JP7140336B2 - Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
JP7140336B2
JP7140336B2 JP2019206887A JP2019206887A JP7140336B2 JP 7140336 B2 JP7140336 B2 JP 7140336B2 JP 2019206887 A JP2019206887 A JP 2019206887A JP 2019206887 A JP2019206887 A JP 2019206887A JP 7140336 B2 JP7140336 B2 JP 7140336B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
ether
polymer
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019206887A
Other languages
Japanese (ja)
Other versions
JP2020042288A (en
Inventor
悟志 南
亮一 芦澤
喜弘 川月
瑞穂 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
University of Hyogo
Original Assignee
Nissan Chemical Corp
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp, University of Hyogo filed Critical Nissan Chemical Corp
Publication of JP2020042288A publication Critical patent/JP2020042288A/en
Application granted granted Critical
Publication of JP7140336B2 publication Critical patent/JP7140336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子や、位相差フィルムや偏光回折素子などの分子配向を制御した光学素子の製造に好適である高分子フィルムに関するものである。 TECHNICAL FIELD The present invention relates to a liquid crystal aligning agent, a liquid crystal aligning film, a liquid crystal display element using the same, and a polymer film suitable for manufacturing an optical element in which molecular orientation is controlled such as a retardation film and a polarization diffraction element. .

液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。そして、液晶表示素子では、液晶が基板間で所望の 配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 Liquid crystal display elements are known as lightweight, thin, and low power consumption display devices, and have made remarkable progress in recent years, such as being used for large-sized televisions. A liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as a liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.

すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。そして、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割を求められることがある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。 That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, is formed on the surfaces of the substrates that sandwich the liquid crystal and is in contact with the liquid crystal, and plays the role of orienting the liquid crystal in a certain direction between the substrates. In addition to the role of aligning the liquid crystal in a certain direction, such as a direction parallel to the substrate, the liquid crystal alignment film is sometimes required to play the role of controlling the pretilt angle of the liquid crystal. The ability to control the alignment of the liquid crystal in such a liquid crystal alignment film (hereinafter referred to as alignment controllability) is imparted by subjecting the organic film constituting the liquid crystal alignment film to alignment treatment.

配向制御能を付与するための液晶配向膜の配向処理方法としては、従来からラビング法が知られている。ラビング法とは、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビングし)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。そして、液晶配向膜に用いられる有機膜としては、耐熱性等の信頼性や電気的特性に優れたポリイミド系の有機膜が主に選択されてきた。 A rubbing method is conventionally known as an alignment treatment method for a liquid crystal alignment film for imparting alignment controllability. The rubbing method involves rubbing the surface of an organic film such as polyvinyl alcohol, polyamide, or polyimide on a substrate with a cloth such as cotton, nylon, or polyester in a certain direction, and This is a method of orienting liquid crystals. Since this rubbing method can easily realize a relatively stable alignment state of the liquid crystal, it has been used in the manufacturing process of conventional liquid crystal display elements. As the organic film used for the liquid crystal alignment film, a polyimide-based organic film has been mainly selected because of its excellent reliability such as heat resistance and electrical properties.

しかしながら、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面を布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like sometimes causes problems such as generation of dust and static electricity. In addition, the surface of the liquid crystal alignment film cannot be evenly rubbed with a cloth due to the recent increase in definition of the liquid crystal display element and the unevenness caused by the electrodes on the corresponding substrate and the switching active element for driving the liquid crystal. In some cases, alignment of the liquid crystal could not be achieved.

そこで、ラビングを行わない液晶配向膜の別の配向処理方法として、光配向法が盛んに検討されている。 Therefore, a photo-alignment method has been actively studied as another alignment treatment method for a liquid crystal alignment film that does not involve rubbing.

光配向法には様々な方法があるが、直線偏光またはコリメートした光によって液晶配向膜を構成する有機膜内に異方性を形成し、その異方性に従って液晶を配向させる。その主な配向法としては、偏光紫外線照射により、分子構造に異方的な分解を生じさせる「光分解型」や、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応(架橋反応)を生じさせる「二量化型」(例えば、特許文献1を参照のこと。)、アゾベンゼンを側鎖に有する側鎖型高分子を用いた場合、偏光紫外線を照射し、偏光と平行な側鎖のアゾベンゼン部で異性化反応を生じさせ、偏光方向と直交した方向に液晶を 配向させる「異性化型」(例えば、非特許文献2を参照のこと。)が知られている。 There are various photo-alignment methods, but anisotropy is formed in the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated light, and the liquid crystal is aligned according to the anisotropy. The main orientation methods are the “photodegradation type”, which causes anisotropic decomposition of the molecular structure by irradiating polarized ultraviolet rays, and the use of polyvinyl cinnamate, which is irradiated with polarized ultraviolet rays and oriented on two sides parallel to the polarized light. A "dimerization type" that causes a dimerization reaction (crosslinking reaction) at the double bond portion of the chain (see, for example, Patent Document 1.), When using a side chain type polymer having azobenzene in the side chain , By irradiating polarized ultraviolet rays, an isomerization reaction is caused in the azobenzene moiety of the side chain parallel to the polarized light, and the liquid crystal is oriented in the direction perpendicular to the polarization direction "isomerization type" (for example, see Non-Patent Document 2). It is known.

一方、近年、液晶性を発現し得る感光性の側鎖型高分子を用いた新しい光配向法(以下、配向増幅法とも称する)が検討されている。これは、液晶性を発現し得る感光性の側鎖型高分子を有する膜に、偏光照射によって配向処理を行い、その後、その側鎖型高分子膜を加熱する工程を経て、配向制御能が付与された塗膜を得るというものである。このとき、偏光照射によって発現した僅かな異方性がドライビングフォースとなり、液晶性の側鎖型高分子自体が自己組織化により効率的に再配向する。その結果、液晶配向膜として高効率な配向処理が実現し、高い配向制御能が付与された液晶配向膜を得ることができる(例えば、特許文献2を参照のこと。)。 On the other hand, in recent years, a new photo-alignment method (hereinafter also referred to as an alignment amplification method) using a photosensitive side-chain type polymer capable of exhibiting liquid crystallinity has been studied. In this method, a film having a photosensitive side-chain type polymer capable of exhibiting liquid crystallinity is subjected to an alignment treatment by irradiating polarized light, and then the side-chain type polymer film is heated. It is to obtain a given coating film. At this time, the slight anisotropy caused by polarized light irradiation becomes a driving force, and the liquid crystalline side-chain polymer itself is efficiently reoriented by self-organization. As a result, highly efficient alignment treatment is realized as a liquid crystal alignment film, and a liquid crystal alignment film imparted with high alignment controllability can be obtained (see Patent Document 2, for example).

さらに、この配向増幅法によって得られた高分子フィルムは、分子配向により複屈折性が発現することから、液晶配向膜の用途以外にも位相差フィルムなどの様々な光学素子としても利用することができる。 Furthermore, since the polymer film obtained by this orientation amplification method exhibits birefringence due to molecular orientation, it can be used not only for liquid crystal orientation films but also as various optical elements such as retardation films. can.

特許第3893659号公報Japanese Patent No. 3893659 WO2014/054785WO2014/054785

M.Shadt et al., Jpn. J. Appl. Phys. 31, 2155(1992)M. Shadt et al., Jpn. J. Appl. Phys. 31, 2155 (1992) K.Ichimura et al., Chem. Rev. 100, 1847(2000)K. Ichimura et al., Chem. Rev. 100, 1847(2000)

配向増幅法に用いられる液晶配向膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その塗膜において感光性基が光反応する量を最適にする偏光紫外線の照射量に対応する。配向増幅法に用いられる液晶配向膜に対して偏光した紫外線を照射した結果、光反応する側鎖の感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。一方、光反応する側鎖の感光性基が過剰となると、得られる膜は剛直になって、その後の加熱による自己組織化の進行の妨げとなることがある。 The optimal amount of polarized UV irradiation for highly efficient introduction of anisotropy into the liquid crystal alignment film used in the orientation amplification method is the amount of polarized UV irradiation that optimizes the amount of photoreaction of the photosensitive groups in the coating film. corresponds to As a result of irradiating the liquid crystal alignment film used in the alignment amplification method with polarized ultraviolet rays, if the number of photoreactive side chain photosensitive groups is small, a sufficient amount of photoreaction cannot be obtained. In that case, even if it heats after that, sufficient self-organization will not progress. On the other hand, if the photoreactive side chain has an excess amount of photosensitive groups, the obtained film becomes rigid, which may hinder the progress of self-organization by subsequent heating.

現在、配向増幅法に用いられる液晶配向膜の中には、用いられている重合体中の光反応性基の感度が高い為か、上述した最適な偏光紫外線の照射量の領域が狭いものがある。その結果、液晶表示素子の製造効率の低下が問題となっている。 At present, among the liquid crystal alignment films used in the alignment amplification method, there are some that have a narrow range of the above-mentioned optimum polarized ultraviolet irradiation amount, probably because the sensitivity of the photoreactive group in the polymer used is high. be. As a result, a decrease in manufacturing efficiency of the liquid crystal display element has become a problem.

さらに液晶配向膜の焼成温度が低い場合、残留溶媒などの影響により液晶表示素子の信頼性が低下する可能性があるが、配向増幅法で得られる液晶配向剤はその性質上、高分子液晶の液晶発現温度以上の温度では焼成できないため、総じて焼成温度が低く残留溶媒などが信頼性を低下させる一因となっている。 Furthermore, if the firing temperature of the liquid crystal alignment film is low, the reliability of the liquid crystal display element may decrease due to the influence of the residual solvent. Since it cannot be fired at a temperature higher than the temperature at which liquid crystals appear, the firing temperature is generally low, which is one of the factors that reduce reliability, such as residual solvents.

そこで、本発明は、高効率で配向制御能が付与され、かつ、最適な偏光紫外線照射量や最適な焼成温度に調整が可能なプロセスマージンの広い液晶配向膜を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a liquid crystal alignment film with a wide process margin, which is highly efficient and has alignment controllability, and which can be adjusted to the optimum amount of polarized ultraviolet irradiation and the optimum baking temperature.

本発明者らは、上記課題を達成するべく鋭意検討を行った結果、以下の発明を見出した。 The inventors of the present invention have made intensive studies to achieve the above objects, and as a result, have found the following invention.

<1> 下記(A)成分及び(B)成分を含有し、(A)成分の側鎖と(B)成分のいずれか又は両方に、光反応性基を含有し、(A)成分と(B)成分とが水素結合を介して、液晶性超分子を形成することを特徴とする光学活性組成物。
(A)カルボン酸基構造を含有する側鎖を有する重合体、及び
(B)下記式(1)又は(2)、ピラジンおよびナフチリジンで表される芳香族複素環化合物から選ばれる少なくとも1種の化合物:
<1> Contains the following components (A) and (B), contains a photoreactive group in either or both of the side chain of the component (A) and the component (B), and contains the component (A) and ( An optically active composition characterized by forming liquid crystalline supramolecules through hydrogen bonding with component B).
(A) a polymer having a side chain containing a carboxylic acid group structure, and (B) at least one aromatic heterocyclic compound represented by the following formula (1) or (2), pyrazine and naphthyridine Compound:

Figure 0007140336000001
Figure 0007140336000001

[式中、
Xは、単結合、又は炭素原子数1~12のアルキレン、エーテル、エステル、アゾ、チオエーテル、ジスルフィド、テトラジン、二置換アルケン、アルキン、もしくはフェニレンを表し、
Sは、エーテル、エステル又はフェニレンを表し、
Pyはそれぞれ独立して、以下の群から選ばれる構造を表し、下記構造中、点がついている部分が、式(1)においてXと結合する部分であり、式(2)においてSと結合する部分である。
[In the formula,
X represents a single bond or an alkylene, ether, ester, azo, thioether, disulfide, tetrazine, disubstituted alkene, alkyne, or phenylene having 1 to 12 carbon atoms;
S represents ether, ester or phenylene,
Py each independently represents a structure selected from the following group, and in the structure below, the portion with a dot is the portion that binds to X in formula (1), and binds to S in formula (2) part.

Figure 0007140336000002
]。
Figure 0007140336000002
].

<2> 前記<1>の光学活性組成物において、前記(A)成分が、1つの側鎖構造中にカルボン酸基及び光反応性基を含有するのがよい。 <2> In the optically active composition of <1>, the component (A) preferably contains a carboxylic acid group and a photoreactive group in one side chain structure.

<3> 前記<1>または<2>の光学活性組成物において、前記(B)成分が、前記(A)成分の重合体の重量に対して0.5重量%~70重量%含有されるのがよい。 <3> In the optically active composition of <1> or <2>, the component (B) is contained in an amount of 0.5% by weight to 70% by weight based on the weight of the polymer of the component (A). It's good.

<4> 前記<1>~<3>のいずれかの光学活性組成物において、前記(A)成分が、下記式(3)及び(4)からなる群から選ばれるいずれか1種のカルボン酸基構造を含有する側鎖を有する重合体であるのがよい。 <4> In the optically active composition according to any one of <1> to <3>, the component (A) is any one carboxylic acid selected from the group consisting of the following formulas (3) and (4) It is preferably a polymer having side chains containing a group structure.

Figure 0007140336000003
Figure 0007140336000003

[式中、
Aは、単結合、-O-、-COO-、-CONH-、及び-NH-から選ばれる基を表し、
Bは、単結合、-O-、-COO-、-CONH-、-NH-、及び-CH=CH-COO-から選ばれる基を表し、
Ar及びArはそれぞれ独立に、フェニル基またはナフチル基を表し、
l及びmはそれぞれ独立に0~12の整数である]。
[In the formula,
A represents a group selected from a single bond, -O-, -COO-, -CONH-, and -NH-,
B represents a group selected from a single bond, -O-, -COO-, -CONH-, -NH-, and -CH=CH-COO-,
Ar 1 and Ar 2 each independently represent a phenyl group or a naphthyl group;
l and m are each independently an integer from 0 to 12].

<5> 前記<1>~<4>のいずれかの光学活性組成物において、前記(B)成分が、下記から選ばれる少なくとも1種の化合物であるのがよい。 <5> In the optically active composition according to any one of <1> to <4>, the component (B) is preferably at least one compound selected from the following.

Figure 0007140336000004
Figure 0007140336000004

Figure 0007140336000005
Figure 0007140336000005

Figure 0007140336000006

[式中、
nは、1から3の整数を表し、
lは、2から6の整数を表し、及び
mは、1から4の整数を表す]。
Figure 0007140336000006

[In the formula,
n represents an integer from 1 to 3,
l represents an integer from 2 to 6, and m represents an integer from 1 to 4].

<6> 前記<1>~<5>のいずれかの光学活性組成物を含有する、液晶配向剤。
<7> 前記<6>の液晶配向剤から得られる、液晶配向膜。
<8> 前記<7>の液晶配向膜を具備する、液晶表示素子。
<6> A liquid crystal aligning agent containing the optically active composition according to any one of <1> to <5>.
<7> A liquid crystal alignment film obtained from the liquid crystal alignment agent of <6>.
<8> A liquid crystal display device comprising the liquid crystal alignment film of <7>.

本発明により、高効率で配向制御能が付与され、かつ、最適な偏光紫外線照射量の領域が広い、もしくは、高分子液晶の液晶発現温度を好適に選択可能な、光学活性組成物、該組成物を含有する液晶配向剤、該液晶配向剤から得られる液晶配向膜、該液晶配向膜を有する基板及び該基板を有する横電界駆動型液晶表示素子を提供することができる。さらには、該光学活性組成物を用いることで位相差フィルムなどに光学素子の製造におけるプロセスマージン(偏光紫外線照射量や焼成温度)の広い高分子フィルムを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided an optically active composition which is endowed with high-efficiency alignment controllability and has a wide range of optimum polarized ultraviolet irradiation dose, or which can suitably select the liquid crystal manifestation temperature of polymer liquid crystals. It is possible to provide a liquid crystal aligning agent containing a substance, a liquid crystal aligning film obtained from the liquid crystal aligning agent, a substrate having the liquid crystal aligning film, and a lateral electric field drive type liquid crystal display element having the substrate. Furthermore, by using the optically active composition, it is possible to provide a polymer film having a wide process margin (polarized ultraviolet irradiation amount and baking temperature) in the production of optical elements such as a retardation film.

図1は、実施例8と比較例2から得られた二色性を表したグラフである。1 is a graph representing the dichroism obtained from Example 8 and Comparative Example 2. FIG. 図2は、実施例10と比較例3から得られた各照射量における面内配向度Sを表したグラフである。FIG. 2 is a graph showing the in-plane orientation degree S at each dose obtained from Example 10 and Comparative Example 3. As shown in FIG.

以下、本発明の実施形態について詳しく説明する。
<光学活性組成物>
本発明の光学活性組成物は、下記(A)成分及び(B)成分を含有し、(A)成分と(B)成分のいずれか又は両方に、光反応性基を含有し、(A)成分と(B)成分とが水素結合を介して、液晶性超分子を形成することを特徴とする。
(A)カルボン酸基構造を含有する側鎖を有する重合体、及び
(B)下記式(1)及び(2)で表される化合物から選ばれる少なくとも1種の化合物:
Hereinafter, embodiments of the present invention will be described in detail.
<Optical active composition>
The optically active composition of the present invention contains the following components (A) and (B), one or both of (A) and (B) contains a photoreactive group, and (A) The component and the component (B) are characterized by forming liquid crystalline supramolecules through hydrogen bonding.
(A) a polymer having a side chain containing a carboxylic acid group structure, and (B) at least one compound selected from compounds represented by the following formulas (1) and (2):

Figure 0007140336000007
Figure 0007140336000007

[式中、
Xは、単結合、又は炭素原子数1~12のアルキレン、エーテル、エステル、アゾ、チオエーテル、ジスルフィド、テトラジン、二置換アルケン、アルキン、及びフェニレンを表し、
Sは、エーテル、エステル又はフェニレンを表し、
Pyはそれぞれ独立して、以下の群から選ばれる構造を表し、下記構造中、点がついている部分が、式(1)においてXと結合する部分であり、式(2)においてSと結合する部分である。
[In the formula,
X represents a single bond or alkylene, ether, ester, azo, thioether, disulfide, tetrazine, disubstituted alkene, alkyne and phenylene having 1 to 12 carbon atoms;
S represents ether, ester or phenylene,
Py each independently represents a structure selected from the following group, and in the structure below, the portion with a dot is the portion that binds to X in formula (1), and binds to S in formula (2) part.

Figure 0007140336000008
]。
Figure 0007140336000008
].

なぜ上記構成要件を満たす組成物が本発明の課題を解決し得る効果を奏するかは定かではないが、概ね以下のように考えられる。 Although it is not clear why the composition that satisfies the above constituent requirements has the effect of solving the problems of the present invention, it is generally considered as follows.

本発明における(A)成分であるカルボン酸基構造を含有する側鎖を有する重合体はカルボン酸同士の水素結合によって超分子液晶を示すと言われている。このような超分子液晶では水素結合を形成している芳香環-カルボン酸-カルボン酸-芳香環の構造が下記に示すようなメソゲン構造になっており、液晶性を示す温度範囲や、紫外線の吸収帯などはほとんどこのメソゲン部位で決定されると考えられる。 It is said that a polymer having a side chain containing a carboxylic acid group structure, which is the component (A) in the present invention, exhibits supramolecular liquid crystals due to hydrogen bonding between carboxylic acids. In such a supramolecular liquid crystal, the structure of the aromatic ring-carboxylic acid-carboxylic acid-aromatic ring forming the hydrogen bond has a mesogenic structure as shown below. It is considered that most of the absorption bands and the like are determined by this mesogenic site.

Figure 0007140336000009
Figure 0007140336000009

このとき、本発明の(B)成分である芳香族複素環構造が存在すると、カルボン酸の一部は複素環との水素結合(もしくはイオン結合などの相互作用)によってメソゲン構造を形成し、液晶性を発現することになる。その結果、液晶性を示す温度範囲や、紫外線の吸収帯などが変化することとなる。本発明ではこれらの組み合わせを自由に選択することによって、液晶の発現温度領域や、紫外線に対する感度などを任意の範囲に調整することが可能となる。なおこれらは理論であって本発明を拘束するものではない。 At this time, if the aromatic heterocyclic structure, which is the component (B) of the present invention, is present, part of the carboxylic acid forms a mesogenic structure through hydrogen bonding (or interaction such as ionic bonding) with the heterocyclic ring, resulting in liquid crystal to express their sexuality. As a result, the temperature range exhibiting liquid crystallinity, the ultraviolet absorption band, and the like change. In the present invention, by freely selecting a combination of these, it is possible to adjust the temperature range in which the liquid crystal is developed, the sensitivity to ultraviolet rays, and the like within an arbitrary range. Note that these are theories and do not limit the present invention.

<<(A)成分>>
(A)成分は、カルボン酸基構造を含有する側鎖を有する重合体である。このとき、1つの側鎖構造中にカルボン酸基及び光反応性基を含有しても、重合体中に光反応性基を含有する別の側鎖が存在しても良いが、光学活性組成物反応効率の点から、1つの側鎖構造中にカルボン酸基及び光反応性基を含有することが好ましい。
<<(A) Component>>
Component (A) is a polymer having a side chain containing a carboxylic acid group structure. At this time, one side chain structure may contain a carboxylic acid group and a photoreactive group, or another side chain containing a photoreactive group may be present in the polymer. From the viewpoint of reaction efficiency, it is preferable to contain a carboxylic acid group and a photoreactive group in one side chain structure.

1つの側鎖構造中にカルボン酸基及び光反応性基を含有する場合、その側鎖(以下、特定側鎖とも称する)の一般式は上記式(3)及び(4)で表すことができる。 When one side chain structure contains a carboxylic acid group and a photoreactive group, the general formula of the side chain (hereinafter also referred to as a specific side chain) can be represented by the above formulas (3) and (4). .

上記式(3)、(4)中、Aは単結合、-O-、-COO-、-CONH-、及び-NH-から選ばれる基を表し、その中でも液晶性発現の観点から-O-、-COO-が好ましい。
また、上記式(3)、(4)中、Bは単結合、-O-、-COO-、-CONH-、-NH-、及び-CH=CH-COO-から選ばれる基を表し、その中でも液晶性発現の観点から-O-、-COO-が好ましい。
In the above formulas (3) and (4), A represents a group selected from a single bond, -O-, -COO-, -CONH-, and -NH-, among which -O- , -COO- are preferred.
In the above formulas (3) and (4), B represents a group selected from a single bond, -O-, -COO-, -CONH-, -NH-, and -CH=CH-COO-, Of these, -O- and -COO- are preferred from the viewpoint of exhibiting liquid crystallinity.

Ar1、Ar2はそれぞれ独立にフェニル基またはナフチル基を表す。 Ar1 and Ar2 each independently represent a phenyl group or a naphthyl group.

l及びmはそれぞれ独立に0~12の整数である。その中でも液晶性発現の観点から、
2から8の整数が好ましい。
l and m are each independently an integer of 0 to 12; Among them, from the viewpoint of liquid crystal expression,
Integers from 2 to 8 are preferred.

上記式(3)及び(4)で表される側鎖構造の具体例は以下のように例示されるが、これらに限定されるものではない。 Specific examples of the side chain structures represented by formulas (3) and (4) are shown below, but are not limited thereto.

Figure 0007140336000010
Figure 0007140336000010

式中、mは2から12の整数を表す。 In the formula, m represents an integer from 2 to 12.

<<重合体の製法>>
(A)成分の重合体は、上述した特定側鎖を含有するモノマーの重合反応により得ることができる。また、光反応性基を含有する側鎖を有するモノマーと、カルボン酸基を含有する側鎖を有するモノマーとの共重合によっても得ることができる。さらに、液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。
その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
<<Polymer manufacturing method>>
The polymer of component (A) can be obtained by a polymerization reaction of the above-mentioned specific side chain-containing monomers. It can also be obtained by copolymerizing a monomer having a side chain containing a photoreactive group and a monomer having a side chain containing a carboxylic acid group. Furthermore, it can be copolymerized with other monomers within a range that does not impair the ability to develop liquid crystallinity.
Other monomers include, for example, industrially available radical polymerizable monomers.

その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。 Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds and vinyl compounds.

不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。 Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid.

アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。 Examples of acrylic acid ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, tert-butyl acrylates, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, 8-ethyl-8-tricyclodecyl acrylate and the like.

メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 グリシジル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、および(3-エチル-3-オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレート化合物も用いることができる。 Examples of methacrylate compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl methacrylate and the like. (Meth)acrylate compounds with cyclic ether groups such as glycidyl (meth)acrylate, (3-methyl-3-oxetanyl)methyl (meth)acrylate, and (3-ethyl-3-oxetanyl)methyl (meth)acrylate are also used. be able to.

ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。 Examples of vinyl compounds include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.

スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。 Examples of styrene compounds include styrene, methylstyrene, chlorostyrene, bromostyrene and the like.

マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Maleimide compounds include, for example, maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.

(A)成分の重合体の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、特定側鎖側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The method for producing the component (A) polymer is not particularly limited, and a general industrial method can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a specific side chain side chain monomer. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.

ラジカル重合の重合開始剤としては、ラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, known compounds such as radical polymerization initiators and reversible addition-fragmentation chain transfer (RAFT) polymerization reagents can be used.

ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類 (ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシ シクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ 2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2′-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 A radical thermal polymerization initiator is a compound that generates radicals when heated to a decomposition temperature or higher. Examples of such radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide hydrogen, tert-butyl hydroxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxy, cyclohexane etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy 2-ethylcyclohexanoic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, 2,2'-di(2-hydroxyethyl)azobisisobutyronitrile, etc.). Such radical thermal polymerization initiators can be used singly or in combination of two or more.

ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4′-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butanone-1,4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4′-di(t-butylperoxycarbonyl)benzophenone, 3,4,4′-tri( t-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3' ,4′-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2′,4′-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2 -(2'-Methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-pentyloxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 4- [p-N,N-di(ethoxycarbonylmethyl)]-2,6-di(trichloromethyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(2′-chlorophenyl)-s- triazine, 1,3-bis(trichloromethyl)-5-(4′-methoxyphenyl)-s-triazine, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzthiazole, 2-mercaptobenzothiazole, 3,3′-carbonylbis(7-diethylaminocoumarin), 2-(o-chlorophenyl)-4,4′,5,5′-tetraphenyl-1,2′-biimidazole, 2 , 2'-bi Su(2-chlorophenyl)-4,4′,5,5′-tetrakis(4-ethoxycarbonylphenyl)-1,2′-biimidazole, 2,2′-bis(2,4-dichlorophenyl)-4, 4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis(2,4-dibromophenyl)-4,4',5,5'-tetraphenyl-1,2' -biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 3-(2-methyl-2 -dimethylaminopropionyl)carbazole, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n-dodecylcarbazole, 1-hydroxycyclohexylphenyl ketone, bis(5-2,4-cyclopentadiene-1- yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone, 3,3 ',4,4'-tetra(t-hexylperoxycarbonyl)benzophenone, 3,3'-di(methoxycarbonyl)-4,4'-di(t-butylperoxycarbonyl)benzophenone, 3,4'-di( methoxycarbonyl)-4,3′-di(t-butylperoxycarbonyl)benzophenone, 4,4′-di(methoxycarbonyl)-3,3′-di(t-butylperoxycarbonyl)benzophenone, 2-(3- methyl-3H-benzothiazol-2-ylidene)-1-naphthalen-2-yl-ethanone, or 2-(3-methyl-1,3-benzothiazol-2(3H)-ylidene)-1-(2- benzoyl)ethanone and the like. These compounds may be used alone or in combination of two or more.

ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and emulsion polymerization method, suspension polymerization method, dispersion polymerization method, precipitation polymerization method, bulk polymerization method, solution polymerization method and the like can be used.

重合反応に用いる有機溶媒としては、生成した高分子が溶解するものであれば特に限定されない。その具体例を以下に挙げる。 The organic solvent used for the polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples are given below.

N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。 N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide , γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl Ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene Glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether , diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, acetic acid Ethyl, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionate acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-methoxy-N,N-dimethylpropanamide, 3- ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide and the like.

これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。 These organic solvents may be used alone or in combination. Furthermore, even a solvent that does not dissolve the generated polymer may be mixed with the above-described organic solvent and used as long as the generated polymer does not precipitate.

また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
ラジカル重合の際の重合温度は30℃~150℃の任意の温度を選択することができるが、好ましくは50℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、モノマー濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
In addition, since oxygen in an organic solvent inhibits the polymerization reaction in radical polymerization, it is preferable to use an organic solvent that has been degassed to the extent possible.
The polymerization temperature for radical polymerization may be any temperature from 30°C to 150°C, preferably from 50°C to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it becomes difficult to obtain a high-molecular-weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high, making uniform stirring difficult. Therefore, the monomer concentration is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass. The initial stage of the reaction can be carried out at a high concentration, and then the organic solvent can be added.
In the radical polymerization reaction described above, if the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the polymer obtained will be small, and if it is small, the molecular weight of the polymer obtained will be large. It is preferably 0.1 mol % to 10 mol % with respect to the monomer to be polymerized. Further, various monomer components, solvents, initiators, etc. can be added during polymerization.

[重合体の回収]
上述の反応により得られた、重合体の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
[Recovery of polymer]
In the case of recovering the produced polymer from the reaction solution of the polymer obtained by the above reaction, the polymer may be precipitated by putting the reaction solution into a poor solvent. Poor solvents used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, and water. The polymer precipitated by putting it into a poor solvent can be filtered and recovered, and then dried at room temperature or under heat under normal pressure or reduced pressure. In addition, the impurities in the polymer can be reduced by redissolving the precipitated and recovered polymer in an organic solvent and repeating the operation of reprecipitating and recovering 2 to 10 times. Examples of the poor solvent in this case include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more poor solvents selected from these, because the purification efficiency is further improved.

本発明の(A)成分の重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2000~1000000が好ましく、より好ましくは、5000~100000である。 The molecular weight of the polymer of component (A) of the present invention was measured by GPC (Gel Permeation Chromatography) in consideration of the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film. The weight average molecular weight is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.

<<B成分>>
本発明の光学活性組成物は、(B)成分として下記式(1)又は(2)で表される化合物から選ばれる少なくとも1種の化合物を含有する。
<<B component>>
The optically active composition of the present invention contains at least one compound selected from compounds represented by the following formula (1) or (2) as component (B).

Figure 0007140336000011
Figure 0007140336000011

上記式(1)及び(2)中、Xは、単結合、又は炭素原子数1~12のアルキレン、エーテル、エステル、アゾ、チオエーテル、ジスルフィド、テトラジン、二置換アルケン、アルキン、もしくはフェニレンを表し、好ましくは、エステル、アゾ、二置換アルケン、又はアルキンを表す。ここで、「二置換アルケン」は、炭素原子数2~6,好ましくは2~4の二置換アルケンをいい、この二置換アルケンの置換基は、炭素数1~5のアルキル基、フッ素、又はシアノ基を表す。 In the above formulas (1) and (2), X represents a single bond, or an alkylene having 1 to 12 carbon atoms, ether, ester, azo, thioether, disulfide, tetrazine, disubstituted alkene, alkyne, or phenylene; It preferably represents an ester, azo, disubstituted alkene or alkyne. Here, "disubstituted alkene" refers to a disubstituted alkene having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, and the substituent of this disubstituted alkene is an alkyl group having 1 to 5 carbon atoms, fluorine, or represents a cyano group.

上記式(1)及び(2)中、Sは、エーテル、エステル又はフェニレンを表し、好ましくは、フェニレンを表す。 In the above formulas (1) and (2), S represents ether, ester or phenylene, preferably phenylene.

上記式(1)及び(2)中、Pyはそれぞれ独立して、以下の群から選ばれる構造を表す。なお、下記構造中、点がついている部分が、式(1)においてXと結合する部分であり、式(2)においてSと結合する部分である。好ましいPyは、4-ピリジル、4-ピリジルフェニルである。 In formulas (1) and (2) above, each Py independently represents a structure selected from the following group. In the structure below, the portion marked with a dot is the portion that bonds to X in Formula (1) and the portion that bonds to S in Formula (2). Preferred Py are 4-pyridyl, 4-pyridylphenyl.

Figure 0007140336000012
Figure 0007140336000012

上記式(1)及び(2)で表される化合物の具体例を以下に例示するが、これに限定されない。 Specific examples of the compounds represented by formulas (1) and (2) are shown below, but are not limited thereto.

Figure 0007140336000013
Figure 0007140336000013

Figure 0007140336000014
Figure 0007140336000014

Figure 0007140336000015
Figure 0007140336000015

[式中、
nは、1から3の整数を表し、
lは、2から6の整数を表し、及び
mは、1から4の整数を表す]。
[In the formula,
n represents an integer from 1 to 3,
l represents an integer from 2 to 6, and m represents an integer from 1 to 4].

なお、液晶性発現の観点から、B1~B9、B16、B18が好ましく、B1~B5がさらに好ましい。 From the viewpoint of exhibiting liquid crystallinity, B1 to B9, B16 and B18 are preferable, and B1 to B5 are more preferable.

上記(B)成分は、上記(A)成分の重合体の重量に対して0.5重量%~70重量%含有されることが好ましく、5重量%~50重量%含有されることがより好ましい。 Component (B) is preferably contained in an amount of 0.5% to 70% by weight, more preferably 5% to 50% by weight, based on the weight of the polymer of component (A). .

また、下記の化合物を(B)成分として用いても、同様の効果を得ることが可能である。 Similar effects can also be obtained by using the following compounds as the component (B).

Figure 0007140336000016
Figure 0007140336000016

<光学活性組成物の調整>
本発明に用いられる光学活性組成物は、塗膜の形成に好適となるように塗布液として調製されることが好ましい。すなわち、A成分、B成分及び後述する、必要に応じて添加される各種添加剤を有機溶媒に溶解した溶液として調製されることが好ましい。その際、A成分、B成分及び必要に応じて添加される各種添加剤を合計した成分(以下、樹脂成分とも称する)の含有量は、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3質量%~10質量%である。
<Adjustment of optically active composition>
The optically active composition used in the present invention is preferably prepared as a coating liquid so as to be suitable for forming a coating film. That is, it is preferable to prepare a solution in which the A component, the B component, and various additives to be added as necessary, which will be described later, are dissolved in an organic solvent. At that time, the content of the total component (hereinafter also referred to as the resin component) of the A component, the B component, and various additives added as necessary is preferably 1% by mass to 20% by mass, more preferably 3 % to 15% by weight, particularly preferably 3% to 10% by weight.

<有機溶媒>
本発明の光学活性組成物に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
<Organic solvent>
The organic solvent used in the optically active composition of the present invention is not particularly limited as long as it dissolves the resin component. Specific examples are given below.

N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル等が挙げられる。これらは単独で使用しても、混合して使用してもよい。 N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3 - dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pentanone, propylene glycol mono acetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether and the like. These may be used alone or in combination.

本発明の光学活性組成物に含有される重合体は、全てが上述したカルボン酸基構造を含有する側鎖を有する重合体であってもよいが、液晶発現能および感光性能を損なわない範囲でそれら以外の他の重合体が混合されていてもよい。その際、樹脂成分中における他の重合体の含有量は、0.5質量%~80質量%、好ましくは1質量%~50質量%である。 The polymer contained in the optically active composition of the present invention may be a polymer having a side chain containing the above-described carboxylic acid group structure, provided that the liquid crystal display ability and photosensitive performance are not impaired. Other polymers other than these may be mixed. At that time, the content of the other polymer in the resin component is 0.5% by mass to 80% by mass, preferably 1% by mass to 50% by mass.

そのような他の重合体は、例えば、ポリ(メタ)アクリレートやポリアミック酸やポリイミド等からなり、液晶性を発現し得る感光性の側鎖型高分子ではない重合体等が挙げられる。 Such other polymers include, for example, poly(meth)acrylates, polyamic acids, polyimides, and the like, which are not photosensitive side-chain type polymers capable of exhibiting liquid crystallinity.

本発明の光学活性組成物は、上記(A)及び(B)成分以外の成分を含有してもよい。その例としては、光学活性組成物の溶液を塗布した際の、膜厚均一性や表面平滑性を向上させる溶媒や化合物、塗膜と基板との密着性を向上させる化合物等を挙げることができるが、これに限定されない。
膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
The optically active composition of the present invention may contain components other than the above components (A) and (B). Examples thereof include solvents and compounds that improve film thickness uniformity and surface smoothness when a solution of an optically active composition is applied, and compounds that improve adhesion between a coating film and a substrate. but not limited to this.
Specific examples of the solvent (poor solvent) that improve the uniformity of film thickness and surface smoothness include the following.

例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒等が挙げられる。 For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate. Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene Glycol Monoacetate Monomethyl Ether, Dipropylene Glycol Monomethyl Ether, Dipropylene Glycol Monoethyl Ether, Dipropylene Glycol Monoacetate Monoethyl Ether, Dipropylene Glycol Monopropyl Ether, Dipropylene Glycol Monoacetate Monopropyl Ether, 3-Methyl-3- Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether , 1-hexanol, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, pyruvate ethyl acetate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate , 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether -2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate Solvents having a low surface tension such as esters and isoamyl lactate can be used.

これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上述のような溶媒を用いる場合は、本発明の光学活性組成物に含まれる溶媒全体の溶解性を著しく低下させることが無いように、溶媒全体の5質量%~80質量%であることが好ましく、より好ましくは20質量%~60質量%である。 These poor solvents may be used singly or in combination. When the above solvent is used, it is preferably 5% by mass to 80% by mass of the total solvent so as not to significantly lower the solubility of the entire solvent contained in the optically active composition of the present invention. , more preferably 20% by mass to 60% by mass.

膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノ二オン系界面活性剤等が挙げられる。 Compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like.

より具体的には、例えば、エフトップ(登録商標)301、EF303、EF352(トーケムプロダクツ社製)、メガファック(登録商標)F171、F173、R-30(DIC社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード(登録商標)AG710(旭硝子社製)、サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)等が挙げられる。これらの界面活性剤の使用割合は、重合体組成物に含有される樹脂成分の100質量部に対して、好ましくは0.01質量部~2質量部、より好ましくは0.01質量部~1質量部である。 More specifically, for example, Ftop (registered trademark) 301, EF303, EF352 (manufactured by Tochem Products), Megafac (registered trademark) F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard (registered trademark) AG710 (manufactured by Asahi Glass Co., Ltd.), Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical Co., Ltd.) and the like. be done. The proportion of these surfactants used is preferably 0.01 parts by mass to 2 parts by mass, more preferably 0.01 parts by mass to 1 part by mass, with respect to 100 parts by mass of the resin component contained in the polymer composition. part by mass.

塗膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。 Specific examples of the compound that improves the adhesion between the coating film and the substrate include the following functional silane-containing compounds.

例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン等が挙げられる。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane. , N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl- 1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis(oxyethylene)-3-aminopropyltrimethoxysilane silane, N-bis(oxyethylene)-3-aminopropyltriethoxysilane, and the like.

さらに、基板と塗膜の密着性の向上に加え、液晶表示素子を構成した時のバックライトによる電気特性の低下等を防ぐ目的で、以下のようなフェノプラスト系やエポキシ基含有化合物の添加剤を、本発明の光学活性組成物中に含有させても良い。具体的なフェノプラスト系添加剤を以下に示すが、この構造に限定されない。 Furthermore, in addition to improving the adhesion between the substrate and the coating film, the following additives such as phenoplasts and epoxy group-containing compounds are added for the purpose of preventing deterioration of electrical properties due to backlight when composing a liquid crystal display element. may be contained in the optically active composition of the present invention. Specific phenoplast-based additives are shown below, but are not limited to this structure.

Figure 0007140336000017
Figure 0007140336000017

具体的なエポキシ基含有化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが例示される。 Specific epoxy group-containing compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-hexanediol diglycidyl ether, glycerol diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N', N',-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N',-tetraglycidyl-4,4'-diaminodiphenylmethane etc. are exemplified.

基板との密着性を向上させる化合物を使用する場合、その使用量は、光学活性組成物に含有される樹脂成分の100質量部に対して0.1質量部~30質量部であることが好ましく、より好ましくは1質量部~20質量部である。使用量が0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When using a compound that improves adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the optically active composition. , more preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving adhesion cannot be expected, and if the amount exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.

添加剤として、光増感剤を用いることもできる。無色増感剤および三重項増感剤が好ましい。 A photosensitizer can also be used as an additive. Colorless sensitizers and triplet sensitizers are preferred.

光増感剤としては、芳香族ニトロ化合物、クマリン(7-ジエチルアミノ-4-メチルクマリン、7-ヒドロキシ4-メチルクマリン)、ケトクマリン、カルボニルビスクマリン、芳香族2-ヒドロキシケトン、およびアミノ置換された、芳香族2-ヒドロキシケトン(2-ヒドロキシベンゾフェノン、モノ-もしくはジ-p-(ジメチルアミノ)-2-ヒドロキシベンゾフェノン)、アセトフェノン、アントラキノン、キサントン、チオキサントン、ベンズアントロン、チアゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトチアゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾチアゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾチアゾリン、2-(β-ナフトイルメチレン)-3-メチル
-β-ナフトチアゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトチアゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトチアゾリン)、オキサゾリン(2-ベンゾイルメチレン-3-メチル-β-ナフトオキサゾリン、2-(β-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(α-ナフトイルメチレン)-3-メチルベンゾオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチルベンゾオキサゾリン、2-(β-ナフトイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(4-ビフェノイルメチレン)-3-メチル-β-ナフトオキサゾリン、2-(p-フルオロベンゾイルメチレン)-3-メチル-β-ナフトオキサゾリン)、ベンゾチアゾール、ニトロアニリン(m-もしくはp-ニトロアニリン、2,4,6-トリニトロアニリン)またはニトロアセナフテン(5-ニトロアセナフテン)、(2-[(m-ヒドロキシ-p-メトキシ)スチリル]ベンゾチアゾール、ベンゾインアルキルエーテル、N-アルキル化フタロン、アセトフェノンケタール(2,2-ジメトキシフェニルエタノン)、ナフタレン、アントラセン(2-ナフタレンメタノール、2-ナフタレンカルボン酸、9-アントラセンメタノール、および9-アントラセンカルボン酸)、ベンゾピラン、アゾインドリジン、メロクマリン等がある。
Photosensitizers include aromatic nitro compounds, coumarins (7-diethylamino-4-methylcoumarin, 7-hydroxy 4-methylcoumarin), ketocoumarins, carbonylbiscoumarins, aromatic 2-hydroxyketones, and amino-substituted , aromatic 2-hydroxyketones (2-hydroxybenzophenone, mono- or di-p-(dimethylamino)-2-hydroxybenzophenone), acetophenone, anthraquinone, xanthone, thioxanthone, benzanthrone, thiazoline (2-benzoylmethylene-3 -methyl-β-naphthothiazoline, 2-(β-naphthoylmethylene)-3-methylbenzothiazoline, 2-(α-naphthoylmethylene)-3-methylbenzothiazoline, 2-(4-biphenoylmethylene)- 3-methylbenzothiazoline, 2-(β-naphthoylmethylene)-3-methyl-β-naphthothiazoline, 2-(4-biphenoylmethylene)-3-methyl-β-naphthothiazoline, 2-(p-fluoro benzoylmethylene)-3-methyl-β-naphthothiazoline), oxazoline (2-benzoylmethylene-3-methyl-β-naphthoxazoline, 2-(β-naphthoylmethylene)-3-methylbenzoxazoline, 2-(α -naphthoylmethylene)-3-methylbenzoxazoline, 2-(4-biphenoylmethylene)-3-methylbenzoxazoline, 2-(β-naphthoylmethylene)-3-methyl-β-naphthoxazoline, 2-( 4-biphenoylmethylene)-3-methyl-β-naphthoxazoline, 2-(p-fluorobenzoylmethylene)-3-methyl-β-naphthoxazoline), benzothiazole, nitroaniline (m- or p-nitroaniline, 2,4,6-trinitroaniline) or nitroacenaphthene (5-nitroacenaphthene), (2-[(m-hydroxy-p-methoxy)styryl]benzothiazole, benzoin alkyl ether, N-alkylated phthalone, Acetophenone ketal (2,2-dimethoxyphenylethanone), naphthalene, anthracene (2-naphthalenemethanol, 2-naphthalenecarboxylic acid, 9-anthracenemethanol, and 9-anthracenecarboxylic acid), benzopyran, azoindolizine, merocumarin, etc. be.

好ましくは、芳香族2-ヒドロキシケトン(ベンゾフェノン)、クマリン、ケトクマリン、カルボニルビスクマリン、アセトフェノン、アントラキノン、キサントン、チオキサントン、およびアセトフェノンケタールである。 Preferred are aromatic 2-hydroxyketones (benzophenones), coumarins, ketocoumarins, carbonylbiscoumarins, acetophenones, anthraquinones, xanthones, thioxanthones, and acetophenone ketals.

本発明の光学活性組成物には、上述したものの他、本発明の効果が損なわれない範囲であれば、塗膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、塗膜にした際の膜の硬度や緻密度を高める目的で、架橋性化合物を添加してもよい。 In addition to those mentioned above, the optically active composition of the present invention may contain a dielectric or a conductive compound for the purpose of changing the electrical properties of the coating film, such as dielectric constant and conductivity, as long as the effects of the present invention are not impaired. A cross-linking compound may be added for the purpose of increasing the hardness and denseness of the coating film.

上述した光学活性組成物を基板に塗布、焼成した塗膜は、例えば液晶配向膜として用いることが出来る。本発明の光学活性組成物を含有する液晶配向剤を横電界駆動用の導電膜を有する基板上に塗布する方法は特に限定されない。 A coating film obtained by coating and baking the optically active composition described above on a substrate can be used, for example, as a liquid crystal alignment film. The method of applying the liquid crystal aligning agent containing the optically active composition of the present invention onto a substrate having a conductive film for lateral electric field driving is not particularly limited.

塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナ法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。 Industrially, screen printing, offset printing, flexographic printing, ink jet method, or the like is generally used as the coating method. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method (rotational coating method), a spray method, and the like, and these may be used depending on the purpose.

<<液晶表示素子の製造>>
<工程[I]>
本発明の光学活性組成物を含有する液晶配向剤を用いた液晶表示素子の製造は、以下の工程[I]から[IV]で表される。まず、工程[I]は、導電膜を有する基板上に本発明の液晶配向剤を塗布する過程である。塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により50~200℃、好ましくは50~150℃で溶媒を蒸発させて塗膜を得ることができる。このときの乾燥温度は、側鎖型高分子の液晶相発現温度よりも低いことが好ましい。
<<Manufacturing of liquid crystal display element>>
<Step [I]>
The production of a liquid crystal display element using the liquid crystal aligning agent containing the optically active composition of the present invention is represented by the following steps [I] to [IV]. First, process [I] is a process of apply|coating the liquid crystal aligning agent of this invention on the board|substrate which has a conductive film. After coating, the solvent is evaporated at 50 to 200° C., preferably 50 to 150° C. by heating means such as a hot plate, thermal circulation oven or IR (infrared) oven to obtain a coating film. The drying temperature at this time is preferably lower than the liquid crystal phase development temperature of the side chain type polymer.

塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
The thickness of the coating film is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm, because if it is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may decrease. is.
It is also possible to provide a step of cooling the substrate having the coating film formed thereon to room temperature after the step [I] and before the subsequent step [II].

<工程[II]>
工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光架橋反応を誘起できるように、波長290nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。
<Step [II]>
In step [II], the coating film obtained in step [I] is irradiated with polarized ultraviolet rays. When the film surface of the coating film is irradiated with polarized ultraviolet rays, the substrate is irradiated with the polarized ultraviolet rays from a certain direction through a polarizing plate. Ultraviolet rays having a wavelength of 100 nm to 400 nm can be used as the ultraviolet rays. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used. Then, for example, an ultraviolet ray having a wavelength in the range of 290 nm to 400 nm can be selected and used so as to selectively induce a photocrosslinking reaction. As ultraviolet rays, for example, light emitted from a high-pressure mercury lamp can be used.

偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。 The dose of polarized UV radiation depends on the coating used. The irradiation amount is the maximum value of ΔA (hereinafter also referred to as ΔAmax), which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of the polarized ultraviolet light and the ultraviolet light absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet light. It is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50% of the amount of.

<工程[III]>
工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜の液晶性を発現させる温度を考慮して決めることができる。
<Step [III]>
In step [III], the coating film irradiated with the polarized ultraviolet rays in step [II] is heated. Heating can impart alignment control ability to the coating film.
For heating, a heating means such as a hot plate, thermal circulation oven or IR (infrared) oven can be used. The heating temperature can be determined in consideration of the temperature at which the coating film to be used exhibits liquid crystallinity.

加熱温度は、側鎖型高分子が液晶性を発現する温度(以下、液晶発現温度という)の温度範囲内であることが好ましい。塗膜のような薄膜表面の場合、塗膜表面の液晶発現温度は、液晶性を発現し得る感光性の側鎖型高分子をバルクで観察した場合の液晶発現温度よりも低いことが予想される。このため、加熱温度は、塗膜表面の液晶発現温度の温度範囲内であることがより好ましい。すなわち、偏光紫外線照射後の加熱温度の温度範囲は、使用する側鎖型高分子の液晶発現温度の温度範囲の下限より10℃低い温度を下限とし、その液晶温度範囲の上限より10℃低い温度を上限とする範囲の温度であることが好ましい。加熱温度が、上記温度範囲よりも低いと、塗膜における熱による異方性の増幅効果が不十分となる傾向があり、また加熱温度が、上記温度範囲よりも高すぎると、塗膜の状態が等方性の液体状態(等方相)に近くなる傾向があり、この場合、自己組織化によって一方向に再配向することが困難になることがある。 The heating temperature is preferably within the temperature range at which the side chain type polymer exhibits liquid crystallinity (hereinafter referred to as liquid crystal exhibiting temperature). In the case of a thin film surface such as a paint film, the liquid crystal manifestation temperature on the surface of the paint film is expected to be lower than the liquid crystal manifestation temperature when a photosensitive side-chain type polymer capable of exhibiting liquid crystallinity is observed in bulk. be. For this reason, the heating temperature is more preferably within the temperature range of the liquid crystal manifestation temperature of the coating film surface. That is, the temperature range of the heating temperature after irradiation with polarized ultraviolet rays is set to a temperature 10°C lower than the lower limit of the liquid crystal temperature range of the side chain type polymer used, and a temperature lower than the upper limit of the liquid crystal temperature range by 10°C. It is preferable that the temperature is in the range with the upper limit of If the heating temperature is lower than the above temperature range, the effect of amplifying the anisotropy in the coating film by heat tends to be insufficient, and if the heating temperature is too high above the above temperature range, the state of the coating film tend to approach an isotropic liquid state (isotropic phase), in which case self-assembly can make it difficult to reorient in one direction.

なお、液晶発現温度は、側鎖型高分子または塗膜表面が固体相から液晶相に相転移がおきるガラス転移温度(Tg)以上であって、液晶相からアイソトロピック相(等方相)に相転移を起こすアイソトロピック相転移温度(Tiso)以下の温度をいう。
加熱後に形成される塗膜の厚みは、工程[I]で記した同じ理由から、好ましくは5nm~300nm、より好ましくは50nm~150nmであるのがよい。
In addition, the liquid crystal manifestation temperature is the glass transition temperature (Tg) or higher at which the side chain type polymer or the coating film surface undergoes a phase transition from the solid phase to the liquid crystal phase, and from the liquid crystal phase to the isotropic phase (isotropic phase). The temperature below the isotropic phase transition temperature (Tiso) at which phase transition occurs.
The thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm, for the same reason as described in step [I].

以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。 With the steps described above, the production method of the present invention can introduce anisotropy into the coating film with high efficiency. And a substrate with a liquid crystal alignment film can be manufactured with high efficiency.

<工程[IV]>
[IV]工程は、[III]で得られた、液晶配向膜を有する基板を、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、液晶表示素子を作製する工程である。
<Step [IV]>
In the step [IV], the substrate having the liquid crystal alignment film obtained in [III] is arranged opposite to each other so that both liquid crystal alignment films face each other through the liquid crystal, and a liquid crystal cell is produced by a known method. Then, it is a step of manufacturing a liquid crystal display element.

液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の基板を2枚用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。 To give an example of the production of a liquid crystal cell or a liquid crystal display element, two substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one of the substrates, and the liquid crystal alignment film surface faces inside. Examples include a method of bonding the other substrate and injecting liquid crystal under reduced pressure and sealing, or a method of bonding the substrates together and sealing after dropping liquid crystal on the surface of the liquid crystal alignment film on which spacers are scattered. can do. At this time, it is preferable to use a substrate having an electrode having a comb-like structure for driving a horizontal electric field as one of the substrates. The diameter of the spacer at this time is preferably 1 μm to 30 μm, more preferably 2 μm to 10 μm. This spacer diameter determines the distance between the pair of substrates holding the liquid crystal layer, that is, the thickness of the liquid crystal layer.

本発明の塗膜付基板の製造方法は、重合体組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより側鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
本発明に用いる塗膜では、側鎖の光反応と液晶性に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、側鎖型高分子に光反応性基として光架橋性基を有する構造の場合、側鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
In the method for producing a coated substrate of the present invention, a polymer composition is applied onto a substrate to form a coating film, and then polarized ultraviolet rays are irradiated. Next, by heating, highly efficient introduction of anisotropy into the side chain type polymer film is realized, and a substrate with a liquid crystal alignment film having liquid crystal alignment controllability is manufactured.
In the coating film used in the present invention, the principle of molecular reorientation induced by photoreaction of side chains and self-organization based on liquid crystallinity is used to efficiently introduce anisotropy into the coating film. . In the production method of the present invention, in the case of a structure having a photocrosslinkable group as a photoreactive group in the side chain type polymer, after forming a coating film on the substrate using the side chain type polymer, polarized ultraviolet light is applied. After irradiation and then heating, a liquid crystal display element is produced.

こうすることにより、本発明によって提供される液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示すことになる。
以上のようにして、本発明の方法によって製造された横電界駆動型液晶表示素子用基板又は該基板を有する横電界駆動型液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
By doing so, the liquid crystal display element provided by the present invention exhibits high reliability against external stress such as light and heat.
As described above, the substrate for a lateral electric field-driven liquid crystal display element manufactured by the method of the present invention or the lateral electric field-driven liquid crystal display element having the substrate is excellent in reliability, and has a large screen and high definition. It can be suitably used for liquid crystal televisions and the like.

以下、実施例を用いて本発明を説明するが、本発明は、該実施例に限定されるものではない。 EXAMPLES The present invention will be described below using examples, but the present invention is not limited to the examples.

実施例で使用する略号は以下のとおりである。 The abbreviations used in the examples are as follows.

(メタクリルモノマー) (methacrylic monomer)

Figure 0007140336000018
Figure 0007140336000018

(ビピリジン系添加剤)

Figure 0007140336000019
(bipyridine-based additive)
Figure 0007140336000019

(有機溶媒)
THF:テトラヒドロフラン
NMP:N-メチル-2-ピロリドン
BC:ブチルセロソルブ
(organic solvent)
THF: tetrahydrofuran NMP: N-methyl-2-pyrrolidone BC: butyl cellosolve

(重合開始剤)
AIBN:2,2’-アゾビスイソブチロニトリル
ポリマーの分子量測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC―7200)、
カラム:Shodex社製カラム(KD-803、KD-805)
カラム温度:50℃
(Polymerization initiator)
AIBN: The conditions for measuring the molecular weight of the 2,2'-azobisisobutyronitrile polymer are as follows.
Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
Column: Shodex column (KD-803, KD-805)
Column temperature: 50°C

溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(Li
Br・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/
L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
Eluent: N,N'-dimethylformamide (as an additive, lithium bromide-hydrate (Li
Br.H2O) is 30 mmol/L, phosphoric acid/anhydride crystals (o-phosphoric acid) is 30 mmol/L
L, tetrahydrofuran (THF) is 10 ml/L)
Flow rate: 1.0 ml/min

検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量
約9000,000、150,000、100,000、30,000)、および、ポリ
マーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000
、1,000)。
Standard samples for creating a calibration curve: TSK standard polyethylene oxide manufactured by Tosoh Corporation (molecular weight of about 9000,000, 150,000, 100,000, 30,000), and polyethylene glycol manufactured by Polymer Laboratory (molecular weight of about 12,000, 4 ,000
, 1,000).

<実施例1>
M6CA(12.41g、35.0mmol)をTHF(111.7g)中に溶解し、ダイアフラムポンプで脱気を行なった後、AIBNを(0.287g、1.8mmol)を加え再び脱気を行なった。この後60℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(500ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(A)を得た。このポリマーの数平均分子量は11000、重量平均分子量は26000であった。
<Example 1>
M6CA (12.41 g, 35.0 mmol) was dissolved in THF (111.7 g) and degassed with a diaphragm pump, then AIBN (0.287 g, 1.8 mmol) was added and degassed again. rice field. After that, the mixture was reacted at 60° C. for 30 hours to obtain a methacrylate polymer solution. This polymer solution was added dropwise to diethyl ether (500 ml) and the resulting precipitate was filtered. The precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40° C. to obtain methacrylate polymer powder (A). This polymer had a number average molecular weight of 11,000 and a weight average molecular weight of 26,000.

得られたメタクリレートポリマー粉末(A)(6.0g)にNMP(29.29g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(14.7g)、BC(50.0g)を加え5時間攪拌し液晶配向剤(A1)を得た。
また、上記の液晶配向剤(A1)10.0gに対してビピリジン系添加剤 BPyを0.03g(固形分に対して5質量%)添加し、室温で3時間撹拌して溶解させ、液晶配向剤(A2)を調製した。
NMP (29.29 g) was added to the obtained methacrylate polymer powder (A) (6.0 g) and dissolved by stirring at room temperature for 5 hours. NMP (14.7 g) and BC (50.0 g) were added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent (A1).
Further, 0.03 g (5% by mass relative to the solid content) of bipyridine-based additive BPy is added to 10.0 g of the liquid crystal aligning agent (A1), and stirred at room temperature for 3 hours to dissolve the liquid crystal aligning agent. Agent (A2) was prepared.

また、上記の液晶配向剤(A1)10.0gに対してビピリジン系添加剤 BPyStylを0.03g(固形分に対して5質量%)添加し、室温で3時間撹拌して溶解させ、液晶配向剤(A3)を調製した。 Further, 0.03 g (5% by mass relative to the solid content) of the bipyridine-based additive BPyStyl was added to 10.0 g of the liquid crystal aligning agent (A1), and stirred at room temperature for 3 hours to dissolve the liquid crystal aligning agent. Agent (A3) was prepared.

また、上記の液晶配向剤(A1)10.0gに対してビピリジン系添加剤 BPyC2を0.03g(固形分に対して5質量%)添加し、室温で3時間撹拌して溶解させ、液晶配向剤(A4)を調製した。 Further, 0.03 g (5% by mass relative to the solid content) of bipyridine-based additive BPyC2 was added to 10.0 g of the liquid crystal aligning agent (A1), and the mixture was stirred at room temperature for 3 hours to dissolve the liquid crystal aligning agent. Agent (A4) was prepared.

また、上記の液晶配向剤(A1)10.0gに対してビピリジン系添加剤 BPyC3を0.03g(固形分に対して5質量%)添加し、室温で3時間撹拌して溶解させ、液晶配向剤(A5)を調製した。 Further, 0.03 g of bipyridine-based additive BPyC3 (5% by mass relative to the solid content) was added to 10.0 g of the liquid crystal aligning agent (A1), and the mixture was stirred at room temperature for 3 hours to dissolve the liquid crystal aligning agent. Agent (A5) was prepared.

<実施例2>
M6BA(15.32g、50.0mmol)をTHF(141.6g)中に溶解し、ダイアフラムポンプで脱気を行なった後、AIBNを(0.411g、2.5mmol)を加え再び脱気を行なった。この後60℃で30時間反応させメタクリレートのポリマー溶液を得た。このポリマー溶液をジエチルエーテル(1500ml)に滴下し、得られた沈殿物をろ過した。この沈澱物をジエチルエーテルで洗浄し、40℃のオーブン中で減圧乾燥しメタクリレートポリマー粉末(B)を得た。このポリマーの数平均分子量は13000、重量平均分子量は31000であった。
<Example 2>
M6BA (15.32 g, 50.0 mmol) was dissolved in THF (141.6 g) and degassed with a diaphragm pump, then AIBN (0.411 g, 2.5 mmol) was added and degassed again. rice field. After that, the mixture was reacted at 60° C. for 30 hours to obtain a methacrylate polymer solution. This polymer solution was added dropwise to diethyl ether (1500 ml) and the resulting precipitate was filtered. The precipitate was washed with diethyl ether and dried under reduced pressure in an oven at 40° C. to obtain methacrylate polymer powder (B). This polymer had a number average molecular weight of 13,000 and a weight average molecular weight of 31,000.

得られたメタクリレートポリマー粉末(B)(6.0g)にNMP(29.29g)を加え、室温で5時間攪拌して溶解させた。この溶液にNMP(14.7.5g)、BC(50.0g)を加え5時間攪拌し液晶配向剤(B1)を得た。 NMP (29.29 g) was added to the obtained methacrylate polymer powder (B) (6.0 g) and dissolved by stirring at room temperature for 5 hours. NMP (14.7.5 g) and BC (50.0 g) were added to this solution and stirred for 5 hours to obtain a liquid crystal aligning agent (B1).

また、上記の液晶配向剤(B1)10.0gに対してビピリジン系添加剤 BPyStylを0.03g(固形分に対して5質量%)添加し、室温で3時間撹拌して溶解させ、液晶配向剤(B2)を調製した。 Further, 0.03 g (5% by mass relative to the solid content) of the bipyridine-based additive BPyStyl was added to 10.0 g of the liquid crystal aligning agent (B1), and stirred at room temperature for 3 hours to dissolve the liquid crystal aligning agent. Agent (B2) was prepared.

<実施例3>
実施例1で得られた液晶配向剤(A2)を用いて液晶セルを作成し、低分子液晶の配向性を確認した。配向処理における偏光UVの照射量、偏光UV照射後の加熱温度の条件を振り、最適な配向性が得られる条件を確認した。
<Example 3>
A liquid crystal cell was prepared using the liquid crystal aligning agent (A2) obtained in Example 1, and the alignment of the low-molecular-weight liquid crystal was confirmed. The irradiation amount of polarized UV in the alignment treatment and the heating temperature after the irradiation of polarized UV were changed, and the conditions under which the optimum alignment was obtained were confirmed.

[液晶セルの作製]
基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は10μmであり、電極要素間の間隔は20μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+15°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-15°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。実施例1で得られた液晶配向剤(A2)を、準備された上記電極付き基板にスピンコートした。次いで、70℃のホットプレートで90秒間乾燥し、膜厚100nmの液晶配向膜を形成した。次いで、塗膜面に偏光板を介して313nmの紫外線を3~13mJ/cm2照射した後に140~170℃のホットプレートで10分間加熱し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。一方の基板の液晶配向膜上にシール剤(協立化学製XN-1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を熱硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セルを得た。
[Production of liquid crystal cell]
The substrate used was a glass substrate with a size of 30 mm×40 mm and a thickness of 0.7 mm, on which comb-shaped pixel electrodes formed by patterning an ITO film were arranged. The pixel electrode has a comb-like shape formed by arranging a plurality of dogleg-shaped electrode elements with a bent central portion. The width of each electrode element in the lateral direction is 10 μm, and the interval between electrode elements is 20 μm. Since the pixel electrode that forms each pixel is configured by arranging a plurality of bent dogleg-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a curved shape resembling a bold character. Each pixel is vertically divided by the curved portion in the center, and has a first region above the curved portion and a second region below the curved portion. Comparing the first region and the second region of each pixel, the formation direction of the electrode elements of the pixel electrodes constituting them is different. That is, when the alignment processing direction of the liquid crystal alignment film, which will be described later, is used as a reference, the electrode elements of the pixel electrode are formed so as to form an angle of +15° (clockwise) in the first region of the pixel, and in the second region of the pixel. The electrode elements of the pixel electrode are formed at an angle of -15° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotational movement (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the plane of the substrate are mutually different. It is configured to be in the opposite direction. The liquid crystal aligning agent (A2) obtained in Example 1 was spin-coated on the prepared substrate with electrodes. Then, it was dried on a hot plate at 70° C. for 90 seconds to form a liquid crystal alignment film with a thickness of 100 nm. Next, the coated film surface was irradiated with 313 nm ultraviolet rays at 3 to 13 mJ/cm 2 through a polarizing plate, and then heated on a hot plate at 140 to 170° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film. A glass substrate having columnar spacers with a height of 4 μm on which electrodes are not formed as a counter substrate was similarly formed with a coating film and subjected to orientation treatment. A sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Then, the other substrate was attached so that the liquid crystal alignment film surfaces faced each other and the alignment direction was 0°, and then the sealant was thermally cured to prepare an empty cell. Liquid crystal MLC-2041 (manufactured by Merck Co., Ltd.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell having an IPS (In-Planes Switching) mode liquid crystal display element configuration. Obtained.

得られた液晶セルをクロスニコルにした偏光板の間に置き、液晶の配向性を確認した。また各電極間に8Vppの交流電圧を印可し、画素部の液晶が駆動するかどうかを確認した。以下の表に偏光UVの照射量とその後の加熱温度による液晶配向性の結果を示す。なお、液晶注入後に流動配向などの配向不良が確認されたものを×、配向不良が無く良好な液晶配向性が確認されたものを○と表示する。 The resulting liquid crystal cell was placed between crossed Nicol polarizing plates to confirm the orientation of the liquid crystal. An AC voltage of 8 Vpp was applied between the electrodes to confirm whether or not the liquid crystal in the pixel portion was driven. The following table shows the results of liquid crystal orientation depending on the amount of polarized UV irradiation and subsequent heating temperature. It should be noted that X indicates that an alignment defect such as flow alignment was confirmed after liquid crystal injection, and ◯ indicates a sample that has no alignment defect and good liquid crystal alignment was confirmed.

Figure 0007140336000020
Figure 0007140336000020

<実施例4>
実施例3と同様な方法で、液晶配向剤(A3)を用いて液晶セルを作成し、得られた液晶セルの配向性を確認した。以下の表2に液晶セルの液晶配向性の結果を示す。
<Example 4>
A liquid crystal cell was prepared using the liquid crystal aligning agent (A3) in the same manner as in Example 3, and the orientation of the obtained liquid crystal cell was confirmed. Table 2 below shows the results of the liquid crystal orientation properties of the liquid crystal cells.

Figure 0007140336000021
Figure 0007140336000021

<実施例6>
実施例3と同様な方法で、液晶配向剤(A4)を用いて液晶セルを作成し、得られた液晶セルの配向性を確認した。以下の表3に液晶セルの液晶配向性の結果を示す。
<Example 6>
A liquid crystal cell was prepared using the liquid crystal aligning agent (A4) in the same manner as in Example 3, and the orientation of the obtained liquid crystal cell was confirmed. Table 3 below shows the results of the liquid crystal orientation of the liquid crystal cell.

Figure 0007140336000022
Figure 0007140336000022

<実施例7>
実施例3と同様な方法で、液晶配向剤(A5)を用いて液晶セルを作成し、得られた液晶セルの配向性を確認した。以下の表4に液晶セルの液晶配向性の結果を示す。
<Example 7>
A liquid crystal cell was prepared using the liquid crystal aligning agent (A5) in the same manner as in Example 3, and the orientation of the obtained liquid crystal cell was confirmed. Table 4 below shows the results of the liquid crystal orientation properties of the liquid crystal cell.

Figure 0007140336000023
Figure 0007140336000023

<比較例1>
実施例3と同様な方法で、液晶配向剤(A1)を用いて液晶セルを作成し、得られた液晶セルの配向性を確認した。以下の表5に液晶セルの液晶配向性の結果を示す。
<Comparative Example 1>
A liquid crystal cell was prepared using the liquid crystal aligning agent (A1) in the same manner as in Example 3, and the orientation of the obtained liquid crystal cell was confirmed. Table 5 below shows the results of the liquid crystal orientation of the liquid crystal cell.

Figure 0007140336000024
Figure 0007140336000024

表1~5の結果からピリジン系の添加剤を加えることで比較例に対して最適な配向性を得られる加熱温度や偏光UVの照射量が変化することが確認された。特に加熱温度に関しては、残存溶媒などの影響による液晶表示素子の電気特性悪化などが懸念されるためなるべく高い温度で焼成を行うことが求められており、添加剤を用いるだけで最適な配向性が得られる加熱条件を任意に選択できることは材料選択の幅を広めることにつながる。
最適な照射量や加熱温度が変化した理由としては、超分子液晶のメソゲン部分が変わることでUVの吸収帯やUVによる感度や反応率の変化によるものであると考えられる。
[高分子フィルムとしての評価]
From the results in Tables 1 to 5, it was confirmed that the addition of the pyridine-based additive changed the heating temperature and the amount of polarized UV irradiation at which the optimum orientation was obtained compared to the comparative example. In particular, regarding the heating temperature, there is concern that the electrical properties of liquid crystal display elements may deteriorate due to the effects of residual solvents, etc., so it is necessary to bake at as high a temperature as possible. The ability to arbitrarily select the heating conditions to be obtained leads to a wider range of material selection.
The reason why the optimum irradiation dose and heating temperature changed is considered to be that the mesogenic portion of the supramolecular liquid crystal changes, resulting in changes in the UV absorption band, UV sensitivity, and reaction rate.
[Evaluation as a polymer film]

<実施例7>
次に、液晶配向剤(A1)10.0gに対して、ビピリジン系添加剤 BPyを0.06g(固形分に対して10質量%)添加し、室温で3時間撹拌して溶解させ、光学活性組成物(A6)を調製した。
<Example 7>
Next, to 10.0 g of the liquid crystal aligning agent (A1), 0.06 g of bipyridine-based additive BPy (10% by mass relative to the solid content) was added, stirred at room temperature for 3 hours to dissolve, and optically active. A composition (A6) was prepared.

また、液晶配向剤(A1)10.0gに対してビピリジン系添加剤 BPyを0.3g(固形分に対して50質量%)添加し、室温で3時間撹拌して溶解させ、液晶配向剤(A7)を調製した。 Further, 0.3 g of bipyridine-based additive BPy (50% by mass relative to the solid content) was added to 10.0 g of the liquid crystal aligning agent (A1), stirred at room temperature for 3 hours to dissolve, and the liquid crystal aligning agent ( A7) was prepared.

<実施例8>
実施例7で得られた光学活性組成物(A6)を1.1mmの石英基板に膜厚100nmとなるようにスピンコート法により塗布し、70℃のホットプレートで乾燥した。
<Example 8>
The optically active composition (A6) obtained in Example 7 was applied to a 1.1 mm quartz substrate by spin coating to a thickness of 100 nm, and dried on a hot plate at 70°C.

この塗膜に313nmの偏光UVを0J/cm2から30J/cm2まで照射していった時の二色性を追跡した。なお二色性△Aの測定は偏光UV-vis吸収スペクトルを測定して以下の式により算出した。 Dichroism was tracked when this coating film was irradiated with polarized UV at 313 nm from 0 J/cm2 to 30 J/cm2. The dichroism ΔA was calculated by the following formula after measuring the polarized UV-vis absorption spectrum.

二色性△A=A//-A⊥ Dichroism △A=A//-A⊥

(A//は照射した偏光UVに対して平行方向の吸光度、A⊥は照射した偏光UVに対して⊥方向の吸光度を表す。吸光度は313nmにおける吸光度の値である。) (A// represents the absorbance in the direction parallel to the irradiated polarized UV, and A⊥ represents the absorbance in the ⊥ direction to the irradiated polarized UV. Absorbance is the value of absorbance at 313 nm.)

同様の方法で光学活性組成物(A7)を用いた場合の二色性も算出した。
なお、偏光UV-vis吸収スペクトルの測定にはUV-3100(島津製作所製)を使用した。
The dichroism when using the optically active composition (A7) was also calculated in a similar manner.
UV-3100 (manufactured by Shimadzu Corporation) was used to measure the polarized UV-vis absorption spectrum.

<比較例2>
実施例8と同様の方法で、液晶配向剤(A1)の二色性も算出した。実施例8と比較例2から得られた二色性を図1に示す。
<Comparative Example 2>
The dichroism of the liquid crystal aligning agent (A1) was also calculated in the same manner as in Example 8. The dichroism obtained from Example 8 and Comparative Example 2 is shown in FIG.

<実施例9>
次に、液晶配向剤(A1)10.0gに対して、ビピリジン系添加剤 BPyAz(上記B-3)を0.06g(固形分に対して10質量%)添加し、室温で3時間撹拌して溶解させ、光学活性組成物(A8)を調製した。
<Example 9>
Next, to 10.0 g of the liquid crystal aligning agent (A1), 0.06 g (10% by mass relative to the solid content) of the bipyridine-based additive BPyAz (B-3 above) was added and stirred at room temperature for 3 hours. to prepare an optically active composition (A8).

<実施例10>
実施例9で得られた光学活性組成物(A8)を1.1mmの石英基板に膜厚100nmとなるようにスピンコート法により塗布し、70℃のホットプレートで乾燥した。
この塗膜に313nmの偏光UVを0mJ/cm2から150mJ/cm2まで照射した後、150℃のホットプレートで加熱(高分子液晶の自己組織化による所謂配向増幅処理)した後のIn-plane order parameter (面内配向度S)を追跡した。なお面内配向度Sの測定は偏光UV-vis吸収スペクトルを測定して以下の式により算出した。
<Example 10>
The optically active composition (A8) obtained in Example 9 was applied to a 1.1 mm quartz substrate by spin coating to a film thickness of 100 nm, and dried on a hot plate at 70°C.
After irradiating this coating film with polarized UV of 313 nm from 0 mJ / cm to 150 mJ / cm 2, heating with a hot plate at 150 ° C. (so-called orientation amplification treatment by self-assembly of polymer liquid crystal) In-plane order parameters (In-plane orientation degree S) was tracked. The in-plane orientation degree S was calculated by the following formula after measuring the polarized UV-vis absorption spectrum.

面内配向度 S=(A//-A⊥)/(Al+2As) In-plane orientation S = (A//-A⊥)/(Al+2As)

(Alは偏光UV吸収スペクトル(A//とA⊥)における大きなほうの吸光度、Asは偏光UV吸収スペクトルにおける小さいほうの吸光度を表す。) (Al represents the larger absorbance in the polarized UV absorption spectrum (A// and A⊥) and As represents the smaller absorbance in the polarized UV absorption spectrum.)

<比較例3>
同様の方法で液晶配向剤(A1)を用いた場合の面内配向度Sも算出した。
実施例10と比較例3から得られた各照射量における面内配向度Sを図2に示す。
実施例7、8の評価において、ビピリジン系の添加剤を加えることで最大の二色性を示す偏光UVの照射量や二色性の大きさを変化させることが可能であることが確認された。
<Comparative Example 3>
The in-plane orientation degree S in the case of using the liquid crystal aligning agent (A1) was also calculated by the same method.
FIG. 2 shows the in-plane orientation degree S at each dose obtained from Example 10 and Comparative Example 3. As shown in FIG.
In the evaluation of Examples 7 and 8, it was confirmed that by adding a bipyridine-based additive, it was possible to change the amount of polarized UV radiation that exhibits the maximum dichroism and the magnitude of the dichroism. .

また実施例9、10の評価において面内配向度を大きくさせる最適な照射領域がビピリジン系の添加剤が無い場合にくらべ劇的に広がることが確認された。 Further, in the evaluation of Examples 9 and 10, it was confirmed that the optimum irradiation region for increasing the degree of in-plane orientation was dramatically expanded as compared with the case where there was no bipyridine-based additive.

このように実施例1~10において最適な照射量や加熱温度が変化した理由としては、超分子液晶のメソゲン構造が変わることでUVの吸収帯やUVによる感度や反応率が変化したことによるものであると考えられた。 The reason why the optimum irradiation dose and heating temperature changed in Examples 1 to 10 is that the UV absorption band and UV sensitivity and reaction rate changed due to changes in the mesogenic structure of the supramolecular liquid crystal. It was thought that

Claims (5)

下記(A)成分及び(B)成分を含有し、(A)成分の側鎖と(B)成分のいずれか又は両方に、光反応性基を含有し、(A)成分と(B)成分とが水素結合を介して、液晶性超分子を形成することを特徴とする光学活性組成物、を含有する、液晶配向剤。
(A)カルボン酸基構造を含有する側鎖を有する重合体であって、下記式(3)及び(4)からなる群から選ばれるいずれか1種の感光性側鎖を有する重合体、及び
(B)下記式(1)又は(2)で表される化合物から選ばれる少なくとも1種の化合物
Figure 0007140336000025
[式中、
Xは、単結合、又は炭素原子数1~12のアルキレン、エーテル、エステル、アゾ、チオエーテル、ジスルフィド、テトラジン、二置換アルケン、アルキン、もしくはフェニレンを表し、
Sは、エーテル、エステル又はフェニレンを表し、
Pyはそれぞれ独立して、以下の群から選ばれる構造を表し、下記構造中、点がついている部分は、式(1)においてXと結合する部分であり、式(2)においてSと結合する部分である
Figure 0007140336000026
]、
Figure 0007140336000027
[式中、
Aは単結合、-O-、-COO-、-CONH-、及び-NH-から選ばれる基を表し、
Bは単結合、-O-、-COO-、-CONH-、-NH-、及び-CH=CH-COO-から選ばれる基を表し、
Ar及びArはそれぞれ独立に、フェニル基またはナフチル基を表し、
lは0~12の整数であり、mは0である]。
Containing the following components (A) and (B), containing a photoreactive group in either or both of the side chain of the component (A) and the component (B), and the components (A) and (B) A liquid crystal aligning agent, comprising an optically active composition characterized by forming liquid crystalline supramolecules through hydrogen bonding.
(A) a polymer having a side chain containing a carboxylic acid group structure, the polymer having any one photosensitive side chain selected from the group consisting of the following formulas (3) and (4); (B) at least one compound selected from compounds represented by the following formula (1) or (2) :
Figure 0007140336000025
[In the formula,
X represents a single bond or an alkylene, ether, ester, azo, thioether, disulfide, tetrazine, disubstituted alkene, alkyne, or phenylene having 1 to 12 carbon atoms;
S represents ether, ester or phenylene,
Py each independently represents a structure selected from the following group, and in the structure below, the portion with a dot is the portion that binds to X in formula (1), and binds to S in formula (2) is a part
Figure 0007140336000026
],
Figure 0007140336000027
[In the formula,
A represents a group selected from a single bond, -O-, -COO-, -CONH-, and -NH-,
B represents a group selected from a single bond, -O-, -COO-, -CONH-, -NH-, and -CH=CH-COO-,
Ar 1 and Ar 2 each independently represent a phenyl group or a naphthyl group;
l is an integer from 0 to 12 and m is 0 ].
前記(A)成分が、1つの側鎖構造中にカルボン酸基及び光反応性基を含有する、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein the component (A) contains a carboxylic acid group and a photoreactive group in one side chain structure. 前記(B)成分が、前記(A)成分の重合体の重量に対して0.5重量%~70重量%含有される、請求項1または2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 1, wherein the component (B) is contained in an amount of 0.5% by weight to 70% by weight based on the weight of the polymer of the component (A). 請求項1~3のいずれか一項に記載の液晶配向剤から得られる、液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 3. 請求項4に記載の液晶配向膜を具備する、液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 4 .
JP2019206887A 2014-06-30 2019-11-15 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element Active JP7140336B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014134036 2014-06-30
JP2014134036 2014-06-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016531349A Division JP6784593B2 (en) 2014-06-30 2015-06-29 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2020042288A JP2020042288A (en) 2020-03-19
JP7140336B2 true JP7140336B2 (en) 2022-09-21

Family

ID=55019227

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016531349A Active JP6784593B2 (en) 2014-06-30 2015-06-29 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2019206887A Active JP7140336B2 (en) 2014-06-30 2019-11-15 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016531349A Active JP6784593B2 (en) 2014-06-30 2015-06-29 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP6784593B2 (en)
KR (1) KR102430605B1 (en)
CN (1) CN106661336B (en)
TW (1) TWI678391B (en)
WO (1) WO2016002691A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046310B2 (en) * 2016-02-01 2022-04-04 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6879219B2 (en) * 2016-02-10 2021-06-02 日産化学株式会社 Liquid crystal composition and single-layer coating type horizontally oriented film
JP6759617B2 (en) * 2016-02-15 2020-09-23 東ソー株式会社 Resin composition
WO2017155023A1 (en) * 2016-03-09 2017-09-14 シャープ株式会社 Composition, liquid crystal panel, liquid crystal display device and electronic device
CN109153839A (en) * 2016-05-18 2019-01-04 日产化学株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal indicate element
JP6819336B2 (en) * 2017-02-09 2021-01-27 コニカミノルタ株式会社 Electrophotographic toner and image formation method
JP6988179B2 (en) * 2017-06-14 2022-01-05 コニカミノルタ株式会社 Composite resin
CN107463029B (en) * 2017-08-25 2020-11-24 深圳市华星光电技术有限公司 Self-orientation liquid crystal display panel and manufacturing method thereof
KR20220098362A (en) * 2019-11-05 2022-07-12 닛산 가가쿠 가부시키가이샤 Manufacturing method of patterned single-layer retardation material
WO2022176555A1 (en) * 2021-02-19 2022-08-25 株式会社フジクラ Optical diffractive element, optical computing device, and method for producing optical diffractive element
TW202346380A (en) * 2022-03-10 2023-12-01 日商日產化學股份有限公司 Polymer composition, single layer phase difference material, and liquid crystal alignment agent

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JPH1160619A (en) * 1997-08-07 1999-03-02 Jsr Corp Liquid crystalline composition, cured product and preparation thereof
JP2000131722A (en) * 1998-10-22 2000-05-12 Nippon Mitsubishi Oil Corp Electrochromic element
JP2002060601A (en) * 2000-06-08 2002-02-26 Toray Ind Inc Polyester resin composition
JP4825355B2 (en) * 2001-02-13 2011-11-30 独立行政法人産業技術総合研究所 Cholesteric liquid crystal and recording display material
JP2003075797A (en) * 2001-09-03 2003-03-12 Kyodo Printing Co Ltd Record display material
JP4317243B2 (en) * 2007-09-06 2009-08-19 共同印刷株式会社 Recording display medium and manufacturing method thereof
JP2010116466A (en) * 2008-11-12 2010-05-27 Nippon Oil Corp Micro phase separation structure membrane, nano porous membrane, and their production method
TWI510508B (en) * 2010-03-31 2015-12-01 Nissan Chemical Ind Ltd Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN102690646B (en) * 2012-06-04 2014-10-15 仝泽彬 Electrochromism material and electrochromism device
JP2014050627A (en) * 2012-09-10 2014-03-20 Heiwa Corp Game machine
JP6449016B2 (en) 2012-10-05 2019-01-09 日産化学株式会社 Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element

Also Published As

Publication number Publication date
CN106661336B (en) 2020-11-17
JPWO2016002691A1 (en) 2017-04-27
KR102430605B1 (en) 2022-08-08
KR20170024011A (en) 2017-03-06
TW201615759A (en) 2016-05-01
JP6784593B2 (en) 2020-11-11
JP2020042288A (en) 2020-03-19
CN106661336A (en) 2017-05-10
TWI678391B (en) 2019-12-01
WO2016002691A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP7140336B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP2020122154A (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014148569A1 (en) Method for manufacturing in-plane-switching-type liquid-crystal display element
WO2017199986A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2015007702A (en) Method for manufacturing substrate having liquid crystal alignment layer for in-plane switching type liquid crystal display element
WO2015012341A1 (en) Polymer, polymer composition, and liquid crystal alignment film for horizontal-electric-field drive-type liquid crystal display element
WO2014196590A1 (en) Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
WO2016113931A1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
WO2014185411A1 (en) Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
TWI689543B (en) Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
WO2017135130A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6571524B2 (en) Manufacturing method of substrate having liquid crystal alignment film for lateral electric field driving type liquid crystal display element
WO2015016301A1 (en) Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
JP6794257B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2017069133A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6723523B2 (en) Polymer composition, liquid crystal aligning agent, liquid crystal aligning film, substrate having the liquid crystal aligning film, and liquid crystal display device having the liquid crystal aligning film
CN105431770B (en) Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
WO2014185413A1 (en) Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
JP2018109788A (en) Method for manufacturing substrate having liquid crystal orientation film for lateral electric field-driven liquid crystal display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220627

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7140336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150