WO2014148569A1 - Method for manufacturing in-plane-switching-type liquid-crystal display element - Google Patents

Method for manufacturing in-plane-switching-type liquid-crystal display element Download PDF

Info

Publication number
WO2014148569A1
WO2014148569A1 PCT/JP2014/057587 JP2014057587W WO2014148569A1 WO 2014148569 A1 WO2014148569 A1 WO 2014148569A1 JP 2014057587 W JP2014057587 W JP 2014057587W WO 2014148569 A1 WO2014148569 A1 WO 2014148569A1
Authority
WO
WIPO (PCT)
Prior art keywords
side chain
group
ring
liquid crystal
photosensitive
Prior art date
Application number
PCT/JP2014/057587
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 後藤
亮一 芦澤
洋一 山之内
淳彦 萬代
悟志 南
達哉 名木
喜弘 川月
瑞穂 近藤
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201480029107.7A priority Critical patent/CN105339837B/en
Priority to JP2015506834A priority patent/JPWO2014148569A1/en
Priority to KR1020157030091A priority patent/KR102258545B1/en
Publication of WO2014148569A1 publication Critical patent/WO2014148569A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present invention relates to a method of manufacturing a horizontal electric field drive type liquid crystal display element, and more particularly to a method of manufacturing a horizontal electric field drive type liquid crystal display element having excellent image sticking characteristics.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
  • This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • an organic film used for the liquid crystal alignment film a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
  • a photo-alignment method has been actively studied as another alignment treatment method for a liquid crystal alignment film that is not rubbed.
  • anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
  • a decomposition type photo-alignment method is known as a main photo-alignment method. For example, irradiate a polyimide film with polarized UV light, cause anisotropic decomposition by utilizing the polarization direction dependency of UV absorption of the molecular structure, and align the liquid crystal with the remaining polyimide without decomposition.
  • the method of making is known (for example, refer patent document 1).
  • photocrosslinking type and photoisomerization type photo-alignment methods are also known.
  • polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction perpendicular to the polarization direction (see, for example, Non-Patent Document 1).
  • the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity.
  • An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
  • the photo-alignment method eliminates the rubbing process itself as compared with the rubbing method that has been industrially performed as an alignment treatment method for liquid crystal display elements, and thus has a great advantage. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light.
  • the photo-alignment method in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal alignment may not be realized. .
  • An object of the present invention is to provide a lateral electric field drive type liquid crystal display element which is imparted with high efficiency and orientation control ability and excellent in reliability.
  • the present inventors have developed a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range on a substrate having a conductive film for driving a lateral electric field.
  • the present invention has been completed by finding that it is achieved by applying a lateral electric field driving type liquid crystal display element to which an alignment control ability is imparted by applying a photosensitive composition containing, and then applying ultraviolet light irradiation and subsequent heating.
  • the present invention has the following gist.
  • the amount of UV irradiation in step [II] maximizes ⁇ A, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV light and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV light.
  • the production method according to 1 above which is in the range of 1% to 70% of the ultraviolet irradiation amount.
  • 3. The production method according to 1 or 2 above, wherein the ultraviolet irradiation amount in the step [II] is in the range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ⁇ A. 4).
  • the heating temperature in the step [III] is a temperature in the range from a temperature 10 ° C.
  • the ultraviolet irradiation amount in the step [IV] is an irradiation amount with which 20 mol or more reacts with respect to 100 mol of the photosensitive group of the side chain polymer film. 7). 7. The production method according to any one of 1 to 6, wherein the step [IV] is performed after the production of the liquid crystal display element. 8). 8. The production method according to any one of 1 to 7 above, wherein the component (A) has a side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
  • the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even if it is continuously driven for a long time.
  • the photosensitive composition used in the production method of the present invention has a photosensitive side chain polymer (hereinafter also referred to as a side chain polymer) that can exhibit liquid crystallinity, and the photosensitive composition.
  • a film obtained by using a product is a film of a photosensitive side chain type polymer that can exhibit liquid crystallinity. Without subjecting this film to rubbing treatment, alignment treatment can be performed by irradiation of polarized light to form a liquid crystal alignment film.
  • a film (liquid crystal alignment film) to which alignment control ability is imparted is obtained through a step of heating the side chain polymer film after irradiation of polarized light on the side chain polymer film.
  • the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization.
  • a highly efficient alignment process can be realized as the liquid crystal alignment film, and a liquid crystal alignment film with high alignment control ability can be obtained.
  • the unreacted photosensitive groups can be reduced by irradiating the liquid crystal alignment film with ultraviolet rays. By doing so, it is possible to obtain a liquid crystal display element with excellent reliability while maintaining highly efficient alignment control ability.
  • a photosensitive composition containing a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range and an organic solvent on a substrate having a conductive film for driving a lateral electric field (hereinafter, (Also referred to as a photosensitive composition) to form a polymer film.
  • the substrate is not particularly limited, and for example, a transparent substrate such as a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used in addition to a glass substrate.
  • a substrate on which ITO (Indium Tin Oxide) electrodes for driving liquid crystals are formed in order to simplify the process of manufacturing liquid crystal display elements.
  • ITO Indium Tin Oxide
  • a reflective liquid crystal display element an opaque substrate such as a silicon wafer can be used, and a light reflecting material such as aluminum can be used as an electrode in this case.
  • Application method is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method or the like is common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated at 20 to 180 ° C., preferably 40 to 150 ° C. by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven, and the photosensitive composition is exposed. Can be obtained.
  • the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the polymer film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is preferably 5 to 300 nm, more preferably 10 to 10 nm. 150 nm.
  • step [II] the photosensitive side chain polymer film obtained in step [I] is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 200 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of the photosensitive side chain polymer film to be used.
  • ultraviolet light having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the maximum value of ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays in the photosensitive side chain polymer film to be used.
  • ⁇ Amax is preferably in the range of 1% to 70%, more preferably in the range of 1 to 50% of the amount of polarized ultraviolet light that realizes (hereinafter also referred to as ⁇ Amax).
  • step [III] the side chain polymer film irradiated with the ultraviolet light polarized in step [II] is heated.
  • a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven is used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the side chain type polymer film to be used is developed.
  • the surface Tg glass transition temperature
  • the bulk Tg that is, even in the liquid crystal temperature range of the liquid crystal alignment film surface. It is expected to be lower than the liquid crystal temperature range seen in bulk.
  • the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the liquid crystal temperature range in which the side chain polymer film used exhibits liquid crystallinity, and 10 ° C. lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range made into an upper limit.
  • step [IV] the side chain polymer film obtained in step [III] is further irradiated with ultraviolet rays.
  • the side chain polymer film on the substrate may be directly irradiated with ultraviolet rays immediately after the step [III], and then the liquid crystal display element using the substrate with the side chain polymer film is used.
  • Ultraviolet rays may be irradiated in the step of manufacturing the liquid crystal display device, or after the liquid crystal display device is manufactured, the obtained liquid crystal display device may be irradiated with ultraviolet rays. By doing in this way, since the unreacted photosensitive group can be quenched while the alignment control ability is imparted with high efficiency, it becomes possible to manufacture a liquid crystal display element having excellent reliability.
  • the liquid crystal temperature range in the present invention is a value obtained by differential scanning calorimetry.
  • the photosensitive composition used in the production method of the present invention includes a photosensitive side chain polymer that can exhibit liquid crystallinity, and a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range. Including. And the side chain which has photosensitivity has couple
  • the structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, the achieved orientation control ability can be stably maintained for a long period of time even when exposed to external stress such as heat.
  • the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer film is used as a liquid crystal alignment film.
  • the structure of the side chain polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain is a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, or an azobenzene group.
  • a photosensitive group bonded to the tip and capable of undergoing a crosslinking reaction or an isomerization reaction in response to light can be set as the structure which has a phenylbenzoate group which has a main chain and the side chain couple
  • More specific examples of the structure of the photosensitive side chain polymer that can exhibit liquid crystallinity include at least one selected from the group consisting of hydrocarbon, acrylate, methacrylate, maleimide, norbornene, and siloxane.
  • a structure having a main chain and at least one photosensitive side chain selected from the group consisting of the following formulas (1) to (13) is preferable.
  • A, B, and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—.
  • a ′ and B ′ are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—O—, Or, —O—CO—CH ⁇ CH— is represented.
  • Y 1 is a group selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and a hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 4 carbon atoms.
  • Y 2 is a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkoxy group.
  • R represents OH, NH 2 , an alkoxy group having 1 to 6 carbon atoms or an alkylamino group having 1 to 6 carbon atoms.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 12 carbon atoms.
  • One or more of the benzene rings in the formulas (1) to (13) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring and a fluorene ring.
  • the side chains represented by the above formulas (1) to (13) have a structure having groups such as biphenyl, terphenyl, phenylcyclohexyl, phenylbenzoate, azobenzene, naphthalene, anthracene, and fluorene as mesogenic components. And at the tip, it has a photosensitive group that undergoes a dimerization reaction in response to light and undergoes a crosslinking reaction, or has a main chain and a side chain bonded thereto, and the side chain also becomes a mesogenic component. And having at least one of phenylbenzoate groups that undergo a photo-Fries rearrangement reaction.
  • a photosensitive side chain type polymer film is formed on a substrate using a photosensitive composition, and then irradiated with polarized ultraviolet rays.
  • high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
  • Side-chain polymer membranes utilize the principle of molecular reorientation induced by side-chain photoreaction and self-organization based on liquid crystallinity to provide highly efficient anisotropy to side-chain polymer membranes. Realize the introduction.
  • FIG. 1 schematically shows an anisotropy introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a photocrosslinkable group as a photosensitive group in the first embodiment of the present invention.
  • An example to explain is shown.
  • the ultraviolet irradiation amount in the step [II] is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • FIG. 1A is a diagram schematically showing the state of the side chain polymer film 1 before polarized light irradiation, and has a structure in which the side chains 2 are randomly arranged.
  • FIG. 1 (b) is a diagram schematically showing the state of the side chain polymer film 1 after irradiation with polarized light.
  • the photosensitive groups in the side chain 2 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown.
  • the photosensitive group of the side chain 2a possessed preferentially causes a photoreaction such as a dimerization reaction.
  • FIG. 1C is a diagram schematically showing the state of the side chain polymer film 1 after heating.
  • the side chain polymer film 1 In the side chain polymer film 1, the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet light is shown. The amount of the cross-linking reaction that occurs. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer.
  • the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the very small anisotropy of the side chain polymer film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 1.
  • FIG. 2 schematically shows an anisotropic introduction process in the method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photosensitive group in the first embodiment of the present invention.
  • An example to explain is shown.
  • the ultraviolet irradiation amount in the step [II] is in the range of 15 to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • FIG. 2A is a diagram schematically showing the state of the side chain polymer film 3 before polarized light irradiation, and has a structure in which the side chains 4 are randomly arranged.
  • FIG. 2 (b) is a diagram schematically showing the state of the side chain polymer film 3 after irradiation with polarized light.
  • the photosensitive groups in the side chains 4 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown.
  • the photosensitive group of the side chain 4a possessed preferentially causes a photoreaction such as a dimerization reaction.
  • FIG. 2 (c) is a diagram schematically showing the state of the side chain polymer film 3 after heating.
  • the side chain polymer film 3 the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet light The amount of the cross-linking reaction that occurs. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the small anisotropy of the side chain polymer film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 3.
  • FIG. 3 shows a liquid crystal alignment film using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (5) or (7) as a photosensitive group in the second embodiment of the present invention.
  • FIG. 3 shows a figure of one example which illustrates typically the introduction process of anisotropy in this manufacturing method.
  • the ultraviolet irradiation amount in the step [II] is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • FIG. 1 shows a schematic diagram in the case.
  • FIG. 3A is a diagram schematically showing the state of the side chain polymer film 5 before irradiation with polarized light, and has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain polymer film 5 is isotropic.
  • FIG. 3B is a diagram schematically showing the state of the side chain polymer film 5 after irradiation with polarized light.
  • the photosensitive groups in the side chains 6 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown.
  • the photosensitive group of the side chain 6a has preferentially photoreaction such as photofleece rearrangement.
  • FIG. 3C is a diagram schematically showing the state of the side chain polymer film 5 after heating.
  • the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet rays In the side chain polymer film 5, the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet rays. And the amount of photo-Fries rearrangement reaction that occurs.
  • the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light.
  • the side chain 6 containing the mesogenic component is reoriented.
  • the very small anisotropy of the side chain polymer film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 5. become.
  • FIG. 4 shows a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fries rearrangement group represented by the above formula (6) or (8) as a photosensitive group in the second embodiment of the present invention.
  • FIG. 4 shows a figure of one example which illustrates typically the introduction process of anisotropy in this manufacturing method.
  • the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • FIG. 1 shows a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fries rearrangement group represented by the above formula (6) or (8) as a photosensitive group in the second embodiment of the present invention.
  • FIG. 4A is a diagram schematically showing a state of the side chain polymer film 7 before irradiation with polarized light, and has a structure in which the side chains 8 are randomly arranged. According to the random arrangement of the side chain 8, the mesogenic component and the photosensitive group of the side chain 8 are also randomly oriented, and the side chain polymer film 7 is isotropic.
  • FIG. 4B is a diagram schematically showing the state of the side chain polymer film 7 after irradiation with polarized light.
  • the photosensitive groups in the side chains 8 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown.
  • the photosensitive group of the side chain 8a has a photoreaction such as photofleece rearrangement preferentially.
  • FIG. 4C is a diagram schematically showing the state of the side chain polymer film 7 after heating.
  • the anchoring force of the optical fleece rearrangement 8a is stronger than that of the side chain 8 before the rearrangement, if a certain amount or more of the optical fleece rearrangement is generated, it self-assembles in a direction parallel to the polarization direction of the irradiated ultraviolet light, and the mesogenic component is formed.
  • the containing side chain 8 is reoriented.
  • the small anisotropy of the side chain polymer film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 7. .
  • the side chain polymer film is a liquid crystal alignment with high anisotropy introduced and high alignment control ability by sequentially irradiating the side chain polymer film with polarized ultraviolet rays and heat treatment. It can be a membrane.
  • the irradiation amount of polarized ultraviolet rays to the side chain polymer film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the side chain type polymer film can be realized with high efficiency.
  • the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the side chain polymer film is such that the photo-sensitive group in the side chain polymer film undergoes photocrosslinking reaction or photoisomerization reaction, or It corresponds to the irradiation amount of polarized ultraviolet rays that optimizes the amount of photofleece rearrangement reaction.
  • the obtained side chain type polymer film becomes rigid and may hinder the progress of self-assembly by subsequent heating.
  • the side chain type polymer film when the side chain type polymer film is irradiated with polarized ultraviolet rays to the structure having the light fleece rearrangement group, the side chain type polymer film becomes excessive if the side chain photosensitive group that undergoes the light fleece rearrangement reaction becomes excessive.
  • the liquid crystallinity of the film will be too low. In that case, the liquid crystallinity of the obtained side chain polymer film is also lowered, which may hinder the progress of self-assembly by subsequent heating.
  • the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the photosensitive group of the side chain by irradiation with polarized ultraviolet rays is the same as that of the side chain polymer film.
  • the content is preferably 0.1 mol% to 40 mol%, more preferably 0.1 mol% to 20 mol% of the photosensitive group.
  • the amount of photo-crosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction of photosensitive groups in the side chain of the side-chain polymer film by optimizing the irradiation amount of polarized ultraviolet rays To optimize.
  • high-efficiency introduction of anisotropy into the side chain polymer film is realized.
  • a suitable amount of polarized ultraviolet light can be determined based on the evaluation of ultraviolet absorption of the side chain polymer film.
  • the UV absorption in the direction parallel to the polarization direction of the polarized UV light and the UV absorption in the vertical direction after the irradiation with the polarized UV light are measured for the side chain type polymer film.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
  • the maximum value ( ⁇ Amax) of ⁇ A realized in the side chain type polymer film and the irradiation amount of polarized ultraviolet rays that realizes it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ⁇ Amax.
  • the irradiation amount of the polarized ultraviolet rays on the side chain polymer film is preferably in the range of 1% to 70% of the amount of the polarized ultraviolet rays that realizes ⁇ Amax. % Is more preferable.
  • the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ⁇ Amax is 0.1% of the entire photosensitive group of the side chain polymer film.
  • the mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
  • the side chain polymer film is heated after being irradiated with polarized ultraviolet rays.
  • This side chain type polymer film is a polymer film that can exhibit liquid crystallinity in a predetermined temperature range.
  • the heat treatment after irradiation with polarized ultraviolet rays can be determined based on the temperature at which the liquid crystallinity of the side chain polymer film is developed.
  • the temperature at which the surface of the side chain polymer film develops liquid crystallinity is expected to be lower than the temperature at which liquid crystallinity develops when viewed in bulk. That is, the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. from the temperature range 10 ° C. lower than the temperature range in which the side chain polymer film exhibits liquid crystallinity (hereinafter also referred to as the liquid crystal temperature range).
  • a temperature in the range up to a low temperature is preferred.
  • the side chain type polymer film used in the present invention is heated after being irradiated with polarized ultraviolet rays to be in a liquid crystal state, and is self-organized and reoriented in a direction parallel to the polarization direction.
  • the small anisotropy of the side chain polymer film induced by the photocrosslinking reaction, photoisomerization reaction, and photofleece rearrangement reaction is amplified by heat.
  • the heating temperature is lower by 10 ° C. or more from the lower limit of the liquid crystal temperature range of the side chain polymer film, the effect of anisotropy amplification by heat in the side chain polymer film may be sufficient. Can not.
  • the side chain polymer film is in a liquid crystal state by heating, when the heating temperature is high, the state of the side chain polymer film becomes close to an isotropic liquid state, and the side chain polymer film is made uniform by self-organization. It becomes difficult to reorient in the direction.
  • the heating temperature is higher than the temperature lower by 10 ° C. from the upper limit of the liquid crystal temperature range of the side chain polymer film, the anisotropy amplification effect due to heat in the side chain polymer film is sufficient. I can't.
  • a suitable heating temperature is determined based on the liquid crystal temperature range of the side chain polymer film.
  • the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the liquid crystal temperature range of the side chain polymer film, and the upper limit is 10 ° C. lower than the upper limit of the liquid crystal temperature range.
  • the temperature is within the range. Therefore, for example, when the liquid crystal temperature range of the side chain polymer film is 100 to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 to 190 ° C. By so doing, greater anisotropy is imparted to the side chain polymer film. By doing so, the obtained liquid crystal display element shows high reliability against external stresses such as light and heat.
  • the photosensitive composition used in the present invention contains a side chain polymer that reacts with light in a wavelength range of 250 to 400 nm and exhibits liquid crystallinity in a temperature range of 100 to 250 ° C.
  • the polymer serving as a component of the photosensitive composition preferably has a photosensitive group that reacts with light in the wavelength range of 250 to 400 nm.
  • the polymer as a component of the photosensitive composition preferably has a mesogenic group in order to exhibit liquid crystallinity in a certain temperature range of 100 to 250 ° C.
  • the above-mentioned photosensitive side chain polymer capable of exhibiting liquid crystallinity can be obtained by polymerizing the above photosensitive side chain monomer and / or liquid crystalline side chain monomer having the above photosensitive group.
  • the photosensitive side chain monomer is a monomer having a photosensitive group at a side chain portion of a polymer when a polymer is formed.
  • the photosensitive group possessed by the side chain the following structures or derivatives thereof are preferable.
  • photosensitive side chain monomer examples include a main chain composed of at least one selected from the group consisting of hydrocarbon, (meth) acrylate, maleimide, norbornene and siloxane, and the following formula (1):
  • a structure having at least one photosensitive side chain selected from the group consisting of (13) to (13) is preferable.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—.
  • a ′ and B ′ are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—O—, Or, —O—CO—CH ⁇ CH— is represented.
  • Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkoxy group.
  • Y 2 is a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkoxy group.
  • R represents —OH, —NH 2 , an alkoxy group having 1 to 6 carbon atoms or an alkylamino group having 1 to 6 carbon atoms.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkoxy group.
  • One or more of the benzene rings in the formulas (1) to (8) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring and a fluorene ring.
  • the liquid crystalline side chain monomer is a monomer in which the polymer exhibits liquid crystallinity and has a mesogenic group at the side chain portion of the polymer.
  • the mesogenic group possessed by the side chain biphenyl, phenylbenzoate, or the like alone may have a mesogen structure, or a side chain may form a mesogen structure by hydrogen bonding, such as benzoic acid.
  • the mesogenic group possessed by the side chain the following structure is preferable.
  • liquid crystalline side chain monomer a main chain composed of at least one selected from the group consisting of hydrocarbon, (meth) acrylate, maleimide, norbornene and siloxane, and the following formula ( A structure having at least one liquid crystalline side chain selected from the group consisting of 5) to (8) and (14) to (22) is preferable.
  • a and B each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—.
  • a ′ and B ′ each represent Independently, a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—O—, or —O—CO—CH
  • Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and Each hydrogen atom bonded to may be independently substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkoxy group.
  • Z 1 and Z 2 each independently represent —CO—, —CH 2 O—, —CH ⁇ N—, —CF 2 —.
  • R 2 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • L represents an integer of 1 to 12
  • m represents an integer of 0 to 2
  • m1 and m2 each independently represents an integer of 1 to 3.
  • One or more of them may be substituted with the same or different ring selected from naphthalene ring, anthracene ring and fluorene ring.
  • the side chain type polymer that is a component of the photosensitive composition used in the present invention can be obtained by the polymerization reaction of the photosensitive side chain monomer that exhibits the liquid crystal properties described above. Moreover, it can obtain by copolymerization of the photosensitive side chain monomer and liquid crystalline side chain monomer which do not express liquid crystallinity, and the copolymerization of the photosensitive side chain monomer and liquid crystalline side chain monomer which express liquid crystallinity. Moreover, it can copolymerize with another monomer in the range which does not impair liquid crystallinity expression ability.
  • Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound, vinyl compound and the like.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl.
  • (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, and the like are also used. Can do.
  • Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
  • Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • the method for producing the photosensitive side chain type polymer in the present invention is not particularly limited, and a general-purpose method handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or a photosensitive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • a known compound such as a radical polymerization initiator or a reversible addition-cleavage chain transfer (RAFT) polymerization reagent can be used.
  • the radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation).
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
  • the organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.
  • organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer
  • the polymerization temperature at the time of radical polymerization can be arbitrarily selected from 30 to 150 ° C., but is preferably in the range of 50 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1 to 50, more preferably 5 to 30.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is
  • the content is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
  • the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the photosensitive side chain polymer capable of expressing liquid crystal contained in the photosensitive composition used in the present invention is the strength of the resulting side chain polymer film, the workability during film formation, and In consideration of the uniformity of the film, the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
  • the photosensitive composition used in the present invention comprises a photosensitive side chain polymer that can exhibit liquid crystallinity. And it is preferable to prepare as a coating liquid so that it may become suitable for formation of a liquid crystal aligning film. That is, the photosensitive composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • a resin component is a resin component containing the photosensitive side chain type polymer which can express the said liquid crystallinity.
  • the content of the resin component is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass in the photosensitive composition.
  • the resin component may be a photosensitive side chain polymer that can all exhibit liquid crystallinity, but other than those as long as the liquid crystal expression ability and the photosensitive performance are not impaired.
  • a polymer may be mixed.
  • the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
  • Organic solvent used for the photosensitive composition used for this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ket
  • the photosensitive composition used in the present invention may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the photosensitive composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
  • solvent poor solvent which improves the uniformity of film thickness and surface smoothness.
  • solvents may be used alone or in combination.
  • it is preferably 5 to 80% by mass, more preferably 20%, so that the solubility of the entire solvent contained in the photosensitive composition is not significantly reduced. ⁇ 60% by mass.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-Top 301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710 (Asahi Glass Co., Ltd.), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC10 (AGC Seimi Chemical Co., Ltd.) and the like.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the photosensitive composition. .
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
  • An agent may be contained in the photosensitive composition. Specific phenoplast additives are shown below, but are not limited to this structure.
  • Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl-4, 4 ′
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the photosensitive composition.
  • the amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be added to the photosensitive composition used in the present invention.
  • the photosensitizer a colorless sensitizer and a triplet sensitizer are preferable.
  • Specific examples of photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino acids.
  • Substituted aromatic 2-hydroxy ketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoyl) Methylene-3-methyl- ⁇ -naphthothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoyl) Methylene) -3-methylben Thiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methyl- ⁇ -naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl- ⁇ -naphthothiazoline, 2- (p-fluorobenzoylmethylene)-
  • Aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, or acetophenone ketal is preferable.
  • a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
  • the photosensitive composition used in the present invention after being applied on a substrate and subjected to photo-alignment treatment by light irradiation, imparts alignment control ability with high efficiency by heating to a temperature at which the liquid crystal alignment film exhibits liquid crystallinity, Furthermore, the alignment state obtained by heating can be fixed by irradiating ultraviolet rays. In this way, the photosensitive composition can form a liquid crystal alignment film through a photo-alignment treatment, a heating step up to the liquid crystal phase transition temperature, and irradiation with non-polarized ultraviolet rays. Can be used.
  • the liquid crystal display element is obtained by obtaining a substrate with a liquid crystal alignment film from the photosensitive composition used in the present invention, and then preparing a liquid crystal cell by a known method to obtain a lateral electric field drive type liquid crystal display element.
  • a liquid crystal cell To give an example of the production of a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. A method of laminating the other substrate and injecting liquid crystal under reduced pressure, or a method of laminating liquid crystal on the liquid crystal alignment film surface on which spacers are dispersed, and then laminating the substrate and sealing, etc. It can be illustrated. At this time, it is preferable to use a substrate having an electrode having a structure like a comb for driving a horizontal electric field as the substrate on one side.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • the liquid crystal phase transition temperature of the polymer obtained in the example was measured using differential scanning calorimetry (DSC) and DSC3100SR (manufactured by Mac Science).
  • Example 1 [Production of liquid crystal cell] Using the liquid crystal aligning agent (A) obtained in Synthesis Example 1, a liquid crystal cell was prepared according to the procedure shown below.
  • the substrate used was a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
  • the pixel electrode has a comb-like shape configured by arranging a plurality of “ ⁇ ”-shaped electrode elements having a bent central portion. The width in the short direction of each electrode element is 10 ⁇ m, and the distance between the electrode elements is 20 ⁇ m.
  • the pixel electrode forming each pixel is formed by arranging a plurality of bent “ ⁇ ”-shaped electrode elements at the center, so that the shape of each pixel is not rectangular but is the same as the electrode element. It has a shape that resembles the bold “ ⁇ ” character that bends at the part.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed so as to form an angle of ⁇ 15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent (A) obtained in Example 1 was spin-coated on the prepared substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the photosensitive side chain type polymer film with a film thickness of 100 nm. Next, the film surface was irradiated with 5 mJ / cm 2 of 313 nm ultraviolet light through a polarizing plate and heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film made of a side chain polymer film.
  • a photosensitive side chain polymer film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which an electrode was not formed as a counter substrate, and an orientation treatment was performed.
  • a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate.
  • the other substrate was bonded so that the liquid crystal alignment film surfaces of both substrates faced each other and the alignment direction was 0 °, and then the sealing agent was thermally cured to produce an empty cell.
  • a liquid crystal cell having a configuration of an IPS (In-Planes Switching) mode liquid crystal display element is prepared by injecting liquid crystal, MLC-2041 (manufactured by Merck) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
  • IPS In-Planes Switching
  • the voltage holding ratio of the liquid crystal cell was measured by applying a voltage of 5 V for 60 ⁇ s at a temperature of 70 ° C., and calculating how much the voltage could be held after 1667 ms as the voltage holding ratio.
  • VHR-1 manufactured by Toyo Corporation was used.
  • the IPS mode liquid crystal cell prepared in Example 1 is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on in the state where no voltage is applied.
  • the arrangement angle of the liquid crystal cell was adjusted so as to be the smallest.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth.
  • an alternating voltage of 16 V PP was applied at a frequency of 30 Hz in an oven at 60 ° C. for 336 hours.
  • Example 2 In the secondary irradiation process, a cell was produced in the same procedure as in Example 1 except that ultraviolet rays that passed through a 313 nm bandpass filter were irradiated with 5 J / cm 2 (secondary irradiation). The evaluation results are shown in Table 1.
  • Example 3 In the same manner as in Example 1, the liquid crystal aligning agent (A) obtained in Synthesis Example 1 was spin-coated on a substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the surface of the photosensitive side chain polymer film was irradiated with 5 mJ / cm 2 of 313 nm ultraviolet light through a polarizing plate, heated on a hot plate at 150 ° C. for 10 minutes, the substrate was cooled for 30 minutes, and the side chain was further cooled.
  • a substrate with a liquid crystal alignment film was obtained by irradiating ultraviolet rays through a 365 nm band-pass filter with 1 J / cm 2 (secondary irradiation) on the surface of the mold polymer film. Moreover, it carried out similarly to Example 1, and obtained the liquid crystal cell provided with the structure of the IPS mode liquid crystal display element combining the opposing board
  • Example 4 In the secondary irradiation process on the substrate, the same procedure as in Example 3 was used, except that the side chain polymer film surface was irradiated with 500 mJ / cm 2 of ultraviolet light (secondary irradiation) through a 313 nm bandpass filter. A cell was produced. The evaluation results are shown in Table 1.
  • Examples 5 to 8> Using the liquid crystal aligning agent (B) obtained in Synthesis Example 2, a liquid crystal cell was produced in the same manner as in Examples 1 to 4. Table 1 summarizes the liquid crystal aligning agent used, the ultraviolet irradiation amount (primary irradiation), the secondary irradiation wavelength, the secondary irradiation amount, and the evaluation results.
  • Comparative Example 1 a liquid crystal cell was prepared in the same procedure as in Example 1, and then realignment treatment was performed in an oven at 120 ° C. for 60 minutes, but the secondary irradiation process was not performed. This liquid crystal cell was also subjected to voltage holding ratio measurement, afterimage evaluation, and cell observation after aging. The liquid crystal aligning agent used and the evaluation results are shown in Table 1.
  • Comparative example 2 a liquid crystal cell was prepared in the same procedure as in Example 5, and then re-aligned in an oven at 120 ° C. for 60 minutes, but the secondary irradiation process was not performed. This liquid crystal cell was also subjected to voltage holding ratio measurement, afterimage evaluation, and cell observation after aging. The liquid crystal aligning agent used and the evaluation results are shown in Table 1.
  • the liquid crystal cell in which the secondary irradiation process was introduced showed a higher voltage holding ratio than the cell not subjected to the secondary irradiation. This is presumably because unreacted photosensitive groups were reduced and cross-linking proceeded between the polymers by the photodimerization reaction.
  • This horizontal electric field drive type liquid crystal display element is a large-screen high-definition liquid crystal television. It can utilize suitably for various display uses, such as. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-57047 filed on March 19, 2013 is cited here as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Geometry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Provided is an in-plane-switching-type liquid-crystal display element having excellent reliability to which an orientation control function is imparted with high efficiency. A method for manufacturing the in-plane-switching-type liquid-crystal display element having: [I] a step for forming a light-sensitive side-chain-type polymer film by applying a light-sensitive composition, containing (A) a light-sensitive side-chain-type polymer expressing liquid crystallinity within a prescribed temperature range, and (B) an organic solvent, to a substrate having a conductive film for in-plane switching; [II] a step in which polarized ultraviolet light is radiated on the light-sensitive side-chain-type polymer film to create a side-chain-type polymer film; [III] a step for heating the side-chain-type polymer film; and [IV] a step for then further radiating ultraviolet light.

Description

横電界駆動型液晶表示素子の製造方法Method of manufacturing lateral electric field drive type liquid crystal display element
 本発明は、横電界駆動型液晶表示素子の製造方法、さらに詳しくは、焼き付き特性に優れる横電界駆動型液晶表示素子の製造方法に関する。 The present invention relates to a method of manufacturing a horizontal electric field drive type liquid crystal display element, and more particularly to a method of manufacturing a horizontal electric field drive type liquid crystal display element having excellent image sticking characteristics.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 The liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years. The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。 That is, the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
 配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。 As a method for aligning a liquid crystal alignment film for imparting alignment control ability, a rubbing method has been conventionally known. The rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction). This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements. As an organic film used for the liquid crystal alignment film, a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
 しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust and static electricity may be a problem. In addition, due to the high definition of the liquid crystal surface element in recent years and the unevenness caused by the corresponding electrodes on the substrate and the switching active element for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. In some cases, alignment of the liquid crystal cannot be realized.
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。
 光配向法には様々な方法があるが、直線偏光又はコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる方法である。主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせ、そして、分解せずに残されたポリイミドにより液晶を配向させるようにする方法が知られている(例えば、特許文献1参照)。
Therefore, a photo-alignment method has been actively studied as another alignment treatment method for a liquid crystal alignment film that is not rubbed.
There are various photo alignment methods. In this method, anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy. A decomposition type photo-alignment method is known as a main photo-alignment method. For example, irradiate a polyimide film with polarized UV light, cause anisotropic decomposition by utilizing the polarization direction dependency of UV absorption of the molecular structure, and align the liquid crystal with the remaining polyimide without decomposition. The method of making is known (for example, refer patent document 1).
 また、光架橋型や光異性化型の光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。そして、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献1を参照のこと。)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2参照)。 Further, photocrosslinking type and photoisomerization type photo-alignment methods are also known. For example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction perpendicular to the polarization direction (see, for example, Non-Patent Document 1). In addition, when a side chain polymer having azobenzene in the side chain is used, irradiation with polarized ultraviolet light causes an isomerization reaction at the azobenzene portion of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction perpendicular to the polarization direction. Align (for example, see Non-Patent Document 2).
 以上の例のように、光配向法による液晶配向膜の配向処理方法では、ラビングを不要とし、発塵や静電気の発生の懸念が無い。そして、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。 As in the above example, the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity. An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
日本特許第3893659号公報Japanese Patent No. 3893659
 以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に実施されてきたラビング法と比べてラビング工程そのものを不要とし、そのため大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。しかしながら、光配向法では、ラビング法による場合と同程度の配向制御能を実現しようとする場合、大量の偏光した光の照射量が必要となったり、安定な液晶の配向が実現できない場合がある。 As described above, the photo-alignment method eliminates the rubbing process itself as compared with the rubbing method that has been industrially performed as an alignment treatment method for liquid crystal display elements, and thus has a great advantage. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light. However, in the photo-alignment method, in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal alignment may not be realized. .
 例えば、特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を60分間照射する必要があるなど、長時間かつ大量の紫外線照射が必要となる。また、二量化型や光異性化型の光配向法の場合においても、数J(ジュール)から数十J程度の多くの量の紫外線照射が必要となる場合がある。さらに、光架橋型や光異性化型の光配向法の場合、液晶の配向の熱安定性や光安定性に劣るため、液晶表示素子とした場合に、配向不良や表示焼き付きが発生するといった問題があった。特に横電界駆動型の液晶表示素子では液晶分子を面内でスイッチングするため、液晶駆動後の液晶の配向ズレが発生しやすく、AC駆動に起因する表示焼き付きが大きな課題とされている。したがって、光配向法では、配向処理の高効率化や安定な液晶配向の実現が求められており、液晶配向膜への高い配向制御能の付与を高効率に行うことができる液晶配向膜や液晶配向剤が求められている。 For example, in the decomposition type photo-alignment method described in Patent Document 1, it is necessary to irradiate a polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes, for example, for a long time and a large amount of ultraviolet irradiation. Further, even in the case of a dimerization type or photoisomerization type photo-alignment method, a large amount of ultraviolet irradiation of about several J (joule) to several tens of J may be required. Furthermore, in the case of the photo-crosslinking type or photoisomerization type photo-alignment method, since the thermal stability and light stability of the liquid crystal alignment are inferior, there is a problem that alignment failure or display burn-in occurs when a liquid crystal display element is used. was there. In particular, in a horizontal electric field drive type liquid crystal display element, since liquid crystal molecules are switched in a plane, alignment misalignment of liquid crystal after liquid crystal driving is likely to occur, and display burn-in caused by AC driving is a major issue. Therefore, in the photo-alignment method, there is a demand for higher efficiency of alignment treatment and realization of stable liquid crystal alignment, and liquid crystal alignment films and liquid crystals that can impart high alignment control ability to the liquid crystal alignment film with high efficiency. There is a need for aligning agents.
 本発明は、高効率で配向制御能が付与され、信頼性に優れた横電界駆動型液晶表示素子を提供することを目的とする。 An object of the present invention is to provide a lateral electric field drive type liquid crystal display element which is imparted with high efficiency and orientation control ability and excellent in reliability.
 本発明者らは、上記課題を達成するべく鋭意検討を行った結果、横電界駆動用の導電膜を有する基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子を含む感光性組成物を塗布し、紫外線の照射とその後の加熱によって配向制御能が付与された横電界駆動型の液晶表示素子によって達成されることを見出し、本発明を完成させた。本発明は以下の要旨を有するものである。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have developed a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range on a substrate having a conductive film for driving a lateral electric field. The present invention has been completed by finding that it is achieved by applying a lateral electric field driving type liquid crystal display element to which an alignment control ability is imparted by applying a photosensitive composition containing, and then applying ultraviolet light irradiation and subsequent heating. The present invention has the following gist.
1.[I]横電界駆動用の導電膜を有する基板上に、
(A)100~250℃のある温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
(B)有機溶媒
を含有する感光性組成物を塗布して感光性側鎖型高分子膜を形成する工程、
[II]前記感光性側鎖型高分子膜に偏光した紫外線を照射する工程、
[III]前記側鎖型高分子膜を加熱する工程、
[IV]その後、さらに紫外線を照射する工程
を有することを特徴とする、横電界駆動型液晶表示素子の製造方法。
1. [I] On a substrate having a conductive film for lateral electric field driving,
(A) A photosensitive side chain polymer that exhibits liquid crystallinity in a temperature range of 100 to 250 ° C., and (B) a photosensitive side chain polymer that is coated with a photosensitive composition containing an organic solvent. Forming a film;
[II] a step of irradiating the photosensitive side chain polymer film with polarized ultraviolet rays;
[III] A step of heating the side chain polymer film,
[IV] A method of manufacturing a lateral electric field drive type liquid crystal display element, further comprising a step of further irradiating ultraviolet rays.
2.工程[II]の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%~70%の範囲内である上記1に記載の製造方法。
3.工程[II]の紫外線照射量が、前記ΔAを最大にする紫外線照射量の1%~50%の範囲内である上記1又は2に記載の製造方法。
4.工程[III]の加熱温度が、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃低い温度から当該温度範囲の上限より10℃低い温度までの範囲の温度である上記1~3のいずれかに記載の製造方法。
5.前記、液晶性を発現する感光性の側鎖型高分子に含有される感光性基がアゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン、フェニルベンゾエート、又はその誘導体である上記1~4のいずれかに記載の液晶配向膜の製造方法。
6.工程[IV]の紫外線照射量が、前記側鎖型高分子膜の有する感光性基100モルあたり20モル以上が反応する照射量である上記1~5のいずれかに記載の製造方法。
7.工程[IV]が、液晶表示素子の作製後に行われる上記1~6のいずれかに記載の製造方法。
8.(A)成分が、光架橋、光異性化、又は光フリース転移を起こす側鎖を有することを特徴とする上記1~7のいずれかに記載の製造方法。
2. The amount of UV irradiation in step [II] maximizes ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV light and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV light. 2. The production method according to 1 above, which is in the range of 1% to 70% of the ultraviolet irradiation amount.
3. 3. The production method according to 1 or 2 above, wherein the ultraviolet irradiation amount in the step [II] is in the range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ΔA.
4). The heating temperature in the step [III] is a temperature in the range from a temperature 10 ° C. lower than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the temperature range. 4. The production method according to any one of 1 to 3.
5. The above 1 wherein the photosensitive group contained in the photosensitive side chain polymer exhibiting liquid crystallinity is azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan, phenylbenzoate, or a derivative thereof. 5. A method for producing a liquid crystal alignment film according to any one of 4 to 4.
6). 6. The production method according to any one of 1 to 5 above, wherein the ultraviolet irradiation amount in the step [IV] is an irradiation amount with which 20 mol or more reacts with respect to 100 mol of the photosensitive group of the side chain polymer film.
7). 7. The production method according to any one of 1 to 6, wherein the step [IV] is performed after the production of the liquid crystal display element.
8). 8. The production method according to any one of 1 to 7 above, wherein the component (A) has a side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
9.(A)成分が、後記する式(1)~(13)からなる群から選ばれる感光性側鎖の少なくとも1つを有する側鎖型高分子を有する上記1~8のいずれかに記載の製造方法。
10.(A)成分が、後記する式(5)~(8)及び(14)~(22)からなる群から選ばれる液晶性側鎖の少なくとも1つを有する側鎖型高分子を有する上記1~9のいずれかに記載の製造方法。
9. The production according to any one of 1 to 8 above, wherein the component (A) has a side chain polymer having at least one photosensitive side chain selected from the group consisting of formulas (1) to (13) described later. Method.
10. (1) The above-mentioned 1 to (A) component has a side chain polymer having at least one liquid crystalline side chain selected from the group consisting of formulas (5) to (8) and (14) to (22) described later 10. The production method according to any one of 9 above.
11.(A)100~250℃のある温度範囲で液晶性を発現する感光性の側鎖型高分子、及び(B)有機溶媒を含有する感光性組成物であって、
 [I]上記感光性組成物を、横電界駆動用の導電膜を有する基板上に塗布して感光性側鎖型高分子膜を形成する工程、[II]前記感光性側鎖型高分子膜に偏光した紫外線を照射する工程、[III]前記側鎖型高分子膜を加熱する工程、[IV]さらに、側鎖型高分子膜に紫外線を照射する工程を、該順序に有する横電界駆動型液晶表示素子の製造方法に使用される感光性組成物。
12.(A)成分が、光架橋、光異性化、又は光フリース転移を起こす側鎖を有することを特徴とする上記11に記載の感光性組成物。
13.(A)成分が、後記する式(1)~(13)からなる群から選ばれる感光性側鎖の少なくとも1つを有する側鎖型高分子である上記11に記載の感光性組成物。
11. (A) a photosensitive side-chain polymer that exhibits liquid crystallinity in a temperature range of 100 to 250 ° C., and (B) a photosensitive composition containing an organic solvent,
[I] A step of coating the photosensitive composition on a substrate having a conductive film for driving a lateral electric field to form a photosensitive side chain polymer film, [II] The photosensitive side chain polymer film A step of irradiating polarized ultraviolet rays, [III] a step of heating the side chain polymer film, and [IV] a step of irradiating the side chain polymer film with ultraviolet rays in this order. Photosensitive composition used in a method for producing a liquid crystal display device.
12 12. The photosensitive composition as described in 11 above, wherein the component (A) has a side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
13. 12. The photosensitive composition according to 11 above, wherein the component (A) is a side chain polymer having at least one photosensitive side chain selected from the group consisting of formulas (1) to (13) described later.
14.(A)成分が、後記する式(5)~(8)及び式(14)~(22)からなる群から選ばれる液晶性側鎖の少なくとも1つを有する請求項11に記載の感光性組成物。
15.上記1~10のいずれかに記載の液晶表示素子の製造方法によって製造された液晶表示素子。
14 The photosensitive composition according to claim 11, wherein the component (A) has at least one liquid crystalline side chain selected from the group consisting of formulas (5) to (8) and formulas (14) to (22) described later. object.
15. 11. A liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device according to any one of 1 to 10 above.
 本発明の方法によって製造された横電界駆動型液晶表示素子は、高効率に配向制御能が付与されているため長時間連続駆動しても表示特性が損なわれることがない。 Since the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even if it is continuously driven for a long time.
本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖に架橋性の有機基を用い、導入された異方性が小さい場合の図である。It is a figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film used for this invention, using the crosslinkable organic group for the photosensitive side chain, and introduced the anisotropic It is a figure when property is small. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖に架橋性の有機基を用い、導入された異方性が大きい場合の図である。It is a figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film used for this invention, using the crosslinkable organic group for the photosensitive side chain, and introduced the anisotropic It is a figure when the property is large. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖にフリース転移又は異性化を起こす有機基を用い、導入された異方性が小さい場合の図である。It is a figure of one example which illustrates typically the introduction processing of anisotropy in the manufacturing method of the liquid crystal aligning film used for the present invention, using the organic group which causes fleece transition or isomerization to the photosensitive side chain, and is introduced. It is a figure in case the anisotropy made is small. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖にフリース転移又は異性化を起こす有機基を用い、導入された異方性が大きい場合の図である。It is a figure of one example which illustrates typically the introduction processing of anisotropy in the manufacturing method of the liquid crystal aligning film used for the present invention, using the organic group which causes fleece transition or isomerization to the photosensitive side chain, and is introduced. It is a figure in case the anisotropy made is large.
 本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の製造方法において用いられる感光性組成物は、液晶性を発現し得る感光性の側鎖型高分子(以下、側鎖型高分子ともいう。)を有しており、前記感光性組成物を用いて得られる膜は、液晶性を発現し得る感光性の側鎖型高分子の膜である。この膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行って液晶配向膜にすることができる。すなわち、側鎖型高分子の膜に偏光照射の後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された膜(液晶配向膜)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる。その後、液晶配向膜に紫外線を照射することで未反応の感光性基を減らすことができる。このようにすることで高効率な配向制御能を維持しつつ、信頼性に優れた液晶表示素子を得ることが可能となる。
As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention.
The photosensitive composition used in the production method of the present invention has a photosensitive side chain polymer (hereinafter also referred to as a side chain polymer) that can exhibit liquid crystallinity, and the photosensitive composition. A film obtained by using a product is a film of a photosensitive side chain type polymer that can exhibit liquid crystallinity. Without subjecting this film to rubbing treatment, alignment treatment can be performed by irradiation of polarized light to form a liquid crystal alignment film. That is, a film (liquid crystal alignment film) to which alignment control ability is imparted is obtained through a step of heating the side chain polymer film after irradiation of polarized light on the side chain polymer film. At this time, the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization. As a result, a highly efficient alignment process can be realized as the liquid crystal alignment film, and a liquid crystal alignment film with high alignment control ability can be obtained. Thereafter, the unreacted photosensitive groups can be reduced by irradiating the liquid crystal alignment film with ultraviolet rays. By doing so, it is possible to obtain a liquid crystal display element with excellent reliability while maintaining highly efficient alignment control ability.
<液晶表示素子の製造方法>
 以下、本発明の製造方法における工程[I]~工程[IV]の各工程について説明する。
 工程[I]では、横電界駆動用の導電膜を有する基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子及び有機溶媒を含有する感光性組成物(以下、感光性組成物ともいう。)を塗布して高分子膜を形成する。基板は、特に限定はされないが、例えば、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板などの透明基板を用いることができる。得られた高分子膜の適用を考慮し、液晶表示素子の製造のプロセスの簡素化の観点から、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることも可能である。また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用でき、この場合の電極としてアルミニムなどの光反射する材料も使用できる。
<Method for manufacturing liquid crystal display element>
Hereafter, each process of process [I]-process [IV] in the manufacturing method of this invention is demonstrated.
In the step [I], a photosensitive composition containing a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range and an organic solvent on a substrate having a conductive film for driving a lateral electric field (hereinafter, (Also referred to as a photosensitive composition) to form a polymer film. The substrate is not particularly limited, and for example, a transparent substrate such as a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used in addition to a glass substrate. In consideration of application of the obtained polymer film, it is also possible to use a substrate on which ITO (Indium Tin Oxide) electrodes for driving liquid crystals are formed in order to simplify the process of manufacturing liquid crystal display elements. is there. In consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used, and a light reflecting material such as aluminum can be used as an electrode in this case.
 塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)又はスプレー法などがあり、目的に応じてこれらを用いてもよい。 Application method is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
 基板上に感光性組成物を塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により20~180℃、好ましくは40~150℃で溶媒を蒸発させて感光性側鎖型高分子膜を得ることができる。このときの乾燥温度は側鎖型高分子の液晶相発現温度よりも低いことが好ましい。高分子膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~150nmである。
 尚、工程[I]の後、続く工程[II]の前に感光性側鎖型高分子膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
After the photosensitive composition is applied on the substrate, the solvent is evaporated at 20 to 180 ° C., preferably 40 to 150 ° C. by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven, and the photosensitive composition is exposed. Can be obtained. The drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the polymer film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is preferably 5 to 300 nm, more preferably 10 to 10 nm. 150 nm.
In addition, it is also possible to provide the process of cooling the board | substrate with which the photosensitive side chain type polymer film was formed to room temperature after process [I] and before the following process [II].
 工程[II]では、工程[I]で得られた感光性側鎖型高分子膜に偏光した紫外線を照射する。感光性側鎖型高分子膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長200~400nmの範囲の紫外線を使用することがきる。好ましくは、使用する感光性側鎖型高分子膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290~400nmの範囲の紫外線を選択して使用することがきる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。 In step [II], the photosensitive side chain polymer film obtained in step [I] is irradiated with polarized ultraviolet rays. When irradiating the surface of the photosensitive side chain polymer film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 200 to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of the photosensitive side chain polymer film to be used. For example, ultraviolet light having a wavelength in the range of 290 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光した紫外線の照射量については、使用する感光性側鎖型高分子膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxともいう。)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1~50%の範囲内とすることがより好ましい。 Regarding the irradiation amount of polarized ultraviolet rays, the maximum value of ΔA which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays in the photosensitive side chain polymer film to be used. (Hereinafter also referred to as ΔAmax) is preferably in the range of 1% to 70%, more preferably in the range of 1 to 50% of the amount of polarized ultraviolet light that realizes (hereinafter also referred to as ΔAmax).
 工程[III]では、工程[II]で偏光した紫外線の照射された側鎖型高分子膜を加熱する。加熱は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段を用いる。加熱の温度については、使用する側鎖型高分子膜の液晶性を発現させる温度を考慮して決めることができる。また、一般的に膜の表面においては分子間力が働く力が小さいために、表面のTg(ガラス転位温度)はバルクのTgよりも低くなる、つまり、液晶配向膜表面の液晶温度範囲においてもバルクでみた液晶温度範囲に対して低くなることが予想される。すなわち、偏光紫外線照射後の加熱温度は、使用する側鎖型高分子膜が液晶性を発現する液晶温度範囲の下限より10℃低い温度を下限とし、液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。
 以上の工程を有することにより、本発明では、高効率な、感光性側鎖型高分子膜への異方性の導入を実現する。そして、高効率に本発明の製造方法に用いる液晶配向膜付基板を製造することができる。
In step [III], the side chain polymer film irradiated with the ultraviolet light polarized in step [II] is heated. For the heating, a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven is used. The heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the side chain type polymer film to be used is developed. In general, since the intermolecular force is small on the surface of the film, the surface Tg (glass transition temperature) is lower than the bulk Tg, that is, even in the liquid crystal temperature range of the liquid crystal alignment film surface. It is expected to be lower than the liquid crystal temperature range seen in bulk. That is, the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the liquid crystal temperature range in which the side chain polymer film used exhibits liquid crystallinity, and 10 ° C. lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range made into an upper limit.
By having the above steps, the present invention achieves highly efficient introduction of anisotropy into the photosensitive side chain polymer film. And the board | substrate with a liquid crystal aligning film used for the manufacturing method of this invention can be manufactured highly efficiently.
 工程[IV]では、工程[III]で得られた側鎖型高分子膜にさらに紫外線を照射する。この工程は、工程[III]の直後に直接基板上の前記側鎖型高分子膜に紫外線を照射してもよいし、その後、前記側鎖型高分子膜付の基板を用いて液晶表示素子を作製する工程で紫外線を照射してもよいし、液晶表示素子を作製した後で、得られた液晶表示素子に紫外線を照射してもよい。このようにすることで、高効率で配向制御能が付与されたまま未反応の感光性基を消光させることができるため、信頼性に優れた液晶表示素子を製造することが可能となる。なお、本発明中での液晶温度範囲とは示差走査熱量測定によって求めた値のことである。 In step [IV], the side chain polymer film obtained in step [III] is further irradiated with ultraviolet rays. In this step, the side chain polymer film on the substrate may be directly irradiated with ultraviolet rays immediately after the step [III], and then the liquid crystal display element using the substrate with the side chain polymer film is used. Ultraviolet rays may be irradiated in the step of manufacturing the liquid crystal display device, or after the liquid crystal display device is manufactured, the obtained liquid crystal display device may be irradiated with ultraviolet rays. By doing in this way, since the unreacted photosensitive group can be quenched while the alignment control ability is imparted with high efficiency, it becomes possible to manufacture a liquid crystal display element having excellent reliability. The liquid crystal temperature range in the present invention is a value obtained by differential scanning calorimetry.
<感光性組成物>
 本発明の製造方法に用いられる感光性組成物は、液晶性を発現し得る感光性の側鎖型高分子を含み、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子を含む。そして、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、又は光フリース転位を起こすことができる。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、又は光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。
<Photosensitive composition>
The photosensitive composition used in the production method of the present invention includes a photosensitive side chain polymer that can exhibit liquid crystallinity, and a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range. Including. And the side chain which has photosensitivity has couple | bonded with the principal chain, A crosslinking reaction, an isomerization reaction, or a light fleece rearrangement can be caused in response to light. The structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, the achieved orientation control ability can be stably maintained for a long period of time even when exposed to external stress such as heat.
 液晶性を発現し得る感光性側鎖型高分子膜の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子膜を液晶配向膜とした際に、安定な液晶配向を得ることができる。該側鎖型高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造とすることができる。また、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。 The structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer film is used as a liquid crystal alignment film. The structure of the side chain polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain is a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, or an azobenzene group. And a photosensitive group bonded to the tip and capable of undergoing a crosslinking reaction or an isomerization reaction in response to light. Moreover, it can be set as the structure which has a phenylbenzoate group which has a main chain and the side chain couple | bonded with it, the side chain also becomes a mesogenic component, and carries out a photo-Fries rearrangement reaction.
 液晶性を発現し得る感光性の側鎖型高分子の構造のより具体的な例としては、炭化水素、アクリレート、メタクリレート、マレイミド、ノルボルネン及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)~(13)からなる群から選ばれる少なくとも1種からなる感光性側鎖を有する構造であることが好ましい。 More specific examples of the structure of the photosensitive side chain polymer that can exhibit liquid crystallinity include at least one selected from the group consisting of hydrocarbon, acrylate, methacrylate, maleimide, norbornene, and siloxane. A structure having a main chain and at least one photosensitive side chain selected from the group consisting of the following formulas (1) to (13) is preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 但し、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-を表す。A’、B’はそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す。Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~4のアルキル基若しくはアルコキシ基で置換されていてもよい。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-を表し、lは1~12の整数を表し、mは0~2の整数を表し、m1、m2はそれぞれ独立に1~3の整数を表し、nは0~12の整数(但し、n=0のときBは単結合である)を表す。Yは2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。RはOH、NH、炭素数1~6のアルコキシ基又は炭素数1~6のアルキルアミノ基を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~12のアルキル基若しくはアルコキシ基を表す。式(1)~(13)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。
 上記式(1)~(13)で表される側鎖は、ビフェニル、ターフェニル、フェニルシクロヘキシル、フェニルベンゾエート、アゾベンゼン、ナフタレン、アントラセン、フルオレンなどの基をメソゲン成分として有する構造を備える。そして、その先端部には、光に感応して二量化反応を起こし、架橋反応をする感光性基を有するか、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する、少なくともいずれか一方を有する。
However, A, B, and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. A ′ and B ′ are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, Or, —O—CO—CH═CH— is represented. Y 1 is a group selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and a hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 4 carbon atoms. X represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, l represents an integer of 1 to 12, and m represents an integer of 0 to 2 M1 and m2 each independently represents an integer of 1 to 3, and n represents an integer of 0 to 12 (provided that B is a single bond when n = 0). Y 2 is a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. R represents OH, NH 2 , an alkoxy group having 1 to 6 carbon atoms or an alkylamino group having 1 to 6 carbon atoms. R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 12 carbon atoms. One or more of the benzene rings in the formulas (1) to (13) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring and a fluorene ring.
The side chains represented by the above formulas (1) to (13) have a structure having groups such as biphenyl, terphenyl, phenylcyclohexyl, phenylbenzoate, azobenzene, naphthalene, anthracene, and fluorene as mesogenic components. And at the tip, it has a photosensitive group that undergoes a dimerization reaction in response to light and undergoes a crosslinking reaction, or has a main chain and a side chain bonded thereto, and the side chain also becomes a mesogenic component. And having at least one of phenylbenzoate groups that undergo a photo-Fries rearrangement reaction.
 本発明の製造方法では、感光性組成物を用いて基板上に感光性側鎖型高分子膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。側鎖型高分子膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、側鎖型高分子膜への高効率な異方性の導入を実現する。本発明では、側鎖型高分子に感光性基として光架橋性基を有する構造の場合、感光性の側鎖型高分子を用いて基板上に感光性側鎖型高分子膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作製する。 In the production method of the present invention, a photosensitive side chain type polymer film is formed on a substrate using a photosensitive composition, and then irradiated with polarized ultraviolet rays. Next, by heating, high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured. Side-chain polymer membranes utilize the principle of molecular reorientation induced by side-chain photoreaction and self-organization based on liquid crystallinity to provide highly efficient anisotropy to side-chain polymer membranes. Realize the introduction. In the present invention, in the case of a structure having a photocrosslinkable group as a photosensitive group in the side chain polymer, after forming the photosensitive side chain polymer film on the substrate using the photosensitive side chain polymer. After irradiating polarized ultraviolet rays and then heating, a liquid crystal display element is manufactured.
 以下に、感光性基として光架橋性基を有する構造の側鎖型高分子を用いる第1の形態、感光性基として光フリース転位基又は異性化を起こす基を有する構造の側鎖型高分子を用いる第2の形態について説明する。 Hereinafter, a first embodiment using a side chain polymer having a structure having a photocrosslinkable group as a photosensitive group, a side chain polymer having a structure having a photofleece rearrangement group or a group causing isomerization as a photosensitive group. A second embodiment using the above will be described.
 図1は、本発明の第1の形態において、感光性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一例を示す。特に導入された異方性が小さい場合、すなわち、本発明の第1の形態において、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~15%の範囲内である場合の模式図である。
 図1(a)は、偏光照射前の側鎖型高分子膜1の状態を模式的に示す図であり、側鎖2がランダムに配列する構造を有する。この側鎖2のランダム配列に従い、側鎖2のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜1は等方性である。
 図1(b)は、偏光照射後の側鎖型高分子膜1の状態を模式的に示す図であり、紫外線の偏光方向と平行な方向に配列する側鎖2のうちの感光性基を有する側鎖2aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖2aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として側鎖型高分子膜1に非常に小さな異方性が付与される。
 図1(c)は、加熱後の側鎖型高分子膜1の状態を模式的に示す図であり、側鎖型高分子膜1では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。この場合、照射紫外線の偏光方向と平行方向に生じた架橋反応の量が非常に小さいため、この架橋反応部位は可塑剤としての働きをする。そのため、照射紫外線の偏光方向と垂直方向の液晶性が平行方向の液晶性より高くなり、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖2が再配向する。その結果、光架橋反応で誘起された側鎖型高分子膜1の非常に小さな異方性は、熱によって増幅され、側鎖型高分子膜1においてより大きな異方性が付与されることになる。
FIG. 1 schematically shows an anisotropy introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a photocrosslinkable group as a photosensitive group in the first embodiment of the present invention. An example to explain is shown. In particular, when the introduced anisotropy is small, that is, in the first embodiment of the present invention, the ultraviolet irradiation amount in the step [II] is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ΔA. It is a schematic diagram in the case.
FIG. 1A is a diagram schematically showing the state of the side chain polymer film 1 before polarized light irradiation, and has a structure in which the side chains 2 are randomly arranged. According to the random arrangement of the side chain 2, the mesogenic component and the photosensitive group of the side chain 2 are also randomly oriented, and the side chain type polymer film 1 is isotropic.
FIG. 1 (b) is a diagram schematically showing the state of the side chain polymer film 1 after irradiation with polarized light. The photosensitive groups in the side chain 2 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown. The photosensitive group of the side chain 2a possessed preferentially causes a photoreaction such as a dimerization reaction. As a result, the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, the side chain polymer film 1 is provided with very small anisotropy.
FIG. 1C is a diagram schematically showing the state of the side chain polymer film 1 after heating. In the side chain polymer film 1, the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet light is shown. The amount of the cross-linking reaction that occurs. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer. Therefore, the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the very small anisotropy of the side chain polymer film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 1. Become.
 図2は、本発明の第1の形態において、感光性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一例を示す。特に導入された異方性が大きい場合、すなわち、本発明の第1の形態において、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の15~70%の範囲内である場合の模式図である。
 図2(a)は、偏光照射前の側鎖型高分子膜3の状態を模式的に示す図であり、側鎖4がランダムに配列する構造を有する。この側鎖4のランダム配列に従い、側鎖4のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜3は等方性である。
 図2(b)は、偏光照射後の側鎖型高分子膜3の状態を模式的に示す図であり、紫外線の偏光方向と平行な方向に配列する側鎖4のうちの感光性基を有する側鎖4aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖4aの密度が照射紫外線の偏光方向で高くなり、結果として側鎖型高分子膜3に小さな異方性が付与される。
 図2(c)は、加熱後の側鎖型高分子膜3の状態を模式的に示す図であり、側鎖型高分子膜3では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。そのため、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖4が再配向する。その結果、光架橋反応で誘起された側鎖型高分子膜3の小さな異方性は、熱によって増幅され、側鎖型高分子膜3においてより大きな異方性が付与されることになる。
FIG. 2 schematically shows an anisotropic introduction process in the method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photosensitive group in the first embodiment of the present invention. An example to explain is shown. In particular, when the introduced anisotropy is large, that is, in the first embodiment of the present invention, the ultraviolet irradiation amount in the step [II] is in the range of 15 to 70% of the ultraviolet irradiation amount that maximizes ΔA. It is a schematic diagram in the case.
FIG. 2A is a diagram schematically showing the state of the side chain polymer film 3 before polarized light irradiation, and has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chain 4, the mesogenic component and the photosensitive group of the side chain 4 are also randomly oriented, and the side chain type polymer film 3 is isotropic.
FIG. 2 (b) is a diagram schematically showing the state of the side chain polymer film 3 after irradiation with polarized light. The photosensitive groups in the side chains 4 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown. The photosensitive group of the side chain 4a possessed preferentially causes a photoreaction such as a dimerization reaction. As a result, the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet rays, and as a result, a small anisotropy is imparted to the side chain type polymer film 3.
FIG. 2 (c) is a diagram schematically showing the state of the side chain polymer film 3 after heating. In the side chain polymer film 3, the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet light The amount of the cross-linking reaction that occurs. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the small anisotropy of the side chain polymer film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 3.
 図3は本発明における第2の形態において、感光性基として上述の式(5)又は(7)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。特に導入された異方性が小さい場合、すなわち、本発明の第2の態様において、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の1~15%の範囲内である場合の模式図である。
 図3(a)は、偏光照射前の側鎖型高分子膜5の状態を模式的に示す図であり、側鎖6がランダムに配列する構造を有する。この側鎖6のランダム配列に従い、側鎖6のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜5は等方性である。
 図3(b)は、偏光照射後の側鎖型高分子膜5の状態を模式的に示す図であり、紫外線の偏光方向と平行な方向に配列する側鎖6のうちの感光性基を有する側鎖6aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖6aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として側鎖型高分子膜5に非常に小さな異方性が付与される。
 図3(c)は、加熱後の側鎖型高分子膜5の状態を模式的に示す図であり、側鎖型高分子膜5では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。この場合、照射紫外線の偏光方向と垂直方向に生じた光フリース転位体の液晶配向力が反応前の側鎖の液晶配向力より強いため、照射紫外線の偏光方向と垂直な方向に自己組織化してメソゲン成分を含む側鎖6が再配向する。その結果、光フリース転位反応で誘起された側鎖型高分子膜5の非常に小さな異方性は、熱によって増幅され、側鎖型高分子膜5においてより大きな異方性が付与されることになる。
FIG. 3 shows a liquid crystal alignment film using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (5) or (7) as a photosensitive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction process of anisotropy in this manufacturing method. In particular, when the introduced anisotropy is small, that is, in the second embodiment of the present invention, the ultraviolet irradiation amount in the step [II] is in the range of 1 to 15% of the ultraviolet irradiation amount that maximizes ΔA. It is a schematic diagram in the case.
FIG. 3A is a diagram schematically showing the state of the side chain polymer film 5 before irradiation with polarized light, and has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain polymer film 5 is isotropic.
FIG. 3B is a diagram schematically showing the state of the side chain polymer film 5 after irradiation with polarized light. The photosensitive groups in the side chains 6 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown. The photosensitive group of the side chain 6a has preferentially photoreaction such as photofleece rearrangement. As a result, the density of the side chain 6a subjected to the photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, the side chain type polymer film 5 is given a very small anisotropy.
FIG. 3C is a diagram schematically showing the state of the side chain polymer film 5 after heating. In the side chain polymer film 5, the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet rays. And the amount of photo-Fries rearrangement reaction that occurs. In this case, since the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light. The side chain 6 containing the mesogenic component is reoriented. As a result, the very small anisotropy of the side chain polymer film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 5. become.
 図4は本発明における第2の形態において、感光性基として上述の式(6)又は(8)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。特に導入された異方性が大きい場合、すなわち、本発明の第2の態様において、工程[II]の紫外線照射量が、ΔAを最大にする紫外線照射量の15%~70%の範囲内である場合の模式図である。
 図4(a)は、偏光照射前の側鎖型高分子膜7の状態を模式的に示す図であり、側鎖8がランダムに配列する構造を有する。この側鎖8のランダム配列に従い、側鎖8のメソゲン成分及び感光性基もランダムに配向しており、その側鎖型高分子膜7は等方性である。
 図4(b)は、偏光照射後の側鎖型高分子膜7の状態を模式的に示す図であり、紫外線の偏光方向と平行な方向に配列する側鎖8のうちの感光性基を有する側鎖8aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖8aの密度が照射紫外線の偏光方向で高くなり、結果として側鎖型高分子膜7に小さな異方性が付与される。
 図4(c)は、加熱後の側鎖型高分子膜7の状態を模式的に示す図であり、側鎖型高分子膜7では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。光フリース転位体8aのアンカリング力は転位前の側鎖8より強いため、ある一定量以上の光フリース転位体が生じると、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖8が再配向する。その結果、光フリース転位反応で誘起された側鎖型高分子膜7の小さな異方性は、熱によって増幅され、側鎖型高分子膜7においてより大きな異方性が付与されることになる。
 従って、側鎖型高分子膜は、側鎖型高分子膜への偏光した紫外線の照射と加熱処理を順次行うことにより、高効率に異方性が導入され、配向制御能に優れた液晶配向膜とすることができる。
 そして、側鎖型高分子膜では、側鎖型高分子膜への偏光した紫外線の照射量と、加熱処理における加熱温度を最適化する。それにより高効率な、側鎖型高分子膜への異方性の導入を実現することができる。
FIG. 4 shows a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fries rearrangement group represented by the above formula (6) or (8) as a photosensitive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction process of anisotropy in this manufacturing method. In particular, when the introduced anisotropy is large, that is, in the second embodiment of the present invention, the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA. It is a schematic diagram in a case.
FIG. 4A is a diagram schematically showing a state of the side chain polymer film 7 before irradiation with polarized light, and has a structure in which the side chains 8 are randomly arranged. According to the random arrangement of the side chain 8, the mesogenic component and the photosensitive group of the side chain 8 are also randomly oriented, and the side chain polymer film 7 is isotropic.
FIG. 4B is a diagram schematically showing the state of the side chain polymer film 7 after irradiation with polarized light. The photosensitive groups in the side chains 8 arranged in a direction parallel to the polarization direction of ultraviolet rays are shown. The photosensitive group of the side chain 8a has a photoreaction such as photofleece rearrangement preferentially. As a result, the density of the side chain 8 a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the side chain type polymer film 7.
FIG. 4C is a diagram schematically showing the state of the side chain polymer film 7 after heating. In the side chain polymer film 7, the direction perpendicular to the direction parallel to the polarization direction of the irradiated ultraviolet rays. And the amount of photo-Fries rearrangement reaction that occurs. Since the anchoring force of the optical fleece rearrangement 8a is stronger than that of the side chain 8 before the rearrangement, if a certain amount or more of the optical fleece rearrangement is generated, it self-assembles in a direction parallel to the polarization direction of the irradiated ultraviolet light, and the mesogenic component is formed. The containing side chain 8 is reoriented. As a result, the small anisotropy of the side chain polymer film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is given to the side chain polymer film 7. .
Therefore, the side chain polymer film is a liquid crystal alignment with high anisotropy introduced and high alignment control ability by sequentially irradiating the side chain polymer film with polarized ultraviolet rays and heat treatment. It can be a membrane.
In the side chain polymer film, the irradiation amount of polarized ultraviolet rays to the side chain polymer film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the side chain type polymer film can be realized with high efficiency.
 本発明者は、鋭意検討を行った結果、次の知見を得た。すなわち、側鎖型高分子膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その側鎖型高分子膜において感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する量を最適にする偏光紫外線の照射量に対応する。側鎖型高分子膜に対して偏光した紫外線を照射した結果、光架橋反応や光異性化反応、若しくは光フリース転位反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。一方、側鎖型高分子膜で、光架橋性基を有する構造に対して偏光した紫外線を照射した結果、架橋反応する側鎖の感光性基が過剰となると、側鎖間での架橋反応が進行しすぎることになる。その場合、得られる側鎖型高分子膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。また、側鎖型高分子膜で、光フリース転位基を有する構造に対して偏光した紫外線を照射した結果、光フリース転位反応する側鎖の感光性基が過剰となると、側鎖型高分子膜の液晶性が低下しすぎることになる。その場合、得られる側鎖型高分子膜の液晶性も低下し、その後の加熱による自己組織化の進行の妨げとなることがある。さらに、光フリース転位基を有する構造に対して偏光した紫外線を照射する場合、紫外線の照射量が多すぎると、側鎖型高分子が光分解し、その後の加熱による自己組織化の進行の妨げとなることがある。 The inventor obtained the following knowledge as a result of intensive studies. That is, the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the side chain polymer film is such that the photo-sensitive group in the side chain polymer film undergoes photocrosslinking reaction or photoisomerization reaction, or It corresponds to the irradiation amount of polarized ultraviolet rays that optimizes the amount of photofleece rearrangement reaction. As a result of irradiating the side chain type polymer film with polarized ultraviolet rays, if there are few photogroups in the side chain that undergoes photocrosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction, the amount of photoreaction is not sufficient. In that case, sufficient self-organization does not proceed even after heating. On the other hand, when the structure having a photocrosslinkable group is irradiated with polarized ultraviolet rays in the side chain type polymer film, if the photopolymer of the side chain undergoing the crosslink reaction becomes excessive, the crosslink reaction between the side chains is caused. Too much progress. In that case, the obtained side chain type polymer film becomes rigid and may hinder the progress of self-assembly by subsequent heating. In addition, when the side chain type polymer film is irradiated with polarized ultraviolet rays to the structure having the light fleece rearrangement group, the side chain type polymer film becomes excessive if the side chain photosensitive group that undergoes the light fleece rearrangement reaction becomes excessive. The liquid crystallinity of the film will be too low. In that case, the liquid crystallinity of the obtained side chain polymer film is also lowered, which may hinder the progress of self-assembly by subsequent heating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photo-fleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side-chain polymer is photodegraded, preventing the subsequent self-organization by heating. It may become.
 従って、側鎖型高分子膜において、偏光紫外線の照射によって側鎖の感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1モル%~40モル%にすることが好ましく、0.1モル%~20モル%にすることがより好ましい。光反応する側鎖の感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。 Therefore, in the side chain polymer film, the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the photosensitive group of the side chain by irradiation with polarized ultraviolet rays is the same as that of the side chain polymer film. The content is preferably 0.1 mol% to 40 mol%, more preferably 0.1 mol% to 20 mol% of the photosensitive group. By making the amount of the photo-reactive side chain photosensitive group within such a range, the self-organization in the subsequent heat treatment proceeds efficiently, and the formation of highly efficient anisotropy in the film is possible. Become.
 側鎖型高分子膜では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光架橋反応や光異性化反応、又は光フリース転位反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、側鎖型高分子膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、側鎖型高分子膜の紫外吸収の評価に基づいて行うことが可能である。 For side-chain polymer films, the amount of photo-crosslinking reaction, photoisomerization reaction, or photofleece rearrangement reaction of photosensitive groups in the side chain of the side-chain polymer film by optimizing the irradiation amount of polarized ultraviolet rays To optimize. In combination with the subsequent heat treatment, high-efficiency introduction of anisotropy into the side chain polymer film is realized. In that case, a suitable amount of polarized ultraviolet light can be determined based on the evaluation of ultraviolet absorption of the side chain polymer film.
 すなわち、側鎖型高分子膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その側鎖型高分子膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、側鎖型高分子膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。 That is, the UV absorption in the direction parallel to the polarization direction of the polarized UV light and the UV absorption in the vertical direction after the irradiation with the polarized UV light are measured for the side chain type polymer film. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays, is evaluated. Then, the maximum value (ΔAmax) of ΔA realized in the side chain type polymer film and the irradiation amount of polarized ultraviolet rays that realizes it are obtained. In the production method of the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ΔAmax.
 本発明の製造方法では、側鎖型高分子膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。側鎖型高分子膜において、ΔAmaxを実現する偏光紫外線の量の1%~50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1モル%~20モル%を光架橋反応させる偏光紫外線の量に相当する。 In the production method of the present invention, the irradiation amount of the polarized ultraviolet rays on the side chain polymer film is preferably in the range of 1% to 70% of the amount of the polarized ultraviolet rays that realizes ΔAmax. % Is more preferable. In the side chain polymer film, the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ΔAmax is 0.1% of the entire photosensitive group of the side chain polymer film. The mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
 次に、本発明の製造方法では、側鎖型高分子膜に偏光した紫外線を照射した後に加熱を行う。この側鎖型高分子膜は、所定の温度範囲で液晶性を発現し得る高分子膜である。偏光紫外線照射後の加熱処理は、側鎖型高分子膜の液晶性を発現させる温度を基準にして決めることができる。また、側鎖型高分子膜の表面が液晶性を発現する温度は、バルクで見た場合に液晶性を発現する温度よりも低いことが予想される。すなわち、偏光紫外線照射後の加熱温度は、側鎖型高分子膜が液晶性を発現する温度範囲(以下、液晶温度範囲ともいう。)より10℃低い温度からその液晶温度範囲の上限より10℃低い温度までの範囲の温度であることが好ましい。 Next, in the production method of the present invention, the side chain polymer film is heated after being irradiated with polarized ultraviolet rays. This side chain type polymer film is a polymer film that can exhibit liquid crystallinity in a predetermined temperature range. The heat treatment after irradiation with polarized ultraviolet rays can be determined based on the temperature at which the liquid crystallinity of the side chain polymer film is developed. In addition, the temperature at which the surface of the side chain polymer film develops liquid crystallinity is expected to be lower than the temperature at which liquid crystallinity develops when viewed in bulk. That is, the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. from the temperature range 10 ° C. lower than the temperature range in which the side chain polymer film exhibits liquid crystallinity (hereinafter also referred to as the liquid crystal temperature range). A temperature in the range up to a low temperature is preferred.
 本発明に用いられる側鎖型高分子膜は、偏光した紫外線の照射後に、加熱され、液晶状態となって、偏光方向と平行な方向に自己組織化して再配向する。その結果、光架橋反応や光異性化反応、及び、光フリース転位反応で誘起された側鎖型高分子膜の小さな異方性は、熱によって増幅されることになる。しかし、側鎖型高分子膜が加熱により液晶状態を呈している場合でも、加熱温度が低いと、液晶状態の側鎖型高分子膜の粘度は高く、自己組織化による再配向が生じにくくなってしまう。例えば、加熱温度が側鎖型高分子膜の液晶温度範囲の下限から10℃以上低い温度である場合、側鎖型高分子膜における熱による異方性の増幅効果を十分なものとすることができない。 The side chain type polymer film used in the present invention is heated after being irradiated with polarized ultraviolet rays to be in a liquid crystal state, and is self-organized and reoriented in a direction parallel to the polarization direction. As a result, the small anisotropy of the side chain polymer film induced by the photocrosslinking reaction, photoisomerization reaction, and photofleece rearrangement reaction is amplified by heat. However, even when the side chain polymer film is in a liquid crystal state by heating, if the heating temperature is low, the viscosity of the side chain polymer film in the liquid crystal state is high and realignment due to self-assembly is less likely to occur. End up. For example, when the heating temperature is lower by 10 ° C. or more from the lower limit of the liquid crystal temperature range of the side chain polymer film, the effect of anisotropy amplification by heat in the side chain polymer film may be sufficient. Can not.
 また、側鎖型高分子膜が加熱により液晶状態を呈しているとしても、加熱温度が高いと、側鎖型高分子膜の状態が等方性の液体状態に近くなり、自己組織化によって一方向に再配向することが困難になってしまう。例えば、加熱温度が側鎖型高分子膜の液晶温度範囲の上限から10℃低い温度より高い温度である場合、側鎖型高分子膜における熱による異方性の増幅効果を十分なものとすることができない。 Even if the side chain polymer film is in a liquid crystal state by heating, when the heating temperature is high, the state of the side chain polymer film becomes close to an isotropic liquid state, and the side chain polymer film is made uniform by self-organization. It becomes difficult to reorient in the direction. For example, when the heating temperature is higher than the temperature lower by 10 ° C. from the upper limit of the liquid crystal temperature range of the side chain polymer film, the anisotropy amplification effect due to heat in the side chain polymer film is sufficient. I can't.
 以上より、本発明では、側鎖型高分子膜への高効率な異方性の導入を実現するため、その側鎖型高分子膜の液晶温度範囲を基準として好適な加熱温度を定める。そして上述したように、偏光紫外線照射後の加熱の温度を、その側鎖型高分子膜の液晶温度範囲の下限より10℃低い温度を下限とし、液晶温度範囲の上限より10℃低い温度を上限とする範囲内の温度とする。したがって、例えば、側鎖型高分子膜の液晶温度範囲が100~200℃である場合、偏光紫外線照射後の加熱の温度を90~190℃とすることが望ましい。こうすることにより、側鎖型高分子膜において、より大きな異方性が付与されることになる。こうすることにより、得られる液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示す。 As described above, in the present invention, in order to achieve highly efficient anisotropy introduction into the side chain polymer film, a suitable heating temperature is determined based on the liquid crystal temperature range of the side chain polymer film. As described above, the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the liquid crystal temperature range of the side chain polymer film, and the upper limit is 10 ° C. lower than the upper limit of the liquid crystal temperature range. The temperature is within the range. Therefore, for example, when the liquid crystal temperature range of the side chain polymer film is 100 to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 to 190 ° C. By so doing, greater anisotropy is imparted to the side chain polymer film. By doing so, the obtained liquid crystal display element shows high reliability against external stresses such as light and heat.
 本発明で用いる感光性組成物は、250~400nmの波長範囲の光で反応し、かつ100~250℃のある温度範囲で液晶性を示す側鎖型高分子を含有する。感光性組成物の成分となる重合体は、250~400nmの波長範囲の光に反応する感光性基を有することが好ましい。感光性組成物の成分となる重合体は、100~250℃のある温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
 上記の液晶性を発現し得る感光性の側鎖型高分子は上記の感光性基を有する感光性側鎖モノマー及び/又は液晶性側鎖モノマーを重合することによって得ることができる。
The photosensitive composition used in the present invention contains a side chain polymer that reacts with light in a wavelength range of 250 to 400 nm and exhibits liquid crystallinity in a temperature range of 100 to 250 ° C. The polymer serving as a component of the photosensitive composition preferably has a photosensitive group that reacts with light in the wavelength range of 250 to 400 nm. The polymer as a component of the photosensitive composition preferably has a mesogenic group in order to exhibit liquid crystallinity in a certain temperature range of 100 to 250 ° C.
The above-mentioned photosensitive side chain polymer capable of exhibiting liquid crystallinity can be obtained by polymerizing the above photosensitive side chain monomer and / or liquid crystalline side chain monomer having the above photosensitive group.
[感光性側鎖モノマー]
 感光性側鎖モノマーとは重合体を形成した場合に、高分子の側鎖部位に感光性基を有するモノマーのことである。側鎖の有する感光性基としては下記の構造又はその誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000012
[Photosensitive side chain monomer]
The photosensitive side chain monomer is a monomer having a photosensitive group at a side chain portion of a polymer when a polymer is formed. As the photosensitive group possessed by the side chain, the following structures or derivatives thereof are preferable.
Figure JPOXMLDOC01-appb-C000012
 感光性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、マレイミド、ノルボルネン及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)~(13)からなる群から選ばれる少なくとも1種からなる感光性側鎖を有する構造であることが好ましい。 More specific examples of the photosensitive side chain monomer include a main chain composed of at least one selected from the group consisting of hydrocarbon, (meth) acrylate, maleimide, norbornene and siloxane, and the following formula (1): A structure having at least one photosensitive side chain selected from the group consisting of (13) to (13) is preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(1)~(13)中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-を表す。A’、B’はそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す。Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。Xは単結合、
-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-を表し、lは1~12の整数を表し、mは0~2の整数を表し、m1、m2はそれぞれ独立に1~3の整数を表し、nは0~12の整数(但し、n=0のとき、Bは単結合である)を表す。Yは2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。Rは-OH、-NH、炭素数1~6のアルコキシ基又は炭素数1~6のアルキルアミノ基を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基を表す。式(1)~(8)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。
In the above formulas (1) to (13), A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—. Represents. A ′ and B ′ are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, Or, —O—CO—CH═CH— is represented. Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. X is a single bond,
—COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, l represents an integer of 1 to 12, m represents an integer of 0 to 2, m1, m2 independently represents an integer of 1 to 3, and n represents an integer of 0 to 12 (provided that when n = 0, B is a single bond). Y 2 is a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. R represents —OH, —NH 2 , an alkoxy group having 1 to 6 carbon atoms or an alkylamino group having 1 to 6 carbon atoms. R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. One or more of the benzene rings in the formulas (1) to (8) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring and a fluorene ring.
[液晶性側鎖モノマー]
 液晶性側鎖モノマーとは重合体が液晶性を発現し、高分子の側鎖部位にメソゲン基を有するモノマーのことである。側鎖の有するメソゲン基としては、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となってもよく、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。
[Liquid crystalline side chain monomer]
The liquid crystalline side chain monomer is a monomer in which the polymer exhibits liquid crystallinity and has a mesogenic group at the side chain portion of the polymer. As the mesogenic group possessed by the side chain, biphenyl, phenylbenzoate, or the like alone may have a mesogen structure, or a side chain may form a mesogen structure by hydrogen bonding, such as benzoic acid. As the mesogenic group possessed by the side chain, the following structure is preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 更に、液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、マレイミド、ノルボルネン及びシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(5)~(8)及び(14)~(22)からなる群から選ばれる少なくとも1種からなる液晶性側鎖を有する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
(但し、A、Bはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-を表す。A’、B’はそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す。Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。Rは水素原子-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基を表し、Z及びZはそれぞれ独立に-CO-、-CHO-、-CH=N-、-CF-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す。lは1~12の整数を表し、mは0~2の整数を表し、m1、m2はそれぞれ独立に1~3の整数を表す。式(5)~(13)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。)
Furthermore, as a more specific example of the liquid crystalline side chain monomer, a main chain composed of at least one selected from the group consisting of hydrocarbon, (meth) acrylate, maleimide, norbornene and siloxane, and the following formula ( A structure having at least one liquid crystalline side chain selected from the group consisting of 5) to (8) and (14) to (22) is preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
(However, A and B each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—. A ′ and B ′ each represent Independently, a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, or —O—CO—CH Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and Each hydrogen atom bonded to may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. 1 is a hydrogen atom —NO 2 , —CN, —CH═C (CN) 2 , — CH = CH—CN, a halogen group, an alkyl group, or an alkoxy group, and Z 1 and Z 2 each independently represent —CO—, —CH 2 O—, —CH═N—, —CF 2 —. R 2 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. L represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 and m2 each independently represents an integer of 1 to 3. In the formulas (5) to (13), One or more of them may be substituted with the same or different ring selected from naphthalene ring, anthracene ring and fluorene ring.
[液晶性側鎖型高分子]
 本発明に用いられる感光性組成物の成分である側鎖型高分子は、上述した液晶性を発現する感光性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない感光性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する感光性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。また液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。
[Liquid crystalline side chain polymer]
The side chain type polymer that is a component of the photosensitive composition used in the present invention can be obtained by the polymerization reaction of the photosensitive side chain monomer that exhibits the liquid crystal properties described above. Moreover, it can obtain by copolymerization of the photosensitive side chain monomer and liquid crystalline side chain monomer which do not express liquid crystallinity, and the copolymerization of the photosensitive side chain monomer and liquid crystalline side chain monomer which express liquid crystallinity. Moreover, it can copolymerize with another monomer in the range which does not impair liquid crystallinity expression ability.
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物、ビニル化合物等が挙げられる。 Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound, vinyl compound and the like.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。 Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, - ethyl-8 tricyclodecylacrylate the like.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 グリシジル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、(3-エチル-3-オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレート化合物も用いることができる。 Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-me Le -8- tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl methacrylate. (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, and the like are also used. Can do.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。
 スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。
Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 本発明における感光性側鎖型高分子の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや感光性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The method for producing the photosensitive side chain type polymer in the present invention is not particularly limited, and a general-purpose method handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or a photosensitive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加- 開裂型連鎖移動( R A F T )重合試薬等の公知の化合物を使用することができる。
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシ シクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ 2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2′-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
As a polymerization initiator for radical polymerization, a known compound such as a radical polymerization initiator or a reversible addition-cleavage chain transfer (RAFT) polymerization reagent can be used.
The radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation). Hydrogen, tert-butyl hydride peroxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxy cyclohexane) Etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohex Acid-tert-amyl ester, etc.), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, 2,2'-di (2-hydroxyethyl) And azobisisobutyronitrile). Such radical thermal polymerization initiators can be used singly or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2- N-di-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4′-di (t-butylperoxycarbonyl) benzophenone 3,4,4′-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4′-methoxystyryl) -4,6-bis (trichloromethyl) -S-triazine, 2- (3 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (Trichloromethyl) -s-triazine, 2- (2′-methoxystyryl) -4,6-bis (trichloromethyl) ) -S-triazine, 2- (4′-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)]-2, 6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4 ′ -Methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3′-carbonylbis (7-diethylamino) Coumarin), 2- (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bi (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2′-bis (2,4-dichlorophenyl) -4, 4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′bis (2,4-dibromophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 ′ -Biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2 -Dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (5-2,4-cyclopentadi -1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone 3,3 ′, 4,4′-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3′-di (methoxycarbonyl) -4,4′-di (t-butylperoxycarbonyl) benzophenone, 3,4 '-Di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2 -(3-methyl-3H-benzothiazol-2-ylidene) -1-naphthalen-2-yl-ethanone or 2- (3-methyl-1 3- benzothiazol -2 (3H) - ylidene) -1- (2-benzoyl) ethanone, and the like. These compounds may be used alone or in combination of two or more.
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
 液晶性を発現しえる感光性の側鎖型高分子の重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
The radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
The organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene Glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropion , 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy -N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like.
These organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer | macromolecule to produce | generate, you may mix and use the above-mentioned organic solvent in the range which the polymer | macromolecule produced | generated does not precipitate.
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 ラジカル重合の際の重合温度は30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1~50、より好ましくは5~30である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
In radical polymerization, oxygen in the organic solvent becomes a cause of inhibiting the polymerization reaction. Therefore, it is preferable to use an organic solvent that has been deaerated to the extent possible.
The polymerization temperature at the time of radical polymerization can be arbitrarily selected from 30 to 150 ° C., but is preferably in the range of 50 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1 to 50, more preferably 5 to 30. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。 In the above-mentioned radical polymerization reaction, the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is The content is preferably 0.1 to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
[重合体の回収]
 上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させればよい。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
When recovering the produced polymer from the reaction solution of the photosensitive side chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is put into a poor solvent, What is necessary is just to precipitate a coalescence. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明に用いられる感光性組成物に含有される液晶性を発現し得る感光性の側鎖型高分子の分子量は、得られる側鎖型高分子膜の強度、膜形成時の作業性、及び膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。 The molecular weight of the photosensitive side chain polymer capable of expressing liquid crystal contained in the photosensitive composition used in the present invention is the strength of the resulting side chain polymer film, the workability during film formation, and In consideration of the uniformity of the film, the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
[感光性組成物の調製]
 本発明に用いられる感光性組成物は、液晶性を発現し得る感光性の側鎖型高分子を含有して構成される。そして、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる感光性組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、樹脂成分とは、上記液晶性を発現し得る感光性の側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、感光性組成物中、1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。
[Preparation of photosensitive composition]
The photosensitive composition used in the present invention comprises a photosensitive side chain polymer that can exhibit liquid crystallinity. And it is preferable to prepare as a coating liquid so that it may become suitable for formation of a liquid crystal aligning film. That is, the photosensitive composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, a resin component is a resin component containing the photosensitive side chain type polymer which can express the said liquid crystallinity. In that case, the content of the resin component is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass in the photosensitive composition.
 上記感光性組成物において、樹脂成分は、全てが液晶性を発現し得る感光性の側鎖型高分子であってもよいが、液晶発現能及び感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中の他の重合体の含有量は、0.5~80質量%、好ましくは1~50質量%である。
 そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、液晶性を発現し得る感光性の側鎖型高分子ではない重合体等が挙げられる。
In the above photosensitive composition, the resin component may be a photosensitive side chain polymer that can all exhibit liquid crystallinity, but other than those as long as the liquid crystal expression ability and the photosensitive performance are not impaired. A polymer may be mixed. In that case, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
Examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
<有機溶媒>
 本発明に用いられる感光性組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<Organic solvent>
The organic solvent used for the photosensitive composition used for this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, etc. Is mentioned. These may be used alone or in combination.
 本発明に用いられる感光性組成物は、上記した成分以外の成分を含有してもよい。その例としては、感光性組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等である。 The photosensitive composition used in the present invention may contain components other than those described above. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the photosensitive composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
The following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octane Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1 -Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol- 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. Examples include solvents having surface tension.
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、感光性組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 These poor solvents may be used alone or in combination. When the above-described solvent is used, it is preferably 5 to 80% by mass, more preferably 20%, so that the solubility of the entire solvent contained in the photosensitive composition is not significantly reduced. ~ 60% by mass.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710(旭硝子社製)、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC10(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、感光性組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, F-Top 301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710 (Asahi Glass Co., Ltd.), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC10 (AGC Seimi Chemical Co., Ltd.) and the like. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the photosensitive composition. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Examples thereof include propyltrimethoxysilane and N-bis (oxyethylene) -3-aminopropyltriethoxysilane.
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、感光性組成物中に含有させてもよい。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the liquid crystal alignment film, the addition of the following phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed An agent may be contained in the photosensitive composition. Specific phenoplast additives are shown below, but are not limited to this structure.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 具体的なエポキシ基含有化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが例示される。
 基板との密着性を向上させる化合物を使用する場合、その使用量は、感光性組成物に含有される樹脂成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。
Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl-4, 4 ′ Such as diaminodiphenylmethane and the like.
When using a compound that improves the adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the photosensitive composition. The amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 本発明に用いる感光性組成物には、光増感剤を添加することもできる。光増感剤としては、無色増感剤及び三重項増感剤が好ましい。
 光増感剤の具体例としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、及びアミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-若しくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-若しくはp-ニトロアニリン、2,4,6-トリニトロアニリン)又はニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリン等がある。
 好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、又はアセトフェノンケタールである。
A photosensitizer can also be added to the photosensitive composition used in the present invention. As the photosensitizer, a colorless sensitizer and a triplet sensitizer are preferable.
Specific examples of photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino acids. Substituted aromatic 2-hydroxy ketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoyl) Methylene-3-methyl-β-naphthothiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazoline, 2- (α-naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoyl) Methylene) -3-methylben Thiazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthothiazoline, 2- (p-fluorobenzoylmethylene)- 3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl -Β-naphthoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m- Hydroxy-p-methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9 -Anthracene methanol, 9-anthracenecarboxylic acid), benzopyran, azoindolizine, melocoumarin and the like.
Aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, or acetophenone ketal is preferable.
 感光性組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In the photosensitive composition, in addition to those described above, a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired. Furthermore, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
[液晶配向膜及び液晶表示素子]
 本発明に用いる感光性組成物は、基板上に塗布し光照射による光配向処理を施した後に、液晶配向膜が液晶性を示す温度まで加熱することで高効率に配向制御能を付与し、さらに、紫外線を照射することで、加熱によって得られた配向状態を固定化することができる。このように感光性組成物は光配向処理、液晶相転移温度までの加熱工程及び無偏光紫外線の照射を経ることで液晶配向膜を形成することができ、横電界駆動型の液晶表示素子の製造に用いることができる。
 液晶表示素子は、本発明に用いる感光性組成物から、液晶配向膜付基板を得た後、公知の方法で液晶セルを作製し、横電界駆動型の液晶表示素子としたものである。
[Liquid crystal alignment film and liquid crystal display element]
The photosensitive composition used in the present invention, after being applied on a substrate and subjected to photo-alignment treatment by light irradiation, imparts alignment control ability with high efficiency by heating to a temperature at which the liquid crystal alignment film exhibits liquid crystallinity, Furthermore, the alignment state obtained by heating can be fixed by irradiating ultraviolet rays. In this way, the photosensitive composition can form a liquid crystal alignment film through a photo-alignment treatment, a heating step up to the liquid crystal phase transition temperature, and irradiation with non-polarized ultraviolet rays. Can be used.
The liquid crystal display element is obtained by obtaining a substrate with a liquid crystal alignment film from the photosensitive composition used in the present invention, and then preparing a liquid crystal cell by a known method to obtain a lateral electric field drive type liquid crystal display element.
 液晶セルの作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。 To give an example of the production of a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside. A method of laminating the other substrate and injecting liquid crystal under reduced pressure, or a method of laminating liquid crystal on the liquid crystal alignment film surface on which spacers are dispersed, and then laminating the substrate and sealing, etc. It can be illustrated. At this time, it is preferable to use a substrate having an electrode having a structure like a comb for driving a horizontal electric field as the substrate on one side. The diameter of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
 本発明の実施形態について、実施例を挙げてより詳細に説明する。なお、本発明はこれらに限定して解釈されるものではない。
 実施例で使用する略号は以下のとおりである。
The embodiment of the present invention will be described in more detail with reference to examples. In addition, this invention is limited to these and is not interpreted.
Abbreviations used in the examples are as follows.
(メタクリルモノマー)
Figure JPOXMLDOC01-appb-C000019
(Methacrylic monomer)
Figure JPOXMLDOC01-appb-C000019
(有機溶媒)
THF:テトラヒドロフラン
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
(Organic solvent)
THF: Tetrahydrofuran NMP: N-methyl-2-pyrrolidone BC: Butyl cellosolve (polymerization initiator)
AIBN: 2,2′-azobisisobutyronitrile
[相転移温度の測定]
 実施例により得られたポリマーの液晶相転移温度は示差走査熱量測定(DSC)、DSC3100SR(マック・サイエンス社製)を用いて測定した。
[Measurement of phase transition temperature]
The liquid crystal phase transition temperature of the polymer obtained in the example was measured using differential scanning calorimetry (DSC) and DSC3100SR (manufactured by Mac Science).
<合成例1>
 MA1(2.33g、7.0mmol)をNMP(21.5g)中に溶解し、ダイアフラムポンプで脱気を行なった後、AIBNを(57.5mg、0.35mmol)を加え再び脱気を行なった。この後65℃で20時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液にBC(15.9g)を加え攪拌することにより感光性組成物である液晶配向剤(A)を得た。この液晶配向剤(A)中のポリマーの数平均分子量は16000、重量平均分子量は28000であった。このポリマーの液晶相転移温度は145~190℃であった。
<Synthesis Example 1>
MA1 (2.33 g, 7.0 mmol) was dissolved in NMP (21.5 g), degassed with a diaphragm pump, then AIBN (57.5 mg, 0.35 mmol) was added and degassed again. It was. Thereafter, the mixture was reacted at 65 ° C. for 20 hours to obtain a polymer solution of methacrylate. BC (15.9 g) was added to this polymer solution and stirred to obtain a liquid crystal aligning agent (A) as a photosensitive composition. The number average molecular weight of the polymer in this liquid crystal aligning agent (A) was 16000, and the weight average molecular weight was 28000. The liquid crystal phase transition temperature of this polymer was 145 to 190 ° C.
<合成例2>
 MA1(0.47g、1.4mmol)、MA2(1.72g、5.6mmol)をNMP(20.2g)中に溶解し、ダイアフラムポンプで脱気を行なった後、AIBNを(57.5mg、0.35mmol)を加え再び脱気を行なった。この後65℃で20時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液にBC(14.9g)を加え攪拌することにより感光性組成物である液晶配向剤(B)を得た。この液晶配向剤中のポリマーの数平均分子量は14000、重量平均分子量は24000であった。このポリマーの液晶相転移温度は135~180℃であった。
<Synthesis Example 2>
After MA1 (0.47 g, 1.4 mmol) and MA2 (1.72 g, 5.6 mmol) were dissolved in NMP (20.2 g) and deaerated with a diaphragm pump, AIBN (57.5 mg, 0.35 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 65 ° C. for 20 hours to obtain a polymer solution of methacrylate. BC (14.9g) was added and stirred to this polymer solution, and the liquid crystal aligning agent (B) which is a photosensitive composition was obtained. The number average molecular weight of the polymer in this liquid crystal aligning agent was 14000, and the weight average molecular weight was 24000. The liquid crystal phase transition temperature of this polymer was 135 to 180 ° C.
<実施例1>
[液晶セルの作製]
 合成例1で得られた液晶配向剤(A)を用いて下記に示すような手順で液晶セルの作製を行った。基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲した「<」の字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は10μmであり、電極要素間の間隔は20μmである。各画素を形成する画素電極が、中央部分の屈曲した「<」の字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「<」の字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-15°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
<Example 1>
[Production of liquid crystal cell]
Using the liquid crystal aligning agent (A) obtained in Synthesis Example 1, a liquid crystal cell was prepared according to the procedure shown below. The substrate used was a glass substrate having a size of 30 mm × 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged. The pixel electrode has a comb-like shape configured by arranging a plurality of “<”-shaped electrode elements having a bent central portion. The width in the short direction of each electrode element is 10 μm, and the distance between the electrode elements is 20 μm. The pixel electrode forming each pixel is formed by arranging a plurality of bent “<”-shaped electrode elements at the center, so that the shape of each pixel is not rectangular but is the same as the electrode element. It has a shape that resembles the bold “<” character that bends at the part. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the alignment processing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of −15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
 成例1で得られた液晶配向剤(A)を、準備された上記電極付き基板にスピンコートした。次いで、70℃のホットプレートで90秒間乾燥し、膜厚100nmの感光性側鎖型高分子膜を形成した。次いで、その膜面に偏光板を介して313nmの紫外線を5mJ/cm照射し、150℃のホットプレートで10分間加熱し、側鎖型高分子膜による液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に感光性側鎖型高分子膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製、XN-1500T)を印刷した。次いで、もう一方の基板を、両基板の液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を熱硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶、MLC-2041(メルク社製)を注入し、注入口を封止して、IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セルを得た。 The liquid crystal aligning agent (A) obtained in Example 1 was spin-coated on the prepared substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the photosensitive side chain type polymer film with a film thickness of 100 nm. Next, the film surface was irradiated with 5 mJ / cm 2 of 313 nm ultraviolet light through a polarizing plate and heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film made of a side chain polymer film. In addition, a photosensitive side chain polymer film was similarly formed on a glass substrate having a columnar spacer having a height of 4 μm on which an electrode was not formed as a counter substrate, and an orientation treatment was performed. A sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film surfaces of both substrates faced each other and the alignment direction was 0 °, and then the sealing agent was thermally cured to produce an empty cell. A liquid crystal cell having a configuration of an IPS (In-Planes Switching) mode liquid crystal display element is prepared by injecting liquid crystal, MLC-2041 (manufactured by Merck) into the empty cell by a reduced pressure injection method, sealing the injection port. Obtained.
(2次照射プロセス)
 液晶セルを作製後、120℃のオーブンで60分間再配向処理を行なった。その後、液晶セルの画素電極と対向電極との間をショートさせた状態で、液晶セルへ365nmのバンドパスフィルターを通した紫外線を20J/cm照射(2次照射)した。2次照射後、液晶セルの電圧保持率を測定した。また、残像評価、エージング後のセル観察を行なった。液晶セルを60℃のオーブン中で336時間エージングを行なった。エージング後の液晶セル中に輝点や配向不良などが発生していないか観察した。
(Secondary irradiation process)
After producing the liquid crystal cell, a realignment treatment was performed in an oven at 120 ° C. for 60 minutes. Thereafter, in a state where the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited, the liquid crystal cell was irradiated with ultraviolet rays through a 365 nm band-pass filter at 20 J / cm 2 (secondary irradiation). After the secondary irradiation, the voltage holding ratio of the liquid crystal cell was measured. Further, afterimage evaluation and cell observation after aging were performed. The liquid crystal cell was aged in a 60 ° C. oven for 336 hours. The liquid crystal cell after aging was observed for the occurrence of bright spots or alignment defects.
(電圧保持率の測定)
 液晶セルの電圧保持率の測定は、70℃の温度下で5Vの電圧を60μs間印加し、1667ms後に電圧がどのくらい保持できているかを電圧保持率として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1を使用した。
(Measurement of voltage holding ratio)
The voltage holding ratio of the liquid crystal cell was measured by applying a voltage of 5 V for 60 μs at a temperature of 70 ° C., and calculating how much the voltage could be held after 1667 ms as the voltage holding ratio. For measurement of the voltage holding ratio, VHR-1 manufactured by Toyo Corporation was used.
(残像評価)
 実施例1で用意したIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、60℃のオーブン中で、周波数30Hzで16VPPの交流電圧を336時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。
(Afterimage evaluation)
The IPS mode liquid crystal cell prepared in Example 1 is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on in the state where no voltage is applied. The arrangement angle of the liquid crystal cell was adjusted so as to be the smallest. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth. Next, an alternating voltage of 16 V PP was applied at a frequency of 30 Hz in an oven at 60 ° C. for 336 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour. After standing, the orientation azimuth was measured in the same manner, and the difference in orientation azimuth before and after AC driving was calculated as an angle Δ (deg.).
(エージング後のセル観察)
 上記残像評価後の液晶セルについて、偏光板をクロスニコル状態にした偏光顕微鏡を通して観察した。液晶セルを回転し黒表示状態にしたときに輝点や配向不良が無い状態を良好とした。
(Cell observation after aging)
The liquid crystal cell after the afterimage evaluation was observed through a polarizing microscope with the polarizing plate in a crossed Nicol state. When the liquid crystal cell was rotated to be in a black display state, a state in which there was no bright spot or poor alignment was considered good.
<実施例2>
 2次照射プロセスの際、313nmのバンドパスフィルターを通した紫外線を5J/cm照射(2次照射)した以外は実施例1と同様の手順でセルを作製した。評価結果を表1に示す。
<Example 2>
In the secondary irradiation process, a cell was produced in the same procedure as in Example 1 except that ultraviolet rays that passed through a 313 nm bandpass filter were irradiated with 5 J / cm 2 (secondary irradiation). The evaluation results are shown in Table 1.
<実施例3>
 実施例1と同様にして、合成例1で得られた液晶配向剤(A)を、電極付き基板にスピンコートした。次いで、70℃のホットプレートで90秒間乾燥し、膜厚100nmの液晶配向膜を形成した。次いで、その感光性側鎖型高分子膜面に偏光板を介して313nmの紫外線を5mJ/cm照射し、150℃のホットプレートで10分間加熱し、基板を30分冷却し、さらに側鎖型高分子膜面に365nmのバンドパスフィルターを通した紫外線を1J/cm照射(2次照射)することで液晶配向膜付き基板を得た。また、実施例1と同様にして、対向基板を組み合わせてIPSモード液晶表示素子の構成を備えた液晶セルを得た。その後、実施例1と同様にして、再配向処理を行い、電圧保持率の測定及び残像評価、エージング後のセル観察を行なった。
<Example 3>
In the same manner as in Example 1, the liquid crystal aligning agent (A) obtained in Synthesis Example 1 was spin-coated on a substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the surface of the photosensitive side chain polymer film was irradiated with 5 mJ / cm 2 of 313 nm ultraviolet light through a polarizing plate, heated on a hot plate at 150 ° C. for 10 minutes, the substrate was cooled for 30 minutes, and the side chain was further cooled. A substrate with a liquid crystal alignment film was obtained by irradiating ultraviolet rays through a 365 nm band-pass filter with 1 J / cm 2 (secondary irradiation) on the surface of the mold polymer film. Moreover, it carried out similarly to Example 1, and obtained the liquid crystal cell provided with the structure of the IPS mode liquid crystal display element combining the opposing board | substrate. Thereafter, in the same manner as in Example 1, reorientation treatment was performed, voltage holding ratio measurement, afterimage evaluation, and cell observation after aging were performed.
<実施例4>
 基板への2次照射プロセスの際、側鎖型高分子膜面に313nmのバンドパスフィルターを通した紫外線を500mJ/cm照射(2次照射)した以外は、実施例3と同様の手順でセルを作製した。評価結果を表1に示す。
<Example 4>
In the secondary irradiation process on the substrate, the same procedure as in Example 3 was used, except that the side chain polymer film surface was irradiated with 500 mJ / cm 2 of ultraviolet light (secondary irradiation) through a 313 nm bandpass filter. A cell was produced. The evaluation results are shown in Table 1.
<実施例5~8>
 合成例2で得られた液晶配向剤(B)を用いて、実施例1~4と同様の方法を用いて液晶セルを作製した。使用した液晶配向剤、紫外線照射量(1次照射)、2次照射波長、2次照射量及び評価結果を表1にまとめて示す。
<Examples 5 to 8>
Using the liquid crystal aligning agent (B) obtained in Synthesis Example 2, a liquid crystal cell was produced in the same manner as in Examples 1 to 4. Table 1 summarizes the liquid crystal aligning agent used, the ultraviolet irradiation amount (primary irradiation), the secondary irradiation wavelength, the secondary irradiation amount, and the evaluation results.
<比較例1>
 比較例1については、実施例1と同様の手順で液晶セルを作製後、120℃のオーブンで60分間再配向処理を行なったが、2次照射プロセスは行なわなかった。この液晶セルについても、電圧保持率の測定及び残像評価、エージング後のセル観察を行なった。使用した液晶配向剤、評価結果を表1に示す。
<Comparative Example 1>
In Comparative Example 1, a liquid crystal cell was prepared in the same procedure as in Example 1, and then realignment treatment was performed in an oven at 120 ° C. for 60 minutes, but the secondary irradiation process was not performed. This liquid crystal cell was also subjected to voltage holding ratio measurement, afterimage evaluation, and cell observation after aging. The liquid crystal aligning agent used and the evaluation results are shown in Table 1.
<比較例2>
 比較例2については実施例5と同様の手順で液晶セルを作製後、120℃のオーブンで60分間再配向処理を行なったが、2次照射プロセスは行なわなかった。この液晶セルについても、電圧保持率の測定及び残像評価、エージング後のセル観察を行なった。使用した液晶配向剤、評価結果を表1に示す。
<Comparative example 2>
In Comparative Example 2, a liquid crystal cell was prepared in the same procedure as in Example 5, and then re-aligned in an oven at 120 ° C. for 60 minutes, but the secondary irradiation process was not performed. This liquid crystal cell was also subjected to voltage holding ratio measurement, afterimage evaluation, and cell observation after aging. The liquid crystal aligning agent used and the evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記の結果から、2次照射プロセスを導入した液晶セルに関しては、2次照射していないセルに比べて電圧保持率が高い値を示した。これは未反応の感光性基が減少したことや、光二量化反応によってポリマー間で架橋が進んだためであると思われる。 From the above results, the liquid crystal cell in which the secondary irradiation process was introduced showed a higher voltage holding ratio than the cell not subjected to the secondary irradiation. This is presumably because unreacted photosensitive groups were reduced and cross-linking proceeded between the polymers by the photodimerization reaction.
 さらにエージング後のセルを観察した結果、2次照射を行なったセルは良好な配向性を示していたが、2次照射を行なっていない比較例1、2は微小な輝点が発生していた。これは残存している未反応の感光性基やモノマーが、熱エージングによって動いたり結晶化することで液晶の配向を阻害しているためであると思われる。しかし、2次照射プロセスを導入することで残存の未反応基やモノマーが消費されたことで輝点の発生が抑制されたためであると考えられる。 Furthermore, as a result of observing the cells after aging, the cells subjected to the secondary irradiation showed good orientation, but in Comparative Examples 1 and 2 where the secondary irradiation was not performed, minute bright spots were generated. . This is presumably because the remaining unreacted photosensitive groups and monomers move or crystallize due to thermal aging, thereby inhibiting the alignment of the liquid crystal. However, it is considered that the generation of bright spots was suppressed by the consumption of residual unreacted groups and monomers by introducing the secondary irradiation process.
産業上の利用の可能性Industrial applicability
 本発明によれば、高効率な配向制御能を維持しつつ、信頼性に優れた液晶表示素子を得ることが可能となり この横電界駆動型の液晶表示素子は、大画面で高精細の液晶テレビなどの各種の表示用途に好適に利用できる。
 なお、2013年3月19日に出願された日本特許出願2013-57047号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the present invention, it is possible to obtain a liquid crystal display element excellent in reliability while maintaining a high-efficiency alignment control capability. This horizontal electric field drive type liquid crystal display element is a large-screen high-definition liquid crystal television. It can utilize suitably for various display uses, such as.
It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-57047 filed on March 19, 2013 is cited here as the disclosure of the specification of the present invention. Incorporated.
  1:  側鎖型高分子膜、  2、2a:  側鎖
  3:  側鎖型高分子膜、  4、4a:  側鎖
  5:  側鎖型高分子膜、  6、6a:  側鎖
  7:  側鎖型高分子膜   8、8a:  側鎖
1: side chain polymer membrane, 2, 2a: side chain 3: side chain polymer membrane, 4, 4a: side chain 5: side chain polymer membrane, 6, 6a: side chain 7: side chain type Polymer membrane 8, 8a: Side chain

Claims (15)

  1.  工程[I]:横電界駆動用の導電膜を有する基板上に、(A)100℃~250℃のある温度範囲で液晶性を発現する感光性の側鎖型高分子、及び(B)有機溶媒を含有する感光性組成物を塗布して感光性側鎖型高分子膜を形成する工程、
     工程[II]:前記感光性側鎖型高分子膜に偏光した紫外線を照射して側鎖型高分子膜とする工程、
     工程[III]:前記側鎖型高分子膜を加熱する工程、
     工程[IV]:]さらに、側鎖型高分子膜に紫外線を照射する工程、
    を、該順序に有することを特徴とする、横電界駆動型液晶表示素子の製造方法。
    Step [I]: (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a certain temperature range of 100 ° C. to 250 ° C. on a substrate having a conductive film for driving a lateral electric field, and (B) an organic Applying a photosensitive composition containing a solvent to form a photosensitive side chain polymer film;
    Step [II]: a step of irradiating the photosensitive side chain polymer film with polarized ultraviolet rays to form a side chain polymer film,
    Step [III]: a step of heating the side chain polymer film,
    Step [IV]:] Further, a step of irradiating the side chain polymer film with ultraviolet rays,
    In the order, a method of manufacturing a lateral electric field drive type liquid crystal display element.
  2.  工程[II]の紫外線照射量が、前記側鎖型高分子膜の、前記偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを最大にする紫外線照射量の1%~70%の範囲内である請求項1に記載の製造方法。 The amount of UV irradiation in step [II] maximizes ΔA, which is the difference between the UV absorbance in the direction parallel to the polarization direction of the polarized UV light and the UV absorbance in the direction perpendicular to the polarization direction of the polarized UV light. The production method according to claim 1, wherein the amount falls within a range of 1% to 70% of the amount of ultraviolet irradiation.
  3.  工程[II]の紫外線照射量が、前記ΔAを最大にする紫外線照射量の1%~50%の範囲内である請求項1又は2に記載の製造方法。 3. The production method according to claim 1, wherein the ultraviolet irradiation amount in the step [II] is within a range of 1% to 50% of the ultraviolet irradiation amount that maximizes the ΔA.
  4.  工程[III]の加熱温度が、前記側鎖型高分子膜が液晶性を発現する温度範囲の下限より10℃低い温度から当該温度範囲の上限より10℃低い温度までの範囲の温度である請求項1~3のいずれか1項に記載の製造方法。 The heating temperature in step [III] is a temperature in a range from a temperature 10 ° C. lower than the lower limit of the temperature range in which the side chain polymer film exhibits liquid crystallinity to a temperature 10 ° C. lower than the upper limit of the temperature range. Item 4. The production method according to any one of Items 1 to 3.
  5.  前記、液晶性を発現する感光性の側鎖型高分子に含有される感光性基がアゾベンゼン、スチルベン、桂皮酸、桂皮酸エステル、カルコン、クマリン、トラン、フェニルベンゾエート、又はその誘導体である請求項1~4のいずれか1項に記載の製造方法。 The photosensitive group contained in the photosensitive side chain polymer exhibiting liquid crystallinity is azobenzene, stilbene, cinnamic acid, cinnamic acid ester, chalcone, coumarin, tolan, phenylbenzoate, or a derivative thereof. 5. The production method according to any one of 1 to 4.
  6.  工程[IV]の紫外線照射量が、前記側鎖型高分子膜の有する感光性基100モルあたり20モル以上が反応する照射量である請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein an ultraviolet irradiation amount in the step [IV] is an irradiation amount with which 20 mol or more reacts with respect to 100 mol of the photosensitive group of the side chain polymer film. .
  7.  工程[IV]が、液晶表示素子の作製後に行われる請求項1~6のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein step [IV] is performed after the production of the liquid crystal display element.
  8.  (A)成分が、光架橋、光異性化、又は光フリース転移を起こす側鎖を有することを特徴とする請求項1~7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the component (A) has a side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
  9.  (A)成分が、下記式(1)~(13)からなる群から選ばれる感光性側鎖の少なくとも1つを有する感光性の側鎖型高分子を有する請求項1~8のいずれか1項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     但し、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。A’、B’はそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す。Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~4のアルキル基若しくはアルコキシ基で置換されていてもよい。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、又は-C≡C-を表す。
    X’は、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、X’の数が2となるときは、X’同士は同一でも異なっていてもよい。lは1~12の整数を表し、mは0~2の整数を表し、m1、m2、m3はそれぞれ独立に1~3の整数を表し、nは0~12の整数(但し、n=0のときBは単結合である)を表す。Yは2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~12のアルキル基若しくはアルコキシ基で置換されていてもよい。Rは-OH、-NH、炭素数1~6のアルコキシ基又は炭素数1~6のアルキルアミノ基を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~12のアルキル基若しくはアルコキシ基を表す。式(1)~(8)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。
    The component (A) has a photosensitive side chain polymer having at least one photosensitive side chain selected from the group consisting of the following formulas (1) to (13). The production method according to item.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    However, A, B, and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. A ′ and B ′ are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, Or, —O—CO—CH═CH— is represented. Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 4 carbon atoms. X represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, or —C≡C—.
    X ′ represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH. ═CH—, and when the number of X ′ is 2, X ′ may be the same or different. l represents an integer of 1 to 12, m represents an integer of 0 to 2, m1, m2, and m3 each independently represents an integer of 1 to 3, and n represents an integer of 0 to 12 (where n = 0 In this case, B represents a single bond). Y 2 is a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 12 carbon atoms. R represents —OH, —NH 2 , an alkoxy group having 1 to 6 carbon atoms or an alkylamino group having 1 to 6 carbon atoms. R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, or an alkyl or alkoxy group having 1 to 12 carbon atoms. One or more of the benzene rings in the formulas (1) to (8) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring and a fluorene ring.
  10.  (A)成分が、下記式(5)~(8)及び(14)~(22)からなる群から選ばれる液晶性側鎖の少なくとも1つを有する液晶性の側鎖型高分子を有する請求項1~9のいずれか1項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     (但し、A、Bはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、又は-NH-CO-を表す。A’、B’はそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す。Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。Rは水素原子-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~12のアルキル基若しくはアルコキシ基を表す。Z、Zはそれぞれ独立に-CO-、-CHO-、-CH=N-、-CF-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、又は炭素数1~12のアルキル基若しくはアルコキシ基を表す。lは1~12の整数を表し、mは0~2の整数を表し、m1、m2、m3はそれぞれ独立に1~3の整数を表す。式(5)~(8)及び(14)~(22)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。)
    The component (A) has a liquid crystalline side chain polymer having at least one liquid crystalline side chain selected from the group consisting of the following formulas (5) to (8) and (14) to (22). Item 10. The production method according to any one of Items 1 to 9.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (However, A and B each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, or —NH—CO—. A ′ and B ′ represent Each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, or —O—CO—. CH = CH— Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atoms bonded thereto may be each independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. R 1 is a hydrogen atom —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, or an alkyl group or alkoxy group having 1 to 12 carbon atoms, Z 1 and Z 2 are each independently —CO—, —CH 2 O—, —CH═N—. , -CF 2 - .R 2 representing a hydrogen atom, -NO 2, -CN, -CH = C (CN) 2, alkyl groups of -CH = CH-CN, halogen group, or a C 1-12 or Represents an alkoxy group, l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1, m2, and m3 each independently represents an integer of 1 to 3. Formulas (5) to (8) And one or more of the benzene rings in (14) to (22) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring and a fluorene ring.
  11. (A)100℃から250℃のある温度範囲で液晶性を発現する感光性の側鎖型高分子、及び(B)有機溶媒
    を含有する感光性組成物であって、
     [I]上記感光性組成物を、横電界駆動用の導電膜を有する基板上に塗布して感光性側鎖型高分子膜を形成する工程、[II]前記感光性側鎖型高分子膜に偏光した紫外線を照射して側鎖型高分子膜とする工程、[III]前記側鎖型高分子膜を加熱する工程、[IV]さらに、側鎖型高分子膜に紫外線を照射する工程を、該順序に有する横電界駆動型液晶表示素子の製造方法に使用される感光性組成物。
    (A) a photosensitive side-chain polymer that exhibits liquid crystallinity in a temperature range of 100 ° C. to 250 ° C., and (B) a photosensitive composition containing an organic solvent,
    [I] A step of coating the photosensitive composition on a substrate having a conductive film for driving a lateral electric field to form a photosensitive side chain polymer film, [II] The photosensitive side chain polymer film A step of irradiating the side chain type polymer film by irradiating with polarized ultraviolet rays, [III] a step of heating the side chain type polymer film, and [IV] a step of irradiating the side chain type polymer film with ultraviolet rays. Is a photosensitive composition used in a method for producing a horizontal electric field drive type liquid crystal display device having the above-mentioned order.
  12.  (A)成分が、光架橋、光異性化、又は光フリース転移を起こす側鎖を有する請求項11に記載の感光性組成物。 The photosensitive composition according to claim 11, wherein the component (A) has a side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
  13.  (A)成分が、下記式(1)~(13)からなる群から選ばれる感光性側鎖の少なくとも1つを有する請求項11又は12に記載の感光性組成物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
     (但し、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-を表し、Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-を表し、lは1~12の整数を表し、mは0~2の整数を表し、m1、m2はそれぞれ独立に1~3の整数を表し、nは0~12の整数(但し、n=0のときBは単結合である)を表す。Yは2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。RはOH、NH、炭素数1~6のアルコキシ基又は炭素数1~6のアルキルアミノ基を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基を表す。式(1)~(8)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。)
    The photosensitive composition according to claim 11 or 12, wherein the component (A) has at least one photosensitive side chain selected from the group consisting of the following formulas (1) to (13).
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (However, A, B and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, and Y 1 represents a monovalent group. A benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and a combination thereof, and each hydrogen atom bonded thereto is independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group, where X is a single bond, —COO—, —OCO— , -N = N-, -CH = CH-, -C≡C-, l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 and m2 each independently represents 1 to Represents an integer of 3, n is an integer of 0 to 12 (provided that when n = 0, B is a single bond) Y 2 is a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and Each hydrogen atom bonded to may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. Represents OH, NH 2 , an alkoxy group having 1 to 6 carbon atoms or an alkylamino group having 1 to 6 carbon atoms, wherein R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , — CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group The same or phase in which one or more of the benzene rings in formulas (1) to (8) are selected from a naphthalene ring, an anthracene ring, and a fluorene ring Become ring may be substituted.)
  14.  (A)成分が、下記式(5)~(8)及び(14)~(22)からなる群から選ばれる液晶性側鎖の少なくとも1つを有する請求項11又は12に記載の感光性組成物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-C000009
    (但し、A、Bはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-を表す。A’、B’はそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す。Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、及び、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基で置換されていてもよい。Rは水素原子-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルコキシ基を表し、Z及びZはそれぞれ独立に-CO-、-CHO-、-CH=N-、-CF-を表す。Rは水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す。lは1~12の整数を表し、mは0~2の整数を表し、m1、m2はそれぞれ独立に1~3の整数を表す。式(5)~(8)及び(14)~(22)におけるベンゼン環のうち1つ又は複数がナフタレン環、アントラセン環及びフルオレン環から選ばれる同一又は相異なる環に置換されていてもよい。)
    The photosensitive composition according to claim 11 or 12, wherein the component (A) has at least one liquid crystalline side chain selected from the group consisting of the following formulas (5) to (8) and (14) to (22). object.
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-C000009
    (However, A and B each independently represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—. A ′ and B ′ each represent Independently, a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, or —O—CO—CH Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and Each hydrogen atom bonded to may be independently substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkoxy group. 1 is a hydrogen atom —NO 2 , —CN, —CH═C (CN) 2 , — CH = CH—CN, a halogen group, an alkyl group, or an alkoxy group, and Z 1 and Z 2 each independently represent —CO—, —CH 2 O—, —CH═N—, —CF 2 —. R 2 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. L represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 and m2 each independently represents an integer of 1 to 3. Formulas (5) to (8) and (14) (One or more of the benzene rings in (22) may be substituted with the same or different rings selected from a naphthalene ring, an anthracene ring, and a fluorene ring.)
  15.  請求項1~10のいずれか一項に記載の液晶表示素子の製造方法によって製造された液晶表示素子。 A liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device according to any one of claims 1 to 10.
PCT/JP2014/057587 2013-03-19 2014-03-19 Method for manufacturing in-plane-switching-type liquid-crystal display element WO2014148569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480029107.7A CN105339837B (en) 2013-03-19 2014-03-19 The driving liquid crystal of transverse electric field indicates the manufacturing method of element
JP2015506834A JPWO2014148569A1 (en) 2013-03-19 2014-03-19 Method of manufacturing lateral electric field drive type liquid crystal display element
KR1020157030091A KR102258545B1 (en) 2013-03-19 2014-03-19 Method for manufacturing in-plane-switching-type liquid-crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057047 2013-03-19
JP2013057047 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148569A1 true WO2014148569A1 (en) 2014-09-25

Family

ID=51580241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057587 WO2014148569A1 (en) 2013-03-19 2014-03-19 Method for manufacturing in-plane-switching-type liquid-crystal display element

Country Status (5)

Country Link
JP (2) JP2014206715A (en)
KR (1) KR102258545B1 (en)
CN (1) CN105339837B (en)
TW (1) TWI620757B (en)
WO (1) WO2014148569A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105500857A (en) * 2015-12-18 2016-04-20 北京大学 Light-driven composite with double-layer-film structure and preparation method of light-driven composite
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
CN108369358A (en) * 2015-10-07 2018-08-03 日产化学工业株式会社 Liquid crystal orientation film manufacture composition indicates element and its manufacturing method using the liquid crystal orientation film of the composition and its manufacturing method and the liquid crystal with liquid crystal orientation film

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685525B (en) * 2014-11-12 2020-02-21 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6676932B2 (en) * 2014-11-12 2020-04-08 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
TW201731966A (en) * 2015-10-20 2017-09-16 Nissan Chemical Ind Ltd Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20180094100A (en) * 2015-12-25 2018-08-22 닛산 가가쿠 가부시키가이샤 Liquid crystal display element, liquid crystal optical element and composition for stabilizing liquid crystal structure
CN110072946B (en) * 2016-10-14 2021-10-15 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN114144723A (en) * 2019-08-08 2022-03-04 株式会社日本显示器 Method for manufacturing liquid crystal display device and liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film
WO2013081066A1 (en) * 2011-11-29 2013-06-06 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2014054785A2 (en) * 2012-10-05 2014-04-10 日産化学工業株式会社 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
WO2010044384A1 (en) * 2008-10-14 2010-04-22 日産化学工業株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition and oriented film
KR101777880B1 (en) * 2010-09-22 2017-09-12 제이엔씨 주식회사 Photosensitive compound and its photosensitive polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film
WO2013081066A1 (en) * 2011-11-29 2013-06-06 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2014054785A2 (en) * 2012-10-05 2014-04-10 日産化学工業株式会社 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JPWO2016113931A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen bonding polymer liquid crystal and liquid crystal alignment film
JPWO2016113930A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen bonding polymer liquid crystal, and liquid crystal alignment film
CN108369358A (en) * 2015-10-07 2018-08-03 日产化学工业株式会社 Liquid crystal orientation film manufacture composition indicates element and its manufacturing method using the liquid crystal orientation film of the composition and its manufacturing method and the liquid crystal with liquid crystal orientation film
CN105500857A (en) * 2015-12-18 2016-04-20 北京大学 Light-driven composite with double-layer-film structure and preparation method of light-driven composite

Also Published As

Publication number Publication date
TW201502145A (en) 2015-01-16
KR20160002795A (en) 2016-01-08
TWI620757B (en) 2018-04-11
CN105339837A (en) 2016-02-17
KR102258545B1 (en) 2021-05-28
JPWO2014148569A1 (en) 2017-02-16
JP2014206715A (en) 2014-10-30
CN105339837B (en) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2014148569A1 (en) Method for manufacturing in-plane-switching-type liquid-crystal display element
JP6784593B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2015012341A1 (en) Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
KR102244413B1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
KR102427361B1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI689543B (en) Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
JP6571524B2 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
JP6744717B2 (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching type liquid crystal display device
WO2015016301A1 (en) Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
JP6794257B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102254609B1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
JP6601605B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN105431770B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029107.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030091

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14769109

Country of ref document: EP

Kind code of ref document: A1