JP5075483B2 - Polymer film, method for producing molecular alignment element, and liquid crystal alignment film - Google Patents

Polymer film, method for producing molecular alignment element, and liquid crystal alignment film Download PDF

Info

Publication number
JP5075483B2
JP5075483B2 JP2007142546A JP2007142546A JP5075483B2 JP 5075483 B2 JP5075483 B2 JP 5075483B2 JP 2007142546 A JP2007142546 A JP 2007142546A JP 2007142546 A JP2007142546 A JP 2007142546A JP 5075483 B2 JP5075483 B2 JP 5075483B2
Authority
JP
Japan
Prior art keywords
polymer
side chain
liquid crystal
photoreactive
dimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007142546A
Other languages
Japanese (ja)
Other versions
JP2008276149A (en
Inventor
丈也 酒井
喜弘 川月
江美 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Hyogo Prefectural Government
Original Assignee
Hayashi Telempu Corp
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp, Hyogo Prefectural Government filed Critical Hayashi Telempu Corp
Priority to JP2007142546A priority Critical patent/JP5075483B2/en
Publication of JP2008276149A publication Critical patent/JP2008276149A/en
Application granted granted Critical
Publication of JP5075483B2 publication Critical patent/JP5075483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、位相差フィルムや偏光回折素子などの分子配向を制御した光学素子や液晶配向膜の製造に好適である光配向材に関するものである。The present invention relates to an optical alignment material suitable for the production of an optical element or a liquid crystal alignment film in which molecular alignment is controlled, such as a retardation film or a polarization diffraction element.

本発明者は、特開2002−202409号、特開2003−307618号などに、光照射または光照射と加熱冷却により複屈折を誘起する側鎖型液晶高分子に光照射するまたは光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムおよびその製造法や、特開2002−90750号には光照射により液晶配向能を付与させた液晶配向膜およびその製造法を提案してきた。  The present inventor disclosed in Japanese Patent Application Laid-Open No. 2002-202409, Japanese Patent Application Laid-Open No. 2003-307618, etc., light irradiation or light irradiation and heating to a side chain liquid crystal polymer that induces birefringence by light irradiation and heating and cooling. JP-A 2002-90750 has proposed a retardation film produced by a process including an operation of cooling and a production method thereof, and a liquid crystal alignment film provided with a liquid crystal orientation ability by light irradiation and a production method thereof.

これら材料では、基材に塗布して製膜した後、直線偏光性紫外線を照射すると、高分子側鎖の軸選択的な光架橋反応によって異方性を付与できる。更に、このような膜を加熱すると、材料自体が液晶性を有することから未反応側鎖が軸選択的に光架橋した側鎖に沿って配向することから膜全体を分子配向させることができる。このような膜では、分子配向により複屈折性が発現することから位相差フィルムとして利用することができる。また、膜表面に液晶分子を接触させると液晶分子の配向能を発現することから液晶配向膜としても機能する。In these materials, anisotropy can be imparted by an axis-selective photocrosslinking reaction of a polymer side chain when irradiated with linearly polarized ultraviolet light after being applied to a substrate and formed into a film. Further, when such a film is heated, since the material itself has liquid crystallinity, the unreacted side chain is aligned along the side chain that has been photocrosslinked selectively, so that the entire film can be molecularly aligned. Such a film can be used as a retardation film because it exhibits birefringence due to molecular orientation. In addition, when liquid crystal molecules are brought into contact with the film surface, the liquid crystal molecules exhibit alignment ability, so that it functions as a liquid crystal alignment film.

このように光照射と加熱により分子配向するという特性からこれら材料は様々な用途で利用することができる。しかしながら、これら提案の材料では光反応性が充分であるとはいえず、照射時間の長時間化など製造上好ましくなく、この課題を解決するために、特願2006−130833号には、光反応性基を有し、かつそれらが少なくとも1つの水素結合部位により、2量体を形成する側鎖(以下、光反応性水素結合側鎖と略す)を含有する光反応性高分子を提案している。この光反応性高分子では、光反応性に優れ光照射工程を短縮により製造上のメリットを実現したが、光反応性高分子の原料が高価であるため、製造コストを抑えることが難しかった。
特開2002−202409号 特開2003−307618号 特開2002−90750号 特願2006−130833号
Thus, these materials can be used in various applications due to the property of molecular orientation by light irradiation and heating. However, these proposed materials cannot be said to have sufficient photoreactivity, which is undesirable in production such as prolonged irradiation time. In order to solve this problem, Japanese Patent Application No. 2006-130833 describes photoreaction. Photoreactive polymer having a reactive group and containing a side chain (hereinafter abbreviated as photoreactive hydrogen bonding side chain) that forms a dimer with at least one hydrogen bonding site Yes. This photoreactive polymer is excellent in photoreactivity and has realized manufacturing advantages by shortening the light irradiation process, but it is difficult to reduce the production cost because the raw material of the photoreactive polymer is expensive.
JP 2002-202409 A JP 2003-307618 A JP 2002-90750 A Japanese Patent Application No. 2006-130833

本発明は、光配向材に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムや偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜の製造法において、従来技術を用いて工業的に提供するにあたり問題となる上記課題を解決しようとするものである。  The present invention relates to a conventional method for producing an optical element or a liquid crystal alignment film in which molecular orientation is controlled, such as a retardation film or a polarization diffraction element, produced by a process including light irradiation and heating / cooling operations on a photo-alignment material. The present invention intends to solve the above-mentioned problem which becomes a problem in providing industrially using the.

光反応性水素結合側鎖と、光反応性を有さず、少なくとも1つの水素結合部位により、2量体を形成する側鎖(以下、非反応性水素結合側鎖と略す)とを含有することを特徴とする高分子フィルムを用いることによって上記課題を解決することができる。 Contains a photoreactive hydrogen-bonded side chain and a side chain that has no photoreactive group and forms a dimer with at least one hydrogen-bonding site (hereinafter abbreviated as a non-reactive hydrogen-bonded side chain) The above-described problems can be solved by using a polymer film characterized by:

本発明により、光配向材に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムや偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜を製造するのに好適な材料を安価で提供できる。これにより従来技術の問題点を解決することができる。  According to the present invention, it is suitable for producing an optical element or liquid crystal alignment film in which molecular alignment is controlled, such as a retardation film or a polarization diffraction element, which is produced by a process including light irradiation and heating / cooling operations on a photo-alignment material. Materials can be provided at low cost. Thereby, the problems of the prior art can be solved.

以下に、本発明の詳細を説明する。本発明では、光反応性水素結合側鎖と、非反応性水素結合側鎖とを含有することを特徴とする高分子フィルムを用いることによって上記課題を解決することができる。  Details of the present invention will be described below. In this invention, the said subject can be solved by using the polymer film characterized by containing a photoreactive hydrogen bond side chain and a non-reactive hydrogen bond side chain.

光反応性水素結合側鎖は、化学式1で示される構造を有する側鎖が好適に用いられ、側鎖末端に光反応性のカルボキシル基を有する液晶性高分子である。この光反応性高分子は、側鎖末端のカルボキシル基の水素結合による2量化により、従来技術の材料のようなメソゲン基を構造に含まなくとも液晶相を発現する構造を有している。  As the photoreactive hydrogen bond side chain, a side chain having a structure represented by Chemical Formula 1 is preferably used, and a liquid crystalline polymer having a photoreactive carboxyl group at the end of the side chain. This photoreactive polymer has a structure that expresses a liquid crystal phase by dimerization of a carboxyl group at the end of a side chain by hydrogen bonding even if the structure does not contain a mesogenic group as in the prior art material.

また、非反応性水素結合側鎖としては、化学式2で示される構造を有する側鎖が好適に用いられ、この側鎖も側鎖末端にカルボキシル基を有し、側鎖末端のカルボキシル基の水素結合による2量化により液晶相を発現する構造を有する。  Further, as the non-reactive hydrogen bonding side chain, a side chain having a structure represented by Chemical Formula 2 is preferably used. This side chain also has a carboxyl group at the end of the side chain, and the hydrogen of the carboxyl group at the end of the side chain. It has a structure that expresses a liquid crystal phase by dimerization by bonding.

これら2つの側鎖を含有する高分子フィルムは、それら単量体を共重合した光反応性高分子、ないしは各々単独で重合した後、得られた高分子を混合した混合体を塗布(スピンコートないしはキャスト)することにより形成できる。  The polymer film containing these two side chains is coated with a photoreactive polymer obtained by copolymerizing these monomers, or a polymer mixture obtained by polymerizing each of these monomers alone (spin coating). Or cast).

非反応性水素結合側鎖としては、4−ヒドロキシ安息香酸を原料とする化学式3で示されるような単量体ないしはその重合体を好適に用いることができる。このような非反応性水素結合側鎖も、メソゲン基を構造に含まなくとも液晶相を発現する材料であり、メソゲン基をその構造に含まないことから、感光性基の光反応を進行させる波長の光を吸収することがなく光反応性を損なうことが無い。また、液晶性を発現する材料であることから配向性を損なうことも無い。  As the non-reactive hydrogen bond side chain, a monomer or a polymer thereof represented by Chemical Formula 3 using 4-hydroxybenzoic acid as a raw material can be preferably used. Such a non-reactive hydrogen-bonded side chain is also a material that develops a liquid crystal phase even if the mesogenic group is not included in the structure, and since the mesogenic group is not included in the structure, the wavelength at which the photoreaction of the photosensitive group proceeds. It does not absorb the light and does not impair the photoreactivity. In addition, since the material exhibits liquid crystallinity, the orientation is not impaired.

化学式4で示される単量体の原料となる4−ヒドロキシ安息香酸は、化粧品、食品の防腐剤・保存料として広く利用されているパラベン(パラオキシ安息香酸エステル)の合成原料となるため、比較的安価に入手可能な化合物であり、単量体自体の製造コストを抑えるこが可能となる。このような単量体ないしは重合体を光反応性高分子に添加しても光反応性や配向性を損なうことがなく、添加することによって光反応性高分子材料自体の製造コストを低減することが可能になる。  4-Hydroxybenzoic acid, which is a raw material for the monomer represented by Chemical Formula 4, is a synthetic raw material for parabens (paraoxybenzoic acid esters) that are widely used as preservatives and preservatives for cosmetics and foods. It is a compound that can be obtained at a low cost, and the production cost of the monomer itself can be suppressed. Even if such a monomer or polymer is added to the photoreactive polymer, the photoreactivity and orientation are not impaired, and the addition reduces the production cost of the photoreactive polymer material itself. Is possible.

非反応性水素結合側鎖の過剰の添加は、高分子フィルム中で光反応性基の密度が著しく低下すると偏光照射による配向性を損なうため、高分子フィルム自体の異方性の発現を阻害する。この光反応性を有さず、少なくとも1つの水素結合部位により、2量体を形成する側鎖の添加量は、添加する側鎖の種類にもよるが、光反応性水素結合側鎖に対するモル比にして、〔非反応性水素結合側鎖〕:〔光反応性水素結合側鎖〕=99:1より少ないことが好ましく、更には、9:1より少ないことが好ましい。 Excessive addition of non-reactive hydrogen-bonded side chains impairs the orientation of the polymer film itself when the density of photoreactive groups in the polymer film is significantly reduced, impairing the orientation due to polarized light irradiation. . The addition amount of the side chain that does not have this photoreactive group and forms a dimer with at least one hydrogen bonding site depends on the type of the side chain to be added, but with respect to the photoreactive hydrogen bonding side chain. The molar ratio is preferably less than [non-reactive hydrogen bond side chain]: [photoreactive hydrogen bond side chain] = 99: 1, and more preferably less than 9: 1.

また、このような光反応性高分子は、液晶性を損なわない程度に耐熱性を向上させるための架橋剤を添加することや、液晶性を損なうことなく液晶性を示さない単量体を感光性の重合体に共重合してもかまわない。  In addition, such a photoreactive polymer can be added with a crosslinking agent for improving heat resistance to the extent that liquid crystallinity is not impaired, or a monomer that does not exhibit liquid crystallinity without damaging liquid crystallinity. It may be copolymerized with a functional polymer.

本発明の光学素子の実施例において用いた光配向材の原料化合物に関する合成方法を以下に示す。
(単量体1)
p−クマル酸と6−クロロ−1−ヘキサノールを、アルカリ条件下で加熱することにより、4−(6−ヒドロキシヘキシルオキシ)桂皮酸を合成した。この生成物にp−トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、化学式3に示される単量体1を合成した。

Figure 0005075483
A synthesis method relating to the raw material compound of the photo-alignment material used in the examples of the optical element of the present invention is shown below.
(Monomer 1)
4- (6-Hydroxyhexyloxy) cinnamic acid was synthesized by heating p-coumaric acid and 6-chloro-1-hexanol under alkaline conditions. A large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid for esterification to synthesize monomer 1 represented by Chemical Formula 3.
Figure 0005075483

(単量体2)
4−ヒドロキシ安息香酸と6−クロロ−1−ヘキサノールを、アルカリ条件下で加熱することにより、4−(6−ヒドロキシヘキシルオキシ)安息香酸を合成した。次いでこの生成物にp−トルエンスルホン酸の存在下でメタクリル酸を大過剰加えてエステル化反応させ、化学式4に示される単量体2を合成した。

Figure 0005075483
(Monomer 2)
4- (6-hydroxyhexyloxy) benzoic acid was synthesized by heating 4-hydroxybenzoic acid and 6-chloro-1-hexanol under alkaline conditions. Next, a large excess of methacrylic acid was added to this product in the presence of p-toluenesulfonic acid for esterification to synthesize monomer 2 represented by Chemical Formula 4.
Figure 0005075483

(重合体1)
単量体1を1,4−ジオキサン中に溶解し、反応開始剤としてAIBN(アゾビスイソブチロニトリル)を添加して重合することにより重合体1を得た。この重合体1は135℃から187℃の温度範囲で液晶相を示した。また、可視光域に全く吸収を示さなかった。
(Polymer 1)
Monomer 1 was dissolved in 1,4-dioxane, and polymer was obtained by adding AIBN (azobisisobutyronitrile) as a reaction initiator for polymerization. The polymer 1 exhibited a liquid crystal phase in the temperature range of 135 ° C. to 187 ° C. In addition, no absorption was observed in the visible light region.

(重合体2)
単量体2を1,4−ジオキサン中に溶解し、中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体2を得た。この重合体2も液晶相を示した。
(Polymer 2)
Monomer 2 was dissolved in 1,4-dioxane, dissolved therein, and AIBN was added as a reaction initiator for polymerization to obtain photosensitive polymer 2. This polymer 2 also exhibited a liquid crystal phase.

(重合体3)
単量体1と単量体2をモル比8:2で1,4−ジオキサン中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体3を得た。この重合体3も液晶相を示した。
(Polymer 3)
Monomer 1 and monomer 2 were dissolved in 1,4-dioxane at a molar ratio of 8: 2, and AIBN was added as a reaction initiator for polymerization to obtain photosensitive polymer 3. This polymer 3 also showed a liquid crystal phase.

(重合体4)
単量体1と単量体2をモル比6:4で1,4−ジオキサン中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体4を得た。この重合体4も液晶相を示した。
(Polymer 4)
Monomer 1 and monomer 2 were dissolved in 1,4-dioxane at a molar ratio of 6: 4, and AIBN was added as a reaction initiator for polymerization to obtain photosensitive polymer 4. This polymer 4 also exhibited a liquid crystal phase.

(重合体5)
単量体1と単量体2をモル比3:7で1,4−ジオキサン中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体5を得た。この重合体5も液晶相を示した。
(Polymer 5)
Monomer 1 and monomer 2 were dissolved in 1,4-dioxane at a molar ratio of 3: 7, and AIBN was added as a reaction initiator for polymerization to obtain photosensitive polymer 5. This polymer 5 also exhibited a liquid crystal phase.

(重合体6)
単量体1と単量体2をモル比2:8で1,4−ジオキサン中に溶解し、反応開始剤としてAIBNを添加して重合することにより感光性の重合体6を得た。この重合体6も液晶相を示した。
(Polymer 6)
Monomer 1 and monomer 2 were dissolved in 1,4-dioxane at a molar ratio of 2: 8, and AIBN was added as a reaction initiator for polymerization to obtain photosensitive polymer 6. This polymer 6 also exhibited a liquid crystal phase.

(実施例1)
重合体3を1,4−ジオキサンに溶解し溶液を調整した。この溶液をカバーガラス基板上にスピンコーターを用いて約1.7μmの厚みとなるよう塗布した。この基板を室温で乾燥させ、続いて、この基板に高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として照射した。照射後、135℃まで加熱後徐冷することによって配向を誘起した。最後に、高圧水銀灯からの紫外光を、グランテーラープリズムを介さず照射して配向を固定し複屈折性を有する基板を作製した。このようにして作製した基板は異方性を発現し、面内位相差は、130.0nmであった。
また、このようにして作製した基板を2枚用意し、12μmのポリイミドスペーサーを挟持しこれら基板を対向させて配置し、基板間に低分子液晶ZL14792(メルク社)を注入してパラレル型液晶セルを作製した。このように作製した液晶セルを偏光顕微鏡で観察すると低分子液晶が配向していることが確認された。
Example 1
Polymer 3 was dissolved in 1,4-dioxane to prepare a solution. This solution was applied on a cover glass substrate to a thickness of about 1.7 μm using a spin coater. The substrate was dried at room temperature, and then the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism. After irradiation, orientation was induced by heating to 135 ° C. and then slowly cooling. Finally, ultraviolet light from a high-pressure mercury lamp was irradiated without passing through the Grand Taylor prism to fix the orientation and produce a birefringent substrate. The substrate thus produced exhibited anisotropy and the in-plane retardation was 130.0 nm.
In addition, two substrates prepared in this way are prepared, 12 μm polyimide spacers are sandwiched and these substrates are placed facing each other, and a low-molecular liquid crystal ZL14792 (Merck) is injected between the substrates. Was made. When the liquid crystal cell thus prepared was observed with a polarizing microscope, it was confirmed that the low-molecular liquid crystals were aligned.

(実施例2)
重合体4を1,4−ジオキサンに溶解し溶液を調整した。この溶液をカバーガラス基板上にスピンコーターを用いて約1.6μmの厚みとなるよう塗布した。この基板を室温で乾燥させ、続いて、この基板に高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として照射した。照射後、135℃まで加熱後徐冷することによって配向を誘起した。最後に、高圧水銀灯からの紫外光を、グランテーラープリズムを介さず照射して配向を固定し複屈折性を有する基板を作製した。このようにして作製した基板は異方性を発現し、面内位相差は、112.3nmであった。
また、このようにして作製した基板を2枚用意し、12μmのポリイミドスペーサーを挟持しこれら基板を対向させて配置し、基板間に低分子液晶ZL14792(メルク社)を注入してパラレル型液晶セルを作製した。このように作製した液晶セルを偏光顕微鏡で観察すると低分子液晶が配向していることが確認された。
(Example 2)
Polymer 4 was dissolved in 1,4-dioxane to prepare a solution. This solution was applied on a cover glass substrate to a thickness of about 1.6 μm using a spin coater. The substrate was dried at room temperature, and then the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism. After irradiation, orientation was induced by heating to 135 ° C. and then slowly cooling. Finally, ultraviolet light from a high-pressure mercury lamp was irradiated without passing through the Grand Taylor prism to fix the orientation and produce a birefringent substrate. The substrate thus produced developed anisotropy and the in-plane retardation was 112.3 nm.
In addition, two substrates prepared in this way are prepared, 12 μm polyimide spacers are sandwiched and these substrates are placed facing each other, and a low-molecular liquid crystal ZL14792 (Merck) is injected between the substrates. Was made. When the liquid crystal cell thus prepared was observed with a polarizing microscope, it was confirmed that the low-molecular liquid crystals were aligned.

(実施例3)
重合体5を1,4−ジオキサンに溶解し溶液を調整した。この溶液をカバーガラス基板上にスピンコーターを用いて約1.7μmの厚みとなるよう塗布した。この基板を室温で乾燥させ、続いて、この基板に高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として照射した。照射後、135℃まで加熱後徐冷することによって配向を誘起した。最後に、高圧水銀灯からの紫外光を、グランテーラープリズムを介さず照射して配向を固定し複屈折性を有する基板を作製した。このようにして作製した基板は異方性を発現し、面内位相差は、141.9nmであった。
また、このようにして作製した基板を2枚用意し、12μmのポリイミドスペーサーを挟持しこれら基板を対向させて配置し、基板間に低分子液晶ZL14792(メルク社)を注入してパラレル型液晶セルを作製した。このように作製した液晶セルを偏光顕微鏡で観察すると低分子液晶が配向していることが確認された。
(Example 3)
Polymer 5 was dissolved in 1,4-dioxane to prepare a solution. This solution was applied on a cover glass substrate to a thickness of about 1.7 μm using a spin coater. The substrate was dried at room temperature, and then the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism. After irradiation, orientation was induced by heating to 135 ° C. and then slowly cooling. Finally, ultraviolet light from a high-pressure mercury lamp was irradiated without passing through the Grand Taylor prism to fix the orientation and produce a birefringent substrate. The substrate thus produced developed anisotropy and the in-plane retardation was 141.9 nm.
In addition, two substrates prepared in this way are prepared, 12 μm polyimide spacers are sandwiched and these substrates are placed facing each other, and a low-molecular liquid crystal ZL14792 (Merck) is injected between the substrates. Was made. When the liquid crystal cell thus prepared was observed with a polarizing microscope, it was confirmed that the low-molecular liquid crystals were aligned.

(実施例4)
重合体6を1,4−ジオキサンに溶解し溶液を調整した。この溶液をカバーガラス基板上にスピンコーターを用いて約1.1μmの厚みとなるよう塗布した。この基板を室温で乾燥させ、続いて、この基板に高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として照射した。照射後、135℃まで加熱後徐冷することによって配向を誘起した。最後に、高圧水銀灯からの紫外光を、グランテーラープリズムを介さず照射して配向を固定し複屈折性を有する基板を作製した。このようにして作製した基板は異方性を発現し、面内位相差は、87.1nmであった。
また、このようにして作製した基板を2枚用意し、12μmのポリイミドスペーサーを挟持しこれら基板を対向させて配置し、基板間に低分子液晶ZL14792(メルク社)を注入してパラレル型液晶セルを作製した。このように作製した液晶セルを偏光顕微鏡で観察すると低分子液晶が配向していることが確認された。
Example 4
The polymer 6 was dissolved in 1,4-dioxane to prepare a solution. This solution was applied on a cover glass substrate to a thickness of about 1.1 μm using a spin coater. The substrate was dried at room temperature, and then the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism. After irradiation, orientation was induced by heating to 135 ° C. and then slowly cooling. Finally, ultraviolet light from a high-pressure mercury lamp was irradiated without passing through the Grand Taylor prism to fix the orientation and produce a birefringent substrate. The substrate thus produced developed anisotropy, and the in-plane retardation was 87.1 nm.
In addition, two substrates prepared in this way are prepared, 12 μm polyimide spacers are sandwiched and these substrates are placed facing each other, and a low-molecular liquid crystal ZL14792 (Merck) is injected between the substrates. Was made. When the liquid crystal cell thus prepared was observed with a polarizing microscope, it was confirmed that the low-molecular liquid crystals were aligned.

(実施例5)
重合体1と重合体2を重量比1:1で1,4−ジオキサンに溶解し溶液を調整した。この溶液をカバーガラス基板上にスピンコーターを用いて約1.7μmの厚みとなるよう塗布した。この基板を室温で乾燥させ、続いて、この基板に高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として照射した。照射後、135℃まで加熱後徐冷することによって配向を誘起した。最後に、高圧水銀灯からの紫外光を、グランテーラープリズムを介さず照射して配向を固定し複屈折性を有する基板を作製した。このようにして作製した基板は異方性を発現し、面内位相差は、103.4nmであった。
また、このようにして作製した基板を2枚用意し、12μmのポリイミドスペーサーを挟持しこれら基板を対向させて配置し、基板間に低分子液晶ZL14792(メルク社)を注入してパラレル型液晶セルを作製した。このように作製した液晶セルを偏光顕微鏡で観察すると低分子液晶が配向していることが確認された。
(Example 5)
Polymer 1 and polymer 2 were dissolved in 1,4-dioxane at a weight ratio of 1: 1 to prepare a solution. This solution was applied on a cover glass substrate to a thickness of about 1.7 μm using a spin coater. The substrate was dried at room temperature, and then the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism. After irradiation, orientation was induced by heating to 135 ° C. and then slowly cooling. Finally, ultraviolet light from a high-pressure mercury lamp was irradiated without passing through the Grand Taylor prism to fix the orientation and produce a birefringent substrate. The substrate thus produced exhibited anisotropy and the in-plane retardation was 103.4 nm.
In addition, two substrates prepared in this way are prepared, 12 μm polyimide spacers are sandwiched and these substrates are placed facing each other, and a low-molecular liquid crystal ZL14792 (Merck) is injected between the substrates. Was made. When the liquid crystal cell thus prepared was observed with a polarizing microscope, it was confirmed that the low-molecular liquid crystals were aligned.

(実施例6)
重合体1と重合体2を重量比1:9で1,4−ジオキサンに溶解し溶液を調整した。この溶液をカバーガラス基板上にスピンコーターを用いて約1.8μmの厚みとなるよう塗布した。この基板を室温で乾燥させ、続いて、この基板に高圧水銀灯からの紫外光を、グランテーラープリズムを介して直線偏光性として照射した。照射後、135℃まで加熱後徐冷した。この基板でも異方性の発現が確認された。
(Example 6)
Polymer 1 and polymer 2 were dissolved in 1,4-dioxane at a weight ratio of 1: 9 to prepare a solution. This solution was applied on a cover glass substrate to a thickness of about 1.8 μm using a spin coater. The substrate was dried at room temperature, and then the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp as linearly polarized light through a Grand Taylor prism. After irradiation, it was heated to 135 ° C. and then cooled slowly. Anisotropy was also confirmed on this substrate.

実施例1〜実施例6から、光反応性水素結合側鎖に、非反応性水素結合側鎖を、共重合ないしは各々単独で重合した後、得られた高分子を混合して添加しても配向性が損なわれること無く異方性を発現することが確認された。このことから、光配向材に光照射と加熱冷却する操作を含む工程によって作製される位相差フィルムや偏光回折素子などの分子の配向を制御した光学素子や液晶配向膜の製造法において、光反応性水素結合側鎖に、原料コストが安価な非反応性水素結合側鎖を添加することが可能であることが立証され、従来課題を解決した光学素子、液晶配向膜およびその製造法が得られることが確認された。  From Example 1 to Example 6, a non-reactive hydrogen bond side chain may be copolymerized or polymerized independently to the photoreactive hydrogen bond side chain, and then the resulting polymer may be mixed and added. It was confirmed that anisotropy was developed without impairing the orientation. Therefore, in the method of manufacturing an optical element or a liquid crystal alignment film in which the alignment of molecules such as a retardation film and a polarization diffraction element produced by a process including an operation of light irradiation and heating / cooling is performed on a photo-alignment material, It is proved that it is possible to add a non-reactive hydrogen bond side chain with a low raw material cost to the reactive hydrogen bond side chain, and an optical element, a liquid crystal alignment film, and a method for producing the same that have solved the conventional problems are obtained. It was confirmed.

Claims (6)

光反応性基を有し、かつそれらが少なくとも1つの水素結合部位により、2量体を形成する側鎖と、光反応性を有さず、少なくとも1つの水素結合部位により、2量体を形成する側鎖とを含有することを特徴とする高分子フィルム。 A side chain that has a photoreactive group and that forms a dimer with at least one hydrogen bonding site, and a dimer with at least one hydrogen bonding site that does not have a photoreactive group. A polymer film comprising a side chain to be formed. 少なくとも1種類以上の、化学式1で示される構造の、光反応性基を有し、かつ水素結合部位により、2量体を形成する側鎖と、少なくとも1種類以上の、化学式2で示される構造の、水素結合部位により、2量体を形成する側鎖とを含有することを特徴とする高分子フィルム。
Figure 0005075483

Figure 0005075483
At least one type of structure represented by Chemical Formula 1, having a photoreactive group and forming a dimer by a hydrogen bonding site, and at least one type of structure represented by Chemical Formula 2 And a side chain forming a dimer by a hydrogen bonding site.
Figure 0005075483

Figure 0005075483
少なくとも1種類以上の、化学式1で示される構造の、光反応性基を有し、かつ水素結合部位により、2量体を形成する側鎖と、少なくとも1種類以上の、化学式2で示される構造の、水素結合部位により、2量体を形成する側鎖とを共重合により含有した光反応性高分子からなることを特徴とする請求項2に記載の高分子フィルム。 At least one type of structure represented by Chemical Formula 1, having a photoreactive group and forming a dimer by a hydrogen bonding site, and at least one type of structure represented by Chemical Formula 2 of the hydrogen bonding sites, the polymer film according to Motomeko 2 you, comprising the photoreactive polymer containing the copolymerization of side chain to form a dimer. 少なくとも1種類以上の、化学式1で示される構造の、光反応性基を有し、かつ水素結合部位により、2量体を形成する側鎖を含有する光反応性高分子と、少なくとも1種類以上の、化学式2で示される構造の、水素結合部位により、2量体を形成する側鎖を含有する高分子との混合体からなることを特徴とする請求項2に記載の高分子フィルム。 At least one photoreactive polymer having a photoreactive group having a structure represented by Chemical Formula 1 and containing a side chain that forms a dimer by a hydrogen bonding site; and at least one type of the structure represented by the chemical formula 2, the hydrogen bonding sites, the polymer film as described in that it consists of a mixture of a polymer containing a side chain to form a dimer in Motomeko 2 you wherein . 請求項1または請求項2または請求項3または請求項4に記載の高分子フィルムに直線偏光を照射する工程、照射後に加熱する工程を含むことを特徴する分子配向素子の作製方法。   A method for producing a molecular orientation element, comprising the step of irradiating the polymer film according to claim 1 or claim 2 or claim 3 or claim 4 with linearly polarized light, and a step of heating after irradiation. 請求項1または請求項2または請求項3または請求項4に記載の光反応性高分子に直線偏光成分を含む光を照射して液晶配向能を付与したことを特徴とする液晶配向膜。   A liquid crystal alignment film obtained by irradiating the photoreactive polymer according to claim 1, claim 2, claim 3, or claim 4 with light containing a linearly polarized light component to provide liquid crystal alignment ability.
JP2007142546A 2007-04-27 2007-04-27 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film Active JP5075483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007142546A JP5075483B2 (en) 2007-04-27 2007-04-27 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142546A JP5075483B2 (en) 2007-04-27 2007-04-27 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JP2008276149A JP2008276149A (en) 2008-11-13
JP5075483B2 true JP5075483B2 (en) 2012-11-21

Family

ID=40054142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142546A Active JP5075483B2 (en) 2007-04-27 2007-04-27 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP5075483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658730A (en) * 2013-08-22 2016-06-08 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805361B2 (en) * 2009-03-24 2015-11-04 林テレンプ株式会社 Luminescent material and method for producing light emitting element
JP5481171B2 (en) * 2009-11-18 2014-04-23 株式会社林技術研究所 Photocrosslinkable electrolyte composition and dye-sensitized solar cell
WO2011126019A1 (en) * 2010-04-08 2011-10-13 日産化学工業株式会社 Composition forming heat-cured film having photo-alignment properties
KR101833572B1 (en) * 2010-07-28 2018-02-28 오사카 유키가가쿠고교 가부시키가이샤 Copolymerizable (meth)acrylic acid polymer, optical alignment film and phase difference film
US10465116B2 (en) * 2010-12-23 2019-11-05 Rolic Ag Photoactive polymer materials
JP5784323B2 (en) 2011-02-23 2015-09-24 大阪有機化学工業株式会社 Composition for retardation film
KR101933220B1 (en) * 2011-07-07 2018-12-27 스미또모 가가꾸 가부시키가이샤 Polarizing device, circular polarizing plate and method of producing the same
KR102012533B1 (en) * 2011-11-29 2019-08-20 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR101969951B1 (en) 2012-02-13 2019-04-18 삼성디스플레이 주식회사 Photo-reactive material layer and method of manufacturing the same
KR102058769B1 (en) 2012-07-24 2019-12-23 닛산 가가쿠 가부시키가이샤 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, polymer, and liquid crystal aligning agent
CN104603167B (en) * 2012-08-27 2016-12-07 Lg化学株式会社 Light orientation copolymer, optical anisotropic film and preparation method thereof
CN107473969B (en) * 2012-10-05 2020-10-16 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for horizontal electric field drive type liquid crystal display element
KR20140101291A (en) 2013-02-08 2014-08-19 제이엔씨 주식회사 Photosensitive polymer and photoalignable phase difference film
JP2014206715A (en) * 2013-03-19 2014-10-30 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
KR102254609B1 (en) * 2013-05-13 2021-05-20 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation film for in-plane-switching liquid-crystal display element
KR102261699B1 (en) * 2013-05-13 2021-06-04 닛산 가가쿠 가부시키가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
WO2014192922A1 (en) * 2013-05-31 2014-12-04 日産化学工業株式会社 Production method for substrate provided with liquid crystal alignment film for horizontal electric field-driven liquid crystal display element
CN105492964B (en) * 2013-06-05 2020-04-10 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane switching liquid crystal display element
WO2014196589A1 (en) * 2013-06-05 2014-12-11 日産化学工業株式会社 Method for producing substrate having liquid crystal alignment film for in-plane switching liquid crystal display elements
JP6681712B2 (en) * 2013-07-05 2020-04-15 日産化学株式会社 Polymer composition and liquid crystal alignment film for in-plane switching type liquid crystal display device
JP6434692B2 (en) * 2013-11-29 2018-12-05 林テレンプ株式会社 Manufacturing method of optical element having optical anisotropy and optical element having optical anisotropy
TWI689543B (en) * 2015-01-15 2020-04-01 日商日產化學工業股份有限公司 Liquid crystal alignment agent and liquid crystal alignment film using photoreactive hydrogen-bonding polymer liquid crystal
JPWO2016113931A1 (en) * 2015-01-15 2017-10-26 日産化学工業株式会社 Liquid crystal alignment agent using non-photoreactive hydrogen bonding polymer liquid crystal and liquid crystal alignment film
KR102540421B1 (en) * 2015-05-20 2023-06-05 닛산 가가쿠 가부시키가이샤 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate comprising said liquid crystal alignment film, and liquid crystal display element comprising said liquid crystal alignment film
TWI719984B (en) * 2015-05-20 2021-03-01 日商日產化學工業股份有限公司 Polymer composition, liquid crystal alignment agent, liquid crystal alignment film, substrate with the liquid crystal alignment film, and liquid crystal display element with the liquid crystal alignment film
US10428274B2 (en) * 2015-06-02 2019-10-01 Nissan Chemical Industries, Ltd. Liquid crystal alignment agent for photo-alignment, aligning member, and retardation member
JPWO2017069133A1 (en) * 2015-10-20 2018-08-09 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017175627A1 (en) 2016-04-05 2017-10-12 林テレンプ株式会社 Display device and optical element
JPWO2022018995A1 (en) * 2020-07-20 2022-01-27
WO2022080378A1 (en) * 2020-10-13 2022-04-21 日産化学株式会社 Method for manufacturing single-layer phase difference material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611786B1 (en) * 1993-02-17 1999-04-14 Rolic AG Orientation layer for liquid crystals
US6107427A (en) * 1995-09-15 2000-08-22 Rolic Ag Cross-linkable, photoactive polymer materials
JP3995296B2 (en) * 1997-02-06 2007-10-24 株式会社Adeka Thermosetting composition
JPH1160619A (en) * 1997-08-07 1999-03-02 Jsr Corp Liquid crystalline composition, cured product and preparation thereof
WO2003102045A1 (en) * 2002-05-31 2003-12-11 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
EP1833942A1 (en) * 2004-12-14 2007-09-19 Koninklijke Philips Electronics N.V. Water-responsive mechanical element and a method for manufacturing such an element
JP2006195204A (en) * 2005-01-14 2006-07-27 Fuji Photo Film Co Ltd Optical compensating sheet, polarization plate and liquid crystal display
JP2007304215A (en) * 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658730A (en) * 2013-08-22 2016-06-08 日产化学工业株式会社 Method for manufacturing substrate having liquid crystal alignment film for in-plane-switching-type liquid crystal display element
CN105658730B (en) * 2013-08-22 2017-11-14 日产化学工业株式会社 The manufacture method of the substrate of element liquid crystal orientation film is represented with the driving liquid crystal of transverse electric field

Also Published As

Publication number Publication date
JP2008276149A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5075483B2 (en) Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
JP2007304215A (en) Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP5924877B2 (en) Optical film laminate
TWI546597B (en) Optical film laminate, method for producing the same, and liquid crystal display panel using the same
JP5201130B2 (en) Liquid crystalline compound, liquid crystalline composition, optical film and optical laminate
JP6250324B2 (en) Composition for photo-alignment film and novel polymer
JP2017090934A (en) Method of manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
KR102193256B1 (en) Photoreactive compounds
JP6509132B2 (en) Photoreactive liquid crystal composition, display device, optical device, method of manufacturing display device, method of manufacturing optical device
JP2008291218A (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer, and optically anisotropic material
EP2222740A1 (en) Functionalized photoreactive compounds
JP2009227667A (en) Compound, and optical film containing the compound
JP2016004142A (en) Optical film laminate and production method of the same, and liquid crystal display panel containing laminate
WO2015002292A1 (en) Polarized ultraviolet-anisotropic material
JP2022541609A (en) Photo-orientable positive c-plate retarder
KR102311602B1 (en) Cured film-forming composition, alignment material, and phase difference material
TW201422650A (en) Photo-alignment copolymer, optical anistropic film and its preparation method
JP6326787B2 (en) Polymer for liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element and optical anisotropic body
JP6989895B2 (en) Optical element and its manufacturing method
JP5979828B2 (en) Optical film
CN102040521B (en) Polymerizable compound
KR20150140436A (en) Composition for negative dispersion film and negative dispersion film using the same
JP6727555B2 (en) Composition for producing liquid crystal alignment film, liquid crystal alignment film using the composition and method for producing the same, liquid crystal display device having liquid crystal alignment film and method for producing the same
KR20210096099A (en) Liquid crystal alignment agent, liquid crystal alignment film and phase difference material
WO2024058164A1 (en) Liquid crystal aligning agent and liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250