WO2014054785A2 - Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element - Google Patents

Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element Download PDF

Info

Publication number
WO2014054785A2
WO2014054785A2 PCT/JP2013/077099 JP2013077099W WO2014054785A2 WO 2014054785 A2 WO2014054785 A2 WO 2014054785A2 JP 2013077099 W JP2013077099 W JP 2013077099W WO 2014054785 A2 WO2014054785 A2 WO 2014054785A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
liquid crystal
hydrogen atom
Prior art date
Application number
PCT/JP2013/077099
Other languages
French (fr)
Japanese (ja)
Other versions
WO2014054785A3 (en
Inventor
耕平 後藤
洋一 山之内
悟志 南
達哉 名木
淳彦 萬代
亮一 芦澤
隆之 根木
ダニエルアントニオ 櫻葉汀
正人 森内
勇太 川野
喜弘 川月
瑞穂 近藤
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014539847A priority Critical patent/JP6449016B2/en
Priority to KR1020157010690A priority patent/KR102113892B1/en
Priority to CN201380051766.6A priority patent/CN104903785B/en
Priority to KR1020197033727A priority patent/KR102162192B1/en
Publication of WO2014054785A2 publication Critical patent/WO2014054785A2/en
Publication of WO2014054785A3 publication Critical patent/WO2014054785A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/58One oxygen atom, e.g. butenolide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/593Dicarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/618Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/738Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/92Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • C07D207/452Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/65One oxygen atom attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/68One oxygen atom attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133715Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films by first depositing a monomer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a method for manufacturing a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element. More specifically, the present invention relates to a novel method for manufacturing a liquid crystal display device having excellent image sticking characteristics.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
  • the liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • the rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction).
  • This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • an organic film used for the liquid crystal alignment film a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
  • Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
  • a decomposition type photo-alignment method is known as a main photo-alignment method.
  • the polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).
  • photocrosslinking type and photoisomerization type photo-alignment methods are also known.
  • polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction perpendicular to the polarization direction (see, for example, Non-Patent Document 1).
  • the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity.
  • An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
  • the photo-alignment method eliminates the rubbing process itself as compared with the rubbing method that has been used industrially as an alignment treatment method for liquid crystal display elements, and thus has a great advantage. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light.
  • the photo-alignment method in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal alignment may not be realized. .
  • the present invention provides a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. With the goal.
  • the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
  • the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6).
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
  • the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m1 and R have the same definition as above.
  • the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
  • A, Y 1 , l, m1 and m2 have the same definition as above.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (18) or (19).
  • A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
  • the component (A) preferably has a photosensitive side chain represented by the following formula (20).
  • A, Y 1 , X, l and m have the same definition as above.
  • the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31): Good.
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1
  • ⁇ 11> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device manufactured according to any of the above ⁇ 1> to ⁇ 10>.
  • ⁇ 12> A lateral electric field drive type liquid crystal display device having the substrate of ⁇ 11> above.
  • a composition for producing a liquid crystal alignment film for a lateral electric field driving type liquid crystal display device comprising (A) a photosensitive side chain polymer exhibiting liquid crystallinity in a predetermined temperature range, and (B) an organic solvent.
  • a compound represented by the following formula (1) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (2) (wherein R represents a hydrogen atom or a methyl group; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (3) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (4) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
  • a compound represented by the following formula (5) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
  • a compound represented by the following formula (6) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (7) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (8) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (9) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (10) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • Formula (11) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; Py represents a 2-pyridyl group, a 3-pyridyl group, or 4-pyridyl group) Represents a group; u represents 0 or 1).
  • a compound represented by the following formula (16) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range and (B) a polymer composition containing an organic solvent is applied to form a coating film, A process of forming a liquid crystal cell by placing a pair of coated substrates provided with alignment control ability by ultraviolet irradiation and subsequent heating so as to face each other with the coating film facing each other through a layer of liquid crystal molecules. A method of manufacturing a lateral electric field drive type liquid crystal display element.
  • A, B and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH— or —NH—CO—;
  • Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each independently may be substituted with —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group, or an alkyloxy group;
  • X represents a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—;
  • l represents an integer of 1 to 12;
  • m represents an integer of 0 to 2;
  • A, B, Y 1 , R, 1, m, m1, m2, and R 1 have the same definition as above; Z 1 and Z 2 represent —CO—, —CH 2 O—, —C ⁇ N—, —CF 2 —.
  • a coating film is formed on a substrate having a conductive film for lateral electric field driving, and a pair of coated substrates to which orientation control ability is imparted by irradiation with ultraviolet rays and subsequent heating, Used for forming the coating film in a method of manufacturing a lateral electric field drive type liquid crystal display element that undergoes a step of forming a liquid crystal cell so as to face each other through a layer of liquid crystal molecules.
  • the polymer composition characterized by the above.
  • R represents a hydrogen atom or a methyl group
  • S represents an alkylene group having 2 to 10 carbon atoms.
  • a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate.
  • the polymer composition used in the production method of the present invention has a photosensitive side chain polymer that can exhibit liquid crystallinity (hereinafter, also simply referred to as a side chain polymer), and the polymer composition
  • the coating film obtained by using the product is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity.
  • This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film.
  • the method for producing a substrate having the liquid crystal alignment film of the present invention is [I] (A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) a substrate containing a polymer composition containing an organic solvent, and a conductive film for driving a lateral electric field.
  • a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element to which alignment control ability is imparted can be obtained, and a substrate having the liquid crystal alignment film can be obtained.
  • a lateral electric field drive type liquid crystal display element can be obtained.
  • the second substrate instead of using a substrate having no lateral electric field driving conductive film instead of a substrate having a lateral electric field driving conductive film, the above steps [I] to [III] (for lateral electric field driving) Since a substrate having no conductive film is used, for the sake of convenience, in this application, the steps [I ′] to [III ′] may be abbreviated as steps), thereby providing a first liquid crystal alignment film having alignment controllability. Two substrates can be obtained.
  • the manufacturing method of the horizontal electric field drive type liquid crystal display element is [IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween; Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.
  • step [I] a polymer composition containing a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range and an organic solvent is applied onto a substrate having a conductive film for driving a lateral electric field. To form a coating film.
  • ⁇ Board> Although it does not specifically limit about a board
  • the substrate has a conductive film for driving a lateral electric field.
  • the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
  • examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
  • a method for forming a conductive film on a substrate a conventionally known method can be used.
  • a polymer composition is applied on a substrate having a conductive film for driving a lateral electric field, particularly on the conductive film.
  • the polymer composition used in the production method of the present invention contains (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; and (B) an organic solvent.
  • (A) Side chain polymer >> The component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range.
  • the (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
  • the (A) side chain polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 nm to 400 nm.
  • the (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
  • the side chain type polymer has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement in response to light.
  • the structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
  • the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.
  • the polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
  • a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip.
  • the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, It has a main chain composed of at least one selected from the group consisting of radically polymerizable groups such as vinyl, maleimide, norbornene and siloxane, and a side chain composed of at least one of the following formulas (1) to (6) A structure is preferred.
  • A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH ⁇ CH—CO—.
  • S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
  • T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
  • Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents.
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group
  • Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof
  • the hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a
  • R May be substituted with an alkyloxy group of R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
  • X is a single bond, —COO—, —OCO—, —N ⁇ N—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CH—CO—O—, or —O—CO—CH ⁇ .
  • X may be the same or different;
  • Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms; one of q1 and q2 is 1 and the other is 0; q3 is 0 or 1; P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • P or Q on the side to which —CH ⁇ CH— is bonded is an aromatic ring;
  • the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
  • l1 is 0 or 1;
  • l2 is an integer from 0 to 2; when l1 and l2 are both 0,
  • A represents a single bond when T is a single bond; when l1 is 1, B represents a single bond when T is a single bond;
  • H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
  • the side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
  • the side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
  • A, X, l, m, m1 and R have the same definition as above.
  • the side chain may be a photosensitive side chain represented by the following formula (14) or (15).
  • A, Y 1 , l, m1 and m2 have the same definition as above.
  • the side chain may be a photosensitive side chain represented by the following formula (16) or (17).
  • A, X, l and m have the same definition as above.
  • the side chain is preferably a photosensitive side chain represented by the following formula (18) or (19).
  • A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
  • R 1 represents a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
  • the side chain is preferably a photosensitive side chain represented by the following formula (20).
  • A, Y 1 , X, l and m have the same definition as above.
  • the (A) side chain polymer preferably has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
  • A, B, q1 and q2 have the same definition as above;
  • Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof.
  • each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
  • R 3 is a hydrogen atom, —NO 2 , —CN, —CH ⁇ C (CN) 2 , —CH ⁇ CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms; l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1
  • the photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing the photoreactive side chain monomer having the above photosensitive side chain and the liquid crystalline side chain monomer.
  • the photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
  • the photoreactive group possessed by the side chain the following structures and derivatives thereof are preferred.
  • photoreactive side chain monomer examples include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene, etc.
  • a polymerizable side group composed of at least one selected from the group consisting of siloxane and a photosensitive side chain consisting of at least one of the above formulas (1) to (6), preferably, for example, the above formula (7 ) To (10), a photosensitive side chain comprising at least one of the above formulas (11) to (13), and a photosensitivity represented by the above formula (14) or (15).
  • a photosensitive side chain a photosensitive side chain represented by the above formula (16) or (17), a photosensitive side chain represented by the above formula (18) or (19), and a photosensitivity represented by the above formula (20).
  • Sex side chain It is preferable that it has a structure.
  • a compound represented by the following formula (1) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (2) (wherein R represents a hydrogen atom or a methyl group; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (3) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (4) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
  • a compound represented by the following formula (5) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
  • a compound represented by the following formula (6) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (7) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (8) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (9) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (10) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • R represents a hydrogen atom or a methyl group
  • S represents an alkylene group having 2 to 10 carbon atoms
  • Py represents a 2-pyridyl group, a 3-pyridyl group, or a 4-pyridyl group
  • U represents 0 or 1).
  • a compound represented by the following formula (12) (wherein S represents an alkylene group having 2 to 9 carbon atoms; v represents 1 or 2).
  • a compound represented by the following formula (13) (wherein S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
  • a compound represented by the following formula (14) (wherein S represents an alkylene group having 1 to 10 carbon atoms; u represents 0 or 1).
  • a compound represented by the following formula (15) (wherein S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (16) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • a compound represented by the following formula (17) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
  • the liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site.
  • a mesogenic group having a side chain even if it is a group having a mesogen structure alone such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid Good.
  • the mesogenic group possessed by the side chain the following structure is preferable.
  • liquid crystalline side chain monomers include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, norbornene and other radical polymerizable groups
  • a structure having a polymerizable group composed of at least one selected from the group consisting of siloxanes and a side chain composed of at least one of the above formulas (21) to (31) is preferable.
  • the side chain polymer can be obtained by the polymerization reaction of the above-described photoreactive side chain monomer that exhibits liquid crystallinity. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
  • Examples of other monomers include industrially available monomers capable of radical polymerization reaction. Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
  • the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl.
  • (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.
  • Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
  • Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • the production method of the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
  • RAFT reversible addition-cleavage chain transfer
  • the radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation).
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (
  • the radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
  • the organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.
  • organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer
  • the polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is
  • the content is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
  • the polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film.
  • the weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
  • the polymer composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent.
  • the resin component is a resin component containing a photosensitive side chain polymer capable of exhibiting the liquid crystallinity already described.
  • the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and particularly preferably 1% by mass to 10% by mass.
  • the resin component described above may be a photosensitive side chain polymer that can all exhibit the above-described liquid crystallinity, but does not impair the liquid crystal developing ability and the photosensitive performance.
  • Other polymers may be mixed within the range.
  • the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
  • examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
  • the organic solvent used for the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone,
  • the polymer composition used in the present invention may contain components other than the above components (A) and (B). Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
  • the present invention is not limited to this.
  • solvent poor solvent which improves the uniformity of film thickness and surface smoothness.
  • solvents may be used alone or in combination.
  • it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.
  • Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) It is done.
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
  • phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed
  • An agent may be contained in the polymer composition. Specific phenoplast additives are shown below, but are not limited to this structure.
  • Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl- , 4'-diaminodip
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • a photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
  • photosensitizers aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl- ⁇ -naphthothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- ( ⁇ -naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-b
  • Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
  • a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired.
  • a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
  • the method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
  • the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
  • the polymer composition After the polymer composition is applied on a substrate having a conductive film for driving a horizontal electric field, it is 50 to 200 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven.
  • the solvent can be evaporated at 150 ° C. to obtain a coating film.
  • the drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer. If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered.
  • it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is. In addition, it is also possible to provide the process of cooling the board
  • step [II] the coating film obtained in step [I] is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
  • ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
  • the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
  • step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
  • An orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
  • the heating temperature is preferably within a temperature range of a temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystallinity expression temperature).
  • the liquid crystallinity expression temperature of the coating film surface may be lower than the liquid crystallinity expression temperature when a photosensitive side chain polymer capable of expressing liquid crystallinity is observed in bulk. is expected.
  • the heating temperature is more preferably within the temperature range of the liquid crystallinity expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C.
  • the temperature of the range which makes an upper limit If the heating temperature is lower than the above temperature range, the anisotropic amplification effect due to heat in the coating film tends to be insufficient, and if the heating temperature is too higher than the above temperature range, the state of the coating film Tends to be close to an isotropic liquid state (isotropic phase), and in this case, self-organization may make it difficult to reorient in one direction.
  • the liquid crystallinity temperature is equal to or higher than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). Refers to a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
  • Tg glass transition temperature
  • the thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm, for the same reason described in the step [I].
  • the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board
  • the step [IV] is the same as [I ′] to [III ′] in the same manner as the substrate (first substrate) obtained in [III] and having a liquid crystal alignment film on the conductive film for driving a lateral electric field.
  • the liquid crystal cell is obtained by a known method by arranging the liquid crystal alignment film-provided substrate (second substrate) obtained in the above step so that both liquid crystal alignment films face each other through the liquid crystal. To produce a lateral electric field drive type liquid crystal display element.
  • a substrate having no lateral electric field driving conductive film was used in place of the substrate having the lateral electric field driving conductive film in the step [I].
  • steps [I] to [III] It can be carried out in the same manner as in steps [I] to [III]. Since the difference between the steps [I] to [III] and the steps [I ′] to [III ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [III ′] is omitted. To do.
  • the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • Etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
  • the coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. .
  • an embodiment using a side chain type polymer having a structure having a photocrosslinkable group as a photoreactive group is the first embodiment, a structure having a photofleece rearrangement group or a group causing isomerization as a photoreactive group
  • An embodiment using the side chain type polymer will be referred to as a second embodiment.
  • FIG. 1 schematically shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to.
  • FIG. 1 (a) is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
  • FIG. 1 (b) is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light
  • FIG. 1 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention.
  • 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 1% to 15% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
  • FIG. 2 is a schematic illustration of anisotropy introduction treatment in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to.
  • FIG. 2A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
  • FIG. 2B is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light.
  • FIG. 2 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is large, that is, the first aspect of the present invention.
  • 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 15% to 70% of the ultraviolet ray irradiation amount that maximizes ⁇ A.
  • FIG. 3 shows a side chain polymer having a structure having a photo-isomerizable group as a photoreactive group or a photo-Fleece rearrangement group represented by the above formula (18) in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction process of anisotropy in the manufacturing method of the used liquid crystal aligning film.
  • FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation
  • FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation.
  • 3 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention.
  • 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • FIG. 4 shows the production of a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19) as a photoreactive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a method.
  • FIG. 4A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light
  • FIG. 4B is a schematic diagram of the state of the side chain polymer film after irradiation with polarized light.
  • FIG. 4 (c) is a diagram schematically showing the state of the side-chain polymer film after heating.
  • 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the ultraviolet irradiation amount in the step [II] is in the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the coating film 1 is formed on the substrate.
  • Fig.1 (a) in the coating film 1 formed on the board
  • the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A.
  • the coating film 3 is formed on the substrate. As shown in FIG. 2A, the coating film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chains 4 of the coating film 3, the mesogenic components and the photosensitive groups of the side chains 4 are also randomly oriented, and the coating film 2 is isotropic.
  • a side chain type having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) in the treatment for introducing anisotropy into the coating film In the case of using a liquid crystal alignment film using a polymer, when the ultraviolet irradiation amount in the step [II] is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, first, The coating film 5 is formed. As shown in FIG. 3A, the coating film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the coating film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain type polymer film 5 is isotropic.
  • liquid crystal alignment using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (19) in the treatment for introducing anisotropy into the coating film In the case of using a film, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A, first, the coating film 7 is formed on the substrate. . As shown in FIG. 4A, the coating film 7 formed on the substrate has a structure in which the side chains 8 are arranged at random. According to the random arrangement of the side chains 8 of the coating film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the coating film 7 is isotropic.
  • the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ⁇ A
  • polarized ultraviolet rays are irradiated.
  • the photosensitive group of the side chain 2a having the photosensitive group among the side chains 2 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like.
  • Dimerization reaction or the like causes a photoreaction.
  • the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet light, and as a result, very small anisotropy is imparted to the coating film 1.
  • the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • polarized ultraviolet rays are irradiated.
  • the photosensitive group of the side chain 4a having the photosensitive group among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like.
  • the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the coating film 3.
  • the density of the side chain 6a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the coating film 5.
  • the amount of ultraviolet irradiation in the step [II] is obtained using a coating film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19). Is within the range of 1% to 70% of the amount of UV irradiation that maximizes ⁇ A, the isotropic coating film 7 is irradiated with polarized UV light. Then, as shown in FIG. 4 (b), the photosensitive group of the side chain 8a having the photosensitive group among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 8a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, small anisotropy is imparted to the coating film 7.
  • the coating film 1 after the polarized light irradiation 1 Is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the coating film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer.
  • the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the very small anisotropy of the coating film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 1.
  • the coating film after polarized light irradiation 3 is heated to a liquid crystal state.
  • the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the small anisotropy of the coating film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 3.
  • a coating film using a side-chain polymer having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) is used.
  • the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • the coating film 5 after polarized irradiation is heated to be in a liquid crystal state.
  • generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of irradiation ultraviolet rays, and a perpendicular
  • the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light.
  • the side chain 6 containing the mesogenic component is reoriented.
  • the very small anisotropy of the coating film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 5.
  • a coating film using a side chain type polymer having a structure having a photofleece rearrangement group represented by the above formula (19) is used.
  • the ultraviolet irradiation amount is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ⁇ A
  • the coated film 7 after polarized irradiation is heated to a liquid crystal state.
  • the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. .
  • the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light.
  • the side chain 8 containing the mesogenic component is reoriented.
  • the small anisotropy of the coating film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 7.
  • the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
  • the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
  • the optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is such that the photosensitive group undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction in the coating film.
  • the photo-crosslinking reaction, photoisomerization reaction, or photo-fleece rearrangement reaction has few photosensitive groups in the side chain, the amount of photoreaction will not be sufficient. . In that case, sufficient self-organization does not proceed even after heating.
  • the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating.
  • the coating film used in the present invention is irradiated with polarized ultraviolet rays to the structure having the light Fleece rearrangement group, if the photosensitive group of the side chain that undergoes the light Fleece rearrangement reaction becomes excessive, the liquid crystallinity of the coating film Will drop too much.
  • the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly by subsequent heating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photo-fleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side-chain polymer is photodegraded, preventing the subsequent self-organization by heating. It may become.
  • the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the side chain polymer film. It is preferably 0.1 to 40 mol%, more preferably 0.1 to 20 mol% of the photosensitive group possessed by.
  • the coating film used in the method of the present invention by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
  • the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
  • the maximum value of ⁇ A ( ⁇ Amax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ⁇ Amax.
  • the amount of irradiation of polarized ultraviolet rays onto the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ⁇ Amax. More preferably, it is within the range of 50%.
  • the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ⁇ Amax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
  • a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
  • the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
  • the lateral electric field drive type liquid crystal display element substrate manufactured by the method of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability, large screen and high definition. It can be suitably used for LCD TVs.
  • MA1 was synthesized by a synthesis method described in a patent document (WO2011-084546).
  • MA2 was synthesized by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717).
  • MA3 was synthesized by a synthesis method described in non-patent literature (Macromolecules 2002, 35, 706-713).
  • MA4 is an unpublished new compound such as literature, and its synthesis method will be described in detail in Synthesis Example 1 below.
  • MA5 was synthesized by a synthesis method described in a patent document (Japanese Patent Laid-Open No. 2010-18807).
  • MA6 to MA9 are unpublished new compounds such as literatures, and their synthesis methods will be described in detail in Synthesis Examples 2 to 5 below.
  • MA10 commercially available M6BC (manufactured by Midori Chemical Co., Ltd.) was used.
  • MA11 to 13 are novel compounds that have not been disclosed in the literature, and their synthesis methods will be described in detail in Synthesis Examples 6 to 8 below.
  • MA14-18 were commercially available, and M4CA, M4BA, M2CA, M3CA, and M5CA (all manufactured by Midori Chemical Co., Ltd.) were used.
  • MA19 to 23 are novel compounds that have not been disclosed in the literature, and their synthesis methods are described in detail in Synthesis Examples 9 to 13 below.
  • MA24 was synthesized by the synthesis method described in non-patent literature (Polymer Journal, Vol. 29, No. 4, pp 303-308 (1997)).
  • MA25 is an unpublished new compound such as literature, and its synthesis method will be described in detail in Synthesis Example 14 below.
  • MA26 and MA27 are the synthesis methods described in non-patent literature (Macromolecules (2012), 45 (21), 8547-8554) and non-patent literature (Liquid Crystals (1995), 19 (4), 433-40), respectively.
  • MA28 to 33 are novel compounds not yet disclosed in the literature, and their synthesis methods will be described in detail in Synthesis Examples 15 to 20 below.
  • MA34 to 39 are unpublished novel compounds such as literatures, and their synthesis methods will be described in detail in the following Synthesis Examples 21 to 26.
  • MA40 and 41 were synthesized by the synthesis method described in the patent document (Japanese Patent Publication No. 2009-511431).
  • MA42 is a novel compound that has not been disclosed yet, and its synthesis method will be described in detail in Synthesis Example 27 below.
  • MA43 was synthesized by the synthesis method described in the patent document (WO2012-115129).
  • MA44 was synthesized by a synthesis method described in a patent document (WO2013-1333078).
  • MA45 was synthesized by the synthesis method described in the patent document (WO2008-072652).
  • MA46 is an unpublished novel compound such as literature, and its synthesis method will be described in detail in Synthesis Example 28 below.
  • the reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 6 L of distilled water, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave a crude product. The obtained crude product was washed with 100 g of 2-propanol, filtered and dried to obtain 127 g of Compound [MA4-5] (yield 49%).
  • tert-butyl 4-bromobenzoate [MA25-1] (126.0 g, 488 mmol), acrylic acid (73.86 g, 1.03 mol), palladium acetate (2.19 g, 9.77 mmol).
  • Tri (o-tolyl) phosphine (5.94 g, 19.53 mmol)
  • tributylamine 271.5 g, 1.46 mol
  • DMAc 630 g
  • reaction solution was poured into 4 L of distilled water, 1 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent using an evaporator gave 65.19 g of Compound [MA25-4] (yield 87%).
  • 6-bromo-2-naphthol [MA29-1] 150 g, 672 mol
  • tert-butyl acrylate [MA4-2] 103.4 g, 807 mmol
  • palladium acetate 3.02 g, 13.5 mmol
  • tri (o-tolyl) phosphine 8.19 g, 26.9 mmol
  • tripropylamine 289.0 g, 2.02 mol
  • DMAc 700 g
  • the reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 6 L of distilled water, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 140.9 g of Compound [MA29-4] (yield 92%).
  • 6-hydroxy-2-naphthalenecarboxylic acid [MA31-1] 300 g, 1.59 mol
  • potassium hydroxide 205 g, 3.66 mol
  • distilled water 1200 g
  • 6-Chloro-1-hexanol 261 g, 1.91 mol
  • the reaction was monitored by HPLC.
  • the reaction solution was cooled to near room temperature, poured into ice water (3 L), and neutralized by adding 35% hydrochloric acid.
  • the liquid crystallinity expression temperature of the polymer obtained in the examples was measured using differential scanning calorimetry (DSC) DSC3100SR (manufactured by Mac Science).
  • Example 1 MA1 (9.97 g, 30.0 mmol) was dissolved in THF (92.0 g) and degassed with a diaphragm pump, and then AIBN (0.246 g, 1.5 mmol) was added and degassed again. . Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (A).
  • the number average molecular weight of this polymer was 16000, and the weight average molecular weight was 32000.
  • the liquid crystallinity expression temperature of the obtained methacrylate polymer was 145 ° C. to 190 ° C.
  • NMP 29.3 g was added to the obtained methacrylate polymer powder (A) (6.0 g), and the mixture was dissolved by stirring at room temperature for 5 hours.
  • NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (A1).
  • liquid crystal cell Using the liquid crystal aligning agent (A1) obtained above, a liquid crystal cell was prepared according to the procedure shown below.
  • the substrate used was a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
  • the pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 10 ⁇ m, and the distance between the electrode elements is 20 ⁇ m.
  • each pixel Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed so as to form an angle of ⁇ 15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent (A1) obtained above was spin-coated on the prepared substrate with electrodes.
  • the coating film surface was irradiated with 5 mJ / cm 2 of 313 nm ultraviolet rays via a polarizing plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer with a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate.
  • the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was thermally cured to produce an empty cell.
  • a liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element is injected into this empty cell by a vacuum injection method by injecting liquid crystal MLC-2041 (manufactured by Merck), sealing the injection port. Obtained.
  • IPS In-Plane Switching
  • the IPS mode liquid crystal cell prepared in Example 1 is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on in the state where no voltage is applied.
  • the arrangement angle of the liquid crystal cell was adjusted so as to be the smallest.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth.
  • an alternating voltage of 16 V PP was applied in a 60 ° C. oven at a frequency of 30 Hz for 168 hours.
  • Example 2 MA1 (4.99 g, 15.0 mmol) and MA2 (4.60 g, 15.0 mmol) were dissolved in THF (88.5 g), deaerated with a diaphragm pump, and then AIBN (0.246 g, 15.0 mmol). .5 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain a methacrylate polymer powder (B). The number average molecular weight of this polymer was 14,000, and the weight average molecular weight was 29000.
  • the obtained methacrylate polymer had a liquid crystallinity expression temperature of 135 ° C. to 180 ° C.
  • NMP 29.29 g
  • NMP (24.7 g) and BC (450.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (B1).
  • For the liquid crystal alignment agent (B1) afterimage evaluation was performed after producing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 20 mJ and the heating temperature on the hot plate was 140 ° C. It was.
  • the liquid crystallinity expression temperature of the obtained methacrylate polymer was 150 ° C. to 300 ° C.
  • CH 2 Cl 2 99.0 g was added to the obtained methacrylate polymer powder (C) (1.0 g) and dissolved by stirring at room temperature for 5 hours to obtain a liquid crystal aligning agent (C1).
  • the liquid crystal aligning agent (C1) afterimage evaluation was performed after producing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 300 mJ and the heating temperature on the hot plate was 180 ° C. It was.
  • Example 4 After MA4 (8.16 g, 20.0 mmol) was dissolved in NMP (75.0 g) and deaerated with a diaphragm pump, AIBN (0.164 g, 1.0 mmol) was added and deaerated again. . Thereafter, the mixture was reacted at 70 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (D). The number average molecular weight of this polymer was 18000, and the weight average molecular weight was 29000.
  • the liquid crystallinity expression temperature of the obtained methacrylate polymer was 225 ° C. to 290 ° C.
  • NMP 29.29 g
  • afterimage preparation was performed after producing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 30 mJ and the heating temperature on the hot plate was 240 ° C. It was.
  • the obtained methacrylate polymer did not exhibit liquid crystallinity in the temperature range from 30 ° C to 300 ° C.
  • NMP 29.29 g was added to the resulting methacrylate polymer powder (E) (6.0 g) and dissolved by stirring at room temperature for 5 hours.
  • each of Examples 1 to 4 showed good orientation, and the angle ⁇ (deg.), which is the difference in orientation azimuth before and after AC driving, was very good at 0.1 or less. there were.
  • the liquid crystallinity was not exhibited and the re-orientation was not performed.
  • the angle ⁇ (deg.) was as high as 1.4 degrees.
  • Comparative Examples 2 to 4 where reheating after light irradiation was not performed the liquid crystal was not aligned and the angle ⁇ (deg.) could not be measured.
  • the liquid crystallinity expression temperature of the obtained methacrylate polymer was 140 ° C. to 182 ° C.
  • NMP 29.3 g was added to the resulting methacrylate polymer powder (6.0 g) and dissolved by stirring at room temperature for 5 hours.
  • Example 6 to 51 Liquid crystal aligning agents (T2 to T48) of Examples 6 to 51 were synthesized with the compositions shown in Table 2 using the same method as in Example 5.
  • a liquid crystal cell was produced in the same procedure as in Example 5 except that the obtained liquid crystal aligning agents (T2 to T30 and T42 to 48) were irradiated with ultraviolet rays and heated on a hot plate.
  • Table 3 shows the production conditions and afterimage evaluation results of each liquid crystal cell.
  • the side chain polymer film that exhibits liquid crystallinity is irradiated with ultraviolet light, and then heated in the liquid crystallinity expression temperature range, whereby the liquid crystal is highly efficient throughout the polymer by self-organization. Since alignment ability was imparted, almost no deviation in alignment orientation was observed even after long-term AC driving.
  • the comparative example it was found that in the case of using a side chain polymer that does not exhibit liquid crystallinity, the orientation orientation is shifted due to long-term AC driving. This is presumably because the liquid crystal is oriented only in the part where photoreaction occurs in the film, and the interaction between the polymer and the liquid crystal is weak. Thus, it was confirmed that the liquid crystal display device manufactured by the method of the present invention exhibits very excellent afterimage characteristics.
  • FIG. 1 Side chain polymer membrane 2, 2a Side chain Fig. 2 3 Side chain polymer membrane 4, 4a Side chain Fig. 3 5 Side chain polymer membrane 6, 6a Side chain Fig. 4 7 Side chain polymer membrane 8, 8a Side chain

Abstract

The present invention provides an in-plane switching-type liquid crystal display element imparted with a high-efficiency alignment control function, and having excellent burn-in properties. The present invention also provides a manufacturing method for a substrate having a liquid crystal alignment film, said method having the following steps for obtaining a liquid crystal alignment film for an in-plane switching-type liquid crystal display element imparted with an alignment control function: [I] a step in which a polymer composition, which contains (A) a light-sensitive sidechain polymer that exhibits liquid crystallinity at a prescribed temperature range and (B) an organic solvent, is coated on a substrate having a conductive film for in-plane switching, and a coating film is formed; [II] a step in which the coating film obtained in [I] is irradiated with polarized UV light; and [III] a step in which the coating film obtain in [II] is heated.

Description

横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
 本発明は、横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法に関する。さらに詳しくは、焼き付き特性に優れる液晶表示素子を製造するための新規な方法に関する。 The present invention relates to a method for manufacturing a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element. More specifically, the present invention relates to a novel method for manufacturing a liquid crystal display device having excellent image sticking characteristics.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 The liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years. The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。 That is, the liquid crystal alignment film is a component of the liquid crystal display element, and is formed on the surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
 配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。 As a method for aligning a liquid crystal alignment film for imparting alignment control ability, a rubbing method has been conventionally known. The rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction). This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements. As an organic film used for the liquid crystal alignment film, a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.
 しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust and static electricity may be a problem. In addition, due to the high definition of the liquid crystal surface element in recent years and the unevenness caused by the corresponding electrodes on the substrate and the switching active element for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. In some cases, alignment of the liquid crystal cannot be realized.
 そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。 Therefore, a photo-alignment method has been actively studied as another method for aligning the liquid crystal alignment film without rubbing.
 光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。 There are various photo alignment methods. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.
 主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせる。そして、分解せずに残されたポリイミドにより液晶を配向させるようにする(例えば、特許文献1を参照のこと。)。 A decomposition type photo-alignment method is known as a main photo-alignment method. For example, the polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).
 また、光架橋型や光異性化型の光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。そして、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献1を参照のこと。)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2を参照のこと。)。 Further, photocrosslinking type and photoisomerization type photo-alignment methods are also known. For example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction perpendicular to the polarization direction (see, for example, Non-Patent Document 1). In addition, when a side chain polymer having azobenzene in the side chain is used, irradiation with polarized ultraviolet light causes an isomerization reaction at the azobenzene portion of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction perpendicular to the polarization direction. Align (for example, see Non-Patent Document 2).
 以上の例のように、光配向法による液晶配向膜の配向処理方法では、ラビングを不要とし、発塵や静電気の発生の懸念が無い。そして、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。 As in the above example, the liquid crystal alignment film alignment treatment method by the photo alignment method does not require rubbing, and there is no fear of generation of dust or static electricity. An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.
特許第3893659号公報Japanese Patent No. 3893659
 以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とし、そのため大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。しかしながら、光配向法では、ラビング法による場合と同程度の配向制御能を実現しようとする場合、大量の偏光した光の照射量が必要となったり、安定な液晶の配向が実現できない場合がある。 As described above, the photo-alignment method eliminates the rubbing process itself as compared with the rubbing method that has been used industrially as an alignment treatment method for liquid crystal display elements, and thus has a great advantage. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light. However, in the photo-alignment method, in order to achieve the same degree of alignment control ability as in the rubbing method, a large amount of polarized light irradiation may be required or stable liquid crystal alignment may not be realized. .
 例えば、上記した特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を60分間照射する必要があるなど、長時間かつ大量の紫外線照射が必要となる。また、二量化型や光異性化型の光配向法の場合においても、数J(ジュール)~数十J程度の多くの量の紫外線照射が必要となる場合がある。さらに、光架橋型や光異性化型の光配向法の場合、液晶の配向の熱安定性や光安定性に劣るため、液晶表示素子とした場合に、配向不良や表示焼き付きが発生するといった問題があった。特に横電界駆動型の液晶表示素子では液晶分子を面内でスイッチングするため、液晶駆動後の液晶の配向ズレが発生しやすく、AC駆動に起因する表示焼き付きが大きな課題とされている。 For example, in the decomposition type photo-alignment method described in Patent Document 1, it is necessary to irradiate the polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes. Become. Further, even in the case of dimerization type or photoisomerization type photo-alignment methods, a large amount of ultraviolet irradiation of about several J (joule) to several tens of J may be required. Furthermore, in the case of the photo-crosslinking type or photoisomerization type photo-alignment method, since the thermal stability and light stability of the liquid crystal alignment are inferior, there is a problem that alignment failure or display burn-in occurs when a liquid crystal display element is used. was there. In particular, in a horizontal electric field drive type liquid crystal display element, since liquid crystal molecules are switched in a plane, alignment misalignment of liquid crystal after liquid crystal driving is likely to occur, and display burn-in caused by AC driving is a major issue.
 したがって、光配向法では、配向処理の高効率化や安定な液晶配向の実現が求められており、液晶配向膜への高い配向制御能の付与を高効率に行うことができる液晶配向膜や液晶配向剤が求められている。 Therefore, in the photo-alignment method, there is a demand for higher efficiency of alignment treatment and realization of stable liquid crystal alignment, and liquid crystal alignment films and liquid crystals that can impart high alignment control ability to the liquid crystal alignment film with high efficiency. There is a need for aligning agents.
 本発明は、高効率で配向制御能が付与され、焼き付き特性に優れた、横電界駆動型液晶表示素子用液晶配向膜を有する基板及び該基板を有する横電界駆動型液晶表示素子を提供することを目的とする。 The present invention provides a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. With the goal.
 本発明者らは、上記課題を達成するべく鋭意検討を行った結果、以下の発明を見出した。
 <1> [I] (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
 (B)有機溶媒
を含有する重合体組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
As a result of intensive studies to achieve the above problems, the present inventors have found the following invention.
<1> [I] (A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) a polymer composition containing an organic solvent, a conductive film for driving a lateral electric field Applying on a substrate having a coating to form a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having.
 <2> 上記<1>において、(A)成分が、光架橋、光異性化、または光フリース転移を起こす感光性側鎖を有するのがよい。
 <3> 上記<1>又は<2>において、(A)成分が、下記式(1)~(6)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。
<2> In the above item <1>, the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
<3> In the above item <1> or <2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (1) to (6).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
 <4> 上記<1>又は<2>において、(A)成分が、下記式(7)~(10)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。
 式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す。
<4> In the above item <1> or <2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 <5> 上記<1>又は<2>において、(A)成分が、下記式(11)~(13)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。
 式中、A、X、l、m、m1及びRは、上記と同じ定義を有する。
<5> In the above item <1> or <2>, the component (A) preferably has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m, m1 and R have the same definition as above.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 <6> 上記<1>又は<2>において、(A)成分が、下記式(14)又は(15)で表される感光性側鎖を有するのがよい。
 式中、A、Y、l、m1及びm2は上記と同じ定義を有する。
<6> In the above <1> or <2>, the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , l, m1 and m2 have the same definition as above.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 <7>  上記<1>又は<2>において、(A)成分が、下記式(16)又は(17)で表される感光性側鎖を有するのがよい。
 式中、A、X、l及びmは、上記と同じ定義を有する。
<7> In the above <1> or <2>, the component (A) preferably has a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 <8>  上記<1>又は<2>において、(A)成分が、下記式(18)又は(19)で表される感光性側鎖を有するのがよい。
 式中、A、B、Y、q1、q2、m1、及びm2は、上記と同じ定義を有する。
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す。
<8> In the above <1> or <2>, the component (A) preferably has a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 <9> 上記<1>又は<2>において、(A)成分が、下記式(20)で表される感光性側鎖を有するのがよい。
 式中、A、Y、X、l及びmは上記と同じ定義を有する。
<9> In the above <1> or <2>, the component (A) preferably has a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 <10> 上記<1>~<9>のいずれかにおいて、(A)成分が、下記式(21)~(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有するのがよい。
 式中、A、B、q1及びq2は上記と同じ定義を有する;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
 lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
 Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
 Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す。
<10> In any one of the above items <1> to <9>, the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31): Good.
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 <11> 上記<1>~<10>のいずれにより製造された横電界駆動型液晶表示素子用液晶配向膜を有する基板。
 <12> 上記<11>の基板を有する横電界駆動型液晶表示素子。
<11> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device manufactured according to any of the above <1> to <10>.
<12> A lateral electric field drive type liquid crystal display device having the substrate of <11> above.
 <13> 上記<11>の基板(第1の基板)を準備する工程;
 [I’] 第2の基板上に
 (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
 (B)有機溶媒
を含有する重合体組成物を、塗布して塗膜を形成する工程;
 [II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、該液晶配向膜を有する第2の基板を得る工程;及び
 [IV] 液晶を介して第1及び第2の基板の液晶配向膜が相対するように、第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。
<13> A step of preparing the substrate (first substrate) of <11>above;
[I ′] A polymer composition containing (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) an organic solvent is applied onto a second substrate. Forming a coating film;
[II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
Obtaining a liquid crystal alignment film imparted with alignment control ability by having a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment films of the first and second substrates via liquid crystal The liquid crystal display element is obtained by disposing the first and second substrates so as to face each other;
A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element.
 <14> 上記<13>により製造された横電界駆動型液晶表示素子。
 <15> (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
(B)有機溶媒
を含有する、横電界駆動型液晶表示素子用液晶配向膜製造用組成物。
 <16> 下記式(1)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
<14> A lateral electric field drive type liquid crystal display device manufactured according to the above <13>.
<15> A composition for producing a liquid crystal alignment film for a lateral electric field driving type liquid crystal display device, comprising (A) a photosensitive side chain polymer exhibiting liquid crystallinity in a predetermined temperature range, and (B) an organic solvent. .
<16> A compound represented by the following formula (1) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 <17> 下記式(2)(式中、Rは水素原子またはメチル基を示す;R10はBrまたはCNを示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <17> A compound represented by the following formula (2) (wherein R represents a hydrogen atom or a methyl group; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 <18> 下記式(3)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <18> A compound represented by the following formula (3) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 <19> 下記式(4)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 <19> A compound represented by the following formula (4) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 <20> 下記式(5)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 <20> A compound represented by the following formula (5) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 <21> 下記式(6)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <21> A compound represented by the following formula (6) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 <22> 下記式(7)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <22> A compound represented by the following formula (7) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 <23> 下記式(8)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <23> A compound represented by the following formula (8) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 <24> 下記式(9)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <24> A compound represented by the following formula (9) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 <25> 下記式(10)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <25> A compound represented by the following formula (10) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 <26> 下記式(11)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;Pyは2-ピリジル基、3-ピリジル基または4-ピリジル基を表す;uは0または1を表す)で表される化合物。 <26> Formula (11) below (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; Py represents a 2-pyridyl group, a 3-pyridyl group, or 4-pyridyl group) Represents a group; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 <27> 下記式(12)(式中、Sは炭素数2~9のアルキレン基を表す;vは1または2を表す)で表される化合物。 <27> A compound represented by the following formula (12) (wherein S represents an alkylene group having 2 to 9 carbon atoms; v represents 1 or 2).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 <28> 下記式(13)(式中、Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 <28> A compound represented by the following formula (13) (wherein S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 <29> 下記式(14)(式中、Sは炭素数1~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 <29> A compound represented by the following formula (14) (wherein S represents an alkylene group having 1 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 <30> 下記式(15)(式中、Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <30> A compound represented by the following formula (15) (wherein S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 <31> 下記式(16)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <31> A compound represented by the following formula (16) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 <32> 下記式(17)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 <32> A compound represented by the following formula (17) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
1.横電界駆動用の導電膜を有する基板上に、
(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、ならびに
(B)有機溶媒
を含有する重合体組成物を塗布して塗膜を形成し、
紫外線の照射とその後の加熱によって配向制御能が付与された一対の塗膜付基板を、液晶分子の層を介して前記塗膜が相対するように対向配置して液晶セルを形成する工程を経ることを特徴とする、横電界駆動型液晶表示素子の製造方法。
1. On a substrate having a conductive film for lateral electric field driving,
(A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) a polymer composition containing an organic solvent is applied to form a coating film,
A process of forming a liquid crystal cell by placing a pair of coated substrates provided with alignment control ability by ultraviolet irradiation and subsequent heating so as to face each other with the coating film facing each other through a layer of liquid crystal molecules. A method of manufacturing a lateral electric field drive type liquid crystal display element.
2.(A)成分が、光架橋、光異性化、または光フリース転移を起こす側鎖を有することを特徴とする、1に記載の方法。
3.(A)成分が下記式(1)~(8)の感光性側鎖を有することを特徴とする、1または2に記載の方法。
2. 2. The method according to 1, wherein the component (A) has a side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
3. 3. The method according to 1 or 2, wherein the component (A) has a photosensitive side chain represented by the following formulas (1) to (8).
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 ただし、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-を表し;
 Yは1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、および、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い;
 Xは単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-を表し;
 lは1~12の整数を表し;
 mは0~2の整数を表し;
 m1、m2は1~3の整数を表し;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す;
 Yは2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の環状炭化水素、および、それらの組み合わせから選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基で置換されても良い;
 Rは水素原子、および炭素数1~6のアルキル基を表す;
 Rは水素原子-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、アルキル基、又はアルキルオキシ基を表す。
4.(A)成分が、下記式(5)~(13)の液晶性の側鎖を有することを特徴とする、1から3のいずれか1つに記載の方法。
Provided that A, B and D each independently represent a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH— or —NH—CO—;
Y 1 is a group selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each independently may be substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group;
X represents a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2;
m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (provided that when n = 0, B is a single bond);
Y 2 is a group selected from a divalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, a cyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, and the hydrogen atom bonded to them is Each independently may be substituted with —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group;
R represents a hydrogen atom and an alkyl group having 1 to 6 carbon atoms;
R 1 represents a hydrogen atom —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group, or an alkyloxy group.
4). 4. The method according to any one of 1 to 3, wherein the component (A) has a liquid crystalline side chain represented by the following formulas (5) to (13).
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 ただし、A、B、Y、R、l、m、m1、m2、及びRは、上記と同じ定義を有する;
 Z、Zは-CO-、-CHO-、-C=N-、-CF-を表す。
Provided that A, B, Y 1 , R, 1, m, m1, m2, and R 1 have the same definition as above;
Z 1 and Z 2 represent —CO—, —CH 2 O—, —C═N—, —CF 2 —.
5.1~4のいずれか1つに記載の
(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、ならびに
(B)有機溶媒
を含有する重合体組成物であって、
横電界駆動用の導電膜を有する基板上に塗膜を形成し、紫外線の照射とその後の加熱によって配向制御能が付与された一対の塗膜付基板を、
液晶分子の層を介して前記塗膜が相対するように対向配置して液晶セルを形成する工程を経る横電界駆動型液晶表示素子の製造方法において、前記塗膜を形成するために使用されることを特徴とする、前記重合体組成物。
5. A polymer composition containing (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) an organic solvent, according to any one of items 1 to 4. And
A coating film is formed on a substrate having a conductive film for lateral electric field driving, and a pair of coated substrates to which orientation control ability is imparted by irradiation with ultraviolet rays and subsequent heating,
Used for forming the coating film in a method of manufacturing a lateral electric field drive type liquid crystal display element that undergoes a step of forming a liquid crystal cell so as to face each other through a layer of liquid crystal molecules. The polymer composition characterized by the above.
6.1~4のいずれか1つに記載の液晶表示素子の製造方法によって製造されたことを特徴とする、液晶表示素子。
7.下記式(1)で表される液晶性化合物。
 式中、Rは水素原子またはメチル基、Sは炭素原子数2~10のアルキレン基を表す。
6. A liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device according to any one of items 1 to 4.
7). A liquid crystalline compound represented by the following formula (1).
In the formula, R represents a hydrogen atom or a methyl group, and S represents an alkylene group having 2 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 本発明により、高効率で配向制御能が付与され、焼き付き特性に優れた、横電界駆動型液晶表示素子用液晶配向膜を有する基板及び該基板を有する横電界駆動型液晶表示素子を提供することができる。
 本発明の方法によって製造された横電界駆動型液晶表示素子は、高効率に配向制御能が付与されているため長時間連続駆動しても表示特性が損なわれることがない。
According to the present invention, there are provided a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. Can do.
Since the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even when continuously driven for a long time.
本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖に架橋性の有機基を用い、導入された異方性が小さい場合の図である。It is a figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film used for this invention, using the crosslinkable organic group for the photosensitive side chain, and introduced the anisotropic It is a figure when property is small. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖に架橋性の有機基を用い、導入された異方性が大きい場合の図である。It is a figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film used for this invention, using the crosslinkable organic group for the photosensitive side chain, and introduced the anisotropic It is a figure when the property is large. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖にフリース転移又は異性化を起こす有機基を用い、導入された異方性が小さい場合の図である。It is a figure of one example which illustrates typically the introduction processing of anisotropy in the manufacturing method of the liquid crystal aligning film used for the present invention, using the organic group which causes fleece transition or isomerization to the photosensitive side chain, and is introduced. It is a figure in case the anisotropy made is small. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖にフリース転移又は異性化を起こす有機基を用い、導入された異方性が大きい場合の図である。It is a figure of one example which illustrates typically the introduction processing of anisotropy in the manufacturing method of the liquid crystal aligning film used for the present invention, using the organic group which causes fleece transition or isomerization to the photosensitive side chain, and is introduced. It is a figure in case the anisotropy made is large.
 本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
 本発明の製造方法において用いられる重合体組成物は、液晶性を発現し得る感光性の側鎖型高分子(以下、単に側鎖型高分子とも呼ぶ)を有しており、前記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型高分子を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された塗膜(以下、液晶配向膜とも称する)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる
As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention.
The polymer composition used in the production method of the present invention has a photosensitive side chain polymer that can exhibit liquid crystallinity (hereinafter, also simply referred to as a side chain polymer), and the polymer composition The coating film obtained by using the product is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity. This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film. At this time, the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization. As a result, a highly efficient alignment process can be realized as a liquid crystal alignment film, and a liquid crystal alignment film with high alignment control ability can be obtained.
 以下、本発明の実施形態について詳しく説明する。
<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
本発明の液晶配向膜を有する基板の製造方法は、
 [I] (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
 (B)有機溶媒
を含有する重合体組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
 [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有する。
 上記工程により、配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
Hereinafter, embodiments of the present invention will be described in detail.
<Manufacturing method of substrate having liquid crystal alignment film> and <Manufacturing method of liquid crystal display element>
The method for producing a substrate having the liquid crystal alignment film of the present invention is
[I] (A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) a substrate containing a polymer composition containing an organic solvent, and a conductive film for driving a lateral electric field. A step of coating on top to form a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
Have
Through the above steps, a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element to which alignment control ability is imparted can be obtained, and a substrate having the liquid crystal alignment film can be obtained.
 また、上記得られた基板(第1の基板)の他に、第2の基板を準備することにより、横電界駆動型液晶表示素子を得ることができる。
 第2の基板は、横電界駆動用の導電膜を有する基板に代わって、横電界駆動用の導電膜を有しない基板を用いる以外、上記工程[I]~[III](横電界駆動用の導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]~[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
Further, by preparing a second substrate in addition to the obtained substrate (first substrate), a lateral electric field drive type liquid crystal display element can be obtained.
For the second substrate, instead of using a substrate having no lateral electric field driving conductive film instead of a substrate having a lateral electric field driving conductive film, the above steps [I] to [III] (for lateral electric field driving) Since a substrate having no conductive film is used, for the sake of convenience, in this application, the steps [I ′] to [III ′] may be abbreviated as steps), thereby providing a first liquid crystal alignment film having alignment controllability. Two substrates can be obtained.
 横電界駆動型液晶表示素子の製造方法は、
 [IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより横電界駆動型液晶表示素子を得ることができる。
The manufacturing method of the horizontal electric field drive type liquid crystal display element is
[IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween;
Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.
 以下、本発明の製造方法の有する[I]~[III]、および[IV]の各工程について説明する。
<工程[I]>
 工程[I]では、横電界駆動用の導電膜を有する基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子及び有機溶媒を含有する重合体組成物を塗布して塗膜を形成する。
The steps [I] to [III] and [IV] of the production method of the present invention will be described below.
<Process [I]>
In step [I], a polymer composition containing a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range and an organic solvent is applied onto a substrate having a conductive film for driving a lateral electric field. To form a coating film.
<基板>
 基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
 また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。
<Board>
Although it does not specifically limit about a board | substrate, When the liquid crystal display element manufactured is a transmission type, it is preferable that a highly transparent board | substrate is used. In that case, there is no particular limitation, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
In consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can also be used.
<横電界駆動用の導電膜>
 基板は、横電界駆動用の導電膜を有する。
 該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
 また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
 基板に導電膜を形成する方法は、従来公知の手法を用いることができる。
<Conductive film for driving lateral electric field>
The substrate has a conductive film for driving a lateral electric field.
Examples of the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
In the case of a reflective liquid crystal display element, examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
As a method for forming a conductive film on a substrate, a conventionally known method can be used.
<重合体組成物>
 横電界駆動用の導電膜を有する基板上、特に導電膜上に、重合体組成物を塗布する。
 本発明の製造方法に用いられる、該重合体組成物は、(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子;及び(B)有機溶媒;を含有する。
<<(A)側鎖型高分子>>
 (A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子である。
 (A)側鎖型高分子は、250nm~400nmの波長範囲の光で反応し、かつ100℃~300℃の温度範囲で液晶性を示すのがよい。
 (A)側鎖型高分子は、250nm~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
 (A)側鎖型高分子は、100℃~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
<Polymer composition>
A polymer composition is applied on a substrate having a conductive film for driving a lateral electric field, particularly on the conductive film.
The polymer composition used in the production method of the present invention contains (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; and (B) an organic solvent.
<< (A) Side chain polymer >>
The component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range.
The (A) side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C. to 300 ° C.
The (A) side chain polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 nm to 400 nm.
The (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
 (A)側鎖型高分子は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る感光性の側鎖型高分子膜の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。 (A) The side chain type polymer has a photosensitive side chain bonded to the main chain, and can cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement in response to light. The structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time. The structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.
 該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。 The polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip. A structure having a photosensitive group bonded to a moiety, which undergoes a crosslinking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded to the main chain, and the side chain also serves as a mesogenic component, and A structure having a phenylbenzoate group that undergoes a photo-Fries rearrangement reaction can be obtained.
 液晶性を発現し得る感光性の側鎖型高分子膜の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)から(6)の少なくとも1種からなる側鎖を有する構造であることが好ましい。 More specific examples of the structure of the photosensitive side chain polymer film capable of exhibiting liquid crystallinity include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, It has a main chain composed of at least one selected from the group consisting of radically polymerizable groups such as vinyl, maleimide, norbornene and siloxane, and a side chain composed of at least one of the following formulas (1) to (6) A structure is preferred.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
 Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
 Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
 Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 q1とq2は、一方が1で他方が0である;
 q3は0または1である;
 P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
 l1は0または1である;
 l2は0~2の整数である;
 l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
 l1が1であるときは、Tが単結合であるときはBも単結合を表す;
 H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.
 側鎖は、下記式(7)~(10)からなる群から選ばれるいずれか1種の感光性側鎖であるのがよい。
 式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
 lは1~12の整数を表す;
 mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
 nは0~12の整数(ただしn=0のときBは単結合である)を表す。
The side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 側鎖は、下記式(11)~(13)からなる群から選ばれるいずれか1種の感光性側鎖であるのがよい。
 式中、A、X、l、m、m1及びRは、上記と同じ定義を有する。
The side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m, m1 and R have the same definition as above.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 側鎖は、下記式(14)又は(15)で表される感光性側鎖であるのがよい。
 式中、A、Y、l、m1及びm2は上記と同じ定義を有する。
The side chain may be a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , l, m1 and m2 have the same definition as above.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 側鎖は、下記式(16)又は(17)で表される感光性側鎖であるのがよい。
 式中、A、X、l及びmは、上記と同じ定義を有する。
The side chain may be a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 また、側鎖は、下記式(18)又は(19)で表される感光性側鎖であるのがよい。
 式中、A、B、Y、q1、q2、m1、及びm2は、上記と同じ定義を有する。
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す。
The side chain is preferably a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 側鎖は、下記式(20)で表される感光性側鎖であるのがよい。
 式中、A、Y、X、l及びmは上記と同じ定義を有する。
The side chain is preferably a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 また、(A)側鎖型高分子は、下記式(21)~(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有するのがよい。
 式中、A、B、q1及びq2は上記と同じ定義を有する;
 Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
 Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
 lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
 Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
 Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す。
The (A) side chain polymer preferably has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
<<感光性の側鎖型高分子の製法>>
 上記の液晶性を発現し得る感光性の側鎖型高分子は、上記の感光性側鎖を有する光反応性側鎖モノマーおよび液晶性側鎖モノマーを重合することによって得ることができる。
<< Production Method of Photosensitive Side Chain Polymer >>
The photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing the photoreactive side chain monomer having the above photosensitive side chain and the liquid crystalline side chain monomer.
 [光反応性側鎖モノマー] 
 光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に感光性側鎖を有する高分子を形成することができるモノマーのことである。
 側鎖の有する光反応性基としては下記の構造およびその誘導体が好ましい。
[Photoreactive side chain monomer]
The photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
As the photoreactive group possessed by the side chain, the following structures and derivatives thereof are preferred.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 光反応性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)~(6)の少なくとも1種からなる感光性側鎖、好ましくは、例えば、上記式(7)~(10)の少なくとも1種からなる感光性側鎖、上記式(11)~(13)の少なくとも1種からなる感光性側鎖、上記式(14)又は(15)で表される感光性側鎖、上記式(16)又は(17)で表される感光性側鎖、上記式(18)又は(19)で表される感光性側鎖、上記式(20)で表される感光性側鎖を有する構造であることが好ましい。 More specific examples of the photoreactive side chain monomer include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene, etc. And a polymerizable side group composed of at least one selected from the group consisting of siloxane and a photosensitive side chain consisting of at least one of the above formulas (1) to (6), preferably, for example, the above formula (7 ) To (10), a photosensitive side chain comprising at least one of the above formulas (11) to (13), and a photosensitivity represented by the above formula (14) or (15). A photosensitive side chain, a photosensitive side chain represented by the above formula (16) or (17), a photosensitive side chain represented by the above formula (18) or (19), and a photosensitivity represented by the above formula (20). Sex side chain It is preferable that it has a structure.
 本願は、光反応性及び/又は液晶性側鎖モノマーとして、以下の新規化合物を提供する。
 下記式(1)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
The present application provides the following novel compounds as photoreactive and / or liquid crystalline side chain monomers.
A compound represented by the following formula (1) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 下記式(2)(式中、Rは水素原子またはメチル基を示す;R10はBrまたはCNを示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (2) (wherein R represents a hydrogen atom or a methyl group; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 下記式(3)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (3) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 下記式(4)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 A compound represented by the following formula (4) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 下記式(5)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 A compound represented by the following formula (5) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 下記式(6)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (6) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 下記式(7)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (7) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 下記式(8)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (8) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 下記式(9)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (9) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 下記式(10)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (10) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 下記式(11)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;Pyは2-ピリジル基、3-ピリジル基または4-ピリジル基を表す;uは0または1を表す)で表される化合物。 Formula (11) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; Py represents a 2-pyridyl group, a 3-pyridyl group, or a 4-pyridyl group) ; U represents 0 or 1).
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 下記式(12)(式中、Sは炭素数2~9のアルキレン基を表す;vは1または2を表す)で表される化合物。 A compound represented by the following formula (12) (wherein S represents an alkylene group having 2 to 9 carbon atoms; v represents 1 or 2).
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 下記式(13)(式中、Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 A compound represented by the following formula (13) (wherein S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 下記式(14)(式中、Sは炭素数1~10のアルキレン基を表す;uは0または1を表す)で表される化合物。 A compound represented by the following formula (14) (wherein S represents an alkylene group having 1 to 10 carbon atoms; u represents 0 or 1).
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 下記式(15)(式中、Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (15) (wherein S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 下記式(16)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (16) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 下記式(17)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。 A compound represented by the following formula (17) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
[液晶性側鎖モノマー]
 液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
 側鎖の有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。
[Liquid crystal side chain monomer]
The liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site.
As a mesogenic group having a side chain, even if it is a group having a mesogen structure alone such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid Good. As the mesogenic group possessed by the side chain, the following structure is preferable.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(21)~(31)の少なくとも1種からなる側鎖を有する構造であることが好ましい。 More specific examples of liquid crystalline side chain monomers include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and other radical polymerizable groups A structure having a polymerizable group composed of at least one selected from the group consisting of siloxanes and a side chain composed of at least one of the above formulas (21) to (31) is preferable.
 (A)側鎖型高分子は、上述した液晶性を発現する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。さらに、液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。 (A) The side chain polymer can be obtained by the polymerization reaction of the above-described photoreactive side chain monomer that exhibits liquid crystallinity. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
Examples of other monomers include industrially available monomers capable of radical polymerization reaction.
Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。
Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
Examples of the acrylic ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and , Etc. 8-ethyl-8-tricyclodecyl acrylate.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 グリシジル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、および(3-エチル-3-オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレート化合物も用いることができる。 Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-me Le -8- tricyclodecyl methacrylate, and, 8-ethyl-8-tricyclodecyl methacrylate. (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。
 スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。
Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The production method of the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, a known compound such as a radical polymerization initiator or a reversible addition-cleavage chain transfer (RAFT) polymerization reagent can be used.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類 (ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシ シクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、 パーオキシピバリン酸-tert-ブ
チルエステル、パーオキシ 2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2′-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
The radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation). Hydrogen, tert-butyl hydride peroxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxy cyclohexane) Etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohex Sanic acid-tert-amyl ester), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, and 2,2′-di (2-hydroxyethyl) And azobisisobutyronitrile). Such radical thermal polymerization initiators can be used singly or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]
-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl]
-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4, 4′-di (t-butylperoxycarbonyl) benzophenone, 3,4,4′-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4′-methoxy) Styryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3 ′, 4′-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2 ′, 4′-Dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2′-methoxystyryl) 4,6-bis (trichloromethyl) -s-triazine, 2- (4′-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di ( Ethoxycarbonylmethyl)]-2,6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-chlorophenyl) -s-triazine, 1,3-bis (trichloro Methyl) -5- (4′-methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3 '-Carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimi Sol, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2′-bis (2, 4-dichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'- Tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 3 -(2-methyl-2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (5-2, 4-cyclopentadi -1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone 3,3 ′, 4,4′-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3′-di (methoxycarbonyl) -4,4′-di (t-butylperoxycarbonyl) benzophenone, 3,4 '-Di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2 -(3-Methyl-3H-benzothiazol-2-ylidene) -1-naphthalen-2-yl-ethanone or 2- (3-methyl-1,3-benzothi Tetrazole -2 (3H) - ylidene) -1- (2-benzoyl) ethanone, and the like. These compounds may be used alone or in combination of two or more.
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.
 液晶性を発現し得る感光性の側鎖型高分子の重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例を以下に挙げる。 The organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene Glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropiate Lenglycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropio Acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3- Examples thereof include ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like.
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
These organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer | macromolecule to produce | generate, you may mix and use the above-mentioned organic solvent in the range which the polymer | macromolecule produced | generated does not precipitate.
In radical polymerization, oxygen in the organic solvent becomes a cause of inhibiting the polymerization reaction. Therefore, it is preferable to use an organic solvent that has been deaerated to the extent possible.
 ラジカル重合の際の重合温度は30℃~150℃の任意の温度を選択することができるが、好ましくは50℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 The polymerization temperature at the time of radical polymerization can be selected from any temperature of 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。 In the above-mentioned radical polymerization reaction, the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is The content is preferably 0.1 mol% to 10 mol% with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.
[重合体の回収]
 上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
When recovering the produced polymer from the reaction solution of the photosensitive side chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is put into a poor solvent, The coalescence can be precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
 本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。 The molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the obtained coating film, workability at the time of forming the coating film, and uniformity of the coating film. The weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
[重合体組成物の調製]
 本発明に用いられる重合体組成物は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した液晶性を発現し得る感光性の側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%~20質量%が好ましく、より好ましくは1質量%~15質量%、特に好ましくは1質量%~10質量%である。
[Preparation of polymer composition]
The polymer composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component is a resin component containing a photosensitive side chain polymer capable of exhibiting the liquid crystallinity already described. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and particularly preferably 1% by mass to 10% by mass.
 本実施形態の重合体組成物において、前述の樹脂成分は、全てが上述した液晶性を発現し得る感光性の側鎖型高分子であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%~80質量%、好ましくは1質量%~50質量%である。
 そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、液晶性を発現し得る感光性の側鎖型高分子ではない重合体等が挙げられる。
In the polymer composition of the present embodiment, the resin component described above may be a photosensitive side chain polymer that can all exhibit the above-described liquid crystallinity, but does not impair the liquid crystal developing ability and the photosensitive performance. Other polymers may be mixed within the range. In that case, the content of the other polymer in the resin component is 0.5 to 80% by mass, preferably 1 to 50% by mass.
Examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.
<有機溶媒>
 本発明に用いられる重合体組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<Organic solvent>
The organic solvent used for the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, etc. Is mentioned. These may be used alone or in combination.
 本発明に用いられる重合体組成物は、上記(A)及び(B)成分以外の成分を含有してもよい。その例としては、重合体組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。 The polymer composition used in the present invention may contain components other than the above components (A) and (B). Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate. However, the present invention is not limited to this.
 膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
The following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3 -Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl Ether, 1-hexanol, n-hexane, n-pentane, n-octane Diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, Ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1 -Butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol- 1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactyl isoamyl ester, etc. Examples include solvents having surface tension.
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。 These poor solvents may be used alone or in combination. When using the solvent as described above, it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
 より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。
Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) It is done. The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. Part by mass.
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Examples thereof include propyltrimethoxysilane and N-bis (oxyethylene) -3-aminopropyltriethoxysilane.
 さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、重合体組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the liquid crystal alignment film, the addition of the following phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed An agent may be contained in the polymer composition. Specific phenoplast additives are shown below, but are not limited to this structure.
 具体的なエポキシ基含有化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが例示される。 Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl- , 4'-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、重合体組成物に含有される樹脂成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves adhesion to the substrate is used, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the polymer composition. More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 添加剤として、光増感剤を用いることもできる。無色増感剤および三重項増感剤が好ましい。
 光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、およびアミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-もしくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル
-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-もしくはp-ニトロアニリン、2,4,6-トリニトロアニリン)またはニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、および9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリン等がある。
 好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、およびアセトフェノンケタールである。
A photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
As photosensitizers, aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino-substituted Aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl-β-naphthothiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazoline, 2- (α-naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoylmethylene)- 3-methylbenzothia Phosphorus, 2- (β-naphthoylmethylene) -3-methyl-β-naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthothiazoline, 2- (p-fluorobenzoylmethylene)- 3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β- Ftoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m-hydroxy-p -Methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol And 9-anthracenecarboxylic acid), benzopyran, azoindolizine, melocoumarin and the like.
Aromatic 2-hydroxy ketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.
 重合体組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In the polymer composition, in addition to the above-described ones, a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired. Furthermore, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.
 上述した重合体組成物を横電界駆動用の導電膜を有する基板上に塗布する方法は特に限定されない。
 塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
The method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
In general, the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.
 横電界駆動用の導電膜を有する基板上に重合体組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。
 塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
 尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
After the polymer composition is applied on a substrate having a conductive film for driving a horizontal electric field, it is 50 to 200 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a heat circulation oven or an IR (infrared) oven. The solvent can be evaporated at 150 ° C. to obtain a coating film. The drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer.
If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
In addition, it is also possible to provide the process of cooling the board | substrate with which the coating film was formed to room temperature after the [I] process and before the following [II] process.
<工程[II]>
 工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
<Process [II]>
In step [II], the coating film obtained in step [I] is irradiated with polarized ultraviolet rays. When irradiating the surface of the coating film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used. For example, ultraviolet light having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。 The irradiation amount of polarized ultraviolet rays depends on the coating film used. The amount of irradiation is polarized ultraviolet light that realizes the maximum value of ΔA (hereinafter also referred to as ΔAmax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light. The amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
<工程[III]>
 工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
<Step [III]>
In step [III], the ultraviolet-irradiated coating film polarized in step [II] is heated. An orientation control ability can be imparted to the coating film by heating.
For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.
 加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶性発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶性発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶性発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶性発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する鎖型高分子の液晶性発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
 なお、液晶性発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
The heating temperature is preferably within a temperature range of a temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystallinity expression temperature). In the case of a thin film surface such as a coating film, the liquid crystallinity expression temperature of the coating film surface may be lower than the liquid crystallinity expression temperature when a photosensitive side chain polymer capable of expressing liquid crystallinity is observed in bulk. is expected. For this reason, the heating temperature is more preferably within the temperature range of the liquid crystallinity expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystalline expression temperature of the chain polymer used, and 10 ° C. lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range which makes an upper limit. If the heating temperature is lower than the above temperature range, the anisotropic amplification effect due to heat in the coating film tends to be insufficient, and if the heating temperature is too higher than the above temperature range, the state of the coating film Tends to be close to an isotropic liquid state (isotropic phase), and in this case, self-organization may make it difficult to reorient in one direction.
The liquid crystallinity temperature is equal to or higher than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). Refers to a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.
 加熱後に形成される塗膜の厚みは、工程[I]で記した同じ理由から、好ましくは5nm~300nm、より好ましくは50nm~150nmであるのがよい。 The thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm, for the same reason described in the step [I].
 以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。 By having the above steps, the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board | substrate with a liquid crystal aligning film can be manufactured highly efficiently.
<工程[IV]>
 [IV]工程は、[III]で得られた、横電界駆動用の導電膜上に液晶配向膜付を有する基板(第1の基板)と、同様に上記[I’]~[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]~[III’]は、工程[I]において、横電界駆動用の導電膜を有する基板の代わりに、該横電界駆動用導電膜を有しない基板を用いた以外、工程[I]~[III]と同様に行うことができる。工程[I]~[III]と工程[I’]~[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]~[III’]の説明を省略する。
<Process [IV]>
The step [IV] is the same as [I ′] to [III ′] in the same manner as the substrate (first substrate) obtained in [III] and having a liquid crystal alignment film on the conductive film for driving a lateral electric field. The liquid crystal cell is obtained by a known method by arranging the liquid crystal alignment film-provided substrate (second substrate) obtained in the above step so that both liquid crystal alignment films face each other through the liquid crystal. To produce a lateral electric field drive type liquid crystal display element. In the steps [I ′] to [III ′], a substrate having no lateral electric field driving conductive film was used in place of the substrate having the lateral electric field driving conductive film in the step [I]. It can be carried out in the same manner as in steps [I] to [III]. Since the difference between the steps [I] to [III] and the steps [I ′] to [III ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [III ′] is omitted. To do.
 液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。 To give an example of the production of a liquid crystal cell or a liquid crystal display element, the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. In this way, the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. , Etc. can be illustrated. At this time, it is preferable to use a substrate having an electrode having a structure like a comb for driving a horizontal electric field as the substrate on one side. The diameter of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
 本発明の塗膜付基板の製造方法は、重合体組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
 本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
The manufacturing method of the board | substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply | coating a polymer composition on a board | substrate and forming a coating film. Next, by heating, high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
The coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. . In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain polymer, after forming a coating film on the substrate using the side chain polymer, polarized ultraviolet rays are formed. After irradiation and then heating, a liquid crystal display element is formed.
 以下、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた実施の形態を第1の形態、光反応性基として光フリース転位基又は異性化を起こす基を有する構造の側鎖型高分子を用いた実施の形態を第2の形態と称して説明する。 Hereinafter, an embodiment using a side chain type polymer having a structure having a photocrosslinkable group as a photoreactive group is the first embodiment, a structure having a photofleece rearrangement group or a group causing isomerization as a photoreactive group An embodiment using the side chain type polymer will be referred to as a second embodiment.
 図1は、本発明における第1の形態において、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図1(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図1(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図1(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の第1の形態において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~15%の範囲内である場合の模式図である。 FIG. 1 schematically shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to. FIG. 1 (a) is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 1 (b) is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light. FIG. 1 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention. 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 1% to 15% of the ultraviolet ray irradiation amount that maximizes ΔA.
 図2は、本発明における第1の形態において、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図2(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図2(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図2(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が大きい場合、すなわち、本発明の第1の形態において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%~70%の範囲内である場合の模式図である。 FIG. 2 is a schematic illustration of anisotropy introduction treatment in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to. FIG. 2A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 2B is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light. FIG. 2 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is large, that is, the first aspect of the present invention. 1 is a schematic diagram when the ultraviolet ray irradiation amount in the step [II] is within a range of 15% to 70% of the ultraviolet ray irradiation amount that maximizes ΔA.
 図3は、本発明における第2の形態において、光反応性基として光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図3(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図3(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図3(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の第2の態様において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合の模式図である。 FIG. 3 shows a side chain polymer having a structure having a photo-isomerizable group as a photoreactive group or a photo-Fleece rearrangement group represented by the above formula (18) in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction process of anisotropy in the manufacturing method of the used liquid crystal aligning film. FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation, and FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation. FIG. 3 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention. 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA.
 図4は、本発明における第2の形態において、光反応性基として上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図4(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図4(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図4(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が大きい場合、すなわち、本発明の第2の態様において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合の模式図である。 FIG. 4 shows the production of a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19) as a photoreactive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a method. FIG. 4A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 4B is a schematic diagram of the state of the side chain polymer film after irradiation with polarized light. FIG. 4 (c) is a diagram schematically showing the state of the side-chain polymer film after heating. In particular, when the introduced anisotropy is large, that is, 2 is a schematic diagram when the ultraviolet irradiation amount in the step [II] is within a range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA.
 本発明における第1の形態において、塗膜への異方性の導入処理で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~15%の範囲内である場合は、先ず、基板上に塗膜1を形成する。図1(a)に示すように、基板上に形成された塗膜1では、側鎖2がランダムに配列する構造を有する。塗膜1の側鎖2のランダム配列に従い、側鎖2のメソゲン成分および感光性基もランダムに配向しており、その塗膜1は等方性である。 In the first embodiment of the present invention, in the process of introducing anisotropy into the coating film, the ultraviolet irradiation amount in the step [II] is in the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA. In the case, first, the coating film 1 is formed on the substrate. As shown to Fig.1 (a), in the coating film 1 formed on the board | substrate, it has a structure where the side chain 2 arranges at random. According to the random arrangement of the side chain 2 of the coating film 1, the mesogenic component and the photosensitive group of the side chain 2 are also randomly oriented, and the coating film 1 is isotropic.
 本発明における第1の形態において、塗膜への異方性の導入処理で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%~70%の範囲内である場合は、先ず、基板上に塗膜3を形成する。図2(a)に示すように、基板上に形成された塗膜3では、側鎖4がランダムに配列する構造を有する。塗膜3の側鎖4のランダム配列に従い、側鎖4のメソゲン成分および感光性基もランダムに配向しており、その塗膜2は等方性である。 In the first embodiment of the present invention, in the treatment for introducing anisotropy into the coating film, the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA. In the case, first, the coating film 3 is formed on the substrate. As shown in FIG. 2A, the coating film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chains 4 of the coating film 3, the mesogenic components and the photosensitive groups of the side chains 4 are also randomly oriented, and the coating film 2 is isotropic.
 本発明における第2の形態において、塗膜への異方性の導入処理で、光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合は、先ず、基板上に塗膜5を形成する。図3(a)に示すように、基板上に形成された塗膜5では、側鎖6がランダムに配列する構造を有する。塗膜5の側鎖6のランダム配列に従い、側鎖6のメソゲン成分および感光性基もランダムに配向しており、その側鎖型高分子膜5は等方性である。 In the second embodiment of the present invention, a side chain type having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) in the treatment for introducing anisotropy into the coating film. In the case of using a liquid crystal alignment film using a polymer, when the ultraviolet irradiation amount in the step [II] is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, first, The coating film 5 is formed. As shown in FIG. 3A, the coating film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the coating film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain type polymer film 5 is isotropic.
 本発明における第2の形態において、塗膜への異方性の導入処理で、上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合は、先ず、基板上に塗膜7を形成する。図4(a)に示すように、基板上に形成された塗膜7では、側鎖8がランダムに配列する構造を有する。塗膜7の側鎖8のランダム配列に従い、側鎖8のメソゲン成分および感光性基もランダムに配向しており、その塗膜7は等方性である。 In the second embodiment of the present invention, liquid crystal alignment using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (19) in the treatment for introducing anisotropy into the coating film In the case of using a film, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, first, the coating film 7 is formed on the substrate. . As shown in FIG. 4A, the coating film 7 formed on the substrate has a structure in which the side chains 8 are arranged at random. According to the random arrangement of the side chains 8 of the coating film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the coating film 7 is isotropic.
 本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~15%の範囲内である場合において、この等方性の塗膜1に対し、偏光した紫外線を照射する。すると、図1(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖2のうちの感光性基を有する側鎖2aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖2aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として塗膜1に非常に小さな異方性が付与される。 In the first embodiment, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA, On the other hand, polarized ultraviolet rays are irradiated. Then, as shown in FIG. 1B, the photosensitive group of the side chain 2a having the photosensitive group among the side chains 2 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like. Causes a photoreaction. As a result, the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet light, and as a result, very small anisotropy is imparted to the coating film 1.
 本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%~70%の範囲内である場合において、この等方性の塗膜3に対し、偏光した紫外線を照射する。すると、図2(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖4のうちの感光性基を有する側鎖4aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖4aの密度が照射紫外線の偏光方向で高くなり、結果として塗膜3に小さな異方性が付与される。 In the first embodiment, when the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA, On the other hand, polarized ultraviolet rays are irradiated. Then, as shown in FIG. 2B, the photosensitive group of the side chain 4a having the photosensitive group among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like. Causes a photoreaction. As a result, the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the coating film 3.
 本実施の第2の形態で、光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合において、この等方性の塗膜5に対し、偏光した紫外線を照射する。すると、図3(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖6のうちの感光性基を有する側鎖6aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖6aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として塗膜5に非常に小さな異方性が付与される。 In the second embodiment of the present invention, using a liquid crystal alignment film using a photoisomerizable group or a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (18), [II] When the ultraviolet ray irradiation amount in the step is in the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ΔA, the isotropic coating film 5 is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 3 (b), the photosensitive group of the side chain 6a having the photosensitive group among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 6a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the coating film 5.
 本実施の第2の形態で、上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた塗膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合において、この等方性の塗膜7に対し、偏光した紫外線を照射する。すると、図4(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖8のうちの感光性基を有する側鎖8aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖8aの密度が照射紫外線の偏光方向で高くなり、結果として塗膜7に小さな異方性が付与される。 In the second embodiment of the present invention, the amount of ultraviolet irradiation in the step [II] is obtained using a coating film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19). Is within the range of 1% to 70% of the amount of UV irradiation that maximizes ΔA, the isotropic coating film 7 is irradiated with polarized UV light. Then, as shown in FIG. 4 (b), the photosensitive group of the side chain 8a having the photosensitive group among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 8a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, small anisotropy is imparted to the coating film 7.
 次いで、本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~15%の範囲内である場合において、偏光照射後の塗膜1を加熱し、液晶状態にする。すると図1(c)に示すように、塗膜1では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。この場合、照射紫外線の偏光方向と平行方向に生じた架橋反応の量が非常に小さいため、この架橋反応部位は可塑剤としての働きをする。そのため、照射紫外線の偏光方向と垂直方向の液晶性が平行方向の液晶性より高くなり、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖2が再配向する。その結果、光架橋反応で誘起された塗膜1の非常に小さな異方性は、熱によって増幅され、塗膜1においてより大きな異方性が付与されることになる。 Next, in the first embodiment, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA, the coating film 1 after the polarized light irradiation 1 Is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the coating film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer. Therefore, the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the very small anisotropy of the coating film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 1.
 同様に、本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%~70%の範囲内である場合において、偏光照射後の塗膜3を加熱し、液晶状態にする。すると図2(c)に示すように、側鎖型高分子膜3では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。そのため、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖4が再配向する。その結果、光架橋反応で誘起された塗膜3の小さな異方性は、熱によって増幅され、塗膜3においてより大きな異方性が付与されることになる。 Similarly, in the first embodiment, when the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the coating film after polarized light irradiation 3 is heated to a liquid crystal state. Then, as shown in FIG. 2C, in the side chain type polymer film 3, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the small anisotropy of the coating film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 3.
 同様に、本実施の第2の形態で、光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた塗膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合において、偏光照射後の塗膜5を加熱し、液晶状態にする。すると図3(c)に示すように、塗膜5では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。この場合、照射紫外線の偏光方向と垂直方向に生じた光フリース転位体の液晶配向力が反応前の側鎖の液晶配向力より強いため、照射紫外線の偏光方向と垂直な方向に自己組織化してメソゲン成分を含む側鎖6が再配向する。その結果、光フリース転位反応で誘起された塗膜5の非常に小さな異方性は、熱によって増幅され、塗膜5においてより大きな異方性が付与されることになる。 Similarly, in the second embodiment, a coating film using a side-chain polymer having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) is used. Thus, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the coating film 5 after polarized irradiation is heated to be in a liquid crystal state. Then, as shown in FIG.3 (c), in the coating film 5, the quantity of the produced | generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of irradiation ultraviolet rays, and a perpendicular | vertical direction. In this case, since the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light. The side chain 6 containing the mesogenic component is reoriented. As a result, the very small anisotropy of the coating film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 5.
 同様に、本実施の第2の形態で、上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた塗膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%~70%の範囲内である場合において、偏光照射後の塗膜7を加熱し、液晶状態にする。すると図4(c)に示すように、側鎖型高分子膜7では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。光フリース転位体8(a)のアンカリング力は転位前の側鎖8より強いため、ある一定量以上の光フリース転位体が生じると、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖8が再配向する。その結果、光フリース転位反応で誘起された塗膜7の小さな異方性は、熱によって増幅され、塗膜7においてより大きな異方性が付与されることになる。 Similarly, in the second embodiment, a coating film using a side chain type polymer having a structure having a photofleece rearrangement group represented by the above formula (19) is used. When the ultraviolet irradiation amount is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the coated film 7 after polarized irradiation is heated to a liquid crystal state. Then, as shown in FIG. 4 (c), in the side chain polymer film 7, the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. . Since the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light. The side chain 8 containing the mesogenic component is reoriented. As a result, the small anisotropy of the coating film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 7.
 したがって、本発明の方法に用いる塗膜は、塗膜への偏光した紫外線の照射と加熱処理を順次行うことにより、高効率に異方性が導入され、配向制御能に優れた液晶配向膜とすることができる。 Therefore, the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
 そして、本発明の方法に用いる塗膜では、塗膜への偏光した紫外線の照射量と、加熱処理における加熱温度を最適化する。それにより高効率な、塗膜への異方性の導入を実現することができる。 And in the coating film used for the method of the present invention, the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
 本発明に用いられる塗膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その塗膜において感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する量を最適にする偏光紫外線の照射量に対応する。本発明に用いられる塗膜に対して偏光した紫外線を照射した結果、光架橋反応や光異性化反応、若しくは光フリース転位反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。一方、本発明に用いられる塗膜で、光架橋性基を有する構造に対して偏光した紫外線を照射した結果、架橋反応する側鎖の感光性基が過剰となると側鎖間での架橋反応が進行しすぎることになる。その場合、得られる膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。また、本発明に用いられる塗膜で、光フリース転位基を有する構造に対して偏光した紫外線を照射した結果、光フリース転位反応する側鎖の感光性基が過剰となると、塗膜の液晶性が低下しすぎることになる。その場合、得られる膜の液晶性も低下し、その後の加熱による自己組織化の進行の妨げとなることがある。さらに、光フリース転位基を有する構造に対して偏光した紫外線を照射する場合、紫外線の照射量が多すぎると、側鎖型高分子が光分解し、その後の加熱による自己組織化の進行の妨げとなることがある。 The optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is such that the photosensitive group undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction in the coating film. Corresponds to the irradiation amount of polarized ultraviolet rays to optimize the amount. As a result of irradiating the coating film used in the present invention with polarized ultraviolet rays, if the photo-crosslinking reaction, photoisomerization reaction, or photo-fleece rearrangement reaction has few photosensitive groups in the side chain, the amount of photoreaction will not be sufficient. . In that case, sufficient self-organization does not proceed even after heating. On the other hand, as a result of irradiating polarized ultraviolet rays to the structure having a photocrosslinkable group in the coating film used in the present invention, the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating. In addition, when the coating film used in the present invention is irradiated with polarized ultraviolet rays to the structure having the light Fleece rearrangement group, if the photosensitive group of the side chain that undergoes the light Fleece rearrangement reaction becomes excessive, the liquid crystallinity of the coating film Will drop too much. In that case, the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly by subsequent heating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photo-fleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side-chain polymer is photodegraded, preventing the subsequent self-organization by heating. It may become.
 したがって、本発明に用いられる塗膜において、偏光紫外線の照射によって側鎖の感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1モル%~40モル%にすることが好ましく、0.1モル%~20モル%にすることがより好ましい。光反応する側鎖の感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。 Therefore, in the coating film used in the present invention, the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the side chain polymer film. It is preferably 0.1 to 40 mol%, more preferably 0.1 to 20 mol% of the photosensitive group possessed by. By making the amount of the photo-reactive side chain photosensitive group within such a range, the self-organization in the subsequent heat treatment proceeds efficiently, and the formation of highly efficient anisotropy in the film is possible. Become.
 本発明の方法に用いる塗膜では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光架橋反応や光異性化反応、または光フリース転位反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、本発明に用いられる塗膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、本発明に用いられる塗膜の紫外吸収の評価に基づいて行うことが可能である。 In the coating film used in the method of the present invention, by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
 すなわち、本発明に用いられる塗膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明に用いられる塗膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。 That is, with respect to the coating film used in the present invention, the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays, is evaluated. Then, the maximum value of ΔA (ΔAmax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained. In the production method of the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ΔAmax.
 本発明の製造方法では、本発明に用いられる塗膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。本発明に用いられる塗膜において、ΔAmaxを実現する偏光紫外線の量の1%~50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1モル%~20モル%を光架橋反応させる偏光紫外線の量に相当する。 In the production method of the present invention, the amount of irradiation of polarized ultraviolet rays onto the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays that realizes ΔAmax. More preferably, it is within the range of 50%. In the coating film used in the present invention, the irradiation amount of polarized ultraviolet light within the range of 1% to 50% of the amount of polarized ultraviolet light that realizes ΔAmax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.
 以上より、本発明の製造方法では、塗膜への高効率な異方性の導入を実現するため、その側鎖型高分子の液晶温度範囲を基準として、上述したような好適な加熱温度を定めるのがよい。したがって、例えば、本発明に用いられる側鎖型高分子の液晶温度範囲が100℃~200℃である場合、偏光紫外線照射後の加熱の温度を90℃~190℃とすることが望ましい。こうすることにより、本発明に用いられる塗膜において、より大きな異方性が付与されることになる。 From the above, in the production method of the present invention, in order to achieve highly efficient anisotropy introduction into the coating film, a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
 こうすることにより、本発明によって提供される液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示すことになる。 By doing so, the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
 以上のようにして、本発明の方法によって製造された横電界駆動型液晶表示素子用基板又は該基板を有する横電界駆動型液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。 As described above, the lateral electric field drive type liquid crystal display element substrate manufactured by the method of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability, large screen and high definition. It can be suitably used for LCD TVs.
 実施例で使用する略号は以下のとおりである。
(メタクリルモノマー)
Abbreviations used in the examples are as follows.
(Methacrylic monomer)
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 MA1は特許文献(WO2011-084546)に記載の合成法にて合成した。
 MA2は特許文献(特開平9-118717)に記載の合成法にて合成した。
 MA3が非特許文献(Macromolecules 2002, 35, 706-713)に記載の合成法にて合成した。
 MA4は文献等未公開の新規化合物であり、以下の合成例1でその合成法を詳述する。
 MA5は特許文献(特開2010-18807)に記載の合成法にて合成した。
 MA6~MA9は文献等未公開の新規化合物であり、以下の合成例2~5でその合成法を詳述する。
 MA10は市販購入可能であるM6BC(みどり化学株式会社製)を用いた。
 MA11~13は文献等未公開の新規化合物であり、以下の合成例6~8でその合成法を詳述する。
MA1 was synthesized by a synthesis method described in a patent document (WO2011-084546).
MA2 was synthesized by the synthesis method described in the patent document (Japanese Patent Laid-Open No. 9-118717).
MA3 was synthesized by a synthesis method described in non-patent literature (Macromolecules 2002, 35, 706-713).
MA4 is an unpublished new compound such as literature, and its synthesis method will be described in detail in Synthesis Example 1 below.
MA5 was synthesized by a synthesis method described in a patent document (Japanese Patent Laid-Open No. 2010-18807).
MA6 to MA9 are unpublished new compounds such as literatures, and their synthesis methods will be described in detail in Synthesis Examples 2 to 5 below.
As MA10, commercially available M6BC (manufactured by Midori Chemical Co., Ltd.) was used.
MA11 to 13 are novel compounds that have not been disclosed in the literature, and their synthesis methods will be described in detail in Synthesis Examples 6 to 8 below.
 MA14~18は市販購入可能である、それぞれ、M4CA、M4BA、M2CA、M3CA、及びM5CA(これらは全てみどり化学株式会社製)を用いた。
 MA19~23は文献等未公開の新規化合物であり、以下の合成例9~13でその合成法を詳述する。
 MA24は、非特許文献(Polymer Journal, Vol.29, No.4, pp303-308(1997))に記載の合成方法にて合成を行った。
 MA25は文献等未公開の新規化合物であり、以下の合成例14でその合成法を詳述する。
 MA26及びMA27は、各々、非特許文献(Macromolecules (2012),45(21),8547-8554)、非特許文献(Liquid Crystals (1995), 19(4),433-40)に記載の合成方法にて合成を行った。
 MA28~33は文献等未公開の新規化合物であり、以下の合成例15~20でその合成法を詳述する。
 MA34~39は文献等未公開の新規化合物であり、以下の合成例21~26でその合成法を詳述する。
 MA40及び41は、特許文献(特表2009-511431号)に記載の合成方法にて合成を行った。
 MA42は文献等未公開の新規化合物であり、以下の合成例27でその合成法を詳述する。
 MA43は、特許文献(WO2012-115129)に記載の合成方法にて合成を行った。
 MA44は、特許文献(WO2013-133078)に記載の合成方法にて合成を行った。
 MA45は、特許文献(WO2008-072652)に記載の合成方法にて合成を行った。
 MA46は文献等未公開の新規化合物であり、以下の合成例28でその合成法を詳述する。
MA14-18 were commercially available, and M4CA, M4BA, M2CA, M3CA, and M5CA (all manufactured by Midori Chemical Co., Ltd.) were used.
MA19 to 23 are novel compounds that have not been disclosed in the literature, and their synthesis methods are described in detail in Synthesis Examples 9 to 13 below.
MA24 was synthesized by the synthesis method described in non-patent literature (Polymer Journal, Vol. 29, No. 4, pp 303-308 (1997)).
MA25 is an unpublished new compound such as literature, and its synthesis method will be described in detail in Synthesis Example 14 below.
MA26 and MA27 are the synthesis methods described in non-patent literature (Macromolecules (2012), 45 (21), 8547-8554) and non-patent literature (Liquid Crystals (1995), 19 (4), 433-40), respectively. Was synthesized.
MA28 to 33 are novel compounds not yet disclosed in the literature, and their synthesis methods will be described in detail in Synthesis Examples 15 to 20 below.
MA34 to 39 are unpublished novel compounds such as literatures, and their synthesis methods will be described in detail in the following Synthesis Examples 21 to 26.
MA40 and 41 were synthesized by the synthesis method described in the patent document (Japanese Patent Publication No. 2009-511431).
MA42 is a novel compound that has not been disclosed yet, and its synthesis method will be described in detail in Synthesis Example 27 below.
MA43 was synthesized by the synthesis method described in the patent document (WO2012-115129).
MA44 was synthesized by a synthesis method described in a patent document (WO2013-1333078).
MA45 was synthesized by the synthesis method described in the patent document (WO2008-072652).
MA46 is an unpublished novel compound such as literature, and its synthesis method will be described in detail in Synthesis Example 28 below.
<合成例1>
 化合物[MA4]の合成
<Synthesis Example 1>
Synthesis of Compound [MA4]
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 3L四つ口フラスコに、4-ブロモ-4’-ヒドロキシビフェニル[MA4-1](150g、0.60mol)、アクリル酸 tert-ブチル[MA4-2](162g、1.3mol)、酢酸パラジウム(2.7g、12mmol)、トリ(o-トリル)ホスフィン(7.3g、24mmol)、トリブチルアミン(334g、1.8mol)、N,N-ジメチルアセトアミド(750g)を加え、100℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、1M塩酸水溶液1.8Lに注いだ。そこに、酢酸エチル(1L)を加え、分液操作にて水層を除去した。有機層を10%塩酸水溶液1Lで2回、飽和食塩水1Lで3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA4-3]を174g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.68(1H, s), 7.72(2H, d), 7.63(2H, d), 7.59-7.55(9H, m), 6.87-6.85(2H, m), 1.44(9H, s).
To a 3 L four-necked flask, 4-bromo-4′-hydroxybiphenyl [MA4-1] (150 g, 0.60 mol), tert-butyl acrylate [MA4-2] (162 g, 1.3 mol), palladium acetate ( 2.7 g, 12 mmol), tri (o-tolyl) phosphine (7.3 g, 24 mmol), tributylamine (334 g, 1.8 mol), N, N-dimethylacetamide (750 g) were added, and the mixture was heated and stirred at 100 ° C. went. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature and then poured into 1.8 L of 1M hydrochloric acid aqueous solution. Ethyl acetate (1 L) was added thereto, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed twice with 1 L of a 10% aqueous hydrochloric acid solution and three times with 1 L of saturated brine, and then dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 174 g of Compound [MA4-3] as an oily compound (yield 98%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.68 (1H, s), 7.72 (2H, d), 7.63 (2H, d), 7.59-7.55 (9H, m), 6.87-6.85 (2H, m), 1.44 (9H, s).
 メカニカルスターラー、撹拌羽を備え付けた2L四つ口フラスコに上記で得た化合物[MA4-3](174g、0.59mol)、6-クロロ-1-ヘキサノール(96.7g、0.71mol)、炭酸カリウム(163g、1.2mol)、ヨウ化カリウム(9.8g、59mmol)、N,N-ジメチルホルムアミド(1600g)を加え、80℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、蒸留水2Lに反応溶液を注いだ。析出した固体をろ別後、メタノール/蒸留水(1:1)溶液に注ぎ、再度ろ別した。得られた固体を減圧乾燥することで、化合物[MA4-4]を221g得た(収率95%)。
 1H-NMR(400MHz, CDCl3, δppm):7.61(1H, d), 7.56-7.52(6H, m), 6.98-6.95(2H, m), 6.38(1H, d), 4.02(2H, t), 3.67(2H, t), 1.84-1.44(17H, m).
In a 2 L four-necked flask equipped with a mechanical stirrer and a stirring blade, the compound [MA4-3] (174 g, 0.59 mol) obtained above, 6-chloro-1-hexanol (96.7 g, 0.71 mol), carbonic acid Potassium (163 g, 1.2 mol), potassium iodide (9.8 g, 59 mmol), and N, N-dimethylformamide (1600 g) were added, and the mixture was heated and stirred at 80 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature, and then poured into 2 L of distilled water. The precipitated solid was filtered off, poured into a methanol / distilled water (1: 1) solution, and filtered again. The obtained solid was dried under reduced pressure to obtain 221 g of compound [MA4-4] (yield 95%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.61 (1H, d), 7.56-7.52 (6H, m), 6.98-6.95 (2H, m), 6.38 (1H, d), 4.02 (2H, t ), 3.67 (2H, t), 1.84-1.44 (17H, m).
 3L四つ口フラスコに上記で得た化合物[MA4-4](221g、0.56mol)、トリエチルアミン(67.7g、0.67mol)、テトラヒドロフラン(1800g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(70.0g、0.67mmol)のテトラヒドロフラン(200g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水6Lに注ぎ、酢酸エチル2Lを加え、分液操作にて水層を除去した。その後、5%水酸化カリウム水溶液、1M塩酸水溶液、飽和食塩水で順次有機層を洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターで溶媒留去し粗物を得た。得られた粗物を2-プロパノール100gで洗浄し、ろ過、乾燥することで、化合物[MA4-5]を127g得た(収率49%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 7.73(2H, d), 7.70-7.63(4H, m), 7.58(1H, d), 7.02-7.00(2H,m), 6.53(1H, d), 6.03-6.02(1H, m), 5.67-5.66(1H, m), 4.11(2H, t), 4.00(2H, t), 1.88-1.87(3H, m), 1.79-1.25(17H, m).
The compound [MA4-4] obtained above (221 g, 0.56 mol), triethylamine (67.7 g, 0.67 mol) and tetrahydrofuran (1800 g) were added to a 3 L four-necked flask, and the reaction solution was cooled. A solution of methacrylic acid chloride (70.0 g, 0.67 mmol) in tetrahydrofuran (200 g) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. and further reacted. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 6 L of distilled water, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave a crude product. The obtained crude product was washed with 100 g of 2-propanol, filtered and dried to obtain 127 g of Compound [MA4-5] (yield 49%).
1 H-NMR (400MHz, DMSO-d6, δppm): 7.73 (2H, d), 7.70-7.63 (4H, m), 7.58 (1H, d), 7.02-7.00 (2H, m), 6.53 (1H, d), 6.03-6.02 (1H, m), 5.67-5.66 (1H, m), 4.11 (2H, t), 4.00 (2H, t), 1.88-1.87 (3H, m), 1.79-1.25 (17H, m).
 1L四つ口フラスコに上記で得た化合物[MA4-5](81g、0.17mol)、ギ酸(400g)を加え、40℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水3Lに注ぎろ過した。得られた固体をメタノール200gで洗浄し、固体を乾燥させることで化合物[MA4]を56g得た(収率79%)。
 1H-NMR(400MHz, CDCl3, δppm):7.81(1H, d), 7.60(4H, s), 7.55(2H, d), 6.97(2H, d), 6.47(2H, d), 6.11-6.10(1H, m), 5.56-5.52(1H, m), 4.17(2H, t), 4.00(2H, t), 1.95-1.94(2H, m), 1.85-1.82(3H, m), 1.75-1.71(2H, m), 1.55-1.48(4H, m).
<合成例2>
 化合物[MA6]の合成
The compound [MA4-5] obtained above (81 g, 0.17 mol) and formic acid (400 g) were added to a 1 L four-necked flask, and the mixture was heated and stirred at 40 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 3 L of distilled water and filtered. The obtained solid was washed with 200 g of methanol and dried to obtain 56 g of compound [MA4] (yield 79%).
1 H-NMR (400 MHz, CDCl 3 , δ ppm): 7.81 (1H, d), 7.60 (4H, s), 7.55 (2H, d), 6.97 (2H, d), 6.47 (2H, d), 6.11- 6.10 (1H, m), 5.56-5.52 (1H, m), 4.17 (2H, t), 4.00 (2H, t), 1.95-1.94 (2H, m), 1.85-1.82 (3H, m), 1.75- 1.71 (2H, m), 1.55-1.48 (4H, m).
<Synthesis Example 2>
Synthesis of Compound [MA6]
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 1L四つ口フラスコに、メタクリル酸2-ヒドロキシエチル[MA6-1](63.42g、487mmol)、イソニコチン酸塩酸塩[MA6-2](50.00g、406mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(以下、EDCと省略)(93.43g、487mmol)、4-ジメチルアミノピリジン(以下、DMAPと省略)(4.96g、40.6mmol)、THF(500g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(3L)に注ぎ、酢酸エチル(1L)を加え、分液操作にて水層を除去した。有機層を蒸留水(1L)で2回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA6]を86.3g得た(収率93%)。
 1H-NMR(400MHz, CDCl3, δppm):8.80(2H, dd), 7.85(2H, dd), 6.14-6.12(1H, m), 5.62-5.60(1H, m), 4.63-4.61(2H, m), 4.52-4.50(2H, m), 1.96-1.95(3H, m). 
<合成例3>
 化合物[MA7]の合成
In a 1 L four-necked flask, 2-hydroxyethyl methacrylate [MA6-1] (63.42 g, 487 mmol), isonicotinic acid hydrochloride [MA6-2] (50.00 g, 406 mmol), 1- (3-dimethyl Aminopropyl) -3-ethylcarbodiimide hydrochloride (hereinafter abbreviated as EDC) (93.43 g, 487 mmol), 4-dimethylaminopyridine (hereinafter abbreviated as DMAP) (4.96 g, 40.6 mmol), THF (500 g ) Was added and the reaction was carried out at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (3 L), ethyl acetate (1 L) was added, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed twice with distilled water (1 L), and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 86.3 g of Compound [MA6] as an oily compound (yield 93%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.80 (2H, dd), 7.85 (2H, dd), 6.14-6.12 (1H, m), 5.62-5.60 (1H, m), 4.63-4.61 (2H, m), 4.52-4.50 (2H, m), 1.96-1.95 (3H, m).
<Synthesis Example 3>
Synthesis of Compound [MA7]
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 200mL四つ口フラスコに、化合物[MA7-1](20.00g、86.9mmol)、4-ヒドロキシピリジン(8.26g、86.9mmol)、EDC(20.00g、104mmol)、DMAP(1.06g、8.7mmol)、THF(80g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(800mL)に注ぎ、酢酸エチル(500mL)を加え、分液操作にて水層を除去した。有機層を蒸留水(300mL)で3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA6]を23.1g得た(収率87%)。
 1H-NMR(400MHz, CDCl3, δppm):8.50-8.48(1H, m), 8.44-8.43(1H, m), 7.51-7.48(1H, m), 7.35-7.32(1H, m), 6.18-6.12(1H, m), 5.91-5.58(1H, m), 4.41-4.35(4H, m), 2.95-2.92(2H, m), 2.81-2.78(2H, m), 2.05-1.93(3H, m)
<合成例4>
 化合物[MA8]の合成
In a 200 mL four-necked flask, compound [MA7-1] (20.00 g, 86.9 mmol), 4-hydroxypyridine (8.26 g, 86.9 mmol), EDC (20.00 g, 104 mmol), DMAP (1. 06 g, 8.7 mmol) and THF (80 g) were added, and the reaction was performed at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (800 mL), ethyl acetate (500 mL) was added, and the aqueous layer was removed by liquid separation operation. The organic layer was washed 3 times with distilled water (300 mL), and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 23.1 g of Compound [MA6] as an oily compound (yield 87%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.50-8.48 (1H, m), 8.44-8.43 (1H, m), 7.51-7.48 (1H, m), 7.35-7.32 (1H, m), 6.18- 6.12 (1H, m), 5.91-5.58 (1H, m), 4.41-4.35 (4H, m), 2.95-2.92 (2H, m), 2.81-2.78 (2H, m), 2.05-1.93 (3H, m )
<Synthesis Example 4>
Synthesis of Compound [MA8]
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 合成例2で使用したイソニコチン酸塩酸塩[MA6-2]をニコチン酸塩酸塩[MA8-1]に変更した以外は合成例2と同様の操作を行い、オイル状化合物として化合物[MA8]を80.13g得た(収率86%)。
 1H-NMR(400MHz, CDCl3, δppm):9.24-9.23(1H, m), 8.80(1H, dd), 8.32-8.29(1H, m), 7.43-7.40(1H, m), 6.16-6.14(1H, m), 5.62-5.60(1H, m), 4.64-4.61(2H, m), 4.52-4.51(2H, m), 1.97-1.95(3H, m). 
<合成例5>
 化合物[MA9]の合成
The same operation as in Synthesis Example 2 was performed except that isonicotinic acid hydrochloride [MA6-2] used in Synthesis Example 2 was changed to nicotinic acid hydrochloride [MA8-1], and compound [MA8] was obtained as an oily compound. 80.13 g was obtained (yield 86%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 9.24-9.23 (1H, m), 8.80 (1H, dd), 8.32-8.29 (1H, m), 7.43-7.40 (1H, m), 6.16-6.14 ( 1H, m), 5.62-5.60 (1H, m), 4.64-4.61 (2H, m), 4.52-4.51 (2H, m), 1.97-1.95 (3H, m).
<Synthesis Example 5>
Synthesis of Compound [MA9]
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 500mL四つ口フラスコに、化合物[MA2](20.00g、65.3mmol)、化合物[MA9-1](14.09g、71.8mmol)、EDC(15.02g、78.4mmol)、DMAP(0.80g、6.53mmol)、THF(200g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(1.2L)に注ぎ、酢酸エチル(2L)を加え、分液操作にて水層を除去した。有機層を蒸留水(500mL)で3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA9-2]を得た。 In a 500 mL four-necked flask, compound [MA2] (20.00 g, 65.3 mmol), compound [MA9-1] (14.09 g, 71.8 mmol), EDC (15.02 g, 78.4 mmol), DMAP ( 0.80 g, 6.53 mmol) and THF (200 g) were added, and the reaction was performed at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (1.2 L), ethyl acetate (2 L) was added, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed 3 times with distilled water (500 mL), and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave compound [MA9-2] as an oily compound.
 引き続き、得られた化合物[MA9-2]にピリジニウム p-トルエンスルホン酸(PPTSと表記)(1.59g、6.3mmol)、エタノール(100g)を加え、60℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を氷浴で冷却し、析出した固体をろ過、エタノールで洗浄した。得られた固体を減圧乾燥することで、化合物[MA9]を19.2g(収率69%)得た。
 1H-NMR(400MHz, CDCl3, δppm):8.22-8.18(2H, m), 8.17-8.14(2H, m), 7.36-7.32(2H, m), 7.00-6.96(2H, m), 6.12-6.11(1H, m), 5.57-5.55(1H, m), 4.20-4.16(2H, m), 4.06(2H, t), 1.96-1.95(3H, m), 1.90-1.46(8H, m).
<合成例6>
 化合物[MA11]の合成
Subsequently, pyridinium p-toluenesulfonic acid (expressed as PPTS) (1.59 g, 6.3 mmol) and ethanol (100 g) were added to the obtained compound [MA9-2], and the mixture was heated and stirred at 60 ° C. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and the precipitated solid was filtered and washed with ethanol. The obtained solid was dried under reduced pressure to obtain 19.2 g (yield 69%) of the compound [MA9].
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.22-8.18 (2H, m), 8.17-8.14 (2H, m), 7.36-7.32 (2H, m), 7.00-6.96 (2H, m), 6.12- 6.11 (1H, m), 5.57-5.55 (1H, m), 4.20-4.16 (2H, m), 4.06 (2H, t), 1.96-1.95 (3H, m), 1.90-1.46 (8H, m).
<Synthesis Example 6>
Synthesis of Compound [MA11]
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 2L四つ口フラスコに、化合物[MA11-1](50.00g、256mmol)、6-クロロ-1-ヘキサノール(36.74g、268mmol)、炭酸カリウム(106.2g、768mmol)、ヨウ化カリウム(21.3g、128mmol)、DMF(500g)を加え85℃で加熱反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(3L)に注ぎ、ろ過、蒸留水で洗浄し粗物を得た。その後、得られた粗物をメタノールで洗浄し、ろ過、減圧乾燥し化合物[MA11-2]を61.9g得た(収率82%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.89-7.84(4H, m), 7.72-7.68(2H, m), 7.07-7.03(2H, m), 4.37(1H, brs), 4.07-4.00(2H, m), 3.42-3.38(2H, m), 1.77-1.29(8H, m).
In a 2 L four-necked flask, compound [MA11-1] (50.00 g, 256 mmol), 6-chloro-1-hexanol (36.74 g, 268 mmol), potassium carbonate (106.2 g, 768 mmol), potassium iodide ( 21.3 g, 128 mmol) and DMF (500 g) were added, and a heating reaction was performed at 85 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (3 L), filtered and washed with distilled water to obtain a crude product. Thereafter, the obtained crude product was washed with methanol, filtered and dried under reduced pressure to obtain 61.9 g of Compound [MA11-2] (yield 82%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.89-7.84 (4H, m), 7.72-7.68 (2H, m), 7.07-7.03 (2H, m), 4.37 (1H, brs), 4.07- 4.00 (2H, m), 3.42-3.38 (2H, m), 1.77-1.29 (8H, m).
 2L四つ口フラスコに上記で得た化合物[MA11-2](61.9g、210mol)、トリエチルアミン(25.45g、252mol)、THF(520g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(26.3g、252mmol)のTHF(120g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水4Lに注ぎ、析出した固体をろ別した。得られた粗物をメタノールで洗浄後、減圧乾燥を行い化合物[MA11]を47.5g得た(収率77%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 7.89-7.86(2H, m), 7.84-7.82(2H, m), 7.72-7.68(2H, m), 7.07-7.03(2H,m), 6.02-6.01(1H, m), 5.67-5.66(1H, m), 4.11(2H, t), 4.03(2H, t), 1.88-1.87(3H, m), 1.76-1.41(8H, m).
<合成例7>
化合物[MA12]の合成
The compound [MA11-2] obtained above (61.9 g, 210 mol), triethylamine (25.45 g, 252 mol) and THF (520 g) were added to a 2 L four-necked flask, and the reaction solution was cooled. A THF (120 g) solution of methacrylic acid chloride (26.3 g, 252 mmol) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. and further reacted. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 4 L of distilled water, and the precipitated solid was separated by filtration. The obtained crude product was washed with methanol and dried under reduced pressure to obtain 47.5 g of Compound [MA11] (yield 77%).
1 H-NMR (400MHz, DMSO-d6, δppm): 7.89-7.86 (2H, m), 7.84-7.82 (2H, m), 7.72-7.68 (2H, m), 7.07-7.03 (2H, m), 6.02-6.01 (1H, m), 5.67-5.66 (1H, m), 4.11 (2H, t), 4.03 (2H, t), 1.88-1.87 (3H, m), 1.76-1.41 (8H, m).
<Synthesis Example 7>
Synthesis of Compound [MA12]
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 2L四つ口フラスコに、化合物[MA4-1](4-ブロモ-4’-ヒドロキシビフェニル)(50.00g、201mmol)、6-クロロ-1-ヘキサノール(32.90g、241mmol)、炭酸カリウム(83.2、602mmol)、ヨウ化カリウム(16.7g、100mmol)、DMF(500g)を加え85℃で加熱反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(3L)に注ぎ、ろ過、蒸留水で洗浄し粗物を得た。その後、得られた粗物をメタノールで洗浄し、ろ過、減圧乾燥し化合物[MA12-1]の粗物を得た。
 1H-NMR(400MHz, DMSO-d6, δppm):7.62-7.56(6H, m), 7.02-6.98(2H, m), 4.00(2H, t), 3.44(2H, t), 1.76-1.26(8H, m).
In a 2 L four-necked flask, compound [MA4-1] (4-bromo-4′-hydroxybiphenyl) (50.00 g, 201 mmol), 6-chloro-1-hexanol (32.90 g, 241 mmol), potassium carbonate ( 83.2, 602 mmol), potassium iodide (16.7 g, 100 mmol) and DMF (500 g) were added, and the reaction was carried out at 85 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (3 L), filtered and washed with distilled water to obtain a crude product. Thereafter, the obtained crude product was washed with methanol, filtered and dried under reduced pressure to obtain a crude product of compound [MA12-1].
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.62-7.56 (6H, m), 7.02-6.98 (2H, m), 4.00 (2H, t), 3.44 (2H, t), 1.76-1.26 ( 8H, m).
 2L四つ口フラスコに上記で得た化合物[MA12-1](70.10g、201mol)、トリエチルアミン(28.43g、281mol)、THF(950g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(29.37g、281mmol)のTHF(100g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水5Lに注いだ。そこに酢酸エチル(2L)を加え、分液操作にて水層を除去した後、有機層を飽和食塩水(500g)で3回洗浄した。有機層を硫酸マグネシウムで乾燥した後、ろ過、エバポレーターにて溶媒留去することで、粗物を得た。得られた粗物をメタノールで洗浄し、減圧乾燥することで、化合物[MA12]を68.4g得た(収率82%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 7.61-7.56(6H, m), 7.02-6.99(2H, m), 6.02-6.01(1H, m), 5.67-5.62(1H,m), 4.09(2H, t), 4.00(2H, t), 1.99-1.85(3H, m), 1.77-1.32(8H, m).
<合成例8>
 化合物[MA13]の合成
The compound [MA12-1] obtained above (70.10 g, 201 mol), triethylamine (28.43 g, 281 mol) and THF (950 g) were added to a 2 L four-necked flask, and the reaction solution was cooled. A solution of methacrylic acid chloride (29.37 g, 281 mmol) in THF (100 g) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. and further reacted. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 5 L of distilled water. Ethyl acetate (2 L) was added thereto, the aqueous layer was removed by a liquid separation operation, and the organic layer was washed 3 times with saturated brine (500 g). The organic layer was dried over magnesium sulfate, and then filtered and the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was washed with methanol and dried under reduced pressure to obtain 68.4 g of Compound [MA12] (82% yield).
1 H-NMR (400MHz, DMSO-d6, δppm): 7.61-7.56 (6H, m), 7.02-6.99 (2H, m), 6.02-6.01 (1H, m), 5.67-5.62 (1H, m), 4.09 (2H, t), 4.00 (2H, t), 1.99-1.85 (3H, m), 1.77-1.32 (8H, m).
<Synthesis Example 8>
Synthesis of Compound [MA13]
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 500mL四つ口フラスコに[MA2](38.6g、126mmol)、4-フルオロ-4'-ヒドロキシビフェニル[MA13-1](25g、136mmol)、EDC(31g、151mmol)、DMAP(630mg、6.3mmol)をTHF(200g)中に溶解し、室温にて撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水3Lに反応溶液を注いだ。析出した固体を濾別し、得られた固体をIPA(300g)とメタノール(300g)で洗浄し、固体を乾燥させることで化合物[MA13]を50g得た(収率83%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.08(2H, d), 7.74(4H, m), 7.37-7.29(4H, m), 7.12(2H, d), 6.03-6.02(1H, m), 5.68-5.66(1H, m), 4.11(2H, t), 4.09(2H, t), 1.88(3H, s), 1.79-1.73(2H, m), 1.69-1.62(2H, m), 1.49-1.40(4H, m) 
<合成例9>
 化合物[MA19]の合成
In a 500 mL four-necked flask, [MA2] (38.6 g, 126 mmol), 4-fluoro-4′-hydroxybiphenyl [MA13-1] (25 g, 136 mmol), EDC (31 g, 151 mmol), DMAP (630 mg, 6. 3 mmol) was dissolved in THF (200 g) and stirred at room temperature. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 3 L of distilled water. The precipitated solid was filtered off, the obtained solid was washed with IPA (300 g) and methanol (300 g), and the solid was dried to obtain 50 g of compound [MA13] (yield 83%).
1 H-NMR (400MHz, DMSO-d6, δppm): 8.08 (2H, d), 7.74 (4H, m), 7.37-7.29 (4H, m), 7.12 (2H, d), 6.03-6.02 (1H, m), 5.68-5.66 (1H, m), 4.11 (2H, t), 4.09 (2H, t), 1.88 (3H, s), 1.79-1.73 (2H, m), 1.69-1.62 (2H, m) , 1.49-1.40 (4H, m)
<Synthesis Example 9>
Synthesis of Compound [MA19]
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 500mL四つ口フラスコに[MA1](30.00g、98mmol)、化合物[MA19-1](23.91g、98mmol)、EDC(20.65g、108mmol)、DMAP(1.2g、9.8mmol)、THF(300g)を加え、23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、蒸留水1.5Lに反応溶液を注ぎ、析出した固体をろ過した。次に、得られた固体をIPA(400g)に懸濁させ、40℃で加熱撹拌を行った後、反応溶液を室温まで冷却しろ過、減圧乾燥することで、化合物[MA19]を41g得た(収率75%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.21-8.18(2H, m), 7.87(1H, d), 7.77(1H, d), 7.46-7.43(2H, m), 7.23-7.20(2H, m), 7.03-7.00(4H, m), 6.74(1H, m), 6.02-6.01(1H, m), 5.68-5.66(1H, m), 4.11(2H, t), 4.06(2H, t), 4.03(3H, s), 1.88-1.87(3H, m), 1.76-1.40(8H, m). 
<合成例10>
 化合物[MA20]の合成
[MA1] (30.00 g, 98 mmol), compound [MA19-1] (23.91 g, 98 mmol), EDC (20.65 g, 108 mmol), DMAP (1.2 g, 9.8 mmol) in a 500 mL four-necked flask , THF (300 g) was added, and the reaction was performed at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 1.5 L of distilled water, and the precipitated solid was filtered. Next, the obtained solid was suspended in IPA (400 g), heated and stirred at 40 ° C., and then the reaction solution was cooled to room temperature, filtered and dried under reduced pressure to obtain 41 g of compound [MA19]. (Yield 75%).
1 H-NMR (400MHz, DMSO-d6, δppm): 8.21-8.18 (2H, m), 7.87 (1H, d), 7.77 (1H, d), 7.46-7.43 (2H, m), 7.23-7.20 ( 2H, m), 7.03-7.00 (4H, m), 6.74 (1H, m), 6.02-6.01 (1H, m), 5.68-5.66 (1H, m), 4.11 (2H, t), 4.06 (2H, t), 4.03 (3H, s), 1.88-1.87 (3H, m), 1.76-1.40 (8H, m).
<Synthesis Example 10>
Synthesis of Compound [MA20]
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 化合物[MA4]の中間体である化合物[MA4-4]を合成する際に使用した6-クロロ-1-ヘキサノールを8-クロロ-1-オクタノールに変更した以外は合成例1と同様の操作を行い、化合物[MA20]を40.82g得た。
 1H-NMR(400MHz, DMSO-d6, δppm):7.70-7.56(7H, m), 6.97(2H, d), 6.51(1H, d), 5.98(1H, s), 5.62(1H, s), 4.04(2H, t), 3.94(2H, t), 1.83(3H, s), 1.70-1.10(12H).
<合成例11>
 化合物[MA21]の合成
The same procedure as in Synthesis Example 1 was performed except that 6-chloro-1-hexanol used in the synthesis of compound [MA4-4], which was an intermediate of compound [MA4], was changed to 8-chloro-1-octanol. And 40.82 g of compound [MA20] was obtained.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.70-7.56 (7H, m), 6.97 (2H, d), 6.51 (1H, d), 5.98 (1H, s), 5.62 (1H, s) , 4.04 (2H, t), 3.94 (2H, t), 1.83 (3H, s), 1.70-1.10 (12H).
<Synthesis Example 11>
Synthesis of Compound [MA21]
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 2L四つ口フラスコに、4-ブロモフェニル-4’-trans-ヒドロキシシクロヘキサノン[MA21-1](500g、2.21mol)、アクリル酸 tert-ブチル[MA4-2](598g、4.66mol)、酢酸パラジウム(9.92g、44mmol)、トリ(o-トリル)ホスフィン(26.91g、88mmol)、トリプロピルアミン(950g、6.63mol)、DMAc(2500g)を加え、100℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、1M塩酸水溶液6Lに注いだ。そこに、酢酸エチル(3L)を加え、分液操作にて水層を除去した。有機層を10%塩酸水溶液1Lで2回、飽和食塩水1Lで3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[MA21-2]を561.9g得た(収率84%)。
 1H-NMR(400MHz, CDCl3, δppm):7.56(1H, d), 7.45-7.43(2H, m), 7.22-7.19(2H, m), 6.32(1H, d), 3.78-3.65(1H, m), 2.58-2.44(1H, m), 2.13-2.09(2H, m), 1.96-1.91(2H, m), 1.60-1.41(13H, m).
In a 2 L four-necked flask, 4-bromophenyl-4′-trans-hydroxycyclohexanone [MA21-1] (500 g, 2.21 mol), tert-butyl acrylate [MA4-2] (598 g, 4.66 mol), Palladium acetate (9.92 g, 44 mmol), tri (o-tolyl) phosphine (26.91 g, 88 mmol), tripropylamine (950 g, 6.63 mol), DMAc (2500 g) were added, and the mixture was heated and stirred at 100 ° C. It was. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature and then poured into 6 L of 1M hydrochloric acid aqueous solution. Ethyl acetate (3 L) was added thereto, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed twice with 1 L of a 10% aqueous hydrochloric acid solution and three times with 1 L of saturated brine, and then dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 561.9 g of Compound [MA21-2] (yield 84%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.56 (1H, d), 7.45-7.43 (2H, m), 7.22-7.19 (2H, m), 6.32 (1H, d), 3.78-3.65 (1H, m), 2.58-2.44 (1H, m), 2.13-2.09 (2H, m), 1.96-1.91 (2H, m), 1.60-1.41 (13H, m).
 2L四つ口フラスコに上記で得た化合物[MA21-2](100g、331mmol)、tert-4-メトキシ-桂皮酸(58.92g、331mol)、EDC(76.07g、397mol)、DMAP(4.04g、33mmol)、THF(885g)を加え、23℃で撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水8Lに注ぎ、析出した固体をろ過、蒸留水で洗浄し、粗物を得た。次に粗物をメタノール(3L)に懸濁させ、しばらく撹拌した後、再度ろ過、減圧乾燥することで化合物[MA21-3]を82.17g得た(収率54%)。
 1H-NMR(400MHz, CDCl3, δppm):7.64(1H, d), 7.56(1H, d), 7.51-7.48(2H, m), 7.46-7.44(2H, m), 7.23-7.21(2H, m), 6.92-6.90(2H, m), 6.34(1H, d), 6.30(1H, d), 4.95-4.89(1H, m), 3.84(3H, s), 2.59-2.54(1H, m), 2.20-2.18(2H, m), 2.00-1.97(2H, m), 1.69-1.37(13H, m).
(9H, m), 6.87-6.85(2H, m), 1.44(9H, s).
In a 2 L four-necked flask, the compound [MA21-2] (100 g, 331 mmol), tert-4-methoxy-cinnamic acid (58.92 g, 331 mol), EDC (76.07 g, 397 mol), DMAP (4 0.04 g, 33 mmol) and THF (885 g) were added, and the mixture was stirred at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 8 L of distilled water, and the precipitated solid was filtered and washed with distilled water to obtain a crude product. Next, the crude product was suspended in methanol (3 L), stirred for a while, then filtered again and dried under reduced pressure to obtain 82.17 g of Compound [MA21-3] (yield 54%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.64 (1H, d), 7.56 (1H, d), 7.51-7.48 (2H, m), 7.46-7.44 (2H, m), 7.23-7.21 (2H, m), 6.92-6.90 (2H, m), 6.34 (1H, d), 6.30 (1H, d), 4.95-4.89 (1H, m), 3.84 (3H, s), 2.59-2.54 (1H, m) , 2.20-2.18 (2H, m), 2.00-1.97 (2H, m), 1.69-1.37 (13H, m).
(9H, m), 6.87-6.85 (2H, m), 1.44 (9H, s).
 2L四つ口フラスコに上記で得た化合物[MA21-3](82.17g、178mmol)、ギ酸(410g)を加え、40℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、蒸留水3Lに反応溶液を注いだ。析出した固体をろ別後、酢酸エチルで洗浄し、減圧乾燥することで化合物[MA21-4]を54.4g得た(収率75%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.70-7.68(2H, m), 7.62(1H, d), 7.60(2H, s), 7.56(2H, d), 7.31(2H, d), 7.00-6.97(2H, m), 6.50(1H, d), 6.46(1H, d), 4.91-4.82(1H, m), 3.80(3H, s), 2.62-2.48(1H, m), 2.10-2.07(2H, m), 1.87-1.84(2H, m), 1.65-1.48(4H, m). 
The compound [MA21-3] (82.17 g, 178 mmol) obtained above and formic acid (410 g) were added to a 2 L four-necked flask, and the mixture was heated and stirred at 40 ° C. The reaction was traced by HPLC. After confirming the completion of the reaction, the reaction solution was cooled to near room temperature, and then poured into 3 L of distilled water. The precipitated solid was filtered off, washed with ethyl acetate, and dried under reduced pressure to obtain 54.4 g of compound [MA21-4] (yield 75%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.70-7.68 (2H, m), 7.62 (1H, d), 7.60 (2H, s), 7.56 (2H, d), 7.31 (2H, d) , 7.00-6.97 (2H, m), 6.50 (1H, d), 6.46 (1H, d), 4.91-4.82 (1H, m), 3.80 (3H, s), 2.62-2.48 (1H, m), 2.10 -2.07 (2H, m), 1.87-1.84 (2H, m), 1.65-1.48 (4H, m).
 1L四つ口フラスコに上記で得た化合物[MA21-5](30.00g、73.8mmol)、メタクリル酸2-ヒドロキシエチル[MA6-1](10.57g、81.2mmol)、EDC(17.0g、88.6mmol)、DMAP(0.90g、7.38mmol)、THF(450g)を加え、23℃で撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、蒸留水2Lに反応溶液を注ぎ、酢酸エチル(600g)で抽出を行った。有機層を蒸留水(500g)で2回洗浄し、有機層を硫酸マグネシウムで脱水、ろ過、溶媒留去し化合物[MA21]を32.8g得た(収率86%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.70-7.68(2H, m), 7.7.67(2H, s), 7.65-7.63(1H, m), 7.60(1H, d), 7.32(2H, d), 7.00-6.97(2H, m), 6.62(1H, d), 6.50(1H, d), 6.05-6.04(1H, m), 5.71-5.70(1H, m), 4.87-4.81(1H, m), 4.43-4.36(4H, m), 3.80(3H, s), 2.62-2.58(1H, m), 2.10-2.06(2H, m), 1.89-1.88(5H, m), 1.66-1.48(4H, m).
<合成例12>
 化合物[MA22]の合成
In a 1 L four-necked flask, the compound [MA21-5] (30.00 g, 73.8 mmol) obtained above, 2-hydroxyethyl methacrylate [MA6-1] (10.57 g, 81.2 mmol), EDC (17 0.0 g, 88.6 mmol), DMAP (0.90 g, 7.38 mmol), and THF (450 g) were added, and the mixture was stirred at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 2 L of distilled water and extracted with ethyl acetate (600 g). The organic layer was washed twice with distilled water (500 g), and the organic layer was dehydrated with magnesium sulfate, filtered and evaporated to give 32.8 g of compound [MA21] (yield 86%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.70-7.68 (2H, m), 7.7.67 (2H, s), 7.65-7.63 (1H, m), 7.60 (1H, d), 7.32 ( 2H, d), 7.00-6.97 (2H, m), 6.62 (1H, d), 6.50 (1H, d), 6.05-6.04 (1H, m), 5.71-5.70 (1H, m), 4.87-4.81 ( 1H, m), 4.43-4.36 (4H, m), 3.80 (3H, s), 2.62-2.58 (1H, m), 2.10-2.06 (2H, m), 1.89-1.88 (5H, m), 1.66- 1.48 (4H, m).
<Synthesis Example 12>
Synthesis of Compound [MA22]
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 1L四つ口フラスコに、化合物[MA2](50.00g、163mmol)、化合物[MA22-1](39.90g、180mmol)、EDC(37.54g、196mmol)、DMAP(1.99g、16.3mmol)、THF(500g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(3L)に注ぎ、酢酸エチル(1L)を加え、分液操作にて水層を除去した。有機層を蒸留水(1L)で3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA22-2]を74.95g得た(収率90%)。
 1H-NMR(400MHz, CDCl3, δppm):8.13(2H, d), 7.74(1H, d), 7.60(2H, d), 7.25(2H, d), 7.00-6.96(2H, m), 6.43(2H, d), 6.11-6.10(1H, m), 5.96-5.54(1H, m), 5.44(2H, s), 4.17(2H, t), 4.06(2H, t), 3.79-3.73(2H, m), 1.95-1.94(3H, m), 1.85-1.43(8H, m), 1.25(3H, t). 
In a 1 L four-necked flask, compound [MA2] (50.00 g, 163 mmol), compound [MA22-1] (39.90 g, 180 mmol), EDC (37.54 g, 196 mmol), DMAP (1.99 g, 16. 3 mmol) and THF (500 g) were added, and the reaction was carried out at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (3 L), ethyl acetate (1 L) was added, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed 3 times with distilled water (1 L), and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 74.95 g of Compound [MA22-2] as an oily compound (yield 90%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.13 (2H, d), 7.74 (1H, d), 7.60 (2H, d), 7.25 (2H, d), 7.00-6.96 (2H, m), 6.43 (2H, d), 6.11-6.10 (1H, m), 5.96-5.54 (1H, m), 5.44 (2H, s), 4.17 (2H, t), 4.06 (2H, t), 3.79-3.73 (2H , m), 1.95-1.94 (3H, m), 1.85-1.43 (8H, m), 1.25 (3H, t).
 上記で得られた化合物[MA22-2](74.95g、147mmol)にPPTS(3.69g、14.7mmol)、エタノール(480g)を加え、60℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を氷浴で冷却し、析出した固体をろ過、エタノールで洗浄した。得られた固体を減圧乾燥することで、化合物[MA22]を44.9g(収率68%)得た。
 1H-NMR(400MHz, CDCl3, δppm):8.14 (2H, d), 7.79(1H, d), 7.61(2H, d), 7.26(2H, d), 6.97(2H, d), 6.43(1H, d), 6.11-6.09(1H, m), 5.56-5.55(1H, m), 4.16(2H, t), 4.06(2H, t), 1.95(3H, s), 1.88-1.43(8H, m).
<合成例13>
 化合物[MA23]の合成
PPTS (3.69 g, 14.7 mmol) and ethanol (480 g) were added to the compound [MA22-2] (74.95 g, 147 mmol) obtained above, and the mixture was heated and stirred at 60 ° C. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and the precipitated solid was filtered and washed with ethanol. The obtained solid was dried under reduced pressure to obtain 44.9 g (yield 68%) of the compound [MA22].
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.14 (2H, d), 7.79 (1H, d), 7.61 (2H, d), 7.26 (2H, d), 6.97 (2H, d), 6.43 (1H , d), 6.11-6.09 (1H, m), 5.56-5.55 (1H, m), 4.16 (2H, t), 4.06 (2H, t), 1.95 (3H, s), 1.88-1.43 (8H, m ).
<Synthesis Example 13>
Synthesis of Compound [MA23]
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 1L四つ口フラスコに、化合物[MA1](50.00g、150mmol)、化合物[MA9-1](32.46g、166mmol)、EDC(34.6g、181mmol)、DMAP(1.84g、15.0mmol)、THF(500g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(3L)に注ぎ、酢酸エチル(1L)を加え、分液操作にて水層を除去した。有機層を蒸留水(1L)で3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA23-1]を76.5g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):8.14(2H, d), 7.84(1H, d), 7.55-7.53(2H, m), 7.28-7.26(2H, m), 6.95-6.92(2H, m), 6.48(1H, d), 6.11-6.10(1H, m), 5.56-5.55(3H, m), 4.18-4.10(2H, m), 4.01(2H, t), 3.82-3.74(2H, m), 1.95(3H, s), 1.86-1.43(8H, m), 1.26(3H, t).
In a 1 L four-necked flask, compound [MA1] (50.00 g, 150 mmol), compound [MA9-1] (32.46 g, 166 mmol), EDC (34.6 g, 181 mmol), DMAP (1.84 g, 15. 0 mmol) and THF (500 g) were added, and the reaction was carried out at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (3 L), ethyl acetate (1 L) was added, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed 3 times with distilled water (1 L), and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 76.5 g of Compound [MA23-1] as an oily compound (yield 99%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.14 (2H, d), 7.84 (1H, d), 7.55-7.53 (2H, m), 7.28-7.26 (2H, m), 6.95-6.92 (2H, m), 6.48 (1H, d), 6.11-6.10 (1H, m), 5.56-5.55 (3H, m), 4.18-4.10 (2H, m), 4.01 (2H, t), 3.82-3.74 (2H, m), 1.95 (3H, s), 1.86-1.43 (8H, m), 1.26 (3H, t).
 上記で得られた化合物[MA23-1](76.5g、150mmol)にPPTS(3.77g、15.0mmol)、エタノール(540g)を加え、60℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を氷浴で冷却し、析出した固体をろ過、エタノールで洗浄した。得られた固体を減圧乾燥することで、化合物[MA23]を16.9g(収率48%)得た。
 1H-NMR(400MHz, CDCl3, δppm):8.18 (2H, d), 7.84(1H, d), 7.54(2H, d), 7.29(2H, d), 6.93(2H, d), 6.49(1H, d), 6.11-6.10(1H, m), 5.56-5.55(1H, m), 4.17(2H, t), 4.01(2H, t), 1.95-1.94(3H, m), 1.88-1.43(8H, m).
<合成例14>
 化合物[MA25]の合成
PPTS (3.77 g, 15.0 mmol) and ethanol (540 g) were added to the compound [MA23-1] (76.5 g, 150 mmol) obtained above, and the mixture was heated and stirred at 60 ° C. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and the precipitated solid was filtered and washed with ethanol. The obtained solid was dried under reduced pressure to obtain 16.9 g (yield 48%) of compound [MA23].
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.18 (2H, d), 7.84 (1H, d), 7.54 (2H, d), 7.29 (2H, d), 6.93 (2H, d), 6.49 (1H , d), 6.11-6.10 (1H, m), 5.56-5.55 (1H, m), 4.17 (2H, t), 4.01 (2H, t), 1.95-1.94 (3H, m), 1.88-1.43 (8H , m).
<Synthesis Example 14>
Synthesis of Compound [MA25]
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 2L四つ口フラスコに、4-ブロモ安息香酸 tert-ブチル[MA25-1](126.0g、488mmol)、アクリル酸(73.86g、1.03mol)、酢酸パラジウム(2.19g、9.77mmol)、トリ(o-トリル)ホスフィン(5.94g、19.53mmol)、トリブチルアミン(271.5g、1.46mol)、DMAc(630g)を加え、100℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、1M塩酸水溶液4Lに注いだ。析出した固体をろ過し、蒸留水、メタノールで順次洗浄し、酢酸エチル/ヘキサンから再結晶することで、化合物[MA25-2]を116.1g得た(収率96%)。
 1H-NMR(400MHz, DMSO-d6, δppm):10.01(1H, s), 12.49(1H, brs), 7.92-7.90(2H, m), 7.82-7.80(2H, m), 7.63(1H, d), 6.65(1H, d), 1.55(9H, s).
In a 2 L four-necked flask, tert-butyl 4-bromobenzoate [MA25-1] (126.0 g, 488 mmol), acrylic acid (73.86 g, 1.03 mol), palladium acetate (2.19 g, 9.77 mmol). ), Tri (o-tolyl) phosphine (5.94 g, 19.53 mmol), tributylamine (271.5 g, 1.46 mol) and DMAc (630 g) were added, and the mixture was heated and stirred at 100 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature and then poured into 4 L of 1M hydrochloric acid aqueous solution. The precipitated solid was filtered, washed successively with distilled water and methanol, and recrystallized from ethyl acetate / hexane to obtain 116.1 g of Compound [MA25-2] (yield 96%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 10.01 (1H, s), 12.49 (1H, brs), 7.92-7.90 (2H, m), 7.82-7.80 (2H, m), 7.63 (1H, d), 6.65 (1H, d), 1.55 (9H, s).
 メカニカルスターラー、撹拌羽を備え付けた2L四つ口フラスコに上記で得た化合物[MA25-2](50.00g、201mmol)、6-クロロ-1-ヘキサノール(30.27g、222mol)、炭酸カリウム(30.63g、222mmol)、ヨウ化カリウム(3.34g、20.14mmol)、DMF(250g)を加え、80℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水1.5Lに注ぎ、酢酸エチル(500mL)で2回洗浄を行った。有機層をあわせた後、5%水酸化カリウム水溶液(300g)、飽和食塩水(300g)で2回洗浄し、硫酸マグネシウムで有機層を乾燥させ、ろ過後、溶媒を留去し化合物[MA25-3]を62.5g得た(収率89%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.92-7.90(2H, m), 7.86-7.84(2H, d), 7.68(1H, d), 6.76(1H, d), 4.16(2H, t), 3.39(2H, t), 1.65-1.28(15H, d).
In a 2 L four-necked flask equipped with a mechanical stirrer and a stirring blade, the compound [MA25-2] (50.00 g, 201 mmol) obtained above, 6-chloro-1-hexanol (30.27 g, 222 mol), potassium carbonate ( 30.63 g, 222 mmol), potassium iodide (3.34 g, 20.14 mmol) and DMF (250 g) were added, and the mixture was heated and stirred at 80 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 1.5 L of distilled water and washed twice with ethyl acetate (500 mL). The organic layers were combined, washed twice with 5% aqueous potassium hydroxide (300 g) and saturated brine (300 g), dried over magnesium sulfate, filtered, and then the solvent was evaporated to remove the compound [MA25- 3] was obtained (yield 89%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.92-7.90 (2H, m), 7.86-7.84 (2H, d), 7.68 (1H, d), 6.76 (1H, d), 4.16 (2H, t), 3.39 (2H, t), 1.65-1.28 (15H, d).
 2L四つ口フラスコに上記で得た化合物[MA25-3](62.5g、179mmol)、トリエチルアミン(21.78g、215mmol)、THF(400g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(20.63g、197mmol)のTHF(100g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水4Lに注ぎ、酢酸エチル1Lを加え、分液操作にて水層を除去した。その後、5%水酸化カリウム水溶液、1M塩酸水溶液、飽和食塩水で順次有機層を洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターで溶媒留去し化合物[MA25-4]を65.19g得た(収率87%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 7.92-7.90(2H, m), 7.87-7.84(2H, m), 7.68(2H, d), 6.75(1H,d), 6.02-6.01(1H, m), 5.67-5.65(1H, m), 4.16(2H, t), 4.06-4.00(2H, m), 1.88-1.87(3H, m), 1.66-1.36(15H, m).
The compound [MA25-3] obtained above (62.5 g, 179 mmol), triethylamine (21.78 g, 215 mmol) and THF (400 g) were added to a 2 L four-necked flask, and the reaction solution was cooled. A solution of methacrylic acid chloride (20.63 g, 197 mmol) in THF (100 g) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. and further reacted. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 4 L of distilled water, 1 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent using an evaporator gave 65.19 g of Compound [MA25-4] (yield 87%).
1 H-NMR (400MHz, DMSO-d6, δppm): 7.92-7.90 (2H, m), 7.87-7.84 (2H, m), 7.68 (2H, d), 6.75 (1H, d), 6.02-6.01 ( 1H, m), 5.67-5.65 (1H, m), 4.16 (2H, t), 4.06-4.00 (2H, m), 1.88-1.87 (3H, m), 1.66-1.36 (15H, m).
 2L四つ口フラスコに上記で得た化合物[MA25-4](65.19g、157mmol)、ギ酸(325g)を加え、40℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水2Lに注ぎろ過した。得られた固体をメタノールで洗浄し、固体を乾燥させることで化合物[MA25]を26.8g得た(収率48%)。
 1H-NMR(400MHz, DMSO-d6, δppm):13.1(1H, brs), 7.97-7.95(2H, m), 7.86-7.84(2H, m), 7.69(1H, d), 6.75(1H, d), 6.02-6.01(1H, m), 5.68-5.65(1H, m), 4.16-4.03(4H, m), 1.88-1.87(3H, m), 1.68-1.32(8H, m).
<合成例15>
 化合物[MA28]の合成
The compound [MA25-4] obtained above (65.19 g, 157 mmol) and formic acid (325 g) were added to a 2 L four-necked flask, and the mixture was heated and stirred at 40 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 2 L of distilled water and filtered. The obtained solid was washed with methanol, and the solid was dried to obtain 26.8 g of Compound [MA25] (yield 48%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 13.1 (1H, brs), 7.97-7.95 (2H, m), 7.86-7.84 (2H, m), 7.69 (1H, d), 6.75 (1H, d), 6.02-6.01 (1H, m), 5.68-5.65 (1H, m), 4.16-4.03 (4H, m), 1.88-1.87 (3H, m), 1.68-1.32 (8H, m).
<Synthesis Example 15>
Synthesis of Compound [MA28]
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 上記合成例11で合成した化合物[MA21-2](50.00g、165mmol)、4-メトキシ安息香酸(25.16g、165mol)、EDC(38.0g、198mol)、DMAP(2.02g、16.5mmol)、THF(380g)を加え、23℃で撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水2.5Lに注ぎ、酢酸エチルを加え有機層を分液操作にて分取した。得られた有機層を蒸留水(1L)で3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、オイル状化合物として、化合物[MA28-1]を65.5g得た(収率91%)。
 1H-NMR(400MHz, CDCl3, δppm):8.10(2H,d), 7.56(1H, d), 7.45-7.43(2H, d), 7.22-7.19(2H, m), 7.00-6.97(2H, m), 6.33(1H, d), 3.90(3H, s), 3.73-3.66(1H, m), 2.58-2.42(1H, m), 2.12-1.43(17H, m).
Compound [MA21-2] synthesized in Synthesis Example 11 (50.00 g, 165 mmol), 4-methoxybenzoic acid (25.16 g, 165 mol), EDC (38.0 g, 198 mol), DMAP (2.02 g, 16 0.5 mmol) and THF (380 g) were added, and the mixture was stirred at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 2.5 L of distilled water, ethyl acetate was added, and the organic layer was separated by a liquid separation operation. The obtained organic layer was washed 3 times with distilled water (1 L), and then the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 65.5 g of Compound [MA28-1] as an oily compound (yield 91%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.10 (2H, d), 7.56 (1H, d), 7.45-7.43 (2H, d), 7.22-7.19 (2H, m), 7.00-6.97 (2H, m), 6.33 (1H, d), 3.90 (3H, s), 3.73-3.66 (1H, m), 2.58-2.42 (1H, m), 2.12-1.43 (17H, m).
 2L四つ口フラスコに上記で得た化合物[MA28-1](65.5g、150mmol)、ギ酸(650g)を加え、40℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、蒸留水4Lに反応溶液を注いだ。析出した固体をろ別後、酢酸エチルで洗浄し、減圧乾燥することで化合物[MA28-2]を29.9g得た(収率52%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.94-7.88(2H, m), 7.62-7.54(3H, m), 7.33-7.79(2H, m), 7.07-7.01(2H, m), 6.48(1H, d), 4.95-4.92(1H, m), 4.84-4.77(1H, m), 3.83(3H, s), 2.65-1.48(8H).
The compound [MA28-1] obtained above (65.5 g, 150 mmol) and formic acid (650 g) were added to a 2 L four-necked flask, and the mixture was heated and stirred at 40 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature, and then poured into 4 L of distilled water. The precipitated solid was filtered off, washed with ethyl acetate, and dried under reduced pressure to obtain 29.9 g of Compound [MA28-2] (yield 52%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.94-7.88 (2H, m), 7.62-7.54 (3H, m), 7.33-7.79 (2H, m), 7.07-7.01 (2H, m), 6.48 (1H, d), 4.95-4.92 (1H, m), 4.84-4.77 (1H, m), 3.83 (3H, s), 2.65-1.48 (8H).
 1L四つ口フラスコに上記で得た化合物[MA28-2](29.9g、78.6mmol)、メタクリル酸2-ヒドロキシエチル(12.27g、94.3mmol)、EDC(21.1g、110mmol)、DMAP(0.96g、7.86mmol)、THF(450g)を加え、23℃で撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、蒸留水2.7Lに反応溶液を注ぎ、酢酸エチル(600g)で抽出を行った。有機層を蒸留水(500g)で2回洗浄し、有機層を硫酸マグネシウムで脱水、ろ過、溶媒留去し化合物[MA28]を23.6g得た(収率56%)。
 1H-NMR(400MHz, DMSO-d6, δppm):8.08-8.02(2H, m), 7.68(1H, d), 7.48-7.46(2H, m), 7.24-7.22(2H, m), 6.92(2H, d), 6.42(1H, d), 6.16(1H, s), 5.61-5.60(1H, m), 5.12-4.93(2H, m), 4.47-4.22(4H, m), 3.86(3H, s), 2.60-1.43(11H).
<合成例16>
 化合物[MA29]の合成
In a 1 L four-necked flask, the compound [MA28-2] obtained above (29.9 g, 78.6 mmol), 2-hydroxyethyl methacrylate (12.27 g, 94.3 mmol), EDC (21.1 g, 110 mmol) , DMAP (0.96 g, 7.86 mmol) and THF (450 g) were added, and the mixture was stirred at 23 ° C. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 2.7 L of distilled water and extracted with ethyl acetate (600 g). The organic layer was washed twice with distilled water (500 g), and the organic layer was dehydrated with magnesium sulfate, filtered, and the solvent was distilled off to obtain 23.6 g of Compound [MA28] (yield 56%).
1 H-NMR (400MHz, DMSO -d6, δppm): 8.08-8.02 (2H, m), 7.68 (1H, d), 7.48-7.46 (2H, m), 7.24-7.22 (2H, m), 6.92 ( 2H, d), 6.42 (1H, d), 6.16 (1H, s), 5.61-5.60 (1H, m), 5.12-4.93 (2H, m), 4.47-4.22 (4H, m), 3.86 (3H, s), 2.60-1.43 (11H).
<Synthesis Example 16>
Synthesis of Compound [MA29]
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 2L四つ口フラスコに、6-ブロモ-2-ナフトール[MA29-1](150g、672mol)、アクリル酸 tert-ブチル[MA4-2](103.4g、807mmol)、酢酸パラジウム(3.02g、13.5mmol)、トリ(o-トリル)ホスフィン(8.19g、26.9mmol)、トリプロピルアミン(289.0g、2.02mol)、DMAc(700g)を加え、100℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、1M塩酸水溶液3Lに注いだ。そこに、酢酸エチル(2L)を加え、分液操作にて水層を除去した。有機層を10%塩酸水溶液1Lで2回、飽和食塩水1Lで3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[MA29-2]を181g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):10.01(1H, s), 8.04(1H, s), 7.81-7.74(2H, m), 7.70-7.63(2H, m), 7.14-7.10(2H, m), 6.54(1H, d), 1.51-1.48(9H, m).
In a 2 L four-necked flask, 6-bromo-2-naphthol [MA29-1] (150 g, 672 mol), tert-butyl acrylate [MA4-2] (103.4 g, 807 mmol), palladium acetate (3.02 g, 13.5 mmol), tri (o-tolyl) phosphine (8.19 g, 26.9 mmol), tripropylamine (289.0 g, 2.02 mol) and DMAc (700 g) were added, and the mixture was heated and stirred at 100 ° C. . The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to near room temperature, and then poured into 3 L of 1M hydrochloric acid aqueous solution. Ethyl acetate (2 L) was added thereto, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed twice with 1 L of a 10% aqueous hydrochloric acid solution and three times with 1 L of saturated brine, and then dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 181 g of Compound [MA29-2] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 10.01 (1H, s), 8.04 (1H, s), 7.81-7.74 (2H, m), 7.70-7.63 (2H, m), 7.14-7.10 ( 2H, m), 6.54 (1H, d), 1.51-1.48 (9H, m).
 メカニカルスターラー、撹拌羽を備え付けた2L四つ口フラスコに上記で得た化合物[MA29-2](181g、672mmol)、6-クロロ-1-ヘキサノール(110.2g、806mol)、炭酸カリウム(111.5g、806mmol)、ヨウ化カリウム(1.12g、6.7mmol)、DMF(900g)を加え、80℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水2Lに注ぎ、酢酸エチル(2L)を加え、分液操作により水層を除去した。その後、有機層を飽和食塩水(1L)で2回洗浄し、硫酸マグネシウムで有機層を乾燥させ、ろ過後、溶媒を留去し粗物を得た。得られた粗物を酢酸エチル/ヘキサン混合溶媒で再結晶し、化合物[MA29-3]を185g得た(収率74%)。
 1H-NMR(400MHz, DMSO-d6, δppm):8.06(1H, s), 7.80(1H, d), 7.77-7.76(2H, m), 7.62(1H, d), 7.34(1H, d), 7.15(1H, dd), 6.53(1H, d), 4.34(1H, t), 4.05(2H, t), 3.39-3.33(2H, m), 1.73(2H, t), 1.46-1.31(15H, m).
In a 2 L four-necked flask equipped with a mechanical stirrer and a stirring blade, the compound [MA29-2] (181 g, 672 mmol) obtained above, 6-chloro-1-hexanol (110.2 g, 806 mol), potassium carbonate (111. 5 g, 806 mmol), potassium iodide (1.12 g, 6.7 mmol) and DMF (900 g) were added, and the mixture was heated and stirred at 80 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 2 L of distilled water, ethyl acetate (2 L) was added, and the aqueous layer was removed by liquid separation operation. Thereafter, the organic layer was washed twice with saturated brine (1 L), the organic layer was dried over magnesium sulfate, filtered, and then the solvent was distilled off to obtain a crude product. The obtained crude product was recrystallized with a mixed solvent of ethyl acetate / hexane to obtain 185 g of compound [MA29-3] (yield 74%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.06 (1H, s), 7.80 (1H, d), 7.77-7.76 (2H, m), 7.62 (1H, d), 7.34 (1H, d) , 7.15 (1H, dd), 6.53 (1H, d), 4.34 (1H, t), 4.05 (2H, t), 3.39-3.33 (2H, m), 1.73 (2H, t), 1.46-1.31 (15H , m).
 3L四つ口フラスコに上記で得た化合物[MA29-3](130.5g、352mmol)、トリエチルアミン(42.76g、423mmol)、THF(950g)を加え、反応溶液を冷却した。そこへ、メタクリル酸クロリド(44.2g、423mmol)のTHF(100g)溶液を内温が10℃を超えないように注意しながら滴下した。滴下終了後、反応溶液を23℃にしさらに反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水6Lに注ぎ、酢酸エチル2Lを加え、分液操作にて水層を除去した。その後、5%水酸化カリウム水溶液、1M塩酸水溶液、飽和食塩水で順次有機層を洗浄し、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターで溶媒留去し化合物[MA29-4]を140.9g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.09(1H, s), 7.83(1H, d), 7.80-7.79(2H, m), 7.66(1H,d), 7.33(1H, d), 7.18(1H, dd), 6.57(1H, d), 6.02-6.01(1H, m), 5.66-5.65(1H, m), 4.12-4.06(4H, m), 1.88-1.87(3H, m), 1.84-1.42(15H, m).
The compound [MA29-3] obtained above (130.5 g, 352 mmol), triethylamine (42.76 g, 423 mmol) and THF (950 g) were added to a 3 L four-necked flask, and the reaction solution was cooled. A solution of methacrylic acid chloride (44.2 g, 423 mmol) in THF (100 g) was added dropwise thereto with care so that the internal temperature did not exceed 10 ° C. After completion of the dropwise addition, the reaction solution was brought to 23 ° C. and further reacted. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 6 L of distilled water, 2 L of ethyl acetate was added, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed successively with 5% aqueous potassium hydroxide solution, 1M aqueous hydrochloric acid solution and saturated brine, and the organic layer was dried over magnesium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator gave 140.9 g of Compound [MA29-4] (yield 92%).
1 H-NMR (400MHz, DMSO-d6, δppm): 8.09 (1H, s), 7.83 (1H, d), 7.80-7.79 (2H, m), 7.66 (1H, d), 7.33 (1H, d) , 7.18 (1H, dd), 6.57 (1H, d), 6.02-6.01 (1H, m), 5.66-5.65 (1H, m), 4.12-4.06 (4H, m), 1.88-1.87 (3H, m) , 1.84-1.42 (15H, m).
 3L四つ口フラスコに上記で得た化合物[MA29-4](140.9g、321mmol)、ギ酸(700g)を加え、40℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水4.5Lに注ぎろ過した。得られた固体をIPA/ヘキサン混合溶媒で洗浄し、固体を乾燥させることで化合物[MA29]を95.9g得た(収率78%)。
 1H-NMR(400MHz, DMSO-d6, δppm):12.4(1H, brs), 8.10(1H, s), 7.84(1H, d), 7.81-7.80(2H, m), 7.70(1H, d), 7.35(1H, d), 7.19(1H, dd), 6.59(1H, d), 6.03-6.02(1H, m), 5.67-5.65(1H, m), 4.13-4.07(4H, m), 1.88-1.87(3H, m), 1.83-1.41(8H, m).
<合成例17>
 化合物[MA30]の合成
The compound [MA29-4] obtained above (140.9 g, 321 mmol) and formic acid (700 g) were added to a 3 L four-necked flask, and the mixture was heated and stirred at 40 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into 4.5 L of distilled water and filtered. The obtained solid was washed with an IPA / hexane mixed solvent, and the solid was dried to obtain 95.9 g of Compound [MA29] (yield 78%).
1 H-NMR (400MHz, DMSO-d6, δppm): 12.4 (1H, brs), 8.10 (1H, s), 7.84 (1H, d), 7.81-7.80 (2H, m), 7.70 (1H, d) , 7.35 (1H, d), 7.19 (1H, dd), 6.59 (1H, d), 6.03-6.02 (1H, m), 5.67-5.65 (1H, m), 4.13-4.07 (4H, m), 1.88 -1.87 (3H, m), 1.83-1.41 (8H, m).
<Synthesis Example 17>
Synthesis of Compound [MA30]
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 合成例16において、化合物[MA29-3]を合成する際に使用した6-クロロ-1-ヘキサノールを8-クロロ-1-オクタノールに変更した以外、合成例16と同様の操作を行い、化合物[MA30]を171g得た。
 1H-NMR(400MHz, CDCl3, δppm):12.4(1H, brs), 7.94-7.88(2H, m), 7.77-7.71(2H, m), 7.70-7.63(1H, m), 7.17(1H, dd), 7.12-7.11(1H, m), 6.51(1H, d), 6.11-6.10(1H, m), 5.55-5.54(1H, m), 4.17-4.06(4H, m), 1.95-1.94(3H, m), 1.87-1.40(12H, m).
<合成例18>
 化合物[MA31]の合成
The same operation as in Synthesis Example 16 was performed, except that 6-chloro-1-hexanol used in the synthesis of Compound [MA29-3] in Synthesis Example 16 was changed to 8-chloro-1-octanol. 171 g of MA30] was obtained.
1 H-NMR (400 MHz, CDCl3, δ ppm): 12.4 (1H, brs), 7.94-7.88 (2H, m), 7.77-7.71 (2H, m), 7.70-7.63 (1H, m), 7.17 (1H, dd), 7.12-7.11 (1H, m), 6.51 (1H, d), 6.11-6.10 (1H, m), 5.55-5.54 (1H, m), 4.17-4.06 (4H, m), 1.95-1.94 ( 3H, m), 1.87-1.40 (12H, m).
<Synthesis Example 18>
Synthesis of Compound [MA31]
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 2L四つ口フラスコに、6-ヒドロキシ-2-ナフタレンカルボン酸[MA31-1] (300g、1.59mol)、水酸化カリウム(205g、3.66mol)、蒸留水(1200g)を加え、100℃で加熱撹拌を行った。そこに、6-クロロ-1-ヘキサノール(261g、1.91mol)を滴下した。滴下終了後、HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温付近まで冷却した後、氷水(3L)に反応溶液を注ぎ、35%塩酸を加え中和を行った。その後、析出した固体をろ過、蒸留水で洗浄後、固体を減圧乾燥することで、化合物[MA31-2]を275g得た(収率60%)。
 1H-NMR(400MHz, DMSO-d6, δppm):8.53-8.52(1H, m), 8.06-7.87(3H, m), 7.40(1H, d), 7.27-7.23(1H, m), 4.32(1H, t), 4.12(2H, m), 3.44-3.33(2H, m), 1.82-1.76(2H, m), 1.51-1.3(6H).
To a 2 L four-necked flask, 6-hydroxy-2-naphthalenecarboxylic acid [MA31-1] (300 g, 1.59 mol), potassium hydroxide (205 g, 3.66 mol), and distilled water (1200 g) were added, and 100 ° C. The mixture was heated and stirred. 6-Chloro-1-hexanol (261 g, 1.91 mol) was added dropwise thereto. After completion of the dropwise addition, the reaction was monitored by HPLC. After confirming the completion of the reaction, the reaction solution was cooled to near room temperature, poured into ice water (3 L), and neutralized by adding 35% hydrochloric acid. Thereafter, the precipitated solid was filtered, washed with distilled water, and then the solid was dried under reduced pressure to obtain 275 g of Compound [MA31-2] (yield 60%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.53-8.52 (1H, m), 8.06-7.87 (3H, m), 7.40 (1H, d), 7.27-7.23 (1H, m), 4.32 ( 1H, t), 4.12 (2H, m), 3.44-3.33 (2H, m), 1.82-1.76 (2H, m), 1.51-1.3 (6H).
 2L四つ口フラスコに上記で得た化合物[MA31-2](50.00g、173mmol)、ジメチルアミノフェノール(46.23g、382mmol)、ニトロベンゼン(2.13g、17.3mmol)、THF(500g)を加え窒素置換した後、加熱還流下で撹拌を行った。そこへ、メタクリル酸クロリド(38.1g、361mmol)のTHF(100g)溶液を徐々に滴下した。滴下終了後、HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を室温まで冷却した。その後、1M塩酸水溶液3Lに反応溶液を注ぎ、析出した固体をろ過し粗物を得た。次に、得られた粗物をエタノール/ヘキサン混合溶媒、ついでアセトンで洗浄した後、減圧乾燥することで、化合物[MA31]を38.4g得た(収率62%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.63(1H, s), 8.08(1H, dd), 7.87(1H, d), 7.76(1H,d), 7.22-7.19(1H, m), 7.16-7.15(1H, m), 6.11-6.10(1H, m), 5.56-5.54(1H, m), 4.20-4.10(4H, m), 1.97-1.95(3H, m), 1.92-1.85(2H, m), 1.78-1.71(2H, m), 1.60-1.47(4HH, m).
<合成例19>
 化合物[MA32]の合成
In a 2 L four-necked flask, the compound [MA31-2] obtained above (50.00 g, 173 mmol), dimethylaminophenol (46.23 g, 382 mmol), nitrobenzene (2.13 g, 17.3 mmol), THF (500 g) After replacing with nitrogen, the mixture was stirred with heating under reflux. A THF (100 g) solution of methacrylic acid chloride (38.1 g, 361 mmol) was gradually added dropwise thereto. After completion of the dropping, the reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled to room temperature. Thereafter, the reaction solution was poured into 3 L of 1M aqueous hydrochloric acid, and the precipitated solid was filtered to obtain a crude product. Next, the obtained crude product was washed with an ethanol / hexane mixed solvent and then with acetone and then dried under reduced pressure to obtain 38.4 g of Compound [MA31] (yield 62%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.63 (1H, s), 8.08 (1H, dd), 7.87 (1H, d), 7.76 (1H, d), 7.22-7.19 (1H, m) , 7.16-7.15 (1H, m), 6.11-6.10 (1H, m), 5.56-5.54 (1H, m), 4.20-4.10 (4H, m), 1.97-1.95 (3H, m), 1.92-1.85 ( 2H, m), 1.78-1.71 (2H, m), 1.60-1.47 (4HH, m).
<Synthesis Example 19>
Synthesis of Compound [MA32]
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 1L四つ口フラスコに、化合物[MA1](50.00g、150mmol)、化合物[MA22-1](37.10g、165mmol)、EDC(34.6g、181mmol)、DMAP(1.89g、15.0mmol)、THF(500g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(3L)に注ぎ、析出した固体をろ過、蒸留水、メタノールで順次洗浄し、得られた固体を減圧乾燥することで、化合物[MA32-1]を79.8g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):7.83(1H, d), 7.73(1H, d), 7.60-7.57(2H, m), 7.56-7.53(2H, m), 7.23-7.21(2H, m), 6.94-6.92(2H, m), 6.48(1H, d), 6.42(1H, d), 6.11-6.10(1H, m), 5.57-5.55(1H, m), 5.43(2H, s), 4.17(2H, t), 4.01(2H, t), 3.76(2H, q), 1.95(3H, s), 1.85-1.43(6H, m), 1.26(3H, t).
In a 1 L four-necked flask, compound [MA1] (50.00 g, 150 mmol), compound [MA22-1] (37.10 g, 165 mmol), EDC (34.6 g, 181 mmol), DMAP (1.89 g, 15. 0 mmol) and THF (500 g) were added, and the reaction was carried out at 23 ° C. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (3 L), the precipitated solid was filtered, washed sequentially with distilled water and methanol, and the obtained solid was dried under reduced pressure. Thus, 79.8 g of Compound [MA32-1] was obtained (99% yield).
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.83 (1H, d), 7.73 (1H, d), 7.60-7.57 (2H, m), 7.56-7.53 (2H, m), 7.23-7.21 (2H, m), 6.94-6.92 (2H, m), 6.48 (1H, d), 6.42 (1H, d), 6.11-6.10 (1H, m), 5.57-5.55 (1H, m), 5.43 (2H, s) , 4.17 (2H, t), 4.01 (2H, t), 3.76 (2H, q), 1.95 (3H, s), 1.85-1.43 (6H, m), 1.26 (3H, t).
 上記で得られた化合物[MA32-1](79.8g、150mmol)にPPTS(3.78g、15.0mmol)、エタノール(565g)を加え、60℃で加熱撹拌を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を氷浴で冷却し、析出した固体をろ過、エタノールで洗浄した。得られた固体を減圧乾燥することで、化合物[MA32]を63.0g(収率88%)得た。
 1H-NMR(400MHz, CDCl3, δppm):7.83(1H, d), 7.78(1H, d), 7.62-7.59(2H, m), 7.55-7.53(2H, m), 7.24-7.22(2H, m), 6.94-6.91(2H, m), 6.48(1H, d), 6.43(1H, d), 6.11-6.10(1H, m), 5.56-5.55(1H, m), 4.18(2H, t), 4.01(2H, t), 1.95-1.94(3H, m), 1.85-1.45(6H, m).
<合成例20>
 化合物[MA33]の合成
PPTS (3.78 g, 15.0 mmol) and ethanol (565 g) were added to the compound [MA32-1] (79.8 g, 150 mmol) obtained above, and the mixture was heated and stirred at 60 ° C. The reaction was monitored by HPLC, and after confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and the precipitated solid was filtered and washed with ethanol. The obtained solid was dried under reduced pressure to obtain 63.0 g (yield 88%) of the compound [MA32].
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.83 (1H, d), 7.78 (1H, d), 7.62-7.59 (2H, m), 7.55-7.53 (2H, m), 7.24-7.22 (2H, m), 6.94-6.91 (2H, m), 6.48 (1H, d), 6.43 (1H, d), 6.11-6.10 (1H, m), 5.56-5.55 (1H, m), 4.18 (2H, t) , 4.01 (2H, t), 1.95-1.94 (3H, m), 1.85-1.45 (6H, m).
<Synthesis Example 20>
Synthesis of Compound [MA33]
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 500mL四つ口フラスコに、化合物[MA2](20.00g、65.3mmol)、4-ヒドロキシピリジン(6.83g、71.8mmol)、EDC(15.02g、78.4mmol)、DMAP(0.80g、6.53mmol)、THF(200g)を加え23℃で反応を行った。HPLCにて反応追跡を行い、反応終了を確認後、反応溶液を蒸留水(1.2L)に注ぎ、酢酸エチル(1L)を加え、分液操作にて水層を除去した。有機層を蒸留水(500mL)で3回洗浄した後、有機層を硫酸マグネシウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去することで、化合物[MA33]を24.31g得た(収率97%)。
 1H-NMR(400MHz, CDCl3, δppm):8.66(2H, d), 8.15-8.11(2H, m), 7.24-7.23(2H, m), 7.00-6.96(2H, m), 6.10-6.11(1H, m), 5.57-5.56(1H, m), 4.19-4.16(2H, m), 4.06(2H, t), 1.96-1.95(3H, m), 1.90-1.46(8H, m).
<合成例21>
 化合物[MA34]の合成
In a 500 mL four-necked flask, compound [MA2] (20.00 g, 65.3 mmol), 4-hydroxypyridine (6.83 g, 71.8 mmol), EDC (15.02 g, 78.4 mmol), DMAP (0. 80 g, 6.53 mmol) and THF (200 g) were added, and the reaction was performed at 23 ° C. The reaction was traced by HPLC, and after confirming the completion of the reaction, the reaction solution was poured into distilled water (1.2 L), ethyl acetate (1 L) was added, and the aqueous layer was removed by a liquid separation operation. The organic layer was washed 3 times with distilled water (500 mL), and then the organic layer was dried over magnesium sulfate. Then, 24.31g of compound [MA33] was obtained by filtering and distilling a solvent off by an evaporator (yield 97%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.66 (2H, d), 8.15-8.11 (2H, m), 7.24-7.23 (2H, m), 7.00-6.96 (2H, m), 6.10-6.11 ( 1H, m), 5.57-5.56 (1H, m), 4.19-4.16 (2H, m), 4.06 (2H, t), 1.96-1.95 (3H, m), 1.90-1.46 (8H, m).
<Synthesis Example 21>
Synthesis of Compound [MA34]
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 2L四つ口フラスコに、化合物[MA34-1](264g、1.0mol)、トリエチルアミン(111g、1.1mol)、THF(1300g)を加え、反応溶液を0℃に冷却した。そこへ、クロロメチルエチルエーテル(103g、1.1mol)を適下し、その後、25℃で攪拌した。反応終了後、反応溶液を酢酸エチル(2L)に注ぎ、蒸留水(1L)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた粗物をヘキサン(1L)にてリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA34-2]を212g得た(収率65%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.64-7.70(3H, m), 6.95-6.99(2H, d), 6.48-6.52(1H, d), 5.34(2H, s), 4.34-4.37(1H, t), 3.99-4.03(2H, t), 3.64-3.69(2H, t), 3.37-3.41(2H, m), 1.68-1.73(2H, m), 1.31-1.45(6H, m), 1.11-1.17(3H, t).
To a 2 L four-necked flask, compound [MA34-1] (264 g, 1.0 mol), triethylamine (111 g, 1.1 mol) and THF (1300 g) were added, and the reaction solution was cooled to 0 ° C. Chloromethyl ethyl ether (103 g, 1.1 mol) was appropriately added thereto, and then stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (2 L), washed 3 times with distilled water (1 L), and the organic layer was dried over sodium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator were performed, and the obtained crude product was repulped with hexane (1 L), filtered and dried to obtain 212 g of Compound [MA34-2] (yield 65). %).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.64-7.70 (3H, m), 6.95-6.99 (2H, d), 6.48-6.52 (1H, d), 5.34 (2H, s), 4.34- 4.37 (1H, t), 3.99-4.03 (2H, t), 3.64-3.69 (2H, t), 3.37-3.41 (2H, m), 1.68-1.73 (2H, m), 1.31-1.45 (6H, m ), 1.11-1.17 (3H, t).
 1L四つ口フラスコに、化合物[MA34-2](54.5g、0.17mol)、4-ビニル安息香酸(25.0g、0.17mol)、EDC(48.7g、0.25mol)、DMAP(2.1g、17mmol)、THF(250g)を加え、25℃で撹拌を行なった。反応終了後、反応溶液を酢酸エチル(250mL)に注ぎ、飽和食塩水(200mL)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた残渣にピリジニウム p-トルエンスルホン酸(PPTSと表記)(4.3g、34mmol)、エタノール(375g)を加え、65℃で加熱撹拌を行った。反応終了を確認後、反応溶液を氷浴で冷却し、析出した固体をろ過し、アセトニトリルで洗浄した。得られた粗物を酢酸エチル/ヘキサン=1/1溶液(250g)でリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA34]を46.6g得た(収率70%)。
 1H-NMR(400MHz, DMSO-d6, δppm):12.23(1H, s), 7.92-7.94(2H, d), 7.52-7.61(5H, m), 6.94-6.96(2H, m), 6.78-6.85(1H, m), 6.35-6.39(1H, d), 5.97-6.01(1H, d), 5.42-5.44(1H, d), 4.26-4.30(2H, m), 3.98-4.02(2H, m), 1.72-1.75(4H, m), 1.46-1.48(4H, m).
<合成例22>
 化合物[MA35]の合成
In a 1 L four-necked flask, compound [MA34-2] (54.5 g, 0.17 mol), 4-vinylbenzoic acid (25.0 g, 0.17 mol), EDC (48.7 g, 0.25 mol), DMAP (2.1 g, 17 mmol) and THF (250 g) were added, and the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (250 mL), washed 3 times with saturated brine (200 mL), and the organic layer was dried over sodium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator were conducted, and pyridinium p-toluenesulfonic acid (indicated as PPTS) (4.3 g, 34 mmol) and ethanol (375 g) were added to the resulting residue, followed by heating and stirring at 65 ° C. It was. After confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and the precipitated solid was filtered and washed with acetonitrile. The obtained crude product was repulped with an ethyl acetate / hexane = 1/1 solution (250 g), filtered and dried to obtain 46.6 g of Compound [MA34] (yield 70%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 12.23 (1H, s), 7.92-7.94 (2H, d), 7.52-7.61 (5H, m), 6.94-6.96 (2H, m), 6.78- 6.85 (1H, m), 6.35-6.39 (1H, d), 5.97-6.01 (1H, d), 5.42-5.44 (1H, d), 4.26-4.30 (2H, m), 3.98-4.02 (2H, m ), 1.72-1.75 (4H, m), 1.46-1.48 (4H, m).
<Synthesis Example 22>
Synthesis of Compound [MA35]
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 3L四つ口フラスコに、化合物[MA35-1](402g、1.7mol)、トリエチルアミン(188g、1.9mol)、THF(2000g)を加え、反応溶液を0℃に冷却した。そこへ、クロロメチルエチルエーテル(176g、1.9mol)を適下し、その後、25℃で攪拌した。反応終了後、反応溶液を酢酸エチル(1L)に注ぎ、飽和食塩水(500mL)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた粗物をイソプロピルアルコール/ヘキサン=1/2(300g)にてリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA35-2]を505g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):7.92-7.94(2H, d), 7.03-7.06(2H, d), 5.45(2H, s), 4.37(1H, s), 4.01-4.07(2H, t), 3.69-3.74(2H, t), 3.41-3.52(2H, m), 1.70-1.75(2H, m), 1.32-1.46(6H, m), 1.14-1.20(3H, t).
To a 3 L four-necked flask, compound [MA35-1] (402 g, 1.7 mol), triethylamine (188 g, 1.9 mol) and THF (2000 g) were added, and the reaction solution was cooled to 0 ° C. Chloromethyl ethyl ether (176 g, 1.9 mol) was appropriately added thereto, and then the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (1 L), washed 3 times with saturated brine (500 mL), and the organic layer was dried over sodium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator were performed, and the obtained crude product was repulped with isopropyl alcohol / hexane = 1/2 (300 g), filtered and dried to obtain the compound [MA35-2]. 505 g was obtained (99% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.92-7.94 (2H, d), 7.03-7.06 (2H, d), 5.45 (2H, s), 4.37 (1H, s), 4.01-4.07 ( 2H, t), 3.69-3.74 (2H, t), 3.41-3.52 (2H, m), 1.70-1.75 (2H, m), 1.32-1.46 (6H, m), 1.14-1.20 (3H, t).
 1L四つ口フラスコに、化合物[MA35-2](45.6g、0.15mol)、4-ビニル安息香酸(29.6g、0.20mol)、EDC(50.3g、0.26mol)、DMAP(2.9g、24mmol)、THF(250g)を加え、25℃で撹拌を行った。反応終了後、反応溶液を酢酸エチル(250mL)に注ぎ、飽和食塩水(200mL)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた残渣にピリジニウム p-トルエンスルホン酸(PPTSと表記)(3.9g、16mmol)、エタノール(350g)を加え、65℃で加熱撹拌を行った。反応終了を確認後、反応溶液を氷浴で冷却し、析出した固体をろ過し、アセトニトリルで洗浄した。得られた粗物を酢酸エチル(300g)でリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA35]を24.5g得た(収率43%)。
 1H-NMR(400MHz, DMSO-d6, δppm):12.66(1H, s), 7.86-7.94(4H, m), 7.59-7.61(2H, d), 6.98-7.00(2H, d), 6.78-6.85(1H, m), 5.97-6.01(1H, d), 5.42-5.45(1H, d), 4.26-4.29(2H, m), 4.03-4.06(2H, m), 1.74-1.76(4H, m), 1.48-1.50(4H, m).
In a 1 L four-necked flask, compound [MA35-2] (45.6 g, 0.15 mol), 4-vinylbenzoic acid (29.6 g, 0.20 mol), EDC (50.3 g, 0.26 mol), DMAP (2.9 g, 24 mmol) and THF (250 g) were added, and the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (250 mL), washed 3 times with saturated brine (200 mL), and then the organic layer was dried over sodium sulfate. Thereafter, filtration and evaporation of the solvent with an evaporator were conducted, and pyridinium p-toluenesulfonic acid (indicated as PPTS) (3.9 g, 16 mmol) and ethanol (350 g) were added to the resulting residue, followed by heating and stirring at 65 ° C. It was. After confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and the precipitated solid was filtered and washed with acetonitrile. The obtained crude product was repulped with ethyl acetate (300 g), filtered and dried to obtain 24.5 g of Compound [MA35] (43% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 12.66 (1H, s), 7.86-7.94 (4H, m), 7.59-7.61 (2H, d), 6.98-7.00 (2H, d), 6.78- 6.85 (1H, m), 5.97-6.01 (1H, d), 5.42-5.45 (1H, d), 4.26-4.29 (2H, m), 4.03-4.06 (2H, m), 1.74-1.76 (4H, m ), 1.48-1.50 (4H, m).
<合成例23>
 化合物[MA36]の合成
<Synthesis Example 23>
Synthesis of Compound [MA36]
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 1L四つ口フラスコに、化合物[MA36-1](52.0g、0.24mol)、6-マレイミドヘキサン酸(50.0g、0.24mol)、EDC(67.9g、0.35mol)、DMAP(2.9g、24mmol)、THF(250g)を加え、25℃で撹拌を行った。反応終了後、反応溶液を酢酸エチル(2L)に注ぎ、飽和食塩水(200mL)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた残渣にギ酸(280g)を加え、50℃で加熱撹拌を行った。反応終了を確認後、反応溶液を氷浴で冷却し、その後、反応溶液を蒸留水(1.5L)に注ぎ析出した固体をろ過し、アセトニトリルで洗浄した。得られた粗物を酢酸エチル(90g)でリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA36]を24.5g得た(収率43%)。
 1H-NMR(400MHz, DMSO-d6, δppm):12.43(1H, s), 7.73-7.76(2H, d), 7.57-7.61(1H, d), 7.14-7.17(2H, d), 7.02(2H, s), 6.50-6.54(1H, d), 3.40-3.43(2H, t), 2.56-2.59(2H, t), 1.60-1.68(2H, m), 1.50-1.58(2H, m), 1.27-1.34(2H, m).
<合成例24>
 化合物[MA37]の合成
In a 1 L four-necked flask, compound [MA36-1] (52.0 g, 0.24 mol), 6-maleimidohexanoic acid (50.0 g, 0.24 mol), EDC (67.9 g, 0.35 mol), DMAP (2.9 g, 24 mmol) and THF (250 g) were added, and the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (2 L), washed 3 times with saturated brine (200 mL), and then the organic layer was dried over sodium sulfate. Then, the solvent was distilled off by filtration and an evaporator, formic acid (280 g) was added to the obtained residue, and the mixture was heated and stirred at 50 ° C. After confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and then the reaction solution was poured into distilled water (1.5 L), and the precipitated solid was filtered and washed with acetonitrile. The obtained crude product was repulped with ethyl acetate (90 g), filtered and dried to obtain 24.5 g of Compound [MA36] (43% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 12.43 (1H, s), 7.73-7.76 (2H, d), 7.57-7.61 (1H, d), 7.14-7.17 (2H, d), 7.02 ( 2H, s), 6.50-6.54 (1H, d), 3.40-3.43 (2H, t), 2.56-2.59 (2H, t), 1.60-1.68 (2H, m), 1.50-1.58 (2H, m), 1.27-1.34 (2H, m).
<Synthesis Example 24>
Synthesis of Compound [MA37]
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 1L四つ口フラスコに、化合物[MA37-1](39.5g、0.20mol)、6-マレイミドヘキサン酸(50.0g、0.24mol)、EDC(56.9g、0.30mol)、DMAP(2.4g、20mmol)、THF(500g)を加え、25℃で撹拌を行った。反応終了後、反応溶液を酢酸エチル(2L)に注ぎ、飽和食塩水(200mL)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた残渣にギ酸(200g)を加え、50℃で加熱撹拌を行った。反応終了を確認後、反応溶液を氷浴で冷却し、その後、反応溶液を蒸留水(1L)に注ぎ、析出した固体をろ過した。得られた粗物を酢酸エチル/ヘキサン=2/1溶液(90g)でリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA37]を29.8g得た(収率45%)。
 1H-NMR(400MHz, DMSO-d6, δppm):13.04(1H, s), 7.97-8.00(2H, d), 7.22-7.26(2H, d), 7.02(2H, s), 3.40-3.44(2H, t), 2.58-2.61(2H, t), 1.61-1.68(2H, m), 1.50-1.58(2H, m), 1.27-1.35(2H, m).
<合成例25>
 化合物[MA38]の合成
In a 1 L four-necked flask, compound [MA37-1] (39.5 g, 0.20 mol), 6-maleimidohexanoic acid (50.0 g, 0.24 mol), EDC (56.9 g, 0.30 mol), DMAP (2.4 g, 20 mmol) and THF (500 g) were added, and the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (2 L), washed 3 times with saturated brine (200 mL), and then the organic layer was dried over sodium sulfate. Then, the solvent was distilled off by filtration and an evaporator, formic acid (200 g) was added to the obtained residue, and the mixture was heated and stirred at 50 ° C. After confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and then the reaction solution was poured into distilled water (1 L), and the precipitated solid was filtered. The obtained crude product was repulp washed with an ethyl acetate / hexane = 2/1 solution (90 g), filtered and dried to obtain 29.8 g of Compound [MA37] (yield 45%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 13.04 (1H, s), 7.97-8.00 (2H, d), 7.22-7.26 (2H, d), 7.02 (2H, s), 3.40-3.44 ( 2H, t), 2.58-2.61 (2H, t), 1.61-1.68 (2H, m), 1.50-1.58 (2H, m), 1.27-1.35 (2H, m).
<Synthesis Example 25>
Synthesis of Compound [MA38]
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 1L四つ口フラスコに、化合物[MA38-1](20.0g、0.06mol)、イタコン酸モノメチル(13.4g、0.09mol)、EDC(23.8g、0.12mol)、DMAP(0.8g、6.0mmol)、CHCl(200g)を加え、25℃で撹拌を行った。反応終了後、反応溶液を酢酸エチル(500mL)に注ぎ、飽和食塩水(200mL)で3回洗浄した後、有機層を硫酸ナトリウムで乾燥した。その後、ろ過、エバポレーターにて溶媒留去し、得られた残渣にギ酸(150g)を加え、50℃で加熱撹拌を行った。反応終了を確認後、反応溶液を氷浴で冷却し、その後、反応溶液を蒸留水(700ml)に注ぎ、析出した固体をろ過し、アセトニトリルで洗浄した。得られた粗物を酢酸エチル(100g)でリパルプ洗浄し、ろ過、乾燥を行うことで、化合物[MA38]を10.7g得た(収率44%)。
 1H-NMR(400MHz, DMSO-d6, δppm):12.21(1H, s), 7.61-7.63(2H, d), 7.51-7.55(1H, d), 6.94-6.97(2H, d), 6.35-6.39(1H, d), 6.20(1H, s), 5.82(1H, s), 4.08-4.11(2H, t), 3.99-4.02(2H, t), 3.59(3H, s), 3.37(2H, s), 1.70-1.74(2H, m), 1.59-1.63(2H, m), 1.37-1.44(4H, m).
<合成例26>
 化合物[MA39]の合成
In a 1 L four-necked flask, compound [MA38-1] (20.0 g, 0.06 mol), monomethyl itaconate (13.4 g, 0.09 mol), EDC (23.8 g, 0.12 mol), DMAP (0 0.8 g, 6.0 mmol) and CH 2 Cl 2 (200 g) were added, and the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into ethyl acetate (500 mL), washed 3 times with saturated brine (200 mL), and then the organic layer was dried over sodium sulfate. Then, the solvent was distilled off by filtration and an evaporator, formic acid (150 g) was added to the obtained residue, and the mixture was heated and stirred at 50 ° C. After confirming the completion of the reaction, the reaction solution was cooled in an ice bath, and then the reaction solution was poured into distilled water (700 ml), and the precipitated solid was filtered and washed with acetonitrile. The obtained crude product was repulped with ethyl acetate (100 g), filtered and dried to obtain 10.7 g of Compound [MA38] (44% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 12.21 (1H, s), 7.61-7.63 (2H, d), 7.51-7.55 (1H, d), 6.94-6.97 (2H, d), 6.35- 6.39 (1H, d), 6.20 (1H, s), 5.82 (1H, s), 4.08-4.11 (2H, t), 3.99-4.02 (2H, t), 3.59 (3H, s), 3.37 (2H, s), 1.70-1.74 (2H, m), 1.59-1.63 (2H, m), 1.37-1.44 (4H, m).
<Synthesis Example 26>
Synthesis of Compound [MA39]
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 2L四つ口フラスコに、化合物[MA2](75.6g、0.25mol)、ウンベリフェロン(40.0g、0.09mol)、EDC(70.93g、0.25mol)、DMAP(3.0g、25mmol)、THF(750g)を加え、25℃で撹拌を行った。反応終了後、反応溶液を蒸留水(3L)に注ぎ、析出した固体をろ過し、イソプロピルアルコールで洗浄、および乾燥を行うことで、化合物[MA39]を91.9g得た(収率83%)。
 1H-NMR(400MHz, DMSO-d6, δppm):8.08-8.12(3H, m), 7.81-7.83(1H, d), 7.45(1H, s), 7.30-7.32(1H, d), 7.12-7.14(2H, d), 6.49-6.52(1H, d), 6.02(1H, s), 5.67(1H, s), 4.09-4.13(4H, m), 1.88(3H, s), 1.75-1.79(3H, m), 1.64-1.67(2H, m), 1.41-1.47(4H, m).
<合成例27>
 化合物[MA42]の合成
In a 2 L four-necked flask, compound [MA2] (75.6 g, 0.25 mol), umbelliferone (40.0 g, 0.09 mol), EDC (70.93 g, 0.25 mol), DMAP (3.0 g) 25 mmol) and THF (750 g) were added, and the mixture was stirred at 25 ° C. After completion of the reaction, the reaction solution was poured into distilled water (3 L), the precipitated solid was filtered, washed with isopropyl alcohol, and dried to obtain 91.9 g of compound [MA39] (yield 83%). .
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.08-8.12 (3H, m), 7.81-7.83 (1H, d), 7.45 (1H, s), 7.30-7.32 (1H, d), 7.12- 7.14 (2H, d), 6.49-6.52 (1H, d), 6.02 (1H, s), 5.67 (1H, s), 4.09-4.13 (4H, m), 1.88 (3H, s), 1.75-1.79 ( 3H, m), 1.64-1.67 (2H, m), 1.41-1.47 (4H, m).
<Synthesis Example 27>
Synthesis of Compound [MA42]
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
 冷却管付き100mlナスフラスコに、メチル4-ヒドロキシシナメート3.6g(20.0mmol)、2-(4-ブロモ-1-ブチル)-1,3-ジオキソラン4.2g(20.0mmol)、炭酸カリウム5.5g(40mmol)、およびアセトン50mlを加えて混合物とし、温度64℃で24時間攪拌しながら反応させた。反応終了後、反応液を純水500mlに注ぎ、白色の固体6.0gを得た。この固体をNMRで測定した結果を以下に示す。この結果から、この白色固体が、中間体化合物[MA42-1]であることが確認された(収率98%)。
 1H NMR (CDCl3) δ: 1.62 (m, 2H), 1.76 (m, 2H), 1.87 (m, 2H),3.79(s,3H),3.85 (m, 2H), 4.00 (m, 4H), 4.90 (m, 1H), 6.29 (d, 1H), 6.90 (d, 2H), 7.45 (d, 2H), 7.64 (d, 1H).
In a 100 ml eggplant flask equipped with a condenser tube, 3.6 g (20.0 mmol) of methyl 4-hydroxycinnamate, 4.2 g (20.0 mmol) of 2- (4-bromo-1-butyl) -1,3-dioxolane, carbonic acid Potassium 5.5 g (40 mmol) and acetone 50 ml were added to form a mixture, which was reacted at a temperature of 64 ° C. with stirring for 24 hours. After completion of the reaction, the reaction solution was poured into 500 ml of pure water to obtain 6.0 g of a white solid. The result of having measured this solid by NMR is shown below. From this result, it was confirmed that this white solid was an intermediate compound [MA42-1] (yield 98%).
1 H NMR (CDCl3) δ: 1.62 (m, 2H), 1.76 (m, 2H), 1.87 (m, 2H), 3.79 (s, 3H), 3.85 (m, 2H), 4.00 (m, 4H), 4.90 (m, 1H), 6.29 (d, 1H), 6.90 (d, 2H), 7.45 (d, 2H), 7.64 (d, 1H).
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 次に、冷却管付き200mlナスフラスコに、上記で得られた中間体化合物[MA42-1]6.0g(20mmol)、2-(ブロモメチル)アクリル酸3.3g(20mmol)、THF55.0ml、塩化スズ(II)4.3g(23mmol)、および10質量%HCl水溶液17.0mlを加えて混合物とし、温度70℃で20時間攪拌して反応させた。反応終了後、反応液を減圧ろ過して純水40mlと混合し、そこにクロロホルム50mlを加えて抽出した。抽出は3回行った。
 抽出後の有機層に、無水硫酸マグネシウムを加えて乾燥し、減圧濾過した後の溶液から溶媒を留去し、粘稠性液体4.3gを得た。この粘稠性液体をNMRで測定した結果を以下に示す。この結果から、この粘稠性液体が、中間体化合物[MA42-2]であることが確認された(収率65%)。
 1H NMR (CDCl3) δ: 1.5-1.9 (m, 6H), 2.63 (m, 1H), 3.07 (s, 1H), 3.80 (s, 3H), 4.03 (t, 2H), 4.58 (m, 1H), 5.64 (m, 1H), 6.23 (m, 1H), 6.30 (d, 1H), 6.90 (d, 2H), 7.45 (d, 2H), 7.64 (d, 1H).
Next, 6.0 g (20 mmol) of the intermediate compound [MA42-1] obtained above, 3.3 g (20 mmol) of 2- (bromomethyl) acrylic acid, 55.0 ml of THF, Tin (II) 4.3 g (23 mmol) and 10 mass% HCl aqueous solution 17.0 ml were added to form a mixture, and the mixture was stirred at a temperature of 70 ° C. for 20 hours to be reacted. After completion of the reaction, the reaction solution was filtered under reduced pressure, mixed with 40 ml of pure water, and extracted with 50 ml of chloroform. Extraction was performed three times.
To the organic layer after extraction, anhydrous magnesium sulfate was added and dried, and the solvent was distilled off from the solution after filtration under reduced pressure to obtain 4.3 g of a viscous liquid. The result of having measured this viscous liquid by NMR is shown below. From this result, it was confirmed that this viscous liquid was an intermediate compound [MA42-2] (yield 65%).
1 H NMR (CDCl3) δ: 1.5-1.9 (m, 6H), 2.63 (m, 1H), 3.07 (s, 1H), 3.80 (s, 3H), 4.03 (t, 2H), 4.58 (m, 1H ), 5.64 (m, 1H), 6.23 (m, 1H), 6.30 (d, 1H), 6.90 (d, 2H), 7.45 (d, 2H), 7.64 (d, 1H).
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 冷却管付き200mlナスフラスコに、エタノール60ml、上記で得られた化合物[MA42-2]4.3g(13mmol)、および10%水酸化ナトリウム水溶液15mlを加えて混合物とし、温度85℃で5時間攪拌しながら反応させた。反応終了後、500mlのビーカーに水300mlと反応液を加えて、30分間室温で攪拌した後、10質量%HCl水溶液15mlを滴下した後、ろ過して白色固体を得た。
 次に、冷却管付き50mlナスフラスコに、得られた白色固体、10質量%HCl水溶液15ml、およびテトラヒドロフラン60.0mlを加えて混合物とし、温度70℃で5時間攪拌して反応させた。反応終了後、反応液を純水500mlに注ぎ、白色の固体を得た。この白色固体を再結晶(ヘキサン/テトラヒドロフラン=2/1)で精製した後、白色固体3.0gを得た。この固体をNMRで測定した結果を以下に示す。この結果から、この白色固体が、目的の重合性液晶化合物[MA42]であることが確認された(収率73%)。
 1H NMR (DMSO-d6) δ: 1.45 (m, 2H), 1.53 (m, 2H), 1.74 (m, 2H), 2.62 (m, 1H), 3.12 (m, 1H), 4.04 (m, 2H), 4.60 (m, 1H), 5.70 (s, 1H), 6.03 (s, 1H), 6.97 (d, 2H), 7.52 (d, 1H), 7.63 (d, 2H), 12.22 (s, 1H).
<合成例28>
 化合物[MA46]の合成
To a 200 ml eggplant flask equipped with a condenser tube, 60 ml of ethanol, 4.3 g (13 mmol) of the compound [MA42-2] obtained above, and 15 ml of 10% aqueous sodium hydroxide solution were added to form a mixture and stirred at a temperature of 85 ° C. for 5 hours. While reacting. After completion of the reaction, 300 ml of water and the reaction solution were added to a 500 ml beaker and stirred for 30 minutes at room temperature. Then, 15 ml of a 10% by mass aqueous HCl solution was added dropwise, followed by filtration to obtain a white solid.
Next, the resulting white solid, 15 ml of a 10% by mass HCl aqueous solution, and 60.0 ml of tetrahydrofuran were added to a 50 ml eggplant flask equipped with a cooling tube to form a mixture, and the mixture was stirred at a temperature of 70 ° C. for 5 hours for reaction. After completion of the reaction, the reaction solution was poured into 500 ml of pure water to obtain a white solid. The white solid was purified by recrystallization (hexane / tetrahydrofuran = 2/1) to obtain 3.0 g of a white solid. The result of having measured this solid by NMR is shown below. From this result, it was confirmed that this white solid was the target polymerizable liquid crystal compound [MA42] (yield 73%).
1H NMR (DMSO-d6) δ: 1.45 (m, 2H), 1.53 (m, 2H), 1.74 (m, 2H), 2.62 (m, 1H), 3.12 (m, 1H), 4.04 (m, 2H) , 4.60 (m, 1H), 5.70 (s, 1H), 6.03 (s, 1H), 6.97 (d, 2H), 7.52 (d, 1H), 7.63 (d, 2H), 12.22 (s, 1H).
<Synthesis Example 28>
Synthesis of Compound [MA46]
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
 6-クロロヘキサノール(544g,4000mmol)とPPTS(1.01g,4mmol)のジクロロメタン(1632g)溶液に、ジヒドロピラン(403g,480mmol)を3時間かけて滴下し、室温で18時間攪拌した。この溶液に純水(1500g)を加え、3回有機相を洗浄した後、硫酸マグネシウムで乾燥させた。ろ過により硫酸マグネシウムを除去した後、濃縮を行い、無色オイルとして[MA46-1]を得た(収量:870g,収率:98.5%)。
 1H-NMR(400MHz, CDCl3, δppm):4.59-4.56(1H, m), 3.89-3.84(1H, m), 3.78-3.71(1H, m), 3.56-3.47(3H, m), 3.42-3.36(1H, m), 1.88-1.35(14H, m).
Dihydropyran (403 g, 480 mmol) was added dropwise over 3 hours to a solution of 6-chlorohexanol (544 g, 4000 mmol) and PPTS (1.01 g, 4 mmol) in dichloromethane (1632 g), and the mixture was stirred at room temperature for 18 hours. Pure water (1500 g) was added to this solution, and the organic phase was washed three times and then dried over magnesium sulfate. After removing magnesium sulfate by filtration, concentration was performed to obtain [MA46-1] as a colorless oil (yield: 870 g, yield: 98.5%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 4.59-4.56 (1H, m), 3.89-3.84 (1H, m), 3.78-3.71 (1H, m), 3.56-3.47 (3H, m), 3.42- 3.36 (1H, m), 1.88-1.35 (14H, m).
 4-トランス-4-ヒドロキシシクロヘキシルフェノール(96.1g,500mol)、MAX-1(121g,550mmol)、炭酸カリウム(89.8g,650mmol)とヨウ化カリウム(8.33g,50mmol)を加えたDMF(ジメチルホルムアミド)溶液(288g)を、80℃にて18時間攪拌した。その後、ろ過により炭酸カリウムを除去し、酢酸エチル(1400g)で希釈した後、純水(840g)を用い3回有機相を洗浄し、硫酸マグネシウムで乾燥させた。ろ過により硫酸マグネシウムを除去した後、濃縮することで粗物[MA46-2]を得た(粗収量:232g、粗収率:123%)。得られた粗物[MA46-2]は精製せずに、次の反応に用いた。
 1H-NMR(400MHz, CDCl3, δppm):7.10(2H, d), 6.82(2H, m), 4.59-4.56(1H, m), 3.93-3.84(3H, m), 3.78-3.62(2H, m), 3.56-3.49(1H, m), 3.41-3.38(1H, m), 2.48-2.41(1H, m), 2.10-2.04(1H, m), 1.92-1.29(20H, m).
DMF to which 4-trans-4-hydroxycyclohexylphenol (96.1 g, 500 mol), MAX-1 (121 g, 550 mmol), potassium carbonate (89.8 g, 650 mmol) and potassium iodide (8.33 g, 50 mmol) were added (Dimethylformamide) solution (288 g) was stirred at 80 ° C. for 18 hours. Then, after removing potassium carbonate by filtration and diluting with ethyl acetate (1400 g), the organic phase was washed three times with pure water (840 g) and dried over magnesium sulfate. Magnesium sulfate was removed by filtration and then concentrated to obtain a crude product [MA46-2] (crude yield: 232 g, crude yield: 123%). The obtained crude product [MA46-2] was used in the next reaction without purification.
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.10 (2H, d), 6.82 (2H, m), 4.59-4.56 (1H, m), 3.93-3.84 (3H, m), 3.78-3.62 (2H, m), 3.56-3.49 (1H, m), 3.41-3.38 (1H, m), 2.48-2.41 (1H, m), 2.10-2.04 (1H, m), 1.92-1.29 (20H, m).
 [MA46-2](116g、250mmol)、4-メトキシ桂皮酸(49.0g、275mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド(57.5g、300mmol)、4-ジメチルアミノピリジン(36.7g、30mmol)、THF(575g)を加え、室温で24時間反応させた。反応液に析出している粘性物質をろ過により除去し、酢酸エチル(2000g)で希釈した後、水(1000g)で3回洗浄し、硫酸マグネシウムで乾燥した。ろ過により硫酸マグネシウムを除去した後、濃縮して得られた残渣に、PPTS(12.6g,50mmol)、エタノール(862g)を加え、70℃で18時間攪拌した。得られた反応液を水(4000g)に注ぎ、2時間攪拌した。析出してきた固体をろ過により回収した後、2-プロパノールを用い、再結晶を行うことで[MA46-3]を得た(収量:93.3g、収率:82.4%)。
 1H-NMR(400MHz, DMSO, δppm):7.59(2H, d), 7.61(1H, d), 7.15(2H, d), 6.97(2H, d), 6.83(2H, d), 6.49(1H, d), 4.84-4.78(1H, m), 4.34(1H, t), 3.91(2H, t), 3.80(3H, s), 3.41-3.36(2H, m), 2.07-2.04(2H, m), 1.84-1.81(2H, m), 1.81-1.30(13H, m).
[MA46-2] (116 g, 250 mmol), 4-methoxycinnamic acid (49.0 g, 275 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide (57.5 g, 300 mmol), 4-dimethylamino Pyridine (36.7 g, 30 mmol) and THF (575 g) were added and reacted at room temperature for 24 hours. The viscous substance precipitated in the reaction solution was removed by filtration, diluted with ethyl acetate (2000 g), washed 3 times with water (1000 g), and dried over magnesium sulfate. After removing magnesium sulfate by filtration, PPTS (12.6 g, 50 mmol) and ethanol (862 g) were added to the residue obtained by concentration, and the mixture was stirred at 70 ° C. for 18 hours. The obtained reaction solution was poured into water (4000 g) and stirred for 2 hours. The precipitated solid was collected by filtration and then recrystallized using 2-propanol to obtain [MA46-3] (yield: 93.3 g, yield: 82.4%).
1 H-NMR (400 MHz, DMSO, δ ppm): 7.59 (2H, d), 7.61 (1H, d), 7.15 (2H, d), 6.97 (2H, d), 6.83 (2H, d), 6.49 (1H , d), 4.84-4.78 (1H, m), 4.34 (1H, t), 3.91 (2H, t), 3.80 (3H, s), 3.41-3.36 (2H, m), 2.07-2.04 (2H, m ), 1.84-1.81 (2H, m), 1.81-1.30 (13H, m).
 [MA46-3](81.5g、180mmol)、トリエチルアミン(23.7g、234mol)のTHF(407g)溶液に、メタクリロイルクロリド(20.5g、196mmol)を1時間かけ滴下し、その後18時間室温で攪拌した。得られた反応液を酢酸エチル(2500g)で希釈し、水(1500g)で3回洗浄し、硫酸マグネシウムで乾燥した。ろ過により硫酸マグネシウムを除去した後、濃縮して得られた粗物をTHF(1000g)で再溶解させ、活性炭(8.15g)を加え室温で2時間攪拌した。その後ろ過により活性炭を除去し、濃縮した後、2-プロパノール(400g)で洗浄し、目的化合物[MA46]を得た(収量:52.0g、収率:55.5%)。
 1H-NMR(400MHz, CDCl3, δppm):7.65(1H, d), 7.49(2H, d), 7.12(2H, d), 6.91(2H, d), 6.83(2H, d), 6.32(1H, d), 6.01(1H, s), 5.55(1H, s), 4.93-4.88(m, 1H), 4.15(2H, t), 3.94(2H, t), 3.85(3H, s), 2.51-2.47(1H, m), 2.18-2.15(2H, m), 1.97-1.91(5H, m), 1.83-1.42(12H, m).
To a solution of [MA46-3] (81.5 g, 180 mmol) and triethylamine (23.7 g, 234 mol) in THF (407 g), methacryloyl chloride (20.5 g, 196 mmol) was added dropwise over 1 hour, and then at room temperature for 18 hours. Stir. The resulting reaction solution was diluted with ethyl acetate (2500 g), washed 3 times with water (1500 g), and dried over magnesium sulfate. After removing magnesium sulfate by filtration, the crude product obtained by concentration was redissolved in THF (1000 g), activated carbon (8.15 g) was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, the activated carbon was removed by filtration, concentrated, and washed with 2-propanol (400 g) to obtain the target compound [MA46] (yield: 52.0 g, yield: 55.5%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.65 (1H, d), 7.49 (2H, d), 7.12 (2H, d), 6.91 (2H, d), 6.83 (2H, d), 6.32 (1H , d), 6.01 (1H, s), 5.55 (1H, s), 4.93-4.88 (m, 1H), 4.15 (2H, t), 3.94 (2H, t), 3.85 (3H, s), 2.51- 2.47 (1H, m), 2.18-2.15 (2H, m), 1.97-1.91 (5H, m), 1.83-1.42 (12H, m).
(有機溶媒)
THF:テトラヒドロフラン
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
CHCl:ジクロロメタン
(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
(Organic solvent)
THF: Tetrahydrofuran NMP: N-methyl-2-pyrrolidone BC: Butyl cellosolve CH 2 Cl 2 : Dichloromethane (polymerization initiator)
AIBN: 2,2'-azobisisobutyronitrile
[相転移温度の測定]
 実施例により得られたポリマーの液晶性発現温度は示差走査熱量測定(DSC)DSC3100SR(マック・サイエンス社製)を用いて測定した。
[Measurement of phase transition temperature]
The liquid crystallinity expression temperature of the polymer obtained in the examples was measured using differential scanning calorimetry (DSC) DSC3100SR (manufactured by Mac Science).
<実施例1>
 MA1(9.97g、30.0mmol)をTHF(92.0g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.246g、1.5mmol)を加え再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(A)を得た。このポリマーの数平均分子量は16000、重量平均分子量は32000であった。
 得られたメタクリレートポリマーの液晶性発現温度は145℃~190℃であった。
 得られたメタクリレートポリマー粉末(A)(6.0g)にNMP(29.3g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(24.7g)、BC(40.0g)を加え攪拌することにより液晶配向剤(A1)を得た。
<Example 1>
MA1 (9.97 g, 30.0 mmol) was dissolved in THF (92.0 g) and degassed with a diaphragm pump, and then AIBN (0.246 g, 1.5 mmol) was added and degassed again. . Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (A). The number average molecular weight of this polymer was 16000, and the weight average molecular weight was 32000.
The liquid crystallinity expression temperature of the obtained methacrylate polymer was 145 ° C. to 190 ° C.
NMP (29.3 g) was added to the obtained methacrylate polymer powder (A) (6.0 g), and the mixture was dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (A1).
[液晶セルの作製]
 上記で得られた液晶配向剤(A1)を用いて下記に示すような手順で液晶セルの作製を行った。
 基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。
 画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は10μmであり、電極要素間の間隔は20μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。
 そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-15°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 上記で得られた液晶配向剤(A1)を、準備された上記電極付き基板にスピンコートした。次いで、70℃のホットプレートで90秒間乾燥し、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を5mJ/cm照射した後に150℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。
[Production of liquid crystal cell]
Using the liquid crystal aligning agent (A1) obtained above, a liquid crystal cell was prepared according to the procedure shown below.
The substrate used was a glass substrate having a size of 30 mm × 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
The pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 10 μm, and the distance between the electrode elements is 20 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the alignment processing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 15 ° (clockwise) in the first region of the pixel, and in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of −15 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
The liquid crystal aligning agent (A1) obtained above was spin-coated on the prepared substrate with electrodes. Subsequently, it dried for 90 second with a 70 degreeC hotplate, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the coating film surface was irradiated with 5 mJ / cm 2 of 313 nm ultraviolet rays via a polarizing plate and then heated on a hot plate at 150 ° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
 また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を熱硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セルを得た。 Further, a coating film was similarly formed on a glass substrate having a columnar spacer with a height of 4 μm on which no electrode was formed as a counter substrate, and an orientation treatment was performed. A sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was thermally cured to produce an empty cell. A liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element is injected into this empty cell by a vacuum injection method by injecting liquid crystal MLC-2041 (manufactured by Merck), sealing the injection port. Obtained.
(残像評価)
 実施例1で用意したIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を初期配向方位角として算出した。次いで、60℃のオーブン中で、周波数30Hzで16VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差を角度Δ(deg.)として算出した。
(Afterimage evaluation)
The IPS mode liquid crystal cell prepared in Example 1 is installed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the backlight is turned on in the state where no voltage is applied. The arrangement angle of the liquid crystal cell was adjusted so as to be the smallest. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial orientation azimuth. Next, an alternating voltage of 16 V PP was applied in a 60 ° C. oven at a frequency of 30 Hz for 168 hours. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour. After standing, the orientation azimuth was measured in the same manner, and the difference in orientation azimuth before and after AC driving was calculated as an angle Δ (deg.).
<実施例2>
 MA1(4.99g、15.0mmol)、MA2(4.60g、15.0mmol)をTHF(88.5g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.246g、1.5mmol)を加え再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(B)を得た。このポリマーの数平均分子量は14000、重量平均分子量は29000であった。
<Example 2>
MA1 (4.99 g, 15.0 mmol) and MA2 (4.60 g, 15.0 mmol) were dissolved in THF (88.5 g), deaerated with a diaphragm pump, and then AIBN (0.246 g, 15.0 mmol). .5 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain a methacrylate polymer powder (B). The number average molecular weight of this polymer was 14,000, and the weight average molecular weight was 29000.
 得られたメタクリレートポリマーの液晶性発現温度は135℃~180℃であった。
 得られたメタクリレートポリマー粉末(B)(6.0g)にNMP(29.29g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(24.7g)、BC(450.0g)を加え攪拌することにより液晶配向剤(B1)を得た。
 液晶配向剤(B1)についても、紫外線の照射量を20mJとし、ホットプレートでの加熱の温度を140℃とした以外は、実施例1と同様の手順で液晶セルを作製後、残像評価を行った。
The obtained methacrylate polymer had a liquid crystallinity expression temperature of 135 ° C. to 180 ° C.
NMP (29.29 g) was added to the obtained methacrylate polymer powder (B) (6.0 g), and the mixture was dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (450.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (B1).
For the liquid crystal alignment agent (B1), afterimage evaluation was performed after producing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 20 mJ and the heating temperature on the hot plate was 140 ° C. It was.
<実施例3>
 MA3(10.29g、20.0mmol)をNMP(94.1g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.164g、1.0mmol)を加え再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(C)を得た。このポリマーの数平均分子量は19000、重量平均分子量は39000であった。
<Example 3>
MA3 (10.29 g, 20.0 mmol) was dissolved in NMP (94.1 g), deaerated with a diaphragm pump, and then AIBN (0.164 g, 1.0 mmol) was added to deaerate again. . Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (C). The number average molecular weight of this polymer was 19000, and the weight average molecular weight was 39000.
 得られたメタクリレートポリマーの液晶性発現温度は150℃~300℃であった。
 得られたメタクリレートポリマー粉末(C)(1.0g)にCHCl(99.0g)を加え、室温で5時間攪拌して溶解させ液晶配向剤(C1)を得た。
 液晶配向剤(C1)についても、紫外線の照射量を300mJとし、ホットプレートでの加熱の温度を180℃とした以外は、実施例1と同様の手順で液晶セルを作製後、残像評価を行った。
The liquid crystallinity expression temperature of the obtained methacrylate polymer was 150 ° C. to 300 ° C.
CH 2 Cl 2 (99.0 g) was added to the obtained methacrylate polymer powder (C) (1.0 g) and dissolved by stirring at room temperature for 5 hours to obtain a liquid crystal aligning agent (C1).
Regarding the liquid crystal aligning agent (C1), afterimage evaluation was performed after producing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 300 mJ and the heating temperature on the hot plate was 180 ° C. It was.
<実施例4>
 MA4(8.16g、20.0mmol)をNMP(75.0g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.164g、1.0mmol)を加え再び脱気を行った。この後70℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(D)を得た。このポリマーの数平均分子量は18000、重量平均分子量は29000であった。
<Example 4>
After MA4 (8.16 g, 20.0 mmol) was dissolved in NMP (75.0 g) and deaerated with a diaphragm pump, AIBN (0.164 g, 1.0 mmol) was added and deaerated again. . Thereafter, the mixture was reacted at 70 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (D). The number average molecular weight of this polymer was 18000, and the weight average molecular weight was 29000.
 得られたメタクリレートポリマーの液晶性発現温度は225℃~290℃であった。
 得られたメタクリレートポリマー粉末(D)(6.0g)にNMP(29.29g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(24.7g)、BC(40.0g)を加え攪拌することにより液晶配向剤(D1)を得た。
 液晶配向剤(D1)についても、紫外線の照射量を30mJとし、ホットプレートでの加熱の温度を240℃とした以外は、実施例1と同様の手順で液晶セルを作製後、残像評価を行った。
The liquid crystallinity expression temperature of the obtained methacrylate polymer was 225 ° C. to 290 ° C.
NMP (29.29 g) was added to the resulting methacrylate polymer powder (D) (6.0 g), and dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (D1).
Regarding the liquid crystal aligning agent (D1), afterimage preparation was performed after producing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 30 mJ and the heating temperature on the hot plate was 240 ° C. It was.
<比較例1>
 MA5(8.66g、25.0mmol)をNMP(79.8g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.205g、1.3mmol)を加え再び脱気を行った。この後70℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をメタノール(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をメタノールで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(E)を得た。このポリマーの数平均分子量は16000、重量平均分子量は31000であった。
<Comparative Example 1>
MA5 (8.66 g, 25.0 mmol) was dissolved in NMP (79.8 g), deaerated with a diaphragm pump, and then AIBN (0.205 g, 1.3 mmol) was added to deaerate again. . Thereafter, the mixture was reacted at 70 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to methanol (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with methanol and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (E). The number average molecular weight of this polymer was 16000, and the weight average molecular weight was 31,000.
 得られたメタクリレートポリマーは30℃~300℃までの温度範囲で液晶性を示さなかった。
 得られたメタクリレートポリマー粉末(E)(6.0g)にNMP(29.29g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(24.7g)、BC(40.0g)を加え攪拌することにより液晶配向剤(E1)を得た。
 液晶配向剤(E1)についても、紫外線の照射量を500mJとし、照射後のホットプレートでの加熱の温度を150℃とした以外は、実施例1と同様の手順で液晶セルを作製後、残像評価を行った。
The obtained methacrylate polymer did not exhibit liquid crystallinity in the temperature range from 30 ° C to 300 ° C.
NMP (29.29 g) was added to the resulting methacrylate polymer powder (E) (6.0 g) and dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (E1).
For the liquid crystal aligning agent (E1), afterimage was produced after preparing a liquid crystal cell in the same procedure as in Example 1 except that the irradiation amount of ultraviolet rays was 500 mJ and the heating temperature on the hot plate after irradiation was 150 ° C. Evaluation was performed.
<比較例2~4>
 液晶配向剤(A1)を用いて、紫外線照射量を5mJ/cm、50mJ/cmまたは500mJ/cmとしたことと、照射した後にホットプレートでの加熱を行わなかったこと以外は実施例1と同様に液晶セルを作成した。
<Comparative Examples 2 to 4>
Except that using the liquid crystal aligning agent (A1), the ultraviolet irradiation amount was 5 mJ / cm 2 , 50 mJ / cm 2 or 500 mJ / cm 2, and heating was not performed on the hot plate after irradiation. A liquid crystal cell was prepared in the same manner as in 1.
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
 表1に示すように、実施例1~4においては、いずれも良好な配向性を示し、交流駆動前後の配向方位角の差である角度Δ(deg.)も0.1以下ときわめて良好であった。一方比較例1においては、液晶性が発現せず、再配向しなかった結果、角度Δ(deg.)が1.4度と高いものであった。また、光照射後の再加熱を行わなかった比較例2~4においては、液晶が配向せず、角度Δ(deg.)が測定できなかった。 As shown in Table 1, each of Examples 1 to 4 showed good orientation, and the angle Δ (deg.), Which is the difference in orientation azimuth before and after AC driving, was very good at 0.1 or less. there were. On the other hand, in Comparative Example 1, the liquid crystallinity was not exhibited and the re-orientation was not performed. As a result, the angle Δ (deg.) Was as high as 1.4 degrees. In Comparative Examples 2 to 4 where reheating after light irradiation was not performed, the liquid crystal was not aligned and the angle Δ (deg.) Could not be measured.
<実施例5>
 MA1(1.99g、6.0mmol)、MA2(7.35g、24.0mmol)をTHF(85.5g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(1.48g、3.0mmol)を加え再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末を得た。
<Example 5>
MA1 (1.99 g, 6.0 mmol) and MA2 (7.35 g, 24.0 mmol) were dissolved in THF (85.5 g), deaerated with a diaphragm pump, and then AIBN (1.48 g, 3 mmol). .0 mmol) was added and deaeration was performed again. Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain a methacrylate polymer powder.
 得られたメタクリレートポリマーの液晶性発現温度は140℃~182℃であった。
 得られたメタクリレートポリマー粉末(6.0g)にNMP(29.3g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(24.7g)、BC(40.0g)を加え攪拌することにより液晶配向剤(T1)を得た。
The liquid crystallinity expression temperature of the obtained methacrylate polymer was 140 ° C. to 182 ° C.
NMP (29.3 g) was added to the resulting methacrylate polymer powder (6.0 g) and dissolved by stirring at room temperature for 5 hours. NMP (24.7 g) and BC (40.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (T1).
[液晶セルの作製]
 実施例1の液晶配向剤(A1)の代わりに、実施例5で得られた液晶配向剤(T1)を用いた以外、実施例1での[液晶セルの作製]と同様な方法により、液晶セルを得た。
(残像評価)
 実施例5で用意したIPSモード用液晶セルを用いた以外、実施例1の(残像評価)と同様な方法により、角度Δ(deg.)を算出した。
[Production of liquid crystal cell]
In the same manner as in [Production of liquid crystal cell] in Example 1, except that the liquid crystal aligning agent (T1) obtained in Example 5 was used instead of the liquid crystal aligning agent (A1) in Example 1, liquid crystal was obtained. I got a cell.
(Afterimage evaluation)
The angle Δ (deg.) Was calculated in the same manner as in (Afterimage evaluation) in Example 1 except that the IPS mode liquid crystal cell prepared in Example 5 was used.
<実施例6~51>
 表2に示す組成で、上記実施例5と同様の方法を用いて実施例6~51の液晶配向剤(T2~T48)を合成した。得られた液晶配向剤(T2~T30及びT42~48)について紫外線の照射量と、ホットプレートでの加熱の温度以外は実施例5と同様の手順で液晶セルを作製した。各液晶セルの作製条件と残像評価結果を表3に示す。
<Examples 6 to 51>
Liquid crystal aligning agents (T2 to T48) of Examples 6 to 51 were synthesized with the compositions shown in Table 2 using the same method as in Example 5. A liquid crystal cell was produced in the same procedure as in Example 5 except that the obtained liquid crystal aligning agents (T2 to T30 and T42 to 48) were irradiated with ultraviolet rays and heated on a hot plate. Table 3 shows the production conditions and afterimage evaluation results of each liquid crystal cell.
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
 表1及び表3に示すように、液晶性を発現する側鎖型高分子膜に紫外線を照射後、液晶性発現温度範囲で加熱することで、自己組織化によって高分子全体で高効率に液晶配向能が付与されているため、長期のAC駆動後も配向方位のズレはほとんど観測されなかった。
 一方、比較例にあるように、液晶性を発現しない側鎖型高分子を使用した場合では、長期のAC駆動によって配向方位がズレてしまうことがわかった。これは、膜中の光反応を起した部分だけで液晶が配向しており、高分子と液晶との相互作用が弱いためであると考えられる。
 このように本発明の方法によって製造された液晶表示素子は非常に優れた残像特性を示すことが確認された。
As shown in Tables 1 and 3, the side chain polymer film that exhibits liquid crystallinity is irradiated with ultraviolet light, and then heated in the liquid crystallinity expression temperature range, whereby the liquid crystal is highly efficient throughout the polymer by self-organization. Since alignment ability was imparted, almost no deviation in alignment orientation was observed even after long-term AC driving.
On the other hand, as shown in the comparative example, it was found that in the case of using a side chain polymer that does not exhibit liquid crystallinity, the orientation orientation is shifted due to long-term AC driving. This is presumably because the liquid crystal is oriented only in the part where photoreaction occurs in the film, and the interaction between the polymer and the liquid crystal is weak.
Thus, it was confirmed that the liquid crystal display device manufactured by the method of the present invention exhibits very excellent afterimage characteristics.
 図1
 1  側鎖型高分子膜
 2、2a  側鎖
 図2
 3  側鎖型高分子膜
 4、4a  側鎖
 図3
 5  側鎖型高分子膜
 6、6a  側鎖
 図4
 7  側鎖型高分子膜
 8、8a  側鎖
FIG.
1 Side chain polymer membrane 2, 2a Side chain Fig. 2
3 Side chain polymer membrane 4, 4a Side chain Fig. 3
5 Side chain polymer membrane 6, 6a Side chain Fig. 4
7 Side chain polymer membrane 8, 8a Side chain

Claims (32)

  1.  [I] (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
     (B)有機溶媒
    を含有する重合体組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
     [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
     [III] [II]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
    [I] (A) A photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) a substrate containing a polymer composition containing an organic solvent, and a conductive film for driving a lateral electric field. A step of coating on top to form a coating film;
    [II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
    The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having.
  2.  (A)成分が、光架橋、光異性化、または光フリース転移を起こす感光性側鎖を有する請求項1に記載の方法。 The method according to claim 1, wherein the component (A) has a photosensitive side chain that undergoes photocrosslinking, photoisomerization, or photofleece transition.
  3.  (A)成分が、下記式(1)~(6)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Sは、炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Tは、単結合または炭素数1~12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     Couは、クマリン-6-イル基またはクマリン-7-イル基を表し、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     q3は0または1である;
     P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが-CH=CH-CO-O-、-O-CO-CH=CH-である場合、-CH=CH-が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
     l1は0または1である;
     l2は0~2の整数である;
     l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
     l1が1であるときは、Tが単結合であるときはBも単結合を表す;
     H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。)
    からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1または2に記載の方法。
    Figure JPOXMLDOC01-appb-C000001
    The component (A) is represented by the following formulas (1) to (6)
    (Wherein A, B and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO Represents —O— or —O—CO—CH═CH—;
    S is an alkylene group having 1 to 12 carbon atoms, and the hydrogen atom bonded thereto may be replaced by a halogen group;
    T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
    Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
    R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
    X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
    Cou represents a coumarin-6-yl group or a coumarin-7-yl group, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH— May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
    one of q1 and q2 is 1 and the other is 0;
    q3 is 0 or 1;
    P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
    l1 is 0 or 1;
    l2 is an integer from 0 to 2;
    when l1 and l2 are both 0, A represents a single bond when T is a single bond;
    when l1 is 1, B represents a single bond when T is a single bond;
    H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof. )
    The method of Claim 1 or 2 which has any 1 type of photosensitive side chain chosen from the group which consists of.
    Figure JPOXMLDOC01-appb-C000001
  4.  (A)成分が、下記式(7)~(10)
    (式中、A、B、Dはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表す;
     mは、0~2の整数を表し、m1、m2は1~3の整数を表す;
     nは0~12の整数(ただしn=0のときBは単結合である)を表す;
     Yは、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、ヒドロキシ基、炭素数1~6のアルコキシ基を表すか、又はYと同じ定義を表す)
    からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1~3のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000002
    The component (A) is represented by the following formulas (7) to (10)
    (Wherein A, B and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO Represents —O— or —O—CO—CH═CH—;
    Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
    l represents an integer of 1 to 12;
    m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
    n represents an integer of 0 to 12 (provided that when n = 0, B is a single bond);
    Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atom bonded to each independently represents —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
    R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 )
    The method according to any one of claims 1 to 3, which has any one kind of photosensitive side chain selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000002
  5.  (A)成分が、下記式(11)~(13)
    (式中、Aは、それぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表し、m1は1~3の整数を表す;
     Rは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良いか、又はヒドロキシ基もしくは炭素数1~6のアルコキシ基を表す)
    からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1~3のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000003
    The component (A) is represented by the following formulas (11) to (13)
    (Wherein A is independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—) Or represents —O—CO—CH═CH—;
    X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
    l represents an integer of 1 to 12, m represents an integer of 0 to 2, and m1 represents an integer of 1 to 3;
    R represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or a phase selected from those substituents. Each of the hydrogen atoms bonded to them is independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5). -NO 2 , -CN, -CH = C (CN) 2 , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms (It may be substituted with an oxy group or represents a hydroxy group or an alkoxy group having 1 to 6 carbon atoms)
    The method according to any one of claims 1 to 3, which has any one kind of photosensitive side chain selected from the group consisting of:
    Figure JPOXMLDOC01-appb-C000003
  6.  (A)成分が、下記式(14)又は(15)
    (式中、Aはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     lは1~12の整数を表し、m1、m2は1~3の整数を表す)
    で表される感光性側鎖を有する請求項1~3のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000004
    (A) component is a following formula (14) or (15)
    (Wherein each A is independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, Or represents —O—CO—CH═CH—;
    Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    l represents an integer of 1 to 12, and m1 and m2 represent an integer of 1 to 3)
    The method according to any one of claims 1 to 3, which has a photosensitive side chain represented by the formula:
    Figure JPOXMLDOC01-appb-C000004
  7.  (A)成分が、下記式(16)又は(17)(式中、Aは単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは、1~12の整数を表し、mは0~2の整数を表す)
    で表される感光性側鎖を有する請求項1~3のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000005
    The component (A) is represented by the following formula (16) or (17) (wherein A is a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—). , -CH = CH-CO-O-, or -O-CO-CH = CH-;
    X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
    l represents an integer of 1 to 12, and m represents an integer of 0 to 2)
    The method according to any one of claims 1 to 3, which has a photosensitive side chain represented by the formula:
    Figure JPOXMLDOC01-appb-C000005
  8.  (A)成分が、下記式(18)又は(19)
    (式中、A、Bはそれぞれ独立に、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     q1とq2は、一方が1で他方が0である;
     lは1~12の整数を表し、m1、m2は1~3の整数を表す;
     Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基を表す)からなる群から選ばれるいずれか1種の感光性側鎖を有する請求項1~3のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000006
    (A) component is a following formula (18) or (19)
    (Wherein A and B are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O) Represents — or —O—CO—CH═CH—;
    Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    one of q1 and q2 is 1 and the other is 0;
    l represents an integer of 1 to 12, and m1 and m2 represent an integer of 1 to 3;
    R 1 represents a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. The method according to any one of claims 1 to 3, which has any one kind of photosensitive side chain selected from the group consisting of (which represents an oxy group).
    Figure JPOXMLDOC01-appb-C000006
  9.  (A)成分が、下記式(20)(式中、Aは、単結合、-O-、-CH-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表す;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5~8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2~6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に-COOR(式中、Rは水素原子又は炭素数1~5のアルキル基を表す)、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Xは、単結合、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、又は-O-CO-CH=CH-を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
     lは1~12の整数を表し、mは0~2の整数を表す)で表される感光性側鎖を有する請求項1~3のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000007
    The component (A) is represented by the following formula (20) (wherein A is a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH = CH-CO-O- or -O-CO-CH = CH-;
    Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are bonded to each other through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms May be substituted with an alkyloxy group;
    X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
    The method according to any one of claims 1 to 3, which has a photosensitive side chain represented by the following formula: l represents an integer of 1 to 12, and m represents an integer of 0 to 2.
    Figure JPOXMLDOC01-appb-C000007
  10.  (A)成分が、下記式(21)~(31)(式中、A及びBは上記と同じ定義を有する;
     Yは、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に-NO、-CN、ハロゲン基、炭素数1~5のアルキル基、又は炭素数1~5のアルキルオキシ基で置換されても良い;
     Rは、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5~8の脂環式炭化水素、炭素数1~12のアルキル基、又は炭素数1~12のアルコキシ基を表す;
     q1とq2は、一方が1で他方が0である;
     lは1~12の整数を表し、mは0から2の整数を表し、但し、式(23)~(24)において、全てのmの合計は2以上であり、式(25)~(26)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1~3の整数を表す;
     Rは、水素原子、-NO、-CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5~8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
     Z、Zは単結合、-CO-、-CHO-、-CH=N-、-CF-を表す)からなる群から選ばれるいずれか1種の液晶性側鎖を有する請求項1~9のいずれか1項に記載の方法。
    Figure JPOXMLDOC01-appb-C000008
    The component (A) is represented by the following formulas (21) to (31) (wherein A and B have the same definitions as above;
    Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
    R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing Represents a heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
    one of q1 and q2 is 1 and the other is 0;
    l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (23) to (24), the sum of all m is 2 or more, and formulas (25) to (26 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
    R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
    Z 1 and Z 2 each have a liquid crystalline side chain selected from the group consisting of a single bond, —CO—, —CH 2 O—, —CH═N—, —CF 2 —. Item 10. The method according to any one of Items 1 to 9.
    Figure JPOXMLDOC01-appb-C000008
  11.  請求項1~10のいずれか一項に記載の方法により製造された横電界駆動型液晶表示素子用液晶配向膜を有する基板。 A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element manufactured by the method according to any one of claims 1 to 10.
  12.  請求項11記載の基板を有する横電界駆動型液晶表示素子。 A lateral electric field drive type liquid crystal display element comprising the substrate according to claim 11.
  13.  請求項11記載の基板(第1の基板)を準備する工程;
     [I’] 第2の基板上に
     (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
     (B)有機溶媒
    を含有する重合体組成物を、塗布して塗膜を形成する工程;
     [II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
     [III’] [II’]で得られた塗膜を加熱する工程;
    を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
     [IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
    を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。
    Preparing a substrate (first substrate) according to claim 11;
    [I ′] A polymer composition containing (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) an organic solvent is applied onto a second substrate. Forming a coating film;
    [II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
    Obtaining a liquid crystal alignment film having alignment control ability by providing a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment of the first and second substrates via liquid crystal A step of obtaining a liquid crystal display element by arranging the first and second substrates to face each other so that the films face each other;
    A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element.
  14.  請求項13記載の方法により製造された横電界駆動型液晶表示素子。 A lateral electric field drive type liquid crystal display device manufactured by the method according to claim 13.
  15.  (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、及び
     (B)有機溶媒
    を含有する、横電界駆動型液晶表示素子用液晶配向膜製造用組成物。
    A composition for producing a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device, comprising (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range, and (B) an organic solvent.
  16.  下記式(1)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000009
    A compound represented by the following formula (1) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000009
  17.  下記式(2)(式中、Rは水素原子またはメチル基を示す;R10はBrまたはCNを示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000010
    A compound represented by the following formula (2) (wherein R represents a hydrogen atom or a methyl group; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000010
  18.  下記式(3)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000011
    A compound represented by the following formula (3) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000011
  19.  下記式(4)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000012
    A compound represented by the following formula (4) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
    Figure JPOXMLDOC01-appb-C000012
  20.  下記式(5)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000013
    A compound represented by the following formula (5) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
    Figure JPOXMLDOC01-appb-C000013
  21.  下記式(6)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000014
    A compound represented by the following formula (6) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000014
  22.  下記式(7)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000015
    A compound represented by the following formula (7) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000015
  23.  下記式(8)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000016
    A compound represented by the following formula (8) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000016
  24.  下記式(9)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000017
    A compound represented by the following formula (9) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000017
  25.  下記式(10)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000018
    A compound represented by the following formula (10) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000018
  26.  下記式(11)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す;Pyは2-ピリジル基、3-ピリジル基または4-ピリジル基を表す;uは0または1を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000019
    Formula (11) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; Py represents a 2-pyridyl group, a 3-pyridyl group, or a 4-pyridyl group) And u represents 0 or 1).
    Figure JPOXMLDOC01-appb-C000019
  27.  下記式(12)(式中、Sは炭素数2~9のアルキレン基を表す;vは1または2を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000020
    A compound represented by the following formula (12) (wherein S represents an alkylene group having 2 to 9 carbon atoms; v represents 1 or 2).
    Figure JPOXMLDOC01-appb-C000020
  28.  下記式(13)(式中、Sは炭素数2~10のアルキレン基を表す;uは0または1を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000021
    A compound represented by the following formula (13) (wherein S represents an alkylene group having 2 to 10 carbon atoms; u represents 0 or 1).
    Figure JPOXMLDOC01-appb-C000021
  29.  下記式(14)(式中、Sは炭素数1~10のアルキレン基を表す;uは0または1を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000022
    A compound represented by the following formula (14) (wherein S represents an alkylene group having 1 to 10 carbon atoms; u represents 0 or 1).
    Figure JPOXMLDOC01-appb-C000022
  30.  下記式(15)(式中、Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000023
    A compound represented by the following formula (15) (wherein S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000023
  31.  下記式(16)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000024
    A compound represented by the following formula (16) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000024
  32.  下記式(17)(式中、Rは水素原子またはメチル基を示す;Sは炭素数2~10のアルキレン基を表す)で表される化合物。
    Figure JPOXMLDOC01-appb-C000025
    A compound represented by the following formula (17) (wherein R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms).
    Figure JPOXMLDOC01-appb-C000025
PCT/JP2013/077099 2012-10-05 2013-10-04 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element WO2014054785A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014539847A JP6449016B2 (en) 2012-10-05 2013-10-04 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
KR1020157010690A KR102113892B1 (en) 2012-10-05 2013-10-04 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element
CN201380051766.6A CN104903785B (en) 2012-10-05 2013-10-04 The manufacture method of substrate with the driving liquid crystal orientation film used for liquid crystal display element of horizontal component of electric field
KR1020197033727A KR102162192B1 (en) 2012-10-05 2013-10-04 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012223636 2012-10-05
JP2012-223636 2012-10-05
JP2013101745 2013-05-13
JP2013-101745 2013-05-13

Publications (2)

Publication Number Publication Date
WO2014054785A2 true WO2014054785A2 (en) 2014-04-10
WO2014054785A3 WO2014054785A3 (en) 2014-06-12

Family

ID=50435538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077099 WO2014054785A2 (en) 2012-10-05 2013-10-04 Manufacturing method for substrate having liquid crystal alignment film for in-plane switching-type liquid crystal display element

Country Status (5)

Country Link
JP (3) JP6449016B2 (en)
KR (2) KR102162192B1 (en)
CN (2) CN107473969B (en)
TW (1) TWI636973B (en)
WO (1) WO2014054785A2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148569A1 (en) * 2013-03-19 2014-09-25 日産化学工業株式会社 Method for manufacturing in-plane-switching-type liquid-crystal display element
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2014196590A1 (en) * 2013-06-05 2014-12-11 日産化学工業株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2014196589A1 (en) * 2013-06-05 2014-12-11 日産化学工業株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2015016301A1 (en) * 2013-07-31 2015-02-05 日産化学工業株式会社 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
WO2015050020A1 (en) * 2013-10-04 2015-04-09 日産化学工業株式会社 Polymerizable liquid crystal compound, liquid crystalline polymer, liquid crystalline composition, and single-layer-coated horizontally oriented film
WO2015178447A1 (en) * 2014-05-23 2015-11-26 Dic株式会社 Image display device and oriented material used in same
WO2016021570A1 (en) * 2014-08-05 2016-02-11 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2016085413A (en) * 2014-10-28 2016-05-19 Jsr株式会社 Liquid crystal aligning agent, method for manufacturing liquid crystal display element, liquid crystal alignment film, liquid crystal display element, polymer and compound
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JP2016139121A (en) * 2015-01-22 2016-08-04 Jsr株式会社 Production method of liquid crystal alignment film and method for manufacturing liquid crystal element
WO2017006922A1 (en) * 2015-07-06 2017-01-12 日産化学工業株式会社 Composition for producing liquid crystal alignment film, liquid crystal alignment film using said composition and production method therefor, and liquid crystal display element having liquid crystal alignment film and production method therefor
WO2017018501A1 (en) * 2015-07-30 2017-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20170024011A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017061542A1 (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2017069133A1 (en) * 2015-10-20 2017-04-27 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN106661301A (en) * 2014-06-24 2017-05-10 日产化学工业株式会社 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
KR20170065605A (en) 2014-10-08 2017-06-13 닛산 가가쿠 고교 가부시키 가이샤 Composition for production of liquid crystal alignment film for in-plane switching liquid crystal display element, liquid crystal alignment film using same, production method therefor, liquid crystal display element having liquid crystal alignment film, and production method therefor
WO2017170681A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2017208953A1 (en) * 2016-06-03 2017-12-07 Dic株式会社 Spontaneous orientation aid for liquid crystal composition, compound suitable for said spontaneous orientation aid, liquid crystal composition, and liquid crystal display element
KR20180008674A (en) 2015-05-20 2018-01-24 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
KR20180008677A (en) 2015-05-20 2018-01-24 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
EP3301085A1 (en) * 2016-09-29 2018-04-04 Biogem S.Ca.R.L. Retinoid derivatives with antitumor activity
KR20180059839A (en) 2015-09-30 2018-06-05 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal display element
KR20180063269A (en) 2015-10-07 2018-06-11 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment film using liquid crystal alignment film, liquid crystal alignment film using liquid crystal alignment film
KR20190004713A (en) 2016-04-28 2019-01-14 닛산 가가쿠 가부시키가이샤 A liquid crystal aligning agent, a liquid crystal alignment film, a liquid crystal display element and a novel monomer
JPWO2018043529A1 (en) * 2016-08-31 2019-06-24 日産化学株式会社 Retardation film having water vapor barrier property and method for producing the same
JP2019116483A (en) * 2013-08-22 2019-07-18 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
CN111556981A (en) * 2018-04-05 2020-08-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for producing liquid crystal element
WO2020203631A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Polymer composition and single-layer retardation material
JPWO2020208884A1 (en) * 2019-04-10 2020-10-15
KR20210096099A (en) 2018-11-29 2021-08-04 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film and phase difference material
JP2022036952A (en) * 2016-02-01 2022-03-08 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
US11364216B2 (en) 2016-09-29 2022-06-21 Biogem S.C. A R.L. Retinoid derivatives with antitumor activity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143865A1 (en) * 2015-03-11 2016-09-15 日産化学工業株式会社 Cured film-forming composition, alignment material and phase difference material
PE20181104A1 (en) 2015-09-29 2018-07-12 Vision Ease Lp HIGH ENERGY VISIBLE LIGHT AND UV ABSORBING OPHTHALMIC LENSES
KR20180109968A (en) * 2016-02-10 2018-10-08 닛산 가가쿠 가부시키가이샤 Liquid crystal composition and single-layer coated horizontally oriented film
JPWO2020203632A1 (en) * 2019-03-29 2020-10-08

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007030U (en) * 1993-08-16 1995-03-21 LCD Display
DE59507348D1 (en) * 1994-09-29 2000-01-05 Rolic Ag Zug CUMARINE AND CHINOLINONE DERIVATIVES FOR THE PRODUCTION OF ORIENTATION LAYERS FOR LIQUID CRYSTALS
JP3893659B2 (en) * 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP2000212310A (en) * 1999-01-19 2000-08-02 Hayashi Telempu Co Ltd Oriented film, its production and liquid crystal display device
JP4363553B2 (en) * 1999-05-14 2009-11-11 富士フイルム株式会社 Electrolyte composition, photoelectric conversion element and photoelectrochemical cell
JP2002090540A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Birefringent film and method for manufacturing the same
CN1451645A (en) * 2002-04-18 2003-10-29 长兴化学工业股份有限公司 Acrylate compound, preparing process thereof and its use
JP2005272532A (en) * 2004-03-23 2005-10-06 Nagoya Industrial Science Research Inst Meso configuration, mesoporous body and method for producing meso configuration
JP2008050440A (en) * 2006-08-23 2008-03-06 Fujifilm Corp Polymerizable monomer, macromolecular compound, optically anisotropic film, optical compensation sheet, polarizing plate, liquid crystal display, and method for producing optical compensation sheet
US7862867B2 (en) * 2006-10-05 2011-01-04 Nissan Chemical Industries, Ltd. Bifunctional polymerizable compound, polymerizable liquid crystal composition, and oriented film
JP2008164925A (en) * 2006-12-28 2008-07-17 Hayashi Telempu Co Ltd Retardation film and method for producing the same
JP2009098619A (en) * 2007-09-28 2009-05-07 Fujifilm Corp Composition for photo alignment film, composition for retardation film, photo alignment film, retardation film, liquid crystal cell and liquid crystal display device using the same, and method for producing photo alignment film or retardation film
CN102159560B (en) * 2008-10-14 2014-08-27 日产化学工业株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition and oriented film
TWI457370B (en) * 2008-12-25 2014-10-21 Nissan Chemical Ind Ltd The ink-jet coating agent with the liquid crystal, the liquid crystal alignment film and a liquid crystal display element
JP5556991B2 (en) * 2009-07-21 2014-07-23 Dic株式会社 Polymerizable compound and production intermediate of the compound
JP5481171B2 (en) * 2009-11-18 2014-04-23 株式会社林技術研究所 Photocrosslinkable electrolyte composition and dye-sensitized solar cell
JP5566178B2 (en) * 2010-05-07 2014-08-06 富士フイルム株式会社 Light-absorbing anisotropic film, method for producing the same, and liquid crystal display device using the same
JP5761532B2 (en) * 2010-06-30 2015-08-12 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
TWI520948B (en) * 2010-06-30 2016-02-11 Nissan Chemical Ind Ltd A liquid crystal alignment device, a liquid crystal alignment device, a liquid crystal display device, and a liquid crystal display device, and a polymerizable compound
JP5712856B2 (en) * 2010-09-22 2015-05-07 Jnc株式会社 Photosensitive compound and photosensitive polymer comprising the compound
JP5741901B2 (en) * 2010-12-27 2015-07-01 Dic株式会社 Birefringent lens material for stereoscopic image display device and method of manufacturing birefringent lens for stereoscopic image display device
JP5678824B2 (en) * 2011-01-05 2015-03-04 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, retardation film production method, retardation film and liquid crystal display element
JP5905272B2 (en) * 2011-01-27 2016-04-20 住友化学株式会社 Method for producing optically anisotropic layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP2008276149A (en) * 2007-04-27 2008-11-13 Hayashi Telempu Co Ltd Polymer film, method for fabricating molecular alignment element, and liquid crystal alignment layer
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148569A1 (en) * 2013-03-19 2014-09-25 日産化学工業株式会社 Method for manufacturing in-plane-switching-type liquid-crystal display element
WO2014185413A1 (en) * 2013-05-13 2014-11-20 日産化学工業株式会社 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
WO2014196590A1 (en) * 2013-06-05 2014-12-11 日産化学工業株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2014196589A1 (en) * 2013-06-05 2014-12-11 日産化学工業株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
JPWO2014196590A1 (en) * 2013-06-05 2017-02-23 日産化学工業株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
KR20160037966A (en) * 2013-07-31 2016-04-06 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
WO2015016301A1 (en) * 2013-07-31 2015-02-05 日産化学工業株式会社 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
KR102277348B1 (en) * 2013-07-31 2021-07-13 닛산 가가쿠 가부시키가이샤 Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
JP2019116483A (en) * 2013-08-22 2019-07-18 日本ゼオン株式会社 Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
WO2015050020A1 (en) * 2013-10-04 2015-04-09 日産化学工業株式会社 Polymerizable liquid crystal compound, liquid crystalline polymer, liquid crystalline composition, and single-layer-coated horizontally oriented film
WO2015178447A1 (en) * 2014-05-23 2015-11-26 Dic株式会社 Image display device and oriented material used in same
JPWO2015178447A1 (en) * 2014-05-23 2017-04-20 Dic株式会社 Image display device and alignment material used therefor
CN106661301A (en) * 2014-06-24 2017-05-10 日产化学工业株式会社 Polymer composition and liquid crystal alignment film for transverse electric field driving liquid crystal display element
KR20170024011A (en) 2014-06-30 2017-03-06 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2016021570A1 (en) * 2014-08-05 2016-02-11 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2016021570A1 (en) * 2014-08-05 2017-05-18 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN107003577B (en) * 2014-10-08 2021-06-25 日产化学工业株式会社 Composition for producing liquid crystal alignment film, liquid crystal alignment film using same, liquid crystal display element, and method for producing same
CN107003577A (en) * 2014-10-08 2017-08-01 日产化学工业株式会社 The driving liquid crystal of transverse electric field represents that element is manufactured with composition with liquid crystal orientation film, used the liquid crystal orientation film and its manufacture method of said composition and the liquid crystal with liquid crystal orientation film to represent element and its manufacture method
KR20170065605A (en) 2014-10-08 2017-06-13 닛산 가가쿠 고교 가부시키 가이샤 Composition for production of liquid crystal alignment film for in-plane switching liquid crystal display element, liquid crystal alignment film using same, production method therefor, liquid crystal display element having liquid crystal alignment film, and production method therefor
JP2016085413A (en) * 2014-10-28 2016-05-19 Jsr株式会社 Liquid crystal aligning agent, method for manufacturing liquid crystal display element, liquid crystal alignment film, liquid crystal display element, polymer and compound
WO2016113930A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JPWO2016113930A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using photoreactive hydrogen bonding polymer liquid crystal, and liquid crystal alignment film
WO2016113931A1 (en) * 2015-01-15 2016-07-21 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JPWO2016113931A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen bonding polymer liquid crystal and liquid crystal alignment film
KR20170105058A (en) 2015-01-15 2017-09-18 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
KR20170105059A (en) 2015-01-15 2017-09-18 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JP2019139254A (en) * 2015-01-22 2019-08-22 Jsr株式会社 Manufacturing method of liquid crystal alignment film and manufacturing method of liquid crystal element
JP2016139121A (en) * 2015-01-22 2016-08-04 Jsr株式会社 Production method of liquid crystal alignment film and method for manufacturing liquid crystal element
CN107924088B (en) * 2015-05-20 2021-10-12 日产化学工业株式会社 Polymer composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN107924088A (en) * 2015-05-20 2018-04-17 日产化学工业株式会社 Polymer composition, aligning agent for liquid crystal, liquid crystal orientation film, the substrate with the liquid crystal orientation film and the liquid crystal with the liquid crystal orientation film represent element
KR20180008674A (en) 2015-05-20 2018-01-24 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
KR20180008677A (en) 2015-05-20 2018-01-24 닛산 가가쿠 고교 가부시키 가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
KR102540421B1 (en) * 2015-05-20 2023-06-05 닛산 가가쿠 가부시키가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
WO2017006922A1 (en) * 2015-07-06 2017-01-12 日産化学工業株式会社 Composition for producing liquid crystal alignment film, liquid crystal alignment film using said composition and production method therefor, and liquid crystal display element having liquid crystal alignment film and production method therefor
JPWO2017006922A1 (en) * 2015-07-06 2018-04-19 日産化学工業株式会社 COMPOSITION FOR PRODUCTION OF LIQUID CRYSTAL ALIGNMENT FILM, LIQUID CRYSTAL ALIGNMENT FILM USING THE COMPOSITION AND ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY ELEMENT HAVING LIQUID CRYSTAL ALIGNMENT FILM
CN107849365A (en) * 2015-07-30 2018-03-27 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
US11111387B2 (en) 2015-07-30 2021-09-07 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2017018501A1 (en) * 2015-07-30 2017-02-02 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20180059839A (en) 2015-09-30 2018-06-05 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal display element
US11112654B2 (en) 2015-09-30 2021-09-07 Nissan Chemical Industries, Ltd. Liquid crystal display device
WO2017061542A1 (en) * 2015-10-07 2017-04-13 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2017061542A1 (en) * 2015-10-07 2018-08-02 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20180063269A (en) 2015-10-07 2018-06-11 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment film using liquid crystal alignment film, liquid crystal alignment film using liquid crystal alignment film
JPWO2017061541A1 (en) * 2015-10-07 2018-08-02 日産化学工業株式会社 COMPOSITION FOR PRODUCTION OF LIQUID CRYSTAL ALIGNMENT FILM, LIQUID CRYSTAL ALIGNMENT FILM USING THE COMPOSITION AND ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY ELEMENT HAVING LIQUID CRYSTAL ALIGNMENT FILM
KR20180063268A (en) 2015-10-07 2018-06-11 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2017069133A1 (en) * 2015-10-20 2018-08-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017069133A1 (en) * 2015-10-20 2017-04-27 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2021140186A (en) * 2015-10-20 2021-09-16 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2022036952A (en) * 2016-02-01 2022-03-08 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20180132057A (en) 2016-03-30 2018-12-11 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7012945B2 (en) 2016-03-30 2022-01-31 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2017170681A1 (en) * 2016-03-30 2019-02-14 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017170681A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2017188366A1 (en) * 2016-04-28 2019-02-28 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element and novel monomer
KR20190004713A (en) 2016-04-28 2019-01-14 닛산 가가쿠 가부시키가이샤 A liquid crystal aligning agent, a liquid crystal alignment film, a liquid crystal display element and a novel monomer
JP6992746B2 (en) 2016-05-18 2022-01-13 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2017199986A1 (en) * 2016-05-18 2019-03-14 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20210082546A (en) 2016-05-18 2021-07-05 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2017199986A1 (en) * 2016-05-18 2017-11-23 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20220048487A (en) 2016-05-18 2022-04-19 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2017208953A1 (en) * 2016-06-03 2018-11-08 Dic株式会社 Spontaneous alignment aid for liquid crystal composition, compound suitable for spontaneous alignment aid, liquid crystal composition, and liquid crystal display device
WO2017208953A1 (en) * 2016-06-03 2017-12-07 Dic株式会社 Spontaneous orientation aid for liquid crystal composition, compound suitable for said spontaneous orientation aid, liquid crystal composition, and liquid crystal display element
JPWO2018043529A1 (en) * 2016-08-31 2019-06-24 日産化学株式会社 Retardation film having water vapor barrier property and method for producing the same
EP3301085A1 (en) * 2016-09-29 2018-04-04 Biogem S.Ca.R.L. Retinoid derivatives with antitumor activity
US11364216B2 (en) 2016-09-29 2022-06-21 Biogem S.C. A R.L. Retinoid derivatives with antitumor activity
US10905668B2 (en) * 2016-09-29 2021-02-02 Biogem S.C. A R.L. Retinoid derivatives with antitumor activity
US20200009091A1 (en) * 2016-09-29 2020-01-09 Biogem S.C. A R.L. Retinoid derivatives with antitumor activity
CN111556981A (en) * 2018-04-05 2020-08-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for producing liquid crystal element
CN111556981B (en) * 2018-04-05 2023-07-07 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, and method for manufacturing liquid crystal element
KR20210096099A (en) 2018-11-29 2021-08-04 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film and phase difference material
WO2020203631A1 (en) * 2019-03-29 2020-10-08 日産化学株式会社 Polymer composition and single-layer retardation material
JPWO2020208884A1 (en) * 2019-04-10 2020-10-15
JP7363891B2 (en) 2019-04-10 2023-10-18 Jsr株式会社 Film-forming composition, cured film and retardation film

Also Published As

Publication number Publication date
JP2019023744A (en) 2019-02-14
KR102162192B1 (en) 2020-10-06
TW201427936A (en) 2014-07-16
JPWO2014054785A1 (en) 2016-08-25
JP6449016B2 (en) 2019-01-09
KR102113892B1 (en) 2020-05-21
JP2018055133A (en) 2018-04-05
WO2014054785A3 (en) 2014-06-12
CN104903785B (en) 2017-08-15
TWI636973B (en) 2018-10-01
JP6830465B2 (en) 2021-02-17
CN107473969B (en) 2020-10-16
CN104903785A (en) 2015-09-09
CN107473969A (en) 2017-12-15
KR20150067217A (en) 2015-06-17
KR20190130675A (en) 2019-11-22
JP6710196B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6830465B2 (en) Method for manufacturing a substrate having a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element
JP6646263B2 (en) Polymer composition and liquid crystal alignment film for lateral electric field drive type liquid crystal display device
JP6653648B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP6858350B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6523169B2 (en) Polymer, polymer composition and liquid crystal alignment film for horizontal electric field drive type liquid crystal display device
WO2017199986A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2014206715A (en) Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
JP2015007702A (en) Method for manufacturing substrate having liquid crystal alignment layer for in-plane switching type liquid crystal display element
JP6823458B2 (en) A composition for producing a liquid crystal alignment film for a transverse electric field drive type liquid crystal display element, a liquid crystal alignment film using the composition and a method for producing the same, and a liquid crystal display element having a liquid crystal alignment film and a method for producing the same.
WO2014196590A1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
JP6858349B2 (en) Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate having the liquid crystal alignment film, and liquid crystal display element having the liquid crystal alignment film.
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
JP6872315B2 (en) Liquid crystal alignment film for polymer composition and transverse electric field drive type liquid crystal display element
JP6744717B2 (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching type liquid crystal display device
JP6571524B2 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
JP6738036B2 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
JP6723523B2 (en) Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, substrate having the liquid crystal aligning film, and liquid crystal display device having the liquid crystal aligning film
WO2016021570A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014185413A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
JP2018109788A (en) Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843741

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014539847

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010690

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13843741

Country of ref document: EP

Kind code of ref document: A2