WO2022071192A1 - リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 - Google Patents
リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2022071192A1 WO2022071192A1 PCT/JP2021/035283 JP2021035283W WO2022071192A1 WO 2022071192 A1 WO2022071192 A1 WO 2022071192A1 JP 2021035283 W JP2021035283 W JP 2021035283W WO 2022071192 A1 WO2022071192 A1 WO 2022071192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- positive electrode
- composite oxide
- transition metal
- active material
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 84
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 62
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 62
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000002905 metal composite material Substances 0.000 claims abstract description 76
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 76
- 239000013078 crystal Substances 0.000 claims abstract description 73
- 229910001386 lithium phosphate Inorganic materials 0.000 claims abstract description 52
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 claims abstract description 52
- 238000010438 heat treatment Methods 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 238000002156 mixing Methods 0.000 claims abstract description 30
- 239000011163 secondary particle Substances 0.000 claims abstract description 19
- 239000011164 primary particle Substances 0.000 claims abstract description 18
- 238000003801 milling Methods 0.000 claims abstract description 17
- 229910052744 lithium Inorganic materials 0.000 claims description 95
- -1 lithium transition metal Chemical class 0.000 claims description 76
- 235000002639 sodium chloride Nutrition 0.000 claims description 51
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 43
- 239000011780 sodium chloride Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 238000003701 mechanical milling Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 239000011149 active material Substances 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 abstract description 30
- 230000009467 reduction Effects 0.000 abstract description 2
- 229910014248 MzO2 Inorganic materials 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 36
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 30
- 230000007423 decrease Effects 0.000 description 23
- 239000002131 composite material Substances 0.000 description 21
- 238000010304 firing Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 17
- 239000007784 solid electrolyte Substances 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000011255 nonaqueous electrolyte Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000008139 complexing agent Substances 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910013292 LiNiO Inorganic materials 0.000 description 4
- 229910021293 PO 4 Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 239000006258 conductive agent Substances 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910003480 inorganic solid Inorganic materials 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 150000002696 manganese Chemical class 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910008745 Li2O-B2O3-P2O5 Inorganic materials 0.000 description 1
- 229910008523 Li2O-B2O3-ZnO Inorganic materials 0.000 description 1
- 229910008590 Li2O—B2O3—P2O5 Inorganic materials 0.000 description 1
- 229910008627 Li2O—B2O3—ZnO Inorganic materials 0.000 description 1
- 229910012316 Li3.6Si0.6P0.4O4 Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012804 Li3PO4—Li2S—Si2S Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012053 Li4SiO4-Li3VO4 Inorganic materials 0.000 description 1
- 229910012072 Li4SiO4—Li3VO4 Inorganic materials 0.000 description 1
- 229910010640 Li6BaLa2Ta2O12 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010833 LiI-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910010855 LiI—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910010847 LiI—Li3PO4-P2S5 Inorganic materials 0.000 description 1
- 229910010864 LiI—Li3PO4—P2S5 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910012254 LiPO4—Li2S—SiS Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 229910000335 cobalt(II) sulfate Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention provides a method for producing a positive electrode active material for a lithium ion secondary battery composed of secondary particles in which a plurality of primary particles are aggregated with each other, a positive electrode active material for a lithium ion secondary battery, and a positive electrode active material for a lithium ion secondary battery.
- the present invention relates to a lithium ion secondary battery used as a positive electrode material.
- a secondary battery with high energy density is strongly desired.
- a lithium ion secondary battery (LIB) that uses lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode.
- NCA LiNi 1-xy Co x Aly O 2
- LNO LiNiO 2
- Patent Document 1 proposes a particulate positive electrode active material made of lithium cobalt oxide (LiCoO 2 ), which enables a large current supply.
- LiCoO 2 lithium cobalt oxide
- the method for producing a positive electrode active material for a lithium ion secondary battery is a method for producing a positive electrode active material for a lithium ion secondary battery, which comprises secondary particles in which a plurality of primary particles are aggregated with each other.
- the lithium transition metal composite oxide comprises a heat treatment step of subjecting a mixture of crystal structures to a heat treatment step for obtaining a lithium transition metal composite oxide having a layered rock salt type crystal structure in which lithium phosphate is finely crystallized and dispersed.
- Lithium acid coats the surface of the primary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure, and is dispersed inside or on the surface of the secondary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure. It is characterized by being.
- the lithium phosphate may be mixed with the lithium transition metal composite oxide so as to be greater than 0 and 10 wt% or less.
- the ratio of the lithium transition metal composite oxide and lithium phosphate is optimized, the capacity is high, and the capacity decrease during repeated charging and discharging can be suppressed.
- the heat treatment may be performed at a temperature of 600 to 700 ° C.
- the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure, and the lithium transition metal composite oxide having the layered rock salt type crystal structure. Since it is possible to further disperse the secondary particles in or on the surface of the secondary particles, it is possible to have a high capacity and suppress a decrease in capacity during repeated charging and discharging.
- mechanical stress may be applied by mechanical milling.
- the lithium transition metal composite oxide having a layered crystal structure and lithium phosphate can be further formed into an amorphous or low crystalline NiO-like rock salt type crystal structure, and thus high. It is possible to suppress a decrease in capacity during repeated charging and discharging.
- it is a positive electrode active material for a lithium ion secondary battery composed of secondary particles in which a plurality of primary particles are aggregated with each other, and is a lithium transition metal composite oxide having a layered rock salt type crystal structure.
- Microcrystallized lithium phosphate and the general formula kLi 3 PO 4- (1-k) Li s Ni 1-x-y-z Co x Mn y M z O 2 + ⁇ (where 0 ⁇ k ⁇ 0.1, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0 ⁇ z ⁇ 0.10, 1.00 ⁇ s ⁇ 1.30, 0 ⁇ ⁇ ⁇ 0.2, M is V , Mg, Mo, Nb, Ti, W and Al), and the finely crystallized lithium phosphate is the primary of the lithium transition metal composite oxide having the layered rock salt type crystal structure. It is characterized in that it covers the surface of the particles and is dispersed inside or on the surface of the secondary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure.
- the lithium ion secondary battery is characterized by including at least a positive electrode containing the positive electrode active material for the lithium ion secondary battery.
- the present invention by suppressing the structural change due to charging / discharging, it is possible to suppress the capacity decrease during repeated charging / discharging, which is a drawback of LNO and has a high capacity.
- FIG. 1 is a process diagram showing an outline of a method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
- 2 (A) is a diagram showing Comparative Example 1
- FIG. 2 (B) is a diagram showing an SEM image of the positive electrode active material in Example 1
- FIG. 2 (C) is a diagram showing an SEM image of the positive electrode active material in Example 2.
- FIG. 3A is a diagram showing a mapping image of the positive electrode active material in Example 1
- FIG. 3B is a diagram showing a mapping image of the positive electrode active material in Example 2.
- FIG. 4 is a diagram confirming the crystal structure of the positive electrode active material in Example 1, Example 2, and Comparative Example 1 using an XRD apparatus.
- FIG. 5 is a diagram confirming the charge / discharge profile when the positive electrode active material in Example 1, Example 2, and Comparative Example 1 is used.
- FIG. 6 is a diagram confirming the charge / discharge profiles when the positive electrode active materials in Examples
- the present inventors diligently studied a positive electrode active material for a lithium ion secondary battery having excellent battery characteristics, and found that a powder made of a lithium transition metal composite oxide having a layered crystal structure was obtained. , Lithium phosphate is mixed, mechanical stress is applied to the mixture, heat treatment is performed, and finely crystallized lithium phosphate coats the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt type crystal structure. Moreover, it was found that the capacity reduction during repeated charging and discharging, which is a drawback of LNO, can be suppressed by dispersing it inside or on the surface of the secondary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure. rice field.
- preferred embodiments of the present invention will be described.
- a method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention will be described in the following order. 1.
- Lithium transition metal composite oxide manufacturing process 2.
- Heat treatment process 3.
- the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is produced from a lithium transition metal composite oxide obtained by mixing a metal composite hydroxide with a lithium salt and firing it. Will be done.
- the lithium transition metal composite oxide production step S10 is further produced by the following steps. This will be described below.
- an aqueous solution containing an alkaline solution is added to a mixed aqueous solution of a nickel salt such as nickel sulfate (II), a cobalt salt such as cobalt (II) sulfate, a manganese salt such as manganese sulfate, and an added metal salt.
- a nickel salt such as nickel sulfate (II)
- a cobalt salt such as cobalt (II) sulfate
- a manganese salt such as manganese sulfate
- an added metal salt an added metal salt.
- the additive element used in the additive metal salt at least one element selected from the group consisting of V, Mg, Mo, Nb, Ti, W and Al can be used.
- the concentration of cobalt, the concentration of manganese, and the concentration of additive elements with respect to the transition metal are appropriately determined by the composition of the lithium transition metal composite oxide and the positive electrode active material described later.
- the concentration of cobalt and the concentration of additive elements with respect to transition metals the concentration of cobalt is 10 atomic% or more and 35 atomic% or less, and the concentration of additive elements is 0.1 atomic% or more and 10 from the viewpoint of stabilizing the crystal structure and safety. It is preferably atomic% or less.
- the mixed aqueous solution is made alkaline by adding an aqueous solution containing an alkaline solution.
- the temperature of the mixed aqueous solution is preferably in the range of 60 ° C. or higher and 80 ° C. or lower.
- the concentration of the complexing agent in the mixed aqueous solution is preferably kept at a constant value within the range of 3 g / L or more and 25 g / L or less.
- the ammonia concentration is less than 3 g / L, the solubility of metal ions cannot be kept constant, so that plate-shaped composite hydroxide primary particles having a uniform shape and particle size are not formed, and gel-like nuclei. Is easy to generate, so the particle size distribution tends to spread easily.
- the ammonia concentration exceeds 25 g / L, the solubility of the metal ions becomes too large, the amount of the metal ions remaining in the mixed aqueous solution increases, and the composition tends to shift. Further, when the ammonia concentration fluctuates, the solubility of the metal ion fluctuates and uniform composite hydroxide particles are not formed. Therefore, it is preferable to keep the value constant.
- the ammonia concentration is preferably maintained at a desired concentration with the upper and lower limits set to about 5 g / L.
- the heating step is a step of heating the composite hydroxide particles produced in the composite hydroxide particle manufacturing step, and is performed as necessary. Moisture contained in the composite hydroxide particles can be removed by the heating step. By performing this heating step, the water remaining in the particles until the firing step can be reduced. Further, since the composite hydroxide particles can be converted into the composite oxide particles, it is possible to prevent the number of metal atoms and the ratio of the number of lithium atoms in the produced positive electrode active material from fluctuating. Since it is sufficient that water can be removed to the extent that the number of metal atoms and the ratio of lithium atoms in the positive electrode active material do not vary, it is not always necessary to convert all the composite hydroxide particles into composite oxide particles. not.
- the composite hydroxide particles may be heated to a temperature at which residual water is removed, and the heating temperature is not particularly limited, but is preferably 105 ° C. or higher and 800 ° C. or lower. Residual water can be removed by heating the composite hydroxide particles to 105 ° C. or higher. If the temperature is lower than 105 ° C., it tends to take a long time to remove the residual water. Above 800 ° C., the particles converted into the composite oxide tend to sinter and aggregate.
- the atmosphere in which the heat treatment is performed is not particularly limited, and it is preferable to perform the heat treatment in an air stream that can be easily performed.
- the firing step is a step of obtaining a lithium transition metal composite oxide having a layered crystal structure by firing a lithium mixture obtained by mixing the particles obtained by the heating step with lithium and / or a lithium compound.
- the lithium mixture is a ratio (Li / Me) of the number of atoms of a metal other than lithium in the lithium mixture (that is, the sum of the atomic numbers of nickel, cobalt and the added metal (Me)) and the number of atoms of lithium (Li). Is preferably greater than 1.00 and less than 1.30, and is thus mixed. That is, the Li / Me in the lithium mixture is mixed so as to be the same as the Li / Me in the positive electrode active material of the present invention. This is because Li / Me does not change before and after the firing step, so that the Li / Me to be mixed becomes Li / Me in the positive electrode active material.
- the lithium compound is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available. In particular, considering the ease of handling and the stability of quality, it is more preferable to use lithium hydroxide.
- the lithium mixture is sufficiently mixed before firing.
- the variation of Li / Me (added metal) among the individual particles is eliminated, and sufficient battery characteristics can be obtained.
- the firing step is a step of firing the above lithium mixture to obtain lithium transition metal composite oxide particles.
- the lithium mixture is fired at 700 ° C. or higher and 850 ° C. or lower, and more preferably 720 ° C. or higher and 820 ° C. or lower. If the calcination temperature is less than 700 ° C., the diffusion of lithium into the particles is not sufficiently performed, excess lithium and unreacted particles remain, and the crystallinity tends to be insufficient.
- the firing time is preferably at least 3 hours or more, more preferably 6 hours or more and 24 hours or less.
- the atmosphere at the time of firing is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18% by volume or more and 100% by volume or less. That is, firing is preferably performed in the atmosphere or an oxygen stream. This is because if the oxygen concentration is less than 18% by volume, the composite hydroxide particles contained in the particles cannot be sufficiently oxidized, and the crystallinity of the lithium transition metal composite oxide may not be sufficient. Is. In particular, considering the battery characteristics, it is preferable to perform the operation in an oxygen stream.
- the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is produced by using a lithium transition metal composite oxide obtained through the above firing step. This will be described below.
- the method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is a method for producing a positive electrode active material for a lithium ion secondary battery, which is composed of secondary particles in which a plurality of primary particles are aggregated with each other. It has a mixing step S20, a milling step S30, and a heat treatment step S40. Each process will be described below.
- the lithium transition metal composite oxide obtained through the above firing step is used.
- the lithium transition metal composite oxide has a layered crystal structure.
- the lithium transition metal composite oxide has a general formula of Li s Ni 1-x-y-z Co x Mn y M z O 2 + ⁇ (however, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0).
- M is at least one element selected from V, Mg, Mo, Nb, Ti, W and Al) It is represented by.
- the amount of each added element is adjusted in the lithium transition metal composite oxide manufacturing step S10 so as to be within the above range.
- the lithium transition metal composite oxide and lithium phosphate are mixed.
- the mixing method is not particularly limited, and for example, the mixture is mixed in a mortar.
- lithium phosphate include Li 3 PO 4 .
- lithium phosphate it is preferable to mix lithium phosphate to be greater than 0 and 10 wt% or less with respect to the lithium transition metal composite oxide. More preferably, it is greater than 0 and 5 wt% or less.
- the mixture obtained in the mixing step S20 is further mixed while applying mechanical stress.
- the lithium transition metal composite oxide having a layered crystal structure and the lithium phosphate are formed into an amorphous or low crystalline NiO-like rock salt type crystal structure. Can be done.
- the method of applying mechanical stress to the mixture is not particularly limited, but it is preferable to apply mechanical stress to the mixture by mechanical milling. In this way, it becomes possible to further make the lithium transition metal composite oxide having a layered crystal structure and lithium phosphate into an amorphous or low crystalline NiO-like rock salt type crystal structure.
- the processing device for mechanical milling is not particularly limited, but for example, a ball mill, a vibration mill, a turbo mill, a mechanofusion, a disc mill, and a planetary ball mill can be preferably used. These ball mills are preferred because they provide a large amount of mechanical energy. Further, the planetary ball mill is more preferable because the pot rotates on its axis and revolves on the base plate, so that high impact energy can be efficiently generated.
- the mechanical milling conditions are appropriately set so as to obtain a mixture of amorphous or low crystalline NiO-like rock salt type crystal structure.
- the rotation speed of the base is preferably 100 rpm or more and 2000 rpm or less, and more preferably 300 rpm or more and 1000 rpm or less.
- the total processing time of the planetary ball mill is, for example, 600 minutes or more, and may be 1000 minutes or more.
- the continuous treatment time is long, the temperature of the treated product may become high and side reactions other than the intended one may occur. Therefore, it is preferable to take a short cooling time between the mixing treatments.
- Zirconia and alumina are preferably used as the material of the container and the crushing ball used in the planetary ball mill.
- the diameter of the crushing ball is preferably 1 mm or more and 20 mm or less, for example.
- Mechanical milling is preferably performed in an inert gas atmosphere such as an argon atmosphere.
- Amorphous in the present application refers to a solid state in which the arrangement of constituent atoms does not have long-distance regularity like a crystal structure.
- Low crystallinity means that the crystal is located between amorphous and crystalline, and consists of single crystal grains "crystal grains" having different orientations, and the regularity of the crystal structure is relatively short distance (for example, 100 nm). Less than).
- Amorphous is indicated by the absence of clear peaks in the X-ray diffraction results. Further, the low crystallinity can be seen from the fact that, for example, the peak of the rock salt type crystal structure of NiO is seen in the X-ray diffraction result, but the diffraction line is not clear. Further, in the present application, the NiO-like rock salt type crystal structure means a structure in which the rock salt type crystal structure of NiO is distorted.
- the lithium phosphate and the lithium transition metal composite oxide in the mixture obtained in the mixing step S20 are finely pulverized, and the finely pulverized lithium phosphate and the lithium transition metal composite oxide are further mixed. Then, the lithium transition metal composite oxide and lithium phosphate can be mixed in the atomic order. As a result, in the heat treatment step, a lithium transition metal composite oxide having a layered rock salt type crystal structure in which lithium phosphate is finely crystallized and dispersed can be obtained.
- Heat treatment process> the mixture of amorphous or low crystalline NiO-like rock salt type crystal structures obtained in the milling step S30 is subjected to heat treatment to finely crystallize and disperse lithium phosphate to form lithium in a layered rock salt type crystal structure.
- a transition metal composite oxide can be obtained.
- the heat treatment step S40 only the lithium transition metal composite oxide has a layered rock salt type crystal structure, and lithium phosphate does not have a layered structure.
- the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt type crystal structure, and the lithium transition metal composite oxidation having a layered rock salt type crystal structure. It can be dispersed inside or on the surface of secondary particles of an object.
- the positive electrode active material obtained through the heat treatment step S40 has a general formula of kLi 3 PO 4- (1-k) Li s Ni 1-x-y-z Co x Mn y M z O 2 + ⁇ (however, 0 ⁇ k ⁇ 0.1, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0 ⁇ z ⁇ 0.10, 1.00 ⁇ s ⁇ 1.30, 0 ⁇ ⁇ ⁇ 0.2, M is V , Mg, Mo, Nb, Ti, W and at least one element selected from Al).
- the heat treatment step S40 it is preferable that the heat treatment is performed at a temperature of 600 to 700 ° C.
- the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure, and the lithium transition metal composite oxide having a layered rock salt crystal structure. Since it can be further dispersed inside or on the surface of the next particle, it is possible to have a high capacity and suppress a decrease in capacity during repeated charging and discharging.
- the heat treatment step S40 is preferably performed in an oxidizing atmosphere having an oxygen concentration of 80% by volume or more and 100% by volume or less, and more preferably performed in an oxygen atmosphere.
- the heat treatment time is preferably 5 hours or more and 24 hours or less, and more preferably 8 hours or more and 16 hours or less.
- a positive electrode active material for a lithium ion secondary battery by suppressing structural changes due to charging and discharging, high capacity and repeated charging, which is a drawback of LNO, are performed. It is a positive electrode active material that can suppress a decrease in capacity during discharge.
- the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is a positive electrode active material for a lithium ion secondary battery composed of secondary particles in which a plurality of primary particles are aggregated with each other. Further, the positive electrode active material for a lithium ion secondary battery contains a lithium transition metal composite oxide having a layered rock salt type crystal structure and finely crystallized lithium phosphate, and contains the general formula kLi 3 PO 4- (1-k).
- M is represented by at least one element selected from V, Mg, Mo, Nb, Ti, W and Al).
- k indicating the content of Li 3 PO 4 is more than 0 and less than 0.1, and is 0.01 or more and 0.07 or less. It may be present, and may be 0.03 or more and 0.05 or less.
- k indicating the content of Li 3 PO 4 is more than 0 and less than 0.1, and is 0.01 or more and 0.07 or less. It may be present, and may be 0.03 or more and 0.05 or less.
- the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure cannot be coated with lithium phosphate.
- lithium phosphate cannot be dispersed inside or on the surface of secondary particles of a lithium transition metal composite oxide having a layered rock salt crystal structure.
- k is 0.1 or more, the proportion of the lithium transition metal composite oxide involved in charge / discharge decreases, the charge / discharge capacity decreases, and the lithium phosphate layer on the surface becomes too thick, resulting in surface resistance. growing.
- s indicating the Li content is 1.00 or more and 1.30 or less, may be 1.01 or more and 1.20 or less, and 1.05 or more and 1.10 or less. May be good.
- the substance amount ratio of lithium is less than 1.00, the portion to be occupied by lithium in the crystal of the lithium nickel composite oxide may be occupied by other elements, and the charge / discharge capacity may decrease.
- the substance amount ratio exceeds 1.30, a surplus lithium compound that does not contribute to charge / discharge exists together with the lithium nickel composite oxide, which increases the battery resistance and decreases the charge / discharge capacity. I have something to do.
- x indicating the content of cobalt (Co) is 0 or more and 0.35 or less, may be 0.05 or more and 0.35 or less, and is 0.1 or more and 0.3 or less. You may. When cobalt is contained within the above range, it has a high battery capacity and excellent cycle characteristics.
- y indicating the content of manganese (Mn) is 0 or more and 0.35 or less, and may be 0 or more and 0.10 or less.
- z indicating the content of the element M is, for example, 0 or more and 0.10 or less.
- M can be selected from a plurality of elements according to the required properties.
- the positive electrode active material may contain a small amount of elements other than the above Ni, Co, Mn, and element M as long as the effect of the present invention is not impaired.
- ⁇ is a coefficient that changes according to the valence of the metal element other than lithium contained in the lithium metal composite oxide and the atomic number ratio of lithium to the metal element other than lithium.
- the lithium transition metal composite oxide has a layered rock salt type crystal structure.
- the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure, and the inside of the secondary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure. Alternatively, it is characterized in that it is dispersed on the surface.
- Lithium phosphate (Li 3 PO 4 ) is preferably 10 mol% or less, more preferably 1 mol% or more and 7 mol% or less, still more preferably 3 mol% or more and 5 mol% or less, based on the lithium transition metal composite oxide (LiNiComnMO). Is.
- the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention has a high capacity and has a drawback of LNO during repeated charging and discharging by suppressing structural changes due to charging and discharging. It is possible to suppress a decrease in capacity.
- Lithium-ion secondary battery The lithium ion secondary battery according to the embodiment of the present invention is characterized by comprising a positive electrode containing the positive electrode active material for the lithium ion secondary battery. Further, the lithium ion secondary battery can be composed of the same components as a general lithium ion secondary battery, and includes, for example, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
- the embodiments described below are merely examples, and the lithium ion secondary battery of the present embodiment may be modified in various ways based on the embodiments described in the present specification and based on the knowledge of those skilled in the art. It can be carried out in an improved form. Further, the lithium ion secondary battery of the present embodiment is not particularly limited in its use.
- the positive electrode of the lithium ion secondary battery is manufactured as follows. First, a powdery positive electrode active material, a conductive agent, and a binder are mixed, and if necessary, activated carbon, a solvent for viscosity adjustment and the like are added, and the mixture is kneaded to prepare a positive electrode mixture paste.
- the mixing ratio of each component in the positive electrode mixture paste is, for example, when the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the positive electrode is the same as the positive electrode of a general lithium ion secondary battery. It is preferable that the content of the active material is 60 to 95 parts by mass, the content of the conductive agent is 1 to 20 parts by mass, and the content of the binder is 1 to 20 parts by mass.
- the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like in order to increase the electrode density. In this way, a sheet-shaped positive electrode can be manufactured.
- the sheet-shaped positive electrode can be cut into an appropriate size according to the target battery and used for manufacturing the battery.
- the method for producing the positive electrode is not limited to the example, and other methods may be used.
- the conductive agent for the positive electrode for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, Ketjen black (registered trademark), and the like can be used.
- the binder plays a role of binding the active material particles, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, and polyacrylic acid. Acids and the like can be used.
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- fluororubber fluororubber
- ethylene propylene diene rubber ethylene propylene diene rubber
- styrene butadiene styrene butadiene
- cellulose resin and polyacrylic acid. Acids and the like can be used.
- the positive electrode active material, the conductive agent, and the activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
- a solvent such as N-methyl-2-pyrrolidone can be used.
- activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
- Negative electrode For the negative electrode, a binder is mixed with a negative electrode active material that can occlude and desorb lithium ions, such as metallic lithium or a lithium alloy, and an appropriate solvent is added to form a paste-like negative electrode mixture. Is applied to the surface of a metal foil current collector such as copper, dried, and if necessary, compressed to increase the electrode density.
- a metal foil current collector such as copper
- the negative electrode active material for example, a calcined body of an organic compound such as natural graphite, artificial graphite, or phenol resin, or a powdery body of a carbon substance such as coke can be used.
- a fluororesin such as PVDF can be used as in the positive electrode
- the solvent for dispersing these active substances and the binder N-methyl-2-pyrrolidone or the like can be used.
- An organic solvent can be used.
- (C) Separator A separator is sandwiched between the positive electrode and the negative electrode.
- the separator separates the positive electrode and the negative electrode and retains an electrolyte.
- a thin film such as polyethylene or polypropylene, which has a large number of fine pores, can be used.
- Non-aqueous electrolyte can be used as the non-aqueous electrolyte.
- the non-aqueous electrolyte solution for example, a solution in which a lithium salt as a supporting salt is dissolved in an organic solvent may be used.
- the non-aqueous electrolyte solution one in which a lithium salt is dissolved in an ionic liquid may be used.
- the ionic liquid is a salt composed of cations and anions other than lithium ions and showing a liquid state even at room temperature.
- organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and tetrahydrofuran and 2-.
- cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
- chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate
- tetrahydrofuran and 2- tetrahydrofuran and 2-.
- One selected from ether compounds such as methyl tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethyl sulfone and butane sulton, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate may be used alone
- the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant and the like.
- a solid electrolyte may be used as the non-aqueous electrolyte.
- the solid electrolyte has a property of being able to withstand a high voltage.
- Examples of the solid electrolyte include an inorganic solid electrolyte and an organic solid electrolyte.
- an oxide-based solid electrolyte As the inorganic solid electrolyte, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, etc. are used.
- the oxide-based solid electrolyte is not particularly limited as long as it contains oxygen (O) and has lithium ion conductivity and electron insulation.
- Examples of the oxide-based solid electrolyte include lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N X , LiBO 2 N X , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , and Li 4 SiO 4 -Li 3 .
- the sulfide-based solid electrolyte is not particularly limited, and any sulfide-based solid electrolyte that contains sulfur (S) and has lithium ion conductivity and electron insulation can be used.
- Examples of the sulfide-based solid electrolyte include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 .
- an electrolyte other than the above may be used, and for example, Li 3N, LiI, Li 3N - LiI - LiOH or the like may be used.
- the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, a copolymer thereof, or the like can be used. Further, the organic solid electrolyte may contain a supporting salt (lithium salt).
- the lithium ion secondary battery according to the embodiment of the present invention is composed of, for example, a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as described above.
- the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical type and a laminated type can be used. Regardless of which shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolytic solution and communicates with the positive electrode current collector and the outside.
- a lithium ion secondary battery is completed by connecting between the positive electrode terminal and the negative electrode current collector and the negative electrode terminal leading to the outside by using a current collecting lead or the like and sealing the battery case.
- the lithium ion secondary battery according to the embodiment of the present invention is provided with a positive electrode composed of the above-mentioned positive electrode active material, thereby suppressing structural changes due to charging and discharging, thereby having a high capacity and a drawback of LNO. It is possible to suppress a decrease in capacity during a certain repeated charge / discharge.
- Example 1 In Example 1, 0.97 g of lithium nickelate and 0.03 g of lithium phosphate are weighed with an electronic balance in a glove box having an argon atmosphere, and after being sufficiently mixed in a Menou mortar (mixing step), ⁇ 5 mm zirconia balls 59 g. It was sealed in a zirconia container having a volume of 40 ml.
- the zirconia container was opened in the glove box with an argon atmosphere, the zirconia balls were removed, and the mixture obtained by the mechanical milling treatment was taken out.
- the crystal structure of the obtained mixture was confirmed by an XRD apparatus (manufactured by Bruker, trade name: D2 PHASER), and it was confirmed that the mixture was amorphous.
- the mixture obtained by the mechanical milling treatment was heat-treated at 650 ° C. for 12 hours in a firing furnace in an oxygen atmosphere (heat treatment step) to obtain a positive electrode active material according to the present invention.
- the obtained positive electrode active material was observed using SEM-EDS (manufactured by JEOL Ltd., trade name: JCM-6000), and an element mapping image was obtained.
- SEM-EDS manufactured by JEOL Ltd., trade name: JCM-6000
- the SEM observation results are shown in FIG. 2, and the EDX element mapping results are shown in FIG.
- the obtained slurry was applied to an aluminum foil, vacuum dried at room temperature for 2 hours, and then vacuum dried at 120 ° C. for 2 hours to obtain an electrode.
- the charge / discharge profile of the positive electrode active material produced at the heat treatment temperature of 650 ° C. in the heat treatment step is shown in FIG. It should be noted that charging and discharging are performed 20 times.
- Example 2 In Example 2, 0.95 g of lithium nickelate and 0.05 g of lithium phosphate were used. Other than that, the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
- Example 3 the heat treatment temperature in the heat treatment step was 600 ° C.
- the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
- the charge / discharge profile at the heat treatment temperature of 600 ° C. in the heat treatment step is shown in FIG.
- Example 4 the heat treatment temperature in the heat treatment step was 700 ° C.
- the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
- the charge / discharge profile at the heat treatment temperature of 700 ° C. in the heat treatment step is shown in FIG.
- Comparative Example 1 lithium phosphate was not mixed in the mixing step, and the milling step was not carried out.
- the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
- Example 2 in order to confirm the crystal structure of the positive electrode active material in Example 1, Example 2, and Comparative Example 1, the crystal structure was confirmed using an XRD device.
- the result of XRD is shown in FIG.
- FIG. 4 in the positive electrode active materials in Examples 1 and 2, it was confirmed from the obtained profiles that the main phase was a layered rock salt type crystal structure. Further, as shown in FIG. 4, in the positive electrode active materials of Examples 1 and 2, a slight diffraction peak of lithium phosphate was also detected, so that crystalline lithium phosphate was dispersed in the submicron order. Also confirmed.
- the charge / discharge profile of the positive electrode active material manufactured at the heat treatment temperature of 600 ° C to 700 ° C in the heat treatment step was confirmed.
- the results are shown in FIG. In FIG. 6, the plot rising from the lower left to the upper right is the capacity and voltage during charging, and the plot rising from the lower right to the upper left is the capacity and voltage during discharging.
- the decrease in discharge capacity was small even after repeated charging and discharging, and the cycle characteristics were excellent.
- the positive electrode active material treated at 650 ° C. in Example 1 had the best cycle characteristics.
- a term described at least once with a different term having a broader meaning or a synonym can be replaced with the different term in any part of the specification or the drawing.
- the method for producing the positive electrode active material for the lithium ion secondary battery, the configuration and operation of the positive electrode active material for the lithium ion secondary battery and the lithium ion secondary battery are also limited to those described in each embodiment and each embodiment of the present invention. However, various modifications can be carried out.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
1.リチウム遷移金属複合酸化物製造工程
2.リチウムイオン二次電池用正極活物質の製造方法
2-1.混合工程
2-2.ミリング工程
2-3.熱処理工程
3.リチウムイオン二次電池用正極活物質
4.リチウムイオン二次電池
本発明の一実施形態に係るリチウムイオン二次電池用正極活物質は、図1に示す通り、金属複合水酸化物をリチウム塩と混合し焼成させて得られたリチウム遷移金属複合酸化物から製造される。リチウム遷移金属複合酸化物製造工程S10はさらに以下の工程によって製造される。以下に説明する。
複合水酸化物粒子製造工程は、硫酸ニッケル(II)等のニッケル塩と硫酸コバルト(II)等のコバルト塩と硫酸マンガン等のマンガン塩と添加金属塩の混合水溶液に、アルカリ溶液を含む水溶液を加えて、共沈物として複合水酸化物粒子を得る工程である。添加金属塩に用いられる添加元素としてはV、Mg、Mo、Nb、Ti、WおよびAlからなる群より選ばれた少なくとも1種の元素を用いることができる。遷移金属に対するコバルトの濃度、マンガンの濃度および添加元素の濃度は、後述するリチウム遷移金属複合酸化物、正極活物質の組成により適宜決定される。また遷移金属に対するコバルトの濃度及び添加元素の濃度は結晶構造の安定化や安全性の観点から、コバルトの濃度が10原子%以上35原子%以下、添加元素の濃度が0.1原子%以上10原子%以下とすることが好ましい。なおリチウム遷移金属複合酸化物、正極活物質の組成によっては、コバルト塩、マンガン塩および添加金属塩を添加しなくてもよい。
加熱工程は、複合水酸化物粒子製造工程において製造された複合水酸化物粒子を加熱する工程であり、必要に応じて行う。加熱工程により、複合水酸化物粒子に含有されている水分を除去することができる。この加熱工程を行うことによって、粒子中に焼成工程まで残留している水分を減少させることができる。また、複合水酸化物粒子を複合酸化物粒子に転換することができるので、製造される正極活物質中の金属の原子数やリチウムの原子数の割合がばらつくことを防ぐことができる。なお、正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物粒子を複合酸化物粒子に転換する必要はない。加熱工程において、複合水酸化物粒子は残留水分が除去される温度まで加熱されればよく、その加熱温度はとくに限定されないが、105℃以上800℃以下とすることが好ましい。複合水酸化物粒子を105℃以上に加熱すれば残留水分を除去することができる。なお、105℃未満では、残留水分を除去するために長時間を要する傾向にある。800℃を超えると、複合酸化物に転換された粒子が焼結して凝集する傾向にある。加熱処理を行う雰囲気は特に制限されるものではなく、簡易的に行える空気気流中において行うことが好ましい。
焼成工程は、加熱工程によって得られた粒子と、リチウム又は/及びリチウム化合物とを混合したリチウム混合物を焼成することで層状構造の結晶構造を有するリチウム遷移金属複合酸化物を得る工程である。リチウム混合物は、リチウム混合物中のリチウム以外の金属の原子数(すなわち、ニッケル、コバルト及び添加金属の原子数の和(Me))と、リチウムの原子数(Li)との比(Li/Me)が、1.00を超え~1.30未満が好ましく、そのように、混合される。つまり、リチウム混合物におけるLi/Meが、本発明の正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程前後で、Li/Meは変化しないので、混合するLi/Meが正極活物質におけるLi/Meとなるからである。
本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質の製造方法であり、混合工程S20と、ミリング工程S30と、熱処理工程S40と、を有する。以下に工程ごとに説明する。
混合工程S20では、上記の焼成工程を経て得られたリチウム遷移金属複合酸化物を用いる。リチウム遷移金属複合酸化物は、層状構造の結晶構造を有する。また、リチウム遷移金属複合酸化物は、一般式LisNi1-x-y-zCoxMnyMzO2+α(ただし、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表される。なお、上記範囲となるように、上記リチウム遷移金属複合酸化物製造工程S10にて、各添加元素量を調整する。
ミリング工程S30では、混合工程S20で得られた混合物に機械的応力を加えながらさらに混合をする。混合物に機械的応力を加えながら混合することによって、層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、前記リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とすることができる。
熱処理工程S40では、ミリング工程S30で得られたアモルファス若しくは低結晶性のNiO類似岩塩型結晶構造の混合物に熱処理を施すことによって、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得ることができる。熱処理工程S40では、層状岩塩型結晶構造となるのは、リチウム遷移金属複合酸化物のみであり、リン酸リチウムは層状構造とならない。
本発明の一実施形態に係るリチウムイオン二次電池用正極活物質は、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質である。また、リチウムイオン二次電池用正極活物質は、層状岩塩型結晶構造のリチウム遷移金属複合酸化物と、微細結晶化したリン酸リチウムと、を含む、一般式kLi3PO4-(1-k)LisNi1-x-y-zCoxMnyMzO2+α(ただし、0<k<0.1、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表される。
本発明の一実施形態に係るリチウムイオン二次電池は、上記リチウムイオン二次電池用正極活物質を含む正極を備えることを特徴とする。また、上記リチウムイオン二次電池は、一般のリチウムイオン二次電池と同様の構成要素により構成されることができ、例えば、正極、負極及び非水系電解質を含む。なお、以下で説明する実施形態は例示に過ぎず、本実施形態のリチウムイオン二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本実施形態のリチウムイオン二次電池は、その用途を特に限定するものではない。
先に述べたリチウムイオン二次電池用正極活物質を用い、例えば、以下のようにして、リチウムイオン二次電池の正極を作製する。まず、粉末状の正極活物質、導電剤、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合剤ペーストを作製する。正極合剤ペースト中のそれぞれの成分の混合比は、例えば、溶剤を除いた正極合剤の固形分の全質量を100質量部とした場合、一般のリチウムイオン二次電池の正極と同様、正極活物質の含有量を60~95質量部とし、導電剤の含有量を1~20質量部とし、結着剤の含有量を1~20質量部とすることが好ましい。
負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵及び脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合剤を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、例えば、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
非水系電解質としては、非水電解液を用いることができる。非水系電解液は、例えば、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いてもよい。また、非水系電解液として、イオン液体にリチウム塩が溶解したものを用いてもよい。なお、イオン液体とは、リチウムイオン以外のカチオンおよびアニオンから構成され、常温でも液体状を示す塩をいう。
本発明の一実施形態に係るリチウムイオン二次電池は、例えば、上述したような正極、負極、セパレータ及び非水系電解質で構成される。また、リチウムイオン二次電池の形状は、特に限定されず、円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極及び負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、及び、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、リチウムイオン二次電池を完成させる。
実施例1では、アルゴン雰囲気のグローブボックス内で、ニッケル酸リチウム0.97gとリン酸リチウム0.03gを電子天秤で秤量し、メノウ乳鉢で十分に混合した後(混合工程)、φ5mmジルコニアボール59gとともに容積40mlのジルコニア製容器に封入した。
実施例2では、ニッケル酸リチウムを0.95g、リン酸リチウムを0.05g使用した。その他は実施例1と同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。
実施例3では、熱処理工程での熱処理温度を600℃で行った。その他は実施例1と同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。熱処理工程での熱処理温度600℃での充放電プロファイルを図6に示した。
実施例4では、熱処理工程での熱処理温度を700℃で行った。その他は実施例1同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。熱処理工程での熱処理温度700℃での充放電プロファイルを図6に示した。
比較例1では、混合工程でリン酸リチウムを混合せず、ミリング工程も実施しなかった。その他は実施例1と同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。
実施例1、実施例2及び比較例1における正極活物質について、SEMを用いて試料の観察を行った。SEM像を図2に示す。図2に示すように、実施例1(図2(B))及び実施例2(図2(C))における正極活物質では、メカニカルミリングなどの機械的応力によって、ナノ粒子化した層状岩塩型結晶構造のリチウム遷移金属複合酸化物であるため、熱処理工程後でも1μm~5μmの小さい正極活物質の粒子径を維持していた。一方、混合工程でリン酸リチウムを混合せず、ミリング工程も実施しなかった比較例1における正極活物質(図2(A))では、粒子径が8μmより大きくなった。
Claims (6)
- 複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質の製造方法であって、
層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、リン酸リチウムとを混合する混合工程と、
前記混合工程で得られた混合物に機械的応力を加え、前記層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、前記リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とするミリング工程と、
前記ミリング工程で得られた前記アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造の混合物に熱処理を施し、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得る熱処理工程と、を有し、
前記リチウム遷移金属複合酸化物は、一般式LisNi1-x-y-zCoxMnyMzO2+α(ただし、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表され、
前記微細結晶化したリン酸リチウムは、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とするリチウムイオン二次電池用正極活物質の製造方法。 - 前記混合工程では、前記リチウム遷移金属複合酸化物に対し、前記リン酸リチウムを0より大きく10wt%以下になるように混合することを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記熱処理工程では、600~700℃の温度で熱処理されることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 前記ミリング工程では、メカニカルミリングによって機械的応力を加えることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
- 複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質であって、
層状岩塩型結晶構造のリチウム遷移金属複合酸化物と、微細結晶化したリン酸リチウムと、を含む、一般式kLi3PO4-(1-k)LisNi1-x-y-zCoxMnyMzO2+α(ただし、0<k<0.1、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表され、
前記微細結晶化したリン酸リチウムは、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とするリチウムイオン二次電池用正極活物質。 - 少なくとも、請求項5に記載のリチウムイオン二次電池用正極活物質を含む正極を備えることを特徴とするリチウムイオン二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21875494.3A EP4223701A1 (en) | 2020-10-02 | 2021-09-27 | Production method for lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode active material, and lithium ion secondary battery |
JP2022553936A JPWO2022071192A1 (ja) | 2020-10-02 | 2021-09-27 | |
CN202180067511.3A CN116323493A (zh) | 2020-10-02 | 2021-09-27 | 锂离子二次电池用正极活性物质的制造方法、锂离子二次电池用正极活性物质及锂离子二次电池 |
US18/030,038 US20240006591A1 (en) | 2020-10-02 | 2021-09-27 | Process for manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-167454 | 2020-10-02 | ||
JP2020167454 | 2020-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071192A1 true WO2022071192A1 (ja) | 2022-04-07 |
Family
ID=80951598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035283 WO2022071192A1 (ja) | 2020-10-02 | 2021-09-27 | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240006591A1 (ja) |
EP (1) | EP4223701A1 (ja) |
JP (1) | JPWO2022071192A1 (ja) |
CN (1) | CN116323493A (ja) |
WO (1) | WO2022071192A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023502845A (ja) * | 2020-10-12 | 2023-01-26 | ビーティーアール ナノ テック カンパニー リミテッド | 正極材料およびその調製方法、リチウムイオン二次電池 |
CN115832265A (zh) * | 2022-12-21 | 2023-03-21 | 重庆太蓝新能源有限公司 | 多晶正极材料及其改性方法以及包含它的锂离子电池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117080417B (zh) * | 2023-10-16 | 2024-01-26 | 宁波容百新能源科技股份有限公司 | 一种三元正极材料及其制备方法、锂离子电池 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007048525A (ja) * | 2005-08-08 | 2007-02-22 | Nissan Motor Co Ltd | 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池 |
JP2007059142A (ja) * | 2005-08-23 | 2007-03-08 | Nissan Motor Co Ltd | 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法 |
JP2016110714A (ja) | 2014-12-02 | 2016-06-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法 |
US20170338471A1 (en) * | 2016-05-17 | 2017-11-23 | Battelle Memorial Institute | High capacity and stable cathode materials |
JP2018185929A (ja) * | 2017-04-25 | 2018-11-22 | トヨタ自動車株式会社 | 複合粒子 |
JP2019175830A (ja) * | 2017-05-29 | 2019-10-10 | 太平洋セメント株式会社 | リチウムイオン二次電池用正極活物質複合体又はナトリウムイオン二次電池用正極活物質複合体、これらを用いた二次電池、並びにこれらの製造方法 |
JP2020074264A (ja) * | 2016-07-20 | 2020-05-14 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池 |
JP6734491B1 (ja) * | 2020-01-17 | 2020-08-05 | 住友化学株式会社 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
JP2020136093A (ja) | 2019-02-20 | 2020-08-31 | セイコーインスツル株式会社 | 非水電解質二次電池用正極合剤と正極及びこれを用いた非水電解質二次電池と非水電解質二次電池用正極の製造方法 |
JP2020167454A (ja) | 2019-03-28 | 2020-10-08 | ブラザー工業株式会社 | 画像処理装置、画像処理方法および画像処理プログラム |
-
2021
- 2021-09-27 US US18/030,038 patent/US20240006591A1/en active Pending
- 2021-09-27 JP JP2022553936A patent/JPWO2022071192A1/ja active Pending
- 2021-09-27 WO PCT/JP2021/035283 patent/WO2022071192A1/ja active Application Filing
- 2021-09-27 EP EP21875494.3A patent/EP4223701A1/en active Pending
- 2021-09-27 CN CN202180067511.3A patent/CN116323493A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007048525A (ja) * | 2005-08-08 | 2007-02-22 | Nissan Motor Co Ltd | 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池 |
JP2007059142A (ja) * | 2005-08-23 | 2007-03-08 | Nissan Motor Co Ltd | 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法 |
JP2016110714A (ja) | 2014-12-02 | 2016-06-20 | 三星電子株式会社Samsung Electronics Co.,Ltd. | リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法 |
US20170338471A1 (en) * | 2016-05-17 | 2017-11-23 | Battelle Memorial Institute | High capacity and stable cathode materials |
JP2020074264A (ja) * | 2016-07-20 | 2020-05-14 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池 |
JP2018185929A (ja) * | 2017-04-25 | 2018-11-22 | トヨタ自動車株式会社 | 複合粒子 |
JP2019175830A (ja) * | 2017-05-29 | 2019-10-10 | 太平洋セメント株式会社 | リチウムイオン二次電池用正極活物質複合体又はナトリウムイオン二次電池用正極活物質複合体、これらを用いた二次電池、並びにこれらの製造方法 |
JP2020136093A (ja) | 2019-02-20 | 2020-08-31 | セイコーインスツル株式会社 | 非水電解質二次電池用正極合剤と正極及びこれを用いた非水電解質二次電池と非水電解質二次電池用正極の製造方法 |
JP2020167454A (ja) | 2019-03-28 | 2020-10-08 | ブラザー工業株式会社 | 画像処理装置、画像処理方法および画像処理プログラム |
JP6734491B1 (ja) * | 2020-01-17 | 2020-08-05 | 住友化学株式会社 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023502845A (ja) * | 2020-10-12 | 2023-01-26 | ビーティーアール ナノ テック カンパニー リミテッド | 正極材料およびその調製方法、リチウムイオン二次電池 |
JP7381733B2 (ja) | 2020-10-12 | 2023-11-15 | ビーティーアール ナノ テック カンパニー リミテッド | 正極材料およびその調製方法、リチウムイオン二次電池 |
CN115832265A (zh) * | 2022-12-21 | 2023-03-21 | 重庆太蓝新能源有限公司 | 多晶正极材料及其改性方法以及包含它的锂离子电池 |
CN115832265B (zh) * | 2022-12-21 | 2023-08-15 | 重庆太蓝新能源有限公司 | 多晶正极材料及其改性方法以及包含它的锂离子电池 |
Also Published As
Publication number | Publication date |
---|---|
US20240006591A1 (en) | 2024-01-04 |
EP4223701A1 (en) | 2023-08-09 |
JPWO2022071192A1 (ja) | 2022-04-07 |
CN116323493A (zh) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6510598B2 (ja) | 充電式バッテリ用のリチウム遷移金属酸化物カソード物質の前駆体 | |
CN111279528B (zh) | 非水系电解质二次电池用正极活性物质及其制法、正极复合材糊料及非水系电解质二次电池 | |
WO2022071192A1 (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 | |
JP7292574B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池 | |
JP7371364B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池 | |
JP7271945B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池 | |
JP2024083400A (ja) | 正極活物質及びその製造方法 | |
JP7389347B2 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 | |
WO2021054381A1 (ja) | リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 | |
WO2019013053A1 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池 | |
JP2021147314A (ja) | 遷移金属複合水酸化物粒子、遷移金属複合水酸化物粒子の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池 | |
WO2020171093A1 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
JP7198777B2 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 | |
JP7205114B2 (ja) | 遷移金属複合水酸化物の製造方法、および、リチウムイオン二次電池用正極活物質の製造方法 | |
JP7480527B2 (ja) | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池 | |
JP7205198B2 (ja) | リチウムイオン二次電池用正極活物質の製造方法 | |
JP7238783B2 (ja) | 三酸化タングステン | |
CN111033831B (zh) | 非水系电解质二次电池用正极活性物质及其制造方法和使用其的非水系电解质二次电池 | |
JP7194493B2 (ja) | 非水系電解質二次電池用正極活物質 | |
WO2019163847A1 (ja) | 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
TWI822956B (zh) | 鋰離子二次電池用正極活性物質之製造方法、鋰離子二次電池用正極活性物質、鋰離子二次電池 | |
JP7521179B2 (ja) | 正極活物質の製造方法 | |
WO2020261962A1 (ja) | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7308586B2 (ja) | 非水系電解質二次電池用正極活物質 | |
JP2020004587A (ja) | リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022553936 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18030038 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021875494 Country of ref document: EP Effective date: 20230502 |