JP6571524B2 - Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element - Google Patents

Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element Download PDF

Info

Publication number
JP6571524B2
JP6571524B2 JP2015532904A JP2015532904A JP6571524B2 JP 6571524 B2 JP6571524 B2 JP 6571524B2 JP 2015532904 A JP2015532904 A JP 2015532904A JP 2015532904 A JP2015532904 A JP 2015532904A JP 6571524 B2 JP6571524 B2 JP 6571524B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
carbon atoms
ring
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015532904A
Other languages
Japanese (ja)
Other versions
JPWO2015025937A1 (en
Inventor
雅章 片山
雅章 片山
隆之 根木
隆之 根木
喜弘 川月
喜弘 川月
瑞穂 近藤
瑞穂 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
University of Hyogo
Original Assignee
Nissan Chemical Corp
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, University of Hyogo filed Critical Nissan Chemical Corp
Publication of JPWO2015025937A1 publication Critical patent/JPWO2015025937A1/en
Application granted granted Critical
Publication of JP6571524B2 publication Critical patent/JP6571524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Description

本発明は、横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法に関する。詳しくは、焼き付き特性に優れ、端部の直線性が高く、端部の盛り上がりが小さい液晶配向膜を有する液晶表示素子を製造するための新規な方法に関する。   The present invention relates to a method for manufacturing a substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element. Specifically, the present invention relates to a novel method for manufacturing a liquid crystal display element having a liquid crystal alignment film that has excellent image sticking characteristics, high end linearity, and small end bulge.

液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。   The liquid crystal display element is known as a light, thin and low power consumption display device, and has been remarkably developed in recent years. The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.

すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。   That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. The liquid crystal alignment film may be required to play a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.

配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。   A rubbing method is conventionally known as an alignment treatment method for a liquid crystal alignment film for imparting alignment control ability. The rubbing method is a method of rubbing (rubbing) the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on a substrate with a cloth such as cotton, nylon or polyester in the rubbing direction (rubbing direction). This is a method of aligning liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements. As an organic film used for the liquid crystal alignment film, a polyimide-based organic film excellent in reliability such as heat resistance and electrical characteristics has been mainly selected.

しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。   However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust or static electricity may be a problem. In addition, due to the high definition of the liquid crystal surface element in recent years and the unevenness caused by the corresponding electrodes on the substrate and the switching active element for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be uniformly rubbed with a cloth. In some cases, alignment of the liquid crystal could not be realized.

そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。   Therefore, a photo-alignment method has been actively studied as another alignment treatment method for a liquid crystal alignment film that is not rubbed.

光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。   There are various photo alignment methods. Anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy.

主な光配向法としては、分解型の光配向法が知られている。例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせる。そして、分解せずに残されたポリイミドにより液晶を配向させるようにする(例えば、特許文献1を参照)。   A decomposition type photo-alignment method is known as a main photo-alignment method. For example, the polyimide film is irradiated with polarized ultraviolet rays, and anisotropic decomposition is caused by utilizing the polarization direction dependence of the ultraviolet absorption of the molecular structure. Then, the liquid crystal is aligned by the polyimide remaining without being decomposed (see, for example, Patent Document 1).

また、光架橋型や光異性化型の光配向法も知られている。例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる。そして、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献1を参照)。また、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる(例えば、非特許文献2を参照)。   In addition, photocrosslinking type and photoisomerization type photo-alignment methods are also known. For example, polyvinyl cinnamate is used and irradiated with polarized ultraviolet rays to cause a dimerization reaction (crosslinking reaction) at the double bond portion of two side chains parallel to the polarized light. Then, the liquid crystal is aligned in a direction orthogonal to the polarization direction (see, for example, Non-Patent Document 1). In addition, when a side chain polymer having azobenzene in the side chain is used, irradiation with polarized ultraviolet light causes an isomerization reaction at the azobenzene portion of the side chain parallel to the polarized light, and the liquid crystal is aligned in a direction perpendicular to the polarization direction. Align (see Non-Patent Document 2, for example).

以上の例のように、光配向法による液晶配向膜の配向処理方法では、ラビングを不要とし、発塵や静電気の発生の懸念が無い。そして、表面に凹凸のある液晶表示素子の基板に対しても配向処理を施すことができ、工業的な生産プロセスに好適な液晶配向膜の配向処理の方法となる。   As in the above example, the liquid crystal alignment film alignment treatment method by the photo alignment method eliminates the need for rubbing, and there is no fear of generation of dust or static electricity. An alignment process can be performed even on a substrate of a liquid crystal display element having an uneven surface, which is a method for aligning a liquid crystal alignment film suitable for an industrial production process.

また、液晶配向膜を形成するために用いる液晶配向剤(「塗布溶液」ともいう)を基板に塗布する場合、工業的にはフレキソ印刷法やインクジェット塗布法などで行うことが一般的である。その際、塗布溶液の溶媒には、通常は、樹脂の溶解性に優れる溶媒(「良溶媒」ともいう)であるN−メチル−2−ピロリドンやγ−ブチロラクトンなどに加えて、液晶配向膜の塗膜均一性を高めるために、樹脂の溶解性が低い溶媒(「貧溶媒」ともいう)であるブチルセロソルブなどが混合されて使用されている(例えば特許文献2参照)。   In addition, when a liquid crystal aligning agent (also referred to as “coating solution”) used for forming a liquid crystal alignment film is applied to a substrate, it is generally industrially performed by a flexographic printing method, an ink jet coating method, or the like. In this case, the solvent of the coating solution is usually N-methyl-2-pyrrolidone or γ-butyrolactone, which is a solvent excellent in resin solubility (also referred to as “good solvent”), or the like. In order to improve the uniformity of the coating film, butyl cellosolve, which is a solvent with low resin solubility (also referred to as “poor solvent”), is used in combination (for example, see Patent Document 2).

特許第3893659号公報Japanese Patent No. 3893659 特開平2−37324号公報JP-A-2-37324

M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992).M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992). K. Ichimura et al., Chem. Rev. 100, 1847 (2000).K. Ichimura et al., Chem. Rev. 100, 1847 (2000).

以上のように、光配向法は、液晶表示素子の配向処理方法として従来から工業的に利用されてきたラビング法と比べてラビング工程そのものを不要とするため、大きな利点を備える。そして、ラビングによって配向制御能がほぼ一定となるラビング法に比べ、光配向法では、偏光した光の照射量を変化させて配向制御能を制御することができる。しかしながら、光配向法では、ラビング法による場合と同程度の配向制御能を実現しようとする場合、大量の偏光した光の照射量が必要となることがあり、安定な液晶の配向が実現できない場合がある。   As described above, the photo-alignment method has a great advantage because it eliminates the rubbing process itself as compared with the rubbing method conventionally used industrially as an alignment treatment method for liquid crystal display elements. And compared with the rubbing method in which the alignment control ability becomes almost constant by rubbing, the photo alignment method can control the alignment control ability by changing the irradiation amount of polarized light. However, the photo-alignment method may require a large amount of polarized light irradiation to achieve the same degree of alignment control ability as the rubbing method, and stable liquid crystal alignment cannot be realized. There is.

例えば、上記した特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を60分間照射する必要があるなど、長時間かつ大量の紫外線照射が必要となる。また、二量化型や光異性化型の光配向法の場合においても、数J(ジュール)〜数十J程度の多くの量の紫外線照射が必要となる場合がある。さらに、光架橋型や光異性化型の光配向法の場合、液晶の配向の熱安定性や光安定性に劣るため、液晶表示素子とした場合に、配向不良や表示焼き付きが発生するといった問題があった。特に横電界駆動型の液晶表示素子では液晶分子を面内でスイッチングするため、液晶駆動後の液晶の配向ズレが発生しやすく、AC駆動に起因する表示焼き付きが大きな課題とされている。   For example, in the decomposition type photo-alignment method described in Patent Document 1, it is necessary to irradiate the polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes. Become. Even in the case of a dimerization type or photoisomerization type photo-alignment method, a large amount of ultraviolet irradiation of about several J (joule) to several tens of J may be required. Furthermore, in the case of the photo-crosslinking type or photoisomerization type photo-alignment method, since the thermal stability and light stability of the liquid crystal alignment are inferior, there is a problem that alignment failure or display burn-in occurs when a liquid crystal display element is used. was there. In particular, in a horizontal electric field drive type liquid crystal display element, since liquid crystal molecules are switched in a plane, alignment misalignment of liquid crystal after liquid crystal driving is likely to occur, and display burn-in caused by AC driving is a major issue.

したがって、光配向法では、配向処理の高効率化や安定な液晶配向の実現が求められており、液晶配向膜への高い配向制御能の付与を高効率に行うことができる液晶配向膜や液晶配向剤が求められている。   Therefore, in the photo-alignment method, there is a demand for higher efficiency of alignment treatment and realization of stable liquid crystal alignment, and liquid crystal alignment films and liquid crystals that can impart high alignment control ability to the liquid crystal alignment film with high efficiency. There is a need for aligning agents.

加えて、近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤が、液晶配向膜の端部に近接した位置に存在する。このため、液晶配向膜の端部の塗膜性が低下する場合、すなわち、液晶配向膜の端部が直線ではない、あるいはその端部が盛り上がっている状態である場合、シール剤の基板間の接着効果が低下し、液晶表示素子の表示特性や信頼性を低下させてしまうことがある。   In addition, in recent years, liquid crystal display elements have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure as many display surfaces as possible, a sealant used for bonding the substrates of the liquid crystal display elements is present at a position close to the end of the liquid crystal alignment film. For this reason, when the coating property of the edge part of a liquid crystal aligning film falls, ie, when the edge part of a liquid crystal aligning film is not a straight line, or the edge part is in the state which has risen, it is between the board | substrates of a sealing agent. The adhesive effect may be reduced, and the display characteristics and reliability of the liquid crystal display element may be reduced.

本発明は、高効率で配向制御能が付与され、焼き付き特性に優れ、端部の直線性が高く、端部の盛り上がりが小さい横電界駆動型液晶表示素子用液晶配向膜を有する基板及び該基板を有する横電界駆動型液晶表示素子を提供することを目的とする。   The present invention provides a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element, which has high efficiency and orientation control ability, is excellent in image sticking characteristics, has high end linearity, and has low end bulge, and the substrate It is an object of the present invention to provide a lateral electric field drive type liquid crystal display device having

本発明者らは、上記課題を達成するべく鋭意検討を行った結果、以下の発明を見出した。
<1> (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ジイソブチルカルビノール、及び
(C)有機溶媒
を含有する重合体組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物。
As a result of intensive studies to achieve the above problems, the present inventors have found the following invention.
<1> (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
A polymer composition containing (B) diisobutyl carbinol and (C) an organic solvent, particularly a composition for producing a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element.

<2> 上記<1>において、(A)成分が、光架橋、光異性化、または光フリース転移を起こす感光性側鎖を有するのがよい。
<3> 上記<1>または<2>において、(A)成分が、下記式(1)〜(6)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。
<2> In the above item <1>, the component (A) preferably has a photosensitive side chain that causes photocrosslinking, photoisomerization, or photofleece transition.
<3> In the above <1> or <2>, the component (A) may have any one kind of photosensitive side chain selected from the group consisting of the following formulas (1) to (6).

Figure 0006571524
Figure 0006571524

式中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Sは、炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又はYと同じ定義を表す;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン−6−イル基またはクマリン−7−イル基を表し、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが−CH=CH−CO−O−、−O−CO−CH=CH−である場合、−CH=CH−が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0〜2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are groups bonded through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atoms bonded to each independently represent —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents coumarin-6-yl group or a coumarin-7-yl group, -NO 2 are each a hydrogen atom bonded to them independently, -CN, -CH = C (CN ) 2, -CH = CH- May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.

<4> 上記<1>〜<3>のいずれかにおいて、(A)成分が、下記式(7)〜(10)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。
式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
lは1〜12の整数を表す;
mは、0〜2の整数を表し、m1、m2は1〜3の整数を表す;
nは0〜12の整数(ただしn=0のときBは単結合である)を表す。
<4> In any one of the above items <1> to <3>, the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (7) to (10). Good.
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).

Figure 0006571524
Figure 0006571524

<5> 上記<1>〜<3>のいずれかにおいて、(A)成分が、下記式(11)〜(13)からなる群から選ばれるいずれか1種の感光性側鎖を有するのがよい。
式中、A、X、l、m、m2及びRは、上記と同じ定義を有する。
<5> In any one of the above items <1> to <3>, the component (A) has any one photosensitive side chain selected from the group consisting of the following formulas (11) to (13). Good.
In the formula, A, X, l, m, m2 and R have the same definition as above.

Figure 0006571524
Figure 0006571524

<6> 上記<1>〜<3>のいずれかにおいて、(A)成分が、下記式(14)又は(15)で表される感光性側鎖を有するのがよい。
式中、A、Y、X、l、m1及びm2は上記と同じ定義を有する。
<6> In any one of the above items <1> to <3>, the component (A) may have a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , X, 1, m1, and m2 have the same definition as above.

Figure 0006571524
Figure 0006571524

<7> 上記<1>〜<3>のいずれかにおいて、(A)成分が、下記式(16)又は(17)で表される感光性側鎖を有するのがよい。
式中、A、X、l及びmは、上記と同じ定義を有する。
<7> In any one of the above items <1> to <3>, the component (A) may have a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.

Figure 0006571524
Figure 0006571524

<8> 上記<1>〜<3>のいずれかにおいて、(A)成分が、下記式(18)又は(19)で表される感光性側鎖を有するのがよい。
式中、A、B、Y、q1、q2、m1、及びm2は、上記と同じ定義を有する。
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基を表す。
<8> In any one of the above items <1> to <3>, the component (A) may have a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y 1 , q1, q2, m1, and m2 have the same definition as above.
R 1 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.

Figure 0006571524
Figure 0006571524

<9> 上記<1>〜<3>のいずれかにおいて、(A)成分が、下記式(20)で表される感光性側鎖を有するのがよい。
式中、A、Y、X、l及びmは上記と同じ定義を有する。
<9> In any one of the above items <1> to <3>, the component (A) may have a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.

Figure 0006571524
Figure 0006571524

<10> 上記<1>〜<9>のいずれかにおいて、(A)成分が、下記式(21)〜(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有するのがよい。
式中、A、B、q1及びq2は上記と同じ定義を有する;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5〜8の脂環式炭化水素、炭素数1〜12のアルキル基、又は炭素数1〜12のアルコキシ基を表す;
lは1〜12の整数を表し、mは0から2の整数を表し、但し、式(25)〜(26)において、全てのmの合計は2以上であり、式(27)〜(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1〜3の整数を表す;
は、水素原子、−NO、−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
、Zは単結合、−CO−、−CHO−、−CH=N−、−CF−を表す。
<10> In any one of the above items <1> to <9>, the component (A) has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31). Good.
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing A heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (25) to (26), the sum of all m is 2 or more, and formulas (27) to (28 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, or —CF 2 —.

Figure 0006571524
Figure 0006571524

<11> [I] 上記<1>〜<10>のいずれかの重合体組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
<12> 上記<11>の方法により製造された横電界駆動型液晶表示素子用液晶配向膜を有する基板。
<13> 上記<12>の基板を有する横電界駆動型液晶表示素子。
<11> [I] The polymer composition according to any one of the above items <1> to <10>, particularly the composition for producing a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element, has a conductive film for driving a horizontal electric field. Applying on the substrate to form a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having.
<12> A substrate having a liquid crystal alignment film for a lateral electric field drive type liquid crystal display device produced by the method of <11>.
<13> A lateral electric field drive type liquid crystal display device having the substrate of <12> above.

<14> 上記<12>の基板(第1の基板)を準備する工程;
[I’] 第2の基板上に上記<1>〜<10>のいずれかの重合体組成物、特に横電界駆動型液晶表示素子用液晶配向膜製造用組成物を、塗布して塗膜を形成する工程;
[II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、該液晶配向膜を有する第2の基板を得る工程;及び
[IV] 液晶を介して第1及び第2の基板の液晶配向膜が相対するように、第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。
<14> a step of preparing the substrate (first substrate) of <12>above;
[I ′] A coating composition obtained by applying the polymer composition according to any one of <1> to <10> above, particularly a composition for producing a liquid crystal alignment film for a transverse electric field driving type liquid crystal display element, onto a second substrate. Forming a step;
[II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
Obtaining a liquid crystal alignment film imparted with alignment control ability by having a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment films of the first and second substrates via liquid crystal The liquid crystal display element is obtained by disposing the first and second substrates so as to face each other;
A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element.

<15> 上記<14>の方法により製造された横電界駆動型液晶表示素子。   <15> A lateral electric field drive type liquid crystal display device manufactured by the method of <14> above.

本発明により、高効率で配向制御能が付与され、焼き付き特性に優れた、横電界駆動型液晶表示素子用液晶配向膜を有する基板及び該基板を有する横電界駆動型液晶表示素子を提供することができる。
本発明の方法によって製造された横電界駆動型液晶表示素子は、高効率に配向制御能が付与されているため長時間連続駆動しても表示特性が損なわれることがない。
また、本発明の液晶配向剤は、液晶配向膜の端部の直線性が高く、液晶配向膜の端部の盛り上がりが小さい液晶配向膜を得ることができる。
According to the present invention, there are provided a substrate having a liquid crystal alignment film for a horizontal electric field drive type liquid crystal display element which is provided with high efficiency and orientation control ability and has excellent image sticking characteristics, and a horizontal electric field drive type liquid crystal display element having the substrate. Can do.
Since the lateral electric field drive type liquid crystal display device manufactured by the method of the present invention is provided with the alignment control ability with high efficiency, the display characteristics are not impaired even when continuously driven for a long time.
Moreover, the liquid crystal aligning agent of this invention can obtain the liquid crystal aligning film with the high linearity of the edge part of a liquid crystal aligning film, and a small rise | swell of the edge part of a liquid crystal aligning film.

本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖に架橋性の有機基を用い、導入された異方性が小さい場合の図である。It is a figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film used for this invention, using the crosslinkable organic group for the photosensitive side chain, and introduced the anisotropic It is a figure when property is small. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖に架橋性の有機基を用い、導入された異方性が大きい場合の図である。It is a figure of one example which illustrates typically the introduction process of the anisotropy in the manufacturing method of the liquid crystal aligning film used for this invention, using the crosslinkable organic group for the photosensitive side chain, and introduced the anisotropic It is a figure when the property is large. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖にフリース転移又は異性化を起こす有機基を用い、導入された異方性が小さい場合の図である。It is a figure of one example which illustrates typically the introduction processing of anisotropy in the manufacturing method of the liquid crystal aligning film used for the present invention, using the organic group which causes fleece transition or isomerization to the photosensitive side chain, and is introduced. It is a figure in case the anisotropy made is small. 本発明に用いる液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図であり、感光性の側鎖にフリース転移又は異性化を起こす有機基を用い、導入された異方性が大きい場合の図である。It is a figure of one example which illustrates typically the introduction processing of anisotropy in the manufacturing method of the liquid crystal aligning film used for the present invention, using the organic group which causes fleece transition or isomerization to the photosensitive side chain, and is introduced. It is a figure in case the anisotropy made is large. 液晶配向膜の端部の直線性を評価するために用いる光学顕微鏡の塗膜画像の例を示す図である。It is a figure which shows the example of the coating-film image of the optical microscope used in order to evaluate the linearity of the edge part of a liquid crystal aligning film. 液晶配向膜の端部の盛り上がりを評価するために用いる光学顕微鏡の塗膜画像の例を示す図である。It is a figure which shows the example of the coating-film image of the optical microscope used in order to evaluate the swelling of the edge part of a liquid crystal aligning film.

本発明者は、鋭意研究を行った結果、以下の知見を得て本発明を完成するに至った。
本発明の製造方法において用いられる重合体組成物は、液晶性を発現し得る感光性の側鎖型高分子(以下、単に側鎖型高分子とも呼ぶ)を有しており、前記重合体組成物を用いて得られる塗膜は、液晶性を発現し得る感光性の側鎖型高分子を有する膜である。この塗膜にはラビング処理を行うこと無く、偏光照射によって配向処理を行う。そして、偏光照射の後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された塗膜(以下、液晶配向膜とも称する)となる。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる。
As a result of intensive studies, the inventor has obtained the following knowledge and completed the present invention.
The polymer composition used in the production method of the present invention has a photosensitive side chain polymer that can exhibit liquid crystallinity (hereinafter, also simply referred to as a side chain polymer), and the polymer composition The coating film obtained by using the product is a film having a photosensitive side chain polymer that can exhibit liquid crystallinity. This coating film is subjected to orientation treatment by irradiation with polarized light without being rubbed. And after polarized light irradiation, it will become the coating film (henceforth a liquid crystal aligning film) to which the orientation control ability was provided through the process of heating the side chain type polymer film. At this time, the slight anisotropy developed by the irradiation of polarized light becomes a driving force, and the liquid crystalline side chain polymer itself is efficiently reoriented by self-organization. As a result, a highly efficient alignment process can be realized as the liquid crystal alignment film, and a liquid crystal alignment film with high alignment control ability can be obtained.

また、本発明における重合体組成物では、(A)成分である側鎖型高分子と(C)成分である有機溶媒に加えて、(B)成分としてジイソブチルカルビノールを使用する。   In the polymer composition of the present invention, diisobutyl carbinol is used as the component (B) in addition to the side chain polymer as the component (A) and the organic solvent as the component (C).

以下、本発明の実施形態について詳しく説明する。
<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
本発明の液晶配向膜を有する基板の製造方法は、
[I] (A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ジイソブチルカルビノール、及び
(C)有機溶媒
を含有する重合体組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有する。
上記工程により、配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
Hereinafter, embodiments of the present invention will be described in detail.
<Manufacturing method of substrate having liquid crystal alignment film> and <Manufacturing method of liquid crystal display element>
The method for producing a substrate having the liquid crystal alignment film of the present invention is as follows.
[I] (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range;
(B) applying a polymer composition containing diisobutyl carbinol and (C) an organic solvent on a substrate having a conductive film for driving a transverse electric field to form a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
Have
Through the above steps, a liquid crystal alignment film for a lateral electric field drive type liquid crystal display element to which alignment control ability is imparted can be obtained, and a substrate having the liquid crystal alignment film can be obtained.

また、上記得られた基板(第1の基板)の他に、第2の基板を準備することにより、横電界駆動型液晶表示素子を得ることができる。
第2の基板は、横電界駆動用の導電膜を有する基板に代わって、横電界駆動用の導電膜を有しない基板を用いる以外、上記工程[I]〜[III](横電界駆動用の導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]〜[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
Further, by preparing a second substrate in addition to the obtained substrate (first substrate), a lateral electric field drive type liquid crystal display element can be obtained.
The second substrate is replaced with a substrate having no lateral electric field driving conductive film instead of a substrate having no lateral electric field driving conductive film, except that the above steps [I] to [III] (lateral electric field driving For the sake of convenience, the substrate having no conductive film is sometimes referred to as processes [I ′] to [III ′] in some cases for the sake of convenience. Two substrates can be obtained.

横電界駆動型液晶表示素子の製造方法は、
[IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより横電界駆動型液晶表示素子を得ることができる。
The manufacturing method of the horizontal electric field drive type liquid crystal display element is:
[IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween;
Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.

以下、本発明の製造方法の有する[I]〜[III]、および[IV]の各工程について説明する。
<工程[I]>
工程[I]では、横電界駆動用の導電膜を有する基板上に、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、ジイソブチルカルビノール、及び有機溶媒を含有する重合体組成物を塗布して塗膜を形成する。
Hereinafter, each process of [I]-[III] and [IV] which the manufacturing method of this invention has is demonstrated.
<Process [I]>
In step [I], a polymer containing a photosensitive side-chain polymer that exhibits liquid crystallinity in a predetermined temperature range, diisobutylcarbinol, and an organic solvent on a substrate having a conductive film for driving a lateral electric field. The composition is applied to form a coating film.

<基板>
基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。
<Board>
Although it does not specifically limit about a board | substrate, When the liquid crystal display element manufactured is a transmission type, it is preferable that a highly transparent board | substrate is used. In that case, there is no particular limitation, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
In consideration of application to a reflective liquid crystal display element, an opaque substrate such as a silicon wafer can also be used.

<横電界駆動用の導電膜>
基板は、横電界駆動用の導電膜を有する。
該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
基板に導電膜を形成する方法は、従来公知の手法を用いることができる。
<Conductive film for driving lateral electric field>
The substrate has a conductive film for driving a lateral electric field.
Examples of the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
In the case of a reflective liquid crystal display element, examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
As a method for forming a conductive film on a substrate, a conventionally known method can be used.

<重合体組成物>
横電界駆動用の導電膜を有する基板上、特に導電膜上に、重合体組成物を塗布する。
本発明の製造方法に用いられる、該重合体組成物は、(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子;(B)ジイソブチルカルビノール;及び(C)有機溶媒;を含有する。
<Polymer composition>
A polymer composition is applied on a substrate having a conductive film for driving a lateral electric field, particularly on the conductive film.
The polymer composition used in the production method of the present invention comprises: (A) a photosensitive side chain polymer that exhibits liquid crystallinity in a predetermined temperature range; (B) diisobutylcarbinol; and (C) organic A solvent.

<<(A)側鎖型高分子>>
(A)成分は、所定の温度範囲で液晶性を発現する感光性の側鎖型高分子である。
(A)側鎖型高分子は、250nm〜400nmの波長範囲の光で反応し、かつ100℃〜300℃の温度範囲で液晶性を示すのがよい。
(A)側鎖型高分子は、250nm〜400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
(A)側鎖型高分子は、100℃〜300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
<< (A) Side chain polymer >>
The component (A) is a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range.
(A) The side chain polymer preferably reacts with light in the wavelength range of 250 nm to 400 nm and exhibits liquid crystallinity in the temperature range of 100 ° C to 300 ° C.
The (A) side chain polymer preferably has a photosensitive side chain that reacts with light in the wavelength range of 250 nm to 400 nm.
The (A) side chain polymer preferably has a mesogenic group in order to exhibit liquid crystallinity in the temperature range of 100 ° C to 300 ° C.

(A)側鎖型高分子は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る感光性の側鎖型高分子の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型高分子を液晶配向膜とした際に、安定な液晶配向を得ることができる。   (A) The side chain type polymer has a photosensitive side chain bonded to the main chain, and can react with light to cause a crosslinking reaction, an isomerization reaction, or a light fleece rearrangement. The structure of the side chain having photosensitivity is not particularly limited, but a structure that undergoes a crosslinking reaction or photofleece rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time. The structure of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but it is preferable to have a rigid mesogenic component in the side chain structure. In this case, stable liquid crystal alignment can be obtained when the side chain polymer is used as a liquid crystal alignment film.

該高分子の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。   The polymer structure has, for example, a main chain and a side chain bonded to the main chain, and the side chain includes a mesogenic component such as a biphenyl group, a terphenyl group, a phenylcyclohexyl group, a phenylbenzoate group, and an azobenzene group, and a tip. A structure having a photosensitive group bonded to a moiety, which undergoes a crosslinking reaction or an isomerization reaction in response to light, or a main chain and a side chain bonded to the main chain, and the side chain also serves as a mesogenic component, and A structure having a phenylbenzoate group that undergoes a photo-Fries rearrangement reaction can be obtained.

液晶性を発現し得る感光性の側鎖型高分子の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α−メチレン−γ−ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された主鎖と、下記式(1)から(6)の少なくとも1種からなる側鎖を有する構造であることが好ましい。   More specific examples of the structure of the photosensitive side chain polymer that can exhibit liquid crystallinity include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl , A main chain composed of at least one selected from the group consisting of radical polymerizable groups such as maleimide and norbornene and siloxane, and a side chain consisting of at least one of the following formulas (1) to (6) It is preferable that

Figure 0006571524
Figure 0006571524

式中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Sは、炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの置換基から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらに結合する水素原子はそれぞれ独立に−COOR(式中、Rは水素原子又は炭素数1〜5のアルキル基を表す)、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又はYと同じ定義を表す;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
Couは、クマリン−6−イル基またはクマリン−7−イル基を表し、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
q1とq2は、一方が1で他方が0である;
q3は0または1である;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが−CH=CH−CO−O−、−O−CO−CH=CH−である場合、−CH=CH−が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0〜2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す;
H及びIは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、およびそれらの組み合わせから選ばれる基である。
In the formula, A, B, and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—. Represents O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group;
Y 1 represents a ring selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms, or the same or selected from those substituents. 2 to 6 different rings are groups bonded through a bonding group B, and the hydrogen atoms bonded to them are each independently —COOR 0 (wherein R 0 is a hydrogen atom or a carbon number of 1 to 5 represents an alkyl group), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. May be substituted with an alkyloxy group;
Y 2 is a group selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof, The hydrogen atoms bonded to each independently represent —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. May be substituted with an alkyloxy group of
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or the same definition as Y 1 ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
Cou represents coumarin-6-yl group or a coumarin-7-yl group, -NO 2 are each a hydrogen atom bonded to them independently, -CN, -CH = C (CN ) 2, -CH = CH- May be substituted with CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
q3 is 0 or 1;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
when l1 is 1, B represents a single bond when T is a single bond;
H and I are each independently a group selected from a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, and combinations thereof.

側鎖は、下記式(7)〜(10)からなる群から選ばれるいずれか1種の感光性側鎖であるのがよい。
式中、A、B、D、Y、X、Y、及びRは、上記と同じ定義を有する;
lは1〜12の整数を表す;
mは、0〜2の整数を表し、m1、m2は1〜3の整数を表す;
nは0〜12の整数(ただしn=0のときBは単結合である)を表す。
The side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (7) to (10).
In which A, B, D, Y 1 , X, Y 2 and R have the same definition as above;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
n represents an integer of 0 to 12 (however, when n = 0, B is a single bond).

Figure 0006571524
Figure 0006571524

側鎖は、下記式(11)〜(13)からなる群から選ばれるいずれか1種の感光性側鎖であるのがよい。
式中、A、X、l、m、m2及びRは、上記と同じ定義を有する。
The side chain may be any one type of photosensitive side chain selected from the group consisting of the following formulas (11) to (13).
In the formula, A, X, l, m, m2 and R have the same definition as above.

Figure 0006571524
Figure 0006571524

側鎖は、下記式(14)又は(15)で表される感光性側鎖であるのがよい。
式中、A、Y、X、l、m1及びm2は上記と同じ定義を有する。
The side chain may be a photosensitive side chain represented by the following formula (14) or (15).
In the formula, A, Y 1 , X, 1, m1, and m2 have the same definition as above.

Figure 0006571524
Figure 0006571524

側鎖は、下記式(16)又は(17)で表される感光性側鎖であるのがよい。
式中、A、X、l及びmは、上記と同じ定義を有する。
The side chain may be a photosensitive side chain represented by the following formula (16) or (17).
In the formula, A, X, l and m have the same definition as above.

Figure 0006571524
Figure 0006571524

また、側鎖は、下記式(18)又は(19)で表される感光性側鎖であるのがよい。
式中、A、B、Y1、q1、q2、m1、及びm2は、上記と同じ定義を有する。
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基を表す。
The side chain is preferably a photosensitive side chain represented by the following formula (18) or (19).
In the formula, A, B, Y1, q1, q2, m1, and m2 have the same definition as above.
R 1 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. Represents an oxy group.

Figure 0006571524
Figure 0006571524

側鎖は、下記式(20)で表される感光性側鎖であるのがよい。
式中、A、Y、X、l及びmは上記と同じ定義を有する。
The side chain is preferably a photosensitive side chain represented by the following formula (20).
In the formula, A, Y 1 , X, l and m have the same definition as above.

Figure 0006571524
Figure 0006571524

また、(A)側鎖型高分子は、下記式(21)〜(31)からなる群から選ばれるいずれか1種の液晶性側鎖を有するのがよい。
式中、A、B、q1及びq2は上記と同じ定義を有する;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5〜8の脂環式炭化水素、炭素数1〜12のアルキル基、又は炭素数1〜12のアルコキシ基を表す;
lは1〜12の整数を表し、mは0から2の整数を表し、但し、式(25)〜(26)において、全てのmの合計は2以上であり、式(27)〜(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1〜3の整数を表す;
は、水素原子、−NO、−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
、Zは単結合、−CO−、−CHO−、−CH=N−、−CF−を表す。
The (A) side chain polymer preferably has any one liquid crystalline side chain selected from the group consisting of the following formulas (21) to (31).
In which A, B, q1 and q2 have the same definition as above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing A heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (25) to (26), the sum of all m is 2 or more, and formulas (27) to (28 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each represents a single bond, —CO—, —CH 2 O—, —CH═N—, or —CF 2 —.

Figure 0006571524
Figure 0006571524

<<感光性の側鎖型高分子の製法>>
上記の液晶性を発現し得る感光性の側鎖型高分子は、上記の感光性側鎖を有する光反応性側鎖モノマーおよび液晶性側鎖モノマーを重合することによって得ることができる。
<< Production Method of Photosensitive Side Chain Polymer >>
The photosensitive side chain polymer capable of exhibiting the above liquid crystallinity can be obtained by polymerizing the photoreactive side chain monomer having the above photosensitive side chain and the liquid crystalline side chain monomer.

[光反応性側鎖モノマー]
光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に感光性側鎖を有する高分子を形成することができるモノマーのことである。
側鎖の有する光反応性基としては下記の構造およびその誘導体が好ましい。
[Photoreactive side chain monomer]
The photoreactive side chain monomer is a monomer capable of forming a polymer having a photosensitive side chain at the side chain portion of the polymer when the polymer is formed.
As the photoreactive group possessed by the side chain, the following structures and derivatives thereof are preferred.

Figure 0006571524
Figure 0006571524

光反応性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α−メチレン−γ−ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(1)〜(6)の少なくとも1種からなる感光性側鎖、好ましくは、例えば、上記式(7)〜(10)の少なくとも1種からなる感光性側鎖、上記式(11)〜(13)の少なくとも1種からなる感光性側鎖、上記式(14)又は(15)で表される感光性側鎖、上記式(16)又は(17)で表される感光性側鎖、上記式(18)又は(19)で表される感光性側鎖、上記式(20)で表される感光性側鎖を有する構造であることが好ましい。   More specific examples of the photoreactive side chain monomer include radical polymerizable groups such as hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide and norbornene. And a polymerizable side group composed of at least one selected from the group consisting of siloxane and a photosensitive side chain consisting of at least one of the above formulas (1) to (6), preferably, for example, the above formula (7 ) To (10), a photosensitive side chain comprising at least one of the above formulas (11) to (13), and a photosensitivity represented by the above formula (14) or (15). A photosensitive side chain, a photosensitive side chain represented by the above formula (16) or (17), a photosensitive side chain represented by the above formula (18) or (19), and a photosensitivity represented by the above formula (20). Has sex side chain It is preferable that the structure be

本願は、光反応性及び/又は液晶性側鎖モノマーとして、以下の式(1)〜(11)で表される新規化合物(1)〜(11);及び以下の式(12)〜(17)で表される化合物(12)〜(17)を提供する。
式中、Rは水素原子またはメチル基を示す;Sは炭素数2〜10のアルキレン基を表す;R10はBrまたはCNを示す;Sは炭素数2〜10のアルキレン基を表す;uは0または1を表す;及びPyは2−ピリジル基、3−ピリジル基または4−ピリジル基を表す。また、vは1または2を表す。
The present application relates to photoreactive and / or liquid crystalline side chain monomers as novel compounds (1) to (11) represented by the following formulas (1) to (11); and the following formulas (12) to (17). The compounds (12) to (17) represented by:
In the formula, R represents a hydrogen atom or a methyl group; S represents an alkylene group having 2 to 10 carbon atoms; R 10 represents Br or CN; S represents an alkylene group having 2 to 10 carbon atoms; u represents Represents 0 or 1; and Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group. V represents 1 or 2.

Figure 0006571524
Figure 0006571524

Figure 0006571524
Figure 0006571524

Figure 0006571524
Figure 0006571524

[液晶性側鎖モノマー]
液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
側鎖の有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。
[Liquid crystal side chain monomer]
The liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and the polymer can form a mesogenic group at a side chain site.
As a mesogenic group having a side chain, even if it is a group having a mesogen structure alone such as biphenyl or phenylbenzoate, or a group having a mesogen structure by hydrogen bonding between side chains such as benzoic acid Good. As the mesogenic group possessed by the side chain, the following structure is preferable.

Figure 0006571524
Figure 0006571524

液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α−メチレン−γ−ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基およびシロキサンからなる群から選択される少なくとも1種から構成された重合性基と、上記式(21)〜(31)の少なくとも1種からなる側鎖を有する構造であることが好ましい。   More specific examples of the liquid crystalline side chain monomer include hydrocarbon, (meth) acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, norbornene and other radical polymerizable groups. A structure having a polymerizable group composed of at least one selected from the group consisting of siloxanes and a side chain composed of at least one of the above formulas (21) to (31) is preferable.

(A)側鎖型高分子は、上述した液晶性を発現する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。さらに、液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。   (A) The side chain polymer can be obtained by the polymerization reaction of the above-described photoreactive side chain monomer exhibiting liquid crystallinity. Further, it can be obtained by copolymerization of a photoreactive side chain monomer that does not exhibit liquid crystallinity and a liquid crystalline side chain monomer, or by copolymerization of a photoreactive side chain monomer that exhibits liquid crystallinity and a liquid crystalline side chain monomer. it can. Furthermore, it can be copolymerized with other monomers as long as the liquid crystallinity is not impaired.

その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
Examples of other monomers include industrially available monomers capable of radical polymerization reaction.
Specific examples of the other monomer include unsaturated carboxylic acid, acrylic ester compound, methacrylic ester compound, maleimide compound, acrylonitrile, maleic anhydride, styrene compound and vinyl compound.

不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2−トリフルオロエチルアクリレート、tert−ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2−メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3−メトキシブチルアクリレート、2−メチル−2−アダマンチルアクリレート、2−プロピル−2−アダマンチルアクリレート、8−メチル−8−トリシクロデシルアクリレート、及び、8−エチル−8−トリシクロデシルアクリレート等が挙げられる。
Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
Examples of the acrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and , Etc. 8-ethyl-8-tricyclodecyl acrylate.

メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2−トリフルオロエチルメタクリレート、tert−ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2−メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2−エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3−メトキシブチルメタクリレート、2−メチル−2−アダマンチルメタクリレート、2−プロピル−2−アダマンチルメタクリレート、8−メチル−8−トリシクロデシルメタクリレート、及び、8−エチル−8−トリシクロデシルメタクリレート等が挙げられる。 グリシジル(メタ)アクリレート、(3−メチル−3−オキセタニル)メチル(メタ)アクリレート、および(3−エチル−3−オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレート化合物も用いることができる。   Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-methyl 8 tricyclodecyl methacrylate, and, 8-ethyl-8-tricyclodecyl methacrylate. (Meth) acrylate compounds having a cyclic ether group such as glycidyl (meth) acrylate, (3-methyl-3-oxetanyl) methyl (meth) acrylate, and (3-ethyl-3-oxetanyl) methyl (meth) acrylate are also used. be able to.

ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2−ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。
スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。
マレイミド化合物としては、例えば、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、及びN−シクロヘキシルマレイミド等が挙げられる。
Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.

本実施の形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。   The method for producing the side chain polymer of the present embodiment is not particularly limited, and a general-purpose method that is handled industrially can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystalline side chain monomer or photoreactive side chain monomer. Among these, radical polymerization is particularly preferable from the viewpoint of ease of reaction control.

ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加−開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。   As the polymerization initiator for radical polymerization, a known compound such as a radical polymerization initiator or a reversible addition-cleavage chain transfer (RAFT) polymerization reagent can be used.

ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert−ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類 (ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシ シクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸−tert−ブチルエステル、 パーオキシピバリン酸−tert−ブチルエステル、パーオキシ 2−エチルシクロヘキサン酸−tert−アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2′−ジ(2−ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。   The radical thermal polymerization initiator is a compound that generates radicals by heating to a decomposition temperature or higher. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxidation). Hydrogen, tert-butyl hydride peroxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxy cyclohexane) Etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclo Xanthate-tert-amyl ester, etc.), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, and 2,2′-di (2-hydroxyethyl) And azobisisobutyronitrile). Such radical thermal polymerization initiators can be used singly or in combination of two or more.

ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4−ジエチルチオキサントン、2−エチルアントラキノン、アセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、2−ヒドロキシ−2−メチル−4’−イソプロピルプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、4,4’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’−トリ(t−ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、2−(4’−メトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(3’,4’−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(2’,4’−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(2’−メトキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4’−ペンチルオキシスチリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、4−[p−N,N−ジ(エトキシカルボニルメチル)]−2,6−ジ(トリクロロメチル)−s−トリアジン、1,3−ビス(トリクロロメチル)−5−(2’−クロロフェニル)−s−トリアジン、1,3−ビス(トリクロロメチル)−5−(4’−メトキシフェニル)−s−トリアジン、2−(p−ジメチルアミノスチリル)ベンズオキサゾール、2−(p−ジメチルアミノスチリル)ベンズチアゾール、2−メルカプトベンゾチアゾール、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、2−(o−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)−1,2’−ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’ビス(2,4−ジブロモフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、3−(2−メチル−2−ジメチルアミノプロピオニル)カルバゾール、3,6−ビス(2−メチル−2−モルホリノプロピオニル)−9−n−ドデシルカルバゾール、1−ヒドロキシシクロヘキシルフェニルケトン、ビス(5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(t−ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’−ジ(メトキシカルボニル)−4,4’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,4’−ジ(メトキシカルボニル)−4,3’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、4,4’−ジ(メトキシカルボニル)−3,3’−ジ(t−ブチルペルオキシカルボニル)ベンゾフェノン、2−(3−メチル−3H−ベンゾチアゾール−2−イリデン)−1−ナフタレン−2−イル−エタノン、又は2−(3−メチル−1,3−ベンゾチアゾール−2(3H)−イリデン)−1−(2−ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。   The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy 2-methylpropiophenone, 2-hydroxy-2-methyl-4′-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2- N-di-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4′-di (t-butylperoxycarbonyl) benzophenone 3,4,4′-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4′-methoxystyryl) -4,6-bis (trichloromethyl) -S-triazine, 2- (3 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (Trichloromethyl) -s-triazine, 2- (2′-methoxystyryl) -4,6-bis (trichloromethyl) ) -S-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)]-2, 6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4 ′ -Methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3′-carbonylbis (7-diethylamino) Coumarin), 2- (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bi (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2′-bis (2,4-dichlorophenyl) -4, 4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′bis (2,4-dibromophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 ′ -Biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2 -Dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (5-2,4-cyclopentadi) N-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone 3,3 ′, 4,4′-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3′-di (methoxycarbonyl) -4,4′-di (t-butylperoxycarbonyl) benzophenone, 3,4 '-Di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 2, -(3-methyl-3H-benzothiazol-2-ylidene) -1-naphthalen-2-yl-ethanone or 2- (3-methyl-1 3- benzothiazol -2 (3H) - ylidene) -1- (2-benzoyl) ethanone, and the like. These compounds may be used alone or in combination of two or more.

ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。   The radical polymerization method is not particularly limited, and an emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.

液晶性を発現し得る感光性の側鎖型高分子の重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例を以下に挙げる。   The organic solvent used for the polymerization reaction of the photosensitive side chain polymer capable of exhibiting liquid crystallinity is not particularly limited as long as the generated polymer is soluble. Specific examples are given below.

N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン、3−メトキシ−N,N−ジメチルプロパンアミド、3−エトキシ−N,N−ジメチルプロパンアミド、3−ブトキシ−N,N−ジメチルプロパンアミド等が挙げられる。   N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide , Γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethyl Glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol Monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene Glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropion , 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy -N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide and the like can be mentioned.

これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
These organic solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve the polymer | macromolecule to produce | generate, you may mix and use the above-mentioned organic solvent in the range which the polymer | macromolecule produced | generated does not precipitate.
In radical polymerization, oxygen in the organic solvent becomes a cause of inhibiting the polymerization reaction. Therefore, it is preferable to use an organic solvent that has been deaerated to the extent possible.

ラジカル重合の際の重合温度は30℃〜150℃の任意の温度を選択することができるが、好ましくは50℃〜100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1質量%〜50質量%、より好ましくは5質量%〜30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。   The polymerization temperature during radical polymerization can be selected from 30 ° C. to 150 ° C., but is preferably in the range of 50 ° C. to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.

上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%〜10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。   In the above-mentioned radical polymerization reaction, the molecular weight of the obtained polymer is decreased when the ratio of the radical polymerization initiator is large relative to the monomer, and the molecular weight of the obtained polymer is increased when the ratio is small, the ratio of the radical initiator is It is preferable that it is 0.1 mol%-10 mol% with respect to the monomer to superpose | polymerize. Further, various monomer components, solvents, initiators and the like can be added during the polymerization.

[重合体の回収]
上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
When recovering the produced polymer from the reaction solution of the photosensitive side chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is put into a poor solvent, The coalescence can be precipitated. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer deposited in a poor solvent and precipitated can be recovered by filtration and then dried at normal temperature or under reduced pressure at room temperature or by heating. Moreover, when the polymer which carried out precipitation collection | recovery is re-dissolved in an organic solvent and the operation which carries out reprecipitation collection | recovery is repeated 2 to 10 times, the impurity in a polymer can be decreased. Examples of the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.

本発明の(A)側鎖型高分子の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000〜1000000が好ましく、より好ましくは、5000〜200000である。   The molecular weight of the (A) side chain polymer of the present invention is measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the resulting coating film, workability during coating film formation, and coating film uniformity. The weight average molecular weight is preferably 2000 to 1000000, more preferably 5000 to 200000.

[重合体組成物の調製]
本発明に用いられる重合体組成物は、液晶配向膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、本発明に用いられる重合体組成物は、樹脂被膜を形成するための樹脂成分が有機溶媒に溶解した溶液として調製されることが好ましい。ここで、その樹脂成分とは、既に説明した液晶性を発現し得る感光性の側鎖型高分子を含む樹脂成分である。その際、樹脂成分の含有量は、1質量%〜20質量%が好ましく、より好ましくは3質量%〜15質量%、特に好ましくは3質量%〜10質量%である。
[Preparation of polymer composition]
The polymer composition used in the present invention is preferably prepared as a coating solution so as to be suitable for forming a liquid crystal alignment film. That is, the polymer composition used in the present invention is preferably prepared as a solution in which a resin component for forming a resin film is dissolved in an organic solvent. Here, the resin component is a resin component containing a photosensitive side chain polymer capable of exhibiting the liquid crystallinity already described. In that case, the content of the resin component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass.

本実施形態の重合体組成物において、前述の樹脂成分は、全てが上述した液晶性を発現し得る感光性の側鎖型高分子であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%〜80質量%、好ましくは1質量%〜50質量%である。
そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、液晶性を発現し得る感光性の側鎖型高分子ではない重合体等が挙げられる。
In the polymer composition of the present embodiment, the resin component described above may be a photosensitive side chain polymer that can all exhibit the above-described liquid crystallinity, but does not impair the liquid crystal developing ability and the photosensitive performance. Other polymers may be mixed within the range. In that case, content of the other polymer in a resin component is 0.5 mass%-80 mass%, Preferably it is 1 mass%-50 mass%.
Examples of such other polymers include polymers that are made of poly (meth) acrylate, polyamic acid, polyimide, and the like and are not a photosensitive side chain polymer that can exhibit liquid crystallinity.

<<(B)成分>>
本発明に用いられる重合体組成物は、(B)成分として、下記構造式で表されるジイソブチルカルビノール、すなわち、2,6−ジメチル−4−ヘプタノールを含有する。
<< (B) component >>
The polymer composition used in the present invention contains diisobutyl carbinol represented by the following structural formula, that is, 2,6-dimethyl-4-heptanol as the component (B).

Figure 0006571524
Figure 0006571524

液晶配向剤がジイソブチルカルビノールを含有することにより、それを含有していない液晶配向剤に比べて濡れ拡がり性が抑えられることで、液晶配向膜にした際のその端部の直線性が高くなる。また、端部の盛り上がりを抑制することができる。これは、ジイソブチルカルビノールは沸点/蒸気圧の関係から、貧溶媒であるブチルセロソルブやプロピレングリコールモノブチルエーテルと比較して、良溶媒であるN−メチル−2−ピロリドン(NMP)やN−エチル−2−ピロリドン(NEP)により近い蒸気圧曲線を描く溶媒であるためか、貧溶媒のほうが先に蒸発することにより、端部の盛り上がりを抑制しているものと考えられる。
含有量は、(C)成分の有機溶媒100質量部に対して、好ましくは20〜60質量部、さらに好ましくは25〜45質量部である。
When the liquid crystal aligning agent contains diisobutyl carbinol, the wetting and spreading properties are suppressed as compared to the liquid crystal aligning agent not containing the liquid crystal aligning agent, so that the linearity of the end portion when the liquid crystal aligning film is formed becomes high. . Moreover, the rising of an edge part can be suppressed. This is because diisobutyl carbinol is a good solvent such as N-methyl-2-pyrrolidone (NMP) or N-ethyl-2 in comparison with poor solvents such as butyl cellosolve or propylene glycol monobutyl ether because of the boiling point / vapor pressure relationship. -It is considered that the swelling of the end portion is suppressed because the poor solvent evaporates first because it is a solvent that draws a vapor pressure curve closer to pyrrolidone (NEP).
The content is preferably 20 to 60 parts by mass, more preferably 25 to 45 parts by mass with respect to 100 parts by mass of the organic solvent of component (C).

<<(C)有機溶媒>>
本発明に用いられる重合体組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−エチルピロリドン、N−ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ−ブチロラクトン、3−メトキシ−N,N−ジメチルプロパンアミド、3−エトキシ−N,N−ジメチルプロパンアミド、3−ブトキシ−N,N−ジメチルプロパンアミド、1,3−ジメチル−イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4−ヒドロキシ−4−メチル−2−ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。
<< (C) Organic solvent >>
The organic solvent used for the polymer composition used in the present invention is not particularly limited as long as it is an organic solvent that dissolves the resin component. Specific examples are given below.
N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, Dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3 -Dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4 Methyl-2-pentanone, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, etc. Is mentioned. These may be used alone or in combination.

本発明に用いられる重合体組成物は、上記(A)、(B)及び(C)成分以外の成分を含有してもよい。その例としては、重合体組成物を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。   The polymer composition used for this invention may contain components other than the said (A), (B) and (C) component. Examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when the polymer composition is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate. However, the present invention is not limited to this.

膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノn−ブチルエーテル、プロピレングリコール−tert−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3−メチル−3−メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3−メチル−3−メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1−ヘキサノール、n−へキサン、n−ペンタン、n−オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。
The following are mentioned as a specific example of the solvent (poor solvent) which improves the uniformity of film thickness and surface smoothness.
For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol mono n-butyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, Ethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene , Propyl ether, dihexyl ether, 1-hexanol N-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3 -Methyl methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy 2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethylamine Ter-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n- And solvents having a low surface tension such as butyl ester and isoamyl lactate.

これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、重合体組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%〜80質量%であることが好ましく、より好ましくは20質量%〜60質量%である。   These poor solvents may be used alone or in combination. When using the solvent as described above, it is preferably 5% by mass to 80% by mass of the total solvent, more preferably so as not to significantly reduce the solubility of the entire solvent contained in the polymer composition. Is 20% by mass to 60% by mass.

膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。
より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R−30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S−382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部〜2質量部、より好ましくは0.01質量部〜1質量部である。
Examples of the compound that improves film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), MegaFac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (Manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass Company), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) It is done. The use ratio of these surfactants is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part with respect to 100 parts by mass of the resin component contained in the polymer composition. Part by mass.

液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。
例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン等が挙げられる。
Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds.
For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Examples thereof include propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane.

さらに、基板と液晶配向膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、重合体組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。   Furthermore, in addition to improving the adhesion between the substrate and the liquid crystal alignment film, the addition of the following phenoplasts and epoxy group-containing compounds for the purpose of preventing the deterioration of electrical characteristics due to the backlight when the liquid crystal display element is constructed An agent may be contained in the polymer composition. Specific phenoplast additives are shown below, but are not limited to this structure.

Figure 0006571524
Figure 0006571524

具体的なエポキシ基含有化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’,−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,−テトラグリシジル−4、4’−ジアミノジフェニルメタンなどが例示される。   Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentylglycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl-4 4'-diaminodiphenylmethane and the like.

基板との密着性を向上させる化合物を使用する場合、その使用量は、重合体組成物に含有される樹脂成分の100質量部に対して0.1質量部〜30質量部であることが好ましく、より好ましくは1質量部〜20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。   When using the compound which improves adhesiveness with a board | substrate, it is preferable that the usage-amount is 0.1 mass part-30 mass parts with respect to 100 mass parts of the resin component contained in a polymer composition. More preferably, it is 1 mass part-20 mass parts. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.

添加剤として、光増感剤を用いることもできる。無色増感剤および三重項増感剤が好ましい。
光増感剤としては、芳香族ニトロ化合物、クマリン(7−ジエチルアミノ−4−メチルクマリン、7−ヒドロキシ4−メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2−ヒドロキシケトン、およびアミノ置換された、芳香族2−ヒドロキシケトン(2−ヒドロキシベンゾフェノン、モノ−もしくはジ−p−(ジメチルアミノ)−2−ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2−ベンゾイルメチレン−3−メチル−β−ナフトチアゾリン、2−(β−ナフトイルメチレン)−3−メチルベンゾチアゾリン、2−(α−ナフトイルメチレン)−3−メチルベンゾチアゾリン、2−(4−ビフェノイルメチレン)−3−メチルベンゾチアゾリン、2−(β−ナフトイルメチレン)−3−メチル−β−ナフトチアゾリン、2−(4−ビフェノイルメチレン)−3−メチル−β−ナフトチアゾリン、2−(p−フルオロベンゾイルメチレン)−3−メチル−β−ナフトチアゾリン)、オキサゾリン(2−ベンゾイルメチレン−3−メチル−β−ナフトオキサゾリン、2−(β−ナフトイルメチレン)−3−メチルベンゾオキサゾリン、2−(α−ナフトイルメチレン)−3−メチルベンゾオキサゾリン、2−(4−ビフェノイルメチレン)−3−メチルベンゾオキサゾリン、2−(β−ナフトイルメチレン)−3−メチル−β−ナフトオキサゾリン、2−(4−ビフェノイルメチレン)−3−メチル−β−ナフトオキサゾリン、2−(p−フルオロベンゾイルメチレン)−3−メチル−β−ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m−もしくはp−ニトロアニリン、2,4,6−トリニトロアニリン)またはニトロアセナフテン(5−ニトロアセナフテン)、(2−[(m−ヒドロキシ−p−メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N−アルキル化フタロン、アセトフェノンケタール(2,2−ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2−ナフタレンメタノール、2−ナフタレンカルボン酸、9−アントラセンメタノール、および9−アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリン等がある。
好ましくは、芳香族2−ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、およびアセトフェノンケタールである。
A photosensitizer can also be used as an additive. Colorless and triplet sensitizers are preferred.
As photosensitizers, aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy-4-methylcoumarin), ketocoumarins, carbonyl biscoumarins, aromatic 2-hydroxyketones, and amino substituted Aromatic 2-hydroxyketone (2-hydroxybenzophenone, mono- or di-p- (dimethylamino) -2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -Methyl-β-naphthothiazoline, 2- (β-naphthoylmethylene) -3-methylbenzothiazoline, 2- (α-naphthoylmethylene) -3-methylbenzothiazoline, 2- (4-biphenoylmethylene)- 3-methylbenzothia Phosphorus, 2- (β-naphthoylmethylene) -3-methyl-β-naphthothiazoline, 2- (4-biphenoylmethylene) -3-methyl-β-naphthothiazoline, 2- (p-fluorobenzoylmethylene)- 3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2- (β-naphthoylmethylene) -3-methylbenzoxazoline, 2- (α-naphthoylmethylene) ) -3-methylbenzoxazoline, 2- (4-biphenoylmethylene) -3-methylbenzoxazoline, 2- (β-naphthoylmethylene) -3-methyl-β-naphthoxazoline, 2- (4-biphenoyl) Methylene) -3-methyl-β-naphthoxazoline, 2- (p-fluorobenzoylmethylene) -3-methyl-β- Ftoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m-hydroxy-p -Methoxy) styryl] benzothiazole, benzoin alkyl ether, N-alkylated phthalone, acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol And 9-anthracenecarboxylic acid), benzopyran, azoindolizine, melocoumarin and the like.
Aromatic 2-hydroxyketone (benzophenone), coumarin, ketocoumarin, carbonyl biscoumarin, acetophenone, anthraquinone, xanthone, thioxanthone, and acetophenone ketal are preferred.

重合体組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。   In the polymer composition, in addition to the above-described ones, a dielectric, a conductive substance, or the like for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film, as long as the effects of the present invention are not impaired. Furthermore, a crosslinkable compound may be added for the purpose of increasing the hardness and density of the liquid crystal alignment film.

上述した重合体組成物を横電界駆動用の導電膜を有する基板上に塗布する方法は特に限定されない。
塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
The method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
In general, the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method (rotary coating method), or a spray method, and these may be used depending on the purpose.

横電界駆動用の導電膜を有する基板上に重合体組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50〜200℃、好ましくは50〜150℃で溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。
塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm〜300nm、より好ましくは10nm〜150nmである。
尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
After the polymer composition is applied onto the substrate having the conductive film for driving the transverse electric field, it is 50 to 200 ° C., preferably 50 to 200 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. The solvent can be evaporated at 150 ° C. to obtain a coating film. The drying temperature at this time is preferably lower than the liquid crystal phase expression temperature of the side chain polymer.
If the thickness of the coating film is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is.
In addition, it is also possible to provide the process of cooling the board | substrate with which the coating film was formed to room temperature after the [I] process and before the following [II] process.

<工程[II]>
工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm〜400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm〜400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
<Process [II]>
In step [II], the coating film obtained in step [I] is irradiated with polarized ultraviolet rays. When irradiating the surface of the coating film with polarized ultraviolet rays, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the ultraviolet rays to be used, ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used. For example, ultraviolet rays having a wavelength in the range of 290 nm to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.

偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%〜70%の範囲内とすることが好ましく、1%〜50%の範囲内とすることがより好ましい。   The irradiation amount of polarized ultraviolet rays depends on the coating film used. The amount of irradiation is polarized ultraviolet light that realizes the maximum value of ΔA (hereinafter also referred to as ΔAmax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light. The amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.

<工程[III]>
工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
<Step [III]>
In step [III], the ultraviolet-irradiated coating film polarized in step [II] is heated. An orientation control ability can be imparted to the coating film by heating.
For heating, a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used. The heating temperature can be determined in consideration of the temperature at which the liquid crystallinity of the coating film used is developed.

加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。
なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
The heating temperature is preferably within the temperature range of the temperature at which the side chain polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal expression temperature). In the case of a thin film surface such as a coating film, the liquid crystal expression temperature on the coating film surface is expected to be lower than the liquid crystal expression temperature when a photosensitive side chain polymer that can exhibit liquid crystallinity is observed in bulk. The Therefore, the heating temperature is more preferably within the temperature range of the liquid crystal expression temperature on the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is 10 ° C. lower than the lower limit of the temperature range of the liquid crystal expression temperature of the side chain polymer used, and 10 ° C. lower than the upper limit of the liquid crystal temperature range. It is preferable that it is the temperature of the range which makes an upper limit. If the heating temperature is lower than the above temperature range, the anisotropic amplification effect due to heat in the coating film tends to be insufficient, and if the heating temperature is too higher than the above temperature range, the state of the coating film Tends to be close to an isotropic liquid state (isotropic phase), and in this case, self-organization may make it difficult to reorient in one direction.
The liquid crystal expression temperature is not less than the glass transition temperature (Tg) at which the side chain polymer or coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). It means a temperature below the isotropic phase transition temperature (Tiso) that causes a phase transition.

以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。   By having the above steps, the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board | substrate with a liquid crystal aligning film can be manufactured highly efficiently.

<工程[IV]>
[IV]工程は、[III]で得られた、横電界駆動用の導電膜上に液晶配向膜を有する基板(第1の基板)と、同様に上記[I’]〜[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]〜[III’]は、工程[I]において、横電界駆動用の導電膜を有する基板の代わりに、該横電界駆動用導電膜を有しない基板を用いた以外、工程[I]〜[III]と同様に行うことができる。工程[I]〜[III]と工程[I’]〜[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]〜[III’]の説明を省略する。
<Process [IV]>
The step [IV] is performed in the same manner as the above [I ′] to [III ′] in the same manner as the substrate (first substrate) obtained in [III] and having a liquid crystal alignment film on the conductive film for driving a horizontal electric field. The obtained liquid crystal alignment film-attached substrate (second substrate) having no conductive film is placed oppositely so that both liquid crystal alignment films face each other through liquid crystal, and a liquid crystal cell is formed by a known method. This is a step of manufacturing a lateral electric field drive type liquid crystal display element. The steps [I ′] to [III ′] are the same as the steps [I] except that a substrate having no lateral electric field driving conductive film is used instead of the substrate having the lateral electric field driving conductive film. It can carry out similarly to process [I]-[III]. Since the difference between the steps [I] to [III] and the steps [I ′] to [III ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [III ′] is omitted. To do.

液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm〜30μm、より好ましくは2μm〜10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。   To give an example of the production of a liquid crystal cell or a liquid crystal display element, the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. In this way, the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. , Etc. can be illustrated. At this time, it is preferable to use a substrate having an electrode having a structure like a comb for driving a horizontal electric field as the substrate on one side. The spacer diameter at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.

本発明の塗膜付基板の製造方法は、重合体組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
The manufacturing method of the board | substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply | coating a polymer composition on a board | substrate and forming a coating film. Next, by heating, high-efficiency anisotropy is introduced into the side chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
The coating film used in the present invention realizes the introduction of highly efficient anisotropy into the coating film by utilizing the principle of molecular reorientation induced by the side chain photoreaction and liquid crystallinity. . In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain polymer, after forming a coating film on the substrate using the side chain polymer, polarized ultraviolet rays are formed. After irradiation and then heating, a liquid crystal display element is formed.

以下、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた実施の形態を第1の形態、光反応性基として光フリース転位基又は異性化を起こす基を有する構造の側鎖型高分子を用いた実施の形態を第2の形態と称して説明する。   Hereinafter, an embodiment using a side chain type polymer having a structure having a photocrosslinkable group as a photoreactive group is the first embodiment, a structure having a photofleece rearrangement group or a group causing isomerization as a photoreactive group An embodiment using the side chain type polymer will be referred to as a second embodiment.

図1は、本発明における第1の形態において、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図1(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図1(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図1(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の第1の形態において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合の模式図である。   FIG. 1 schematically shows an anisotropic introduction process in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to. FIG. 1 (a) is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 1 (b) is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light. FIG. 1 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention. In 1 form, it is a schematic diagram in case the ultraviolet irradiation amount of a [II] process exists in the range of 1%-15% of the ultraviolet irradiation amount which makes (DELTA) A the maximum.

図2は、本発明における第1の形態において、光反応性基として光架橋性基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図2(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図2(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図2(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が大きい場合、すなわち、本発明の第1の形態において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合の模式図である。   FIG. 2 is a schematic illustration of anisotropy introduction treatment in a method for producing a liquid crystal alignment film using a side chain polymer having a structure having a photocrosslinkable group as a photoreactive group in the first embodiment of the present invention. It is a figure of one example demonstrated to. FIG. 2A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 2B is a schematic diagram showing the state of the side chain polymer film after irradiation with polarized light. FIG. 2 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is large, that is, the first aspect of the present invention. In 1 form, it is a schematic diagram in case the ultraviolet irradiation amount of a [II] process exists in the range of 15%-70% of the ultraviolet irradiation amount which makes (DELTA) A the maximum.

図3は、本発明における第2の形態において、光反応性基として光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図3(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図3(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図3(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が小さい場合、すなわち、本発明の第2の態様において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合の模式図である。   FIG. 3 shows a side chain polymer having a structure having a photo-isomerizable group as a photoreactive group or a photo-Fleece rearrangement group represented by the above formula (18) in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction process of anisotropy in the manufacturing method of the used liquid crystal aligning film. FIG. 3A is a diagram schematically showing the state of the side chain polymer film before polarized light irradiation, and FIG. 3B is a schematic diagram of the state of the side chain polymer film after polarized light irradiation. FIG. 3 (c) is a diagram schematically showing the state of the side-chain polymer film after heating, and particularly when the introduced anisotropy is small, that is, the first aspect of the present invention. In 2 aspect, it is a schematic diagram in case the ultraviolet irradiation amount of a [II] process exists in the range of 1%-70% of the ultraviolet irradiation amount which makes (DELTA) A the maximum.

図4は、本発明における第2の形態において、光反応性基として上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜の製造方法における異方性の導入処理を模式的に説明する一つの例の図である。図4(a)は、偏光照射前の側鎖型高分子膜の状態を模式的に示す図であり、図4(b)は、偏光照射後の側鎖型高分子膜の状態を模式的に示す図であり、図4(c)は、加熱後の側鎖型高分子膜の状態を模式的に示す図であり、特に導入された異方性が大きい場合、すなわち、本発明の第2の態様において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合の模式図である。   FIG. 4 shows the production of a liquid crystal alignment film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19) as a photoreactive group in the second embodiment of the present invention. It is a figure of one example which illustrates typically the introduction processing of anisotropy in a method. FIG. 4A is a diagram schematically showing the state of the side chain polymer film before irradiation with polarized light, and FIG. 4B is a schematic diagram of the state of the side chain polymer film after irradiation with polarized light. FIG. 4 (c) is a diagram schematically showing the state of the side-chain polymer film after heating. In particular, when the introduced anisotropy is large, that is, In 2 aspect, it is a schematic diagram in case the ultraviolet irradiation amount of a [II] process exists in the range of 1%-70% of the ultraviolet irradiation amount which makes (DELTA) A the maximum.

本発明における第1の形態において、塗膜への異方性の導入処理で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合は、先ず、基板上に塗膜1を形成する。図1(a)に示すように、基板上に形成された塗膜1では、側鎖2がランダムに配列する構造を有する。塗膜1の側鎖2のランダム配列に従い、側鎖2のメソゲン成分および感光性基もランダムに配向しており、その塗膜1は等方性である。   In the first embodiment of the present invention, in the treatment for introducing anisotropy into the coating film, the ultraviolet irradiation amount in the step [II] is in the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA. In the case, first, the coating film 1 is formed on the substrate. As shown to Fig.1 (a), in the coating film 1 formed on the board | substrate, it has a structure where the side chain 2 arranges at random. According to the random arrangement of the side chain 2 of the coating film 1, the mesogenic component and the photosensitive group of the side chain 2 are also randomly oriented, and the coating film 1 is isotropic.

本発明における第1の形態において、塗膜への異方性の導入処理で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合は、先ず、基板上に塗膜3を形成する。図2(a)に示すように、基板上に形成された塗膜3では、側鎖4がランダムに配列する構造を有する。塗膜3の側鎖4のランダム配列に従い、側鎖4のメソゲン成分および感光性基もランダムに配向しており、その塗膜2は等方性である。   In the first embodiment of the present invention, in the treatment for introducing anisotropy into the coating film, the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA. In the case, first, the coating film 3 is formed on the substrate. As shown in FIG. 2A, the coating film 3 formed on the substrate has a structure in which the side chains 4 are randomly arranged. According to the random arrangement of the side chains 4 of the coating film 3, the mesogenic components and the photosensitive groups of the side chains 4 are also randomly oriented, and the coating film 2 is isotropic.

本発明における第2の形態において、塗膜への異方性の導入処理で、光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合は、先ず、基板上に塗膜5を形成する。図3(a)に示すように、基板上に形成された塗膜5では、側鎖6がランダムに配列する構造を有する。塗膜5の側鎖6のランダム配列に従い、側鎖6のメソゲン成分および感光性基もランダムに配向しており、その側鎖型高分子膜5は等方性である。   In the second embodiment of the present invention, a side chain type having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) in the treatment for introducing anisotropy into the coating film. In the case of using a liquid crystal alignment film using a polymer, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, first, on the substrate The coating film 5 is formed. As shown in FIG. 3A, the coating film 5 formed on the substrate has a structure in which the side chains 6 are randomly arranged. According to the random arrangement of the side chain 6 of the coating film 5, the mesogenic component and the photosensitive group of the side chain 6 are also randomly oriented, and the side chain type polymer film 5 is isotropic.

本発明における第2の形態において、塗膜への異方性の導入処理で、上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いた場合において、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合は、先ず、基板上に塗膜7を形成する。図4(a)に示すように、基板上に形成された塗膜7では、側鎖8がランダムに配列する構造を有する。塗膜7の側鎖8のランダム配列に従い、側鎖8のメソゲン成分および感光性基もランダムに配向しており、その塗膜7は等方性である。   In the second embodiment of the present invention, liquid crystal alignment using a side chain type polymer having a structure having a light Fleece rearrangement group represented by the above formula (19) in the treatment for introducing anisotropy into the coating film In the case of using a film, when the ultraviolet irradiation amount in the step [II] is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, first, the coating film 7 is formed on the substrate. . As shown in FIG. 4A, the coating film 7 formed on the substrate has a structure in which the side chains 8 are arranged at random. According to the random arrangement of the side chains 8 of the coating film 7, the mesogenic components and the photosensitive groups of the side chains 8 are also randomly oriented, and the coating film 7 is isotropic.

本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合において、この等方性の塗膜1に対し、偏光した紫外線を照射する。すると、図1(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖2のうちの感光性基を有する側鎖2aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖2aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として塗膜1に非常に小さな異方性が付与される。   In the first embodiment of the present invention, when the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA, the isotropic coating film 1 is formed. On the other hand, polarized ultraviolet rays are irradiated. Then, as shown in FIG. 1B, the photosensitive group of the side chain 2a having the photosensitive group among the side chains 2 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like. Causes a photoreaction. As a result, the density of the side chain 2a that has undergone photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet light, and as a result, very small anisotropy is imparted to the coating film 1.

本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合において、この等方性の塗膜3に対し、偏光した紫外線を照射する。すると、図2(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖4のうちの感光性基を有する側鎖4aの感光性基が優先的に二量化反応などの光反応を起こす。その結果、光反応をした側鎖4aの密度が照射紫外線の偏光方向で高くなり、結果として塗膜3に小さな異方性が付与される。   In the first embodiment, when the ultraviolet irradiation amount in the step [II] is in the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the isotropic coating film 3 is formed. On the other hand, polarized ultraviolet rays are irradiated. Then, as shown in FIG. 2B, the photosensitive group of the side chain 4a having the photosensitive group among the side chains 4 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to dimerization reaction or the like. Causes a photoreaction. As a result, the density of the side chain 4a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, a small anisotropy is imparted to the coating film 3.

本実施の第2の形態で、光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた液晶配向膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、この等方性の塗膜5に対し、偏光した紫外線を照射する。すると、図3(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖6のうちの感光性基を有する側鎖6aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖6aの密度が照射紫外線の偏光方向で僅かに高くなり、結果として塗膜5に非常に小さな異方性が付与される。   In the second embodiment of the present invention, using a liquid crystal alignment film using a photoisomerizable group or a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (18), [II] When the ultraviolet ray irradiation amount in the step is in the range of 1% to 70% of the ultraviolet ray irradiation amount that maximizes ΔA, the isotropic coating film 5 is irradiated with polarized ultraviolet rays. Then, as shown in FIG. 3 (b), the photosensitive group of the side chain 6a having the photosensitive group among the side chains 6 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 6a subjected to photoreaction becomes slightly higher in the polarization direction of the irradiated ultraviolet rays, and as a result, very small anisotropy is imparted to the coating film 5.

本実施の第2の形態で、上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた塗膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、この等方性の塗膜7に対し、偏光した紫外線を照射する。すると、図4(b)に示すように、紫外線の偏光方向と平行な方向に配列する側鎖8のうちの感光性基を有する側鎖8aの感光性基が優先的に光フリース転位などの光反応を起こす。その結果、光反応をした側鎖8aの密度が照射紫外線の偏光方向で高くなり、結果として塗膜7に小さな異方性が付与される。   In the second embodiment of the present invention, the amount of ultraviolet irradiation in the step [II] is obtained using a coating film using a side chain polymer having a structure having a photo-Fleece rearrangement group represented by the above formula (19). Is within the range of 1% to 70% of the amount of UV irradiation that maximizes ΔA, the isotropic coating film 7 is irradiated with polarized UV light. Then, as shown in FIG. 4 (b), the photosensitive group of the side chain 8a having the photosensitive group among the side chains 8 arranged in a direction parallel to the polarization direction of the ultraviolet rays is preferentially subjected to light fleece rearrangement or the like. Causes a photoreaction. As a result, the density of the side chain 8a that has undergone photoreaction increases in the polarization direction of the irradiated ultraviolet light, and as a result, small anisotropy is imparted to the coating film 7.

次いで、本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜15%の範囲内である場合において、偏光照射後の塗膜1を加熱し、液晶状態にする。すると図1(c)に示すように、塗膜1では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。この場合、照射紫外線の偏光方向と平行方向に生じた架橋反応の量が非常に小さいため、この架橋反応部位は可塑剤としての働きをする。そのため、照射紫外線の偏光方向と垂直方向の液晶性が平行方向の液晶性より高くなり、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖2が再配向する。その結果、光架橋反応で誘起された塗膜1の非常に小さな異方性は、熱によって増幅され、塗膜1においてより大きな異方性が付与されることになる。   Next, in the first embodiment, in the case where the ultraviolet irradiation amount in the step [II] is within the range of 1% to 15% of the ultraviolet irradiation amount that maximizes ΔA, the coating film 1 after polarized light irradiation Is heated to a liquid crystal state. Then, as shown in FIG.1 (c), in the coating film 1, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. In this case, since the amount of the crosslinking reaction generated in the direction parallel to the polarization direction of the irradiated ultraviolet ray is very small, this crosslinking reaction site functions as a plasticizer. Therefore, the liquid crystallinity in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is higher than the liquid crystallinity in the parallel direction, and the side chain 2 containing the mesogenic component is reoriented by self-organizing in the direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the very small anisotropy of the coating film 1 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 1.

同様に、本実施の第1の形態で、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の15%〜70%の範囲内である場合において、偏光照射後の塗膜3を加熱し、液晶状態にする。すると図2(c)に示すように、側鎖型高分子膜3では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた架橋反応の量が異なっている。そのため、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖4が再配向する。その結果、光架橋反応で誘起された塗膜3の小さな異方性は、熱によって増幅され、塗膜3においてより大きな異方性が付与されることになる。   Similarly, in the first embodiment, when the ultraviolet irradiation amount in the step [II] is within the range of 15% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the coating film after polarized light irradiation 3 is heated to a liquid crystal state. Then, as shown in FIG. 2C, in the side chain type polymer film 3, the amount of the generated crosslinking reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet rays and the direction perpendicular thereto. Therefore, the side chain 4 containing the mesogenic component is reoriented by self-organizing in a direction parallel to the polarization direction of the irradiated ultraviolet light. As a result, the small anisotropy of the coating film 3 induced by the photocrosslinking reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 3.

同様に、本実施の第2の形態で、光異性化性基か、上述の式(18)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた塗膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、偏光照射後の塗膜5を加熱し、液晶状態にする。すると図3(c)に示すように、塗膜5では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。この場合、照射紫外線の偏光方向と垂直方向に生じた光フリース転位体の液晶配向力が反応前の側鎖の液晶配向力より強いため、照射紫外線の偏光方向と垂直な方向に自己組織化してメソゲン成分を含む側鎖6が再配向する。その結果、光フリース転位反応で誘起された塗膜5の非常に小さな異方性は、熱によって増幅され、塗膜5においてより大きな異方性が付与されることになる。   Similarly, in the second embodiment, a coating film using a side-chain polymer having a structure having a photo-isomerizable group or a photo-Fleece rearrangement group represented by the above formula (18) is used. Then, when the ultraviolet irradiation amount in the step [II] is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the coating film 5 after the polarized light irradiation is heated to be in a liquid crystal state. Then, as shown in FIG.3 (c), in the coating film 5, the quantity of the produced | generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of irradiation ultraviolet rays, and a perpendicular | vertical direction. In this case, since the liquid crystal alignment force of the light fleece rearrangement generated in the direction perpendicular to the polarization direction of the irradiated ultraviolet light is stronger than the liquid crystal alignment force of the side chain before the reaction, it is self-organized in the direction perpendicular to the polarization direction of the irradiated ultraviolet light. The side chain 6 containing the mesogenic component is reoriented. As a result, the very small anisotropy of the coating film 5 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 5.

同様に、本実施の第2の形態で、上述の式(19)で表される、光フリース転位基を有する構造の側鎖型高分子を用いた塗膜を用いて、[II]工程の紫外線照射量が、ΔAを最大にする紫外線照射量の1%〜70%の範囲内である場合において、偏光照射後の塗膜7を加熱し、液晶状態にする。すると図4(c)に示すように、側鎖型高分子膜7では、照射紫外線の偏光方向と平行な方向と垂直な方向との間で、生じた光フリース転位反応の量が異なっている。光フリース転位体8(a)のアンカリング力は転位前の側鎖8より強いため、ある一定量以上の光フリース転位体が生じると、照射紫外線の偏光方向と平行な方向に自己組織化してメソゲン成分を含む側鎖8が再配向する。その結果、光フリース転位反応で誘起された塗膜7の小さな異方性は、熱によって増幅され、塗膜7においてより大きな異方性が付与されることになる。   Similarly, in the second embodiment, a coating film using a side chain type polymer having a structure having a photofleece rearrangement group represented by the above formula (19) is used. When the ultraviolet irradiation amount is in the range of 1% to 70% of the ultraviolet irradiation amount that maximizes ΔA, the coating film 7 after irradiation with polarized light is heated to a liquid crystal state. Then, as shown in FIG. 4 (c), in the side chain polymer film 7, the amount of the generated light fleece rearrangement reaction differs between the direction parallel to the polarization direction of the irradiated ultraviolet light and the direction perpendicular thereto. . Since the anchoring force of the optical fleece rearrangement 8 (a) is stronger than that of the side chain 8 before the rearrangement, when a certain amount or more of the optical fleece rearrangement occurs, it is self-assembled in a direction parallel to the polarization direction of the irradiated ultraviolet light. The side chain 8 containing the mesogenic component is reoriented. As a result, the small anisotropy of the coating film 7 induced by the photofleece rearrangement reaction is amplified by heat, and a larger anisotropy is imparted to the coating film 7.

したがって、本発明の方法に用いる塗膜は、塗膜への偏光した紫外線の照射と加熱処理を順次行うことにより、高効率に異方性が導入され、配向制御能に優れた液晶配向膜とすることができる。   Therefore, the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.

そして、本発明の方法に用いる塗膜では、塗膜への偏光した紫外線の照射量と、加熱処理における加熱温度を最適化する。それにより高効率な、塗膜への異方性の導入を実現することができる。   And in the coating film used for the method of this invention, the irradiation amount of the polarized ultraviolet-ray to a coating film, and the heating temperature in heat processing are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.

本発明に用いられる塗膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その塗膜において感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する量を最適にする偏光紫外線の照射量に対応する。本発明に用いられる塗膜に対して偏光した紫外線を照射した結果、光架橋反応や光異性化反応、若しくは光フリース転位反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。一方、本発明に用いられる塗膜で、光架橋性基を有する構造に対して偏光した紫外線を照射した結果、架橋反応する側鎖の感光性基が過剰となると側鎖間での架橋反応が進行しすぎることになる。その場合、得られる膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。また、本発明に用いられる塗膜で、光フリース転位基を有する構造に対して偏光した紫外線を照射した結果、光フリース転位反応する側鎖の感光性基が過剰となると、塗膜の液晶性が低下しすぎることになる。その場合、得られる膜の液晶性も低下し、その後の加熱による自己組織化の進行の妨げとなることがある。さらに、光フリース転位基を有する構造に対して偏光した紫外線を照射する場合、紫外線の照射量が多すぎると、側鎖型高分子が光分解し、その後の加熱による自己組織化の進行の妨げとなることがある。   The optimum irradiation amount of polarized ultraviolet rays for introducing highly efficient anisotropy into the coating film used in the present invention is such that the photosensitive group undergoes photocrosslinking reaction, photoisomerization reaction, or photofries rearrangement reaction in the coating film. Corresponds to the irradiation amount of polarized ultraviolet rays to optimize the amount. As a result of irradiating the coating film used in the present invention with polarized ultraviolet rays, if the photo-crosslinking reaction, photoisomerization reaction, or photo-fleece rearrangement reaction has few photosensitive groups in the side chain, the amount of photoreaction will not be sufficient. . In that case, sufficient self-organization does not proceed even after heating. On the other hand, as a result of irradiating polarized ultraviolet rays to the structure having a photocrosslinkable group in the coating film used in the present invention, the crosslinking reaction between the side chains is caused when the photosensitive group of the side chain undergoing the crosslinking reaction becomes excessive. Too much progress. In that case, the resulting film may become rigid and hinder the progress of self-assembly by subsequent heating. In addition, when the coating film used in the present invention is irradiated with polarized ultraviolet rays to the structure having the light Fleece rearrangement group, if the photosensitive group of the side chain that undergoes the light Fleece rearrangement reaction becomes excessive, the liquid crystallinity of the coating film Will drop too much. In that case, the liquid crystallinity of the obtained film is also lowered, which may hinder the progress of self-assembly by subsequent heating. Furthermore, when irradiating polarized ultraviolet light to a structure having a photo-fleece rearrangement group, if the amount of ultraviolet light irradiation is too large, the side-chain polymer is photodegraded, preventing the subsequent self-organization by heating. It may become.

したがって、本発明に用いられる塗膜において、偏光紫外線の照射によって側鎖の感光性基が光架橋反応や光異性化反応、若しくは光フリース転位反応する最適な量は、その側鎖型高分子膜の有する感光性基の0.1モル%〜40モル%にすることが好ましく、0.1モル%〜20モル%にすることがより好ましい。光反応する側鎖の感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。   Therefore, in the coating film used in the present invention, the optimum amount of the photopolymerization reaction, photoisomerization reaction, or photofleece rearrangement reaction of the side chain photosensitive group by irradiation with polarized ultraviolet rays is the side chain polymer film. It is preferable to make it 0.1 mol%-40 mol% of the photosensitive group which has, and it is more preferable to set it as 0.1 mol%-20 mol%. By making the amount of the photo-reactive side chain photosensitive group within such a range, the self-organization in the subsequent heat treatment proceeds efficiently, and the formation of highly efficient anisotropy in the film is possible. Become.

本発明の方法に用いる塗膜では、偏光した紫外線の照射量の最適化により、側鎖型高分子膜の側鎖における、感光性基の光架橋反応や光異性化反応、または光フリース転位反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、本発明に用いられる塗膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、本発明に用いられる塗膜の紫外吸収の評価に基づいて行うことが可能である。   In the coating film used in the method of the present invention, by optimizing the irradiation amount of polarized ultraviolet rays, photocrosslinking reaction or photoisomerization reaction of photosensitive groups or photofleece rearrangement reaction in the side chain of the side chain polymer film Optimize the amount of. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.

すなわち、本発明に用いられる塗膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明に用いられる塗膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。   That is, the ultraviolet absorption in the direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet absorption in the vertical direction after irradiation with polarized ultraviolet light are measured for the coating film used in the present invention. From the measurement result of ultraviolet absorption, ΔA, which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays, is evaluated. Then, the maximum value of ΔA (ΔAmax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained. In the production method of the present invention, a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ΔAmax.

本発明の製造方法では、本発明に用いられる塗膜への偏光した紫外線の照射量を、ΔAmaxを実現する偏光紫外線の量の1%〜70%の範囲内とすることが好ましく、1%〜50%の範囲内とすることがより好ましい。本発明に用いられる塗膜において、ΔAmaxを実現する偏光紫外線の量の1%〜50%の範囲内の偏光紫外線の照射量は、その側鎖型高分子膜の有する感光性基全体の0.1モル%〜20モル%を光架橋反応させる偏光紫外線の量に相当する。   In the production method of the present invention, the irradiation amount of polarized ultraviolet rays on the coating film used in the present invention is preferably in the range of 1% to 70% of the amount of polarized ultraviolet rays realizing ΔAmax. More preferably, it is within the range of 50%. In the coating film used in the present invention, the irradiation amount of polarized ultraviolet rays within the range of 1% to 50% of the amount of polarized ultraviolet rays realizing ΔAmax is 0. 0% of the entire photosensitive group of the side chain polymer film. 1 mol% to 20 mol% corresponds to the amount of polarized ultraviolet light that undergoes a photocrosslinking reaction.

以上より、本発明の製造方法では、塗膜への高効率な異方性の導入を実現するため、その側鎖型高分子の液晶温度範囲を基準として、上述したような好適な加熱温度を定めるのがよい。したがって、例えば、本発明に用いられる側鎖型高分子の液晶温度範囲が100℃〜200℃である場合、偏光紫外線照射後の加熱の温度を90℃〜190℃とすることが望ましい。こうすることにより、本発明に用いられる塗膜において、より大きな異方性が付与されることになる。   From the above, in the production method of the present invention, in order to achieve highly efficient anisotropy introduction into the coating film, a suitable heating temperature as described above is set based on the liquid crystal temperature range of the side chain polymer. It is good to decide. Therefore, for example, when the liquid crystal temperature range of the side chain polymer used in the present invention is 100 ° C. to 200 ° C., the heating temperature after irradiation with polarized ultraviolet light is desirably 90 ° C. to 190 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.

こうすることにより、本発明によって提供される液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示すことになる。   By doing so, the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.

以上のようにして、本発明の方法によって製造された横電界駆動型液晶表示素子用基板又は該基板を有する横電界駆動型液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。
As described above, the lateral electric field drive type liquid crystal display element substrate manufactured by the method of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability, large screen and high definition. It can be suitably used for LCD TVs.
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to this Example.

実施例で使用する略号は以下のとおりである。
(メタクリルモノマー)
Abbreviations used in the examples are as follows.
(Methacrylic monomer)

Figure 0006571524
Figure 0006571524

MA1は特許文献(WO2011/084546)に記載の合成法にて合成した。   MA1 was synthesized by a synthesis method described in a patent document (WO2011 / 084546).

<有機溶媒>
THF:テトラヒドロフラン
NEP:N−エチル−2−ピロリドン
PB:プロピレングリコールモノブチルエーテル
DIBC:2,6−ジメチル−4−ヘプタノール
<重合開始剤>
AIBN:2,2’−アゾビスイソブチロニトリル
<Organic solvent>
THF: Tetrahydrofuran NEP: N-ethyl-2-pyrrolidone PB: Propylene glycol monobutyl ether DIBC: 2,6-dimethyl-4-heptanol <Polymerization initiator>
AIBN: 2,2′-azobisisobutyronitrile

<ポリマー合成>
MA1(9.97g、30.0mmol)をTHF(92.0g)中に溶解し、ダイアフラムポンプで脱気を行った後、AIBN(0.246g、1.5mmol)を加え再び脱気を行った。この後50℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1000ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(A)を得た。このポリマーの数平均分子量は16000、重量平均分子量は32000であった。
得られたメタクリレートポリマーの液晶相転移温度は145℃〜190℃であった。
<Polymer synthesis>
MA1 (9.97 g, 30.0 mmol) was dissolved in THF (92.0 g), deaerated with a diaphragm pump, and then AIBN (0.246 g, 1.5 mmol) was added to deaerate again. . Thereafter, the mixture was reacted at 50 ° C. for 30 hours to obtain a polymer solution of methacrylate. This polymer solution was added dropwise to diethyl ether (1000 ml), and the resulting precipitate was filtered. This precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40 ° C. to obtain methacrylate polymer powder (A). The number average molecular weight of this polymer was 16000, and the weight average molecular weight was 32000.
The liquid crystal phase transition temperature of the obtained methacrylate polymer was 145 ° C to 190 ° C.

<実施例1>
得られたメタクリレートポリマー粉末(A)(6.0g)にNEP(49.0g)を加え、室温で5時間攪拌して溶解させた。この溶液にPB(20.0g)およびDIBC(25.0g)を加え攪拌することにより液晶配向剤(A1)を得た。
<Example 1>
NEP (49.0 g) was added to the resulting methacrylate polymer powder (A) (6.0 g), and dissolved by stirring at room temperature for 5 hours. PB (20.0 g) and DIBC (25.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (A1).

<実施例2>
得られたメタクリレートポリマー粉末(A)(6.0g)にNEP(49.0g)を加え、室温で5時間攪拌して溶解させた。この溶液にPB(10.0g)およびDIBC(35.0g)を加え攪拌することにより液晶配向剤(A2)を得た。
<Example 2>
NEP (49.0 g) was added to the resulting methacrylate polymer powder (A) (6.0 g), and dissolved by stirring at room temperature for 5 hours. PB (10.0 g) and DIBC (35.0 g) were added to this solution and stirred to obtain a liquid crystal aligning agent (A2).

<実施例3>
得られたメタクリレートポリマー粉末(A)(6.0g)にNEP(49.0g)を加え、室温で5時間攪拌して溶解させた。この溶液にDIBC(45.0g)を加え攪拌することにより液晶配向剤(A3)を得た。
<Example 3>
NEP (49.0 g) was added to the resulting methacrylate polymer powder (A) (6.0 g), and dissolved by stirring at room temperature for 5 hours. The liquid crystal aligning agent (A3) was obtained by adding DIBC (45.0g) to this solution and stirring.

<コントロール1>
得られたメタクリレートポリマー粉末(A)(6.0g)にNEP(49.0g)を加え、室温で5時間攪拌して溶解させた。この溶液にPB(45.0g)を加え攪拌することにより液晶配向剤(コントロール1)を得た。
<Control 1>
NEP (49.0 g) was added to the resulting methacrylate polymer powder (A) (6.0 g), and dissolved by stirring at room temperature for 5 hours. PB (45.0 g) was added to this solution and stirred to obtain a liquid crystal aligning agent (Control 1).

本発明の実施例で得られた液晶配向剤を用い、液晶配向剤のインクジェット塗布性の評価を行った。その条件は、下記のとおりである。   The liquid crystal aligning agent obtained in the Example of this invention was used, and the inkjet applicability | paintability of the liquid crystal aligning agent was evaluated. The conditions are as follows.

本発明の実施例1で得られた液晶配向剤(A1)、実施例2で得られた液晶配向剤(A2)、実施例3で得られた液晶配向剤(A3)およびコントロール1で得られた液晶配向剤(コントロール1)を細孔径1μmのメンブランフィルタで加圧濾過し、インクジェット塗布性の評価を行った。
インクジェット塗布機としては、HIS−200(日立プラントテクノロジー社製)を用いた。塗布は、純水およびIPA(イソプロピルアルコール)にて洗浄を行ったITO(酸化インジウムスズ)蒸着基板上に、塗布面積が80×72mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒、塗布から仮乾燥までの時間が30秒、仮乾燥がホットプレート上にて70℃で90秒間の条件で行った。
Obtained with the liquid crystal aligning agent (A1) obtained in Example 1 of the present invention, the liquid crystal aligning agent (A2) obtained in Example 2, the liquid crystal aligning agent (A3) obtained in Example 3, and the control 1. The liquid crystal aligning agent (control 1) was filtered under pressure through a membrane filter having a pore diameter of 1 μm, and the ink-jet coating property was evaluated.
As the ink jet coater, HIS-200 (manufactured by Hitachi Plant Technology) was used. Application is on an ITO (indium tin oxide) vapor-deposited substrate cleaned with pure water and IPA (isopropyl alcohol), application area is 80 × 72 mm, nozzle pitch is 0.423 mm, scan pitch is 0.5 mm, application The speed was 40 mm / second, the time from coating to temporary drying was 30 seconds, and temporary drying was performed on a hot plate at 70 ° C. for 90 seconds.

得られた液晶配向膜に関して、液晶配向膜の「端部の直線性」及びその「端部の盛り上がり」の評価を行った。   With respect to the obtained liquid crystal alignment film, evaluation of “linearity of end portion” and “swelling of end portion” of the liquid crystal alignment film was performed.

液晶配向膜の端部の直線性の評価は、印刷方向に対して右側端部の液晶配向膜を光学顕微鏡(ニコン社製ECLIPSE ME600)で観察することにより行った。具体的には、光学顕微鏡により、倍率25倍として観察して得られた液晶配向膜画像の図5中の(1)と(2)の差、すなわち、図5中のAの長さを測定した。ここで、図5の(2)は、印刷方向に対して右側端部の液晶配向膜を光学顕微鏡で観察した際に、右側へと最大に及ぶ領域の端部を示す一方、図5の(1)は、同様に光学顕微鏡で観察した際に、右側へと最小に及ぶ領域の端部を示す。このとき、すべての液晶配向膜の画像は、同一倍率で得るようにした。評価は、このAの長さが短いほど、液晶配向膜の端部の直線性に優れるとした。   Evaluation of the linearity of the edge part of a liquid crystal aligning film was performed by observing the liquid crystal aligning film of a right end part with respect to a printing direction with an optical microscope (Nikon Corporation ECLIPSE ME600). Specifically, the difference between (1) and (2) in FIG. 5 of the liquid crystal alignment film image obtained by observation with an optical microscope at a magnification of 25 times, that is, the length of A in FIG. 5 is measured. did. Here, (2) in FIG. 5 shows the edge of the region extending to the right when the liquid crystal alignment film at the right edge with respect to the printing direction is observed with an optical microscope. 1) shows the end of the region extending to the right when observed with an optical microscope. At this time, images of all liquid crystal alignment films were obtained at the same magnification. In the evaluation, the shorter the length of A, the better the linearity of the end portion of the liquid crystal alignment film.

液晶配向膜の端部の盛り上がりの評価は、印刷方向に対して右側端部の液晶配向膜を光学顕微鏡で観察することにより行った。具体的には、光学顕微鏡により、倍率が25として観察して得られた液晶配向膜画像の図6中のBの長さを測定した。ここで、図6は、印刷方向に対して右側端部に観察される液晶配向膜の盛り上がりを、斜線部で模式的に示した図である。その際、すべての液晶配向膜の画像は、同一倍率で得るようにした。評価は、このBの長さが短いほど、液晶配向膜の端部の盛り上がりに優れるとした。   Evaluation of the bulge of the edge part of a liquid crystal aligning film was performed by observing the liquid crystal aligning film of a right end part with respect to a printing direction with an optical microscope. Specifically, the length of B in FIG. 6 of the liquid crystal alignment film image obtained by observation with an optical microscope at a magnification of 25 was measured. Here, FIG. 6 is a diagram schematically showing the swell of the liquid crystal alignment film observed at the right end with respect to the printing direction, with hatched portions. At that time, all liquid crystal alignment film images were obtained at the same magnification. In the evaluation, the shorter the length of B, the better the rise of the end of the liquid crystal alignment film.

結果は下記表に示される通りであった。表2中、実施例で得られた液晶配向膜のAの長さおよびBの長さを示す。なお、表1における有機溶媒の比率は、固形分濃度が6質量%であるので、溶剤の比率である残り94%に占める質量の比率を示した。   The results were as shown in the table below. In Table 2, A length and B length of the liquid crystal alignment film obtained in the examples are shown. In addition, since the solid content concentration is 6 mass%, the ratio of the organic solvent in Table 1 represents the ratio of mass in the remaining 94%, which is the ratio of the solvent.

Figure 0006571524
Figure 0006571524

Figure 0006571524
Figure 0006571524

結果から、実施例(本発明)の液晶配向剤による液晶配向膜は、液晶配向膜の端部の直線性が高く、液晶配向膜の端部の盛り上がりが小さいものであった。   From the results, the liquid crystal alignment film using the liquid crystal aligning agent of the example (the present invention) had high linearity at the end of the liquid crystal alignment film, and the rise of the end of the liquid crystal alignment film was small.

図1
1 側鎖型高分子膜
2、2a 側鎖
図2
3 側鎖型高分子膜
4、4a 側鎖
図3
5 側鎖型高分子膜
6、6a 側鎖
図4
7 側鎖型高分子膜
8、8a 側鎖
図5
9 液晶配向膜
10 ITO(酸化インジウムスズ)蒸着基板
図6
11 液晶配向膜
12 ITO(酸化インジウムスズ)蒸着基板
FIG.
1 Side chain polymer membrane 2, 2a Side chain Fig. 2
3 Side chain polymer membrane 4, 4a Side chain Fig. 3
5 Side chain polymer membrane 6, 6a Side chain Fig. 4
7 Side chain polymer membrane 8, 8a Side chain Fig. 5
9 Liquid crystal alignment film 10 ITO (indium tin oxide) deposition substrate
11 Liquid crystal alignment film 12 ITO (indium tin oxide) vapor deposition substrate

Claims (7)

(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ジイソブチルカルビノール、及び
(C)有機溶媒
を含有する、重合体組成物であって、
(A)成分が、下記式(2)
(式中、A、B、Dはそれぞれ独立に、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す;
Sは、炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい;
Tは、単結合または炭素数1〜12のアルキレン基であり、それらに結合する水素原子はハロゲン基に置き換えられていてもよい
は、2価のベンゼン環、ナフタレン環およびビフェニル環からなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又は1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの環から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらの環に結合する水素原子はそれぞれ独立に−COOR (式中、R は水素原子又は炭素数1〜5のアルキル基を表す)、−NO 、−CN、−CH=C(CN) 、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
Xは、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
P及びQは、各々独立に、2価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環、炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基である;ただし、Xが−CH=CH−CO−O−、−O−CO−CH=CH−である場合、−CH=CH−が結合する側のP又はQは芳香環であり、Pの数が2以上となるときは、P同士は同一でも異なっていてもよく、Qの数が2以上となるときは、Q同士は同一でも異なっていてもよい;
l1は0または1である;
l2は0〜2の整数である;
l1とl2がともに0であるときは、Tが単結合であるときはAも単結合を表す;
l1が1であるときは、Tが単結合であるときはBも単結合を表す。)
で表される感光性側鎖を有する、上記重合体組成物。
Figure 0006571524
(A) a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range;
(B) a polymer composition containing diisobutyl carbinol and (C) an organic solvent,
(A) component is following formula (2)
(In the formula, A, B and D are each independently a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO; Represents —O— or —O—CO—CH═CH—;
S is an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced by a halogen group;
T is a single bond or an alkylene group having 1 to 12 carbon atoms, and a hydrogen atom bonded thereto may be replaced with a halogen group ;
Y 2 is a group selected from the group consisting of a divalent benzene ring, a naphthalene ring and a biphenyl ring, and the hydrogen atoms bonded thereto are independently —NO 2 , —CN, —CH═C (CN) 2. , -CH = CH-CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms. Or the same or different 2 to 6 rings selected from these rings are bonded via a bonding group B, and the hydrogen atoms bonded to these rings are each independently- COOR 0 ( wherein R 0 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, May be substituted with an alkyl group having 1 to 5 carbon atoms or an alkyloxy group having 1 to 5 carbon atoms;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
P and Q are each independently selected from the group consisting of a divalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. Provided that when X is —CH═CH—CO—O— or —O—CO—CH═CH—, P or Q on the side to which —CH═CH— is bonded is an aromatic ring; When the number of P is 2 or more, the Ps may be the same or different, and when the number of Q is 2 or more, the Qs may be the same or different;
l1 is 0 or 1;
l2 is an integer from 0 to 2;
when l1 and l2 are both 0, A represents a single bond when T is a single bond;
When l1 is 1, B represents a single bond when T is a single bond. )
The said polymer composition which has the photosensitive side chain represented by these.
Figure 0006571524
(A)所定の温度範囲で液晶性を発現する感光性の側鎖型高分子、
(B)ジイソブチルカルビノール、及び
(C)有機溶媒
を含有する、重合体組成物であって、
(A)成分が、下記式(9)
(式中、Aは、単結合、−O−、−CH−、−COO−、−OCO−、−CONH−、−NH−CO−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表す
は、単結合、−COO−、−OCO−、−N=N−、−CH=CH−、−C≡C−、−CH=CH−CO−O−、又は−O−CO−CH=CH−を表し、Xの数が2となるときは、X同士は同一でも異なっていてもよい;
lは1〜12の整数を表す;
mは、0〜2の整数を表し、m1、m2は1〜3の整数を表す;
Rは、ヒドロキシ基、炭素数1〜6のアルコキシ基を表すか、又は1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、ピロール環および炭素数5〜8の脂環式炭化水素から選ばれる環を表すか、それらの環から選ばれる同一又は相異なった2〜6の環が結合基Bを介して結合してなる基であり、それらの環に結合する水素原子はそれぞれ独立に−COOR (式中、R は水素原子又は炭素数1〜5のアルキル基を表す)、−NO 、−CN、−CH=C(CN) 、−CH=CH−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い
で表される感光性側鎖を有する上記重合体組成物。
Figure 0006571524
(A) a photosensitive side chain polymer that exhibits liquid crystallinity within a predetermined temperature range;
(B) a polymer composition containing diisobutyl carbinol and (C) an organic solvent,
(A) component is following formula (9)
(In the formula, A represents a single bond, —O—, —CH 2 —, —COO—, —OCO—, —CONH—, —NH—CO—, —CH═CH—CO—O—, or —O; Represents —CO—CH═CH— ;
X is a single bond, —COO—, —OCO—, —N═N—, —CH═CH—, —C≡C—, —CH═CH—CO—O—, or —O—CO—CH═. When CH is 2 and the number of X is 2, X may be the same or different;
l represents an integer of 1 to 12;
m represents an integer of 0 to 2, and m1 and m2 represent an integer of 1 to 3;
R represents a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or selected from a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, pyrrole ring and alicyclic hydrocarbon having 5 to 8 carbon atoms. Or the same or different 2 to 6 rings selected from these rings are bonded via a bonding group B, and the hydrogen atoms bonded to these rings are each independently- COOR 0 ( wherein R 0 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, a halogen group, (It may be substituted with an alkyl group having 1 to 5 carbon atoms or an alkyloxy group having 1 to 5 carbon atoms )
The polymer composition having a photosensitive side chain represented by the formula:
Figure 0006571524
(A)成分が、下記式(21)〜(31)(式中、A及びBは上記と同じ定義を有する;
は、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、それらの組み合わせからなる群から選ばれる基であり、それらに結合する水素原子はそれぞれ独立に−NO、−CN、ハロゲン基、炭素数1〜5のアルキル基、又は炭素数1〜5のアルキルオキシ基で置換されても良い;
は、水素原子、−NO、−CN、−CH=C(CN)、−CH=CH−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、炭素数5〜8の脂環式炭化水素、炭素数1〜12のアルキル基、又は炭素数1〜12のアルコキシ基を表す;
q1とq2は、一方が1で他方が0である;
lは1〜12の整数を表し、mは0から2の整数を表し、但し、式(25)〜(26)において、全てのmの合計は2以上であり、式(27)〜(28)において、全てのmの合計は1以上であり、m1、m2およびm3は、それぞれ独立に1〜3の整数を表す;
は、水素原子、−NO、−CN、ハロゲン基、1価のベンゼン環、ナフタレン環、ビフェニル環、フラン環、窒素含有複素環、及び炭素数5〜8の脂環式炭化水素、および、アルキル基、又はアルキルオキシ基を表す;
、Zは単結合、−CO−、−CHO−、−CH=N−、−CF−を表す)からなる群から選ばれるいずれか1種の液晶性側鎖をさらに有する請求項1または2に記載の組成物。
Figure 0006571524
(A) component is following formula (21)-(31) (In formula, A and B have the same definition as the above;
Y 3 is a group selected from the group consisting of a monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing heterocycle, alicyclic hydrocarbon having 5 to 8 carbon atoms, and combinations thereof. And each hydrogen atom bonded thereto may be independently substituted with —NO 2 , —CN, a halogen group, an alkyl group having 1 to 5 carbon atoms, or an alkyloxy group having 1 to 5 carbon atoms;
R 3 is a hydrogen atom, —NO 2 , —CN, —CH═C (CN) 2 , —CH═CH—CN, halogen group, monovalent benzene ring, naphthalene ring, biphenyl ring, furan ring, nitrogen-containing A heterocyclic ring, an alicyclic hydrocarbon having 5 to 8 carbon atoms, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms;
one of q1 and q2 is 1 and the other is 0;
l represents an integer of 1 to 12, m represents an integer of 0 to 2, provided that in formulas (25) to (26), the sum of all m is 2 or more, and formulas (27) to (28 ), The sum of all m is 1 or more, and m1, m2 and m3 each independently represents an integer of 1 to 3;
R 2 is a hydrogen atom, —NO 2 , —CN, a halogen group, a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a nitrogen-containing heterocyclic ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, And represents an alkyl group or an alkyloxy group;
Z 1 and Z 2 each further have any one liquid crystalline side chain selected from the group consisting of a single bond, —CO—, —CH 2 O—, —CH═N—, and —CF 2 —. The composition according to claim 1 or 2 .
Figure 0006571524
[I] 請求項1〜のいずれか1項に記載の組成物を、横電界駆動用の導電膜を有する基板上に塗布して塗膜を形成する工程;
[II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III] [II]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得る、前記液晶配向膜を有する基板の製造方法。
[I] The process of apply | coating the composition of any one of Claims 1-3 on the board | substrate which has a conductive film for a horizontal electric field drive, and forming a coating film;
[II] a step of irradiating the coating film obtained in [I] with polarized ultraviolet rays; and [III] a step of heating the coating film obtained in [II];
The manufacturing method of the board | substrate which has the said liquid crystal aligning film which obtains the liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements by which orientation control ability was provided by having.
請求項1〜のいずれか1項に記載の重合体組成物から形成される横電界駆動型液晶表示素子用液晶配向膜を有する基板。 The board | substrate which has a liquid crystal aligning film for horizontal electric field drive type liquid crystal display elements formed from the polymer composition of any one of Claims 1-3 . 請求項記載の基板を有する横電界駆動型液晶表示素子。 A lateral electric field drive type liquid crystal display device comprising the substrate according to claim 5 . 請求項記載の基板(第1の基板)を準備する工程;
[I’] 第2の基板上に 請求項1〜のいずれか1項に記載の組成物を、塗布して塗膜を形成する工程;
[II’] [I’]で得られた塗膜に偏光した紫外線を照射する工程;及び
[III’] [II’]で得られた塗膜を加熱する工程;
を有することによって配向制御能が付与された液晶配向膜を得る、前記液晶配向膜を有する第2の基板を得る工程;及び
[IV] 液晶を介して前記第1及び第2の基板の液晶配向膜が相対するように、前記第1及び第2の基板を対向配置して液晶表示素子を得る工程;
を有することにより、横電界駆動型液晶表示素子を得る、該液晶表示素子の製造方法。
Preparing a substrate (first substrate) according to claim 5 ;
[I '] The process of apply | coating the composition of any one of Claims 1-3 on a 2nd board | substrate, and forming a coating film;
[II ′] a step of irradiating the coating film obtained in [I ′] with polarized ultraviolet rays; and [III ′] a step of heating the coating film obtained in [II ′];
Obtaining a liquid crystal alignment film imparted with alignment control capability by having a second substrate having the liquid crystal alignment film; and [IV] liquid crystal alignment of the first and second substrates via liquid crystal A step of obtaining a liquid crystal display element by arranging the first and second substrates to face each other so that the films face each other;
A method for producing a liquid crystal display element, comprising obtaining a lateral electric field drive type liquid crystal display element.
JP2015532904A 2013-08-22 2014-08-22 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element Active JP6571524B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013172467 2013-08-22
JP2013172467 2013-08-22
PCT/JP2014/071952 WO2015025937A1 (en) 2013-08-22 2014-08-22 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2015025937A1 JPWO2015025937A1 (en) 2017-03-02
JP6571524B2 true JP6571524B2 (en) 2019-09-04

Family

ID=52483708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015532904A Active JP6571524B2 (en) 2013-08-22 2014-08-22 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6571524B2 (en)
KR (1) KR102204768B1 (en)
CN (1) CN105658730B (en)
TW (1) TWI644931B (en)
WO (1) WO2015025937A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232733B (en) * 2014-04-09 2018-12-18 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
WO2017170945A1 (en) * 2016-03-31 2017-10-05 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN109196412B (en) * 2016-03-31 2021-08-24 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2022027233A (en) * 2020-07-31 2022-02-10 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (en) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd Production of polyimide oriented film
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP5075483B2 (en) * 2007-04-27 2012-11-21 林テレンプ株式会社 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
KR101089211B1 (en) * 2010-12-02 2011-12-02 엘티씨 (주) Composition of stripping solution for liquid crystal display process photoresist comprising primary alkanolamine
TW201311743A (en) * 2011-07-07 2013-03-16 Sumitomo Chemical Co Photoreactive liquid crystal alignment agent, liquid crystal alignment element and preparation method thereof
KR101933220B1 (en) * 2011-07-07 2018-12-27 스미또모 가가꾸 가부시키가이샤 Polarizing device, circular polarizing plate and method of producing the same
WO2013038932A1 (en) * 2011-09-12 2013-03-21 株式会社林技術研究所 Optical phase shift element and manufacturing method therefor
JP6150731B2 (en) * 2011-11-29 2017-06-21 日産化学工業株式会社 Method for producing liquid crystal alignment film

Also Published As

Publication number Publication date
JPWO2015025937A1 (en) 2017-03-02
TWI644931B (en) 2018-12-21
KR20160048848A (en) 2016-05-04
CN105658730B (en) 2017-11-14
CN105658730A (en) 2016-06-08
WO2015025937A1 (en) 2015-02-26
KR102204768B1 (en) 2021-01-18
TW201522384A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP7140336B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2014185410A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014148569A1 (en) Method for manufacturing in-plane-switching-type liquid-crystal display element
JP2015007702A (en) Method for manufacturing substrate having liquid crystal alignment layer for in-plane switching type liquid crystal display element
WO2017199986A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015012341A1 (en) Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
WO2014196590A1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2016113931A1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
JP6571524B2 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
CN107636081B (en) Liquid crystal aligning agent and liquid crystal alignment film using photoreactive hydrogen bonding polymer liquid crystal
JP6872315B2 (en) Liquid crystal alignment film for polymer composition and transverse electric field drive type liquid crystal display element
WO2014196589A1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2017069133A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6723523B2 (en) Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, substrate having the liquid crystal aligning film, and liquid crystal display device having the liquid crystal aligning film
JP6794257B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN105431770B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
KR102254609B1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
JP2018109788A (en) Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6571524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250