WO2022071227A1 - 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法 - Google Patents

窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法 Download PDF

Info

Publication number
WO2022071227A1
WO2022071227A1 PCT/JP2021/035396 JP2021035396W WO2022071227A1 WO 2022071227 A1 WO2022071227 A1 WO 2022071227A1 JP 2021035396 W JP2021035396 W JP 2021035396W WO 2022071227 A1 WO2022071227 A1 WO 2022071227A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nitride powder
powder
particles
less
Prior art date
Application number
PCT/JP2021/035396
Other languages
English (en)
French (fr)
Inventor
豪 竹田
宏幸 塩月
孝明 田中
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020237011124A priority Critical patent/KR20230074740A/ko
Priority to US18/246,145 priority patent/US20230357007A1/en
Priority to JP2022526375A priority patent/JPWO2022071227A1/ja
Publication of WO2022071227A1 publication Critical patent/WO2022071227A1/ja
Priority to JP2023019176A priority patent/JP7458523B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present disclosure relates to a boron nitride powder and a method for producing a boron nitride powder.
  • Hexagonal boron nitride is excellent in lubricity, high thermal conductivity, insulation, etc. Therefore, hexagonal boron nitride is used in various applications such as fillers for heat dissipation materials, solid lubricants, mold release materials for molten gas and aluminum, raw materials for cosmetics, and raw materials for sintered bodies. There is.
  • Patent Document 1 a hexagonal boron nitride powder capable of increasing the thermal conductivity and withstand voltage (dielectric breakdown voltage) of the resin or the like when used as a filler for an insulating heat radiating material such as a resin and the like thereof.
  • a manufacturing method has been proposed.
  • the components used in these electronic components are also required to have higher performance.
  • the heat transfer sheet incorporated in the electronic component is also required to have better insulating properties.
  • Boron nitride powder is used together with a resin as a material for constituting a heat transfer sheet, but according to the study by the present inventors, when a conventional boron nitride powder which is considered to have sufficiently high purity and excellent performance is used.
  • dielectric breakdown of the heat transfer sheet may occur.
  • An object of the present disclosure is to provide a boron nitride powder having superior insulation performance when used as a filler, and a method for producing the same, as compared with the conventional boron nitride powder.
  • the present inventors conducted a detailed analysis on the conventional high-purity boron nitride powder, and examined the effect on the use in a heat transfer sheet.
  • the performance of products such as heat transfer sheets will be affected.
  • One aspect of the present disclosure is a boron nitride powder containing agglomerated particles composed of agglomerated primary particles of hexagonal boron nitride, having a purity of 98.5% by mass or more and having magnetic adhesion.
  • the boron nitride powder is provided in an amount of 10 or less per 10 g of the boron nitride powder.
  • the boron nitride powder has high purity and the content of magnetized particles is reduced, so that it has excellent insulation performance when used as a filler.
  • the insulation performance in the present disclosure is a performance evaluated under stricter conditions than before. Specifically, the insulation performance in the present disclosure is that a resin composition prepared of boron nitride powder and a resin is subjected to a DC voltage of 1100 V in an environment of 65 ° C. and 90 RH% until dielectric breakdown occurs. This is the performance evaluated based on the energization conditions.
  • the number of particles having magnetism may be 0.05 to 10 per 10 g of boron nitride powder.
  • the above-mentioned boron nitride powder may have an impurity iron content of 50 ppm or less.
  • the upper limit of the amount of iron impurity is within the above range, the insulation performance of the boron nitride powder is more excellent.
  • the above-mentioned boron nitride powder may have an impurity carbon content of 170 ppm or less.
  • the above-mentioned boron nitride powder may have a graphitization index of 2.3 or less.
  • the above-mentioned boron nitride powder may have an average particle size of 7 to 100 ⁇ m and a specific surface area of 0.8 to 8.0 m 2 / g.
  • the boron nitride powder can improve the thermal conductivity in addition to the insulating property. Therefore, the boron nitride powder can be more preferably used as a filler for preparing a heat transfer sheet having excellent insulation performance and heat dissipation performance.
  • One aspect of the present disclosure is to prepare a slurry containing water and a raw material powder containing hexagonal boron nitride having a purity of 98.0% by mass or more, which contains agglomerated particles formed by aggregating primary particles.
  • a method for producing a boron nitride powder which comprises reducing the content of particles having magnetism in the slurry and then reducing the water content in the slurry under an inert gas atmosphere.
  • the above-mentioned boron nitride powder can be produced by further heat-treating a high-purity boron nitride raw material powder under conditions containing oxygen at a certain level or higher.
  • the orientation index of the raw material powder may be 30 or less.
  • the graphitization index of the raw material powder may be 2.3 or less.
  • boron nitride powder having superior insulation performance when used as a filler as compared with the conventional boron nitride powder, and a method for producing the same.
  • each component in the composition means, when a plurality of substances corresponding to each component in the composition are present, the total amount of the plurality of substances present in the composition unless otherwise specified. ..
  • the "process" in the present specification may be a process independent of each other or a process performed at the same time.
  • boron nitride powder comprises agglomerated particles composed of agglomerated primary particles of hexagonal boron nitride.
  • the boron nitride powder has a purity of 98.5% by mass or more, and the number of particles having magnetism is 10 or less per 10 g of the boron nitride powder.
  • Hexagonal boron nitride may have a small variation in the particle shape of the primary particles.
  • the shape of the primary particles of hexagonal boron nitride may be, for example, scaly or disc-shaped.
  • the purity of the boron nitride powder may be higher, for example, 98.7% by mass or more, or 99.0% by mass or more.
  • the purity of the boron nitride powder in the present specification means a value calculated by titration. Specifically, titration is performed and determined by the method described in the examples of the present specification.
  • Boron nitride powder may generally contain colored particles in addition to the colorless particles of hexagonal boron nitride.
  • the colored particles include particles containing carbon, particles having magnetism, and the like.
  • the boron nitride powder according to the present embodiment has high purity and a reduced content of particles having magnetism (hereinafter, also referred to as magnetic particles). Insulation performance can be improved by reducing the content of magnetized particles.
  • the tint of the above-mentioned colored particles means that the tint of the colored particles is different from that of the hexagonal boron nitride particles, and does not specify the tint.
  • the particles containing carbon and the particles having magnetism are generally brown or black, but the color may change depending on the content of carbon and the content of the magnetizing component.
  • the particles having magnetism mean particles that magnetize on a magnet, and may be particles containing iron (Fe), for example.
  • the number of magnetically charged particles in the boron nitride powder is 10 or less per 10 g of boron nitride powder, but the upper limit of the number of magnetically charged particles is, for example, 9 or less, 8 or less, 7 per 10 g of boron nitride powder. It may be 5 or less, or 3 or less.
  • the upper limit of the number of magnetized particles is within the above range, the influence of the boron nitride powder on the insulation performance and the like can be more sufficiently suppressed.
  • the lower limit of the number of magnetically charged particles in the boron nitride powder is not particularly limited and may not be included, but is, for example, 0.05 or more or 0.1 or more per 10 g of boron nitride powder. It may be there.
  • the number of magnetized particles in the boron nitride powder can be adjusted within the above range, and may be, for example, 0.05 to 10 or 0.05 to 5 per 10 g of the boron nitride powder.
  • carbon-containing particles (hereinafter, also referred to as carbon-containing particles) can have conductivity, it is preferable that the content of carbon-containing particles is also reduced from the viewpoint of further improving the performance of the boron nitride powder.
  • the upper limit of the number of carbon-containing particles may be, for example, 10 or less, 9 or less, 8 or less, 7 or less, 5 or less, or 3 or less per 10 g of boron nitride powder.
  • the lower limit of the number of carbon-containing particles in the boron nitride powder is not particularly limited and may not be contained, but for example, 0.05 or more or 0.1 or more per 10 g of boron nitride powder. It may be there.
  • the number of carbon-containing particles in the boron nitride powder can be adjusted within the above range, and may be, for example, 0.05 to 10 or 0.05 to 5 per 10 g of boron nitride powder.
  • the number of carbon-containing particles and magnetized particles in the present specification is a number obtained by measuring as follows. First, 10 g of boron nitride powder to be measured and 100 mL of ethanol are measured in a container and stirred with a stirring rod to prepare a mixed solution. Next, the above mixed solution is dispersed using an ultrasonic disperser to prepare a dispersion. The obtained dispersion liquid is put into a sieve having a mesh opening of 63 ⁇ m (JIS Z 8801-1: 2019 “Test Sieve-Metal Net Sieve”), and then 2 L of distilled water is put into the sieve. In addition, continue to run distilled water until no cloudy water comes out from under the sieve and sift.
  • JIS Z 8801-1 2019 “Test Sieve-Metal Net Sieve
  • the sieved product obtained as described above is dried and the powder is dispersed on the medicine wrapping paper, a permanent magnet is placed under the medicine wrapping paper, and the powder not magnetized with respect to the permanent magnet is dispersed on another medicine wrapping paper. Then, observe with an optical microscope and count the number of colored particles observed. The same operation is performed for 5 or more samples, the arithmetic mean of the number of obtained colored particles is calculated, and this average value is taken as the number of carbon-containing particles per 10 g of boron nitride powder. The fact that it contains carbon can be confirmed by measuring it with an energy dispersive X-ray analyzer (EDX).
  • EDX energy dispersive X-ray analyzer
  • the colored particles dispersed on the medicine wrapping paper and magnetized with respect to the permanent magnet are also observed with an optical microscope, and the number of the observed colored particles is counted. The same operation is performed for 5 or more samples, the arithmetic mean of the number of obtained colored particles is calculated, and this average value is taken as the number of magnetized particles per 10 g of boron nitride powder.
  • Boron nitride powder may contain carbon and iron as impurities. Even a small amount of carbon and iron can affect the properties such as insulation performance depending on the situation in which the boron nitride powder is used. It is preferable that the content of carbon (impurity carbon) and iron (impurity iron) in the boron nitride powder is reduced.
  • the upper limit of the amount of impurity carbon in the boron nitride powder may be, for example, 170 ppm or less, 165 ppm or less, 160 ppm or less, or 150 ppm or less. When the upper limit of the amount of impurity carbon is within the above range, the insulation performance of the boron nitride powder is more excellent.
  • the lower limit of the amount of impurity carbon in the boron nitride powder is not particularly limited and may not be contained, but may be, for example, 5 ppm or more, 10 ppm or more, 15 ppm or more, or 25 ppm or more.
  • the amount of impurity carbon in the present specification means a value measured by a carbon / sulfur simultaneous analyzer.
  • the powder obtained by removing the above-mentioned carbon-containing particles (particle size of 63 ⁇ m or more) from the boron nitride powder to be measured shall be the measurement target.
  • the carbon / sulfur simultaneous analyzer for example, "IR-412 type" (product name) manufactured by LECO can be used.
  • the upper limit of the amount of impurity iron in the boron nitride powder may be, for example, 50 ppm or less, 45 ppm or less, or 40 ppm or less. When the upper limit of the amount of iron impurity is within the above range, the insulation performance of the boron nitride powder is more excellent.
  • the lower limit of the amount of impurity iron in the boron nitride powder is not particularly limited and may not be contained, but may be, for example, 0.5 ppm or more, 1 ppm or more, 2.5 ppm or more, or 4 ppm or more.
  • the amount of impurity iron in the present specification means a value measured by a pressurized acid decomposition method by high frequency inductively coupled plasma emission spectroscopy (ICP emission spectroscopy).
  • ICP emission spectroscopy high frequency inductively coupled plasma emission spectroscopy
  • the hexagonal boron nitride contained in the boron nitride powder is preferably highly crystalline.
  • a graphitization index (sometimes referred to as Graphitization Index (GI)) can be used as the above-mentioned index of crystallization. That is, the boron nitride powder containing hexagonal boron nitride having a low graphitization index has less impurities and is excellent in insulation performance, and has high crystallinity, so that heat dissipation performance can also be improved.
  • GI Graphitization Index
  • the upper limit of the graphitization index of the boron nitride powder may be, for example, 2.3 or less, 2.2 or less, 2.1 or less, or 2.0 or less.
  • the lower limit of the graphitization index of the boron nitride powder is not particularly limited, but is generally 1.2 or more, or 1.3 or more for heat-dissipating fillers.
  • the graphitization index in the present specification is an index also known as an index value indicating the degree of crystallinity of graphite (for example, J. Thomas, et. Al, J. Am. Chem. Soc. 84, 4619). (1962) etc.).
  • the graphitization index is calculated based on the spectrum measured by the powder X-ray diffractometry of the primary particles of hexagonal boron nitride. First, in the X-ray diffraction spectrum, the integrated intensity (that is, each diffraction peak) of each diffraction peak corresponding to the (100) plane, (101) plane, and (102) plane of the primary particle of hexagonal boron nitride and its baseline.
  • the area value (the unit is arbitrary) surrounded by and is calculated and used as S100, S101, and S102, respectively.
  • the value of [(S100 + S101) / S102] is calculated to determine the graphitization index. More specifically, it is determined by the method described in the examples of the present specification.
  • the lower limit of the average particle size of the boron nitride powder may be, for example, 7 ⁇ m or more, 8 ⁇ m or more, 9 ⁇ m or more, or 10 m or more.
  • the upper limit of the average particle size of the boron nitride powder may be, for example, 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, 75 ⁇ m or less, or 60 ⁇ m or less.
  • the sheet having a thickness of 500 ⁇ m or less can be suitably filled.
  • the average particle size of the boron nitride powder can be adjusted within the above range, and may be, for example, 7 to 100 ⁇ m, 8 to 80 ⁇ m, or 10 to 60 ⁇ m.
  • the average particle size of the boron nitride powder can be selected according to the thickness of the sheet.
  • the average particle size in the present specification is a value obtained by measuring the boron nitride powder without homogenizer treatment, and is an average particle size including aggregated particles.
  • the average particle size in the present specification is also a particle size (median size, d50) at which the cumulative value of the cumulative particle size distribution is 50%.
  • the average particle size in the present specification is measured by using a laser diffraction / scattering method particle size distribution measuring device according to the description of ISO 13320: 2009. Specifically, the measurement is carried out by the method described in the examples of the present specification.
  • the laser diffraction / scattering method particle size distribution measuring device for example, "LS-13 320" (product name) manufactured by Beckman Coulter can be used.
  • the lower limit of the specific surface area of the boron nitride powder is, for example, 0.8 m 2 / g or more, 1.0 m 2 / g or more, 1.2 m 2 / g or more, 1.4 m 2 / g or more, 2.0 m 2 /. It may be g or more, or 2.5 m 2 / g or more.
  • the lower limit of the specific surface area is within the above range, it is possible to provide a filler having better filling property and heat dissipation property.
  • the upper limit of the specific surface area of the boron nitride powder may be, for example, 8.0 m 2 / g or less, 7.5 m 2 / g or less, 7.0 m 2 / g or less, or 6.5 m 2 / g or less.
  • the specific surface area of the boron nitride powder can be adjusted within the above range, and may be, for example, 0.8 to 8.0 m 2 / g or 1.0 to 7.0 m 2 / g.
  • the specific surface area in the present specification means a value measured using a specific surface area measuring device in accordance with the description of JIS Z 8830: 2013 "Method for measuring the specific surface area of powder (solid) by gas adsorption", and nitrogen gas. It is a value calculated by applying the BET one-point method using. Specifically, the measurement is carried out by the method described in the examples of the present specification.
  • the agglomerated particles have voids because they are composed of agglomeration of a plurality of primary particles of hexagonal boron nitride. Therefore, it is desirable to use not only the value of the average particle size but also the value of the specific surface area as an index for property evaluation.
  • the average particle size and specific surface area of the boron nitride powder may be adjusted within the above ranges, and the boron nitride powder has, for example, an average particle size of 7 to 100 ⁇ m and a specific surface area of 0.8 to 8.
  • It may be 0.0 m 2 / g, an average particle size of 8 to 80 ⁇ m, a specific surface area of 1 to 7 m 2 / g, an average particle size of 10 to 60 ⁇ m, and a specific surface area of 2. It may be 5.5 to 6.5 m 2 / g.
  • the agglomerated particles are preferably excellent in crushing strength.
  • the lower limit of the crushing strength of the aggregated particles may be, for example, 6 MPa or more, 8 MPa or more, 10 MPa or more, or 12 MPa or more.
  • the upper limit of the crushing strength of the aggregated particles may be, for example, 20 MPa or less or 15 MPa or less.
  • the crushing strength of the aggregated particles may be adjusted within the above range, and may be, for example, 6 to 20 MPa or 8 to 15 MPa.
  • the crushing strength in the present specification is measured in accordance with the description of JIS R 1639-5: 2007 "Fine ceramics-Measuring method of (condyle) grain characteristics-Part 5: Single or grain crushing strength". Means the value. Specifically, the measurement is carried out by the method described in the examples of the present specification.
  • the upper limit of the orientation index of the boron nitride powder may be, for example, 30 or less, 20 or less, 18 or less, or 15 or less.
  • the lower limit of the orientation index of the boron nitride powder is not particularly limited, but may be, for example, 2 or more, 3 or more, or 5 or more. When the upper limit of the orientation index is within the above range, a boron nitride powder having better heat dissipation can be provided.
  • the orientation index in the present specification means the ratio of the peak intensity of boron nitride on the (002) plane to the peak intensity on the (100) plane measured by an X-ray diffractometer, and is [I (002) / I. (100)] can be calculated. Specifically, the measurement is carried out by the method described in the examples of the present specification.
  • the boron nitride powder according to the present embodiment has sufficiently high purity and the content of carbon-containing particles is suppressed to be lower than that of the conventional product, it is subjected to a harsh environment (for example, a high voltage is applied for a long time, etc.). ), High performance (eg, insulation performance, etc.) can be exhibited.
  • the boron nitride powder can be suitably used as a filler used by being dispersed in a resin, rubber or the like, for example.
  • the boron nitride powder can be suitably used as a constituent material such as a heat transfer sheet.
  • the above-mentioned boron nitride powder can be prepared, for example, by the following method.
  • One embodiment of the method for producing a boron nitride powder includes agglomerated particles formed by aggregating primary particles of hexagonal boron nitride, and heats a raw material powder having a purity of 98.0% by mass or more in an oxygen-containing atmosphere.
  • a treatment step hereinafter, also referred to as an oxidation treatment step
  • the slurry is prepared in an inert gas atmosphere.
  • the oxidation treatment step is an arbitrary step and can be omitted. That is, as a method for producing boron nitride powder, a slurry containing agglomerated particles formed by aggregating primary particles of hexagonal boron nitride and containing a raw material powder having a purity of 98.0% by mass or more and water is prepared. Further, the manufacturing method may include reducing the content of the magnetized particles in the slurry and then reducing the water content in the slurry under an inert gas atmosphere.
  • the raw material powder may contain aggregated particles formed by agglomerating primary particles of hexagonal boron nitride and may have a purity of 98.0% by mass or more, and commercially available boron nitride powder may be used separately.
  • the prepared one can also be used.
  • a method of firing boron carbide in an atmosphere containing nitrogen hereinafter, also referred to as B4C method
  • a method of firing in an atmosphere containing nitrogen hereinafter, also referred to as a carbon reduction method. It can be prepared by such as).
  • An example of a method for preparing a raw material powder to which the B 4 C method is applied is a calcined product containing boron carbide (B 4 C N 4 ) obtained by calcining boron carbide powder (B 4 C powder) in a nitrogen-pressurized atmosphere.
  • a nitriding step and a mixed powder containing the calcined product and a boron-containing compound containing boric acid are heated to generate scaly primary particles of hexagonal boron nitride (hBN).
  • hBN hexagonal boron nitride
  • It also has a step of obtaining a powder containing agglomerated particles formed by agglomerating primary particles (hereinafter, also referred to as a crystallization step).
  • boron carbide powder for example, one prepared by the following procedure can also be used. After mixing boric acid and acetylene black, the mixture is heated at 1800 to 2400 ° C. for 1 to 10 hours in an inert gas atmosphere to obtain a boron carbide mass. Boron carbide powder can be prepared by pulverizing the boron carbide mass, sieving it, washing it, removing impurities, drying it, and the like as appropriate.
  • the firing temperature in the nitriding step may be, for example, 1800 to 2400 ° C, 1900 to 2400 ° C, 1800 to 2200 ° C, or 1900 to 2200 ° C.
  • the pressure in the nitriding step may be 0.6 to 1.0 MPa, 0.7 to 1.0 MPa, 0.6 to 0.9 MPa, or 0.7 to 0.9 MPa.
  • the nitrogen gas concentration in the nitrogen-pressurized atmosphere in the nitriding step may be, for example, 95% by volume or more, or 99% by volume or more.
  • the firing time in the nitriding step is not particularly limited as long as the nitriding progresses sufficiently, and may be, for example, 6 to 30 hours or 8 to 20 hours. In the present specification, the firing time means the time (holding time) for maintaining the temperature of the ambient environment of the object to be heated at the predetermined temperature after reaching the predetermined temperature.
  • the boron nitride obtained in the nitriding step is decarbonized, and while producing scaly primary particles of a predetermined size, these are aggregated to obtain a boron nitride powder containing lumpy particles.
  • Examples of the boron-containing compound include boron oxide and the like in addition to boric acid.
  • the mixed powder heated in the crystallization step may contain known additives.
  • the mixing ratio with the boron-containing compound can be appropriately set according to the molar ratio.
  • the purity of the raw material powder can be improved by setting the content of the boron-containing compound in the mixed powder so that the amount of the boron-containing compound is excessive with respect to the boron nitride.
  • the heating temperature for heating the mixed powder in the crystallization step may be, for example, 1800 to 2200 ° C, 2000 to 2200 ° C, or 2000 to 2100 ° C. By setting the heating temperature within the above range, grain growth can be promoted more sufficiently.
  • the crystallization step may be heated in an atmosphere of normal pressure (atmospheric pressure), or may be pressurized and heated at a pressure exceeding the atmospheric pressure. When pressurizing, it may be, for example, 0.5 MPa or less, or 0.3 MPa or less.
  • the heating time in the crystallization step may be, for example, 0.5 to 40 hours, 0.5 to 35 hours, or 1 to 30 hours. If the heating time is too short, grain growth tends not to proceed sufficiently. On the other hand, if the heating time is too long, it tends to be industrially disadvantageous.
  • Hexagonal boron nitride powder can be obtained by the above steps.
  • a pulverization step may be performed.
  • a general crusher or crusher can be used.
  • a ball mill, a vibration mill, a jet mill, or the like can be used.
  • "crushing” also includes “crushing”.
  • An example of a method for preparing a raw material powder to which the carbon reduction method is applied is a calcined product containing boron nitride, which is obtained by calcining a mixed powder containing a boron-containing compound containing boric acid and a carbon-containing compound in a nitrogen-pressurized atmosphere.
  • the fired product is heat-treated at a temperature lower than 2050 ° C. to generate primary particles of hexagonal boron nitride (hBN), and the primary particles are produced.
  • hBN hexagonal boron nitride
  • It has a step of obtaining a powder containing agglomerated particles formed by agglomerating the particles (hereinafter, also referred to as a firing step).
  • the boron-containing compound is a compound having boron as a constituent element.
  • a raw material having high purity and relatively inexpensive can be used.
  • examples of such a boron-containing compound include boric acid and, for example, boron oxide.
  • the boron-containing compound contains boric acid, which is dehydrated by heating to form boron oxide, which can also serve as an auxiliary agent for forming a liquid phase and promoting grain growth during the heat treatment of the raw material powder.
  • a carbon-containing compound is a compound having a carbon atom as a constituent element.
  • the carbon-containing compound a raw material having high purity and relatively inexpensive can be used. Examples of such carbon-containing compounds include carbon black and acetylene black.
  • the boron-containing compound may be blended in an excess amount with respect to the carbon-containing compound.
  • the mixed powder may contain other compounds in addition to the carbon-containing compound and the boron-containing compound. Examples of other compounds include boron nitride as a nucleating agent. Since the mixed powder contains boron nitride as a nucleating agent, the average particle size of the hexagonal boron nitride powder to be synthesized can be more easily controlled.
  • the mixed powder preferably contains a nucleating agent.
  • the mixed powder contains a nucleating agent, it becomes easier to prepare a hexagonal boron nitride powder having a small specific surface area (for example, a hexagonal boron nitride powder having a specific surface area of less than 2.0 m 2 / g).
  • the low temperature firing process is performed under pressure.
  • the pressure in the low temperature firing step is, for example, 0.25 MPa or more and less than 5.0 MPa, 0.25 to 3.0 MPa, 0.25 to 2.0 MPa, 0.25 to 1.0 MPa, 0.25 MPa or more and less than 1.0 MPa. , 0.30 to 2.0 MPa, or 0.50 to 2.0 MPa.
  • the volatilization of raw materials such as boron-containing compounds can be further suppressed, and the formation of boron carbide, which is a by-product, can be suppressed.
  • the upper limit of the pressure in the low-temperature firing step within the above range, the growth of the primary particles of boron nitride can be further promoted.
  • the heating temperature in the low temperature firing step may be, for example, 1650 ° C or higher and lower than 1800 ° C, 1650 to 1750 ° C, or 1650 to 1700 ° C.
  • the reaction can be promoted and the yield of the obtained boron nitride can be improved.
  • the upper limit of the heating temperature in the low-temperature firing step within the above range, the formation of by-products can be sufficiently suppressed.
  • the heating time in the low temperature firing step may be, for example, 1 to 10 hours, 1 to 5 hours, or 2 to 4 hours.
  • a heating time means the time (holding time) that the temperature of the ambient environment of the object to be heated reaches a predetermined temperature and is maintained at the temperature.
  • the fired product obtained in the low-temperature firing step is heat-treated at a temperature higher than that in the low-temperature firing step to generate primary particles of hexagonal boron nitride (hBN), and the primary particles are aggregated and configured.
  • hBN hexagonal boron nitride
  • the heating temperature in the firing step is higher than that in the low temperature firing step and is less than 2050 ° C.
  • the heating temperature in the firing step may be, for example, 2000 ° C. or lower.
  • the heating time in the firing step may be, for example, 3 to 15 hours, 5 to 10 hours, or 6 to 9 hours.
  • the pressure in the firing step is, for example, 0.25 MPa or more and less than 5.0 MPa, 0.25 to 3.0 MPa, 0.25 to 2.0 MPa, 0.25 to 1.0 MPa, 0.25 MPa or more and less than 1.0 MPa. It may be 0.30 to 2.0 MPa or 0.50 to 2.0 MPa.
  • Hexagonal boron nitride powder can be obtained by the above steps.
  • a pulverization step may be performed after the low-temperature firing step or the firing step.
  • a general crusher or crusher can be used.
  • the method for producing boron nitride powder is to heat-treat the raw material powder in the presence of oxygen to convert the carbon content in the raw material powder into carbon dioxide gas and remove it to the outside of the system to remove the carbon content in the raw material powder. May have a step (oxidation treatment step) to reduce the amount of By this step, the content of carbon-containing particles and impurity carbon can be further reduced.
  • the lower limit of the heating temperature in the oxidation treatment step may be, for example, 500 ° C. or higher, 600 ° C. or higher, or 700 ° C. or higher. By setting the lower limit of the heating temperature within the above range, the carbon content in the raw material powder can be further reduced.
  • the upper limit of the heating temperature in the oxidation treatment step may be, for example, less than 1000 ° C., 900 ° C. or lower, or 800 ° C. or lower. By setting the upper limit of the heating temperature within the above range, it is possible to prevent excessive oxidation of boron nitride while performing the decarburization treatment.
  • the pressure in the oxidation treatment step can be adjusted to be, for example, atmospheric pressure or reduced pressure.
  • the upper limit of the pressure in the oxidation treatment step may be, for example, 150 kPa or less, 130 kPa or less, or 120 kPa or less.
  • the lower limit of the pressure in the oxidation treatment step is not particularly limited, but may be, for example, 15 kPa or more, 20 kPa or more, or 30 kPa or more.
  • the lower limit of the ratio of oxygen to the atmosphere in the oxidation treatment step may be, for example, 15% by volume or more, 18% by volume or more, or 20% by volume or more. By setting the lower limit of the oxygen ratio in the above range, the carbon content in the raw material powder can be further reduced.
  • the upper limit of the ratio of oxygen to the atmosphere in the oxidation treatment step may be, for example, 80% by volume or less, 70% by volume or less, or 60% by volume or less.
  • the ratio of oxygen means a value determined by volume in a standard state.
  • the method for producing boron nitride powder has a desorption magnetic particle step.
  • the magnetic particles when the magnetic particles are contained in the raw material powder or the raw material powder that has undergone the oxidation treatment step, the magnetic particles can be further reduced by this step.
  • the concentration of the raw material powder in the slurry containing the raw material powder and water can be adjusted as appropriate.
  • the concentration (solid content concentration) of the slurry may be, for example, 10 to 45% by mass or 20 to 40% by mass.
  • an electromagnetic metal removal device for example, an electromagnetic iron removal device or the like
  • a magnet type metal removal device for example, a magnet type iron removal device or the like
  • the lower limit of the magnetic flux density of the magnetic field applied to the slurry may be, for example, 0.5 T or more, 0.6 T or more, 1.0 T or more, or 1.3 T or more.
  • the upper limit of the magnetic flux density of the magnetic field applied to the slurry may be, for example, 1.8 T or less, 1.7 T or less, or 1.6 T or less.
  • the magnetic flux density of the magnetic field applied to the slurry can be adjusted within the above range, and may be, for example, 0.5 to 1.8 T.
  • the slurry with reduced magnetic particle content is heat-treated to reduce the water content and prepare boron nitride powder.
  • This heat treatment is also performed in an atmosphere of an inert gas.
  • the inert gas include nitrogen and the like.
  • the upper limit of the heating temperature may be, for example, 300 ° C. or lower, 250 ° C. or lower, or 150 ° C. or lower. By setting the upper limit of the heating temperature within the above range, it is possible to more reliably suppress the generation of new elution impurities and the like.
  • the lower limit of the heating temperature may be, for example, 80 ° C. or higher, or 90 ° C. or higher.
  • the heat treatment may be performed under reduced pressure.
  • Example 1 [Preparation of boron carbide powder] 100 parts by mass of orthoboric acid manufactured by Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100L) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated in an arc furnace at 2200 ° C. for 6 hours in an argon atmosphere to obtain massive boron carbide (B4C). The obtained lump was coarsely pulverized with a jaw crusher to obtain a coarse powder. The obtained coarse powder was further pulverized by a ball mill having a silicon carbide ball (diameter: 10 mm) to obtain pulverized powder.
  • B4C massive boron carbide
  • a powder containing agglomerated particles composed of agglomerated primary particles of hexagonal boron nitride was obtained.
  • the obtained powder was decomposed and crushed by 20 with a Henschel mixer, and then sieved through 95 ⁇ m to obtain a raw material powder.
  • the purity of the raw material powder thus obtained was 99.2% by mass, the orientation index was 7, and the graphitization index was 2.5.
  • the obtained raw material powder was subjected to the following oxidation treatment.
  • carbon in the raw material powder was subjected to oxidation treatment for 2 hours while stirring the powder in the furnace at 700 ° C. and 1 rpm using a rotary kiln furnace under an atmospheric pressure atmosphere (oxygen ratio 21% by volume) with respect to 500 g of the raw material powder.
  • a powder from which components (impurity carbon, etc.) were removed was obtained.
  • a resin hose having an inner diameter of 12 mm ⁇ was used as the flow path connecting the resin container and the electromagnetic iron remover, and the length of the flow path was set to 5 m. After passing through the circulation, the obtained slurry was solid-liquid separated by suction filtration to obtain a solid content from which the magnetized particles were removed.
  • Example 2 Boron nitride powder was prepared and evaluated in the same manner as in Example 1 except that the magnetic flux density in the desorption magnetic particle step was changed to 6000 G.
  • Example 3 Boron nitride powder was prepared and evaluated in the same manner as in Example 1 except that the heating temperature in the oxidation treatment step was changed to 550 ° C.
  • Example 4 Boron nitride powder was prepared and evaluated in the same manner as in Example 1 except that the heating temperature in the oxidation treatment step was changed to 550 ° C. and the magnetic flux density in the desorption magnetic particle step was changed to 6000 G.
  • Example 5 The same as in Example 1 except that the specific surface area of the raw material powder was 4.5 m 2 / g by changing the boric acid in the preparation of the raw material powder to 60 parts by mass and changing the firing temperature to 1950 ° C. Boron nitride powder was prepared and evaluated.
  • Example 6 Boron nitride powder was prepared in the same manner as in Example 1 except that the average particle size of the raw material powder was 45 ⁇ m by changing the processing time of pulverization by a ball mill in the preparation of boron nitride powder to 60 minutes. ,evaluated.
  • Example 7 Boron nitride powder was prepared in the same manner as in Example 1 except that the condition of ball mill pulverization in the preparation of boron carbide powder was changed to 3 hours at a rotation speed of 50 rpm so that the average particle size of the raw material powder was 10 ⁇ m. And evaluated.
  • Example 8 By changing the firing temperature in the preparation of the raw material powder to 1910 ° C., the raw material powder G.I. I. Boron nitride powder was prepared and evaluated in the same manner as in Example 1 except that the value was changed to 2.2.
  • Example 9 By changing the temperature of the resistance heating furnace firing in the preparation of the raw material powder to 2100 ° C., the raw material powder G.I. I. Boron nitride powder was prepared and evaluated in the same manner as in Example 1 except that the value was changed to 1.4.
  • Example 10 The conditions for pulverization by a ball mill in the preparation of boron carbide powder were set to 60 minutes at a rotation speed of 25 rpm, and then the pulverized powder was changed to be classified using a vibrating sieve with an opening of 63 ⁇ m, and the amount of boric acid in the preparation of the raw material powder was changed.
  • the specific surface area of the raw material powder was 2.7, the average particle size was 30 ⁇ m, and G.I. I. Boron nitride powder was prepared and evaluated in the same manner as in Example 1 except that the value was changed to 1.7.
  • Boron nitride powder was alkaline-decomposed with sodium hydroxide, and ammonia was distilled from the decomposition solution by a steam distillation method and collected in an aqueous boric acid solution. This collected liquid was titrated with a sulfuric acid specified liquid. The content of nitrogen atom (N) in the boron nitride powder was calculated from the titration result. From the obtained nitrogen atom content, the content of hexagonal boron nitride (hBN) in the boron nitride powder was determined based on the formula (1), and the purity of the hexagonal boron nitride powder was calculated.
  • N nitrogen atom
  • hBN hexagonal boron nitride
  • the formula amount of hexagonal boron nitride was 24.818 g / mol, and the atomic weight of the nitrogen atom was 14.006 g / mol.
  • Content of hexagonal boron nitride (hBN) in the sample [mass%] content of nitrogen atom (N) [mass%] ⁇ 1.772 ... Equation (1)
  • the graphitization index of the boron nitride powder was calculated from the measurement results by the powder X-ray diffraction method.
  • the area value surrounded by the line (the unit is arbitrary) was calculated and used as S100, S101, and S102, respectively. Using the area value calculated in this way, the graphitization index was determined based on the following formula (2).
  • GI (S100 + S101) / S102 ... Equation (2)
  • the average particle size of the boron nitride powder was measured using a laser diffraction / scattering method particle size distribution measuring device (device name: LS-13 320) manufactured by Beckman Coulter Co., Ltd. in accordance with the description of ISO 13320: 2009. The measurement was performed without performing the homogenizer treatment on the boron nitride powder.
  • water was used as the solvent for dispersing the boron nitride powder, and hexametaphosphate was used as the dispersant. At this time, a value of 1.33 was used as the refractive index of water, and a value of 1.80 was used as the refractive index of the boron nitride powder.
  • the specific surface area of the boron nitride powder was calculated by applying the BET one-point method using nitrogen gas in accordance with the description of JIS Z 8830: 2013 “Method for measuring the specific surface area of powder (solid) by gas adsorption”.
  • a specific surface area measuring device (device name: Cantersorb) manufactured by Yuasa Ionics Co., Ltd. was used. The measurement was carried out after the boron nitride powder was dried and degassed at 300 ° C. for 15 minutes.
  • the crushing strength of the agglomerated particles was measured according to the description of JIS R 1639-5: 2007 "Fine Ceramics-Measuring Method of (Condyle) Grain Characteristics-Part 5: Single or Grain Crushing Strength".
  • the orientation index of the boron nitride powder was determined from the measurement results by the powder X-ray diffraction method.
  • a boron nitride powder is filled in the recess of a glass cell having a recess of 0.2 mm, which is attached to an X-ray diffractometer (manufactured by Rigaku Co., Ltd., trade name: ULTIMA-IV), and a powder sample molding machine ( A measurement sample was prepared by solidifying at a set pressure M using Amena Tech Co., Ltd., trade name: PX700). If the surface of the filling material hardened by the above molding machine was not smooth, the surface was manually smoothed before measurement.
  • the peak intensity ratio between the (002) plane and the (100) plane of boron nitride was calculated, and the orientation index [I (002) was calculated based on this value. ) / I (100)] was determined.
  • the amount of impurity carbon in the boron nitride powder was measured by a carbon / sulfur simultaneous analyzer (manufactured by LECO, trade name: IR-412 type).
  • the amount of impurity iron in the boron nitride powder was measured by a pressurized acid decomposition method by high frequency inductively coupled plasma emission spectroscopy (ICP-issued spectroscopic analysis).
  • the number of carbon-containing particles and magnetized particles was measured as follows. First, 10 g of boron nitride powder to be measured and 100 mL of ethanol were measured in a container and stirred with a stirring rod to prepare a mixed solution. Next, the above mixed solution was dispersed using an ultrasonic disperser to prepare a dispersion. The obtained dispersion is put into a sieve having a mesh opening of 63 ⁇ m (JIS Z 8801-1: 2019 “Test Sieve-Metal Net Sieve”), and then 2 L of distilled water is put into the sieve, and white turbid water is discharged from under the sieve.
  • JIS Z 8801-1 2019 “Test Sieve-Metal Net Sieve
  • the sieve is dried and the powder is dispersed on the medicine wrapping paper, a permanent magnet is placed under the medicine wrapping paper, and the powder that is not magnetized with respect to the permanent magnet is dispersed on another medicine wrapping paper and observed with an optical microscope. And counted the number of colored particles observed.
  • the same operation was performed for 5 or more samples, an arithmetic average of the number of obtained colored particles was calculated, and this average value was taken as the number of carbon-containing particles per 10 g of boron nitride powder. It was confirmed by measuring by XRF that it contained carbon.
  • the colored particles dispersed on the medicine wrapping paper and magnetized with respect to the permanent magnets were also observed with an optical microscope, and the number of observed colored particles was counted.
  • a resin sheet containing boron nitride powder was prepared.
  • a mixture of 100 parts by mass of a naphthalene type epoxy resin (manufactured by DIC Corporation, trade name HP4032) and 10 parts by mass of imidazoles (manufactured by Shikoku Chemicals Corporation, trade name MAVT) as a curing agent was prepared.
  • Boron nitride powder was stirred and mixed with a planetary mixer at a ratio of 55 parts by volume with respect to 100 parts by volume of this mixture for 15 minutes. The obtained mixture was applied onto a PET sheet, and then defoamed under a reduced pressure condition of 500 Pa for 10 minutes.
  • the epoxy resin composition is applied onto a film made of polyethylene terephthalate (PET) having a thickness of 0.05 mm so as to have a thickness of 0.10 mm after curing, and is heated and dried at 100 ° C. for 15 minutes by a press machine.
  • PET polyethylene terephthalate
  • a heat-dissipating sheet having a thickness of 0.1 mm was obtained by heating and curing at 180 ° C. for 180 minutes while applying a surface pressure of 160 kgf / cm 2 .
  • the obtained heat dissipation sheet was used as an evaluation target.
  • the dielectric strength of the heat radiating sheet was measured according to the method described in JIS C 2110. Specifically, a sheet-shaped heat-dissipating member (heat-dissipating sheet) is processed to a size of 5 cm ⁇ 5 cm, a circular copper layer having a diameter of 25 mm is formed on one surface of the processed heat-dissipating member, and a circular copper layer having a diameter of 25 mm is formed on the other surface. A copper layer was formed on the entire surface to prepare a test sample. The electrodes were arranged so as to sandwich the test sample, and a DC voltage of 1100 V was applied at 65 ° C. and 90 RH%.
  • the energization time (called breakdown time) from application to dielectric breakdown was measured and evaluated according to the following criteria. The same evaluation was performed 10 times for each evaluation sample, and the average value was taken as the insulation performance of each evaluation sample.
  • E The destruction time is 100 hours or more and less than 200 hours.
  • Destruction time is less than 100 hours.
  • ThermoPlusEvo DSC8230 As the specific heat capacity C, a value measured using a differential scanning calorimeter (manufactured by Rigaku Co., Ltd., trade name: ThermoPlusEvo DSC8230) was used. Based on the obtained thermal conductivity H, the heat dissipation performance of the boron nitride powder was evaluated according to the following criteria.
  • C The thermal conductivity H is 6 W / mK or more and less than 9 W / mK.
  • D Thermal conductivity H is less than 6 W / mK.
  • boron nitride powder having superior insulation performance when used as a filler as compared with the conventional boron nitride powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示の一側面は、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含む窒化ホウ素粉末であって、純度が98.5質量%以上であり、着磁性を有する粒子の個数が、窒化ホウ素粉末10gあたり10個以下である、窒化ホウ素粉末を提供する。

Description

窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
 本開示は、窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法に関する。
 六方晶窒化ホウ素は、潤滑性、高熱伝導性、及び絶縁性等に優れる。そのため、六方晶窒化ホウ素は、放熱材料用の充填材、固体潤滑材、溶融ガス及びアルミニウム等に対する離型材、化粧料用の原料、並びに焼結体用の原料等の種々の用途に用いられている。
 例えば、特許文献1では、樹脂等の絶縁性放熱材の充填材として用いた場合に、上記樹脂等の熱伝導率及び耐電圧(絶縁破壊電圧)を高めることができる六方晶窒化ホウ素粉末及びその製造方法が提案されている。
特開2019-116401号公報
 パワーデバイス、トランジスタ、サイリスタ、及びCPU等の電子部品の高機能化にともない、これらの電子部品に使用される部材にも更なる高性能化が求められている。例えば、電子部品を高電圧で長時間使用するような場面では、電子部品に組み込まれる伝熱シートにもより優れた絶縁性等が求められる。窒化ホウ素粉末は、樹脂と共に伝熱シートを構成する材料として用いられるが、本発明者らの検討によれば、十分に高純度であり性能に優れると考えられる従前の窒化ホウ素粉末を用いた場合であっても、上述のような使用環境においては、伝熱シートの絶縁破壊等が生じ得る。
 本開示は、従来の窒化ホウ素粉末よりも、充填材として使用した場合の絶縁性能に優れる窒化ホウ素粉末、及びその製造方法を提供することを目的とする。
 本発明者らは純度の高い従来の窒化ホウ素粉末に対する詳細な分析を行い、伝熱シートに使用した際への影響を検討した。検討の中で、従前は問題ないとされていた微量の着磁性を有する粒子(着磁粒子)が高電圧等に曝される環境下にあっては伝熱シート等の製品の性能に影響を及ぼし得ることを見出し、当該知見に基づいて本発明を完成させた。
 本開示の一側面は、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含む窒化ホウ素粉末であって、純度が98.5質量%以上であり、着磁性を有する粒子の個数が、窒化ホウ素粉末10gあたり10個以下である、窒化ホウ素粉末を提供する。
 上記窒化ホウ素粉末は、純度が高く、着磁粒子の含有量が低減されていることから、充填材として使用した場合の絶縁性能に優れる。本開示における絶縁性能は、従来よりも厳しい条件で評価される性能である。本開示における絶縁性能は、具体的には、窒化ホウ素粉末と樹脂とで調製された樹脂組成物を、65℃、90RH%の環境下で、直流電圧1100Vを印加し、絶縁破壊が生じるまでの通電条件に基づいて評価される性能である。
 上記着磁性を有する粒子の個数が、窒化ホウ素粉末10gあたり0.05~10個であってよい。
 上述の窒化ホウ素粉末は、不純物鉄量が50ppm以下であってよい。不純物鉄量の上限値が上記範囲内であると、窒化ホウ素粉末の絶縁性能により優れる。
 上述の窒化ホウ素粉末は、不純物炭素量が170ppm以下であってよい。
 上述の窒化ホウ素粉末は、黒鉛化指数が2.3以下であってよい。
 上述の窒化ホウ素粉末は、平均粒子径が7~100μmであり、比表面積が0.8~8.0m/gであってよい。平均粒子径及び比表面積が上記範囲内であると、窒化ホウ素粉末は絶縁性に加え、熱伝導率も向上し得る。このため、上記窒化ホウ素粉末は、絶縁性能及び放熱性能に優れる伝熱シートを調製するための充填材としてより好適に使用できる。
 本開示の一側面は、一次粒子が凝集して構成される凝集粒子を含み、純度が98.0質量%以上である六方晶窒化ホウ素を含む原料粉末と、水とを含むスラリーを調製し、上記スラリー中の着磁性を有する粒子の含有量を低減した後、不活性ガス雰囲気下で上記スラリー中の水含有量を低減することを含む、窒化ホウ素粉末の製造方法を提供する。
 上記窒化ホウ素粉末の製造方法においては、純度の高い窒化ホウ素の原料粉末を更に、酸素を一定以上含む条件下で加熱処理することによって、上述のような窒化ホウ素粉末を製造することができる。
 上記原料粉末の配向性指数が30以下であってよい。
 上記原料粉末の黒鉛化指数が2.3以下であってよい。
 本開示によれば、従来の窒化ホウ素粉末よりも、充填材として使用した場合の絶縁性能に優れる窒化ホウ素粉末、及びその製造方法を提供できる。
 以下、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書における「工程」とは、互いに独立した工程であってもよく、同時に行われる工程であってもよい。
[窒化ホウ素粉末]
 窒化ホウ素粉末の一実施形態は、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含む。上記窒化ホウ素粉末は、純度が98.5質量%以上であり、着磁性を有する粒子の個数が、窒化ホウ素粉末10gあたり10個以下である。
 六方晶窒化ホウ素は一次粒子の粒子形状のばらつきが小さなものであってよい。六方晶窒化ホウ素の一次粒子の形状は、例えば、鱗片状及び円盤状等であってよい。
 窒化ホウ素粉末の純度はより高いものであってよく、例えば、98.7質量%以上、又は99.0質量%以上であってよい。本明細書における窒化ホウ素粉末の純度は、滴定によって算出される値を意味する。具体的には、本明細書の実施例に記載の方法で滴定を行い、決定する。
 窒化ホウ素粉末には、一般に六方晶窒化ホウ素の無色の粒子に加えて、有色の粒子が含まれ得る。この有色の粒子としては、例えば、炭素を含む粒子、及び着磁性を有する粒子等が挙げられる。これに対して、本実施形態に係る窒化ホウ素粉末は純度の高いことに加え、更に着磁性を有する粒子(以下、着磁性粒子ともいう)の含有量が低減されたものとなっている。着磁性粒子の含有量を低減することによって絶縁性能を向上させることができる。なお、上述の有色の粒子の色味は、六方晶窒化ホウ素の粒子とは異なることを意味するものであって、色味を特定するものではない。炭素を含む粒子、及び着磁性を有する粒子は、一般に、褐色、又は黒色であるが、炭素の含有量及び着磁性成分の含有量に応じて色味は変化し得る。
 着磁性を有する粒子(以下、着磁性粒子ともいう)とは、磁石に着磁する粒子のことを意味し、例えば、鉄(Fe)を含む粒子であってよい。
 窒化ホウ素粉末における着磁性粒子の個数は、窒化ホウ素粉末10gあたり10個以下であるが、着磁性粒子の個数の上限値は、窒化ホウ素粉末10gあたり、例えば、9個以下、8個以下、7個以下、5個以下、又は3個以下であってよい。着磁性粒子の個数の上限値が上記範囲内であると、窒化ホウ素粉末の絶縁性能等への影響をより十分に抑制できる。窒化ホウ素粉末における着磁性粒子の個数の下限値は特に制限されるものではなく、含まれなくてもよいが、窒化ホウ素粉末10gあたり、例えば、0.05個以上、又は0.1個以上であってよい。窒化ホウ素粉末における着磁性粒子の個数は上述の範囲内で調整でき、例えば、窒化ホウ素粉末10gあたり0.05~10個、又は0.05~5個であってよい。
 炭素を含む粒子(以下、炭素含有粒子ともいう)は導電性を有し得ることから、窒化ホウ素粉末の性能をより向上させる観点から、炭素含有粒子の含有量も低減されていることが好ましい。
 炭素含有粒子の個数の上限値は、窒化ホウ素粉末10gあたり、例えば、10個以下、9個以下、8個以下、7個以下、5個以下、又は3個以下であってよい。炭素含有粒子の個数の上限値が上記範囲内であると、窒化ホウ素粉末の絶縁性能等への影響をより十分に抑制できる。窒化ホウ素粉末における炭素含有粒子の個数の下限値は特に制限されるものではなく、含まれなくてもよいが、窒化ホウ素粉末10gあたり、例えば、0.05個以上、又は0.1個以上であってよい。窒化ホウ素粉末における炭素含有粒子の個数は上述の範囲内で調整でき、例えば、窒化ホウ素粉末10gあたり0.05~10個、又は0.05~5個であってよい。
 本明細書における炭素含有粒子及び着磁粒子の個数は、以下のように測定して得られる数である。まず、容器に、測定対象となる窒化ホウ素粉末10gと、エタノール100mLとを測り取り、撹拌棒にて撹拌し、混合溶液を調製する。次に上記混合溶液を、超音波分散器を用いて分散させ、分散液を調製する。得られた分散液を、目開き63μmのふるい(JIS Z 8801-1:2019「試験用ふるい-金属製網ふるい」)に投入し、その後、蒸留水2L投入する。さらに、ふるい下から白濁した水が出なくなるまで蒸留水を流し続けふるいにかける。その後、ふるいの上に残ったもの(篩上品)をエタノールで洗浄し、ふるいにかけて篩上品を回収する。篩上品に再度エタノールを投入し、ふるい下から白濁した水が出なくなるまで更に蒸留水を流し続けて、篩上品をエタノールにて洗浄する。更に、篩上品を容器に移し、エタノール100mLを加えて、上述の操作と同様に撹拌、分散、ふるいの処理を行う。ふるいを通過するエタノール溶液の白濁がなくなるまで同様の操作を繰り返し行う。
 その後、上述のようにして得た篩上品を乾燥させ薬包紙の上に粉末を分散させ、薬包紙の下に永久磁石を設置し、永久磁石に対して着磁されない粉末を別の薬包紙の上に分散させ、光学顕微鏡にて観察を行い、観測される有色粒子の数をカウントする。同様の操作を5サンプル以上について行い、得られた有色粒子の数の算術平均を算出し、この平均値を窒化ホウ素粉末10gあたりの炭素含有粒子の個数とする。なお、炭素を含有するものであることはエネルギー分散型X線分析装置(EDX)によって測定することで確認できる。一方、薬包紙上に分散され、上記永久磁石に対して着磁された有色粒子についても、光学顕微鏡にて観察を行い、観測される有色粒子の数をカウントする。同様の操作を5サンプル以上について行い、得られた有色粒子の数の算術平均を算出し、この平均値を窒化ホウ素粉末10gあたりの着磁性粒子の個数とする。なお、光学顕微鏡観察中に、永久磁石を動かすことによって、着磁性のある粒子をより容易に識別することができる。
 窒化ホウ素粉末は炭素及び鉄が不純物として含まれ得る。微量に含まれる炭素及び鉄であっても、窒化ホウ素粉末が使用される状況に応じて、絶縁性能等の性状に影響を及ぼし得る。窒化ホウ素粉末における炭素(不純物炭素)及び鉄(不純物鉄)の含有量は低減されていることが好ましい。
 窒化ホウ素粉末における不純物炭素量の上限値は、例えば、170ppm以下、165ppm以下、160ppm以下、又は150ppm以下であってよい。不純物炭素量の上限値が上記範囲内であると、窒化ホウ素粉末の絶縁性能により優れる。窒化ホウ素粉末における不純物炭素量の下限値は特に制限されるものではなく、含まれなくてもよいが、例えば、5ppm以上、10ppm以上、15ppm以上、又は25ppm以上であってよい。
 本明細書における不純物炭素量は、炭素/硫黄同時分析装置によって測定される値を意味する。なお、本明細書における不純物炭素量の測定は、測定対象となる窒化ホウ素粉末から上述の炭素含有粒子(粒子径が63μm以上のもの)を除いた粉末を測定対象とするものとする。炭素/硫黄同時分析装置としては、例えば、LECO社製の「IR-412型」(製品名)等を使用できる。
 窒化ホウ素粉末における不純物鉄量の上限値は、例えば、50ppm以下、45ppm以下、又は40ppm以下であってよい。不純物鉄量の上限値が上記範囲内であると、窒化ホウ素粉末の絶縁性能により優れる。窒化ホウ素粉末における不純物鉄量の下限値は特に制限されるものではなく、含まれなくてもよいが、例えば、0.5ppm以上、1ppm以上、2.5ppm以上、又は4ppm以上であってよい。
 本明細書における不純物鉄量は、高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法)による加圧酸分解法によって測定される値を意味する。なお、本明細書における不純物鉄量の測定は、測定対象となる窒化ホウ素粉末から上述の着磁性粒子(粒子径が63μm以上のもの)を除いた粉末を測定対象とするものとする。
 上記窒化ホウ素粉末に含まれる六方晶窒化ホウ素は、好ましくは結晶性が高いものである。本実施形態の窒化ホウ素粉末においては、上述の結晶性の指標として黒鉛化指数(Graphitization Index(G.I.)ということもある)を用いることができる。すなわち、黒鉛化指数の低い六方晶窒化ホウ素を含む窒化ホウ素粉末は、不純物がより低減されており絶縁性能に優れ、結晶性が高いことで放熱性能も向上し得る。上記窒化ホウ素粉末の黒鉛化指数の上限値は、例えば、2.3以下、2.2以下、2.1以下、又は2.0以下であってよい。上記窒化ホウ素粉末の黒鉛化指数の上限値が上記範囲内であることによって、窒化ホウ素粉末は絶縁性能により優れる。上記窒化ホウ素粉末の黒鉛化指数の下限値は、特に制限されるものではないが、放熱フィラー向けとしては一般に、1.2以上、又は1.3以上であってよい。
 本明細書における黒鉛化指数は、黒鉛の結晶性の程度を示す指標値としても知られている指標である(例えば、J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962)等)。黒鉛化指数は、六方晶窒化ホウ素の一次粒子を粉末X線回折法で測定したスペクトルに基づき算出する。まず、X線回折スペクトルにおいて、六方晶窒化ホウ素の一次粒子の(100)面、(101)面及び(102)面に対応する各回折ピークの積分強度(すなわち、各回折ピーク)とそのベースラインとで囲まれる面積値(単位は任意)を算出し、それぞれS100、S101、及びS102とする。算出された面積値を用いて、[(S100+S101)/S102]の値を算出し、黒鉛化指数を決定する。より具体的には、本明細書の実施例に記載の方法によって決定する。
 窒化ホウ素粉末の平均粒子径の下限値は、例えば、7μm以上、8μm以上、9μm以上、又は10m以上であってよい。窒化ホウ素粉末の平均粒子径の下限値が上記範囲内であると、窒化ホウ素粉末の放熱性能をより向上できる。窒化ホウ素粉末の平均粒子径の上限値は、例えば、100μm以下、90μm以下、80μm以下、75μm以下、又は60μm以下であってよい。窒化ホウ素粉末の上限値が上記範囲内であると、厚さが500μm以下であるシートに好適に充填できる。窒化ホウ素粉末の平均粒子径は上述の範囲内で調整でき、例えば、7~100μm、8~80μm、又は10~60μmであってよい。例えば、樹脂中に窒化ホウ素粉末を分散させ、シート状に成形して用いる場合には、シートの厚さに合わせて窒化ホウ素粉末の平均粒子径を選択することができる。
 本明細書における平均粒子径は、窒化ホウ素粉末に対するホモジナイザー処理を行わずに測定して得られる値であり、凝集粒子を含む平均粒子径である。本明細書における平均粒子径はまた、累積粒度分布の累積値が50%となる粒子径(メジアン径、d50)である。本明細書における平均粒子径は、ISO 13320:2009の記載に準拠し、レーザー回折散乱法粒度分布測定装置を用いて測定する。具体的には、本明細書の実施例に記載の方法で測定する。レーザー回折散乱法粒度分布測定装置は、例えば、ベックマンコールター社製の「LS-13 320」(製品名)等を使用できる。
 窒化ホウ素粉末の比表面積の下限値は、例えば、0.8m/g以上、1.0m/g以上、1.2m/g以上、1.4m/g以上、2.0m/g以上、又は2.5m/g以上であってよい。比表面積の下限値が上記範囲内であると、充填性と放熱性とにより優れたフィラーを提供することができる。窒化ホウ素粉末の比表面積の上限値は、例えば、8.0m/g以下、7.5m/g以下、7.0m/g以下、又は6.5m/g以下であってよい。比表面積の上限値が上記範囲内であると、絶縁性能により優れる。窒化ホウ素粉末の比表面積は上述の範囲内で調整でき、例えば、0.8~8.0m/g、又は1.0~7.0m/gであってよい。
 本明細書における比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」の記載に準拠し、比表面積測定装置を用い測定される値を意味し、窒素ガスを使用したBET一点法を適用して算出される値である。具体的には、本明細書の実施例に記載の方法で測定する。
 上記凝集粒子は、六方晶窒化ホウ素の複数の一次粒子の凝集によって構成されることから、空隙を有する。したがって、平均粒子径の値のみでは無く、比表面積の値と総合して性状評価の指標とすることが望ましい。上記窒化ホウ素粉末の平均粒子径及び比表面積は、上述の範囲内で調整してよく、上記窒化ホウ素粉末は、例えば、平均粒子径が7~100μmであり、かつ比表面積が0.8~8.0m/gであってよく、平均粒子径が8~80μmであり、かつ比表面積が1~7m/gであってよく、平均粒子径が10~60μmであり、かつ比表面積が2.5~6.5m/gであってよい。
 上記凝集粒子は、好ましくは圧壊強さに優れたものである。上記凝集粒子の圧壊強さの下限値は、例えば、6MPa以上、8MPa以上、10MPa以上、又は12MPa以上であってよい。上記凝集粒子の圧壊強さの上限値は、例えば、20MPa以下、又は15MPa以下であってよい。上記凝集粒子の圧壊強さは上述の範囲内で調整してよく、例えば、6~20MPa、又は8~15MPaであってよい。
 本明細書における圧壊強さは、JIS R 1639-5:2007「ファインセラミックス-か(顆)粒特性の測定方法-第5部:単一か粒圧壊強さ」の記載に準拠して測定される値を意味する。具体的には、本明細書の実施例に記載の方法で測定する。
 上記窒化ホウ素粉末の配向性指数の上限値は、例えば、30以下、20以下、18以下、又は15以下であってよい。上記窒化ホウ素粉末の配向性指数の下限値は、特に制限されるものではないが、例えば、2以上、3以上、又は5以上であってよい。配向性指数の上限値が上記範囲内であると、放熱性により優れた窒化ホウ素粉末が提供できる。
 本明細書における配向性指数は、X線回折装置で測定される窒化ホウ素の(002)面におけるピーク強度と、(100)面におけるピーク強度との比を意味し、[I(002)/I(100)]で算出することができる。具体的には、本明細書の実施例に記載の方法で測定する。
 本実施形態に係る窒化ホウ素粉末は、純度が十分に高く、従来品よりも炭素含有粒子の含有量が低く抑制されていることから、過酷な環境(例えば、長時間高電圧を印加される等)に曝される場合であっても、高い性能(例えば、絶縁性能等)を発揮し得る。上記窒化ホウ素粉末は、例えば、樹脂、ゴム等に分散させて用いる充填材として好適に使用できる。上記窒化ホウ素粉末は、例えば、伝熱シート等の構成材料に好適に使用できる。
[窒化ホウ素粉末の製造方法]
 上述の窒化ホウ素粉末は、例えば、以下のような方法によって調製することができる。窒化ホウ素粉末の製造方法の一実施形態は、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含み、純度が98.0質量%以上である原料粉末を酸素含有雰囲気下で加熱処理する工程(以下、酸化処理工程ともいう)、及び上記原料粉末と水とを含むスラリーを調製し、上記スラリー中の着磁性粒子の含有量を低減した後、不活性ガス雰囲気下で上記スラリー中の水含有量を低減する工程(以下、脱着磁性粒子工程ともいう)、を含む。なお、酸化処理工程は任意の工程であり、省略することもできる。すなわち、窒化ホウ素粉末の製造方法としては、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含み、純度が98.0質量%以上である原料粉末と水とを含むスラリーを調製し、上記スラリー中の着磁性粒子の含有量を低減した後、不活性ガス雰囲気下で上記スラリー中の水含有量を低減すること、を含む製法とすることもできる。
 上記原料粉末は、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含み、純度が98.0質量%以上の粉末であればよく、市販の窒化ホウ素粉末を用いることも、別途調製したものを用いることもできる。原料粉末を調製する場合、例えば、炭化ホウ素を、窒素を含む雰囲気下で焼成する方法(以下、BC法ともいう)、及び窒素を含む雰囲気下で焼成する方法(以下、炭素還元法ともいう)等によって調製できる。
 BC法を応用した原料粉末の調製方法の一例は、炭化ホウ素粉末(BC粉末)を、窒素加圧雰囲気下で焼成して、炭窒化ホウ素(BCN)を含む焼成物を得る工程(以下、窒化工程ともいう)と、当該焼成物と、ホウ酸を含むホウ素含有化合物とを含む混合粉末を加熱して鱗片状である六方晶窒化ホウ素(hBN)の一次粒子を生成し、一次粒子が凝集して構成される凝集粒子を含む粉末を得る工程(以下、結晶化工程ともいう)と、を有する。
 炭化ホウ素粉末は、例えば、以下の手順で調製したものを用いることもできる。ホウ酸とアセチレンブラックとを混合したのち、不活性ガス雰囲気中、1800~2400℃にて、1~10時間加熱し、炭化ホウ素塊を得る。この炭化ホウ素塊を、粉砕後、篩分けし、洗浄、不純物除去、乾燥等を適宜行い、炭化ホウ素粉末を調製することができる。
 窒化工程における焼成温度は、例えば、1800~2400℃、1900~2400℃、1800~2200℃、又は1900~2200℃であってよい。焼成温度を上記範囲内とすることで、炭窒化ホウ素の結晶性を高め、六方晶炭窒化ホウ素の割合を高めることができる。窒化工程における圧力は、0.6~1.0MPa、0.7~1.0MPa、0.6~0.9MPa、又は0.7~0.9MPaであってよい。当該圧力を上記範囲内とすることで、炭化ホウ素の窒化をより十分に進行させることができる。一方、当該圧力が高すぎると、製造コストが上昇する傾向にある。
 窒化工程における窒素加圧雰囲気の窒素ガス濃度は、例えば、95体積%以上、又は99体積%以上であってよい。窒化工程における焼成時間は、窒化が十分進む範囲であれば特に限定されず、例えば、6~30時間、又は8~20時間であってもよい。なお、本明細書において焼成時間とは、加熱対象物の周囲環境の温度が所定の温度に到達してから当該温度で維持する時間(保持時間)を意味する。
 結晶化工程では、窒化工程で得られた炭窒化ホウ素を脱炭化させるとともに、所定の大きさの鱗片状の一次粒子を生成させつつ、これらを凝集させて塊状粒子を含む窒化ホウ素粉末を得る。
 ホウ素含有化合物としては、ホウ酸に加えて、酸化ホウ素等が挙げられる。結晶化工程で加熱する混合粉末は、公知の添加物を含有してもよい。ホウ素含有化合物との配合割合は、モル比に応じて適切に設定可能である。混合粉末におけるホウ素含有化合物の含有量は、ホウ素含有化合物を炭窒化ホウ素に対して過剰量となるように設定することで、原料粉末の純度を向上できる。
 結晶化工程において混合粉末を加熱する加熱温度は、例えば、1800~2200℃、2000~2200℃、又は2000~2100℃であってよい。加熱温度を上記範囲内とすることで、粒成長をより十分に進行させることができる。結晶化工程は、常圧(大気圧)の雰囲気下で加熱してもよく、加圧して大気圧を超える圧力で加熱してもよい。加圧する場合には、例えば0.5MPa以下、又は0.3MPa以下であってよい。
 結晶化工程における加熱時間は、例えば、0.5~40時間、0.5~35時間、又は1~30時間であってよい。加熱時間が短すぎると粒成長が十分に進行しない傾向にある。一方、加熱時間が長すぎると工業的に不利になる傾向にある。
 以上の工程によって、六方晶窒化ホウ素粉末を得ることができる。結晶化工程の後に、粉砕工程を行ってもよい。粉砕工程においては、一般的な粉砕機又は解砕機を用いることができる。例えば、ボールミル、振動ミル、及びジェットミル等を用いることができる。なお、本開示においては、「粉砕」には「解砕」も含まれる。
 炭素還元法を応用した原料粉末の調製方法の一例は、ホウ酸を含むホウ素含有化合物と、炭素含有化合物とを含む混合粉末を、窒素加圧雰囲気下で焼成して、窒化ホウ素を含む焼成物を得る工程(以下、低温焼成工程ともいう)と、上記工程よりも高く、2050℃未満の温度で上記焼成物を加熱処理し、六方晶窒化ホウ素(hBN)の一次粒子を生成し、上記一次粒子が凝集して構成される凝集粒子を含む粉末を得る工程(以下、焼成工程ともいう)と、を有する。
 ホウ素含有化合物は構成元素としてホウ素を有する化合物である。ホウ素含有化合物としては、純度が高く比較的安価な原料を用いることができる。このようなホウ素含有化合物としては、ホウ酸の他、例えば、酸化ホウ素などが挙げられる。ホウ素含有化合物はホウ酸を含むが、ホウ酸は加熱によって脱水し酸化ホウ素となり、原料粉末の加熱処理中に液相を形成すると共に粒成長を促す助剤としても働くことができる。
 炭素含有化合物は構成元素として炭素原子を有する化合物である。炭素含有化合物としては、純度が高く比較的安価な原料を用いることができる。このような炭素含有化合物としては、例えば、カーボンブラック及びアセチレンブラック等が挙げられる。
 混合粉末において、ホウ素含有化合物を炭素含有化合物に対して過剰量となるように配合してよい。混合粉末は、炭素含有化合物及びホウ素含有化合物に加えて、その他の化合物を含有してもよい。その他の化合物としては、例えば、核剤としての窒化ホウ素等が挙げられる。混合粉末が核剤としての窒化ホウ素を含有することで、合成される六方晶窒化ホウ素粉末の平均粒径をより容易に制御することができる。混合粉末は、好ましくは核剤を含む。混合粉末が核剤を含む場合、比表面積の小さな六方晶窒化ホウ素粉末(例えば、比表面積が2.0m/g未満である六方晶窒化ホウ素粉末)の調製がより容易となる。
 低温焼成工程は加圧下で行われる。低温焼成工程における圧力は、例えば、0.25MPa以上5.0MPa未満、0.25~3.0MPa、0.25~2.0MPa、0.25~1.0MPa、0.25MPa以上1.0MPa未満、0.30~2.0MPa、又は0.50~2.0MPaであってよい。低温焼成工程における圧力を高くすることで、ホウ素含有化合物等の原料の揮発をより抑制し、副生成物である炭化ホウ素の生成を抑制することができる。また低温焼成工程における圧力を高くすることで、窒化ホウ素粉末の比表面積の増加を抑制することができる。低温焼成工程の圧力の上限値を上記範囲内とすることで、窒化ホウ素の一次粒子の成長をより促進することができる。
 低温焼成工程における加熱温度は、例えば、1650℃以上1800℃未満、1650~1750℃、又は1650~1700℃であってよい。低温焼成工程における加熱温度の下限値を上記範囲内とすることで、反応を促進させ、得られる窒化ホウ素の収量を向上させることができる。低温焼成工程における加熱温度の上限値を上記範囲内とすることで、副生成物の生成を十分に抑制することができる。
 低温焼成工程における加熱時間は、例えば、1~10時間、1~5時間、又は2~4時間であってよい。窒化ホウ素を合成する反応の序盤である工程において、比較的低温で所定時間の間、維持することで、反応系をより均質化することができ、ひいては形成される窒化ホウ素をより均質化できる。なお、本明細書において加熱時間とは、加熱対象物の周囲環境の温度が所定の温度に到達してから当該温度で維持する時間(保持時間)を意味する。
 焼成工程は、低温焼成工程で得られた焼成物を、低温焼成工程よりも高い温度で加熱処理して六方晶窒化ホウ素(hBN)の一次粒子を生成し、上記一次粒子が凝集して構成される凝集粒子を含む粉末を得る工程である。
 焼成工程における加熱温度は、低温焼成工程よりも高く、2050℃未満の温度である。焼成工程の加熱温度は、例えば、2000℃以下であってよい。焼成工程における加熱時間は、例えば、3~15時間、5~10時間、又は6~9時間であってよい。
 焼成工程の圧力は、例えば、0.25MPa以上5.0MPa未満、0.25~3.0MPa、0.25~2.0MPa、0.25~1.0MPa、0.25MPa以上1.0MPa未満、0.30~2.0MPa、又は0.50~2.0MPaであってよい。焼成工程における圧力を高くすることで、得られる原料粉末の純度をより向上させることができる。焼成工程における圧力の上限値を上記範囲内とすることで、原料粉末の調製コストをより低減することができ、工業的に優位である。
 以上の工程によって、六方晶窒化ホウ素粉末を得ることができる。低温焼成工程又は焼成工程の後に、粉砕工程を行ってもよい。粉砕工程においては、一般的な粉砕機又は解砕機を用いることができる。
 窒化ホウ素粉末の製造方法は、酸素存在下で原料粉末を加熱処理することによって、原料粉末中の炭素分を炭酸ガスに変換し、系外に除去することで、原料粉末における炭素分の残存量を低減する工程(酸化処理工程)を有してよい。当該工程によって、炭素含有粒子及び不純物炭素の含有量をより低減することができる。
 酸化処理工程における加熱温度の下限値は、例えば、500℃以上、600℃以上、又は700℃以上であってよい。加熱温度の下限値を上記範囲内とすることで、原料粉末中の炭素分をより低減できる。酸化処理工程における加熱温度の上限値は、例えば、1000℃未満、900℃以下、又は800℃以下であってよい。加熱温度の上限値を上記範囲内とすることで、脱炭処理を行いつつ、窒化ホウ素の過剰な酸化を防ぐことができる。
 酸化処理工程における圧力は、例えば、大気圧、又は減圧となるように調整することができる。酸化処理工程における圧力の上限値は、例えば、150kPa以下、130kPa以下、又は120kPa以下であってよい。酸化処理工程における圧力の下限値は特に制限されるものではないが、例えば、15kPa以上、20kPa以上、又は30kPa以上であってよい。
 酸化処理工程における雰囲気に占める酸素の割合の下限値は、例えば、15体積%以上、18体積%以上、又は20体積%以上であってよい。酸素の割合の下限値が上記範囲とすることで、原料粉末中の炭素分をより低減できる。酸化処理工程における雰囲気に占める酸素の割合の上限値は、例えば、80体積%以下、70体積%以下、又は60体積%以下であってよい。なお、上記酸素の割合は、標準状態における体積で定められる値を意味する。
 窒化ホウ素粉末の製造方法は脱着磁性粒子工程を有する。当該工程は原料粉末中、又は酸化処理工程を経た原料粉末中に着磁性粒子が含まれる場合、本工程によって着磁性粒子をより低減することができる。
 上記原料粉末と水とを含むスラリーにおける原料粉末の濃度は適宜調整することができる。上記スラリーの濃度(固形分濃度)は、例えば、10~45質量%、又は20~40質量%であってよい。
 上記スラリーから着磁性粒子を除去する手段は、例えば、電磁式脱金属装置(例えば、電磁式脱鉄装置等)、及びマグネット式脱金属装置(例えば、マグネット式脱鉄装置等)等を用いることができる。スラリーに印加される磁場の磁束密度の下限値は、例えば、0.5T以上、0.6T以上、1.0T以上、又は1.3T以上であってよい。スラリーに印加される磁場の磁束密度の上限値は、例えば、1.8T以下、1.7T以下、又は1.6T以下であってよい。スラリーに印加される磁場の磁束密度は上述の範囲内で調整でき、例えば、0.5~1.8Tであってよい。
 着磁性粒子の含有量を低減したスラリーを加熱処理して水含有量を低減し、窒化ホウ素粉末を調製する。この加熱処理も不活性ガス雰囲気下で行う。不活性ガス雰囲気下で加熱処理を行うことで、窒化ホウ素粉末の酸化等による分解によって新たに溶出性不純物が発生することを十分に抑制することができる。不活性ガスとしては、例えば、窒素等が挙げられる。加熱温度の上限値は、例えば、300℃以下、250℃以下、又は150℃以下であってよい。加熱温度の上限値を上記範囲内とすることで、新たな溶出性不純物等の発生等をより確実に抑制することができる。加熱温度の下限値は、例えば、80℃以上、又は90℃以上であってよい。当該加熱処理は、減圧下で行ってもよい。
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
 以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。
(実施例1)
[炭化ホウ素粉末の調製]
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100L)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気下で、2200℃、6時間加熱し、塊状の炭化ホウ素(B4C)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。得られた粗粉を、炭化珪素製のボール(直径:10mm)を有するボールミルによって、さらに粉砕して粉砕粉を得た。ボールミルによる粉砕は、回転数20rpmで40分間行った。その後、目開き90μmの振動篩を用いて、粉砕粉を分級し炭化ホウ素粉末を得た。得られた炭化ホウ素粉末の炭素量は19.8質量%であった。炭素量は、炭素/硫黄同時分析計によって測定した。
[炭窒化ホウ素粉末の調製]
 調製した炭化ホウ素粉末を、カーボン式抵抗加熱炉内で、窒素ガス雰囲気下、焼成温度2050℃、且つ圧力0.90MPaの条件で12時間加熱した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。また、XRDで分析した結果、六方晶炭窒化ホウ素の生成を確認した。その後、引き続き、アルミナ製のルツボに上記焼成物を充填し、マッフル炉内で、大気雰囲気、且つ焼成温度700℃の条件で5時間加熱した。
[原料粉末(窒化ホウ素粉末)の調製]
 焼成物とホウ酸とを、炭窒化ホウ素100質量部に対してホウ酸が50質量部となるような割合で配合し、ヘンシェルミキサーを用いて混合した。得られた混合物を、窒化ホウ素製のルツボに充填し、抵抗加熱炉内で、窒素ガス雰囲気下、大気圧の圧力条件で、室温から1000℃まで昇温速度10℃/分で昇温した。引き続いて、1000℃から昇温速度2℃/分で1880℃まで昇温した。1880℃で、5時間保持して加熱することによって、六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含む粉末を得た。得られた粉末をヘンシェルミキサーで20分解砕した後、95μm通篩することで原料粉末を得た。このようにして得られた原料粉末の純度は99.2質量%であり、配向性指数は7、黒鉛化指数は2.5であった。
[酸化処理工程]
 次に、得られた原料粉末に対して、以下の酸化処理を行った。まず、原料粉末500gに対し、大気圧雰囲気下(酸素の割合21体積%)、ロータリーキルン炉を用い700℃、1rpmで粉末を炉内攪拌させながら、2時間酸化処理して、原料粉末中の炭素分(不純物炭素等)を除去した粉末を得た。
[脱着磁性粒子工程]
 酸化処理工程によって得られた上記粉末に対して、以下の着磁性粒子の除去処理を行った。上記粉末と、25℃のイオン交換水とを混合して、固形分濃度が30質量%の水スラリーを10L作製した。20L樹脂容器に上記水スラリー10Lを投入した。樹脂容器中の水スラリーを、ヤマト科学株式会社製の撹拌機(商品名:ラボスターラLR500B(オールPTFE被覆の長さ100mm羽根付き撹拌棒を装着))を用いて100rpmの回転数で撹拌させた。
 次に、湿式処理が可能な電磁脱鉄機に、目開きが0.5mmのメッシュ構造を有するスクリーンを垂直方向にそれぞれ10枚重ね、スクリーンの磁力が14000G(1.4T)となるように、電磁脱鉄機の励磁電流を設定した。そして、撹拌後の上記水スラリーの入った樹脂容器と電磁脱鉄機との間に、Watson-Marlow社製のチューブポンプ(商品名:704U IP55 Washdown)を設置し、上記水スラリーを電磁脱鉄機の磁選ゾーンの下から上に0.2cm/秒の流速で20分間、循環通過させた。なお、樹脂容器と電磁脱鉄機を繋ぐ流路として、内径が12mmφの樹脂ホースを用い、流路の長さは5mとした。循環通過の後、得られたスラリーを吸引ろ過によって固液分離することで、着磁性粒子が除去された固形分を得た。
[乾燥工程]
 窒化ホウ素板の上に、着磁性粒子が除去された固形分を設置した後、窒素雰囲気にて高温乾燥機を用いて、400℃、30分間加熱して、乾燥粉末を得た。当該乾燥粉末を実施例1の窒化ホウ素粉末とした。
(実施例2)
 脱着磁性粒子工程の磁束密度を6000Gに変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例3)
 酸化処理工程の加熱温度を550℃に変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例4)
 酸化処理工程の加熱温度を550℃に変更したこと、及び脱着磁性粒子工程の磁束密度を6000Gに変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例5)
 原料粉末の調製におけるホウ酸を60質量部に変更し、焼成温度を1950℃に変更することで、原料粉末の比表面積を4.5m/gとしたこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例6)
 炭窒化ホウ素粉末の調製におけるボールミルによる粉砕の処理時間を60分間に変更することで、原料粉末の平均粒径を45μmとしたこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例7)
 炭化ホウ素粉末の調製におけるボールミル粉砕の条件を回転数50rpmで3時間に変更することで、原料粉末の平均粒径を10μmとしたこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例8)
 原料粉末の調製における焼成温度を1910℃に変更することで、原料粉末のG.I.値を2.2に変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例9)
 原料粉末の調製における抵抗加熱炉焼成の温度を2100℃に変更することで、原料粉末のG.I.値を1.4に変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(実施例10)
 炭化ホウ素粉末の調製におけるボールミルによる粉砕の条件を回転数25rpmで60分間とし、その後、目開き63μmの振動篩を用いて、粉砕粉を分級するように変更し、原料粉末の調製におけるホウ酸量を100質量部に変更し、また抵抗加熱炉焼成の温度を2000℃変更することで、原料粉末の比表面積を2.7、平均粒径を30μm、且つG.I.値を1.7に変更したこと以外は、実施例1と同様にして、窒化ホウ素粉末を調製し、評価した。
(比較例1)
 酸化処理工程における加熱温度を550℃に変更し、磁束密度を6000Gに変更したこと以外は、実施例4と同様にして、窒化ホウ素粉末を調製し、評価した。
<窒化ホウ素粉末の評価>
 実施例1~10、及び比較例1で得られた窒化ホウ素粉末のそれぞれについて、後述する測定方法によって、純度、黒鉛化指数、平均粒子径、比表面積、圧壊強さ、配向性指数、不純物炭素量、炭素含有粒子の数、不純物鉄量、及び着磁性粒子の数を評価した。結果を表1に示す。
[窒化ホウ素粉末の純度]
 窒化ホウ素粉末を水酸化ナトリウムでアルカリ分解させ、水蒸気蒸留法によって分解液からアンモニアを蒸留して、ホウ酸水溶液に捕集した。この捕集液を対象として、硫酸規定液で滴定行った。滴定の結果から窒化ホウ素粉末中の窒素原子(N)の含有量を算出した。得られた窒素原子の含有量から、式(1)に基づいて、窒化ホウ素粉末中の六方晶窒化ホウ素(hBN)の含有量を決定し、六方晶窒化ホウ素粉末の純度を算出した。なお、六方晶窒化ホウ素の式量は24.818g/mol、窒素原子の原子量は14.006g/molを用いた。
 試料中の六方晶窒化ホウ素(hBN)の含有量[質量%]=窒素原子(N)の含有量[質量%]×1.772・・・式(1)
[窒化ホウ素粉末の黒鉛化指数]
 窒化ホウ素粉末の黒鉛化指数は粉末X線回折法による測定結果から算出した。得られたX線回折スペクトルにおいて、六方晶窒化ホウ素の一次粒子の(100)面、(101)面及び(102)面に対応する各回折ピークの積分強度(すなわち、各回折ピーク)とそのベースラインとで囲まれる面積値(単位は任意)を算出し、それぞれS100、S101、及びS102とした。こうして算出された面積値を用いて、以下の式(2)に基づき、黒鉛化指数を決定した。
 GI=(S100+S101)/S102・・・式(2)
[窒化ホウ素粉末の平均粒子径]
 窒化ホウ素粉末の平均粒子径は、ISO 13320:2009の記載に準拠し、ベックマンコールター社製のレーザー回折散乱法粒度分布測定装置(装置名:LS-13 320)を用いて測定した。なお、窒化ホウ素粉末に対するホモジナイザー処理を行わずに、測定を行った。粒度分布の測定に際し、窒化ホウ素粉末を分散させる溶媒には水を用い、分散剤にはヘキサメタリン酸を用いた。この際、水の屈折率として1.33の数値を用い、窒化ホウ素粉末の屈折率として1.80の数値を用いた。
[窒化ホウ素粉末の比表面積]
 窒化ホウ素粉末の比表面積は、JIS Z 8830:2013「ガス吸着による粉体(固体)の比表面積測定方法」の記載に準拠し、窒素ガスを使用したBET一点法を適用して算出した。比表面積測定装置としては、ユアサアイオニクス株式会社製の比表面積測定装置(装置名:カンターソーブ)を用いた。なお、測定は、窒化ホウ素粉末を、300℃で、15分間かけて、乾燥脱気した後に行った。
[凝集粒子の圧壊強さ]
 凝集粒子の圧壊強さは、JIS R 1639-5:2007「ファインセラミックス-か(顆)粒特性の測定方法-第5部:単一か粒圧壊強さ」の記載に準拠して測定した。圧壊強さσ(単位[MPa])は、粒子内の位置によって変化する無次元数α(α=2.48)と、圧壊試験力P(単位[N])と、測定対象である凝集粒子の粒子径d(単位[μm])とから、σ=α×P/(π×d)の計算式を用いて20粒子の累積破壊率63.2%の箇所を圧壊強さとして算出した。
[窒化ホウ素粉末の配向性指数]
 窒化ホウ素粉末の配向性指数は、粉末X線回折法による測定結果から決定した。まずX線回折装置(株式会社リガク製、商品名:ULTIMA-IV)に付属している深さ0.2mmの凹部を有するガラスセルの凹部に、窒化ホウ素粉末を充填し、粉末試料成型機(株式会社アメナテック製、商品名:PX700)を用いて、設定圧力Mにて固めることで測定サンプルを調製した。上記成型機にて固めた充填物の表面が平滑になっていない場合は手動で平滑にしてから測定を行った。測定サンプルにX線を照射して、ベースライン補正を行った後、窒化ホウ素の(002)面と(100)面とのピーク強度比を算出し、この数値に基づき配向性指数[I(002)/I(100)]を決定した。
[窒化ホウ素粉末の不純物炭素量]
 窒化ホウ素粉末の不純物炭素量は、炭素/硫黄同時分析装置(LECO社製、商品名:IR-412型)によって測定した。
[窒化ホウ素粉末の不純物鉄量]
 窒化ホウ素粉末の不純物鉄量は、高周波誘導結合プラズマ発光分光分析法(ICP発行分光分析法)による加圧酸分解法によって測定した。
[窒化ホウ素粉末の炭素含有粒子の数、及び着磁性粒子の数]
 炭素含有粒子及び着磁粒子の個数は、以下のように測定した。まず、容器に、測定対象となる窒化ホウ素粉末10gと、エタノール100mLとを測り取り、撹拌棒にて撹拌し、混合溶液を調製した。次に上記混合溶液を、超音波分散器を用いて分散させ、分散液を調製した。得られた分散液を、目開き63μmのふるい(JIS Z 8801-1:2019「試験用ふるい-金属製網ふるい」)に投入し、その後、蒸留水2L投入し、篩下から白濁した水が出なくなるまで更に蒸留水を流し続けふるいにかけた。その後、ふるいの上に残ったもの(篩上品)をエタノールで洗浄し、ふるいにかけて回収した。篩上品に再度エタノールを投入し篩下から白濁した水が出なくなるまで更に蒸留水を流し続けて、篩上品をエタノールにて洗浄した。更に、篩上品を容器に移し、エタノール100mLを加えて、上述の操作と同様に撹拌、分散、ふるいの処理を行った。ふるいを通過するエタノール溶液の白濁がなくなるまで同様の操作を繰り返し行った。
 その後、篩上品を乾燥させ薬包紙の上に粉末を分散させ、薬包紙の下に永久磁石を設置し、永久磁石に対して着磁されない粉末を別の薬包紙の上に分散させ、光学顕微鏡にて観察を行い、観測される有色粒子の数をカウントした。同様の操作を5サンプル以上について行い、得られた有色粒子の数の算術平均を算出し、この平均値を窒化ホウ素粉末10gあたりの炭素含有粒子の個数とした。なお、炭素を含有するものであることはXRFによって測定することで確認した。一方、薬包紙上に分散され、上記永久磁石に対して着磁された有色粒子についても、光学顕微鏡にて観察を行い、観測される有色粒子の数をカウントした。同様の操作を5サンプル以上について行い、得られた有力粒子の数の算術平均を算出し、この平均値を窒化ホウ素粉末10gあたりの着磁性粒子の個数とした。なお、光学顕微鏡観察中に、永久磁石を動かすことによって、着磁性のある粒子を確認しつつカウントした。
<窒化ホウ素粉末の性能評価>
 実施例1~10、及び比較例1で得られた窒化ホウ素粉末のそれぞれについて性能評価を行った。具体的には、放熱シートの充填材としての評価を行った。結果を表1に示す。
[絶縁性能の評価(絶縁破壊電圧の測定)]
 まず、窒化ホウ素粉末の含有する樹脂シートを調製した。ナフタレン型エポキシ樹脂(DIC株式会社製、商品名HP4032)100質量部と硬化剤としてイミダゾール類(四国化成工業株式会社製、商品名MAVT)10質量部の混合物を準備した。この混合物100体積部に対して、窒化ホウ素粉末を55体積部の割合でプラネタリーミキサーにて15分間、攪拌混合した。得られた混合物を、PET製シートの上に塗布した後、500Paの減圧条件で、脱泡を10分間行った。エポキシ樹脂組成物を、厚さ0.05mmのポリエチレンテレフタレート(PET)製のフィルム上に、硬化後の厚さが0.10mmになるように塗布し、100℃15分加熱乾燥させ、プレス機によって面圧160kgf/cmをかけながら180℃で180分間、加熱硬化し、厚さ0.1mmの放熱シートを得た。
 得られた放熱シートを評価対象とした。放熱シートの絶縁強度の測定は、JIS C 2110に記載の方法に準拠して行った。具体的には、シート状の放熱部材(放熱シート)を5cm×5cmの大きさに加工し、加工した放熱部材の一方の面に直径25mmの円形の銅層を形成し、他方の面には面全体に銅層を形成し、試験サンプルを作製した。試験サンプルを挟み込むように電極を配置し、65℃、90RH%の状態で、直流電圧1100Vを印加した。印加してから、絶縁破壊されるまでの通電時間(破壊時間という)を測定し、以下の基準で評価付けを行った。各評価サンプルに対して10回、同じ評価を行い、その平均値を、各評価サンプルの絶縁性能とした。
A:破壊時間が500時間以上である。
B:破壊時間が400時間以上500時間未満である。
C:破壊時間が300時間以上400時間未満である。
D:破壊時間が200時間以上300時間未満である。
E:破壊時間が100時間以上200時間未満である。
F:破壊時間が100時間未満である。
[放熱性能の評価(熱伝導率の測定)]
 上記絶縁性評価のための樹脂シートと同じ樹脂シート(放熱シート)を調製し、エポキシ樹脂組成物をシリコーンシート上に流し込み、縦10mm、横10mm、厚さ0.5mmの硬化体を作製し、これを評価サンプルとした。得られた樹脂シートの一軸プレス方向における熱伝導率H(単位[W/(m・K)])は、熱拡散率T(単位[m/秒])、密度D(単位[kg/m])、及び比熱容量C(単位[J/(kg・K)])の測定値を用いて、H=T×D×Cの計算式から算出した。熱拡散率Tは、樹脂シートを、縦×横×厚さ=10mm×10mm×0.3mmのサイズに加工したサンプルに対するレーザーフラッシュ法によって測定した値を用いた。測定装置はキセノンフラッシュアナライザ(NETZSCH社製、商品名:LFA447NanoFlash)を用いた。密度Dはアルキメデス法によって測定した値を用いた。比熱容量Cは、示差走査熱量計(株式会社リガク製、商品名:ThermoPlusEvo DSC8230)を用いて測定した値を用いた。得られた、熱伝導率Hに基づき、窒化ホウ素粉末の放熱性能を以下の基準で評価した。
A:熱伝導率Hが、12W/mK以上である。
B:熱伝導率Hが、9W/mK以上12W/mK未満である。
C:熱伝導率Hが、6W/mK以上9W/mK未満である。
D:熱伝導率Hが、6W/mK未満である。
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、従来の窒化ホウ素粉末よりも、充填材として使用した場合の絶縁性能に優れる窒化ホウ素粉末を提供できる。

Claims (9)

  1.  六方晶窒化ホウ素の一次粒子が凝集して構成される凝集粒子を含む窒化ホウ素粉末であって、
     純度が98.5質量%以上であり、
     着磁性を有する粒子の個数が、窒化ホウ素粉末10gあたり10個以下である、窒化ホウ素粉末。
  2.  前記着磁性を有する粒子の個数が、窒化ホウ素粉末10gあたり0.05~10個である、請求項1に記載の窒化ホウ素粉末。
  3.  不純物鉄量が50ppm以下である、請求項1又は2に記載の窒化ホウ素粉末。
  4.  不純物炭素量が170ppm以下である、請求項1~3のいずれか一項に記載の窒化ホウ素粉末。
  5.  黒鉛化指数が2.3以下である、請求項1~4のいずれか一項に記載の窒化ホウ素粉末。
  6.  平均粒子径が7~100μmであり、比表面積が0.8~8.0m/gである、請求項1~5のいずれか一項に記載の窒化ホウ素粉末。
  7.  一次粒子が凝集して構成される凝集粒子を含み、純度が98.0質量%以上である六方晶窒化ホウ素を含む原料粉末と、水とを含むスラリーを調製し、前記スラリー中の着磁性を有する粒子の含有量を低減した後、不活性ガス雰囲気下で前記スラリー中の水含有量を低減することを含む、窒化ホウ素粉末の製造方法。
  8.  前記原料粉末の配向性指数が30以下である、請求項7に記載の製造方法。
  9.  前記原料粉末の黒鉛化指数が2.3以下である、請求項7又は8に記載の製造方法。
PCT/JP2021/035396 2020-09-30 2021-09-27 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法 WO2022071227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237011124A KR20230074740A (ko) 2020-09-30 2021-09-27 질화 붕소 분말, 및 질화 붕소 분말의 제조 방법
US18/246,145 US20230357007A1 (en) 2020-09-30 2021-09-27 Boron nitride powder and method for producing boron nitride powder
JP2022526375A JPWO2022071227A1 (ja) 2020-09-30 2021-09-27
JP2023019176A JP7458523B2 (ja) 2020-09-30 2023-02-10 窒化ホウ素粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165644 2020-09-30
JP2020-165644 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071227A1 true WO2022071227A1 (ja) 2022-04-07

Family

ID=80951628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035396 WO2022071227A1 (ja) 2020-09-30 2021-09-27 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法

Country Status (5)

Country Link
US (1) US20230357007A1 (ja)
JP (2) JPWO2022071227A1 (ja)
KR (1) KR20230074740A (ja)
TW (1) TW202216585A (ja)
WO (1) WO2022071227A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676624A (ja) * 1992-08-31 1994-03-18 Shin Etsu Chem Co Ltd 電気絶縁性部材
JP2011098882A (ja) * 2009-10-09 2011-05-19 Mizushima Ferroalloy Co Ltd 六方晶窒化ホウ素粉末およびその製造方法
WO2015122378A1 (ja) * 2014-02-12 2015-08-20 電気化学工業株式会社 窒化ホウ素微粒子およびその製造方法
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP2019218254A (ja) * 2018-06-22 2019-12-26 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2020032060A1 (ja) * 2018-08-07 2020-02-13 デンカ株式会社 六方晶窒化ホウ素粉末、及び六方晶窒化ホウ素粉末の製造方法
WO2021124961A1 (ja) * 2019-12-19 2021-06-24 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011317A1 (en) 2009-03-19 2013-01-10 Emanual Prilutsky Method for the preparation of boron nitride powder
JP6109466B2 (ja) 2011-02-25 2017-04-05 水島合金鉄株式会社 化粧料用の六方晶窒化ホウ素粉末およびその製造方法
JP6076624B2 (ja) 2012-06-07 2017-02-08 日本メナード化粧品株式会社 幹細胞から中胚葉系細胞、内胚葉系細胞又は中内胚葉細胞への分化誘導剤
JP6822836B2 (ja) 2016-12-28 2021-01-27 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
JP7069485B2 (ja) 2017-12-27 2022-05-18 昭和電工株式会社 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
EP3744685B1 (en) * 2018-01-26 2022-08-17 Denka Company Limited Amorphous silica powder, production method therefor, and use thereof
JP7165070B2 (ja) 2018-04-02 2022-11-02 株式会社トクヤマ 六方晶窒化ホウ素粉末およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676624A (ja) * 1992-08-31 1994-03-18 Shin Etsu Chem Co Ltd 電気絶縁性部材
JP2011098882A (ja) * 2009-10-09 2011-05-19 Mizushima Ferroalloy Co Ltd 六方晶窒化ホウ素粉末およびその製造方法
WO2015122378A1 (ja) * 2014-02-12 2015-08-20 電気化学工業株式会社 窒化ホウ素微粒子およびその製造方法
WO2019073690A1 (ja) * 2017-10-13 2019-04-18 デンカ株式会社 窒化ホウ素粉末、その製造方法及びそれを用いた放熱部材
JP2019218254A (ja) * 2018-06-22 2019-12-26 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2020032060A1 (ja) * 2018-08-07 2020-02-13 デンカ株式会社 六方晶窒化ホウ素粉末、及び六方晶窒化ホウ素粉末の製造方法
WO2021124961A1 (ja) * 2019-12-19 2021-06-24 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法

Also Published As

Publication number Publication date
JP7458523B2 (ja) 2024-03-29
US20230357007A1 (en) 2023-11-09
JP2023058634A (ja) 2023-04-25
TW202216585A (zh) 2022-05-01
KR20230074740A (ko) 2023-05-31
JPWO2022071227A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
JP4750220B2 (ja) 六方晶窒化ホウ素粉末およびその製造方法
KR102619752B1 (ko) 질화붕소 분말, 그 제조 방법 및 그것을 사용한 방열 부재
JP2007308360A (ja) 六方晶窒化ホウ素粉末
KR20180048612A (ko) 열전도성 수지 조성물
KR20170021282A (ko) 질화규소 분말, 질화규소 소결체 및 회로 기판, 및 질화규소 분말의 제조 방법
WO2020196679A1 (ja) 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
JP6955127B1 (ja) 六方晶窒化ホウ素粉末及びその製造方法
WO2022071245A1 (ja) 六方晶窒化ホウ素粉末、及び焼結体の製造方法
CN115536377B (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
WO2022071225A1 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
WO2022071246A1 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
WO2022071227A1 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
WO2023190528A1 (ja) 窒化ホウ素粉末、樹脂組成物及び窒化ホウ素粉末の製造方法
JP2022178471A (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法、並びに、樹脂組成物
JP2023147855A (ja) 窒化ホウ素粉末
JP7302115B2 (ja) 六方晶窒化ホウ素粉末、及び樹脂組成物
WO2023073842A1 (ja) 高純度微粒アルミナ粉末
JP7505139B2 (ja) 窒化ホウ素粉末、及び、放熱シート、並びに、窒化ホウ素粉末の製造方法
WO2021200877A1 (ja) 塊状窒化ホウ素粒子及びその製造方法
WO2022071240A1 (ja) 炭窒化ホウ素粉末及びその製造方法、粉末組成物、窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
WO2022163650A1 (ja) 六方晶窒化ホウ素焼結体、及びその製造方法
EP4303180A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet
JP2024022830A (ja) 窒化ホウ素粉末、及び、窒化ホウ素粉末の製造方法
JP2022148304A (ja) 六方晶窒化ホウ素粉末、及び樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022526375

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875529

Country of ref document: EP

Kind code of ref document: A1