety, and a polymerizable group
  • Monomer (A-2) a monomer having one cinnamoyl moiety, one benzene ring that does not constitute the cinnamoyl moiety, and a polymerizable group
  • Monomer (A-3) A monomer having a carboxyl group and a polymerizable group. (The cinnamoyl moiety and the benzene ring may have a substituent.)
  • the polymerizable group of the monomer (A-1) and the monomer (A-2) is an acryl group or a methacryl group.
  • the monomer (A-1) and the monomer (A-2) are each independently a group represented by the following formula (1) and a group represented by the following formula (2). It is preferable that the monomer has a polymerizable group bonded to any one group selected from the group consisting of
  • A, B and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH— or —NH—CO—;
  • S is an alkylene group having 1 to 12 carbon atoms, and each hydrogen atom bonded thereto may be independently replaced with a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • B also represents a single bond;
  • Y 1 is a divalent benzene ring;
  • P 1 , Q 1 and Q 2 are each independently a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms;
  • R 1 is a hydrogen atom, —CN, halogen group, alkyl group having 1 to 5 carbon atoms, (alkyl having 1 to 5 carbon
  • each hydrogen atom bonded to the benzene ring is independently —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an (alkyl group having 1 to 5 carbon atoms) carbonyl group.
  • X 1 and X 2 each independently represents a single bond, —O—, —COO— or —OCO—; n1 and n2 are each independently 0, 1 or 2, When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different; When the number of Q 1 is 2, Q 1 may be the same or different, and when the number of Q 2 is 2, Q 2 may be the same or different; In the monomer (A-1), the total number of benzene rings other than Y 1 is 2 to 4; In the monomer (A-2), the total number of benzene rings other than Y 1 is 1; A broken line represents a bond with a polymerizable group.
  • ⁇ 5> A compound in which the amine compound of component (B) is represented by the following formula [1] (in the formula [1], X 1 , X 2 and X 3 are each independently an alkyl group or a hydroxyalkyl group).
  • the liquid crystal aligning agent as described in said (1) which is.
  • ⁇ 6> The liquid crystal aligning agent according to the above ⁇ 5>, wherein in formula [1], X 1 , X 2 and X 3 are all hydroxyalkyl groups.
  • ⁇ 7> A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> A liquid crystal display device having the liquid crystal alignment film according to ⁇ 7>.
  • liquid crystal aligning agent of the present invention whitening phenomenon or foreign matter is generated on the substrate, and the phenomenon that the foreign matter aggregates to cause gap unevenness is suppressed, and further, the pretilt angle of the obtained liquid crystal alignment film is reduced.
  • a liquid crystal alignment film that is suppressed and has a good voltage holding ratio can be obtained, and by using such a liquid crystal alignment film, a highly reliable liquid crystal display element can be produced with a high yield even in the case of a large size and a high definition.
  • Mechanism of why the use of the liquid crystal aligning agent of the present invention can suppress the phenomenon of whitening and the generation of foreign matter on the substrate, and further suppress the decrease in the pretilt angle of the liquid crystal alignment film obtained. Is not necessarily clear, but is considered as follows.
  • the molecule (B) contained in the liquid crystal aligning agent of the present invention has one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are aliphatic hydrocarbon groups or non-aromatics.
  • the primary amino group of the compound forms a salt with the carboxylic acid group in the polymer, so that the solubility of the polymer in water is increased, and the component (B) It is considered that resistance to whitening is improved as a result of suppression of the reaction between the two.
  • the components (B) are bonded to each other by the reaction between the primary amino group and the hydroxyl group at the time of firing the alignment film, whereby the component (B) is not eluted into the liquid crystal, and the voltage is increased. It is considered that characteristics such as retention rate and tilt angle do not deteriorate.
  • the twisted nematic liquid crystal display element and OCB type liquid crystal display element manufactured by the method of the present invention are imparted with an alignment control ability with high efficiency, so that display characteristics are not impaired even when driven continuously for a long time.
  • the liquid crystal aligning agent used in the production method of the present invention includes (A) an acrylic polymer having a photo-alignable group and a carboxyl group (hereinafter also simply referred to as a side chain polymer); and (B) 1 in the molecule.
  • An amine compound having one primary amino group and at least two hydroxyl groups, and wherein the primary amino group and hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group (hereinafter, specified
  • the coating film obtained by using the liquid crystal aligning agent is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity. This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed.
  • the primary amino group in the specific amine compound forms a salt with the carboxyl group in the specific polymer, or the carboxyl group or carboxy ester group in the specific polymer.
  • the amide bond is accompanied by elimination of water or alcohol.
  • the primary amino group that forms a salt with the carboxyl group in the specific polymer forms an amide bond due to elimination of water in the baking step in producing the liquid crystal alignment film.
  • the specific amine compound that causes the crosslinking reaction is bonded to the specific polymer, the characteristics of the liquid crystal display element are deteriorated due to remaining unreacted components that occur when the crosslinking compound is added. There is no problem.
  • the polymer since the primary amino group contained in the molecule forms a salt with the carboxyl group in the specific polymer, the polymer is used when preparing the liquid crystal aligning agent or during storage of the liquid crystal aligning agent. The possibility of problems such as precipitation and gelation can be avoided.
  • the component (A) is an acrylic polymer having a photoalignment group and a carboxyl group. More specifically, the component (A) is a copolymer obtained from a monomer mixture containing the following monomer (A-1), monomer (A-2) and monomer (A-3).
  • Monomer (A-1) a monomer having one cinnamoyl moiety, 2 to 4 benzene rings that do not constitute the cinnamoyl moiety, and a polymerizable group.
  • Monomer (A-2) a monomer having one cinnamoyl moiety, one benzene ring that does not constitute the cinnamoyl moiety, and a polymerizable group.
  • Monomer (A-3) A monomer having a carboxyl group and a polymerizable group. The cinnamoyl moiety and the benzene ring may have a substituent.
  • a side chain having photosensitivity is bonded to the main chain, and can react with light to cause a crosslinking reaction and an isomerization reaction.
  • the structure of the side chain having photosensitivity is not particularly limited, but a structure that causes a crosslinking reaction in response to light is desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
  • More specific examples of the structure of the side chain polymer of component (A) include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, and norbornene.
  • A, B, D, S, T, Y 1 , P 1 , Q 1 , Q 2 , R 1 , X 1 , X 2 , n 1, and n 2 , and the broken line are the same as defined above.
  • the total number of benzene rings other than Y 1 is 2 to 4;
  • the total number of benzene rings other than Y 1 is 1;
  • the content of the side chain derived from (A-1) in the total of the content of the side chain derived from (A-1) and the content of the side chain derived from (A-2) in the side chain type polymer of the present invention Is preferably from 10 mol% to 90 mol%, more preferably from 20 mol% to 80 mol%, still more preferably from 30 mol% to 70 mol%, from the viewpoints of liquid crystal alignment and solubility of the side chain polymer.
  • the side chain polymer of the present invention contains side chains derived from (A-1) and other side chains other than the side chain derived from (A-2) as long as the effects of the present invention are not impaired. Also good.
  • the content is the remaining portion when the total content of the photoreactive side chain and the liquid crystalline side chain is less than 100%.
  • the photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing a monomer mixture containing at least the monomer (A-1) and the monomer (A-2).
  • the photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
  • the photoreactive group possessed by the side chain the following structures and derivatives thereof are preferred.
  • the monomer (A-1) and the monomer (A-2) include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, Photosensitivity selected from a polymerizable group composed of at least one selected from the group consisting of radically polymerizable groups such as norbornene and trialkoxysilyl groups, and structures represented by the above formulas (1) and (2) A structure having a side chain is preferred.
  • the polymerizable group is preferably selected from groups represented by the following formulas PG1 to PG8. Among these, an acrylic group or a methacryl group represented by PG1 is preferable from the viewpoint of easy control of the polymerization reaction and the stability of the polymer.
  • the broken line represents a bond with the photosensitive side chain represented by the formula (1) or (2).
  • M 1 is a hydrogen atom or a methyl group.
  • Examples of the monomer (A-1) include monomers selected from the following formulas A-1-1 to A-1-7.
  • PG represents a polymerizable group selected from the groups represented by formulas PG1 to PG8, and s1 and s2 each independently represents the number of methylene groups. A natural number of 9 to 9.
  • Examples of the monomer (A-2) include monomers selected from the following formulas A-2-1 to A-2-14.
  • PG represents a polymerizable group selected from the groups represented by formulas PG1 to PG8, and s1 and s2 each independently represents the number of methylene groups. A natural number of 9 to 9.
  • Examples of the monomer (A-3) include monomers selected from the following formulas A-3-1 to A-3-4.
  • PG represents a polymerizable group selected from the groups represented by formulas PG1 to PG8, and s1 and s2 each independently represents the number of methylene groups. A natural number of 9 to 9.
  • monomer (A-1), monomer (A-2) and monomer (A-3) are commercially available, and some are produced by the method described in, for example, International Patent Application Publication WO2014 / 074785. can do.
  • the side chain polymer can be obtained by the copolymerization reaction of the monomer (A-1), monomer (A-2) and monomer (A-3) described above. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • the other monomer may be a radical polymerization reaction that is industrially available, for example.
  • Monomer Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl.
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • styrene compound examples include styrene, methyl styrene, chlorostyrene, bromostyrene, and the like.
  • maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the content of the photoreactive side chain derived from the monomer (A-1) and the monomer (A-2) in the side chain polymer of the present invention is 10 mol% to 95 mol% from the viewpoint of liquid crystal alignment. It is preferably 20 mol% to 90 mol%, more preferably 30 mol% to 80 mol%. Further, the content of the carboxyl group derived from the monomer (A-3) is preferably from 5 mol% to 90 mol%, more preferably from 10 mol% to 80 mol%, still more preferably from 20 mol% to 70 mol%.
  • the method for producing the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using the vinyl groups of the monomer (A-1), monomer (A-2) and monomer (A-3). Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • As conditions for the polymerization initiator, reaction temperature, solvent and the like of radical polymerization known conditions described in International Patent Application Publication No. WO2014 / 074785 can be used.
  • the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film.
  • the weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
  • the specific amine compound as the component (B) used in the present invention has one primary amino group and at least two hydroxyl groups in the molecule, and the primary amino group and the hydroxyl group are aliphatic hydrocarbon groups or An amine compound bonded to a non-aromatic cyclic hydrocarbon group.
  • the specific amine compound (B) of the present invention has one primary amino group and at least two hydroxyl groups in the molecule, and the hydroxyl group is an aliphatic hydrocarbon group or a non-aromatic cyclic group.
  • the amine compound is bonded to the primary amino group through a hydrocarbon group. More specifically, it is a compound represented by the following formula [1].
  • X 1 and X 2 are each independently a hydroxyalkyl group
  • X 3 is a hydrogen atom, an alkyl group or a hydroxyalkyl group.
  • a compound in which X 1 , X 2 and X 3 are all hydroxyalkyl groups is particularly preferred.
  • the hydroxyalkyl group is preferably an alkyl group having one hydroxy group.
  • a group selected from a hydroxyethyl group and a hydroxymethyl group is preferable, and a hydroxymethyl group is particularly preferable.
  • the alkyl group a group selected from a methyl group and an ethyl group is particularly preferable.
  • the compound represented by the formula [1] for example, a compound represented by the following formula is preferable.
  • Organic solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl
  • the liquid crystal aligning agent of this invention is prepared as a coating liquid so that it may become suitable for formation of a liquid crystal aligning film. That is, the liquid crystal aligning agent of the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component containing the side chain polymer that is the component (A) already described.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
  • the above-mentioned resin component may be a side chain type polymer that is all the component (A), but other polymers may be used as long as the liquid crystal aligning ability is not impaired. It may be mixed. In that case, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • Such other polymers are composed of, for example, poly (meth) acrylate, polyamic acid, polyimide, and the like, and examples thereof include polymers other than the side chain type polymer as the component (A).
  • the polymer composition used in the present invention may contain components other than the side chain polymer as the component (A), the specific amine compound as the component (B), and the organic solvent.
  • components other than the side chain polymer as the component (A), the specific amine compound as the component (B), and the organic solvent examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, compounds that improve the adhesion between the liquid crystal alignment film and the substrate, and the like. It is not limited to this.
  • solvent poor solvent which improves the uniformity of film thickness and surface smoothness.
  • solvents may be used alone or in combination.
  • it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical) It is done.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. Part by mass.
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
  • An agent may be contained in the liquid crystal aligning agent. Specific phenoplast additives are shown below, but are not limited to this structure.
  • Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl- , 4'-diaminodip
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
  • photosensitizers aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl- ⁇ -naphthothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-b
  • Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
  • the method for producing a substrate having the liquid crystal alignment film of the present invention is as follows. [I] A step of applying a liquid crystal aligning agent containing (A) a side chain polymer, a specific amine compound (B) component and an organic solvent on a substrate having a transparent electrode; [II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II]; Have Through the above steps, a liquid crystal alignment film for a liquid crystal display element to which alignment control ability is imparted can be obtained, and a substrate having the liquid crystal alignment film can be obtained.
  • a liquid crystal display element can be obtained by preparing a 2nd board
  • the second substrate can be obtained by using the above steps [I] to [III] on the second substrate having a transparent electrode to obtain a second substrate having a liquid crystal alignment film imparted with alignment control ability. it can.
  • the manufacturing method of the twist nematic type liquid crystal display element and the OCB type liquid crystal display element is as follows: [IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween; Have Thereby, a twisted nematic liquid crystal display element can be obtained.
  • the steps [I] to [III] and [IV] of the production method of the present invention will be described below.
  • step [I] a liquid crystal aligning agent containing (A) a side chain polymer, (B) a specific amine compound and an organic solvent is applied onto a substrate having an electrode for driving liquid crystal, and a coating film is formed.
  • ⁇ Board> Although it does not specifically limit about a board
  • the method for applying the liquid crystal aligning agent described above on a substrate having an electrode for driving liquid crystal is not particularly limited.
  • the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
  • the temperature is set to 50 to 230 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the coating film can be obtained by evaporating the solvent for 0.4 minutes to 60 minutes, preferably 0.5 minutes to 10 minutes.
  • the drying temperature at this time is preferably lower than the temperature range of the temperature at which the side chain polymer of the side chain polymer as component (A) exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • the thickness of the coating film is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
  • step [II] the coating film obtained in step [I] is irradiated with ultraviolet rays polarized from an oblique direction.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • ultraviolet rays to be used ultraviolet rays having a wavelength of 100 nm to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film used.
  • ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
  • the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
  • the direction of irradiation of polarized ultraviolet rays is usually 1 ° to 89 ° with respect to the substrate, preferably 10 ° to 80 °, particularly preferably 20 ° to 70 °.
  • this angle is too small, there is a problem that the pretilt angle becomes small, and when it is too large, there is a problem that the pretilt angle becomes high.
  • the pretilt angle obtained is preferably 1 ° to 20 °, more preferably 2 ° to 15 °, as a pretilt angle suitable for the twisted nematic mode.
  • step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
  • An orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
  • the heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
  • the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when the side chain polymer as the component (A) is observed in bulk. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C. lower than the upper limit of the liquid crystal temperature range.
  • the liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
  • the thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm for the same reason described in the step [I].
  • the process includes two substrates obtained in [III] arranged so that the side on which the liquid crystal alignment film is formed faces each other, a liquid crystal layer provided between the substrates, a substrate and a liquid crystal layer And a liquid crystal cell having the liquid crystal alignment film formed with the liquid crystal aligning agent of the present invention.
  • a liquid crystal display element of the present invention a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS) method, an OCB alignment (OCB: OCB).
  • TN twisted nematic
  • VA vertical alignment
  • IPS horizontal alignment
  • OCB alignment OCB: OCB
  • There are various types such as Optically Compensated Bend).
  • the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded so that the ultraviolet light exposure directions are orthogonal to each other, and the liquid crystal is injected under reduced pressure to seal it, or after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed,
  • the method of sticking together and performing sealing etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • the obtained liquid crystal display element is preferably annealed for further alignment stability.
  • the heating temperature is the phase transition temperature of the liquid crystal, preferably 10 to 160 ° C., more preferably 50 to 140 ° C.
  • substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
  • high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
  • the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. .
  • the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
  • the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
  • the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is polarized light that optimizes the amount of photocrosslinking reaction or photoisomerization reaction of the photosensitive group in the coating film. Corresponds to the amount of UV irradiation.
  • the photoreaction amount is not sufficient. In that case, sufficient self-organization does not proceed even after heating.
  • the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating.
  • the optimum amount of the photopolymerization reaction or photoisomerization reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the amount of the photosensitive group possessed by the side chain polymer film.
  • the amount is preferably 0.1 mol% to 60 mol%, more preferably 0.1 mol% to 40 mol%.
  • the coating film used in the method of the present invention by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
  • the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
  • the maximum value of ⁇ A ( ⁇ Amax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ⁇ Amax.
  • the amount of irradiation of polarized ultraviolet rays onto the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ⁇ Amax. More preferably, it is within the range of 50%.
  • the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ⁇ Amax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
  • a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
  • the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
  • the twisted nematic type liquid crystal display element substrate manufactured by the method of the present invention or the liquid crystal display element having the substrate has excellent reliability, and can be used for a large-screen high-definition liquid crystal television. It can be suitably used.
  • MA-1 was synthesized by a synthesis method described in a patent document (Macromolecules 2007, 40, 6355-6360).
  • MA-2 was synthesized by the synthesis method described in the patent literature (British Patent GB 2306470B).
  • MA-3 was synthesized by a synthesis method described in a patent document (Japanese Patent Laid-Open No. 9-118717).
  • MA-4 was synthesized by a synthesis method described in a patent document (WO2014 / 054785).
  • T-1 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
  • T-2 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
  • T-3 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
  • T-4 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
  • the liquid crystal aligning agent (A1) was filtered through a 0.45 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 40 ° C. for 5 minutes to form a liquid crystal aligning film having a thickness of 100 nm. .
  • Example 1 The coating surface was tilted by 60 °, and ultraviolet rays of 313 nm were irradiated through the polarizing plate to 40 mJ / cm 2 of the substrate, followed by heating on a hot plate at 120 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
  • Two substrates with such a liquid crystal alignment film are prepared, a spacer of 4 ⁇ m is set on the liquid crystal alignment film surface of one of the substrates, and then combined so that the rubbing directions of the two substrates are parallel to each other.
  • the periphery was sealed, and an empty cell with a cell gap of 4 ⁇ m was produced.
  • Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel liquid crystal cell. After heating for 30 minutes at a temperature of 120 ° C., the pretilt angle and voltage holding ratio (VHR) of this liquid crystal cell were measured.
  • VHR voltage holding ratio
  • Example 2 For Example 2 and Comparative Examples 1 to 5 under the conditions shown in Table 2, a liquid crystal cell was prepared using the same method as in Example 1, and the pretilt angle and voltage holding ratio (VHR) were measured.
  • VHR voltage holding ratio
  • VHR voltage holding ratio
  • the liquid crystal aligning agents of Examples 1 and 2 using additives are both liquid crystal pretilt suitable for twisted nematic mode or OCB mode compared to Comparative Examples 4 and 5 where no additives are used. It can be seen that corners and good whitening resistance can be obtained, and the voltage holding ratio (VHR) does not decrease. The reason why the voltage holding ratio (VHR) decreases in Comparative Examples 1 to 3 is presumed to be because the additive is eluted in the liquid crystal.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides: a highly efficient liquid crystal aligning agent which is provided with alignment control ability, while having excellent whitening resistance, and which enables the achievement of a liquid crystal alignment film that has excellent tilt angle characteristics and voltage holding ratio; a liquid crystal alignment film which is obtained from this liquid crystal aligning agent; and a liquid crystal display element. The present invention provides a liquid crystal aligning agent which contains: (A) an acrylic polymer that has a photo-alignment group and a carboxyl group; and (B) an amine compound which has one primary amino group and a hydroxyl group in each molecule, and wherein the primary amino group and the hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、特定の重合体及び特定の添加剤を含有する液晶配向剤と、それを用いる液晶配向膜、および当該配向膜を有する基板の製造方法に関する。さらには、チルト角特性に優れる液晶表示素子を製造するための新規な方法に関する。 The present invention relates to a liquid crystal aligning agent containing a specific polymer and a specific additive, a liquid crystal alignment film using the same, and a method for producing a substrate having the alignment film. Further, the present invention relates to a novel method for manufacturing a liquid crystal display element having excellent tilt angle characteristics.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 The liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years. The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。 That is, the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
 配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。 As a method for aligning a liquid crystal alignment film for imparting alignment control ability, a rubbing method has been conventionally known. The rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction). This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements. As an organic film used for the liquid crystal alignment film, a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
 しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust and static electricity may be a problem. In addition, due to the high definition of the liquid crystal surface element in recent years and the unevenness caused by the corresponding electrodes on the substrate and the switching active element for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. In some cases, alignment of the liquid crystal could not be realized.
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。 Therefore, a photo-alignment method has been actively studied as another method for aligning the liquid crystal alignment film without rubbing. There are various photo alignment methods. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
 その中で、光架橋型による光配向法が知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。更に、斜め方向に偏光紫外線を照射することでプレチルト角が発現する(非特許文献1参照)。また、クマリンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のクマリン部で光架橋反応を生じさせ、偏光方向と平行方向に液晶を配向させる(非特許文献2参照)。 Among them, a photo-alignment type photo-alignment method is known. For example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Furthermore, a pretilt angle appears by irradiating polarized ultraviolet rays in an oblique direction (see Non-Patent Document 1). In addition, when a side chain polymer having coumarin in the side chain is used, polarized UV light is irradiated to cause a photocrosslinking reaction in the coumarin part of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction parallel to the polarization direction. (See Non-Patent Document 2).
 また、液晶配向膜は液晶に対し、ある一定の傾斜角(プレチルト角)を付与する役割も担っており、プレチルト角の付与が液晶配向膜の開発において重要な課題となって来ている(特許文献1~3参照)。 The liquid crystal alignment film also has a role of providing a certain tilt angle (pretilt angle) to the liquid crystal, and the provision of the pretilt angle has become an important issue in the development of liquid crystal alignment films (patents). Reference 1 to 3).
 一方、重合体を含有する液晶配向剤を用いると、基板上に印刷するなどの場合、吸湿により重合体が析出し、ワニスが白化現象を起こし、得られる塗膜に表面荒れを発生させることになる。 On the other hand, when a liquid crystal aligning agent containing a polymer is used, in the case of printing on a substrate, the polymer is precipitated by moisture absorption, the varnish causes a whitening phenomenon, and the resulting coating film is roughened. Become.
 上記のような課題に対して、重合体を含有するワニスの白化現象を抑制する方法として、溶媒の50%以上にN-ビニルピロリドンやN-シクロヘキシルピロリドンなどの乾燥時間を抑制できる高沸点の溶媒を用いることが提案されている(特許文献4参照)。 As a method for suppressing the whitening phenomenon of a varnish containing a polymer, the solvent having a high boiling point capable of suppressing the drying time of N-vinyl pyrrolidone, N-cyclohexyl pyrrolidone or the like to 50% or more of the solvent in order to solve the above problems Has been proposed (see Patent Document 4).
特開平04-281427号公報Japanese Patent Laid-Open No. 04-281427 特開平05-043687号公報Japanese Patent Laid-Open No. 05-043687 特開平10-333153号JP 10-333153 A 特開平5-117587号公報Japanese Patent Laid-Open No. 5-117487
 しかしながら、上記で提案されている従来の手段は必ずしも十分ではなく、例えば、特許文献2の高沸点の溶媒を用いる手段では、これらの溶媒が、一般的に吸湿性が高いために、使用量が大きくなると、液晶配向剤のワニスの上記白化現象を増大させ、また、得られる液晶配向膜のプレチルト角を低下させるという副作用を招くことがわかった。 However, the conventional means proposed above are not always sufficient. For example, in the means using a high boiling point solvent in Patent Document 2, since these solvents are generally highly hygroscopic, the amount of use is small. It has been found that when it becomes large, the above-mentioned whitening phenomenon of the varnish of the liquid crystal aligning agent is increased, and the side effect of reducing the pretilt angle of the obtained liquid crystal aligning film is caused.
 本発明は、カルボキシル基を有する光反応性アクリルポリマーを含有する液晶配向剤における、これらの白化現象や、基板上に異物を発生する現象を抑制し、さらには、得られる液晶配向膜のプレチルト角の低下を抑制し、電圧保持率も良好である液晶配向剤を提供することを目的とする。
 また、本発明の目的は、上記目的に加えて、向上したチルト角特性を有するツイストネマチック型液晶表示素子及びOCB型液晶表示素子及び該素子のための液晶配向膜を提供することにある。
The present invention suppresses the whitening phenomenon and the phenomenon of generating foreign matter on the substrate in a liquid crystal aligning agent containing a photoreactive acrylic polymer having a carboxyl group, and further, the pretilt angle of the obtained liquid crystal aligning film It aims at providing the liquid crystal aligning agent which suppresses the fall of this and has a favorable voltage retention.
In addition to the above object, an object of the present invention is to provide a twisted nematic liquid crystal display element and an OCB liquid crystal display element having improved tilt angle characteristics, and a liquid crystal alignment film for the element.
 本発明者は、上記課題を達成するべく鋭意検討を行った結果、以下の発明を見出した。
 <1> (A):光配向性基とカルボキシル基とを有するアクリル重合体;及び
(B):分子内に1級アミノ基を1個と水酸基を少なくとも2個有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族の環式炭化水素基に結合しているアミン化合物;を含有する液晶配向剤。
 <2> (A):光配向性基とカルボキシル基とを有するアクリル重合体が、下記モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)を含むモノマー混合物から得られる共重合体である液晶配向剤。
 モノマー(A-1):シンナモイル部位を1つと、シンナモイル部位を構成しないベンゼン環を2~4つと、重合性基とを有するモノマー;
 モノマー(A-2):シンナモイル部位を1つと、シンナモイル部位を構成しないベンゼン環を1つと、重合性基とを有するモノマー;
 モノマー(A-3):カルボキシル基と、重合性基とを有するモノマー。
(上記シンナモイル部位とベンゼン環は、置換基を有していてもよい。)
As a result of intensive studies to achieve the above problems, the present inventors have found the following inventions.
<1> (A): an acrylic polymer having a photo-alignment group and a carboxyl group; and (B): one primary amino group and at least two hydroxyl groups in the molecule, and the primary amino group. A liquid crystal aligning agent comprising: an amine compound in which a group and a hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
<2> (A): An acrylic polymer having a photo-alignment group and a carboxyl group is obtained from a monomer mixture containing the following monomer (A-1), monomer (A-2) and monomer (A-3) Liquid crystal aligning agent which is a copolymer.
Monomer (A-1): a monomer having one cinnamoyl moiety, 2 to 4 benzene rings not constituting the cinnamoyl moiety, and a polymerizable group;
Monomer (A-2): a monomer having one cinnamoyl moiety, one benzene ring that does not constitute the cinnamoyl moiety, and a polymerizable group;
Monomer (A-3): A monomer having a carboxyl group and a polymerizable group.
(The cinnamoyl moiety and the benzene ring may have a substituent.)
 <3> 上記モノマー(A-1)及びモノマー(A-2)の重合性基が、アクリル基またはメタクリル基である請求項1記載の液晶配向剤。
 <4> 上記<1>において、モノマー(A-1)及びモノマー(A-2)が、各々独立に、下記式(1)で表される基及び下記式(2)で表される基からなる群から選ばれるいずれか1種の基に重合性基が結合したモノマーであるのがよい。
<3> The liquid crystal aligning agent according to claim 1, wherein the polymerizable group of the monomer (A-1) and the monomer (A-2) is an acryl group or a methacryl group.
<4> In the above item <1>, the monomer (A-1) and the monomer (A-2) are each independently a group represented by the following formula (1) and a group represented by the following formula (2). It is preferable that the monomer has a polymerizable group bonded to any one group selected from the group consisting of
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-又は-NH-CO-を表す;
 Sは、炭素数1~12のアルキレン基であり、それに結合する水素原子はそれぞれ独立にハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tが単結合であるときはBも単結合を表す;
 Yは、2価のベンゼン環である;
 P、Q及びQは、それぞれ独立にベンゼン環及び炭素数5~8の脂環式炭化水素環からなる群から選ばれる基である;
 Rは、水素原子、-CN、ハロゲン基、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルキルオキシ基である。
In the formula, A, B and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH— or —NH—CO—;
S is an alkylene group having 1 to 12 carbon atoms, and each hydrogen atom bonded thereto may be independently replaced with a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
When T is a single bond, B also represents a single bond;
Y 1 is a divalent benzene ring;
P 1 , Q 1 and Q 2 are each independently a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms;
R 1 is a hydrogen atom, —CN, halogen group, alkyl group having 1 to 5 carbon atoms, (alkyl having 1 to 5 carbon atoms) carbonyl group, cycloalkyl group having 3 to 7 carbon atoms, or 1 to 5 carbon atoms. It is an alkyloxy group.
 Y、P、Q及びQにおいて、ベンゼン環に結合する水素原子はそれぞれ独立に-CN、ハロゲン基、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい;
 X及びXは、それぞれ独立に単結合、-O-、-COO-又は-OCO-を表す;
 n1及びn2はそれぞれ独立に0、1または2である、
 Xの数が2となるときは、X同士は同一でも異なっていてもよく、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Qの数が2となるときは、Q同士は同一でも異なっていてもよく、Qの数が2となるときは、Q同士は同一でも異なっていてもよい;
 モノマー(A-1)においては、Y以外のベンゼン環の数の合計は2~4である;
 モノマー(A-2)においては、Y以外のベンゼン環の数の合計は1である;
 破線は重合性基との結合手を表す。
In Y 1 , P 1 , Q 1 and Q 2 , each hydrogen atom bonded to the benzene ring is independently —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an (alkyl group having 1 to 5 carbon atoms) carbonyl group. Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
X 1 and X 2 each independently represents a single bond, —O—, —COO— or —OCO—;
n1 and n2 are each independently 0, 1 or 2,
When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different;
When the number of Q 1 is 2, Q 1 may be the same or different, and when the number of Q 2 is 2, Q 2 may be the same or different;
In the monomer (A-1), the total number of benzene rings other than Y 1 is 2 to 4;
In the monomer (A-2), the total number of benzene rings other than Y 1 is 1;
A broken line represents a bond with a polymerizable group.
 <5> 成分(B)のアミン化合物が、下記の式[1](式[1]中、X、X及びXはそれぞれ独立にアルキル基またはヒドロキシアルキル基である)で示される化合物である上記(1)に記載の液晶配向剤。 <5> A compound in which the amine compound of component (B) is represented by the following formula [1] (in the formula [1], X 1 , X 2 and X 3 are each independently an alkyl group or a hydroxyalkyl group). The liquid crystal aligning agent as described in said (1) which is.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 <6> 式[1]中、X、X及びXはいずれもヒドロキシアルキル基である上記<5>に記載の液晶配向剤。
 <7> 上記<1>~<6>の何れかに記載の液晶配向剤を用いて得られる液晶配向膜。
 <8> 上記<7>に記載の液晶配向膜を有する液晶表示素子。
<6> The liquid crystal aligning agent according to the above <5>, wherein in formula [1], X 1 , X 2 and X 3 are all hydroxyalkyl groups.
<7> A liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of <1> to <6>.
<8> A liquid crystal display device having the liquid crystal alignment film according to <7>.
 本発明の液晶配向剤によれば、白化現象や基板上に異物を発生させ、該異物が凝集してギャップムラを生じる現象を抑制し、さらには、得られる液晶配向膜のプレチルト角の低下を抑制し、電圧保持率も良好である液晶配向膜が得られ、かつかかる液晶配向膜を使用することにより、大型で高精細の場合にも信頼性の高い液晶表示素子が歩留り良く生産できる。
 本発明の液晶配向剤の使用により、何故に、白化現象や、基板上に異物を発生する現象を抑制し、さらには、得られる液晶配向膜のプレチルト角の低下を抑制し得るかについてのメカニズムは必ずしも明らかではないが、ほぼ次のように考えられる。
According to the liquid crystal aligning agent of the present invention, whitening phenomenon or foreign matter is generated on the substrate, and the phenomenon that the foreign matter aggregates to cause gap unevenness is suppressed, and further, the pretilt angle of the obtained liquid crystal alignment film is reduced. A liquid crystal alignment film that is suppressed and has a good voltage holding ratio can be obtained, and by using such a liquid crystal alignment film, a highly reliable liquid crystal display element can be produced with a high yield even in the case of a large size and a high definition.
Mechanism of why the use of the liquid crystal aligning agent of the present invention can suppress the phenomenon of whitening and the generation of foreign matter on the substrate, and further suppress the decrease in the pretilt angle of the liquid crystal alignment film obtained. Is not necessarily clear, but is considered as follows.
 本発明の液晶配向剤に含有される(B)成分である分子内に1級アミノ基を1個と水酸基を有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族の環式炭化水素基に結合しているアミン化合物は、その有する1級アミノ基がポリマー中のカルボン酸基と塩を形成することにより、ポリマーの水に対する溶解性が上がるとともに、(B)成分どうしの反応が抑制される結果、白化に対する耐性が向上するものと考えられる。また、水酸基の存在により、配向膜の焼成時に、(B)成分どうしが1級アミノ基と水酸基との反応により結合し、それによって、(B)成分が液晶中に溶出することがなくなり、電圧保持率やチルト角等の特性が低下しないものと考えられる。
 本発明の方法によって製造されたツイストネマチック型液晶表示素子及びOCB型液晶表示素子は、高効率に配向制御能が付与されているため長時間連続駆動しても表示特性が損なわれることがない。
The molecule (B) contained in the liquid crystal aligning agent of the present invention has one primary amino group and a hydroxyl group in the molecule, and the primary amino group and the hydroxyl group are aliphatic hydrocarbon groups or non-aromatics. In the amine compound bonded to the cyclic hydrocarbon group, the primary amino group of the compound forms a salt with the carboxylic acid group in the polymer, so that the solubility of the polymer in water is increased, and the component (B) It is considered that resistance to whitening is improved as a result of suppression of the reaction between the two. Further, due to the presence of the hydroxyl group, the components (B) are bonded to each other by the reaction between the primary amino group and the hydroxyl group at the time of firing the alignment film, whereby the component (B) is not eluted into the liquid crystal, and the voltage is increased. It is considered that characteristics such as retention rate and tilt angle do not deteriorate.
The twisted nematic liquid crystal display element and OCB type liquid crystal display element manufactured by the method of the present invention are imparted with an alignment control ability with high efficiency, so that display characteristics are not impaired even when driven continuously for a long time.
 本発明の製造方法において用いられる液晶配向剤は、(A)光配向性基とカルボキシル基とを有するアクリル重合体(以下、単に側鎖型高分子とも呼ぶ);及び(B)分子内に1級アミノ基を1個と水酸基を少なくとも2個有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族の環式炭化水素基に結合しているアミン化合物(以下、特定アミン化合物と称することもある)を含有しており、前記液晶配向剤を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型高分子を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された塗膜(以下、液晶配向膜とも称する)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる。 The liquid crystal aligning agent used in the production method of the present invention includes (A) an acrylic polymer having a photo-alignable group and a carboxyl group (hereinafter also simply referred to as a side chain polymer); and (B) 1 in the molecule. An amine compound having one primary amino group and at least two hydroxyl groups, and wherein the primary amino group and hydroxyl group are bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group (hereinafter, specified The coating film obtained by using the liquid crystal aligning agent is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity. This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film. At this time, the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization. As a result, a highly efficient alignment process can be realized as the liquid crystal alignment film, and a liquid crystal alignment film with high alignment control ability can be obtained.
 本発明の液晶配向処理剤において、特定アミン化合物中の1級アミノ基は、特定重合体中のカルボキシル基と塩形成をしているか、または、特定重合体中のカルボキシル基やカルボキシエステル基に対して、水またはアルコールの脱離を伴うアミド結合をしていると考えられる。さらに、液晶配向膜を作製する際の焼成工程によって、特定重合体中のカルボキシル基と塩形成をしている1級アミノ基は、水の脱離によりアミド結合を形成すると考えられる。その結果、本発明の液晶配向処理剤は、有機溶媒中で混合するという簡便な手段にもかかわらず、そこから得られた液晶配向膜中では、特定アミン化合物と特定重合体とが効率良く結合していると考える。 In the liquid crystal aligning agent of the present invention, the primary amino group in the specific amine compound forms a salt with the carboxyl group in the specific polymer, or the carboxyl group or carboxy ester group in the specific polymer. Thus, it is considered that the amide bond is accompanied by elimination of water or alcohol. Furthermore, it is considered that the primary amino group that forms a salt with the carboxyl group in the specific polymer forms an amide bond due to elimination of water in the baking step in producing the liquid crystal alignment film. As a result, although the liquid crystal aligning agent of the present invention is a simple means of mixing in an organic solvent, the specific amine compound and the specific polymer are efficiently bonded in the liquid crystal alignment film obtained therefrom. I think.
 更に、本発明では、架橋反応を起こす特定アミン化合物が、特定重合体に結合していることから、架橋性化合物を添加した場合に起こる未反応成分の残存による液晶表示素子の特性の低下などの問題は発生しない。 Furthermore, in the present invention, since the specific amine compound that causes the crosslinking reaction is bonded to the specific polymer, the characteristics of the liquid crystal display element are deteriorated due to remaining unreacted components that occur when the crosslinking compound is added. There is no problem.
 この特定アミン化合物は、分子内に含まれる1級アミノ基が特定重合体中のカルボキシル基と塩を形成しているため、液晶配向処理剤を調製する際や液晶配向剤の保管中に、ポリマーの析出やゲル化といった問題が起こる可能性も回避できる。 In this specific amine compound, since the primary amino group contained in the molecule forms a salt with the carboxyl group in the specific polymer, the polymer is used when preparing the liquid crystal aligning agent or during storage of the liquid crystal aligning agent. The possibility of problems such as precipitation and gelation can be avoided.
 以下、本発明の実施形態について詳しく説明する。
<液晶配向剤>
 本願は、
 (A):光配向性基とカルボキシル基とを有するアクリル重合体;及び
 (B):分子内に1級アミノ基を1個と水酸基を少なくとも2個有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族の環式炭化水素基に結合しているアミン化合物;
を含有する液晶配向剤を提供する。以下、(A)成分(側鎖型高分子)、(B)成分(特定アミン化合物)について説明する。
Hereinafter, embodiments of the present invention will be described in detail.
<Liquid crystal aligning agent>
This application
(A): an acrylic polymer having a photo-alignment group and a carboxyl group; and (B): one primary amino group and at least two hydroxyl groups in the molecule, and the primary amino group and the hydroxyl group. An amine compound in which is bound to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group;
The liquid crystal aligning agent containing is provided. Hereinafter, the component (A) (side chain polymer) and the component (B) (specific amine compound) will be described.
<<(A)側鎖型高分子>>
 (A)成分は、光配向性基とカルボキシル基とを有するアクリル重合体である。
 より具体的には、(A)成分は、下記モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)を含むモノマー混合物から得られる共重合体である。
 モノマー(A-1):シンナモイル部位を1つと、シンナモイル部位を構成しないベンゼン環を2~4つと、重合性基とを有するモノマー。
 モノマー(A-2):シンナモイル部位を1つと、シンナモイル部位を構成しないベンゼン環を1つと、重合性基とを有するモノマー。
 モノマー(A-3):カルボキシル基と、重合性基とを有するモノマー。
 上記シンナモイル部位とベンゼン環は、置換基を有していてもよい。
<< (A) Side chain polymer >>
The component (A) is an acrylic polymer having a photoalignment group and a carboxyl group.
More specifically, the component (A) is a copolymer obtained from a monomer mixture containing the following monomer (A-1), monomer (A-2) and monomer (A-3).
Monomer (A-1): a monomer having one cinnamoyl moiety, 2 to 4 benzene rings that do not constitute the cinnamoyl moiety, and a polymerizable group.
Monomer (A-2): a monomer having one cinnamoyl moiety, one benzene ring that does not constitute the cinnamoyl moiety, and a polymerizable group.
Monomer (A-3): A monomer having a carboxyl group and a polymerizable group.
The cinnamoyl moiety and the benzene ring may have a substituent.
 (A)側鎖型高分子は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応、異性化反応を起こすことができる。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応を起こす構造が望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。 (A) In the side chain type polymer, a side chain having photosensitivity is bonded to the main chain, and can react with light to cause a crosslinking reaction and an isomerization reaction. The structure of the side chain having photosensitivity is not particularly limited, but a structure that causes a crosslinking reaction in response to light is desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
 (A)成分の側鎖型高分子の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)及び(2)の少なくとも1種からなる側鎖を有する構造であることが好ましい。 More specific examples of the structure of the side chain polymer of component (A) include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, and norbornene. A structure having a main chain composed of at least one selected from the group consisting of radically polymerizable groups such as siloxane and the like and a side chain consisting of at least one of the following formulas (1) and (2) preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、A、B、D、S、T、Y、P、Q、Q、R、X、X、n1、及びn2、並びに破線は、上述の定義と同じである。
 モノマー(A-1)においては、Y以外のベンゼン環の数の合計は2~4である;
 モノマー(A-2)においては、Y以外のベンゼン環の数の合計は1である;
In the formula, A, B, D, S, T, Y 1 , P 1 , Q 1 , Q 2 , R 1 , X 1 , X 2 , n 1, and n 2 , and the broken line are the same as defined above. .
In the monomer (A-1), the total number of benzene rings other than Y 1 is 2 to 4;
In the monomer (A-2), the total number of benzene rings other than Y 1 is 1;
 本発明の側鎖型高分子における(A-1)由来の側鎖の含有量と(A-2)由来の側鎖の含有量の合計に占める(A-1)由来の側鎖の含有量は、液晶配向性および側鎖型高分子の溶解性といった点から、10モル%~90モル%が好ましく、20モル%~80モル%がさらに好ましく、30モル%~70モル%がさらに好ましい。 The content of the side chain derived from (A-1) in the total of the content of the side chain derived from (A-1) and the content of the side chain derived from (A-2) in the side chain type polymer of the present invention Is preferably from 10 mol% to 90 mol%, more preferably from 20 mol% to 80 mol%, still more preferably from 30 mol% to 70 mol%, from the viewpoints of liquid crystal alignment and solubility of the side chain polymer.
 本発明の側鎖型高分子は、本発明の効果を損なわない範囲で、上記(A-1)由来の側鎖及び(A-2)由来の側鎖以外のその他側鎖を含有していてもよい。その含有量は、上記光反応性側鎖及び液晶性側鎖の含有量の合計が100%に満たない場合に、その残りの部分である。 The side chain polymer of the present invention contains side chains derived from (A-1) and other side chains other than the side chain derived from (A-2) as long as the effects of the present invention are not impaired. Also good. The content is the remaining portion when the total content of the photoreactive side chain and the liquid crystalline side chain is less than 100%.
<<感光性の側鎖型高分子の製法>>
 上記の液晶性を発現し得る感光性の側鎖型高分子は、上記のモノマー(A-1)及びモノマー(A-2)を少なくとも含むモノマー混合物を重合することによって得ることができる。
<< Production Method of Photosensitive Side Chain Polymer >>
The photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing a monomer mixture containing at least the monomer (A-1) and the monomer (A-2).
[モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)] 
 光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に感光性側鎖を有する高分子を形成することができるモノマーのことである。
 側鎖の有する光反応性基としては下記の構造およびその誘導体が好ましい。
[Monomer (A-1), Monomer (A-2) and Monomer (A-3)]
The photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
As the photoreactive group possessed by the side chain, the following structures and derivatives thereof are preferred.
 モノマー(A-1)及びモノマー(A-2)のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびトリアルコキシシリル基からなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)及び(2)で表される構造から選ばれる感光性側鎖を有する構造であることが好ましい。 More specific examples of the monomer (A-1) and the monomer (A-2) include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, Photosensitivity selected from a polymerizable group composed of at least one selected from the group consisting of radically polymerizable groups such as norbornene and trialkoxysilyl groups, and structures represented by the above formulas (1) and (2) A structure having a side chain is preferred.
 重合性基としては、下記式PG1~PG8で表される基から選ばれるのが好ましい。なかでも、重合反応の制御が容易であるという点と重合体の安定性の観点では、PG1で表されるアクリル基またはメタクリル基が好ましい。なお、式中、破線は上記式(1)または(2)で表される感光性側鎖との結合手を表す。式PG1中、Mは水素原子又はメチル基である。 The polymerizable group is preferably selected from groups represented by the following formulas PG1 to PG8. Among these, an acrylic group or a methacryl group represented by PG1 is preferable from the viewpoint of easy control of the polymerization reaction and the stability of the polymer. In the formula, the broken line represents a bond with the photosensitive side chain represented by the formula (1) or (2). In formula PG1, M 1 is a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 モノマー(A-1)としては、例えば、下記式A-1-1~A-1-7から選ばれるモノマーが挙げられる。式A-1-1~A-1-7中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1およびs2はそれぞれ独立にメチレン基の数を表し、2乃至9の自然数である。 Examples of the monomer (A-1) include monomers selected from the following formulas A-1-1 to A-1-7. In formulas A-1-1 to A-1-7, PG represents a polymerizable group selected from the groups represented by formulas PG1 to PG8, and s1 and s2 each independently represents the number of methylene groups. A natural number of 9 to 9.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 モノマー(A-2)としては、例えば、下記式A-2-1~A-2-14から選ばれるモノマーが挙げられる。 Examples of the monomer (A-2) include monomers selected from the following formulas A-2-1 to A-2-14.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式A-2-1~A-2-14中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1およびs2はそれぞれ独立にメチレン基の数を表し、2乃至9の自然数である。 In formulas A-2-1 to A-2-14, PG represents a polymerizable group selected from the groups represented by formulas PG1 to PG8, and s1 and s2 each independently represents the number of methylene groups. A natural number of 9 to 9.
 モノマー(A-3)としては、例えば、下記式A-3-1~A-3-4から選ばれるモノマーが挙げられる。式A-3-1~A-3-4中、PGは上記式PG1~PG8で表される基から選ばれる重合性基を表し、s1およびs2はそれぞれ独立にメチレン基の数を表し、2乃至9の自然数である。 Examples of the monomer (A-3) include monomers selected from the following formulas A-3-1 to A-3-4. In formulas A-3-1 to A-3-4, PG represents a polymerizable group selected from the groups represented by formulas PG1 to PG8, and s1 and s2 each independently represents the number of methylene groups. A natural number of 9 to 9.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)は、あるものは市販されており、あるものは、例えば国際特許出願公開WO2014/074785等に記載の方法で製造することができる。 Some of the monomer (A-1), monomer (A-2) and monomer (A-3) are commercially available, and some are produced by the method described in, for example, International Patent Application Publication WO2014 / 074785. can do.
 (A)側鎖型高分子は、上述したモノマー(A-1)、モノマー(A-2)及びモノマー(A-3)の共重合反応により得ることができる。さらに、液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。 (A) The side chain polymer can be obtained by the copolymerization reaction of the monomer (A-1), monomer (A-2) and monomer (A-3) described above. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
 モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)の重合性基がラジカル重合性基である場合、その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
When the polymerizable group of the monomer (A-1), the monomer (A-2), and the monomer (A-3) is a radical polymerizable group, the other monomer may be a radical polymerization reaction that is industrially available, for example. Monomer.
Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。 Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、ラウリルアクリレート、パルミチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl. Acrylate, lauryl acrylate, palmityl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl- 2-adamantyl acrylate, 2-propyl-2-adamantyl acrylate, - methyl-8-tricyclodecyl acrylate, and the like 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、ラウリルメタクリレート、パルミチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl. Methacrylate, lauryl methacrylate, palmityl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl- 2-adamantyl methacrylate, 2 Propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, and, 8-ethyl-8-tricyclodecyl methacrylate.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
 スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。 Examples of the styrene compound include styrene, methyl styrene, chlorostyrene, bromostyrene, and the like.
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 本発明の側鎖型高分子におけるモノマー(A-1)及びモノマー(A-2)に由来する光反応性側鎖の含有量は、液晶配向性といった点から、10モル%~95モル%が好ましく、20モル%~90モル%がより好ましく、30モル%~80モル%が更に好ましい。
 また、モノマー(A-3)に由来するカルボキシル基の含有量は、5モル%~90モル%が好ましく、10モル%~80モル%がより好ましく、20モル%~70モル%が更に好ましい。
The content of the photoreactive side chain derived from the monomer (A-1) and the monomer (A-2) in the side chain polymer of the present invention is 10 mol% to 95 mol% from the viewpoint of liquid crystal alignment. It is preferably 20 mol% to 90 mol%, more preferably 30 mol% to 80 mol%.
Further, the content of the carboxyl group derived from the monomer (A-3) is preferably from 5 mol% to 90 mol%, more preferably from 10 mol% to 80 mol%, still more preferably from 20 mol% to 70 mol%.
 本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)のビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。
 ラジカル重合の重合開始剤、反応温度、溶媒等の条件は、国際特許出願公開WO2014/074785等に記載された公知の条件を用いることができる。
The method for producing the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using the vinyl groups of the monomer (A-1), monomer (A-2) and monomer (A-3). Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
As conditions for the polymerization initiator, reaction temperature, solvent and the like of radical polymerization, known conditions described in International Patent Application Publication No. WO2014 / 074785 can be used.
[重合体の回収]
 上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
When recovering the produced polymer from the reaction solution of the photosensitive side chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is put into a poor solvent, The coalescence can be precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。 The molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film. The weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
<(B)特定アミン化合物>
 本発明に用いられる(B)成分である特定アミン化合物は、分子内に1級アミノ基を1個と水酸基を少なくとも2個有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族の環式炭化水素基に結合しているアミン化合物である。言い換えれば、本発明の(B)特定アミン化合物は、分子内に1級アミノ基を1個と水酸基を少なくとも2個有し、かつ前記水酸基が、脂肪族炭化水素基または非芳香族の環式炭化水素基を介して前記1級アミノ基と結合しているアミン化合物である。
 より具体的には、下記式[1]で表される化合物である。式[1]中、X及びXはそれぞれ独立にヒドロキシアルキル基であり、Xは水素原子、アルキル基またはヒドロキシアルキル基である。
<(B) Specific amine compound>
The specific amine compound as the component (B) used in the present invention has one primary amino group and at least two hydroxyl groups in the molecule, and the primary amino group and the hydroxyl group are aliphatic hydrocarbon groups or An amine compound bonded to a non-aromatic cyclic hydrocarbon group. In other words, the specific amine compound (B) of the present invention has one primary amino group and at least two hydroxyl groups in the molecule, and the hydroxyl group is an aliphatic hydrocarbon group or a non-aromatic cyclic group. The amine compound is bonded to the primary amino group through a hydrocarbon group.
More specifically, it is a compound represented by the following formula [1]. In the formula [1], X 1 and X 2 are each independently a hydroxyalkyl group, and X 3 is a hydrogen atom, an alkyl group or a hydroxyalkyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式[1]において、X、X及びXがいずれもヒドロキシアルキル基である化合物が特に好ましい。当該ヒドロキシアルキル基としては、ヒドロキシ基を1つ有するアルキル基が好ましい。また、ヒドロキシ基とアミノ基との距離が近いほうが好ましいため、ヒドロキシエチル基及びヒドロキシメチル基から選ばれる基であるのが好ましく、ヒドロキシメチル基が特に好ましい。アルキル基としては、メチル基及びエチル基から選ばれる基が特に好ましい。
 上記式[1]で表される化合物としては、例えば、下記式で表される化合物が好ましい。
In the above formula [1], a compound in which X 1 , X 2 and X 3 are all hydroxyalkyl groups is particularly preferred. The hydroxyalkyl group is preferably an alkyl group having one hydroxy group. Moreover, since it is preferable that the distance between the hydroxy group and the amino group is short, a group selected from a hydroxyethyl group and a hydroxymethyl group is preferable, and a hydroxymethyl group is particularly preferable. As the alkyl group, a group selected from a methyl group and an ethyl group is particularly preferable.
As the compound represented by the formula [1], for example, a compound represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<有機溶媒>
 本発明の液晶配向剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<Organic solvent>
The organic solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, etc. Is mentioned. These may be used alone or in combination.
[液晶配向剤の調製]
 本発明の液晶配向剤は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明の液晶配向剤は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した(A)成分である側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。
[Preparation of liquid crystal aligning agent]
It is preferable that the liquid crystal aligning agent of this invention is prepared as a coating liquid so that it may become suitable for formation of a liquid crystal aligning film. That is, the liquid crystal aligning agent of the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component is a resin component containing the side chain polymer that is the component (A) already described. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.
 本発明の液晶配向剤において、前述の樹脂成分は、全てが(A)成分である側鎖型高分子であってもよいが、液晶配向能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%~80質量%、好ましくは1質量%~50質量%である。
 そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、(A)成分である側鎖型高分子以外の重合体等が挙げられる。
In the liquid crystal aligning agent of the present invention, the above-mentioned resin component may be a side chain type polymer that is all the component (A), but other polymers may be used as long as the liquid crystal aligning ability is not impaired. It may be mixed. In that case, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
Such other polymers are composed of, for example, poly (meth) acrylate, polyamic acid, polyimide, and the like, and examples thereof include polymers other than the side chain type polymer as the component (A).
 本発明に用いられる重合体組成物は、上記(A)成分である側鎖型高分子、(B)成分である特定アミン化合物及び有機溶媒以外の成分を含有してもよい。その例としては、液晶配向剤を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。 The polymer composition used in the present invention may contain components other than the side chain polymer as the component (A), the specific amine compound as the component (B), and the organic solvent. Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, compounds that improve the adhesion between the liquid crystal alignment film and the substrate, and the like. It is not limited to this.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
The following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octane Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1 -Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol- 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. Examples include solvents having surface tension.
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。 These poor solvents may be used alone or in combination. When using the solvent as described above, it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。
Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical) It is done. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. Part by mass.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Examples thereof include propyltrimethoxysilane and N-bis (oxyethylene) -3-aminopropyltriethoxysilane.
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、液晶配向剤中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the liquid crystal alignment film, the addition of the following phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed An agent may be contained in the liquid crystal aligning agent. Specific phenoplast additives are shown below, but are not limited to this structure.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 具体的なエポキシ基含有化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが例示される。 Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl- , 4'-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向剤に含有される樹脂成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When using a compound that improves the adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 添加剤として、光増感剤を用いることもできる。無色増感剤および三重項増感剤が好ましい。
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、およびアミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-もしくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-もしくはp-ニトロアニリン、2,4,6-トリニトロアニリン)またはニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、および9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリン等がある。
 好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、およびアセトフェノンケタールである。
A photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
As photosensitizers, aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl-β-naphthothiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazoline, 2- (α-naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoylmethylene)- 3-methylbenzothia Phosphorus, 2- (β-naphthoylmethylene) -3-methyl-β-naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthothiazoline, 2- (p-fluorobenzoylmethylene)- 3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β- Ftoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m-hydroxy-p -Methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol And 9-anthracenecarboxylic acid), benzopyran, azoindolizine, melocoumarin and the like.
Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
 本発明の液晶配向膜を有する基板の製造方法は、
 [I] (A)側鎖型高分子、(B)成分である特定アミン化合物及び有機溶媒を含有する液晶配向剤を、透明電極を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有する。
 上記工程により、配向制御能が付与された液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
<Manufacturing method of substrate having liquid crystal alignment film> and <Manufacturing method of liquid crystal display element>
The method for producing a substrate having the liquid crystal alignment film of the present invention is as follows.
[I] A step of applying a liquid crystal aligning agent containing (A) a side chain polymer, a specific amine compound (B) component and an organic solvent on a substrate having a transparent electrode;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
Have
Through the above steps, a liquid crystal alignment film for a liquid crystal display element to which alignment control ability is imparted can be obtained, and a substrate having the liquid crystal alignment film can be obtained.
 また、上記得られた基板(第1の基板)の他に、第2の基板を準備することにより、液晶表示素子を得ることができる。
 第2の基板は、透明電極を有する第二の基板に、上記工程[I]~[III]を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
Moreover, a liquid crystal display element can be obtained by preparing a 2nd board | substrate other than the obtained board | substrate (1st board | substrate).
The second substrate can be obtained by using the above steps [I] to [III] on the second substrate having a transparent electrode to obtain a second substrate having a liquid crystal alignment film imparted with alignment control ability. it can.
 ツイストネマチック型液晶表示素子及びOCB型液晶表示素子の製造方法は、
 [IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これによりツイストネマチック型液晶表示素子を得ることができる。
 以下、本発明の製造方法の有する[I]~[III]、および[IV]の各工程について説明する。
The manufacturing method of the twist nematic type liquid crystal display element and the OCB type liquid crystal display element is as follows:
[IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween;
Have Thereby, a twisted nematic liquid crystal display element can be obtained.
The steps [I] to [III] and [IV] of the production method of the present invention will be described below.
<工程[I]>
 工程[I]では、液晶駆動用の電極を有する基板上に、(A)側鎖型高分子、(B)成分である特定アミン化合物及び有機溶媒を含有する液晶配向剤を塗布して塗膜を形成する。
<Process [I]>
In step [I], a liquid crystal aligning agent containing (A) a side chain polymer, (B) a specific amine compound and an organic solvent is applied onto a substrate having an electrode for driving liquid crystal, and a coating film is formed. Form.
<基板>
 基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
 液晶駆動のための電極としてはITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などが好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
 基板に電極を形成する方法は、従来公知の手法を用いることができる。
<Board>
Although it does not specifically limit about a board | substrate, When the liquid crystal display element manufactured is a transmission type, it is preferable that a highly transparent board | substrate is used. In that case, there is no particular limitation, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
As an electrode for driving the liquid crystal, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), or the like is preferable. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
A conventionally known method can be used as a method of forming an electrode on the substrate.
 上述した液晶配向剤を液晶駆動用の電極を有する基板上に塗布する方法は特に限定されない。
 塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
The method for applying the liquid crystal aligning agent described above on a substrate having an electrode for driving liquid crystal is not particularly limited.
In general, the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
 液晶駆動用の電極を有する基板上に液晶配向剤を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~230℃、好ましくは50~200℃で0.4分間~60分間、好ましくは0.5分間~10分間溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、(A)成分である側鎖型高分子の側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内よりも低いことが好ましい。
 塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
 尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
After applying the liquid crystal aligning agent on the substrate having the electrodes for driving the liquid crystal, the temperature is set to 50 to 230 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The coating film can be obtained by evaporating the solvent for 0.4 minutes to 60 minutes, preferably 0.5 minutes to 10 minutes. The drying temperature at this time is preferably lower than the temperature range of the temperature at which the side chain polymer of the side chain polymer as component (A) exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature).
If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
In addition, it is also possible to provide the process of cooling the board | substrate with which the coating film was formed to room temperature after the [I] process and before the following [II] process.
<工程[II]>
 工程[II]では、工程[I]で得られた塗膜に、斜め方向から偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
<Process [II]>
In step [II], the coating film obtained in step [I] is irradiated with ultraviolet rays polarized from an oblique direction. When irradiating the surface of the coating film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the ultraviolet rays to be used, ultraviolet rays having a wavelength of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film used. For example, ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。 The irradiation amount of polarized ultraviolet rays depends on the coating film used. The amount of irradiation is polarized ultraviolet light that realizes the maximum value of ΔA (hereinafter also referred to as ΔAmax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light. The amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
 偏光した紫外線の照射方向は、通常、基板に対して1°から89°であるが、好ましくは10°~80°、特に好ましくは20°~70°である。この角度が小さすぎる場合はプレチルト角が小さくなるという問題があり、大きすぎる場合はプレチルト角が高くなるという問題がある。 The direction of irradiation of polarized ultraviolet rays is usually 1 ° to 89 ° with respect to the substrate, preferably 10 ° to 80 °, particularly preferably 20 ° to 70 °. When this angle is too small, there is a problem that the pretilt angle becomes small, and when it is too large, there is a problem that the pretilt angle becomes high.
 照射方向を上記の角度に調節する方法としては、基板自体を傾ける方法と、光源を傾ける方法があるが、光源自体を傾けるのがスループットの観点からより好ましい。
 得られるプレチルト角としては、ツイストネマスチックモードに適したプレチルト角として1°~20°が好ましく、2°~15°がさらに好ましい。
As a method of adjusting the irradiation direction to the above angle, there are a method of tilting the substrate itself and a method of tilting the light source. It is more preferable to tilt the light source itself from the viewpoint of throughput.
The pretilt angle obtained is preferably 1 ° to 20 °, more preferably 2 ° to 15 °, as a pretilt angle suitable for the twisted nematic mode.
<工程[III]>
 工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
<Step [III]>
In step [III], the ultraviolet-irradiated coating film polarized in step [II] is heated. An orientation control ability can be imparted to the coating film by heating.
For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
 加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、(A)成分である側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
The heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature). In the case of a thin film surface such as a coating film, the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when the side chain polymer as the component (A) is observed in bulk. Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C. lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range which makes an upper limit. If the heating temperature is lower than the above temperature range, the anisotropic amplification effect due to heat in the coating film tends to be insufficient, and if the heating temperature is too higher than the above temperature range, the state of the coating film Tends to be close to an isotropic liquid state (isotropic phase), and in this case, self-organization may make it difficult to reorient in one direction.
The liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
 加熱後に形成される塗膜の厚みは、工程[I]で記した同じ理由から、好ましくは5nm~300nm、より好ましくは50nm~150nmであるのがよい。
 以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。
The thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm for the same reason described in the step [I].
By having the above steps, the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board | substrate with a liquid crystal aligning film can be manufactured highly efficiently.
<工程[IV]>
 [IV]工程は、基板の液晶配向膜が形成された側が対向するように配置された2枚の[III]で得られた基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、ツイストネマティック(TN:Twisted Nematic)方式、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式、OCB配向(OCB:Optically Compensated Bend)等、種々のものが挙げられる。
<Process [IV]>
[IV] The process includes two substrates obtained in [III] arranged so that the side on which the liquid crystal alignment film is formed faces each other, a liquid crystal layer provided between the substrates, a substrate and a liquid crystal layer And a liquid crystal cell having the liquid crystal alignment film formed with the liquid crystal aligning agent of the present invention. As such a liquid crystal display element of the present invention, a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS) method, an OCB alignment (OCB: OCB). There are various types such as Optically Compensated Bend).
 液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、紫外線露光方向が互いに直交するようにもう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。 To give an example of the production of a liquid crystal cell or a liquid crystal display element, the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. In this way, the other substrate is bonded so that the ultraviolet light exposure directions are orthogonal to each other, and the liquid crystal is injected under reduced pressure to seal it, or after the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, The method of sticking together and performing sealing etc. can be illustrated. The diameter of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
 得られた液晶表示素子は、さらに配向安定性のためにアニール処理をすることが好ましい。加熱温度は液晶の相転移温度である、好ましくは10~160℃、より好ましくは50~140℃であるのがよい。 The obtained liquid crystal display element is preferably annealed for further alignment stability. The heating temperature is the phase transition temperature of the liquid crystal, preferably 10 to 160 ° C., more preferably 50 to 140 ° C.
 本発明の塗膜付基板の製造方法は、液晶配向剤を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
 本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
The manufacturing method of the board | substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply | coating a liquid crystal aligning agent on a board | substrate and forming a coating film. Next, by heating, high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
The coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. . In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain polymer, after forming a coating film on the substrate using the side chain polymer, polarized ultraviolet rays are formed. After irradiation and then heating, a liquid crystal display element is formed.
 したがって、本発明の方法に用いる塗膜は、塗膜への偏光した紫外線の照射と加熱処理を順次行うことにより、高効率に異方性が導入され、配向制御能に優れた液晶配向膜とすることができる。 Therefore, the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
 そして、本発明の方法に用いる塗膜では、塗膜への偏光した紫外線の照射量と、加熱処理における加熱温度を最適化する。それにより高効率な、塗膜への異方性の導入を実現することができる。 And in the coating film used for the method of the present invention, the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
 本発明に用いられる塗膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その塗膜において感光性基が光架橋反応や光異性化反応する量を最適にする偏光紫外線の照射量に対応する。本発明に用いられる塗膜に対して偏光した紫外線を照射した結果、光架橋反応や光異性化反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。一方、本発明に用いられる塗膜で、光架橋性基を有する構造に対して偏光した紫外線を照射した結果、架橋反応する側鎖の感光性基が過剰となると側鎖間での架橋反応が進行しすぎることになる。その場合、得られる膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。 The optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is polarized light that optimizes the amount of photocrosslinking reaction or photoisomerization reaction of the photosensitive group in the coating film. Corresponds to the amount of UV irradiation. As a result of irradiating the coating film used in the present invention with polarized ultraviolet rays, if the photo-crosslinking reaction or the photoisomerization reaction of the side chain is small, the photoreaction amount is not sufficient. In that case, sufficient self-organization does not proceed even after heating. On the other hand, as a result of irradiating polarized ultraviolet rays to the structure having a photocrosslinkable group in the coating film used in the present invention, the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating.
 したがって、本発明に用いられる塗膜において、偏光紫外線の照射によって側鎖の感光性基が光架橋反応や光異性化反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1モル%~60モル%にすることが好ましく、0.1モル%~40モル%にすることがより好ましい。光反応する側鎖の感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。 Therefore, in the coating film used in the present invention, the optimum amount of the photopolymerization reaction or photoisomerization reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the amount of the photosensitive group possessed by the side chain polymer film. The amount is preferably 0.1 mol% to 60 mol%, more preferably 0.1 mol% to 40 mol%. By making the amount of the photo-reactive side chain photosensitive group within such a range, the self-organization in the subsequent heat treatment proceeds efficiently, and the formation of highly efficient anisotropy in the film is possible. Become.
 本発明の方法に用いる塗膜では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光架橋反応や光異性化反応、または光フリース転位反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、本発明に用いられる塗膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、本発明に用いられる塗膜の紫外吸収の評価に基づいて行うことが可能である。 In the coating film used in the method of the present invention, by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
 すなわち、本発明に用いられる塗膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明に用いられる塗膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。 That is, with respect to the coating film used in the present invention, the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays, is evaluated. Then, the maximum value of ΔA (ΔAmax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained. In the production method of the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ΔAmax.
 本発明の製造方法では、本発明に用いられる塗膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。本発明に用いられる塗膜において、ΔAmaxを実現する偏光紫外線の量の1%~50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1モル%~20モル%を光架橋反応させる偏光紫外線の量に相当する。 In the production method of the present invention, the amount of irradiation of polarized ultraviolet rays onto the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ΔAmax. More preferably, it is within the range of 50%. In the coating film used in the present invention, the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ΔAmax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
 以上より、本発明の製造方法では、塗膜への高効率な異方性の導入を実現するため、その側鎖型高分子の液晶温度範囲を基準として、上述したような好適な加熱温度を定めるのがよい。したがって、例えば、本発明に用いられる側鎖型高分子の液晶温度範囲が100℃~200℃である場合、偏光紫外線照射後の加熱の温度を90℃~190℃とすることが望ましい。こうすることにより、本発明に用いられる塗膜において、より大きな異方性が付与されることになる。 From the above, in the production method of the present invention, in order to achieve highly efficient anisotropy introduction into the coating film, a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
 こうすることにより、本発明によって提供される液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示すことになる。 By doing so, the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
 以上のようにして、本発明の方法によって製造されたツイストネマチック型液晶表示素子用基板又は該基板を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 As described above, the twisted nematic type liquid crystal display element substrate manufactured by the method of the present invention or the liquid crystal display element having the substrate has excellent reliability, and can be used for a large-screen high-definition liquid crystal television. It can be suitably used.
 以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。なお、実施例で使用する略号は以下のとおりである。
<メタクリルモノマー>
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to this Example. The abbreviations used in the examples are as follows.
<Methacrylic monomer>
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 MA-1は特許文献(Macromolecules 2007, 40, 6355-6360)に記載の合成法にて合成した。
 MA-2は特許文献(英国特許GB2306470B)に記載の合成法にて合成した。
 MA-3は特許文献(特開平9-118717)に記載の合成法にて合成した。
 MA-4は特許文献(WO2014/054785)に記載の合成法にて合成した。
 T-1は東京化成工業株式会社より購入して使用した。
 T-2は東京化成工業株式会社より購入して使用した。
 T-3は東京化成工業株式会社より購入して使用した。
 T-4は東京化成工業株式会社より購入して使用した。
MA-1 was synthesized by a synthesis method described in a patent document (Macromolecules 2007, 40, 6355-6360).
MA-2 was synthesized by the synthesis method described in the patent literature (British Patent GB 2306470B).
MA-3 was synthesized by a synthesis method described in a patent document (Japanese Patent Laid-Open No. 9-118717).
MA-4 was synthesized by a synthesis method described in a patent document (WO2014 / 054785).
T-1 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
T-2 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
T-3 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
T-4 was purchased from Tokyo Chemical Industry Co., Ltd. and used.
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
<重合開始剤>
 AIBN:2,2’-アゾビスイソブチロニトリル
<Organic solvent>
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve <polymerization initiator>
AIBN: 2,2′-azobisisobutyronitrile
<合成例1: メタクリルポリマー>
 MA-1(34g:60mmol)、MA-2(9g:20mmol)、MA-3(6g:20mmol)をNMP(282g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P1を得た。
<Synthesis Example 1: Methacrylic polymer>
MA-1 (34 g: 60 mmol), MA-2 (9 g: 20 mmol), MA-3 (6 g: 20 mmol) were dissolved in NMP (282 g), deaerated with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to obtain methacrylate polymer powder P1.
<合成例2: メタクリルポリマー>
 MA-1(34g:60mmol)、MA-2(9g:20mmol)、MA-4(9g:20mmol)をNMP(296g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.5g:3mmol)を加え再び脱気を行った。この後、60℃で6時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(2000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、減圧乾燥しメタクリレートポリマー粉末P2を得た。
<Synthesis Example 2: Methacrylic polymer>
MA-1 (34 g: 60 mmol), MA-2 (9 g: 20 mmol), MA-4 (9 g: 20 mmol) were dissolved in NMP (296 g), deaerated with a diaphragm pump, and then AIBN (0. 5 g: 3 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 60 ° C. for 6 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (2000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure to obtain methacrylate polymer powder P2.
<液晶配向剤の作製:A1>
 上記合成例1にて得られたメタクリレートポリマー粉末P1(0.6g)にNMP(8.4g)を加え、室温で1時間攪拌して溶解させた。この溶液に、BCS(6.0g)を加え、固形分濃度が4.0wt%、のポリマー溶液とした。このポリマー溶液にT―1(0.03g)を加え、室温で3時間攪拌して溶解させ、ポリマー溶液(A1)を得た。このポリマー溶液は、そのまま液晶配向膜を形成するための液晶配向剤となる。
 表1に示す条件にて液晶配向剤A2、B1、B2、B3に関しても、液晶配向剤A1と同様の方法を用い液晶配向剤を作製した。
<Preparation of liquid crystal aligning agent: A1>
NMP (8.4 g) was added to the methacrylate polymer powder P1 (0.6 g) obtained in Synthesis Example 1, and dissolved by stirring at room temperature for 1 hour. BCS (6.0 g) was added to this solution to obtain a polymer solution having a solid content concentration of 4.0 wt%. T-1 (0.03 g) was added to this polymer solution and dissolved by stirring at room temperature for 3 hours to obtain a polymer solution (A1). This polymer solution becomes a liquid crystal aligning agent for forming a liquid crystal alignment film as it is.
With respect to the liquid crystal aligning agents A2, B1, B2, and B3 under the conditions shown in Table 1, a liquid crystal aligning agent was prepared using the same method as the liquid crystal aligning agent A1.
<液晶配向剤の作製:B4>
 上記合成例1にて得られたメタクリレートポリマー粉末P1(0.6g)にNMP(8.4g)を加え、室温で1時間攪拌して溶解させた。この溶液に、BCS(6.0g)を加え、固形分濃度が4.0wt%、のポリマー溶液(B4)を得た。このポリマー溶液は、そのまま液晶配向膜を形成するための液晶配向剤となる。
 表1に示す条件にて液晶配向剤B5に関しても、液晶配向剤B4と同様の方法を用い液晶配向剤を作製した。
<Preparation of liquid crystal aligning agent: B4>
NMP (8.4 g) was added to the methacrylate polymer powder P1 (0.6 g) obtained in Synthesis Example 1, and dissolved by stirring at room temperature for 1 hour. BCS (6.0 g) was added to this solution to obtain a polymer solution (B4) having a solid content concentration of 4.0 wt%. This polymer solution becomes a liquid crystal aligning agent for forming a liquid crystal alignment film as it is.
With respect to the liquid crystal aligning agent B5 under the conditions shown in Table 1, a liquid crystal aligning agent was produced using the same method as the liquid crystal aligning agent B4.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<白化特性の評価>
 上記の液晶配向剤を、Cr基板上にそれぞれ約0.1ml滴下し、温度23℃、湿度70%の環境に放置した。この液滴の端近傍及び中央付近を経時的に顕微鏡で観察した。なお、液滴の端近傍は100倍で、液滴の中央付近は50倍の倍率で観察を行った。30分以内に液滴の端及び中央付近に凝集物が見られた場合は×、1時間経過しても見られない場合を○と評価した。結果を表2に記載した。
<Evaluation of whitening characteristics>
About 0.1 ml of the above liquid crystal aligning agent was dropped on each Cr substrate and left in an environment of a temperature of 23 ° C. and a humidity of 70%. The vicinity of the edge and the center of the droplet was observed with a microscope over time. The observation was performed at a magnification of 100 times near the edge of the droplet and at a magnification of 50 times near the center of the droplet. When aggregates were observed near the edge and center of the droplets within 30 minutes, the case where no aggregation was observed even after 1 hour was evaluated as ◯. The results are shown in Table 2.
 <液晶セルの作製>
 液晶配向剤(A1)を0.45μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、40℃のホットプレート上で5分間乾燥後、膜厚100nmの液晶配向膜を形成した。
<Production of liquid crystal cell>
The liquid crystal aligning agent (A1) was filtered through a 0.45 μm filter, spin-coated on a glass substrate with a transparent electrode, and dried on a hot plate at 40 ° C. for 5 minutes to form a liquid crystal aligning film having a thickness of 100 nm. .
(実施例1)
 塗膜面を60°傾けて、偏光板を介し313nmの紫外線を基板40mJ/cm照射した後に120℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。このような液晶配向膜付き基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサを設置した後、2枚の基板のラビング方向が平行になるようにして組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク株式会社製)を注入し、注入口を封止して、アンチパラレル液晶セルを得た。 温度120℃で30分間加熱した後、この液晶セルについてプレチルト角、及び電圧保持率(VHR)を測定した。
(Example 1)
The coating surface was tilted by 60 °, and ultraviolet rays of 313 nm were irradiated through the polarizing plate to 40 mJ / cm 2 of the substrate, followed by heating on a hot plate at 120 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. Two substrates with such a liquid crystal alignment film are prepared, a spacer of 4 μm is set on the liquid crystal alignment film surface of one of the substrates, and then combined so that the rubbing directions of the two substrates are parallel to each other. The periphery was sealed, and an empty cell with a cell gap of 4 μm was produced. Liquid crystal MLC-3019 (manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel liquid crystal cell. After heating for 30 minutes at a temperature of 120 ° C., the pretilt angle and voltage holding ratio (VHR) of this liquid crystal cell were measured.
 表2に示す条件にて実施例2、及び比較例1~5に関しても、実施例1と同様の方法を用いて液晶セルを作成し、プレチルト角、及び電圧保持率(VHR)を測定した。 For Example 2 and Comparative Examples 1 to 5 under the conditions shown in Table 2, a liquid crystal cell was prepared using the same method as in Example 1, and the pretilt angle and voltage holding ratio (VHR) were measured.
<電圧保持率(VHR)評価>
 上記で作製した液晶セルを70℃温度下で1Vの電圧を60μs間印加し、16.67ms、及び1000ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。なお、電圧保持率の測定には、東陽テクニカ社製の電圧保持率測定装置VHR-1を使用した。
<Evaluation of voltage holding ratio (VHR)>
A voltage of 1V is applied to the liquid crystal cell produced above at a temperature of 70 ° C. for 60 μs, the voltage after 16.67 ms and 1000 ms is measured, and how much the voltage can be held is calculated as a voltage holding ratio (VHR). did. The voltage holding ratio was measured using a voltage holding ratio measuring device VHR-1 manufactured by Toyo Technica.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表2に示す通り、添加剤を用いた実施例1、2の液晶配向剤は添加剤を用いていない比較例4、5と比べて、いずれもツイストネマティックモード、またはOCB モードに好適な液晶プレチルト角、及び良好な白化耐性を得ることが可能であり、電圧保持率(VHR)が低下しないことがわかる。比較例1~3で電圧保持率(VHR)が低下する要因は添加剤が液晶中に溶出するためと推考している。 As shown in Table 2, the liquid crystal aligning agents of Examples 1 and 2 using additives are both liquid crystal pretilt suitable for twisted nematic mode or OCB mode compared to Comparative Examples 4 and 5 where no additives are used. It can be seen that corners and good whitening resistance can be obtained, and the voltage holding ratio (VHR) does not decrease. The reason why the voltage holding ratio (VHR) decreases in Comparative Examples 1 to 3 is presumed to be because the additive is eluted in the liquid crystal.

Claims (8)

  1.  (A):光配向性基とカルボキシル基とを有するアクリル重合体;及び
     (B):分子内に1級アミノ基を1個と水酸基を少なくとも2個有し、かつ前記1級アミノ基と水酸基が脂肪族炭化水素基または非芳香族の環式炭化水素基に結合しているアミン化合物;を含有する液晶配向剤。
    (A): an acrylic polymer having a photo-alignment group and a carboxyl group; and (B): one primary amino group and at least two hydroxyl groups in the molecule, and the primary amino group and the hydroxyl group. A liquid crystal aligning agent comprising: an amine compound in which is bonded to an aliphatic hydrocarbon group or a non-aromatic cyclic hydrocarbon group.
  2.  (A)光配向性基とカルボキシル基とを有するアクリル重合体が、下記モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)を含むモノマー混合物から得られる共重合体である請求項1記載の液晶配向剤。
     モノマー(A-1):シンナモイル部位を1つと、シンナモイル部位を構成しないベンゼン環を2~4つと、重合性基とを有するモノマー;
     モノマー(A-2):シンナモイル部位を1つと、シンナモイル部位を構成しないベンゼン環を1つと、重合性基とを有するモノマー;
     モノマー(A-3):カルボキシル基と、重合性基とを有するモノマー。
    (上記シンナモイル部位とベンゼン環は、置換基を有していてもよい。)
    (A) An acrylic polymer having a photo-alignment group and a carboxyl group is a copolymer obtained from a monomer mixture containing the following monomer (A-1), monomer (A-2) and monomer (A-3). A liquid crystal aligning agent according to claim 1.
    Monomer (A-1): a monomer having one cinnamoyl moiety, 2 to 4 benzene rings not constituting the cinnamoyl moiety, and a polymerizable group;
    Monomer (A-2): a monomer having one cinnamoyl moiety, one benzene ring that does not constitute the cinnamoyl moiety, and a polymerizable group;
    Monomer (A-3): A monomer having a carboxyl group and a polymerizable group.
    (The cinnamoyl moiety and the benzene ring may have a substituent.)
  3.  上記モノマー(A-1)、モノマー(A-2)及びモノマー(A-3)の重合性基が、アクリル基またはメタクリル基である請求項1記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the polymerizable group of the monomer (A-1), the monomer (A-2) and the monomer (A-3) is an acryl group or a methacryl group.
  4.  上記モノマー(A-1)及びモノマー(A-2)が、各々独立に、下記式(1)で表される基及び下記式(2)で表される基
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-又は-NH-CO-を表す;
     Sは、炭素数1~12のアルキレン基であり、それに結合する水素原子はそれぞれ独立にハロゲン基に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Tが単結合であるときはBも単結合を表す;
     Yは、2価のベンゼン環である;
     P、Q及びQは、それぞれ独立にベンゼン環及び炭素数5~8の脂環式炭化水素環からなる群から選ばれる基である;
     Rは、水素原子、-CN、ハロゲン基、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、炭素数3~7のシクロアルキル基又は炭素数1~5のアルキルオキシ基である。
     Y、P、Q及びQにおいて、ベンゼン環に結合する水素原子はそれぞれ独立に-CN、ハロゲン基、炭素数1~5のアルキル基、(炭素数1~5のアルキル)カルボニル基、又は炭素数1~5のアルキルオキシ基で置換されてもよい;
     X及びXは、それぞれ独立に単結合、-O-、-COO-又は-OCO-を表す;
     n1及びn2はそれぞれ独立に0、1または2である、
     Xの数が2となるときは、X同士は同一でも異なっていてもよく、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Qの数が2となるときは、Q同士は同一でも異なっていてもよく、Qの数が2となるときは、Q同士は同一でも異なっていてもよい;
     モノマー(A-1)においては、Y以外のベンゼン環の数の合計は2~4である;
     モノマー(A-2)においては、Y以外のベンゼン環の数の合計は1である;
     破線は重合性基との結合手を表す。)
    からなる群から選ばれるいずれか1種の基に重合性基が結合したモノマーである請求項1記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    The monomer (A-1) and the monomer (A-2) are each independently a group represented by the following formula (1) and a group represented by the following formula (2) (wherein A, B, D Each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH— or —NH—CO—;
    S is an alkylene group having 1 to 12 carbon atoms, and each hydrogen atom bonded thereto may be independently replaced with a halogen group;
    T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
    When T is a single bond, B also represents a single bond;
    Y 1 is a divalent benzene ring;
    P 1 , Q 1 and Q 2 are each independently a group selected from the group consisting of a benzene ring and an alicyclic hydrocarbon ring having 5 to 8 carbon atoms;
    R 1 is a hydrogen atom, —CN, halogen group, alkyl group having 1 to 5 carbon atoms, (alkyl having 1 to 5 carbon atoms) carbonyl group, cycloalkyl group having 3 to 7 carbon atoms, or 1 to 5 carbon atoms. It is an alkyloxy group.
    In Y 1 , P 1 , Q 1 and Q 2 , each hydrogen atom bonded to the benzene ring is independently —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an (alkyl group having 1 to 5 carbon atoms) carbonyl group. Or may be substituted with an alkyloxy group having 1 to 5 carbon atoms;
    X 1 and X 2 each independently represents a single bond, —O—, —COO— or —OCO—;
    n1 and n2 are each independently 0, 1 or 2,
    When the number of X 1 is 2, X 1 may be the same or different, and when the number of X 2 is 2, X 2 may be the same or different;
    When the number of Q 1 is 2, Q 1 may be the same or different, and when the number of Q 2 is 2, Q 2 may be the same or different;
    In the monomer (A-1), the total number of benzene rings other than Y 1 is 2 to 4;
    In the monomer (A-2), the total number of benzene rings other than Y 1 is 1;
    A broken line represents a bond with a polymerizable group. )
    The liquid crystal aligning agent according to claim 1, which is a monomer in which a polymerizable group is bonded to any one group selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000001
  5.  成分(B)のアミン化合物が、下記式[1](式[1]中、X及びXはそれぞれ独立にヒドロキシアルキル基であり、Xは水素原子、アルキル基またはヒドロキシアルキル基である)で示される化合物である上記請求項1~4のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    In the amine compound of component (B), the following formula [1] (in formula [1], X 1 and X 2 are each independently a hydroxyalkyl group, and X 3 is a hydrogen atom, an alkyl group or a hydroxyalkyl group. The liquid crystal aligning agent according to any one of claims 1 to 4, which is a compound represented by
    Figure JPOXMLDOC01-appb-C000002
  6.  式[1]中、X、X及びXはいずれもヒドロキシアルキル基である請求項5に記載の液晶配向剤。 Wherein [1], the liquid crystal alignment agent according to claim 5 neither X 1, X 2 and X 3 represents a hydroxyalkyl group.
  7.  請求項1~6の何れか一項に記載の液晶配向剤を用いて得られる液晶配向膜。 A liquid crystal alignment film obtained by using the liquid crystal aligning agent according to any one of claims 1 to 6.
  8.  請求項7に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 7.
PCT/JP2019/011350 2018-03-20 2019-03-19 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2019181907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507818A JP7302591B2 (en) 2018-03-20 2019-03-19 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-052660 2018-03-20
JP2018052660 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019181907A1 true WO2019181907A1 (en) 2019-09-26

Family

ID=67987336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011350 WO2019181907A1 (en) 2018-03-20 2019-03-19 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP7302591B2 (en)
TW (1) TWI808141B (en)
WO (1) WO2019181907A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071409A1 (en) * 2020-09-30 2022-04-07 日産化学株式会社 Method for producing single-layer phase difference material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012823A (en) * 2012-06-06 2014-01-23 Jnc Corp Polymer composition having photoalignable group, liquid crystal alignment layer formed of the polymer composition, and optical device including retardation plate formed of the liquid crystal alignment layer
WO2014136951A1 (en) * 2013-03-08 2014-09-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal display element obtained using same, and method for manufacturing said liquid crystal display element
JP2016035500A (en) * 2014-08-01 2016-03-17 Jsr株式会社 Liquid crystal alignment agent, manufacturing method of liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, liquid crystal display device, phase difference film, and manufacturing method of phase difference film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160218B2 (en) * 2012-08-03 2017-07-12 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and method for producing liquid crystal aligning film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012823A (en) * 2012-06-06 2014-01-23 Jnc Corp Polymer composition having photoalignable group, liquid crystal alignment layer formed of the polymer composition, and optical device including retardation plate formed of the liquid crystal alignment layer
WO2014136951A1 (en) * 2013-03-08 2014-09-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal display element obtained using same, and method for manufacturing said liquid crystal display element
JP2016035500A (en) * 2014-08-01 2016-03-17 Jsr株式会社 Liquid crystal alignment agent, manufacturing method of liquid crystal alignment agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, liquid crystal display device, phase difference film, and manufacturing method of phase difference film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071409A1 (en) * 2020-09-30 2022-04-07 日産化学株式会社 Method for producing single-layer phase difference material

Also Published As

Publication number Publication date
TWI808141B (en) 2023-07-11
JP7302591B2 (en) 2023-07-04
JPWO2019181907A1 (en) 2021-03-11
TW202004297A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7140336B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2020122154A (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014148569A1 (en) Method for manufacturing in-plane-switching-type liquid-crystal display element
TWI619994B (en) Manufacturing method of substrate with liquid crystal alignment film for lateral electric field driving type liquid crystal display element
KR102427361B1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
CN108603036B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI689543B (en) Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
WO2015025937A1 (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
JP6956948B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2017069133A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7302591B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6794257B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN105431770B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
WO2014185413A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
JP6864251B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772603

Country of ref document: EP

Kind code of ref document: A1