WO2022071078A1 - 工作機械 - Google Patents

工作機械 Download PDF

Info

Publication number
WO2022071078A1
WO2022071078A1 PCT/JP2021/034930 JP2021034930W WO2022071078A1 WO 2022071078 A1 WO2022071078 A1 WO 2022071078A1 JP 2021034930 W JP2021034930 W JP 2021034930W WO 2022071078 A1 WO2022071078 A1 WO 2022071078A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rotation speed
vibration
motor
machine tool
Prior art date
Application number
PCT/JP2021/034930
Other languages
English (en)
French (fr)
Inventor
村松稔文
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/029,258 priority Critical patent/US20230364729A1/en
Priority to CN202180066845.9A priority patent/CN116323096A/zh
Priority to DE112021003969.5T priority patent/DE112021003969T5/de
Priority to JP2022553875A priority patent/JPWO2022071078A1/ja
Publication of WO2022071078A1 publication Critical patent/WO2022071078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • B23Q11/0035Arrangements for preventing or isolating vibrations in parts of the machine by adding or adjusting a mass, e.g. counterweights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/10Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting speed or number of revolutions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance

Definitions

  • the present invention relates to a machine tool that processes an object to be machined using a tool.
  • the machine tool is equipped with a rotating body such as a shaft.
  • a field balancer as a device for observing the degree of balance when a rotating body is regarded as a rigid rotor or an elastic rotor. This degree of balance is called the balanced state.
  • Japanese Patent Application Laid-Open No. 03-251066 discloses that the balance state of rotation of an observation target driven by rotation is observed. By observing the balanced state of the rotating body, the operator can know how to correct the balanced state of the rotating body when the operation is hindered.
  • the accuracy of observing the balance state of the rotating body by the field balancer depends on the mounting method of mounting the field balancer on the machine tool or the mounting position when the field balancer is mounted on the machine tool. Therefore, it is not always easy for the operator to stably and accurately observe the balance state of the rotating body with the field balancer. Also, it is not always easy for the operator to carry out the balance correction work.
  • an object of the present invention is to provide a machine tool that can observe the balance state of the rotating body of the machine tool regardless of the field balancer and facilitate the adjustment work of the balance state.
  • the first aspect of the present invention is A machine tool that processes an object to be machined using a tool.
  • a vibration sensor provided on the machine tool to detect the amount of vibration generated while the rotating shaft is rotating, and a vibration sensor.
  • An acquisition unit that acquires the vibration amount detected by the vibration sensor when the rotation speed detected by the encoder is a predetermined rotation speed.
  • a display control unit that displays the specified rotation speed and the vibration amount acquired by the acquisition unit on the display unit in association with each other. To prepare for.
  • the second aspect of the present invention is A machine tool that processes an object to be machined using a tool.
  • a speed estimation unit that estimates the rotation speed of the rotation axis based on the signal obtained from the current sensor, and a speed estimation unit.
  • An acquisition unit that acquires the vibration amount detected by the vibration sensor when the rotation speed estimated by the speed estimation unit is a predetermined rotation speed.
  • a display control unit that displays the specified rotation speed and the vibration amount acquired by the acquisition unit on the display unit in association with each other. To prepare for.
  • a sensor provided in a machine tool is used to capture the amount of vibration generated during rotation at a specified rotation speed to observe the balanced state of the rotating body of the machine tool regardless of the field balancer. Can be done.
  • displaying the amount of vibration generated during rotation at the specified rotation speed in association with the specified rotation speed it is possible to assist the operator in adjusting the balance state of the rotating body of the machine tool. can.
  • a machine tool is provided that can observe the balance state of the rotating body of the machine tool regardless of the field balancer and facilitate the adjustment work of the balance state.
  • FIG. 1 is a schematic view showing a machine tool of the present embodiment.
  • FIG. 2 is a schematic block diagram showing a control device.
  • FIG. 3 is a graph illustrating the signal output from the encoder.
  • FIG. 4 is a graph illustrating a signal output from the vibration sensor.
  • FIG. 5 is a graph showing the correspondence between the specified rotation speed and the vibration amount at the specified rotation speed.
  • FIG. 6 is a schematic view showing the machine tool of the modified example 1.
  • FIG. 7 is a schematic view showing the machine tool of the modified example 2.
  • FIG. 1 is a schematic view showing a machine tool 10 of the present embodiment.
  • the machine tool 10 processes an object to be machined using a tool.
  • the machine tool 10 may be a precision machine tool capable of controlling a motor with nano-order command resolution.
  • the machine tool 10 may be an ultra-precision machine tool capable of controlling a motor with a command resolution of 1/10 nano-order.
  • Examples of the machine tool 10 include a lathe machine that processes a fixed tool by bringing a rotating object into contact with the machine tool 10. Further, as the machine tool 10, a machining center or the like in which a rotating tool is brought into contact with a fixed object to be machined to be machined can be mentioned.
  • the machine tool 10 is provided with a processing machine main body 12 and a control device 14 for controlling the processing machine main body 12.
  • the processing machine main body 12 includes a machine unit.
  • the processing machine main body 12 further includes devices such as motors and sensors mounted on the machine unit.
  • the processing machine main body 12 is provided with a motor 16, an encoder 18, and a vibration sensor 20.
  • the motor 16 has a rotating shaft 16S.
  • the motor 16 further includes a rotor (not shown) and a stator (not shown).
  • the rotor rotates when the drive current output from the control device 14 flows through the coil of the stator.
  • the rotating shaft 16S of the motor 16 rotates integrally with the rotating rotor.
  • a rotating body that rotates based on the power of the motor 16 is attached to one end of the rotating shaft 16S of the motor 16.
  • the rotating body is not particularly limited as long as it is a machine part included in the processing machine main body 12. Examples of the rotating body include a spindle 22, a tool, and the like. In the present embodiment, the rotating body is the main shaft 22.
  • the spindle 22 is inserted through the through hole 24H of the housing 24.
  • the rotating shaft 16S of the motor 16 is attached to the first end portion, which is one of both ends of the main shaft 22, via the joint 26.
  • the rotating body may include a component attached to the second end portion which is the other end of both ends of the main shaft 22.
  • the rotating body includes a face plate attached to the second end.
  • the face plate is a part for fixing an object to be machined.
  • the rotating body includes a tool attached to the second end.
  • a tool is a part that processes an object to be machined.
  • the encoder 18 detects the rotation speed of the rotation shaft 16S of the motor 16.
  • the encoder 18 is provided on the motor 16.
  • the signal output from the encoder 18 is input to the control device 14.
  • the vibration sensor 20 detects the amount of vibration (vibration amount) generated when the rotating shaft 16S of the motor 16 is rotating.
  • the amount of vibration includes acceleration, velocity, displacement, angular acceleration, angular velocity, or angle.
  • the vibration sensor 20 is provided on the processing machine main body 12.
  • the installation location of the vibration sensor 20 is not particularly limited as long as the amount of vibration (vibration amount) generated when the rotating shaft 16S of the motor 16 is rotating can be detected.
  • the vibration sensor 20 is provided in the housing 24 of the spindle 22 in the processing machine main body 12.
  • the vibration sensor 20 may be provided on the spindle 22.
  • FIG. 2 is a schematic block diagram showing the control device 14.
  • the control device 14 includes an input unit 30, a display unit 32, a storage unit 34, a motor drive unit 36, and a processor 38.
  • the input unit 30 inputs information. Specific examples of the input unit 30 include a mouse, a keyboard, and the like. The input unit 30 may be configured by a touch panel or the like arranged on the display screen of the display unit 32.
  • the display unit 32 displays information. A liquid crystal display can be mentioned as a specific example of the display unit 32.
  • the display unit 32 displays a screen or the like based on the information given from the processor 38.
  • the storage unit 34 stores information.
  • the storage unit 34 may include a volatile memory (not shown) and a non-volatile memory (not shown). Examples of the volatile memory include RAM and the like. Examples of the non-volatile memory include ROM, flash memory and the like. At least a part of the storage unit 34 may be provided in the processor 38 or the like. Further, the storage unit 34 may be further provided with a hard disk or the like.
  • the motor drive unit 36 drives the motor 16.
  • a servo amplifier can be mentioned as a specific example of the motor drive unit 36.
  • the motor drive unit 36 outputs a drive current to the motor 16 so as to rotate at a rotation speed corresponding to a command value supplied from the processor 38.
  • the processor 38 processes the information. Specific examples of the processor 38 include a CPU and a GPU.
  • the processor 38 has a machining mode for machining an object to be machined and a support mode for supporting the adjustment work of the balance state.
  • the balanced state means the next first state or second state.
  • the first state is the degree of static imbalance and even disproportion.
  • the second state is the degree of imbalance due to the deformation mode.
  • the balanced state means the first state
  • the rotor that rotates integrally with the rotating shaft 16S of the motor 16 is regarded as a rigid rotor.
  • the balanced state means the first state
  • the rotary shaft 16S of the motor 16 and the rotor that rotates integrally with the rotary shaft 16S of the motor 16 may be regarded as a rigid rotor.
  • the balanced state means the second state
  • the rotor that rotates integrally with the rotating shaft 16S of the motor 16 is regarded as an elastic rotor.
  • the rotary shaft 16S of the motor 16 and the rotor that rotates integrally with the rotary shaft 16S of the motor 16 may be regarded as an elastic rotor.
  • the adjustment work means the work of adjusting so that the degree of the first state or the second state is reduced.
  • the support mode is implemented before and after the balance state adjustment work.
  • the number of operations for adjusting the balance state is not limited to one. When the number of operations for adjusting the balance state is a plurality of times, the support mode is implemented before the adjustment work and after each adjustment work.
  • the processor 38 Upon receiving the support mode execution command from the input unit 30, the processor 38 receives the command unit 40, the acquisition unit 42, the storage control unit 44, the display control unit 46, and the arithmetic unit 48 based on the program for executing the support mode. Functions as. The program for executing the support mode is stored in the storage unit 34.
  • the command unit 40 outputs the specified rotation speed as a command value to the motor drive unit 36.
  • the motor drive unit 36 drives the motor 16 so as to rotate at a predetermined rotation speed. That is, the command unit 40 outputs the specified rotation speed as a command value to the motor drive unit 36 to generate vibration necessary for observing the balanced state of the rotating body (spindle 22 in this embodiment) of the machine tool 10. , Can be generated on the rotating shaft 16S of the motor 16.
  • the specified number specified as the specified rotation speed may be one or a plurality.
  • the command unit 40 sequentially outputs each of the plurality of specified rotation speeds to the motor drive unit 36 as a command value at time intervals.
  • the command unit 40 may output each of the plurality of specified rotation speeds as a command value to the motor drive unit 36 so that the rotation speed of the rotation shaft 16S increases sequentially.
  • the command unit 40 may output each of the plurality of specified rotation speeds as a command value to the motor drive unit 36 so that the rotation speed of the rotation shaft 16S is sequentially reduced.
  • the acquisition unit 42 determines whether or not the rotation speed detected by the encoder 18 is the specified rotation speed output as a command value by the command unit 40 to the motor drive unit 36 based on the signal output from the encoder 18. Is determined.
  • FIG. 3 is a graph illustrating the signal output from the encoder 18.
  • FIG. 3 shows an example in which a pulse signal of one pulse is output from the encoder 18 when the rotation shaft 16S of the motor 16 makes one rotation. Further, an example in which the specified rotation speeds are specified as 600 rpm and 1200 rpm is shown in FIG. In this case, in the section SC1 in which one pulse is output every 0.1 seconds, the acquisition unit 42 determines that the rotation speed detected by the encoder 18 is the specified rotation speed (600 rpm). Further, in the section SC2 in which one pulse is output every 0.05 seconds, the acquisition unit 42 determines that the rotation speed detected by the encoder 18 is the specified rotation speed (1200 rpm). Although FIG. 3 illustrates a case where the rotation speed of the rotation shaft 16S is sequentially increased, the rotation speed may be sequentially decreased.
  • the acquisition unit 42 acquires the vibration amount when it is determined that the rotation speed is the specified rotation speed based on the signal output from the vibration sensor 20.
  • FIG. 4 is a graph illustrating the signal output from the vibration sensor 20.
  • the acquisition unit 42 calculates the root mean square of the vibration amount (acceleration) detected in the section SC1 by the vibration sensor 20, and acquires the calculated root mean square as the vibration amount of the section SC1. Further, the acquisition unit 42 calculates the root mean square of the vibration amount (acceleration) detected in the section SC2 by the vibration sensor 20, and acquires the calculated root mean square as the vibration amount of the section SC2.
  • the acquisition unit 42 may acquire statistical values other than the root mean square as the vibration amount of the section SC1 or the section SC2.
  • the statistical value include the standard deviation of the vibration amount (acceleration) detected in the section SC1 or the section SC2 by the vibration sensor 20.
  • the statistical value the average of the absolute values of the vibration amounts (acceleration) detected in the section SC1 or the section SC2 by the vibration sensor 20 can be mentioned. Even if the acquisition unit 42 acquires a predetermined value such as the maximum value among the absolute values of the vibration amount (acceleration) detected in the section SC1 or the section SC2 by the vibration sensor 20 as the vibration amount of the section SC1 or the section SC2. good.
  • the acquisition unit 42 extracts a component synchronized with the rotation speed from the vibration amount (acceleration) detected in the section SC1 or the section SC2 by the vibration sensor 20, and sets the amplitude or its phase to the vibration of the section SC1 or the section SC2. It may be obtained as a quantity.
  • the acquisition unit 42 acquires the vibration amount when the rotation speed detected by the encoder 18 is the specified rotation speed output as a command value by the command unit 40 to the motor drive unit 36.
  • the storage control unit 44 stores the specified rotation speed and the vibration amount acquired by the acquisition unit 42 in the storage unit 34 in association with the acquisition date as a history.
  • the vibration amount acquired by the acquisition unit 42 is the vibration amount acquired by the acquisition unit 42 while the rotating shaft 16S is rotating at the specified rotation speed.
  • FIG. 5 is a graph showing the correspondence between the specified rotation speed and the vibration amount at the specified rotation speed.
  • An example of a case where an acceleration sensor is adopted as the vibration sensor 20 is shown in FIG.
  • an example in which the specified rotation speeds are specified as 600 rpm and 1200 rpm is shown in FIG.
  • an example in which the vibration amount when the specified rotation speed is 600 rpm is 0.58 m / s 2 and the vibration amount when the specified rotation speed is 1200 rpm is 1.18 m / s 2 is shown in FIG. It is shown in.
  • the storage control unit 44 stores, for example, in the relational table of the storage unit 34, the specified rotation speed of 600 rpm and the vibration amount of 0.58 m / s 2 in association with the date. Further, the storage control unit 44 stores the specified rotation speed of 1200 rpm and the vibration amount of 1.18 m / s 2 in the relational table of the storage unit 34 in association with the date.
  • the display control unit 46 refers to the storage unit 34, and causes the display unit 32 to display the specified rotation speed associated with the date and the vibration amount.
  • the vibration amount is the vibration amount acquired by the acquisition unit 42 while the rotation shaft 16S is rotating at the specified rotation speed.
  • the display format in which the display control unit 46 displays the specified rotation speed and vibration amount on the display unit 32 is not particularly limited.
  • the display control unit 46 may display the numerical value of the specified rotation speed and the numerical value of the vibration amount on the display unit 32.
  • the display control unit 46 may display a graph having one of the specified rotational speed and the vibration amount as the vertical axis and the other as the horizontal axis on the display unit 32.
  • the display control unit 46 displays the plot on the graph based on the vibration amount acquired by the acquisition unit 42 while the rotation shaft 16S is rotating at the specified rotation speed.
  • the display time at which the display control unit 46 displays the specified rotation speed and vibration amount on the display unit 32 is not particularly limited.
  • the display control unit 46 may display the specified rotation speed and the vibration amount on the display unit 32 at the time when the display request is received from the input unit 30.
  • the display control unit 46 may display the specified rotation speed and the vibration amount on the display unit 32 at the time when the acquisition unit 42 acquires the vibration amount.
  • the storage unit 34 has the vibration amount acquired by the acquisition unit 42 when the support mode is implemented for each date of the support mode implemented in the past. It is stored in association with the specified rotation speed.
  • the display control unit 46 may display the vibration amount acquired by the acquisition unit 42 this time on the display unit 32 in a state where the vibration amount acquired by the acquisition unit 42 in the past can be compared.
  • the calculation unit 48 corrects the angle and the correction amount based on the difference between the vibration amount stored in the storage unit 34 before the balance state adjustment work and the vibration amount stored in the storage unit 34 after the balance state adjustment work. Compute at least one of them.
  • the correction angle means a rotation angle at which adjustment work should be performed on a rotating body such as a rotor.
  • the correction amount means the cutting amount.
  • the correction amount means the weight amount of the balance weight.
  • the specific calculation method of the correction angle and the correction amount is not particularly limited.
  • the calculation unit 48 can calculate the correction angle and the correction amount by using the calculation method disclosed in Japanese Patent No. 5808585, JP-A-6-273254, or JP-A-2002-7375.
  • the machine tool 10 of the present embodiment uses the sensors (encoder 18 and vibration sensor 20) provided in the processing machine main body 12 to generate vibration when the rotating shaft 16S is rotating at a specified rotation speed. Get the quantity. Thereby, the balance state of the rotating body (spindle 22) attached to the rotating shaft 16S in the processing machine main body 12 can be observed without depending on the field balancer.
  • the machine tool 10 of the present embodiment displays the specified rotation speed and the vibration amount generated when the rotation shaft 16S is rotating at the specified rotation speed in association with each other on the display unit 32. This makes it possible to assist the operator in the work of adjusting the balance state of the rotating body (spindle 22) attached to the rotating shaft 16S.
  • the machine tool 10 of the present embodiment calculates at least one of the correction angle and the correction amount of the balance state with respect to the rotating shaft 16S, and displays the calculation result on the display unit 32. Thereby, the operator can carry out the next adjustment work while observing at least one of the difference, the correction angle and the correction amount before and after the adjustment work of the balance state. Therefore, the work of adjusting the balance state can be further facilitated.
  • FIG. 6 is a schematic view showing the machine tool 10 of the modified example 1.
  • the same reference numerals are given to the configurations equivalent to the configurations described in the embodiments.
  • the description overlapping with the embodiment is omitted.
  • the current sensor 50 is provided in place of the encoder 18, and the speed estimation unit 52 is newly provided in the control device 14.
  • the current sensor 50 detects the drive current output to the motor 16.
  • the current sensor 50 may be provided in the motor 16 (see FIG. 6) or in the motor drive unit 36 (see FIG. 2) that drives the motor 16.
  • the speed estimation unit 52 estimates the rotation speed of the rotation shaft 16S based on the signal obtained from the current sensor 50.
  • the specific calculation method for estimating the rotation speed is not particularly limited.
  • the speed estimation unit 52 can estimate the rotation speed by using the calculation method disclosed in Japanese Patent Application Laid-Open No. 2020-005406. Therefore, even if the motor 16 is not provided with the encoder 18, the rotation speed of the rotation shaft 16S can be captured.
  • the rotation speed estimated by the speed estimation unit 52 based on the signal output from the vibration sensor 20 is commanded to the motor drive unit 36. It is determined whether or not 40 is the specified rotation speed output as a command value.
  • the rotary shaft 16S rotates at a predetermined rotation speed by using the sensors (current sensor 50 and vibration sensor 20) provided in the processing machine main body 12 as in the embodiment. Get the amount of vibration generated when you are. Thereby, as in the embodiment, the balance state of the rotating body (spindle 22) attached to the rotating shaft 16S in the processing machine main body 12 can be observed without using the field balancer.
  • FIG. 7 is a schematic view showing the machine tool 10 of the modification 2.
  • the same reference numerals are given to the configurations equivalent to the configurations described in the embodiments. In this modification, the description overlapping with the embodiment is omitted.
  • a computer device 54 capable of exchanging various information is connected to the control device 14. If the device is physically separated from the control device 14, a device other than the computer device 54 may be adopted. Further, in FIG. 7, the case where the computer device 54 is connected to the control device 14 of the embodiment is exemplified, but the computer device 54 may be connected to the control device 14 of the modification 1. ..
  • the command unit 40 (FIG. 2), the acquisition unit 42 (FIG. 2), the storage control unit 44 (FIG. 2), and the display control unit 46 provided in the processor 38 (FIG. 2) of the control device 14 (FIG. 2) and the arithmetic unit 48 (FIG. 2) are omitted.
  • the processor 56 of the computer device 54 is provided with a command unit 40, an acquisition unit 42, a storage control unit 44, a display control unit 46, and a calculation unit 48.
  • the processor 56 can function as a command unit 40, an acquisition unit 42, a storage control unit 44, a display control unit 46, and a calculation unit 48.
  • the balance state of the rotating body of the machine tool 10 can be observed without changing the existing control device 14 without changing the field balancer, and the balance state adjustment work can be performed. Can be facilitated.
  • the first invention is a machine tool (10) for machining an object to be machined by using a tool, which comprises a motor (16) having a rotating shaft (16S), a motor driving unit (36) for driving the motor, and a motor driving unit (36).
  • An encoder (18) provided in the motor to detect the rotation speed of the rotating shaft
  • a vibration sensor (20) provided in the machine tool to detect the amount of vibration generated while the rotating shaft is rotating
  • an encoder detect the rotation speed.
  • the acquisition unit (42) that acquires the vibration amount detected by the vibration sensor when the rotation speed is a predetermined specified rotation speed, and the specified rotation speed and the vibration amount acquired by the acquisition unit are displayed in association with each other.
  • a display control unit (46) to be displayed on the unit (32) is provided.
  • the second invention is a machine tool for machining an object to be machined by using a tool, which is provided in a motor having a rotating shaft, a motor drive unit for driving the motor, and the motor or the motor drive unit, and outputs to the motor.
  • a current sensor (50) that detects the drive current to be driven, a vibration sensor that is provided in the machine tool and detects the amount of vibration generated during rotation of the rotating shaft, and a signal of the rotating shaft based on a signal obtained from the current sensor.
  • a speed estimation unit (52) that estimates the rotation speed, and an acquisition unit that acquires the vibration amount detected by the vibration sensor when the rotation speed estimated by the speed estimation unit is a predetermined specified rotation speed. It is provided with a display control unit that displays the rotation speed and the vibration amount acquired by the acquisition unit in association with each other on the display unit.
  • the amount of vibration generated during rotation at a specified rotation speed is captured by using a sensor provided in the machine tool, so that the rotating body of the machine tool is used regardless of the field balancer.
  • the balance state can be observed.
  • by displaying the vibration amount generated during rotation at the specified rotation speed and the specified rotation speed in association with each other it is possible to assist the operator in the work of adjusting the balance state of the rotating body of the machine tool.
  • the balance state of the rotating body of the machine tool can be observed regardless of the field balancer, and the balance state adjustment work can be facilitated.
  • the storage control unit (44) that stores the specified rotation speed and the vibration amount acquired by the acquisition unit in the storage unit (34) in association with each other, and the rotation axis. Based on the difference between the vibration amount stored in the storage unit before the balance state adjustment work and the vibration amount stored in the storage unit after the balance state adjustment work, the correction angle and correction amount of the balance state with respect to the rotation axis.
  • a calculation unit (48) for calculating at least one of them may be further provided, and the display control unit may display at least one of the difference, the correction angle, and the correction amount on the display unit.
  • the motor drive unit is provided in the control device (14) that controls the processing machine main body (12), and the acquisition unit and the display control unit are separated from the control device. It may be provided in the device to be used. As a result, the balance state of the rotating body of the machine tool can be observed without changing the existing control device without changing the field balancer, and the balance state adjustment work can be facilitated. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

工作機械(10)は、モータ(16)と、モータ駆動部(36)と、モータ(16)の回転軸(16S)の回転速度を検出するエンコーダ(18)と、振動量を検出する振動センサ(20)と、規定回転速度であるときに振動センサ(20)で検出される振動量を取得する取得部(42)と、規定回転速度と振動量とを対応付けて表示部(32)に表示させる表示制御部(46)と、を備える。

Description

工作機械
 本発明は、工具を用いて加工対象物を加工する工作機械に関する。
 工作機械には、シャフト等の回転体が備えられる。回転体を剛性ロータまたは弾性ロータと見做した場合の釣合いの程度を観測する装置としてフィールドバランサがある。この釣合いの程度は、バランス状態と称される。特開平03-251066号公報には、回転駆動する観測対象の回転のバランス状態を観測することが開示されている。回転体のバランス状態が観測されることにより、オペレータは、回転体のバランス状態が運転に支障のある場合に、どのように修正すればよいかを知ることができる。
 しかしながら、フィールドバランサによる回転体のバランス状態の観測精度は、工作機械にフィールドバランサを取り付ける取り付け方、あるいは、工作機械にフィールドバランサを取り付けたときの取り付け位置に依存する。したがって、フィールドバランサによって回転体のバランス状態を安定的に精度よく観測することは、オペレータにとって必ずしも容易ではない。また、バランス修正作業を遂行することも、オペレータにとって必ずしも容易ではない。
 そこで、本発明は、フィールドバランサによらず工作機械の回転体のバランス状態を観測することができ、且つ、バランス状態の調整作業を容易にする工作機械を提供することを目的とする。
 本発明の第1の態様は、
 工具を用いて加工対象物を加工する工作機械であって、
 回転軸を有するモータと、
 前記モータを駆動するモータ駆動部と、
 前記モータに設けられ、前記回転軸の回転速度を検出するエンコーダと、
 前記工作機械に設けられ、前記回転軸が回転中に発生する振動量を検出する振動センサと、
 前記エンコーダで検出される前記回転速度が予め規定された規定回転速度であるときに前記振動センサで検出される前記振動量を取得する取得部と、
 前記規定回転速度と、前記取得部が取得した前記振動量とを対応付けて表示部に表示させる表示制御部と、
 を備える。
 本発明の第2の態様は、
 工具を用いて加工対象物を加工する工作機械であって、
 回転軸を有するモータと、
 前記モータを駆動するモータ駆動部と、
 前記モータまたは前記モータ駆動部に設けられ、前記モータに出力される駆動電流を検出する電流センサと、
 前記工作機械に設けられ、前記回転軸が回転中に発生する振動量を検出する振動センサと、
 前記電流センサから得られる信号に基づいて、前記回転軸の回転速度を推定する速度推定部と、
 前記速度推定部で推定される前記回転速度が予め規定された規定回転速度であるときに前記振動センサで検出される前記振動量を取得する取得部と、
 前記規定回転速度と、前記取得部が取得した前記振動量とを対応付けて表示部に表示させる表示制御部と、
 を備える。
 本発明によれば、工作機械に設けられるセンサを用いて、規定回転速度での回転中に発生する振動量を捉えることで、フィールドバランサによらず工作機械の回転体のバランス状態を観測することができる。また、規定回転速度での回転中に発生する振動量と、当該規定回転速度とが対応付けられて表示されることで、工作機械の回転体のバランス状態の調整作業においてオペレータを支援することができる。こうして、フィールドバランサによらず工作機械の回転体のバランス状態を観測することができ、且つ、バランス状態の調整作業を容易にする工作機械が提供される。
図1は、本実施形態の工作機械を示す概略図である。 図2は、制御装置を示す概略ブロック図である。 図3は、エンコーダから出力される信号を例示するグラフである。 図4は、振動センサから出力される信号を例示するグラフである。 図5は、規定回転速度と、規定回転速度であるときの振動量との対応関係を示すグラフである。 図6は、変形例1の工作機械を示す概略図である。 図7は、変形例2の工作機械を示す概略図である。
[実施形態]
 図1は、本実施形態の工作機械10を示す概略図である。工作機械10は、工具を用いて加工対象物を加工する。工作機械10は、ナノオーダーの指令分解能でモータを制御し得る精密工作機械であってもよい。また、工作機械10は、10分の1ナノオーダーの指令分解能でモータを制御し得る超精密工作機械であってもよい。なお、工作機械10として、例えば、固定された工具に対して回転状態の加工対象物を接触させて加工する旋盤機等が挙げられる。また、工作機械10として、固定された加工対象物に対して回転状態の工具を接触させて加工するマシニングセンタ等が挙げられる。工作機械10には、加工機本体12と、加工機本体12を制御する制御装置14とが備えられる。
 加工機本体12は、機械ユニットを含む。加工機本体12は、機械ユニットに装着されるモータ、センサ等のデバイスをさらに含む。加工機本体12には、モータ16、エンコーダ18および振動センサ20が備えられる。
 モータ16は、回転軸16Sを有する。モータ16は、不図示のロータおよび不図示のステータをさらに有する。ステータのコイルに、制御装置14から出力される駆動電流が流れることで、ロータが回転する。ロータが回転すると、回転するロータと一体にモータ16の回転軸16Sが回転する。
 モータ16の回転軸16Sの一端には、モータ16の動力を基に回転する回転体が取り付けられる。回転体は、加工機本体12に含まれる機械部品である限り、特に限定されない。回転体として、主軸22、工具等が挙げられる。本実施形態では、回転体は主軸22とする。
 主軸22は、ハウジング24の貫通孔24Hに挿通される。主軸22の両端部の一方である第1端部には、継手26を介してモータ16の回転軸16Sが取り付けられる。なお、回転体は、主軸22の両端部の他方である第2端部に取り付けられる部品を含んでいてもよい。例えば、工作機械10が旋盤機である場合、回転体は、第2端部に取り付けられる面板を含む。面板は、加工対象物を固定するための部品である。別例として、工作機械10がマシニングセンタである場合、回転体は、第2端部に取り付けられる工具を含む。工具は、加工対象物を加工する部品である。
 エンコーダ18は、モータ16の回転軸16Sの回転速度を検出する。エンコーダ18は、モータ16に設けられる。エンコーダ18から出力される信号は、制御装置14に入力される。
 振動センサ20は、モータ16の回転軸16Sが回転している際に発生する振動の量(振動量)を検出する。振動量として、加速度、速度、変位、角加速度、角速度、または、角度が挙げられる。振動センサ20として、加速度、速度、変位、角加速度、角速度、または、角度を検出可能な既知のセンサが採用される。
 振動センサ20は、加工機本体12に設けられる。振動センサ20の設置場所は、モータ16の回転軸16Sが回転している際に発生する振動の量(振動量)を検出可能である限り、特に限定されない。図1の例では、振動センサ20は、加工機本体12における主軸22のハウジング24に設けられている。なお、振動センサ20は、主軸22に設けられていてもよい。
 図2は、制御装置14を示す概略ブロック図である。制御装置14には、入力部30、表示部32、記憶部34、モータ駆動部36およびプロセッサ38が備えられる。
 入力部30は、情報を入力する。入力部30の具体例として、マウス、キーボード等が挙げられる。表示部32の表示画面上に配置されるタッチパネル等によって、入力部30が構成されてもよい。表示部32は、情報を表示する。表示部32の具体例として、液晶ディスプレイが挙げられる。表示部32は、プロセッサ38から与えられる情報に基づいて画面等を表示する。記憶部34は、情報を記憶する。記憶部34には、不図示の揮発性メモリと、不図示の不揮発性メモリとが備えられ得る。揮発性メモリとしては、例えばRAM等が挙げられる。不揮発性メモリとしては、例えばROM、フラッシュメモリ等が挙げられる。記憶部34の少なくとも一部が、プロセッサ38等に備えられていてもよい。また、記憶部34には、ハードディスク等がさらに備えられ得る。
 モータ駆動部36は、モータ16を駆動する。モータ駆動部36の具体例として、サーボアンプが挙げられる。モータ駆動部36は、プロセッサ38から供給される指令値に応じた回転数で回転するように、モータ16に対して駆動電流を出力する。
 プロセッサ38は、情報を処理する。プロセッサ38の具体例として、CPU、GPUが挙げられる。プロセッサ38は、加工対象物を加工する加工モードと、バランス状態の調整作業を支援する支援モードとを有する。
 なお、バランス状態は、次の第1状態または第2状態を意味する。第1状態は、静不釣合いおよび偶不釣合いの程度である。第2状態は、変形モードによる不釣合いの程度である。バランス状態が第1状態を意味する場合、モータ16の回転軸16Sと一体に回転するロータを剛性ロータと見做す。バランス状態が第1状態を意味する場合、モータ16の回転軸16Sと、モータ16の回転軸16Sと一体に回転するロータとを剛性ロータと見做してもよい。バランス状態が第2状態を意味する場合、モータ16の回転軸16Sと一体に回転するロータを弾性ロータと見做す。バランス状態が第2状態を意味する場合、モータ16の回転軸16Sと、モータ16の回転軸16Sと一体に回転するロータとを弾性ロータと見做してもよい。調整作業は、第1状態または第2状態の程度が低減するように調整する作業を意味する。調整作業の具体的な例として、ロータ等を削る作業が挙げられる。また、調整作業の具体的な例として、ロータ等にバランスウェイトを付与する作業等が挙げられる。
 支援モードは、バランス状態の調整作業の前後に実施される。なお、バランス状態の調整作業の作業回数は1回に限られない。バランス状態の調整作業の作業回数が複数回となる場合、当該調整作業前、および、各々の調整作業後に支援モードが実施される。
 入力部30から支援モードの実施命令を受けると、プロセッサ38は、支援モードを実行するためのプログラムに基づいて、指令部40、取得部42、記憶制御部44、表示制御部46および演算部48として機能する。なお、支援モードを実行するためのプログラムは記憶部34に記憶される。
 指令部40は、規定回転速度を指令値としてモータ駆動部36に出力する。モータ駆動部36は、指令値を受けると、規定回転速度で回転するようにモータ16を駆動する。つまり、指令部40は、規定回転速度を指令値としてモータ駆動部36に出力することで、工作機械10の回転体(本実施形態では主軸22)のバランス状態を観測するために必要な振動を、モータ16の回転軸16Sに生じさせることができる。
 なお、規定回転速度として規定する規定数は1つであってもよく、複数であってもよい。規定数が複数である場合、指令部40は、複数の規定回転速度の各々を、時間間隔をあけて、指令値として順次モータ駆動部36に出力する。この場合、指令部40は、回転軸16Sの回転速度が順次増加するように、複数の規定回転速度の各々を指令値としてモータ駆動部36に出力してもよい。あるいは、指令部40は、回転軸16Sの回転速度が順次減少するように、複数の規定回転速度の各々を指令値としてモータ駆動部36に出力してもよい。
 取得部42は、エンコーダ18から出力される信号に基づいて、エンコーダ18で検出される回転速度が、モータ駆動部36に対して指令部40が指令値として出力した規定回転速度であるか否かを判定する。
 図3は、エンコーダ18から出力される信号を例示するグラフである。モータ16の回転軸16Sが1回転すると、エンコーダ18から1パルスのパルス信号が出力される場合の例が、図3に示されている。また、規定回転速度が600rpmおよび1200rpmと規定されている場合の例が、図3に示されている。この場合、0.1秒ごとに1パルスが出力される区間SC1のときに、取得部42は、エンコーダ18で検出される回転速度が規定回転速度(600rpm)であると判定する。また、0.05秒ごとに1パルスが出力される区間SC2のときに、取得部42は、エンコーダ18で検出される回転速度が規定回転速度(1200rpm)であると判定する。なお、図3は回転軸16Sの回転速度を順次増加させる場合を例示しているが、回転速度を順次減少させてもよい。
 取得部42は、振動センサ20から出力される信号に基づいて、回転速度が規定回転速度であると判定しているときの振動量を取得する。
 図4は、振動センサ20から出力される信号を例示するグラフである。振動センサ20として加速度センサが採用されている場合の例が、図4に示されている。この場合、取得部42は、振動センサ20により区間SC1において検出された振動量(加速度)の二乗平均平方根を算出し、算出した二乗平均平方根を、区間SC1の振動量として取得する。また、取得部42は、振動センサ20により区間SC2において検出された振動量(加速度)の二乗平均平方根を算出し、算出した二乗平均平方根を、区間SC2の振動量として取得する。
 なお、取得部42は、二乗平均平方根以外の統計値を、区間SC1または区間SC2の振動量として取得してもよい。統計値として、振動センサ20により区間SC1または区間SC2において検出された振動量(加速度)の標準偏差等が挙げられる。また、統計値として、振動センサ20により区間SC1または区間SC2において検出された振動量(加速度)の絶対値の平均等が挙げられる。取得部42は、振動センサ20により区間SC1または区間SC2において検出される振動量(加速度)の絶対値のうちの最大値等の所定値を、区間SC1または区間SC2の振動量として取得してもよい。また、取得部42は、振動センサ20により区間SC1または区間SC2において検出される振動量(加速度)から回転速度に同期した成分を抽出し、その振幅またはその位相を、区間SC1、区間SC2の振動量として取得してもよい。
 このように、取得部42は、エンコーダ18で検出される回転速度が、モータ駆動部36に対して指令部40が指令値として出力した規定回転速度であるときの振動量を取得する。
 記憶制御部44は、規定回転速度と、取得部42が取得した振動量とを、履歴として、当該振動量を取得した日付に対応付けて記憶部34に記憶させる。なお、取得部42が取得した振動量は、規定回転速度で回転軸16Sが回転中に取得部42が取得した振動量である。
 図5は、規定回転速度と、規定回転速度であるときの振動量との対応関係を示すグラフである。振動センサ20として加速度センサが採用されている場合の例が、図5に示されている。また、規定回転速度が600rpmおよび1200rpmとして規定されている場合の例が、図5に示されている。また、規定回転速度が600rpmであるときの振動量が0.58m/sであり、規定回転速度が1200rpmであるときの振動量が1.18m/sである場合の例が、図5に示されている。この場合、記憶制御部44は、例えば記憶部34のリレーショナルテーブルに、規定回転速度600rpmと振動量0.58m/sとを日付に対応付けて記憶させる。また、記憶制御部44は、記憶部34のリレーショナルテーブルに、規定回転速度1200rpmと振動量1.18m/sとを日付に対応付けて記憶させる。
 表示制御部46は、記憶部34を参照し、日付に対応付けられた規定回転速度と、振動量とを表示部32に表示させる。振動量は、規定回転速度で回転軸16Sが回転中に取得部42が取得した振動量である。
 なお、表示制御部46が規定回転速度および振動量を表示部32に表示させる表示形式は特に限定されない。例えば、表示制御部46は、規定回転速度の数値と、振動量の数値とを表示部32に表示させてもよい。あるいは、図5に例示したように、表示制御部46は、規定回転速度および振動量の一方を縦軸とし他方を横軸とするグラフを表示部32に表示させてもよい。表示制御部46は、グラフを表示させる場合、規定回転速度で回転軸16Sが回転中に取得部42が取得した振動量に基づいて、プロットをグラフに表示させる。
 また、表示制御部46が規定回転速度および振動量を表示部32に表示させる表示時期は特に限定されない。例えば、表示制御部46は、入力部30から表示要求を受けた時点を契機として、規定回転速度および振動量を表示部32に表示させてもよい。あるいは、表示制御部46は、取得部42が振動量を取得した時点を契機として、規定回転速度および振動量を表示部32に表示させてもよい。
 なお、過去に支援モードが実施されている場合、記憶部34には、過去に実施された支援モードの日付ごとに、当該支援モードが実施されたときに取得部42が取得した振動量が、規定回転速度と対応付けられて記憶される。この場合、表示制御部46は、今回取得部42が取得した振動量と、過去に取得部42が取得した振動量とを比較可能な状態で、表示部32に表示させてもよい。
 演算部48は、バランス状態の調整作業前に記憶部34に記憶された振動量と、バランス状態の調整作業後に記憶部34に記憶された振動量との差に基づいて、修正角度および修正量の少なくとも一方を演算する。なお、修正角度は、ロータ等の回転体に対して調整作業を行うべき回転角度を意味する。調整作業がロータ等を切削する作業である場合、修正量は切削量を意味する。また、調整作業がロータ等に対してバランスウェイトを付与する作業である場合、修正量はバランスウェイトのウェイト量を意味する。
 修正角度および修正量の具体的な演算方法は、特に限定されない。例えば、演算部48は、特許第5808585号公報、特開平6-273254号公報、あるいは、特開2002-7375号公報に開示された演算方法を用いて、修正角度および修正量を演算し得る。
 以上のように本実施形態の工作機械10は、加工機本体12に設けられるセンサ(エンコーダ18および振動センサ20)を用いて、規定回転速度で回転軸16Sが回転しているときに発生する振動量を取得する。これにより、フィールドバランサによらずに、加工機本体12における回転軸16Sに取り付けられた回転体(主軸22)のバランス状態を観測することができる。
 これに加えて、本実施形態の工作機械10は、規定回転速度と、当該規定回転速度で回転軸16Sが回転しているときに発生する振動量とを対応付けて表示部32に表示する。これにより、回転軸16Sに取り付けられた回転体(主軸22)のバランス状態の調整作業においてオペレータを支援することができる。
 また、本実施形態の工作機械10は、回転軸16Sに対するバランス状態の修正角度および修正量の少なくとも一方を演算し、演算結果を表示部32に表示させる。これにより、オペレータは、バランス状態の調整作業前後の差、修正角度および修正量の少なくとも1つを見ながら、次回の調整作業を実施することができる。したがって、バランス状態の調整作業をより一段と容易にすることができる。
[変形例]
 上記の実施形態は、以下のように変形してもよい。
(変形例1)
 図6は、変形例1の工作機械10を示す概略図である。図6では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は割愛する。本変形例では、エンコーダ18に代えて電流センサ50が設けられ、速度推定部52が制御装置14に新たに設けられる。
 電流センサ50は、モータ16に出力される駆動電流を検出する。なお、電流センサ50は、モータ16(図6参照)に設けられていてもよいし、モータ16を駆動するモータ駆動部36(図2参照)に設けられていてもよい。
 速度推定部52は、電流センサ50から得られる信号に基づいて、回転軸16Sの回転速度を推定する。回転速度を推定する際の具体的な演算方法は、特に限定されない。例えば、速度推定部52は、特開2020-005406号公報に開示された演算方法を用いて、回転速度を推定し得る。したがって、モータ16にエンコーダ18が設けられていなくても、回転軸16Sの回転速度を捉えることができる。
 なお、本変形例の場合、取得部42(図2)は、振動センサ20から出力される信号に基づいて、速度推定部52で推定される回転速度が、モータ駆動部36に対して指令部40が指令値として出力した規定回転速度であるか否かを判定する。
 このように本変形例の工作機械10は、実施形態と同様に、加工機本体12に設けられるセンサ(電流センサ50および振動センサ20)を用いて、規定回転速度で回転軸16Sが回転しているときに発生する振動量を取得する。これにより、実施形態と同様に、フィールドバランサによらずに、加工機本体12における回転軸16Sに取り付けられた回転体(主軸22)のバランス状態を観測することができる。
(変形例2)
 図7は、変形例2の工作機械10を示す概略図である。図7では、実施形態において説明した構成と同等の構成には同一の符号が付されている。なお、本変形例では、実施形態と重複する説明は割愛する。
 本変形例では、制御装置14に対して、各種の情報を授受し得るコンピュータ装置54が接続される。なお、制御装置14とは物理的に分離する装置であれば、コンピュータ装置54以外の装置が採用されてもよい。また、図7では、実施形態の制御装置14に対してコンピュータ装置54が接続される場合が例示されているが、変形例1の制御装置14に対してコンピュータ装置54が接続されていてもよい。
 また、本変形例では、制御装置14のプロセッサ38(図2)に設けられた指令部40(図2)、取得部42(図2)、記憶制御部44(図2)、表示制御部46(図2)および演算部48(図2)が省かれる。代わりに、コンピュータ装置54のプロセッサ56に、指令部40、取得部42、記憶制御部44、表示制御部46および演算部48が設けられる。例えば、支援モードを実行するためのプログラムがコンピュータ装置54にインストールされることで、プロセッサ56を指令部40、取得部42、記憶制御部44、表示制御部46および演算部48として機能させ得る。
 本変形例によれば、既存の制御装置14を変更することなくそのまま用いて、フィールドバランサによらず工作機械10の回転体のバランス状態を観測することができ、且つ、バランス状態の調整作業を容易にすることができる。
[実施形態から得られる発明]
 実施形態および変形例から把握しうる発明について、以下に第1の発明および第2の発明を記載する。
<第1の発明>
 第1の発明は、工具を用いて加工対象物を加工する工作機械(10)であって、回転軸(16S)を有するモータ(16)と、モータを駆動するモータ駆動部(36)と、モータに設けられ、回転軸の回転速度を検出するエンコーダ(18)と、工作機械に設けられ、回転軸が回転中に発生する振動量を検出する振動センサ(20)と、エンコーダで検出される回転速度が予め規定された規定回転速度であるときに振動センサで検出される振動量を取得する取得部(42)と、規定回転速度と、取得部が取得した振動量とを対応付けて表示部(32)に表示させる表示制御部(46)と、を備える。
<第2の発明>
 第2の発明は、工具を用いて加工対象物を加工する工作機械であって、回転軸を有するモータと、モータを駆動するモータ駆動部と、モータまたはモータ駆動部に設けられ、モータに出力される駆動電流を検出する電流センサ(50)と、工作機械に設けられ、回転軸が回転中に発生する振動量を検出する振動センサと、電流センサから得られる信号に基づいて、回転軸の回転速度を推定する速度推定部(52)と、速度推定部で推定される回転速度が予め規定された規定回転速度であるときに振動センサで検出される振動量を取得する取得部と、規定回転速度と、取得部が取得した振動量とを対応付けて表示部に表示させる表示制御部と、を備える。
 第1の発明または第2の発明の場合、工作機械に設けられるセンサを用いて、規定回転速度で回転中に発生する振動量が捉えられることで、フィールドバランサによらず工作機械の回転体のバランス状態を観測することができる。また、規定回転速度で回転中に発生する振動量と、規定回転速度とが対応付けられて表示されることで、工作機械の回転体のバランス状態の調整作業においてオペレータを支援することができる。こうして、第1の発明または第2の発明によれば、フィールドバランサによらず工作機械の回転体のバランス状態を観測することができ、且つ、バランス状態の調整作業を容易にすることができる。
 第1の発明または第2の発明の工作機械は、規定回転速度と、取得部が取得した振動量とを対応付けて記憶部(34)に記憶させる記憶制御部(44)と、回転軸に対するバランス状態の調整作業前に記憶部に記憶された振動量と、バランス状態の調整作業後に記憶部に記憶された振動量との差に基づいて、回転軸に対するバランス状態の修正角度および修正量の少なくとも一方を演算する演算部(48)と、をさらに備え、表示制御部は、差、修正角度および修正量の少なくとも1つを表示部に表示させてもよい。これにより、バランス状態の調整作業前後の差、修正角度および修正量の少なくとも1つをオペレータに見せながら、次回の調整作業を実施させることができる。したがって、バランス状態の調整作業をより一段と容易にすることができる。
 第1の発明または第2の発明の工作機械において、モータ駆動部は、加工機本体(12)を制御する制御装置(14)に設けられ、取得部および表示制御部は、制御装置とは分離する装置に設けられてもよい。これにより、既存の制御装置を変更することなくそのまま用いて、フィールドバランサによらず工作機械の回転体のバランス状態を観測することができ、且つ、バランス状態の調整作業を容易にすることができる。

Claims (4)

  1.  工具を用いて加工対象物を加工する工作機械(10)であって、
     回転軸(16S)を有するモータ(16)と、
     前記モータを駆動するモータ駆動部(36)と、
     前記モータに設けられ、前記回転軸の回転速度を検出するエンコーダ(18)と、
     前記工作機械に設けられ、前記回転軸が回転中に発生する振動量を検出する振動センサ(20)と、
     前記エンコーダで検出される前記回転速度が予め規定された規定回転速度であるときに前記振動センサで検出される前記振動量を取得する取得部(42)と、
     前記規定回転速度と、前記取得部が取得した前記振動量とを対応付けて表示部(32)に表示させる表示制御部(46)と、
     を備える工作機械。
  2.  工具を用いて加工対象物を加工する工作機械であって、
     回転軸を有するモータと、
     前記モータを駆動するモータ駆動部と、
     前記モータまたは前記モータ駆動部に設けられ、前記モータに出力される駆動電流を検出する電流センサ(50)と、
     前記工作機械に設けられ、前記回転軸が回転中に発生する振動量を検出する振動センサと、
     前記電流センサから得られる信号に基づいて、前記回転軸の回転速度を推定する速度推定部(52)と、
     前記速度推定部で推定される前記回転速度が予め規定された規定回転速度であるときに前記振動センサで検出される前記振動量を取得する取得部と、
     前記規定回転速度と、前記取得部が取得した前記振動量とを対応付けて表示部に表示させる表示制御部と、
     を備える工作機械。
  3.  請求項1または2に記載の工作機械であって、
     前記規定回転速度と、前記取得部が取得した前記振動量とを対応付けて記憶部(34)に記憶させる記憶制御部(44)と、
     前記回転軸に対するバランス状態の調整作業前に前記記憶部に記憶された前記振動量と、前記バランス状態の調整作業後に前記記憶部に記憶された前記振動量との差に基づいて、前記回転軸に対する前記バランス状態の修正角度および修正量の少なくとも一方を演算する演算部(48)と、をさらに備え、
     前記表示制御部は、前記差、前記修正角度および前記修正量の少なくとも1つを前記表示部に表示させる、工作機械。
  4.  請求項1~3のいずれか1項に記載の工作機械であって、
     前記モータ駆動部は、加工機本体(12)を制御する制御装置(14)に設けられ、
     前記取得部および前記表示制御部は、前記制御装置とは分離する装置に設けられる、工作機械。
PCT/JP2021/034930 2020-09-30 2021-09-24 工作機械 WO2022071078A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/029,258 US20230364729A1 (en) 2020-09-30 2021-09-24 Machine tool
CN202180066845.9A CN116323096A (zh) 2020-09-30 2021-09-24 机床
DE112021003969.5T DE112021003969T5 (de) 2020-09-30 2021-09-24 Werkzeugmaschine
JP2022553875A JPWO2022071078A1 (ja) 2020-09-30 2021-09-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165407 2020-09-30
JP2020-165407 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071078A1 true WO2022071078A1 (ja) 2022-04-07

Family

ID=80950158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034930 WO2022071078A1 (ja) 2020-09-30 2021-09-24 工作機械

Country Status (5)

Country Link
US (1) US20230364729A1 (ja)
JP (1) JPWO2022071078A1 (ja)
CN (1) CN116323096A (ja)
DE (1) DE112021003969T5 (ja)
WO (1) WO2022071078A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628032A (ja) * 1985-07-04 1987-01-16 Nagase Tekkosho:Kk 回転体のバランス表示装置
JPH02256461A (ja) * 1988-12-28 1990-10-17 Nagase Iron Works Co Ltd 砥石の管理装置
JP2001170863A (ja) * 1999-12-20 2001-06-26 Okamoto Machine Tool Works Ltd 研削装置
JP2004074292A (ja) * 2002-08-09 2004-03-11 Matsushita Electric Ind Co Ltd 回転バランス調整方法及び加工装置
JP2012088967A (ja) * 2010-10-20 2012-05-10 Okuma Corp 工作機械のモニタ方法及びモニタ装置、工作機械

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716237B2 (ja) 1990-02-27 1998-02-18 ファナック株式会社 モータのバランス構造
JPH06273254A (ja) 1993-03-18 1994-09-30 Hitachi Ltd 弾性ロータの等価修正ウェイト算出法
JP2002007375A (ja) 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd 回転機械の妥協的つりあわせ解法、及び、その調整方法
JP5808585B2 (ja) 2011-06-17 2015-11-10 株式会社長浜製作所 不釣合い測定および修正装置
JP6730377B2 (ja) 2018-06-28 2020-07-29 ファナック株式会社 モータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628032A (ja) * 1985-07-04 1987-01-16 Nagase Tekkosho:Kk 回転体のバランス表示装置
JPH02256461A (ja) * 1988-12-28 1990-10-17 Nagase Iron Works Co Ltd 砥石の管理装置
JP2001170863A (ja) * 1999-12-20 2001-06-26 Okamoto Machine Tool Works Ltd 研削装置
JP2004074292A (ja) * 2002-08-09 2004-03-11 Matsushita Electric Ind Co Ltd 回転バランス調整方法及び加工装置
JP2012088967A (ja) * 2010-10-20 2012-05-10 Okuma Corp 工作機械のモニタ方法及びモニタ装置、工作機械

Also Published As

Publication number Publication date
US20230364729A1 (en) 2023-11-16
CN116323096A (zh) 2023-06-23
DE112021003969T5 (de) 2023-05-11
JPWO2022071078A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
KR100447052B1 (ko) 서보 제어장치
JP2017016623A (ja) 工作機械における送り軸の位置制御装置
JP2692274B2 (ja) 主軸位置・速度制御装置
EP1666890A1 (en) Rotary shaft control apparatus
JP6978456B2 (ja) 情報処理装置および情報処理方法
US20050067908A1 (en) Reaction balanced rotary drive mechanism
WO2022071078A1 (ja) 工作機械
WO2020217282A1 (ja) サーボ制御装置
JP2010281743A (ja) 影響係数取得方法
EP1662348A1 (en) Rotary shaft control apparatus
JP2020079749A (ja) 駆動機構の故障診断装置及び故障診断方法並びに前記故障診断装置を備える機械装置
WO2022149572A1 (ja) 観測装置および観測方法
JP2005308537A (ja) 釣合い解析器及びこの釣合い解析器による釣合い解析方法
JP5300831B2 (ja) 機械角度測定装置
WO2023058112A1 (ja) 演算装置および演算方法
WO2022149573A1 (ja) 観測装置および観測方法
JP2007179364A (ja) 主軸変位量補正装置
CN116670483A (zh) 观测装置及观测方法
JP2000343379A (ja) 主軸ヘッド制御装置
JP5179922B2 (ja) 回転体バランス補正装置
JP4292675B2 (ja) 工作機械
JPWO2018083746A1 (ja) 設備診断装置および設備診断方法
JP2007033244A (ja) 駆動機構の亀裂検知方法
JP2011128111A (ja) アンバランス測定装置と方法
JPH02226032A (ja) ポータブル型バランシング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553875

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21875380

Country of ref document: EP

Kind code of ref document: A1