WO2022071192A1 - リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022071192A1
WO2022071192A1 PCT/JP2021/035283 JP2021035283W WO2022071192A1 WO 2022071192 A1 WO2022071192 A1 WO 2022071192A1 JP 2021035283 W JP2021035283 W JP 2021035283W WO 2022071192 A1 WO2022071192 A1 WO 2022071192A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
composite oxide
transition metal
active material
Prior art date
Application number
PCT/JP2021/035283
Other languages
English (en)
French (fr)
Inventor
平 相田
直明 藪内
Original Assignee
住友金属鉱山株式会社
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社, 国立大学法人横浜国立大学 filed Critical 住友金属鉱山株式会社
Priority to EP21875494.3A priority Critical patent/EP4223701A1/en
Priority to JP2022553936A priority patent/JPWO2022071192A1/ja
Priority to CN202180067511.3A priority patent/CN116323493A/zh
Priority to US18/030,038 priority patent/US20240006591A1/en
Publication of WO2022071192A1 publication Critical patent/WO2022071192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a method for producing a positive electrode active material for a lithium ion secondary battery composed of secondary particles in which a plurality of primary particles are aggregated with each other, a positive electrode active material for a lithium ion secondary battery, and a positive electrode active material for a lithium ion secondary battery.
  • the present invention relates to a lithium ion secondary battery used as a positive electrode material.
  • a secondary battery with high energy density is strongly desired.
  • a lithium ion secondary battery (LIB) that uses lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode.
  • NCA LiNi 1-xy Co x Aly O 2
  • LNO LiNiO 2
  • Patent Document 1 proposes a particulate positive electrode active material made of lithium cobalt oxide (LiCoO 2 ), which enables a large current supply.
  • LiCoO 2 lithium cobalt oxide
  • the method for producing a positive electrode active material for a lithium ion secondary battery is a method for producing a positive electrode active material for a lithium ion secondary battery, which comprises secondary particles in which a plurality of primary particles are aggregated with each other.
  • the lithium transition metal composite oxide comprises a heat treatment step of subjecting a mixture of crystal structures to a heat treatment step for obtaining a lithium transition metal composite oxide having a layered rock salt type crystal structure in which lithium phosphate is finely crystallized and dispersed.
  • Lithium acid coats the surface of the primary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure, and is dispersed inside or on the surface of the secondary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure. It is characterized by being.
  • the lithium phosphate may be mixed with the lithium transition metal composite oxide so as to be greater than 0 and 10 wt% or less.
  • the ratio of the lithium transition metal composite oxide and lithium phosphate is optimized, the capacity is high, and the capacity decrease during repeated charging and discharging can be suppressed.
  • the heat treatment may be performed at a temperature of 600 to 700 ° C.
  • the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure, and the lithium transition metal composite oxide having the layered rock salt type crystal structure. Since it is possible to further disperse the secondary particles in or on the surface of the secondary particles, it is possible to have a high capacity and suppress a decrease in capacity during repeated charging and discharging.
  • mechanical stress may be applied by mechanical milling.
  • the lithium transition metal composite oxide having a layered crystal structure and lithium phosphate can be further formed into an amorphous or low crystalline NiO-like rock salt type crystal structure, and thus high. It is possible to suppress a decrease in capacity during repeated charging and discharging.
  • it is a positive electrode active material for a lithium ion secondary battery composed of secondary particles in which a plurality of primary particles are aggregated with each other, and is a lithium transition metal composite oxide having a layered rock salt type crystal structure.
  • Microcrystallized lithium phosphate and the general formula kLi 3 PO 4- (1-k) Li s Ni 1-x-y-z Co x Mn y M z O 2 + ⁇ (where 0 ⁇ k ⁇ 0.1, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0 ⁇ z ⁇ 0.10, 1.00 ⁇ s ⁇ 1.30, 0 ⁇ ⁇ ⁇ 0.2, M is V , Mg, Mo, Nb, Ti, W and Al), and the finely crystallized lithium phosphate is the primary of the lithium transition metal composite oxide having the layered rock salt type crystal structure. It is characterized in that it covers the surface of the particles and is dispersed inside or on the surface of the secondary particles of the lithium transition metal composite oxide having the layered rock salt type crystal structure.
  • the lithium ion secondary battery is characterized by including at least a positive electrode containing the positive electrode active material for the lithium ion secondary battery.
  • the present invention by suppressing the structural change due to charging / discharging, it is possible to suppress the capacity decrease during repeated charging / discharging, which is a drawback of LNO and has a high capacity.
  • FIG. 1 is a process diagram showing an outline of a method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • 2 (A) is a diagram showing Comparative Example 1
  • FIG. 2 (B) is a diagram showing an SEM image of the positive electrode active material in Example 1
  • FIG. 2 (C) is a diagram showing an SEM image of the positive electrode active material in Example 2.
  • FIG. 3A is a diagram showing a mapping image of the positive electrode active material in Example 1
  • FIG. 3B is a diagram showing a mapping image of the positive electrode active material in Example 2.
  • FIG. 4 is a diagram confirming the crystal structure of the positive electrode active material in Example 1, Example 2, and Comparative Example 1 using an XRD apparatus.
  • FIG. 5 is a diagram confirming the charge / discharge profile when the positive electrode active material in Example 1, Example 2, and Comparative Example 1 is used.
  • FIG. 6 is a diagram confirming the charge / discharge profiles when the positive electrode active materials in Examples
  • the present inventors diligently studied a positive electrode active material for a lithium ion secondary battery having excellent battery characteristics, and found that a powder made of a lithium transition metal composite oxide having a layered crystal structure was obtained. , Lithium phosphate is mixed, mechanical stress is applied to the mixture, heat treatment is performed, and finely crystallized lithium phosphate coats the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt type crystal structure. Moreover, it was found that the capacity reduction during repeated charging and discharging, which is a drawback of LNO, can be suppressed by dispersing it inside or on the surface of the secondary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure. rice field.
  • preferred embodiments of the present invention will be described.
  • a method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention will be described in the following order. 1.
  • Lithium transition metal composite oxide manufacturing process 2.
  • Heat treatment process 3.
  • the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is produced from a lithium transition metal composite oxide obtained by mixing a metal composite hydroxide with a lithium salt and firing it. Will be done.
  • the lithium transition metal composite oxide production step S10 is further produced by the following steps. This will be described below.
  • an aqueous solution containing an alkaline solution is added to a mixed aqueous solution of a nickel salt such as nickel sulfate (II), a cobalt salt such as cobalt (II) sulfate, a manganese salt such as manganese sulfate, and an added metal salt.
  • a nickel salt such as nickel sulfate (II)
  • a cobalt salt such as cobalt (II) sulfate
  • a manganese salt such as manganese sulfate
  • an added metal salt an added metal salt.
  • the additive element used in the additive metal salt at least one element selected from the group consisting of V, Mg, Mo, Nb, Ti, W and Al can be used.
  • the concentration of cobalt, the concentration of manganese, and the concentration of additive elements with respect to the transition metal are appropriately determined by the composition of the lithium transition metal composite oxide and the positive electrode active material described later.
  • the concentration of cobalt and the concentration of additive elements with respect to transition metals the concentration of cobalt is 10 atomic% or more and 35 atomic% or less, and the concentration of additive elements is 0.1 atomic% or more and 10 from the viewpoint of stabilizing the crystal structure and safety. It is preferably atomic% or less.
  • the mixed aqueous solution is made alkaline by adding an aqueous solution containing an alkaline solution.
  • the temperature of the mixed aqueous solution is preferably in the range of 60 ° C. or higher and 80 ° C. or lower.
  • the concentration of the complexing agent in the mixed aqueous solution is preferably kept at a constant value within the range of 3 g / L or more and 25 g / L or less.
  • the ammonia concentration is less than 3 g / L, the solubility of metal ions cannot be kept constant, so that plate-shaped composite hydroxide primary particles having a uniform shape and particle size are not formed, and gel-like nuclei. Is easy to generate, so the particle size distribution tends to spread easily.
  • the ammonia concentration exceeds 25 g / L, the solubility of the metal ions becomes too large, the amount of the metal ions remaining in the mixed aqueous solution increases, and the composition tends to shift. Further, when the ammonia concentration fluctuates, the solubility of the metal ion fluctuates and uniform composite hydroxide particles are not formed. Therefore, it is preferable to keep the value constant.
  • the ammonia concentration is preferably maintained at a desired concentration with the upper and lower limits set to about 5 g / L.
  • the heating step is a step of heating the composite hydroxide particles produced in the composite hydroxide particle manufacturing step, and is performed as necessary. Moisture contained in the composite hydroxide particles can be removed by the heating step. By performing this heating step, the water remaining in the particles until the firing step can be reduced. Further, since the composite hydroxide particles can be converted into the composite oxide particles, it is possible to prevent the number of metal atoms and the ratio of the number of lithium atoms in the produced positive electrode active material from fluctuating. Since it is sufficient that water can be removed to the extent that the number of metal atoms and the ratio of lithium atoms in the positive electrode active material do not vary, it is not always necessary to convert all the composite hydroxide particles into composite oxide particles. not.
  • the composite hydroxide particles may be heated to a temperature at which residual water is removed, and the heating temperature is not particularly limited, but is preferably 105 ° C. or higher and 800 ° C. or lower. Residual water can be removed by heating the composite hydroxide particles to 105 ° C. or higher. If the temperature is lower than 105 ° C., it tends to take a long time to remove the residual water. Above 800 ° C., the particles converted into the composite oxide tend to sinter and aggregate.
  • the atmosphere in which the heat treatment is performed is not particularly limited, and it is preferable to perform the heat treatment in an air stream that can be easily performed.
  • the firing step is a step of obtaining a lithium transition metal composite oxide having a layered crystal structure by firing a lithium mixture obtained by mixing the particles obtained by the heating step with lithium and / or a lithium compound.
  • the lithium mixture is a ratio (Li / Me) of the number of atoms of a metal other than lithium in the lithium mixture (that is, the sum of the atomic numbers of nickel, cobalt and the added metal (Me)) and the number of atoms of lithium (Li). Is preferably greater than 1.00 and less than 1.30, and is thus mixed. That is, the Li / Me in the lithium mixture is mixed so as to be the same as the Li / Me in the positive electrode active material of the present invention. This is because Li / Me does not change before and after the firing step, so that the Li / Me to be mixed becomes Li / Me in the positive electrode active material.
  • the lithium compound is not particularly limited, but for example, lithium hydroxide, lithium nitrate, lithium carbonate, or a mixture thereof is preferable in that it is easily available. In particular, considering the ease of handling and the stability of quality, it is more preferable to use lithium hydroxide.
  • the lithium mixture is sufficiently mixed before firing.
  • the variation of Li / Me (added metal) among the individual particles is eliminated, and sufficient battery characteristics can be obtained.
  • the firing step is a step of firing the above lithium mixture to obtain lithium transition metal composite oxide particles.
  • the lithium mixture is fired at 700 ° C. or higher and 850 ° C. or lower, and more preferably 720 ° C. or higher and 820 ° C. or lower. If the calcination temperature is less than 700 ° C., the diffusion of lithium into the particles is not sufficiently performed, excess lithium and unreacted particles remain, and the crystallinity tends to be insufficient.
  • the firing time is preferably at least 3 hours or more, more preferably 6 hours or more and 24 hours or less.
  • the atmosphere at the time of firing is preferably an oxidizing atmosphere, and more preferably an atmosphere having an oxygen concentration of 18% by volume or more and 100% by volume or less. That is, firing is preferably performed in the atmosphere or an oxygen stream. This is because if the oxygen concentration is less than 18% by volume, the composite hydroxide particles contained in the particles cannot be sufficiently oxidized, and the crystallinity of the lithium transition metal composite oxide may not be sufficient. Is. In particular, considering the battery characteristics, it is preferable to perform the operation in an oxygen stream.
  • the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is produced by using a lithium transition metal composite oxide obtained through the above firing step. This will be described below.
  • the method for producing a positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is a method for producing a positive electrode active material for a lithium ion secondary battery, which is composed of secondary particles in which a plurality of primary particles are aggregated with each other. It has a mixing step S20, a milling step S30, and a heat treatment step S40. Each process will be described below.
  • the lithium transition metal composite oxide obtained through the above firing step is used.
  • the lithium transition metal composite oxide has a layered crystal structure.
  • the lithium transition metal composite oxide has a general formula of Li s Ni 1-x-y-z Co x Mn y M z O 2 + ⁇ (however, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0).
  • M is at least one element selected from V, Mg, Mo, Nb, Ti, W and Al) It is represented by.
  • the amount of each added element is adjusted in the lithium transition metal composite oxide manufacturing step S10 so as to be within the above range.
  • the lithium transition metal composite oxide and lithium phosphate are mixed.
  • the mixing method is not particularly limited, and for example, the mixture is mixed in a mortar.
  • lithium phosphate include Li 3 PO 4 .
  • lithium phosphate it is preferable to mix lithium phosphate to be greater than 0 and 10 wt% or less with respect to the lithium transition metal composite oxide. More preferably, it is greater than 0 and 5 wt% or less.
  • the mixture obtained in the mixing step S20 is further mixed while applying mechanical stress.
  • the lithium transition metal composite oxide having a layered crystal structure and the lithium phosphate are formed into an amorphous or low crystalline NiO-like rock salt type crystal structure. Can be done.
  • the method of applying mechanical stress to the mixture is not particularly limited, but it is preferable to apply mechanical stress to the mixture by mechanical milling. In this way, it becomes possible to further make the lithium transition metal composite oxide having a layered crystal structure and lithium phosphate into an amorphous or low crystalline NiO-like rock salt type crystal structure.
  • the processing device for mechanical milling is not particularly limited, but for example, a ball mill, a vibration mill, a turbo mill, a mechanofusion, a disc mill, and a planetary ball mill can be preferably used. These ball mills are preferred because they provide a large amount of mechanical energy. Further, the planetary ball mill is more preferable because the pot rotates on its axis and revolves on the base plate, so that high impact energy can be efficiently generated.
  • the mechanical milling conditions are appropriately set so as to obtain a mixture of amorphous or low crystalline NiO-like rock salt type crystal structure.
  • the rotation speed of the base is preferably 100 rpm or more and 2000 rpm or less, and more preferably 300 rpm or more and 1000 rpm or less.
  • the total processing time of the planetary ball mill is, for example, 600 minutes or more, and may be 1000 minutes or more.
  • the continuous treatment time is long, the temperature of the treated product may become high and side reactions other than the intended one may occur. Therefore, it is preferable to take a short cooling time between the mixing treatments.
  • Zirconia and alumina are preferably used as the material of the container and the crushing ball used in the planetary ball mill.
  • the diameter of the crushing ball is preferably 1 mm or more and 20 mm or less, for example.
  • Mechanical milling is preferably performed in an inert gas atmosphere such as an argon atmosphere.
  • Amorphous in the present application refers to a solid state in which the arrangement of constituent atoms does not have long-distance regularity like a crystal structure.
  • Low crystallinity means that the crystal is located between amorphous and crystalline, and consists of single crystal grains "crystal grains" having different orientations, and the regularity of the crystal structure is relatively short distance (for example, 100 nm). Less than).
  • Amorphous is indicated by the absence of clear peaks in the X-ray diffraction results. Further, the low crystallinity can be seen from the fact that, for example, the peak of the rock salt type crystal structure of NiO is seen in the X-ray diffraction result, but the diffraction line is not clear. Further, in the present application, the NiO-like rock salt type crystal structure means a structure in which the rock salt type crystal structure of NiO is distorted.
  • the lithium phosphate and the lithium transition metal composite oxide in the mixture obtained in the mixing step S20 are finely pulverized, and the finely pulverized lithium phosphate and the lithium transition metal composite oxide are further mixed. Then, the lithium transition metal composite oxide and lithium phosphate can be mixed in the atomic order. As a result, in the heat treatment step, a lithium transition metal composite oxide having a layered rock salt type crystal structure in which lithium phosphate is finely crystallized and dispersed can be obtained.
  • Heat treatment process> the mixture of amorphous or low crystalline NiO-like rock salt type crystal structures obtained in the milling step S30 is subjected to heat treatment to finely crystallize and disperse lithium phosphate to form lithium in a layered rock salt type crystal structure.
  • a transition metal composite oxide can be obtained.
  • the heat treatment step S40 only the lithium transition metal composite oxide has a layered rock salt type crystal structure, and lithium phosphate does not have a layered structure.
  • the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt type crystal structure, and the lithium transition metal composite oxidation having a layered rock salt type crystal structure. It can be dispersed inside or on the surface of secondary particles of an object.
  • the positive electrode active material obtained through the heat treatment step S40 has a general formula of kLi 3 PO 4- (1-k) Li s Ni 1-x-y-z Co x Mn y M z O 2 + ⁇ (however, 0 ⁇ k ⁇ 0.1, 0 ⁇ x ⁇ 0.35, 0 ⁇ y ⁇ 0.35, 0 ⁇ z ⁇ 0.10, 1.00 ⁇ s ⁇ 1.30, 0 ⁇ ⁇ ⁇ 0.2, M is V , Mg, Mo, Nb, Ti, W and at least one element selected from Al).
  • the heat treatment step S40 it is preferable that the heat treatment is performed at a temperature of 600 to 700 ° C.
  • the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure, and the lithium transition metal composite oxide having a layered rock salt crystal structure. Since it can be further dispersed inside or on the surface of the next particle, it is possible to have a high capacity and suppress a decrease in capacity during repeated charging and discharging.
  • the heat treatment step S40 is preferably performed in an oxidizing atmosphere having an oxygen concentration of 80% by volume or more and 100% by volume or less, and more preferably performed in an oxygen atmosphere.
  • the heat treatment time is preferably 5 hours or more and 24 hours or less, and more preferably 8 hours or more and 16 hours or less.
  • a positive electrode active material for a lithium ion secondary battery by suppressing structural changes due to charging and discharging, high capacity and repeated charging, which is a drawback of LNO, are performed. It is a positive electrode active material that can suppress a decrease in capacity during discharge.
  • the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention is a positive electrode active material for a lithium ion secondary battery composed of secondary particles in which a plurality of primary particles are aggregated with each other. Further, the positive electrode active material for a lithium ion secondary battery contains a lithium transition metal composite oxide having a layered rock salt type crystal structure and finely crystallized lithium phosphate, and contains the general formula kLi 3 PO 4- (1-k).
  • M is represented by at least one element selected from V, Mg, Mo, Nb, Ti, W and Al).
  • k indicating the content of Li 3 PO 4 is more than 0 and less than 0.1, and is 0.01 or more and 0.07 or less. It may be present, and may be 0.03 or more and 0.05 or less.
  • k indicating the content of Li 3 PO 4 is more than 0 and less than 0.1, and is 0.01 or more and 0.07 or less. It may be present, and may be 0.03 or more and 0.05 or less.
  • the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure cannot be coated with lithium phosphate.
  • lithium phosphate cannot be dispersed inside or on the surface of secondary particles of a lithium transition metal composite oxide having a layered rock salt crystal structure.
  • k is 0.1 or more, the proportion of the lithium transition metal composite oxide involved in charge / discharge decreases, the charge / discharge capacity decreases, and the lithium phosphate layer on the surface becomes too thick, resulting in surface resistance. growing.
  • s indicating the Li content is 1.00 or more and 1.30 or less, may be 1.01 or more and 1.20 or less, and 1.05 or more and 1.10 or less. May be good.
  • the substance amount ratio of lithium is less than 1.00, the portion to be occupied by lithium in the crystal of the lithium nickel composite oxide may be occupied by other elements, and the charge / discharge capacity may decrease.
  • the substance amount ratio exceeds 1.30, a surplus lithium compound that does not contribute to charge / discharge exists together with the lithium nickel composite oxide, which increases the battery resistance and decreases the charge / discharge capacity. I have something to do.
  • x indicating the content of cobalt (Co) is 0 or more and 0.35 or less, may be 0.05 or more and 0.35 or less, and is 0.1 or more and 0.3 or less. You may. When cobalt is contained within the above range, it has a high battery capacity and excellent cycle characteristics.
  • y indicating the content of manganese (Mn) is 0 or more and 0.35 or less, and may be 0 or more and 0.10 or less.
  • z indicating the content of the element M is, for example, 0 or more and 0.10 or less.
  • M can be selected from a plurality of elements according to the required properties.
  • the positive electrode active material may contain a small amount of elements other than the above Ni, Co, Mn, and element M as long as the effect of the present invention is not impaired.
  • is a coefficient that changes according to the valence of the metal element other than lithium contained in the lithium metal composite oxide and the atomic number ratio of lithium to the metal element other than lithium.
  • the lithium transition metal composite oxide has a layered rock salt type crystal structure.
  • the finely crystallized lithium phosphate covers the surface of the primary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure, and the inside of the secondary particles of the lithium transition metal composite oxide having a layered rock salt crystal structure. Alternatively, it is characterized in that it is dispersed on the surface.
  • Lithium phosphate (Li 3 PO 4 ) is preferably 10 mol% or less, more preferably 1 mol% or more and 7 mol% or less, still more preferably 3 mol% or more and 5 mol% or less, based on the lithium transition metal composite oxide (LiNiComnMO). Is.
  • the positive electrode active material for a lithium ion secondary battery according to an embodiment of the present invention has a high capacity and has a drawback of LNO during repeated charging and discharging by suppressing structural changes due to charging and discharging. It is possible to suppress a decrease in capacity.
  • Lithium-ion secondary battery The lithium ion secondary battery according to the embodiment of the present invention is characterized by comprising a positive electrode containing the positive electrode active material for the lithium ion secondary battery. Further, the lithium ion secondary battery can be composed of the same components as a general lithium ion secondary battery, and includes, for example, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the embodiments described below are merely examples, and the lithium ion secondary battery of the present embodiment may be modified in various ways based on the embodiments described in the present specification and based on the knowledge of those skilled in the art. It can be carried out in an improved form. Further, the lithium ion secondary battery of the present embodiment is not particularly limited in its use.
  • the positive electrode of the lithium ion secondary battery is manufactured as follows. First, a powdery positive electrode active material, a conductive agent, and a binder are mixed, and if necessary, activated carbon, a solvent for viscosity adjustment and the like are added, and the mixture is kneaded to prepare a positive electrode mixture paste.
  • the mixing ratio of each component in the positive electrode mixture paste is, for example, when the total mass of the solid content of the positive electrode mixture excluding the solvent is 100 parts by mass, the positive electrode is the same as the positive electrode of a general lithium ion secondary battery. It is preferable that the content of the active material is 60 to 95 parts by mass, the content of the conductive agent is 1 to 20 parts by mass, and the content of the binder is 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of aluminum foil, for example, and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like in order to increase the electrode density. In this way, a sheet-shaped positive electrode can be manufactured.
  • the sheet-shaped positive electrode can be cut into an appropriate size according to the target battery and used for manufacturing the battery.
  • the method for producing the positive electrode is not limited to the example, and other methods may be used.
  • the conductive agent for the positive electrode for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, Ketjen black (registered trademark), and the like can be used.
  • the binder plays a role of binding the active material particles, for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluororubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, and polyacrylic acid. Acids and the like can be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluororubber fluororubber
  • ethylene propylene diene rubber ethylene propylene diene rubber
  • styrene butadiene styrene butadiene
  • cellulose resin and polyacrylic acid. Acids and the like can be used.
  • the positive electrode active material, the conductive agent, and the activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
  • a solvent such as N-methyl-2-pyrrolidone can be used.
  • activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
  • Negative electrode For the negative electrode, a binder is mixed with a negative electrode active material that can occlude and desorb lithium ions, such as metallic lithium or a lithium alloy, and an appropriate solvent is added to form a paste-like negative electrode mixture. Is applied to the surface of a metal foil current collector such as copper, dried, and if necessary, compressed to increase the electrode density.
  • a metal foil current collector such as copper
  • the negative electrode active material for example, a calcined body of an organic compound such as natural graphite, artificial graphite, or phenol resin, or a powdery body of a carbon substance such as coke can be used.
  • a fluororesin such as PVDF can be used as in the positive electrode
  • the solvent for dispersing these active substances and the binder N-methyl-2-pyrrolidone or the like can be used.
  • An organic solvent can be used.
  • (C) Separator A separator is sandwiched between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains an electrolyte.
  • a thin film such as polyethylene or polypropylene, which has a large number of fine pores, can be used.
  • Non-aqueous electrolyte can be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte solution for example, a solution in which a lithium salt as a supporting salt is dissolved in an organic solvent may be used.
  • the non-aqueous electrolyte solution one in which a lithium salt is dissolved in an ionic liquid may be used.
  • the ionic liquid is a salt composed of cations and anions other than lithium ions and showing a liquid state even at room temperature.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, and tetrahydrofuran and 2-.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and trifluoropropylene carbonate
  • chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and dipropyl carbonate
  • tetrahydrofuran and 2- tetrahydrofuran and 2-.
  • One selected from ether compounds such as methyl tetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethyl sulfone and butane sulton, and phosphorus compounds such as triethyl phosphate and trioctyl phosphate may be used alone
  • the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant and the like.
  • a solid electrolyte may be used as the non-aqueous electrolyte.
  • the solid electrolyte has a property of being able to withstand a high voltage.
  • Examples of the solid electrolyte include an inorganic solid electrolyte and an organic solid electrolyte.
  • an oxide-based solid electrolyte As the inorganic solid electrolyte, an oxide-based solid electrolyte, a sulfide-based solid electrolyte, etc. are used.
  • the oxide-based solid electrolyte is not particularly limited as long as it contains oxygen (O) and has lithium ion conductivity and electron insulation.
  • Examples of the oxide-based solid electrolyte include lithium phosphate (Li 3 PO 4 ), Li 3 PO 4 N X , LiBO 2 N X , LiNbO 3 , LiTaO 3 , Li 2 SiO 3 , and Li 4 SiO 4 -Li 3 .
  • the sulfide-based solid electrolyte is not particularly limited, and any sulfide-based solid electrolyte that contains sulfur (S) and has lithium ion conductivity and electron insulation can be used.
  • Examples of the sulfide-based solid electrolyte include Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 .
  • an electrolyte other than the above may be used, and for example, Li 3N, LiI, Li 3N - LiI - LiOH or the like may be used.
  • the organic solid electrolyte is not particularly limited as long as it is a polymer compound exhibiting ionic conductivity, and for example, polyethylene oxide, polypropylene oxide, a copolymer thereof, or the like can be used. Further, the organic solid electrolyte may contain a supporting salt (lithium salt).
  • the lithium ion secondary battery according to the embodiment of the present invention is composed of, for example, a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte as described above.
  • the shape of the lithium ion secondary battery is not particularly limited, and various shapes such as a cylindrical type and a laminated type can be used. Regardless of which shape is adopted, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolytic solution and communicates with the positive electrode current collector and the outside.
  • a lithium ion secondary battery is completed by connecting between the positive electrode terminal and the negative electrode current collector and the negative electrode terminal leading to the outside by using a current collecting lead or the like and sealing the battery case.
  • the lithium ion secondary battery according to the embodiment of the present invention is provided with a positive electrode composed of the above-mentioned positive electrode active material, thereby suppressing structural changes due to charging and discharging, thereby having a high capacity and a drawback of LNO. It is possible to suppress a decrease in capacity during a certain repeated charge / discharge.
  • Example 1 In Example 1, 0.97 g of lithium nickelate and 0.03 g of lithium phosphate are weighed with an electronic balance in a glove box having an argon atmosphere, and after being sufficiently mixed in a Menou mortar (mixing step), ⁇ 5 mm zirconia balls 59 g. It was sealed in a zirconia container having a volume of 40 ml.
  • the zirconia container was opened in the glove box with an argon atmosphere, the zirconia balls were removed, and the mixture obtained by the mechanical milling treatment was taken out.
  • the crystal structure of the obtained mixture was confirmed by an XRD apparatus (manufactured by Bruker, trade name: D2 PHASER), and it was confirmed that the mixture was amorphous.
  • the mixture obtained by the mechanical milling treatment was heat-treated at 650 ° C. for 12 hours in a firing furnace in an oxygen atmosphere (heat treatment step) to obtain a positive electrode active material according to the present invention.
  • the obtained positive electrode active material was observed using SEM-EDS (manufactured by JEOL Ltd., trade name: JCM-6000), and an element mapping image was obtained.
  • SEM-EDS manufactured by JEOL Ltd., trade name: JCM-6000
  • the SEM observation results are shown in FIG. 2, and the EDX element mapping results are shown in FIG.
  • the obtained slurry was applied to an aluminum foil, vacuum dried at room temperature for 2 hours, and then vacuum dried at 120 ° C. for 2 hours to obtain an electrode.
  • the charge / discharge profile of the positive electrode active material produced at the heat treatment temperature of 650 ° C. in the heat treatment step is shown in FIG. It should be noted that charging and discharging are performed 20 times.
  • Example 2 In Example 2, 0.95 g of lithium nickelate and 0.05 g of lithium phosphate were used. Other than that, the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
  • Example 3 the heat treatment temperature in the heat treatment step was 600 ° C.
  • the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
  • the charge / discharge profile at the heat treatment temperature of 600 ° C. in the heat treatment step is shown in FIG.
  • Example 4 the heat treatment temperature in the heat treatment step was 700 ° C.
  • the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
  • the charge / discharge profile at the heat treatment temperature of 700 ° C. in the heat treatment step is shown in FIG.
  • Comparative Example 1 lithium phosphate was not mixed in the mixing step, and the milling step was not carried out.
  • the positive electrode active material was synthesized in the same manner as in Example 1, a coin cell was assembled, and charging / discharging was performed.
  • Example 2 in order to confirm the crystal structure of the positive electrode active material in Example 1, Example 2, and Comparative Example 1, the crystal structure was confirmed using an XRD device.
  • the result of XRD is shown in FIG.
  • FIG. 4 in the positive electrode active materials in Examples 1 and 2, it was confirmed from the obtained profiles that the main phase was a layered rock salt type crystal structure. Further, as shown in FIG. 4, in the positive electrode active materials of Examples 1 and 2, a slight diffraction peak of lithium phosphate was also detected, so that crystalline lithium phosphate was dispersed in the submicron order. Also confirmed.
  • the charge / discharge profile of the positive electrode active material manufactured at the heat treatment temperature of 600 ° C to 700 ° C in the heat treatment step was confirmed.
  • the results are shown in FIG. In FIG. 6, the plot rising from the lower left to the upper right is the capacity and voltage during charging, and the plot rising from the lower right to the upper left is the capacity and voltage during discharging.
  • the decrease in discharge capacity was small even after repeated charging and discharging, and the cycle characteristics were excellent.
  • the positive electrode active material treated at 650 ° C. in Example 1 had the best cycle characteristics.
  • a term described at least once with a different term having a broader meaning or a synonym can be replaced with the different term in any part of the specification or the drawing.
  • the method for producing the positive electrode active material for the lithium ion secondary battery, the configuration and operation of the positive electrode active material for the lithium ion secondary battery and the lithium ion secondary battery are also limited to those described in each embodiment and each embodiment of the present invention. However, various modifications can be carried out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することを目的とする。 リチウム遷移金属複合酸化物とリン酸リチウムとを混合する混合工程と、混合工程で得られた混合物に機械的応力を加え、層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とするミリング工程と、ミリング工程で得られた混合物に熱処理を施し、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得る熱処理工程と、を有し、リチウム遷移金属複合酸化物は一般式LiNi1-x-y-zCoMn2+αで表され、微細結晶化したリン酸リチウムは、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とする。

Description

リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
 本発明は、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物及びリチウムイオン二次電池用正極活物質を正極材料として用いるリチウムイオン二次電池に関する。本出願は、日本国において2020年10月2日に出願された日本特許出願番号特願2020-167454を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年、電気自動車用(EV)の航続距離拡大のため、エネルギー密度の高い二次電池が強く望まれている。このような二次電池として、リチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池(LIB)がある。
 EV用LIBの正極に使用されている正極活物質の中で最も高い容量を発揮する材料はLiNi1-x-yCoAl(以下、NCA)である。NCAは、ニッケル酸リチウム:LiNiO(以下、LNO)のNiの一部をCoとAlに置換した正極活物質であり、Co置換によって充放電時の結晶構造変化が抑制され、Al置換によって熱安定性が向上している。
 例えば、特許文献1には、コバルト酸リチウム(LiCoO)からなる粒子状の正極活物質が提案され、大きな電流供給を可能としている。
 また、特許文献2には、LiNiCo(ただし、Mは、AlまたはMnであり、0<x<1,0<y<1,x+y+z=1)からなる正極粒子が提案され、リチウムイオン二次電池の放電容量を改善している。
特開2020-136093号公報 特開2016-110714号公報
 しかしながら、特許文献1及び2のような正極活物質は高い容量を示すが、大きな構造変化によって繰り返し充放電にともなう容量低下の大きい問題がある。
 そこで本発明は、上述のような問題に鑑みて、充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することを目的とする。
 本発明の一態様に係るリチウムイオン二次電池用正極活物質の製造方法は、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質の製造方法であって、層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、リン酸リチウムとを混合する混合工程と、前記混合工程で得られた混合物に機械的応力を加え、前記層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、前記リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とするミリング工程と、前記ミリング工程で得られた前記アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造の混合物に熱処理を施し、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得る熱処理工程と、を有し、前記リチウム遷移金属複合酸化物は、一般式LiNi1-x-y-zCoMn2+α(ただし、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表され、前記微細結晶化したリン酸リチウムは、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とする。
 このようにすれば、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができる。
 このとき、前記混合工程では、前記リチウム遷移金属複合酸化物に対し、前記リン酸リチウムを0より大きく10wt%以下になるように混合してもよい。
 このようにすれば、リチウム遷移金属複合酸化物及びリン酸リチウムの割合が最適となり、高容量かつ、さらに繰り返し充放電時の容量低下を抑制することができる。
 このとき、前記熱処理工程では、600~700℃の温度で熱処理されてもよい。
 このようにすれば、微細結晶化したリン酸リチウムが、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散することがさらに可能となるため、高容量かつ、繰り返し充放電時の容量低下を抑制することができる。
 このとき、前記ミリング工程では、メカニカルミリングによって機械的応力を加えてもよい。
 このようにすれば、層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とすることがさらに可能となるため、高容量かつ、繰り返し充放電時の容量低下を抑制することができる。
 このとき、本発明の他の態様では、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質であって、層状岩塩型結晶構造のリチウム遷移金属複合酸化物と、微細結晶化したリン酸リチウムと、を含む、一般式kLiPO-(1-k)LiNi1-x-y-zCoMn2+α(ただし、0<k<0.1、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表され、前記微細結晶化したリン酸リチウムは、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とする。
 このようにすれば、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができる。
 このとき、本発明の一態様では、リチウムイオン二次電池は、少なくとも、上記リチウムイオン二次電池用正極活物質を含む正極を備えることを特徴とする。
 このようにすれば、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することが可能なリチウムイオン二次電池とすることができる。
 本発明によれば、充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができる。
図1は、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法の概略を示す工程図である。 図2(A)は比較例1、図2(B)は実施例1、図2(C)は実施例2における正極活物質のSEM像を示す図である。 図3(A)は実施例1、図3(B)は実施例2における正極活物質のマッピング像を示す図である。 図4は、実施例1、実施例2及び比較例1における正極活物質の結晶構造を、XRD装置を用いて確認した図である。 図5は、実施例1、実施例2及び比較例1における正極活物質を用いたときの充放電プロファイルを確認した図である。 図6は、実施例1、実施例3及び実施例4における正極活物質を用いたときの充放電プロファイルを確認した図である。
 本発明者らは、上記課題を解決するため、電池特性に優れたリチウムイオン二次電池用正極活物質について鋭意検討したところ、層状構造の結晶構造を有するリチウム遷移金属複合酸化物からなる粉末と、リン酸リチウムを混合し、その混合物に機械的応力を加え、熱処理を行い、微細結晶化したリン酸リチウムが、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散することで、LNOの欠点である繰り返し充放電時の容量低下を抑制することができるとの知見を得た。以下、本発明の好適な実施の形態について説明する。
 なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本発明の要旨を逸脱しない範囲で変更が可能である。また、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法等について、下記の順に説明する。
 1.リチウム遷移金属複合酸化物製造工程
 2.リチウムイオン二次電池用正極活物質の製造方法
 2-1.混合工程
 2-2.ミリング工程
 2-3.熱処理工程
 3.リチウムイオン二次電池用正極活物質
 4.リチウムイオン二次電池
<1.リチウム遷移金属複合酸化物製造工程>
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質は、図1に示す通り、金属複合水酸化物をリチウム塩と混合し焼成させて得られたリチウム遷移金属複合酸化物から製造される。リチウム遷移金属複合酸化物製造工程S10はさらに以下の工程によって製造される。以下に説明する。
(複合水酸化物粒子製造工程)
 複合水酸化物粒子製造工程は、硫酸ニッケル(II)等のニッケル塩と硫酸コバルト(II)等のコバルト塩と硫酸マンガン等のマンガン塩と添加金属塩の混合水溶液に、アルカリ溶液を含む水溶液を加えて、共沈物として複合水酸化物粒子を得る工程である。添加金属塩に用いられる添加元素としてはV、Mg、Mo、Nb、Ti、WおよびAlからなる群より選ばれた少なくとも1種の元素を用いることができる。遷移金属に対するコバルトの濃度、マンガンの濃度および添加元素の濃度は、後述するリチウム遷移金属複合酸化物、正極活物質の組成により適宜決定される。また遷移金属に対するコバルトの濃度及び添加元素の濃度は結晶構造の安定化や安全性の観点から、コバルトの濃度が10原子%以上35原子%以下、添加元素の濃度が0.1原子%以上10原子%以下とすることが好ましい。なおリチウム遷移金属複合酸化物、正極活物質の組成によっては、コバルト塩、マンガン塩および添加金属塩を添加しなくてもよい。
 混合水溶液は、アルカリ溶液を含む水溶液を加えることで、アルカリ性になるようにする。混合水溶液のpH領域は、錯化剤を加えない場合には、pH=10~11を選択し、且つ混合水溶液の温度を、60℃以上80℃以下の範囲とすることが好ましい。このような範囲とすることで、反応速度を適切な範囲にすることができる。また、Niの溶解度が好ましいものとなり、晶析による粒子の形成を防ぐことができる。pH11を超えた状態で晶析すると細かい粒子を形成し、濾過性も悪くなり、球状粒子が得られなくなる傾向がある。pH10未満にすると水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて目的の比率の複合水酸化物が得られなくなる傾向がある。また、混合水溶液の温度が60℃未満となると反応速度が十分でなくなる傾向がある。さらに、混合水溶液の温度が80℃を超えると、水の蒸発量が多くなるため、スラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等正極材の充放電容量が低下しやすくなる傾向がある。
 複合水酸化物粒子製造工程における混合水溶液には、アルカリ溶液を含む水溶液を加えることの他、さらにアンモニア等の錯化剤を加えることが好ましい。アンモニア等の錯化剤を加えることで、Niの溶解度が上昇させることができる。錯化剤を用いた場合には、混合水溶液のpH領域はpH=10~12.5を選択し、且つ混合水溶液の温度を40℃以上60℃以下の範囲とすることが好ましい。反応槽内において、混合水溶液中の錯化剤濃度は、好ましくは3g/L以上25g/L以下の範囲内で一定値に保持する。アンモニア濃度が3g/L未満であると、金属イオンの溶解度を一定に保持することができないため、形状及び粒径が整った板状の複合水酸化物一次粒子が形成されず、ゲル状の核が生成しやすいため粒度分布も広がりやすくなる傾向がある。一方、アンモニア濃度が25g/Lを超える濃度では、金属イオンの溶解度が大きくなりすぎ、混合水溶液中に残存する金属イオン量が増えて、組成のずれ等が起きる傾向がある。また、アンモニア濃度が変動すると、金属イオンの溶解度が変動し、均一な複合水酸化物粒子が形成されないため、一定値に保持することが好ましい。例えば、アンモニア濃度は、上限と下限の幅を5g/L程度として所望の濃度に保持することが好ましい。
(加熱工程)
 加熱工程は、複合水酸化物粒子製造工程において製造された複合水酸化物粒子を加熱する工程であり、必要に応じて行う。加熱工程により、複合水酸化物粒子に含有されている水分を除去することができる。この加熱工程を行うことによって、粒子中に焼成工程まで残留している水分を減少させることができる。また、複合水酸化物粒子を複合酸化物粒子に転換することができるので、製造される正極活物質中の金属の原子数やリチウムの原子数の割合がばらつくことを防ぐことができる。なお、正極活物質中の金属の原子数やリチウムの原子数の割合にばらつきが生じない程度に水分が除去できればよいので、必ずしもすべての複合水酸化物粒子を複合酸化物粒子に転換する必要はない。加熱工程において、複合水酸化物粒子は残留水分が除去される温度まで加熱されればよく、その加熱温度はとくに限定されないが、105℃以上800℃以下とすることが好ましい。複合水酸化物粒子を105℃以上に加熱すれば残留水分を除去することができる。なお、105℃未満では、残留水分を除去するために長時間を要する傾向にある。800℃を超えると、複合酸化物に転換された粒子が焼結して凝集する傾向にある。加熱処理を行う雰囲気は特に制限されるものではなく、簡易的に行える空気気流中において行うことが好ましい。
(焼成工程)
 焼成工程は、加熱工程によって得られた粒子と、リチウム又は/及びリチウム化合物とを混合したリチウム混合物を焼成することで層状構造の結晶構造を有するリチウム遷移金属複合酸化物を得る工程である。リチウム混合物は、リチウム混合物中のリチウム以外の金属の原子数(すなわち、ニッケル、コバルト及び添加金属の原子数の和(Me))と、リチウムの原子数(Li)との比(Li/Me)が、1.00を超え~1.30未満が好ましく、そのように、混合される。つまり、リチウム混合物におけるLi/Meが、本発明の正極活物質におけるLi/Meと同じになるように混合される。これは、焼成工程前後で、Li/Meは変化しないので、混合するLi/Meが正極活物質におけるLi/Meとなるからである。
 リチウム化合物は特に限定されるものではないが、例えば、水酸化リチウム、硝酸リチウム又は炭酸リチウム、もしくはその混合物は入手が容易であるという点で好ましい。とくに、取り扱いの容易さ、品質の安定性を考慮すると、水酸化リチウムを用いることがより好ましい。
 なお、リチウム混合物は、焼成前に十分混合しておくことが好ましい。焼成前に混合を十分に行うことで、個々の粒子間でLi/Me(添加金属)のばらつきがなくなり、十分な電池特性を得ることができる。
 焼成工程は、上記のリチウム混合物を焼成して、リチウム遷移金属複合酸化物粒子を得る工程である。焼成工程においてリチウム混合物を焼成すると、上記加熱工程で得られた粒子に、リチウムを含有する物質中のリチウムが拡散するので、層状構造の結晶構造を有するリチウム遷移金属複合酸化物が形成される。リチウム混合物の焼成は、700℃以上850℃以下で行い、とくに720℃以上820℃以下で行うことが好ましい。焼成温度が700℃未満であると、上記粒子中へのリチウムの拡散が十分に行われなくなり、余剰のリチウムや未反応の粒子が残り、結晶性が十分でない状態になる傾向がある。また、焼成温度が850℃を超えると、上記粒子間で激しく焼結が生じるとともに、異常粒成長を生じる傾向がある。すると、焼成後の粒子が粗大となってしまい粒子形態(後述する球状二次粒子の形態)を保持できなくなる可能性があり、正極活物質を形成したときに、比表面積が低下して正極の抵抗が上昇して電池容量が低下する傾向がある。また、焼成時間は、少なくとも3時間以上とすることが好ましく、より好ましくは、6時間以上24時間以下である。
 また、焼成時の雰囲気は、酸化性雰囲気下とすることが好ましく、とくに、酸素濃度が18容量%以上100容量%以下の雰囲気下とすることがより好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。これは、酸素濃度が18容量%未満であると、粒子に含まれる複合水酸化物粒子を十分に酸化できず、リチウム遷移金属複合酸化物の結晶性が十分でない状態になる可能性があるからである。とくに電池特性を考慮すると、酸素気流中で行うことが好ましい。
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質は、上記の焼成工程を経て得られたリチウム遷移金属複合酸化物を用いて製造される。以下に説明する。
<2.リチウムイオン二次電池用正極活物質の製造方法>
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質の製造方法であり、混合工程S20と、ミリング工程S30と、熱処理工程S40と、を有する。以下に工程ごとに説明する。
<2-1.混合工程>
 混合工程S20では、上記の焼成工程を経て得られたリチウム遷移金属複合酸化物を用いる。リチウム遷移金属複合酸化物は、層状構造の結晶構造を有する。また、リチウム遷移金属複合酸化物は、一般式LiNi1-x-y-zCoMn2+α(ただし、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表される。なお、上記範囲となるように、上記リチウム遷移金属複合酸化物製造工程S10にて、各添加元素量を調整する。
 また、混合工程S20では、リチウム遷移金属複合酸化物と、リン酸リチウムとを混合する。混合方法は特に限定はされず、例えば乳鉢で混合する。また、リン酸リチウムは、例えばLiPOが挙げられる。
 また、混合工程S20では、リチウム遷移金属複合酸化物に対し、リン酸リチウムを0より大きく10wt%以下になるように混合することが好ましい。さらに好ましくは、0より大きく5wt%以下である。
<2-2.ミリング工程>
 ミリング工程S30では、混合工程S20で得られた混合物に機械的応力を加えながらさらに混合をする。混合物に機械的応力を加えながら混合することによって、層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、前記リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とすることができる。
 混合物に機械的応力を加える方法は、特に限定はされないが、メカニカルミリングによって混合物に機械的応力を加えることが好ましい。このようにすれば、層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とすることがさらに可能となる。
 メカニカルミリングの処理装置は特に限定されないが、例えばボールミル、振動ミル、ターボミル、メカノフュージョン、ディスクミル、遊星型ボールミルを好適に用いることができる。これらのボールミルは、大きな機械的エネルギーが得られるため好ましい。また遊星型ボールミルは、ポットが、自転回転すると共に、台盤により公転回転するため、高い衝撃エネルギーを効率よく発生させることができるのでより好ましい。
 メカニカルミリングの条件は、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造の混合物が得られるように適宜設定される。例えば、一般的な遊星型ボールミルを用いる場合は、台盤回転数は、例えば100rpm以上2000rpm以下が好ましく、300rpm以上1000rpm以下がより好ましい。また、遊星型ボールミルの処理時間の総計は、例えば600分以上であり、1000分以上であってもよい。但し、連続した処理時間が長時間に及ぶと処理物が高温になり目的以外の副反応が起こることがあるので、混合処理の合間に短時間の冷却時間を取ることが好ましい。遊星型ボールミルに用いられる容器および粉砕用ボールの材料としては、ジルコニア、アルミナを用いることが好ましい。粉砕用ボールの径は、例えば、1mm以上20mm以下が好ましい。メカニカルミリングは、例えばアルゴン雰囲気といった不活性ガス雰囲気で行うことが好ましい。
 本願におけるアモルファスとは、構成原子の配列に結晶構造のような長距離規則性を持たない固体状態のことをいう。また低結晶性とは、非晶質と結晶の中間に位置するような存在で、異なる方位を有する単結晶の粒「結晶粒」からなり、結晶構造の規則性が比較的短距離(たとえば100nm未満)になっている状態をいう。アモルファスであることは、X線回折結果に明確なピークが見られないことによってわかる。また、低結晶性であることは、X線回折結果において、例えばNiOの岩塩型結晶構造のピークは見られるが回折線がクリアでないことによってわかる。また、本願においてNiO類似岩塩型結晶構造とは、NiOの岩塩型結晶構造が歪んだ構造をいう。
 ミリング工程S30では、混合工程S20で得られた混合物中のリン酸リチウムとリチウム遷移金属複合酸化物を微粉砕すること、微粉砕したリン酸リチウム及びリチウム遷移金属複合酸化物をさらに混合すること、そして、リチウム遷移金属複合酸化物とリン酸リチウムを原子オーダーで混合することができる。これにより、熱処理工程において、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得ることができる。
<2-3.熱処理工程>
 熱処理工程S40では、ミリング工程S30で得られたアモルファス若しくは低結晶性のNiO類似岩塩型結晶構造の混合物に熱処理を施すことによって、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得ることができる。熱処理工程S40では、層状岩塩型結晶構造となるのは、リチウム遷移金属複合酸化物のみであり、リン酸リチウムは層状構造とならない。
 また、熱処理工程S40によれば、微細結晶化したリン酸リチウムは、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散させることができる。
 熱処理工程S40を経て得られる正極活物質は、一般式でkLiPO-(1-k)LiNi1-x-y-zCoMn2+α(ただし、0<k<0.1、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表される。
 また、熱処理工程S40では、600~700℃の温度で熱処理されることが好ましい。このようにすれば、微細結晶化したリン酸リチウムが、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散することがさらに可能となるため、高容量かつ、繰り返し充放電時の容量低下を抑制することができる。また、熱処理工程S40は、酸素濃度80体積%以上100体積%以下の酸化雰囲気中で行うことが好ましく、酸素雰囲気で行うことがより好ましい。熱処理時間は、5時間以上24時間以下とすることが好ましく、8時間以上16時間以下とすることがより好ましい。
 以上より、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質の製造方法によれば、充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができる正極活物質となる。
<3.リチウムイオン二次電池用正極活物質>
 本発明の一実施形態に係るリチウムイオン二次電池用正極活物質は、複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質である。また、リチウムイオン二次電池用正極活物質は、層状岩塩型結晶構造のリチウム遷移金属複合酸化物と、微細結晶化したリン酸リチウムと、を含む、一般式kLiPO-(1-k)LiNi1-x-y-zCoMn2+α(ただし、0<k<0.1、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表される。
 上記一般式で示される各元素の物質量の比(モル比)において、LiPOの含有量を示すkは、0を超え0.1未満であり、0.01以上0.07以下であってもよく、0.03以上0.05以下であってもよい。kが0である場合、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を、リン酸リチウムが被覆することができない。また、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に、リン酸リチウムを分散させることができない。一方kが0.1以上である場合、充放電に関与するリチウム遷移金属複合酸化物の割合が減少し、充放電容量が減少すると共に、表面のリン酸リチウム層が厚くなりすぎて表面抵抗が大きくなる。
 上記モル比において、Liの含有量を示すsは、1.00以上1.30以下であり、1.01以上1.20以下であってもよく、1.05以上1.10以下であってもよい。リチウムの物質量比が1.00未満である場合、リチウムニッケル複合酸化物の結晶内でリチウムが占めるべき部位が他の元素で占められ、充放電容量が低下することがある。一方、物質量比が1.30を超える場合、リチウムニッケル複合酸化物と共に充放電に寄与しない余剰分のリチウム化合物が存在することになり、電池抵抗が増大したり、充放電容量が低下したりすることがある。
 上記モル比において、コバルト(Co)の含有量を示すxは、0以上0.35以下であり、0.05以上0.35以下であってもよく、0.1以上0.3以下であってもよい。コバルトを上記範囲内で含む場合、高い電池容量を有し、かつ、サイクル特性に優れる。
 上記モル比において、マンガン(Mn)の含有量を示すyは、0以上0.35以下であり、0以上0.10以下であってもよい。マンガンを上記範囲で含む場合、熱安定性に優れる。
 上記モル比において、元素Mの含有量を示すzは、例えば、0以上0.10以下である。Mは、要求される特性に応じて複数の元素から選択できる。なお、正極活物質は、本発明の効果を阻害しない範囲において、上記Ni、Co、Mn、及び、元素M以外の元素を少量含んでもよい。
 なお、上記一般式中、αは、リチウム金属複合酸化物に含まれるリチウム以外の金属元素の価数、及びリチウム以外の金属元素に対するリチウムの原子数比に応じて変化する係数である。
 リチウム遷移金属複合酸化物は、層状岩塩型結晶構造である。そして、微細結晶化したリン酸リチウムは、層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とする。
 リン酸リチウム(LiPO)は、リチウム遷移金属複合酸化物(LiNiCoMnMO)に対し10mol%以下となることが好ましく、1mol%以上7mol%以下がより好ましく、さらに好ましくは3mol%以上5mol%以下である。
 以上より、本発明の一実施形態に係るリチウムイオン二次電池用正極活物質によれば、充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができる。
<4.リチウムイオン二次電池>
 本発明の一実施形態に係るリチウムイオン二次電池は、上記リチウムイオン二次電池用正極活物質を含む正極を備えることを特徴とする。また、上記リチウムイオン二次電池は、一般のリチウムイオン二次電池と同様の構成要素により構成されることができ、例えば、正極、負極及び非水系電解質を含む。なお、以下で説明する実施形態は例示に過ぎず、本実施形態のリチウムイオン二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本実施形態のリチウムイオン二次電池は、その用途を特に限定するものではない。
(a)正極
 先に述べたリチウムイオン二次電池用正極活物質を用い、例えば、以下のようにして、リチウムイオン二次電池の正極を作製する。まず、粉末状の正極活物質、導電剤、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合剤ペーストを作製する。正極合剤ペースト中のそれぞれの成分の混合比は、例えば、溶剤を除いた正極合剤の固形分の全質量を100質量部とした場合、一般のリチウムイオン二次電池の正極と同様、正極活物質の含有量を60~95質量部とし、導電剤の含有量を1~20質量部とし、結着剤の含有量を1~20質量部とすることが好ましい。
 得られた正極合剤ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。このようにして、シート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。
 正極の導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラック、ケッチェンブラック(登録商標)などのカーボンブラック系材料などを用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
 なお、必要に応じ、正極活物質、導電剤、活性炭を分散させ、結着剤を溶解する溶剤を正極合剤に添加する。溶剤としては、具体的には、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。また、正極合剤には、電気二重層容量を増加させるために、活性炭を添加することができる。
(b)負極
 負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵及び脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合剤を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質及び結着剤を分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。
(c)セパレータ
 正極と負極との間には、セパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し、電解質を保持するものであり、例えば、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(d)非水系電解質
 非水系電解質としては、非水電解液を用いることができる。非水系電解液は、例えば、支持塩としてのリチウム塩を有機溶媒に溶解したものを用いてもよい。また、非水系電解液として、イオン液体にリチウム塩が溶解したものを用いてもよい。なお、イオン液体とは、リチウムイオン以外のカチオンおよびアニオンから構成され、常温でも液体状を示す塩をいう。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびトリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフランおよびジメトキシエタンなどのエーテル化合物、エチルメチルスルホンやブタンスルトンなどの硫黄化合物、リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で用いてもよく、2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO、およびそれらの複合塩などを用いることができる。さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤および難燃剤などを含んでいてもよい。
 また、非水系電解質としては、固体電解質を用いてもよい。固体電解質は、高電圧に耐えうる性質を有する。固体電解質としては、無機固体電解質、有機固体電解質が挙げられる。
 無機固体電解質として、酸化物系固体電解質、硫化物系固体電解質等が用いられる。
 酸化物系固体電解質としては、特に限定されず、酸素(O)を含有し、かつ、リチウムイオン電導性と電子絶縁性とを有するものであれば用いることができる。酸化物系固体電解質としては、例えば、リン酸リチウム(LiPO)、LiPO、LiBO、LiNbO、LiTaO、LiSiO、LiSiO-LiPO、LiSiO-LiVO、LiO-B-P、LiO-SiO、LiO-B-ZnO、Li1+XAlTi2-X(PO(0≦X≦1)、Li1+XAlGe2-X(PO(0≦X≦1)、LiTi(PO、Li3XLa2/3-XTiO(0≦X≦2/3)、LiLaTa12、LiLaZr12、LiBaLaTa12、Li3.6Si0.60.4等が挙げられる。
 硫化物系固体電解質としては、特に限定されず、硫黄(S)を含有し、かつ、リチウムイオン電導性と電子絶縁性とを有するものであれば用いることができる。硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B、LiPO-LiS-SiS、LiPO-LiS-SiS、LiPO-LiS-SiS、LiI-LiS-P、LiI-LiPO-P等が挙げられる。
 なお、無機固体系電解質としては、上記以外のものを用いてよく、例えば、LiN、LiI、LiN-LiI-LiOH等を用いてもよい。
 有機固体電解質としては、イオン電導性を示す高分子化合物であれば、特に限定されず、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、これらの共重合体などを用いることができる。また、有機固体電解質は、支持塩(リチウム塩)を含んでいてもよい。
(e)電池の形状、構成
 本発明の一実施形態に係るリチウムイオン二次電池は、例えば、上述したような正極、負極、セパレータ及び非水系電解質で構成される。また、リチウムイオン二次電池の形状は、特に限定されず、円筒型、積層型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極及び負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、及び、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、リチウムイオン二次電池を完成させる。
 本発明の一実施形態に係るリチウムイオン二次電池は、上述の正極活物質から構成された正極を備えることにより、充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができる。
 以下、実施例および比較例によって、本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(実施例1)
 実施例1では、アルゴン雰囲気のグローブボックス内で、ニッケル酸リチウム0.97gとリン酸リチウム0.03gを電子天秤で秤量し、メノウ乳鉢で十分に混合した後(混合工程)、φ5mmジルコニアボール59gとともに容積40mlのジルコニア製容器に封入した。
 そして、フリッチュ製遊星ボールミル(P-7)を用いて、600rpm×15min処理した後に3min停止させるメカニカルミリング処理を計80回実施した(ミリング工程)。
 その後、アルゴン雰囲気のグローブボックス内で、ジルコニア容器を開封し、ジルコニアボール取り除いてメカニカルミリング処理で得られた混合物を取り出した。得られた混合物の結晶構造をXRD装置(Bruker製、商品名:D2 PHASER)で確認し、アモルファスであることを確認した。
 更にメカニカルミリング処理で得られた混合物を酸素雰囲気の焼成炉内で650℃、12時間で熱処理し(熱処理工程)、本発明に係る正極活物質を得た。
 得られた正極活物質をSEM-EDS(日本電子株式会社製、商品名:JCM-6000)を使用して観察し、元素マッピング像を取得した。SEMの観察結果を図2、EDXの元素マッピングの結果を図3に示す。
 更に、得られた正極活物質の結晶構造を確認するためXRD装置(Bruker製、商品名:D2 PHASER)を使用してXRDプロファイルを得た。その結果を図4に示す。
 得られた正極活物質をアルゴン雰囲気のグローブボックス内で、0.170g秤量し、アセチレンブラック0.010g、PVDF溶液(クレハ製8%溶液)0.250g、NMP70μlとともに軟膏容器に入れ、撹拌機(シンキー製AR-100)で混合した。
 得られたスラリーをアルミ箔に塗工し、常温で2時間真空乾燥させた後、120℃で2時間真空乾燥させることで電極を得た。
 得られた電極をφ10mmに打ち抜いて重量を測定した後、これを正極、金属Liを負極、PE製多孔質フィルムをセパレータ、1M LiPF6/EC(3)+DMC(7)を電解液として使用したコインセルを組み立てた。その後、得られたコインセルに30mA/gの電流を流し、2.5V-4.5Vの範囲で充放電を実施し、充放電プロファイルを確認したその結果を図5に示した。
 また、熱処理工程での熱処理温度650℃で製造した正極活物質の充放電プロファイルを図6に示した。なお、充放電は20回行っている。
(実施例2)
 実施例2では、ニッケル酸リチウムを0.95g、リン酸リチウムを0.05g使用した。その他は実施例1と同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。
(実施例3)
 実施例3では、熱処理工程での熱処理温度を600℃で行った。その他は実施例1と同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。熱処理工程での熱処理温度600℃での充放電プロファイルを図6に示した。
(実施例4)
 実施例4では、熱処理工程での熱処理温度を700℃で行った。その他は実施例1同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。熱処理工程での熱処理温度700℃での充放電プロファイルを図6に示した。
(比較例1)
 比較例1では、混合工程でリン酸リチウムを混合せず、ミリング工程も実施しなかった。その他は実施例1と同様に正極活物質を合成し、コインセルを組み立てて充放電を実施した。
(評価)
 実施例1、実施例2及び比較例1における正極活物質について、SEMを用いて試料の観察を行った。SEM像を図2に示す。図2に示すように、実施例1(図2(B))及び実施例2(図2(C))における正極活物質では、メカニカルミリングなどの機械的応力によって、ナノ粒子化した層状岩塩型結晶構造のリチウム遷移金属複合酸化物であるため、熱処理工程後でも1μm~5μmの小さい正極活物質の粒子径を維持していた。一方、混合工程でリン酸リチウムを混合せず、ミリング工程も実施しなかった比較例1における正極活物質(図2(A))では、粒子径が8μmより大きくなった。
 また、実施例1及び実施例2における正極活物質の元素分布を確認した。その元素分布を図3(A)及び図3(B)に示す。図3に示すように、実施例1(図3(A))及び実施例2(図3(B))における正極活物質では、得られたマッピング像からリンがサブミクロンオーダーで分散していることを確認した。
 更に、実施例1、実施例2及び比較例1における正極活物質の結晶構造を確認するためXRD装置を使用して結晶構造を確認した。XRDの結果を図4に示す。図4に示すように、実施例1及び実施例2における正極活物質では、得られたプロファイルから主相が層状岩塩型結晶構造であることを確認した。また、図4に示すように、実施例1及び2における正極活物質では、僅かにリン酸リチウムの回折ピークも検出したことから、結晶質のリン酸リチウムがサブミクロンオーダーで分散していることも確認した。
 そして、充放電回数に対する放電容量維持率の確認を行った。その結果を図5に示す。図5に示すように、実施例1(LiNiO-3%LiPO)及び実施例2(LiNiO-5%LiPO)における正極活物質では、サイクルを繰り返した時の放電容量の低下が小さく、サイクル特性に優れていた。一方、比較例1における正極活物質では、サイクルを繰り返した時の放電容量の低下が大きく、サイクル特性が実施例よりも劣っていた。なお、実施例および、図2から6中の「LiNiO-3%LiPO」は、リン酸リチウム及びリチウム遷移金属複合酸化物全体の重量に対するリン酸リチウムの重量の割合が3重量%であることを示し、「LiNiO-5%LiPO」は、リン酸リチウム及びリチウム遷移金属複合酸化物全体の重量に対するリン酸リチウムの重量の割合が5重量%であることを示す。
 また、熱処理工程での熱処理温度600℃~700℃で製造した正極活物質の充放電プロファイルを確認した。その結果を図6に示す。図6において、左下から右上に上昇しているプロットが充電時の容量と電圧であり、右下から左上に上昇しているプロットが放電時の容量と電圧である。図6に示すように、充放電を繰り返しても放電容量の低下が小さく、サイクル特性に優れていた。また、実施例1の650℃で処理した正極活物質が最もサイクル特性に優れていた。
 以上より、本発明によれば、充放電に伴う構造変化を抑制することによって、高容量かつ、LNOの欠点である繰り返し充放電時の容量低下を抑制することができた。
 なお、上記のように本発明の各実施形態および各実施例について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。またリチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池の構成、動作も本発明の各実施形態および各実施例で説明したものに限定されず、種々の変形実施が可能である。
S10 リチウム遷移金属複合酸化物製造工程、S20 混合工程、S30 ミリング工程、S40 熱処理工程

Claims (6)

  1.  複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質の製造方法であって、
     層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、リン酸リチウムとを混合する混合工程と、
     前記混合工程で得られた混合物に機械的応力を加え、前記層状構造の結晶構造を有するリチウム遷移金属複合酸化物と、前記リン酸リチウムとを、アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造とするミリング工程と、
     前記ミリング工程で得られた前記アモルファス若しくは低結晶性のNiO類似岩塩型結晶構造の混合物に熱処理を施し、リン酸リチウムが微細結晶化して分散した層状岩塩型結晶構造のリチウム遷移金属複合酸化物を得る熱処理工程と、を有し、
     前記リチウム遷移金属複合酸化物は、一般式LiNi1-x-y-zCoMn2+α(ただし、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表され、
     前記微細結晶化したリン酸リチウムは、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
  2.  前記混合工程では、前記リチウム遷移金属複合酸化物に対し、前記リン酸リチウムを0より大きく10wt%以下になるように混合することを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。
  3.  前記熱処理工程では、600~700℃の温度で熱処理されることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極活物質の製造方法。
  4.  前記ミリング工程では、メカニカルミリングによって機械的応力を加えることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  5.  複数の一次粒子が互いに凝集した二次粒子からなるリチウムイオン二次電池用正極活物質であって、
     層状岩塩型結晶構造のリチウム遷移金属複合酸化物と、微細結晶化したリン酸リチウムと、を含む、一般式kLiPO-(1-k)LiNi1-x-y-zCoMn2+α(ただし、0<k<0.1、0≦x≦0.35、0≦y≦0.35、0≦z≦0.10、1.00≦s≦1.30、0≦α≦0.2、Mは、V、Mg、Mo、Nb、Ti、WおよびAlから選ばれる少なくとも1種の元素)で表され、
     前記微細結晶化したリン酸リチウムは、前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の一次粒子表面を被覆し、かつ前記層状岩塩型結晶構造のリチウム遷移金属複合酸化物の二次粒子の内部又は表面に分散していることを特徴とするリチウムイオン二次電池用正極活物質。
  6.  少なくとも、請求項5に記載のリチウムイオン二次電池用正極活物質を含む正極を備えることを特徴とするリチウムイオン二次電池。
PCT/JP2021/035283 2020-10-02 2021-09-27 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池 WO2022071192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21875494.3A EP4223701A1 (en) 2020-10-02 2021-09-27 Production method for lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode active material, and lithium ion secondary battery
JP2022553936A JPWO2022071192A1 (ja) 2020-10-02 2021-09-27
CN202180067511.3A CN116323493A (zh) 2020-10-02 2021-09-27 锂离子二次电池用正极活性物质的制造方法、锂离子二次电池用正极活性物质及锂离子二次电池
US18/030,038 US20240006591A1 (en) 2020-10-02 2021-09-27 Process for manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-167454 2020-10-02
JP2020167454 2020-10-02

Publications (1)

Publication Number Publication Date
WO2022071192A1 true WO2022071192A1 (ja) 2022-04-07

Family

ID=80951598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035283 WO2022071192A1 (ja) 2020-10-02 2021-09-27 リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20240006591A1 (ja)
EP (1) EP4223701A1 (ja)
JP (1) JPWO2022071192A1 (ja)
CN (1) CN116323493A (ja)
WO (1) WO2022071192A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502845A (ja) * 2020-10-12 2023-01-26 ビーティーアール ナノ テック カンパニー リミテッド 正極材料およびその調製方法、リチウムイオン二次電池
CN115832265A (zh) * 2022-12-21 2023-03-21 重庆太蓝新能源有限公司 多晶正极材料及其改性方法以及包含它的锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080417B (zh) * 2023-10-16 2024-01-26 宁波容百新能源科技股份有限公司 一种三元正极材料及其制备方法、锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048525A (ja) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP2007059142A (ja) * 2005-08-23 2007-03-08 Nissan Motor Co Ltd 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
JP2016110714A (ja) 2014-12-02 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法
US20170338471A1 (en) * 2016-05-17 2017-11-23 Battelle Memorial Institute High capacity and stable cathode materials
JP2018185929A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 複合粒子
JP2019175830A (ja) * 2017-05-29 2019-10-10 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体又はナトリウムイオン二次電池用正極活物質複合体、これらを用いた二次電池、並びにこれらの製造方法
JP2020074264A (ja) * 2016-07-20 2020-05-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
JP6734491B1 (ja) * 2020-01-17 2020-08-05 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池
JP2020136093A (ja) 2019-02-20 2020-08-31 セイコーインスツル株式会社 非水電解質二次電池用正極合剤と正極及びこれを用いた非水電解質二次電池と非水電解質二次電池用正極の製造方法
JP2020167454A (ja) 2019-03-28 2020-10-08 ブラザー工業株式会社 画像処理装置、画像処理方法および画像処理プログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048525A (ja) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP2007059142A (ja) * 2005-08-23 2007-03-08 Nissan Motor Co Ltd 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
JP2016110714A (ja) 2014-12-02 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池、およびリチウムイオン二次電池用正極活物質の製造方法
US20170338471A1 (en) * 2016-05-17 2017-11-23 Battelle Memorial Institute High capacity and stable cathode materials
JP2020074264A (ja) * 2016-07-20 2020-05-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含む正極を含んだリチウム二次電池
JP2018185929A (ja) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 複合粒子
JP2019175830A (ja) * 2017-05-29 2019-10-10 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質複合体又はナトリウムイオン二次電池用正極活物質複合体、これらを用いた二次電池、並びにこれらの製造方法
JP2020136093A (ja) 2019-02-20 2020-08-31 セイコーインスツル株式会社 非水電解質二次電池用正極合剤と正極及びこれを用いた非水電解質二次電池と非水電解質二次電池用正極の製造方法
JP2020167454A (ja) 2019-03-28 2020-10-08 ブラザー工業株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP6734491B1 (ja) * 2020-01-17 2020-08-05 住友化学株式会社 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502845A (ja) * 2020-10-12 2023-01-26 ビーティーアール ナノ テック カンパニー リミテッド 正極材料およびその調製方法、リチウムイオン二次電池
JP7381733B2 (ja) 2020-10-12 2023-11-15 ビーティーアール ナノ テック カンパニー リミテッド 正極材料およびその調製方法、リチウムイオン二次電池
CN115832265A (zh) * 2022-12-21 2023-03-21 重庆太蓝新能源有限公司 多晶正极材料及其改性方法以及包含它的锂离子电池
CN115832265B (zh) * 2022-12-21 2023-08-15 重庆太蓝新能源有限公司 多晶正极材料及其改性方法以及包含它的锂离子电池

Also Published As

Publication number Publication date
US20240006591A1 (en) 2024-01-04
EP4223701A1 (en) 2023-08-09
JPWO2022071192A1 (ja) 2022-04-07
CN116323493A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JP6510598B2 (ja) 充電式バッテリ用のリチウム遷移金属酸化物カソード物質の前駆体
CN111279528B (zh) 非水系电解质二次电池用正极活性物质及其制法、正极复合材糊料及非水系电解质二次电池
WO2022071192A1 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP7292574B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池
JP7371364B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP7271945B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池
JP2024083400A (ja) 正極活物質及びその製造方法
JP7389347B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
WO2021054381A1 (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
WO2019013053A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、及び、それを用いた非水電解質二次電池
JP2021147314A (ja) 遷移金属複合水酸化物粒子、遷移金属複合水酸化物粒子の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池
WO2020171093A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP7198777B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP7205114B2 (ja) 遷移金属複合水酸化物の製造方法、および、リチウムイオン二次電池用正極活物質の製造方法
JP7480527B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP7205198B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP7238783B2 (ja) 三酸化タングステン
CN111033831B (zh) 非水系电解质二次电池用正极活性物质及其制造方法和使用其的非水系电解质二次电池
JP7194493B2 (ja) 非水系電解質二次電池用正極活物質
WO2019163847A1 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
TWI822956B (zh) 鋰離子二次電池用正極活性物質之製造方法、鋰離子二次電池用正極活性物質、鋰離子二次電池
JP7521179B2 (ja) 正極活物質の製造方法
WO2020261962A1 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質
JP2020004587A (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553936

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18030038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875494

Country of ref document: EP

Effective date: 20230502