WO2022071065A1 - アイオノマー樹脂、樹脂シートおよび合わせガラス - Google Patents

アイオノマー樹脂、樹脂シートおよび合わせガラス Download PDF

Info

Publication number
WO2022071065A1
WO2022071065A1 PCT/JP2021/034820 JP2021034820W WO2022071065A1 WO 2022071065 A1 WO2022071065 A1 WO 2022071065A1 JP 2021034820 W JP2021034820 W JP 2021034820W WO 2022071065 A1 WO2022071065 A1 WO 2022071065A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionomer resin
meth
unit
acrylic acid
resin
Prior art date
Application number
PCT/JP2021/034820
Other languages
English (en)
French (fr)
Inventor
卓郎 新村
憲太 竹本
淳裕 中原
芳聡 淺沼
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022505432A priority Critical patent/JP7186329B2/ja
Priority to US18/028,781 priority patent/US20230331887A1/en
Priority to EP21875367.1A priority patent/EP4223795A1/en
Priority to CN202180066479.7A priority patent/CN116348430A/zh
Priority to KR1020237010337A priority patent/KR20230075444A/ko
Publication of WO2022071065A1 publication Critical patent/WO2022071065A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10605Type of plasticiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10146Face treatment, e.g. etching, grinding or sand blasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10376Laminated safety glass or glazing containing metal wires
    • B32B17/10412Laminated safety glass or glazing containing metal wires for reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • B32B17/10587Surface roughness created by embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • B32B17/10596Surface roughness created by melt fracture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10651Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
    • B32B17/10669Luminescent agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10678Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10871Making laminated safety glass or glazing; Apparatus therefor by pressing in combination with particular heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10935Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin as a preformed layer, e.g. formed by extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2293Oxides; Hydroxides of metals of nickel

Definitions

  • the present invention relates to an ionomer resin and a method for producing the same, a resin sheet having one or more layers containing the ionomer resin, a laminated glass interlayer made of the resin sheet, and a laminated glass having the laminated glass interlayer.
  • Ionomer which is a neutralized product of an ethylene / unsaturated carboxylic acid copolymer, is used as an interlayer film of laminated glass because of its excellent transparency and adhesiveness to glass (for example, Patent Document 1).
  • Patent Document 1 the required performance for laminated glass has increased, and even for ionomer resins, high transparency is maintained regardless of the manufacturing conditions of laminated glass, high elasticity is maintained even at high temperatures, and the strength of laminated glass is reduced. It has come to be required that the glass is not allowed to be colored, that the appearance is excellent, that the adhesiveness to the glass is excellent, and that the glass is not easily peeled off.
  • Patent Document 2 has at least one layer containing an ionomer or ionomer blend into which a partially neutralized ⁇ , ⁇ -ethylenically unsaturated carboxylic acid has been introduced, wherein the ionomer or ionomer blend is the ⁇ . , 1 or more monovalent metal ions in an amount in the range of about 1 to about 60% and an amount in the range of about 40 to about 99% based on the total amount of neutralization of ⁇ -ethylenically unsaturated carboxylic acid. Describes a polymer sheet containing ions of one or more polyvalent metals.
  • Patent Document 3 describes a resin composition containing an ionomer resin and an adhesion promoter, wherein the adhesion promoter is a dialkoxysilane compound.
  • the laminated glass When the laminated glass is used outdoors, it may peel off between the glass and the laminated glass interlayer film or whiten and the transparency may decrease due to moisture such as rain, especially at the edge of the laminated glass. there were. Therefore, there is a demand for an ionomer resin that can form a laminated glass interlayer film having high transparency and adhesiveness to glass even under high humidity conditions.
  • Patent Document 2 describes that the ionomers or ionomer blends described in the same document exhibit synergistically improved glass adhesive strength.
  • the ionomer described in Patent Document 2 tends to whiten and lose its transparency under high humidity conditions, and also tends to peel off from the glass, so that the glass is easily separated from the glass. It was found that the adhesiveness with and may not always be sufficient.
  • Patent Document 3 describes that the resin composition described in the same document exhibits high adhesiveness to glass even under high humidity conditions. However, according to the studies by the present inventors, the resin composition described in Patent Document 3 tends to form a crosslinked gel during molding, and further improvement is required to obtain a resin sheet having a good appearance. I understood.
  • an object of the present invention is an ionomer resin having high transparency and high adhesiveness to a substrate such as glass even under high humidity conditions and capable of forming a sheet having a good appearance, and an ionomer resin thereof.
  • the purpose is to provide a manufacturing method.
  • the present inventors have reached the present invention as a result of diligent studies to solve the above problems. That is, the present invention provides the following preferred embodiments.
  • (Meta) Acrylic acid unit (A), (Meta) Acrylic acid neutralized product unit (B) and ethylene unit (C) Is an ionomer resin, including The total content of the unit (A) and the unit (B) is 6 to 10 mol% based on all the monomer units constituting the ionomer resin. The content of the transition metal in the ionomer resin is 0.01 to 100 mg / kg. Ionomer resin.
  • the ionomer resin further contains a (meth) acrylic acid ester unit (D), and the total content of the unit (A), the unit (B) and the unit (D) constitutes the ionomer resin.
  • the saponification step and / or the demetallization step is performed using a reaction device, and at least a part of the reaction device is an alloy containing nickel and chromium as transition metals in a total amount of 50% by mass or more. 7] or the method according to [8].
  • At least a portion of the reaction apparatus is selected from the group consisting of a reaction vessel, a stirring blade, a baffle, and a feed line that supplies a strong base and / or a strong acid into the reaction vessel. The method according to [9].
  • the ionomer resin of the present invention contains (meth) acrylic acid unit (A), (meth) acrylic acid neutralized substance unit (B), and ethylene unit (C), and the content of the transition metal in the ionomer resin is 0. It is 0.01 to 100 mg / kg.
  • the ionomer resin of the present invention contains a transition metal, and the content thereof is 0.01 to 100 mg / kg.
  • the present inventors obtain the transparency of the ionomer resin, particularly the transparency under high humidity conditions (for example, whitening resistance under high humidity conditions).
  • the adhesiveness to the glass, especially under high humidity conditions was improved while maintaining the adhesiveness. Therefore, the ionomer resin of the present invention has high transparency and high adhesiveness to glass even under high humidity conditions.
  • the ionomer resins of the invention have high adhesion to glass (especially under high humidity conditions), surprisingly, crosslinked gels are less likely to form, resulting in It was also found that it is easy to obtain a resin sheet having a good appearance.
  • a resin having improved adhesiveness to glass by containing an adhesion promoter such as a silane coupling agent tends to form a crosslinked gel, and it tends to be difficult to obtain a resin sheet having a good appearance.
  • the ionomer resin has high adhesiveness to glass, and it is easy to obtain a resin sheet having a good appearance.
  • the thermal decomposition property of the ionomer resin can be improved by setting the content of the transition metal in the ionomer resin to 0.01 to 100 mg / kg.
  • the (meth) acrylic acid unit in the ionomer resin (meth) due to the interaction between the transition metal and the (meth) acrylic acid unit (A) in the ionomer resin ( It is considered that this is because it is easy to suppress the desorption of A) by heat.
  • the content of the transition metal in the ionomer resin is out of the above range, the transparency of the ionomer resin (particularly the transparency under high humidity conditions) and the adhesiveness with glass (particularly with glass under high humidity conditions) Adhesiveness) and the heat-decomposability of ionomer resins tend to decrease.
  • the content of the transition metal is less than 0.01 mg / kg, the adhesiveness with the glass tends to decrease under high humidity conditions, so that the adhesion with the glass tends to occur under high humidity conditions, for example, an ionomer resin.
  • the content of the transition metal is 0.01 mg / kg or more, preferably 0.05 mg / kg or more, and more, from the viewpoint of easily improving transparency, adhesion to glass under high humidity conditions, and heat-resistant decomposition resistance. It is preferably 0.1 mg / kg or more, more preferably 0.2 mg / kg or more. Further, from the viewpoint of easily improving the transparency and heat-decomposability and easily suppressing the coloring of the ionomer resin, 100 mg / kg or less, preferably 50 mg / kg or less, more preferably 20 mg / kg or less, more preferably 10 mg. It is / kg or less, more preferably 5 mg / kg or less.
  • the transition metal in the ionomer resin can be adjusted by the method for producing the ionomer resin.
  • the content of the transition metal in the ionomer resin can be measured using inductively coupled plasma (ICP) emission spectroscopic analysis, for example by the method described in Examples.
  • ICP inductively coupled plasma
  • the transition metal contained in the ionomer resin is not particularly limited, and is, for example, a first transition metal such as scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, and ittrium, zirconium, niobium, molybdenum, and the like. Second transition metals such as technetium, ruthenium, zirconium, palladium and silver can be mentioned. These transition metals may be used alone or in combination of two or more.
  • the transition metal is the first transition metal from the viewpoint of easily enhancing the transparency and heat-decomposability of the ionomer resin under high humidity conditions and the adhesiveness to glass under high humidity conditions. It is preferably one or more metals selected from the group consisting of iron, nickel, manganese and chromium, and more preferably one or more metals containing at least iron.
  • the state of the transition metal contained in the ionomer resin is not particularly limited.
  • the transition metal may be contained in the ionomer resin as, for example, a transition metal oxide, a transition metal hydroxide, a transition metal halide, a transition metal salt, or the like, and is a (meth) acrylic acid neutralizer unit in the ionomer resin. It may be contained as a metal ion in (B).
  • the ionomer resin of the present invention contains (meth) acrylic acid unit (A), (meth) acrylic acid neutralized product unit (B), and ethylene unit (C), and the unit (A) and the unit (B).
  • the total content of the above is 6 to 10 mol% based on all the monomer units constituting the ionomer resin.
  • the "unit” means a "constituent unit of origin", and for example, the (meth) acrylic acid unit indicates a structural unit derived from (meth) acrylic acid, and the (meth) acrylic acid.
  • the neutralized product unit indicates a constituent unit derived from a (meth) acrylic acid neutralized product, and the ethylene unit indicates a constituent unit derived from ethylene.
  • (meth) acrylic acid means methacrylic acid or acrylic acid.
  • the transparency and elastic modulus of the ionomer resin (for example, the elastic modulus at 50 ° C.) can be easily improved.
  • the total content exceeds the upper limit, it is difficult to develop a high elastic modulus (for example, elastic modulus at 50 ° C.) of the ionomer resin.
  • the total content is less than the above lower limit value, the ionomer resin tends to whiten if the crystallinity is too high. Therefore, for example, when the laminated glass is prepared, it is treated at a high temperature and then slowly cooled. , The transparency (transparency at the time of slow cooling) in a state where the ionomer resin is slowly cooled and the crystallization of the resin is promoted tends to decrease.
  • the total content is 6 mol% or more, preferably 6.5 mol% or more, more preferably from the viewpoint of easily improving the transparency of the ionomer resin (particularly the transparency at the time of slow cooling) and the adhesiveness with glass. It is 7.0 mol% or more, more preferably 7.5 mol% or more, and 10 mol% or less, preferably 9.9 mol%, from the viewpoint of easily improving the elasticity and molding processability of the ionomer resin. Below, it is more preferably 9.5 mol% or less.
  • the total content of the unit (A) and the unit (B) can be adjusted by the method for producing the ionomer resin. More specifically, when an ionomer resin is produced from an ethylene- (meth) acrylic acid ester copolymer as a raw material by a method including a saponification reaction step and a demetallization reaction step of the copolymer, ethylene- The (meth) acrylic acid ester unit in the (meth) acrylic acid ester copolymer is converted into the (meth) acrylic acid unit (A) and the (meth) acrylic acid neutralized product unit by the saponification reaction and the demetallization reaction. It can be adjusted by the degree of reaction (conversion ratio) of each reaction to be converted to B). Further, as described in US Pat. No.
  • Examples of the monomer constituting the (meth) acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferable from the viewpoint of heat resistance and adhesiveness to a substrate such as glass. .. These (meth) acrylic acid units may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on all the monomer units constituting the ionomer resin. It is not particularly limited as long as it is within the range of 10 mol%. In one embodiment of the present invention, the content of the (meth) acrylic acid unit (A) in the ionomer resin is preferably 4.5 mol% or more, based on all the monomer units constituting the ionomer resin.
  • It is preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% or more. Below, it is more preferably 8.0 mol% or less, and particularly preferably 7.5 mol% or less.
  • the content of the unit (A) is at least the above lower limit value, the transparency of the ionomer resin and the adhesiveness to a substrate such as glass are likely to be improved. Further, when it is not more than the above upper limit value, it is easy to improve the molding processability.
  • the (meth) acrylic acid neutralized product is a product in which the hydrogen ion of (meth) acrylic acid is replaced with a metal ion.
  • the neutralized product unit of the (meth) acrylic acid unit (A) is preferable.
  • the metal ions include alkali metal ions such as lithium, sodium and potassium; alkaline earth metal ions such as magnesium and calcium; non-transition metal ions of groups 12 to 13 such as zinc and aluminum; and transition metal ions and the like. Can be mentioned.
  • the transition metal ion include a transition metal ion that can be contained in the above-mentioned ionomer resin. Such metal ions may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid neutralized substance unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer unit constituting the ionomer resin.
  • the standard is not particularly limited as long as it is within the range of 6 to 10 mol%.
  • the content of the (meth) acrylic acid neutralizer unit (B) is preferably 0.65 mol% or more, more preferably 0.65 mol% or more, based on all the monomer units constituting the ionomer resin.
  • Each content of the unit (A) and the unit (B) is made from an ethylene- (meth) acrylic acid ester copolymer as a raw material, and is an ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer.
  • the (meth) acrylic acid ester unit in the ethylene- (meth) acrylic acid ester copolymer is subjected to the saponification reaction and the demetallization reaction to obtain the (meth) acrylic acid unit (A) and (meth). It can be adjusted by the degree of reaction in each reaction to be converted into the acrylic acid neutralizing substance unit (B).
  • the content of the ethylene unit (C) is preferably 80 mol% or more, more preferably 85 mol% or more, based on all the monomer units constituting the ionomer resin, from the viewpoint of easily increasing the impact resistance of the ionomer resin. It is more preferably 88 mol% or more, and is preferably 94 mol% or less, more preferably 91 mol% or less, from the viewpoint of easily increasing the transparency of the ionomer resin (particularly, the transparency at the time of slow cooling).
  • ethylene unit (C) When the content of ethylene unit (C) is at least the above lower limit value, mechanical strength and molding processability are likely to be improved, and when it is at least the above upper limit value, ionomer resin is difficult to crystallize and transparency ( In particular, it is easy to improve transparency during slow cooling).
  • the ionomer resin of the present invention can easily obtain higher transparency. Further, it is preferable to include the (meth) acrylic acid ester unit (D).
  • the ionomer resin contains a (meth) acrylic acid ester unit (D)
  • the total content of the unit (A), the unit (B) and the unit (D) is transparent (particularly transparency at the time of slow cooling).
  • the ionomer resin of the present invention comprises (meth) acrylic acid unit (A), (meth) acrylic acid neutralized substance unit (B), ethylene unit (C), and (meth).
  • Acrylic acid ester unit (D) is included, and the total content of the unit (A), the unit (B) and the unit (D) is 6 to 6 based on all the monomer units constituting the ionomer resin. It is 10 mol%.
  • the ionomer resin contains a (meth) acrylic acid ester unit (D)
  • the total content of the unit (A), the unit (B) and the unit (D) is not more than the above upper limit value
  • the ionomer resin When a high elastic modulus is easily developed and the total content is at least the lower limit value, the transparency of the ionomer resin, particularly the transparency at the time of slow cooling, is easily enhanced.
  • the ionomer resin contains a (meth) acrylic acid ester unit (D)
  • the total content of the unit (A), the unit (B) and the unit (D) is transparent (particularly during slow cooling).
  • a substrate such as glass
  • 6 mol% or more preferably 6.5 mol% or more, more preferably 7.0 mol% or more, still more preferably 7.5 mol. % Or more
  • it is 10 mol% or less, preferably 9.9 mol% or less, and more preferably 9.5 mol% or less.
  • the total content of the unit (A), the unit (B) and the unit (D) can be adjusted by the raw material of the ionomer resin. More specifically, when an ionomer resin is produced from an ethylene- (meth) acrylic acid ester copolymer as a raw material by a method including a saponomerization reaction step and a demetallization reaction step of the copolymer, the ionomer resin is used. It can be adjusted by the amount of (meth) acrylic acid ester modification of the ethylene- (meth) acrylic acid ester copolymer which is the raw material of. Further, as described in US Pat. No.
  • Examples of the monomers constituting the (meth) acrylic acid ester unit (D) are methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, and isopropyl (meth) acrylic acid.
  • preferable monomers from the viewpoint of transparency or heat resistance are methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and ( N-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, and more preferred monomers are methyl (meth) acrylate, (.
  • Ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and more preferred monomers are (meth).
  • Methyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and a particularly preferred monomer is methyl (meth) acrylate.
  • These (meth) acrylic acid esters may be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester unit (D) in the ionomer resin is not particularly limited.
  • the content of the (meth) acrylic acid ester unit (D) in the ionomer resin is more preferably 0.01 mol% or more based on all the monomer units constituting the ionomer resin. More preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less, still more preferably 0.5. It is less than mol%.
  • the content of the unit (D) is at least the above lower limit value and at least the above upper limit value, the transparency of the ionomer resin is likely to be improved.
  • the content of the unit (D) is a step of saponifying reaction of the copolymer using an ethylene- (meth) acrylic acid ester copolymer as a raw material.
  • the ionomer resin is produced by a method including a demetallization reaction step, the (meth) acrylic acid ester unit (D) in the ethylene- (meth) acrylic acid ester copolymer is replaced with the (meth) acrylic acid unit (A). It can be adjusted by the degree of reaction of the saponification reaction to be converted into.
  • the ionomer resin of the present invention comprises a (meth) acrylic acid unit (A), a (meth) acrylic acid neutralizer unit (B), and an ethylene unit (C), and optionally a (meth) acrylic acid ester unit (meth). It may contain other monomer units other than D). Examples of other monomer units include a carboxylic acid unit (A1) other than the (meth) acrylic acid unit (A) and a carboxylic acid neutralizer unit (B) other than the (meth) acrylic acid neutralizer unit (B). B1) and the like can be mentioned.
  • Examples of the monomer constituting the carboxylic acid unit (A1) include itaconic acid, maleic anhydride, monomethyl maleate, monoethyl maleate and the like, and monomethyl maleate and monoethyl maleate are preferable.
  • Examples of the monomer constituting the carboxylic acid neutralized product unit (B1) include the neutralized product unit of the carboxylic acid unit (A1).
  • the carboxylic acid neutralized product is obtained by replacing the hydrogen ion of the carboxylic acid with a metal ion.
  • Examples of the metal ion include the same as the metal ion in the above-mentioned (meth) acrylic acid neutralizing substance unit (B), and the metal ion may be one kind alone or a combination of two or more kinds. These other monomer units may be used alone or in combination of two or more.
  • the total content thereof for example, the total contents of (A1) and (B1) may be appropriately selected within a range that does not impair the effects of the present invention, for example.
  • the monomer units constituting the ionomer resin it is preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more. More preferably, it is 0.1 mol% or more.
  • NMR nuclear magnetic resonance spectroscopy
  • the degree of branching per 1000 carbon atoms of the ionomer resin of the present invention is not particularly limited, and is preferably 5 to 30, more preferably 6 to 20.
  • the degree of branching is, for example, when the ionomer resin is produced from an ethylene- (meth) acrylic acid ester copolymer as a raw material by a method including a saponification reaction step and a demetallization reaction step of the copolymer. Can be adjusted by the polymerization temperature when synthesizing ethylene- (meth) acrylic acid ester as a raw material.
  • the degree of branching per 1000 carbons can be measured by the wideband dipole decoupling / magic angle spinning (DD / MAS) method using solid state NMR.
  • the melting point of the ionomer resin of the present invention is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 80 ° C. or higher, and more preferably 80 ° C. or higher, from the viewpoint of heat resistance and heat-decomposability.
  • the temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, still more preferably 150 ° C. or lower.
  • the melting point can be measured based on JIS K7121: 2012.
  • DSC differential scanning calorimeter
  • the heat of fusion of the ionomer resin of the present invention is preferably 0 J / g or more and 25 J / g or less.
  • the heat of fusion can be measured based on JIS K7122: 2012. Specifically, it is measured using a differential scanning calorimeter (DSC) under the conditions of a cooling rate of -10 ° C / min and a temperature rise rate of 10 ° C / min, and is calculated from the area of the melting peak at the time of the second temperature rise. can do.
  • DSC differential scanning calorimeter
  • the melt flow rate (MFR) of the ionomer resin of the present invention measured under the conditions of 190 ° C. and 2.16 kg according to JIS K7210 is preferably 0.1 g / 10 minutes or more. It is more preferably 0.3 g / 10 minutes or more, further preferably 0.7 g / 10 minutes or more, still more preferably 1.0 g / 10 minutes or more, particularly preferably 1.5 g / 10 minutes or more, and preferably 50 g. It is / 10 minutes or less, more preferably 30 g / 10 minutes or less, and particularly preferably 10 g / 10 minutes or less.
  • the MFR of the ionomer resin is not less than the above lower limit value and not more than the upper limit value, it is easy to perform a molding process suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
  • the melting point, heat of fusion and MFR of the ionomer resin are the molecular weight of the ionomer resin, and the (meth) acrylic acid unit (A), the (meth) acrylic acid neutralized product unit (B), and the ethylene unit (C) of the ionomer resin. It can also be adjusted by the content of the (meth) acrylic acid ester unit (D) contained in the case.
  • the storage elastic modulus (E') at 50 ° C. measured by the dynamic viscoelasticity measurement of the ionomer resin of the present invention is good independence (that is, high elastic modulus), particularly high temperature. From the viewpoint of independence in an environment (high elastic modulus in a high temperature environment), it is preferably 20 MPa or more, more preferably 30 MPa or more, still more preferably 40 MPa or more, and particularly preferably 50 MPa or more.
  • the upper limit of the storage elastic modulus (E') is not particularly limited and may be 1000 MPa.
  • the storage modulus includes the molecular weight of the ionomer resin, as well as the (meth) acrylic acid unit (A), the (meth) acrylic acid neutralizer unit (B), and the ethylene unit (C), and optionally (meth). It can be adjusted by the content of the acrylic acid ester unit (D).
  • the storage elastic modulus (E') of the ionomer resin at 50 ° C. can be measured by dynamic viscoelasticity measurement.
  • the ionomer resin of the present invention contains a transition metal of 0.01 to 100 mg / kg as described above, it has high heat-decomposability.
  • the 1% weight loss temperature (Td1) of the ionomer resin of the present invention at a temperature rise of 10 ° C./min is preferably 330 ° C. or higher, more preferably 350 ° C. or higher. It is more preferably 360 ° C. or higher, particularly preferably 370 ° C. or higher, and usually 450 ° C. or lower.
  • the 1% weight loss temperature of the ionomer resin When the 1% weight loss temperature of the ionomer resin is equal to or higher than the above lower limit, it is easy to reduce foaming and / or thermal decomposition during melt molding of the ionomer resin, and black foreign matter and the like generated by thermal decomposition of bubbles and / or the resin are easily present. It is easy to obtain an interlayer film that has no defects.
  • the 1% weight loss temperature represents the temperature at which the weight loss rate becomes 1% with respect to the weight at 200 ° C.
  • the 1% weight loss temperature can be measured according to JIS K7120-1987, and can be measured, for example, by the method described in Examples.
  • the ionomer resin of the present invention has high transparency, and in a preferred embodiment of the present invention, the haze of the ionomer resin of the present invention at a sheet thickness of 0.8 mm is preferably 2.0% or less, more preferably. Is 1.5% or less, more preferably 1.0% or less.
  • the haze of the ionomer resin is measured using a haze meter in accordance with JIS K7136: 2000.
  • the ionomer resin of the present invention Since the ionomer resin of the present invention has a transition metal content of 0.01 to 100 mg / kg, it has high transparency even under high humidity conditions.
  • the transparency of the ionomer resin under high humidity conditions can be evaluated by the haze (water absorption haze) in which the ionomer resin absorbs water.
  • the haze (water absorption haze) at a sheet thickness of 0.8 mm in a state where the ionomer resin of the present invention has absorbed water is preferably 9.0% or less, more preferably 5.0% or less. More preferably, it is 3.0% or less. The smaller the water absorption haze, the higher the transparency of the ionomer resin in the water-absorbed state.
  • the lower limit is not particularly limited and may be, for example, 0.01%.
  • the water absorption haze was held for 300 hours in a state where the ionomer resin was immersed in ion-exchanged water at 23 ° C., removed from the ion-exchanged water, and the ionomer resin from which the water adhering to the surface was wiped off was used as a test piece and a haze meter was used.
  • JIS K7136 2000, and can be measured, for example, by the method described in Examples.
  • the haze (slow cooling haze) in a state where the crystallization of the ionomer resin of the present invention is promoted by slow cooling is preferably 5.0% or less, more preferably 4. It is 5% or less, more preferably 4.0% or less, still more preferably 3.0% or less, and particularly preferably 2.5% or less. The smaller the haze, the higher the transparency of the ionomer resin.
  • the lower limit is not particularly limited and may be, for example, 0.01%.
  • an ionomer resin having a sheet thickness of 0.8 mm is placed between two glass plates to prepare a laminated glass, and the laminated glass is heated to 140 ° C. and then 140 ° C. to 0.1 ° C./min. It is obtained by measuring the haze after slowly cooling to 23 ° C. with a haze meter in accordance with JIS K7136: 2000.
  • the yellowness (YI) of the ionomer resin of the present invention at a sheet thickness of 0.8 mm is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.5 or less, from the viewpoint of less likely to cause coloring. Particularly preferably, it is 1.0 or less.
  • the yellowness (YI) can be measured in accordance with JIS Z8722 using a colorimeter, for example, by the method described in Examples.
  • the adhesiveness of the ionomer resin of the present invention to glass can be evaluated by the peeling energy between the glass and the ionomer resin measured by the peeling test.
  • the peeling energy between the glass and the ionomer resin measured under standard conditions is preferably 2 kJ / m 2 or more, more preferably 2.5 kJ / m 2 or more, still more preferably 3 kJ / m. 2 or more, particularly preferably 3.5 kJ / m 2 or more.
  • the adhesiveness to the glass under high humidity conditions can be evaluated by the peeling energy between the glass and the ionomer resin measured by the peeling test under Wet conditions.
  • the peeling energy between the glass and the ionomer resin measured under Wet conditions is preferably 0.05 kJ / m 2 or more, more preferably 0.1 kJ / m 2 or more, still more preferably 0.15 kJ / m 2 or more, particularly. It is preferably 0.2 kJ / m 2 or more.
  • the upper limit of the peeling energy under standard conditions and high humidity conditions is not particularly limited and may be 10 kJ / m 2 or less.
  • the peeling test can be performed, for example, by the method described as Peel Adhesion Measurement described in International Publication No. 2019/027865.
  • the peeling energy measured under the standard conditions and the Wet conditions can be measured by, for example, the method described in Examples.
  • the ionomer resin of the present invention is made from, for example, an ethylene- (meth) acrylic acid ester copolymer (X) as a raw material.
  • Including It can be produced by a method in which the saponification step and / or the demetallization step is performed in the presence of a transition metal (hereinafter, also referred to as a production method (I)).
  • all or part of the (meth) acrylic acid ester unit in the ethylene- (meth) acrylic acid ester copolymer (X) is contained in the (meth) acrylic acid unit and the (meth) acrylic acid.
  • (meth) acrylic acid unit (A), (meth) acrylic acid neutralized product unit (B), ethylene unit (C) and optionally (meth) acrylic acid ester unit (D) Ionomer resin containing is obtained.
  • all or part of the (meth) acrylic acid ester unit in the ethylene- (meth) acrylic acid ester copolymer is used as the (meth) acrylic acid unit by the saponification step and the demetallization step. And, it may be a method of converting to a (meth) acrylic acid neutralized product unit (hereinafter, also referred to as method (1)), and after the saponification step and the demetallization step, the demetallized product further obtained is middle. All or part of the (meth) acrylic acid ester units in the ethylene- (meth) acrylic acid ester copolymer may be neutralized with (meth) acrylic acid units and (meth) acrylic acid by a method comprising a neutralization step of harmonization. It may be a method of converting into physical units (hereinafter, also referred to as method (2)).
  • the ethylene- (meth) acrylic acid ester copolymer is saponified with a strong base, so that all or part of the (meth) acrylic acid ester unit is (meth) acrylic. Converted to acid-neutralized unit to obtain a saponified ethylene- (meth) acrylic acid ester- (meth) acrylic acid neutralized product copolymer or ethylene- (meth) acrylic acid neutralized product copolymer. Then, a part of the (meth) acrylic acid neutralized substance unit in the obtained saponified product is demetallized with a strong acid and converted into a (meth) acrylic acid unit, whereby the (meth) acrylic acid unit (A). ), (Meta) acrylic acid neutralized product unit (B), ethylene unit (C) and optionally (meth) acrylic acid ester unit (D) to obtain an ionomer resin.
  • the method (2) specifically, in the (meth) acrylic acid in the saponified product obtained by saponifying the ethylene- (meth) acrylic acid ester copolymer with a strong base in the method (1). All Japanese units are demetallized with a strong acid and converted to (meth) acrylic acid units to obtain an ethylene- (meth) acrylic acid copolymer, and then the (meth) in the obtained demetallized product.
  • an ionomer resin containing an ethylene unit (C) and optionally a (meth) acrylic acid ester unit (D) is obtained.
  • the ionomer resin by the method (1) from the viewpoint of reducing the number of reactions and easily improving the production efficiency of the ionomer resin.
  • the saponification step and / or the demetallization step is carried out as a transition metal.
  • an ionomer resin containing a transition metal can be obtained.
  • performing the saponification step and / or the demetallization step in the presence of a transition metal means that the saponification reaction and / or the demetallization reaction in the demetallization step is transitioned into the reaction system. It means to do it in the presence of metal.
  • the transition metal present in the reaction system may be one kind alone or a combination of two or more kinds.
  • the method for allowing the transition metal to exist in the reaction system of the saponification reaction and / or the demetallization reaction is not particularly limited, and for example, a method using a reaction device containing the transition metal, a member containing the transition metal in the reaction system, and the like are put into the reaction system.
  • Any method may be used, such as a method, a powder of a transition metal oxide, a hydroxide, a halide, a salt or the like, and / or a method of adding the powder in a state of being dispersed or dissolved in a solvent into the reaction system. ..
  • the transition metal present in the reaction system is corroded by the strong base used in the saponification reaction and / or the strong acid used in the demetallization reaction, so that the ionomer resin contains the transition metal.
  • the transition metal existing in the reaction system is corroded
  • the transition metal ion ionized by the corrosion and eluted in the reaction system is the metal ion in the (meth) acrylic acid neutralizer unit (B), or
  • the hydrogen ion of (meth) acrylic acid in the (meth) acrylic acid unit (A) a transition metal is contained in the ionomer resin as a metal ion in the (meth) acrylic acid neutralizer unit (B).
  • the transition metal ion eluted in the reaction system can be contained in the ionomer resin as an oxide and / or a halide by reacting with an oxygen ion and / or a halogen ion that may exist in the reaction system.
  • transition metal present in the reaction system examples include the above-mentioned transition metals that can be contained in the ionomer resin.
  • the transition metal present in the reaction system may be, for example, a pure metal composed of a single metal element or an alloy containing at least one transition metal.
  • the state of the transition metal is not particularly limited, and may be, for example, a state of a metal ion, an oxide, a hydroxide, a halide, a metal salt, or the like.
  • the transition metal present in the reaction system is preferably an alloy containing at least one transition metal from the viewpoint of easily enhancing the adhesion to glass under high humidity conditions.
  • the alloy containing at least one of the transition metals has enhanced alkali corrosion resistance to strong bases used in the saponification step and acid corrosion resistance to strong acids used in the demetallization step, and is contained in the ionomer resin.
  • Hastelloy-based stainless steels such as SUS304, SUS316, SUS316L, SUS312L, SUS310S, SUS836L, and SUS890L; Hastelloy B2, Hastelloy B3, Hastelloy B4, Hastelloy C4, Hastelloy.
  • It is preferably a nickel-based alloy such as C2000, Hastelloy C22, Hastelloy C276, Inconel X750, Inconel 625, Inconel 600, Inconel 601, Inconel 625, Inconel 718, Inconel 825.
  • a nickel-based alloy such as C2000, Hastelloy C22, Hastelloy C276, Inconel X750, Inconel 625, Inconel 600, Inconel 601, Inconel 625, Inconel 718, Inconel 825.
  • the alloy enhances the alkali corrosion resistance to the strong base used in the saponification step and the acid corrosion resistance to the strong acid used in the demetallization step, and the content of the transition metal in the ionomer resin is 100 ppm.
  • an alloy containing 50% by mass or more of nickel and chromium in total is preferable.
  • the total content of nickel and chromium may be more preferably 60% by mass or more, still more preferably 70% by mass or more. Further, the total content of nickel and chromium may be preferably 98% by mass or less, more preferably 95% by mass or less, still more preferably 90% by mass or less, from the viewpoint of the durability of the alloy.
  • the saponification step and / or the demetallization step is performed in the reaction device, and at least a part of the reaction device contains at least one transition metal.
  • the saponification step and / or the demetallization step is transitioned by performing the saponification step and / or the demetallization step in the reaction apparatus in which at least a part of the reaction device contains at least one transition metal. It can be done in the presence of metal.
  • At least a part of the reaction apparatus containing at least one transition metal is preferably an alloy containing at least one transition metal, and the alloy containing at least one transition metal is described above, including preferred embodiments. Alloys can be mentioned. Among them, the alloy enhances the alkali corrosion resistance to the strong base used in the saponification step and the acid corrosion resistance to the strong acid used in the demetallization step, and the content of the transition metal in the ionomer resin can be easily adjusted to 100 ppm or less. From the viewpoint, an alloy containing 50% by mass or more of nickel and chromium in total is preferable.
  • At least a part of the reaction apparatus is particularly limited as long as it is a portion in the reaction apparatus where the strong base used in the saponification reaction and / or the strong acid used in the demetallization reaction can come into contact with each other and the corrosion of the transition metal can proceed. However, it may be a portion that can come into contact with a liquid containing, for example, a strong base and / or a strong acid, or a portion that can come into contact with a gas containing a strong base and / or a strong acid.
  • At least a portion of the reactor may be part of a component that may constitute the reactor, eg, a reaction vessel, a stirring blade, a baffle, and a strong base and /.
  • a feed line or the like that supplies a strong acid into the reaction vessel can be mentioned. These may be used alone or in combination of two or more.
  • the feed line that supplies a strong base and / or a strong acid into the reaction vessel includes pipes, addition nozzles, valves, and the like that can form the feed line.
  • At least a part of the reaction apparatus is preferably at least a part of a reaction vessel (for example, a bottom portion, a side portion, etc. of the reaction vessel), and more preferably the entire reaction vessel. preferable.
  • both the saponification step and the demetallization step are transitioned. It may be performed in the presence of a metal or only one of them may be performed in the presence of a transition metal.
  • Examples of the monomers constituting the (meth) acrylic acid ester unit of the ethylene- (meth) acrylic acid ester copolymer (X) include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, and (meth).
  • N-propyl acrylate isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, (meth) ) Amil acrylate, (meth) isoamyl acrylate, (meth) n-hexyl acrylate, (meth) cyclohexyl acrylate, (meth) 2-ethylhexyl acrylate, (meth) pentadecyl acrylate, (meth) dodecyl acrylate , (Meta) isobornyl acrylate, (meth) phenyl acrylate, (meth) benzyl acrylate, (meth) phenoxyethyl acrylate, (meth) 2-hydroxyethyl acrylate, (meth) 2-methoxyethyl
  • preferred monomers are methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (. Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, more preferred monomers are methyl (meth) acrylate, ethyl (meth) acrylate, n (meth) acrylate.
  • ethylene- (meth) acrylic acid ester copolymer (X) examples include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methacryl.
  • Ethyl acid acid copolymer ethylene-n-propyl methacrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid
  • examples thereof include an n-butyl copolymer, an ethylene-n-butyl methacrylate copolymer, a sec-butyl copolymer of ethylene-acrylate, a sec-butyl copolymer of ethylene-methacrylate, and the like.
  • copolymers As these copolymers, commercially available products may be used, or those synthesized by the high-temperature high-pressure radical polymerization method described in US2013 / 0274424, JP-A-2006-23359 or JP-A-2007-84743 may be used.
  • Examples of the commercially available product include "Aklift” (registered trademark) WK307 manufactured by Sumitomo Chemical Co., Ltd., "Lexpearl” (registered trademark) A4250 manufactured by Japan Polyethylene Corporation, and the like.
  • the content of the (meth) acrylic acid ester unit in the ethylene- (meth) acrylic acid ester copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, still more preferably 7 mol. % Or more, particularly preferably 7.5 mol% or more, preferably 10 mol% or less, more preferably 9.9 mol% or less, still more preferably 9.5 mol% or less.
  • the content of the (meth) acrylic acid ester unit in the copolymer (X) is the (meth) acrylic acid unit (A) and the (meth) acrylic acid neutralized product unit (B) in the obtained ionomer resin.
  • the content of the (meth) acrylic acid ester unit in the copolymer (X) is equal to or higher than the above lower limit in order to correspond to the total content of the (meth) acrylic acid ester unit (D) when contained. It is easy to increase the transparency of the obtained ionomer resin, particularly the transparency at the time of slow cooling, and when the content is not more than the above upper limit value, it is easy to increase the elastic ratio of the obtained ionomer resin.
  • the content of the (meth) acrylic acid ester unit in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and the (meth) acrylic acid ester.
  • the content thereof includes the (meth) acrylic acid unit (A), the (meth) acrylic acid neutralized product unit (B), and the ethylene unit (C) in the above-mentioned ionomer resin, and when it is contained (meth).
  • the melt flow rate (MFR) of the ethylene- (meth) acrylic acid ester copolymer (X) measured at 190 ° C. and 2.16 kg according to JIS K7210 is preferable. Is 5 g / 10 minutes or more, more preferably 10 g / 10 minutes or more, further preferably 50 g / 10 minutes or more, still more preferably 100 g / 10 minutes or more, preferably 400 g / 10 minutes or less, and more preferably 350 g / It is 10 minutes or less, more preferably 300 g / 10 minutes or less, and even more preferably 250 g / 10 minutes or less.
  • the MFR of the ethylene- (meth) acrylic acid ester copolymer (X) is at least the above lower limit value and at least the above upper limit value, the moldability and strength of the obtained ionomer resin can be easily improved.
  • the MFR of the ethylene- (meth) acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of the (meth) acrylic acid ester unit.
  • the MFR can be measured, for example, by the method described in Examples.
  • the weight average molecular weight of the ethylene- (meth) acrylic acid ester copolymer (X) is preferably 15,000 g / mol or more, more preferably 20 from the viewpoint of easily improving the molding processability and strength of the obtained ionomer resin. It is 000 g / mol or more, more preferably 30,000 g / mol or more, preferably 200,000 g / mol or less, and more preferably 100,000 g / mol or less. From the same viewpoint, the number average molecular weight of the ethylene- (meth) acrylic acid ester copolymer (X) is preferably 5,000 g / mol or more, more preferably 10,000 g / mol or more, still more preferably 15.
  • the weight average molecular weight and the number average molecular weight can be adjusted by the amount of the polymerization initiator and / or the chain transfer agent at the time of polymerization.
  • the molecular weights (weight average molecular weight and number average molecular weight) of these ethylene- (meth) acrylic acid ester copolymers (X) are column (three series of TSKgel GMH HR -H (20) HT) and 1,2,2, It can be measured in terms of polystyrene using a 4-trichlorobenzene solvent at a column temperature of 140 ° C.
  • the degree of branching of the ethylene- (meth) acrylic acid ester copolymer (X) per 1000 carbons is not particularly limited, and is preferably 5 to 30, more preferably 6 to 20.
  • the degree of branching can be adjusted by the polymerization temperature at the time of polymerizing the copolymer (X).
  • the degree of branching can be measured by dissolving an ethylene- (meth) acrylic acid ester copolymer in deuterated orthodichlorobenzene and using an inverse gate decoupling method of 13 C-NMR.
  • Examples of the strong base used for the saponification reaction in the saponification step include sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, and water is preferable from the viewpoint of solubility in the solvent used for the saponification reaction and economic efficiency.
  • Sodium oxide and potassium hydroxide are preferable from the viewpoint of solubility in the solvent used for the saponification reaction and economic efficiency.
  • the amount of the strong base added is, for example, preferably 100 to 300 mol parts, more preferably 120 parts, based on 100 mol parts of the (meth) acrylic acid ester unit of the ethylene- (meth) acrylic acid ester copolymer (X). It is ⁇ 250 mol parts, more preferably 150-200 mol parts.
  • the method of adding the strong base is not particularly limited. For example, even if the strong base is added to the liquid containing the ethylene- (meth) acrylic acid ester copolymer (X) via the gas phase portion in the reaction vessel, the strong base can be added to the reaction vessel. It may be added directly to the liquid without passing through the gas phase portion.
  • Examples of the solvent used for the saponification reaction include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methylbutylketone; hydrocarbon compounds and methanol, ethanol, etc.
  • Examples include mixed solvents with alcohols such as 1-propanol, 2-propanol and 1-butanol; aromatic compounds such as benzene, toluene, xylene and ethylbenzene; mixed solvents of aromatic compounds and alcohols. These solvents may be used alone or in combination of two or more.
  • a preferable solvent is a mixed solvent of a hydrocarbon compound and alcohols, a mixed solvent of an aromatic compound and alcohols, and a more preferable solvent is toluene or the like. It is a mixed solvent of an aromatic compound and an alcohol such as methanol.
  • the ratio of the hydrocarbon compound or aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used, and for example, the mass ratio of the hydrocarbon compound or the aromatic compound to the alcohol (carbonation).
  • the hydrocarbon compound or aromatic compound / alcohols) may be 50/50 to 90/10.
  • the temperature at which the saponification reaction is carried out is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further, from the viewpoint of its reactivity and the solubility of the ethylene- (meth) acrylic acid ester copolymer (X). It is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and particularly preferably 100 ° C. or higher.
  • the upper limit of the temperature is preferably 180 ° C. or lower, more preferably 180 ° C. or lower, from the viewpoint that it is easy to suppress the excessive progress of corrosion of the transition metal due to the saponification reaction and the content of the transition metal in the ionomer resin can be easily adjusted to 100 mg / kg or less. Is 150 ° C. or lower, more preferably 140 ° C. or lower, still more preferably 130 ° C. or lower, and particularly preferably 120 ° C. or lower.
  • the saponification reaction may be carried out in air or in an inert gas such as nitrogen gas or argon gas. Further, the saponification reaction may be carried out under normal pressure, pressure, or reduced pressure, and is preferably carried out under pressure.
  • Examples of the strong acid used for the demetallization reaction in the demetallization step include hydrochloric acid, nitric acid, sulfuric acid, toluenesulfonic acid and the like. From the viewpoint of easy washing and removal of salts by-produced from the strong base used in the saponification reaction and the strong acid used in the demetallization reaction, inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid are preferable.
  • the solvent used for the demetallization the same solvent as the solvent used for the saponification reaction can be selected.
  • the amount of the strong acid added can be selected according to the amount of the strong base added in order to adjust the (meth) acrylic acid neutralized substance unit (B) to an arbitrary value.
  • the method of adding the strong acid may be, for example, a method of adding the strong acid to the solution of the saponified product via the gas phase portion in the reaction vessel, and the saponified product does not pass through the gas phase portion in the reaction vessel.
  • a method of adding a strong acid directly to the solution in the solution may be used.
  • the strong acid is added from the center of the reaction tank from the viewpoint of making it difficult for the added strong acid to come into contact with the wall surface of the gas phase part of the reaction tank.
  • the shortest distance to the wall surface of the reaction tank is defined as the distance L
  • the strong acid is preferably added within 2 m from the liquid surface from the viewpoint of making it difficult for the strong acid to be added to come into contact with the wall surface of the vapor phase portion of the reaction tank. It is preferable to carry out from a position within 1 m.
  • the feed port of the addition nozzle is located within 20% of the distance L from the center of the reaction vessel and within 2 m or 1 m from the liquid surface.
  • a strong acid may be added to the solution of the saponified product via the gas phase portion in the reaction vessel.
  • a strong acid may be added to the solution of the saponified product via the gas phase portion in the reaction vessel.
  • the feed port of the addition nozzle that adds the strong acid to the saponified solution is the liquid level of the saponified solution.
  • the content of the transition metal in the ionomer resin can be easily adjusted to 100 mg / kg or less, demetallization is performed, and a strong acid is added to the solution of the saponified material to the gas phase portion in the reaction vessel. It is preferable to carry out by adding in the liquid without going through.
  • the stirring method is not particularly limited, but the stirring method is a method of stirring by an industrially general-purpose stirring blade having an arbitrary shape such as a max blend blade, a three-piece swept wing, a paddle blade, a multi-stage paddle blade, a turbine blade, and an anchor blade. good.
  • the stirring blades it is preferable to stir with the Max Blend blade from the viewpoint that the added strong acid can be easily mixed uniformly.
  • the temperature at the time of demetallization is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, still more preferably 40 ° C. or higher, and transition due to the demetallization reaction, from the viewpoint of easily lowering the viscosity of the reaction solution. From the viewpoint of easily suppressing the excessive progress of metal corrosion and easily adjusting the content of the transition metal in the ionomer resin to 100 mg / kg or less, it is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, still more preferably 120 ° C. It is as follows.
  • the demetallization may be carried out in air or in an inert gas such as nitrogen gas or argon gas, as in the saponification reaction. Further, the saponification reaction may be carried out under normal pressure, pressure, or reduced pressure, and is preferably carried out under pressure.
  • the neutralizing agent used for neutralizing a part of the (meth) acrylic acid unit and converting it into the (meth) acrylic acid neutralizing substance unit contains a metal ion. It is not particularly limited as long as it is an ionic compound.
  • the metal ions include alkali metal ions such as lithium, potassium and sodium, alkaline earth metal ions such as magnesium and calcium, transition metal ions such as zinc, nickel, iron and titanium, and aluminum ions.
  • the neutralizing agent include sodium hydroxide, sodium acetate, sodium hydrogencarbonate and the like.
  • a polymer such as an ionomer resin containing a (meth) sodium acrylate unit can also be used as a neutralizing agent.
  • the separation and purification step for separation and purification may be carried out by a conventional method, for example, separation means such as filtration, washing, concentration, reprecipitation, recrystallization and silica gel column chromatography.
  • a poor solvent is added to a solution of a crude ionomer resin to precipitate a granular resin, and then the precipitated granular resin is produced from the viewpoint of easy washing and removal of by-produced salts. It is preferable to carry out by washing with a washing liquid.
  • the crude ionomer resin solution can be prepared by dissolving the crude ionomer resin obtained after the neutralization step after the demetallization step or the demetallization step in a solvent, and after the demetallization step or the demetallization step.
  • the reaction solution obtained after the neutralization step may be used as a solution of a crude ionomer resin.
  • the solvent in the solution of the crude ionomer resin is not particularly limited as long as it is a solvent capable of dissolving the crude ionomer resin, and examples thereof include the same solvent as the solvent used for the saponification reaction.
  • a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of the solubility of the crude ionomer resin.
  • the ratio of the aromatic compound to the alcohols in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the aromatic compound to the alcohols (aromatic compound / alcohols) may be selected. , 50/50 to 90/10, preferably 65/35 to 85/15.
  • the concentration of the solution of the crude ionomer resin it is easy to obtain a granular resin having a small particle size, and as a result, when an excess transition metal is present in the crude ionomer resin, the excess transition metal can be removed and by-product.
  • it is preferably 30% by mass or less, more preferably 15% by mass or less, and preferably 1% by mass or more, more preferably 5% by mass or more.
  • the temperature of the solution of the crude ionomer resin should be lower than the melting point of the ionomer resin from the viewpoint that it is easy to suppress the aggregation or sticking of the precipitated granular resin and it is easy to remove the excess transition metal and the by-produced salt in the ionomer resin. Is preferable, more preferably 60 ° C. or lower, still more preferably 50 ° C. or lower. Further, from the viewpoint of the fluidity of the solution of the crude ionomer resin, the temperature is more preferably 25 ° C. or higher, still more preferably 30 ° C. or higher.
  • the poor solvent to be added to the crude ionomer resin solution is not particularly limited as long as it is a solvent that is mixed with the crude ionomer resin solution and does not dissolve the ionomer resin.
  • methanol, ethanol, 1-propanol, 2-propanol, etc. Alcohols such as 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; hydrocarbons such as n-hexane, cyclohexane and heptane. Examples include compounds.
  • the poor solvent is preferably methanol, 2-propanol or the like from the viewpoint of easy drying of the ionomer resin due to its low boiling point and easy removal of excess transition metal and by-produced salt in the granular resin.
  • the amount of the poor solvent added may be appropriately selected according to the concentration of the crude ionomer resin solution.
  • the amount of the poor solvent added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the solution of the crude ionomer resin.
  • the upper limit of the amount of the poor solvent added is not particularly limited, and the upper limit of the amount of the poor solvent added is usually 1000 parts by mass or less with respect to 100 parts by mass of the solution of the crude ionomer resin.
  • the method of adding the poor solvent to the solution of the crude ionomer resin is not particularly limited.
  • the poor solvent may be added to the solution of the crude ionomer resin at one time, or may be added in a plurality of times by dropping or the like. good.
  • the particle size of the granular resin tends to be smaller, which tends to improve the removability of excess transition metals and by-produced salts in the granular resin, and as a result, the transparency of the ionomer resin tends to be improved.
  • the poor solvent is added in a plurality of times, it is preferable to complete the addition of the poor solvent within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
  • the stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain granular particles having a small particle size.
  • the stirring time is not particularly limited, and for example, the mixture may be stirred until granular particles are precipitated and the mixture of the crude ionomer resin solution and the poor solvent becomes a slurry, and specifically, preferably for 1 second or longer. It is 3 hours or less, more preferably 10 seconds or more and 1 hour or less, and further preferably 1 minute or more and 30 minutes or less.
  • the peak top particle size of the granular resin deposited by adding a poor solvent to the solution of the crude ionomer resin is determined from the viewpoint that it is easy to remove the by-produced salt in the granular resin by increasing the specific surface area of the granular resin. From the viewpoint of facilitating the reduction of the content of the excess transition metal and, as a result, the content of the transition metal in the ionomer resin can be easily adjusted within the range of 0.01 to 100 mg / kg, 700 ⁇ m or less, preferably 650 ⁇ m. Below, it is more preferably 600 ⁇ m or less, still more preferably 550 ⁇ m or less. Further, from the viewpoint of easily improving the filterability of the granular resin and easily improving the production efficiency of the ionomer resin, it is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and preferably 80 ⁇ m or more.
  • the peak top particle size of the granular resin to be precipitated by adding a poor solvent to the crude ionomer resin solution can be adjusted by adjusting the concentration and temperature of the crude ionomer resin solution. Specifically, when the concentration and / or temperature of the crude ionomer resin solution is lowered, the peak top particle size of the precipitated granular resin can be reduced, and when the concentration and / or temperature of the crude ionomer resin solution is increased, precipitation occurs. The peak top particle size of the granular resin can be increased.
  • the peak top particle size of the granular resin can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixed solution of the crude ionomer resin solution and the poor solvent.
  • the cleaning liquid for cleaning the precipitated granular resin is not particularly limited as long as it is a solvent in which the ionomer resin does not dissolve.
  • Examples of preferable cleaning solutions include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; dimethyl ether, diethyl ether, tetrahydrofuran and the like. Ethers are mentioned. These may be used alone or in combination of two or more.
  • cleaning liquids alcohols, water, and a mixed liquid thereof are preferable from the viewpoint of easily removing excess transition metals and by-produced salts. Furthermore, by making the specific gravity of the cleaning liquid smaller than that of the granular resin, the contact area between the cleaning liquid and the granular resin can be increased, so that the removability of transition metals and by-produced salts can be easily improved, and the organic contained in the granular resin can be easily improved. From the viewpoint of facilitating the removal of impurities such as compounds and the ease of drying the ionomer resin obtained after cleaning, a more preferable cleaning liquid is a mixed liquid of water and alcohols.
  • Preferred alcohols are methanol, ethanol, and more preferably methanol because they are easy to dry and have high compatibility with water.
  • the ratio of water to alcohols (water / alcohols (mass%)) in the mixed solution of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. ..
  • the method of cleaning the granular resin with a cleaning liquid there is a method of filtering out the granular resin from the granular resin dispersion liquid in which the granular resin is precipitated, mixing the collected granular resin with the cleaning liquid, and then removing the liquid. .. More specifically, after mixing the granular resin collected by filtration from the granular resin dispersion and the cleaning liquid, the granular resin is collected by filtration from the cleaning liquid (hereinafter, also referred to as cleaning step (a)), and then the collected granules.
  • a method of cleaning by mixing the resin with a new cleaning liquid and then filtering out the granular resin from the cleaning liquid (hereinafter, also referred to as a cleaning step (b)) can be mentioned.
  • the cleaning of the granular resin is performed from the viewpoint of easy removal of the transition metal and by-produced salts contained in the granular resin and the production efficiency of the ionomer resin.
  • the cleaning step (b) is preferably performed 1 to 10 times, and the number of cleaning steps (b) after one cleaning step (a) is more preferably 1 to 6 times, still more preferably 1 to 4 times. Is.
  • the amount of the cleaning liquid used per cleaning step may be appropriately selected according to the amount of the granular resin to be washed.
  • the amount of the cleaning liquid used per cleaning step is preferably 100 parts by mass to 2000 times, more preferably 200 parts by mass to 1000 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the granular resin at the time of drying. Is 300 parts by mass to 700 parts by mass.
  • the ionomer resin obtained by washing the granular resin with a cleaning liquid may be dried if necessary.
  • the drying temperature may be preferably equal to or lower than the melting point of the ionomer resin, more preferably 80 ° C. or lower.
  • the ionomer resin of the present invention can be produced by a method other than the production method (I).
  • a method other than the above-mentioned production method (I) capable of producing the ionomer resin of the present invention for example, ethylene and (meth) acrylic acid are used as raw materials, and a copolymer obtained by polymerizing them is partially neutralized. Later, a method of adding a transition metal to the obtained partially neutralized product (hereinafter, also referred to as a production method (II)) can be mentioned.
  • a step of partially neutralizing the obtained ethylene- (meth) acrylic acid copolymer with a strong base (partial neutralization step), and a step of adding a transition metal to the obtained partially neutralized product (addition step).
  • An ionomer resin containing 0.01 to 100 mg / kg of a transition metal can be produced by a method containing the above.
  • the ionomer having a transition metal content of 0.01 to 100 mg / kg in the resin is obtained.
  • the transition metal that can be added to the partially neutralized product include transition metals that can be contained in the ionomer resin of the present invention.
  • the state of the transition metal when added to the resin is not particularly limited, and may be, for example, a transition metal oxide, a transition metal hydroxide, a transition metal halide, a transition metal salt, or the like, and these may be dispersed or dispersed in a solvent. It may be added in a dissolved state.
  • the amount of the transition metal added may be appropriately selected so that the content of the transition metal in the ionomer resin is in the range of 0.01 to 100 mg / kg.
  • the amount of the transition metal added may be appropriately selected so that the content of the transition metal in the ionomer resin is in the range of 0.01 to 100 mg / kg.
  • It may be 0.01 ⁇ 10 -4 to 100 ⁇ 10 -4 parts by mass, preferably 0.05 ⁇ 10 -4 to 50 ⁇ 10 -4 parts by mass, based on 100 parts by mass of the obtained resin. It may be preferably 0.1 ⁇ 10 -4 to 10 ⁇ 10 -4 parts by mass, and more preferably 0.2 ⁇ 10 -4 to 5 ⁇ 10 -4 parts by mass.
  • the partially neutralized product and the transition metal may be mixed using a mixing stirrer, an extruder or the like.
  • the ionomer resin of the present invention is a method of adding a transition metal to a crude ionomer resin obtained by performing a saponification step and a demetallization step in the absence of a transition metal in the above-mentioned production method (I) (hereinafter referred to as a method). , Also referred to as manufacturing method (III)). Further, the ionomer resin of the present invention is a method of adding a transition metal during the production of the partially neutralized product in the production method (II), for example, between the copolymerization step and the partial neutralization step (hereinafter referred to as a method). It can also be manufactured by a manufacturing method (IV)). As the transition metal added in the production method (III) and the production method (IV), the same one as in the production method (II) can be used.
  • an additive may be added to the ionomer resin of the present invention, if necessary, to obtain a resin composition.
  • the resin composition comprises the ionomer resin of the present invention and an additive.
  • additives examples include ultraviolet absorbers, antioxidants, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, mold release agents, and polymer processing aids. , Antistatic agents, flame retardants, dyes and pigments, organic dyes, matting agents, phosphors and the like. Among these additives, ultraviolet absorbers, antioxidants, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, mold release agents, polymer processing aids, and organic dyes are preferable. When added, the additive may be used alone or in combination of two or more.
  • the resin composition may contain an adhesion promoter such as a silane coupling agent as an additive, but from the viewpoint of suppressing the formation of crosslinked gels and easily obtaining a resin sheet having a good appearance, adhesion is performed. It is preferable that it does not contain an accelerator.
  • the ultraviolet absorber is a compound having the ability to absorb ultraviolet rays, and is said to have the function of mainly converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. These may be one kind alone or a combination of two or more kinds.
  • Benzotriazoles are preferable as UV absorbers because they have a high effect of suppressing deterioration of optical properties such as coloring due to UV exposure.
  • Examples of preferred benzotriazoles include 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2-.
  • (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name: TINUVIN234), 2,2'-methylenebis [6- (2H-benzo Triazole-2-yl) -4-t-octylphenol] (manufactured by ADEKA Co., Ltd .; LA-31), 2- (5-octylthio-2H-benzotriazole-2-yl) -6-tert-butyl-4- Examples include methylphenol. These may be one kind alone or a combination of two or more kinds.
  • triazine UV absorbers examples include 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA Co., Ltd .; LA-). F70) and its analogs, hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN477 and TINUVIN460), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3. 5-Triazine and the like can be mentioned. These may be one kind alone or a combination of two or more kinds.
  • anti-aging agent examples include known materials. Specific examples of anti-aging agents include hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di (t-butyl) -4-methylphenol, mono (or di, or tri).
  • Phenolic compounds such as phenol; 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), Bisphenol compounds such as 4,4'-thiobis (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2- Amine-ketone compounds such as dihydro-2,2,4-trimethylquinoline, reaction products of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinoline polymers; N-phenyl-1-naphthylamine, Fragrances such as alkylated diphenylamines, octylated diphenylamines, 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamines, p- (
  • the antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen.
  • phosphorus-based antioxidants hindered phenol-based antioxidants, thioether-based antioxidants, and the like can be mentioned. These antioxidants may be used alone or in combination of two or more. Among them, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and a combination of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring. ..
  • the amount of the phosphorus-based antioxidant used is preferably 1: 5 to 2 in terms of mass ratio. 1, more preferably 1: 2 to 1: 1.
  • Examples of preferable phosphorus-based antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2). , 4-di-t-butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8 , 10-Tetraoxa 3,9-diphosphaspiro [5.5] Undecane (manufactured by ADEKA Corporation; trade name: ADEKA STUB PEP-36) and the like. These may be one kind alone or a combination of two or more kinds.
  • antioxidants examples include pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (BASF; trade name IRGANOX1010), octadecyl. -3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) and the like can be mentioned. These may be one kind alone or a combination of two or more kinds.
  • the heat deterioration inhibitor can prevent the heat deterioration of the resin by capturing the polymer radicals generated when exposed to high heat under a substantially oxygen-free state.
  • a preferable heat deterioration inhibitor 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name) Sumilyzer GM), 2,4-di-t-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy- ⁇ -methylbenzyl) phenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; product The name simulator GS) and the like can be mentioned. These may be one kind alone or a combination of two or more kinds.
  • the light stabilizer is a compound that is said to have a function of capturing radicals mainly generated by oxidation by light.
  • preferred light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton. These may be one kind alone or a combination of two or more kinds.
  • anti-sticking agents examples include fatty acid salts or esters, polyhydric alcohol esters, inorganic salts, inorganic oxides, and particulate resins.
  • preferable anti-sticking agents include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Evonik; trade name Aerosil), particulate acrylic resin and the like. These may be one kind alone or a combination of two or more kinds.
  • lubricants include stearic acid, behenic acid, stearomic acid, methylene bisstearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, hydrogenated oil and the like. These may be one kind alone or a combination of two or more kinds.
  • the release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. These may be one kind alone or a combination of two or more kinds.
  • polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m which can be produced by an emulsion polymerization method, are usually used.
  • the polymer particles may be single-layer particles made of polymers having a single composition ratio and a single extreme viscosity, or may be multilayer particles made of two or more kinds of polymers having different composition ratios or extreme viscosities. good. These may be one kind alone or a combination of two or more kinds.
  • particles having a two-layer structure having a polymer layer having a low ultimate viscosity in the inner layer and a polymer layer having a high ultimate viscosity of 5 dl / g or more in the outer layer are preferable.
  • the ultimate viscosity of the polymer processing aid is preferably 3 to 6 dl / g. If the ultimate viscosity is too small, the effect of improving the moldability tends to be low, and if the ultimate viscosity is too large, the moldability of the copolymer tends to be deteriorated.
  • the organic dye a compound having a function of converting ultraviolet rays into visible light is preferably used.
  • the organic dye may be used alone or in combination of two or more.
  • fluorescent materials include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, fluorescent bleaching agents, and the like. These may be one kind alone or a combination of two or more kinds.
  • the contents of various additives can be appropriately selected as long as the effects of the present invention are not impaired, and the total content of various additives is preferable with respect to the total mass of the resin composition. Is 7% by mass or less, more preferably 5% by mass or less, still more preferably 4% by mass or less.
  • additives may be added at the time of producing the ionomer resin, may be added after the production of the ionomer resin, or may be added at the time of producing the resin sheet described later.
  • the ionomer resin of the present invention and the resin composition of the present invention may be in the form of pellets or the like in order to enhance convenience during storage, transportation, or molding.
  • the ionomer resin and the resin composition are pelletized, they can be obtained, for example, by cutting the strands obtained by the melt extrusion method.
  • the temperature of the resin or the resin composition at the time of melt extrusion in the case of pelleting by the melt extrusion method is preferably 150 ° C. or higher, more preferably 170 ° C. or higher from the viewpoint of easily stabilizing the discharge from the extruder. Further, the temperature is preferably 250 ° C. or lower, more preferably 230 ° C.
  • the ionomer resin of the present invention and the resin composition of the present invention have high heat-resistant decomposition resistance, problems such as thermal decomposition of the ionomer resin to generate black foreign matter are unlikely to occur when pelletizing by the melt extrusion method. ..
  • the present invention also includes a resin sheet having one or more layers containing the ionomer resin of the present invention.
  • the resin sheet of the present invention has one or more layers containing the ionomer resin of the present invention (hereinafter, also referred to as layer (x)).
  • the layer (x) is a layer containing the ionomer resin of the present invention or the resin composition of the present invention.
  • the resin sheet of the present invention may be composed of only the layer (x), or may be a laminated body containing at least one layer (x).
  • the laminate is not particularly limited, and examples thereof include a laminate containing two or more layers (x) and a laminate including one or more layers (x) and one or more other layers. Be done.
  • the resin or the resin composition constituting each layer may be the same or different.
  • Examples of the other layer include a layer containing a known resin.
  • the resin include polyethylene terephthalate, polybutylene terephthalate, cyclic polyolefin, and polyphenylene sulfide among polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, and polyester.
  • Polytetrafluoroethylene, polysulfone, polyether sulfone, polyarylate, liquid crystal polymer, polyimide, thermoplastic elastomer and the like can be used.
  • additives may also contain the above-mentioned additives, as well as plasticizers, anti-blocking agents, pigments, dyes, and heat-shielding materials (for example, inorganic heat-shielding fine particles or organic heat-shielding materials having infrared absorbing ability).
  • plasticizers for example, acrylic wax, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate,
  • the resin sheet of the present invention has a concavo-convex structure on the surface by a conventionally known method such as melt fracture or embossing. It is preferable to have.
  • melt fracture and the embossing conventionally known shapes may be appropriately selected.
  • the thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more. Further, it is preferably 5 mm or less, more preferably 4 mm or less, still more preferably 2 mm or less, and particularly preferably 1 mm or less.
  • the layer (x) in the resin sheet is a plurality of layers, the thickness of the plurality of layers (x) one layer in the resin sheet may be the same or different.
  • the thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, still more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more.
  • it is more preferably 0.6 mm or more, particularly preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably.
  • the thickness of the resin sheet is measured by a conventionally known method, for example, a contact type or non-contact type thickness gauge.
  • the resin sheet may be in the state of being rolled up in a roll shape or in the state of being single-striped one by one.
  • the resin sheet of the present invention may have haze, water absorption haze, slow cooling haze, adhesion to glass and yellowness of the ionomer resin of the present invention.
  • the resin sheet of the present invention preferably has a low water content from the viewpoint of being difficult to foam when manufacturing laminated glass.
  • the water content of the resin sheet is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less.
  • the content can be measured by a potentiometric titration method.
  • the method for producing the resin sheet of the present invention is not particularly limited.
  • the layer (x) is formed by a known film forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method. Can be manufactured.
  • the layer (x) may be used alone as a resin sheet. Further, if necessary, two or more layers (x) or one or more layers (x) and one or more other layers may be laminated by press molding or the like to form a laminated resin sheet.
  • Two or more layers (x), or one or more layers (x) and one or more other layers may be molded by a coextrusion method to form a laminated resin sheet.
  • the resin or the resin composition constituting each layer may be the same or different.
  • the resin temperature at the time of extrusion is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, from the viewpoint of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles.
  • the resin temperature at the time of extrusion is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, from the viewpoint of easily reducing the decomposition of the resin and the deterioration of the resin due to the decomposition.
  • the resin sheet of the present invention can be suitably used as a laminated glass interlayer film (also simply referred to as an interlayer film). Therefore, the present invention includes a laminated glass interlayer film made of the resin sheet of the present invention.
  • the present invention also includes laminated glass having two glass plates and a laminated glass interlayer film of the present invention arranged between the two glass plates. Since the laminated glass of the present invention has a laminated glass interlayer film made of the resin sheet, it can have excellent transparency.
  • Examples of the glass plate laminated with the interlayer film of the present invention include inorganic glass such as float plate glass, polished plate glass, template glass, meshed plate glass, and heat ray absorbing plate glass, as well as conventionally known organic materials such as polymethyl methacrylate and polycarbonate. Glass or the like can be used. These may be either colorless or colored. These may be used alone or in combination of two or more. Further, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
  • inorganic glass such as float plate glass, polished plate glass, template glass, meshed plate glass, and heat ray absorbing plate glass, as well as conventionally known organic materials such as polymethyl methacrylate and polycarbonate. Glass or the like can be used. These may be either colorless or colored. These may be used alone or in combination of two or more. Further, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
  • the laminated glass formed by sandwiching the resin sheet of the present invention between two sheets of glass can be manufactured by a conventionally known method.
  • a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, a method using a nip roll, and the like can be mentioned.
  • a vacuum laminator device for example, a glass plate, an interlayer film, and an arbitrary layer (for example, an adhesive resin) at 60 to 200 ° C., particularly 80 to 160 ° C. under a reduced pressure of 1 ⁇ 10 -6 to 1 ⁇ 10 -1 MPa.
  • Laminated glass can be manufactured by laminating layers, etc.).
  • a method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, which is a glass plate at 100 to 160 ° C. under a pressure of about 2 ⁇ 10 ⁇ 2 to 3 ⁇ 10 ⁇ 2 MPa.
  • Laminated glass can be manufactured by laminating an interlayer film and any layer.
  • a glass plate, an interlayer film and an arbitrary layer are laminated, degassed by a roll at a temperature equal to or lower than the flow start temperature of the interlayer film, and then pressure-bonded at a temperature closer to the flow start temperature.
  • a method of heating to 30 to 70 ° C. with an infrared heater or the like, degassing with a roll, further heating to 50 to 120 ° C., and then crimping with a roll can be mentioned.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass, and the pressure is, for example, 0.5 to 1.5 MPa. Lower, it is preferable to treat at 100 to 160 ° C. for 0.5 to 3 hours.
  • the laminated glass of the present invention has excellent transparency.
  • the haze of the laminated glass when the sheet thickness of the interlayer film is 0.8 mm is preferably 1.0% or less, more preferably 0.8% or less, still more preferably 0.5. % Or less.
  • the haze of the laminated glass is measured using a haze meter in accordance with JIS K7136: 2000.
  • the laminated glass of the present invention is excellent in transparency even after being heated to 140 ° C. and then slowly cooled from 140 ° C. to 23 ° C. at a rate of 0.1 ° C./min.
  • a haze (slow cooling haze) after heating a laminated glass having a sheet thickness of 0.8 mm to 140 ° C and then slowly cooling from 140 ° C to 23 ° C at a rate of 0.1 ° C / min is preferable. Is 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and particularly preferably 3.0% or less.
  • the smaller the haze the higher the transparency of the laminated glass. Therefore, the lower limit is not particularly limited and may be, for example, 0.01%.
  • the slow cooling haze is also measured using a haze meter in accordance with JIS K7136: 2000.
  • the laminated glass of the present invention is less colored and is preferably colorless as much as possible.
  • the yellowness (YI) of the laminated glass of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, when the sheet thickness of the interlayer film is 0.8 mm. Particularly preferably, it is 1.0 or less.
  • the yellowness (YI) is measured in accordance with JIS Z8722 using a colorimeter.
  • the adhesiveness of the interlayer film to the glass in the laminated glass of the present invention can be evaluated by the peeling energy between the glass and the ionomer resin measured by the peeling test.
  • the peeling energy between the glass and the ionomer resin measured under standard conditions is preferably 2 kJ / m 2 or more, more preferably 2.5 kJ / m 2 or more, still more preferably 3 kJ / m. 2 or more, particularly preferably 3.5 kJ / m 2 or more.
  • the adhesiveness to the glass under high humidity conditions can be evaluated by the peeling energy between the glass and the ionomer resin measured by the peeling test under Wet conditions.
  • the peeling energy between the glass and the ionomer resin measured under Wet conditions is preferably 0.05 kJ / m 2 or more, more preferably 0.1 kJ / m 2 or more, still more preferably 0.15 kJ / m 2 or more, particularly. It is preferably 0.2 kJ / m 2 or more.
  • the upper limit of the peeling energy under standard conditions and high humidity conditions is not particularly limited and may be 10 kJ / m 2 or less.
  • the peeling test can be performed, for example, by the method described as Peel Adhesion Measurement described in International Publication No. 2019-027865.
  • the peeling energy measured under the standard conditions and the Wet conditions can be measured by, for example, the method described in Examples.
  • the adhesiveness of the interlayer film of the laminated glass of the present invention to the glass plate can also be evaluated by, for example, the compression shear strength test described in International Publication No. 1999-058334.
  • the compressive shear strength is preferably 15 MPa or more, more preferably 20 MPa or more, and particularly preferably 25 MPa or more, from the viewpoint of easily increasing the adhesive strength. Further, the compressive shear strength may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
  • the resin sheet having one or more layers containing the ionomer resin of the present invention is useful as a laminated glass interlayer film.
  • the laminated glass interlayer film is particularly preferable as an interlayer film for laminated glass for structural materials because it is excellent in adhesiveness, transparency, and self-supporting property to a base material such as glass. Further, it is suitable not only as a laminated glass interlayer film for structural materials but also as a laminated glass interlayer film in various applications such as moving bodies such as automobiles, buildings, and solar cells, but it is not limited to these applications. not.
  • the ionomer resins obtained in Examples and Comparative Examples were each dissolved in a mixed solvent of dehydrated toluene / dehydrated acetic acid (75/25% by mass), reacted at 100 ° C. for 2 hours, and then acetone / water (80/20).
  • the (meth) acrylic acid neutralized product unit (B) was converted to the (meth) acrylic acid unit (A) by reprecipitation in a mixed solvent of (% by mass).
  • the obtained resin was sufficiently washed with water, dried, and the following (1) to (3) were performed on the dried resin.
  • the components of the monomer units constituting the resin were analyzed by thermal decomposition GC-MS.
  • the acid value of the resin was measured according to JIS K0070-1992.
  • the resulting solution of decomposition product is diluted with a 50 ml PFA volumetric flask, then filtered using a 0.45 ⁇ m thick filtration filter, and then subjected to high frequency inductively coupled plasma emission spectroscopy (Thermo Fisher SCIENTIFIC).
  • the transition metal content in the resin fat composition was measured by "iCAP6500Duo").
  • melt flow rates of the raw material resins used in Examples and Comparative Examples and the ionomer resins obtained in Examples and Comparative Examples were measured. Specifically, each resin is melted in a cylinder and extruded from a die having a nominal hole diameter of 2.095 mm installed at the bottom of the cylinder under a load condition of 190 ° C. and 2.16 kg, and the amount of resin extruded per 10 minutes. (G / 10 minutes) was measured.
  • thermostable decomposition properties of the ionomer resins obtained in Examples and Comparative Examples were evaluated according to JIS K7120-1987. Specifically, using a differential thermogravimetric simultaneous measuring device TG-DTA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), each resin was heated at 20 ° C. under a nitrogen atmosphere with a heating rate of 10 ° C./min and a flow rate of 50 mL / min. The weight loss rate when heated to ⁇ 550 ° C. was measured. The 1% weight loss temperature (Td1), which is the temperature at which the weight loss rate becomes 1% based on the weight at 200 ° C., was used as an index of heat degradability.
  • Td1 The 1% weight loss temperature
  • Transparency under high humidity conditions was evaluated by measuring the water absorption haze by the following method.
  • the resin sheet obtained in the same manner as described above was cut into 50 mm squares, and the cut sample was held in a state of being immersed in ion-exchanged water at 23 ° C. for 300 hours to obtain a water-absorbing sample.
  • the haze of the water-absorbing sample is measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136: 2000. bottom.
  • the laminated glass obtained by the above method was heated to 140 ° C. and then slowly cooled to 23 ° C. at a rate of 0.1 ° C./min.
  • the haze of the laminated glass after the slow cooling operation was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136: 2000.
  • Adhesion to glass under Wet conditions Adhesion to glass under high humidity conditions was evaluated by measuring the peeling energy under Wet conditions by the following method.
  • the laminated glass obtained in the same manner as described above is subjected to a universal testing machine (MTS Criterion M45) according to the method described as Peel Adhesion Measurement described in International Publication No. 2019/027865.
  • MTS Criterion M45 The method described as Peel Adhesion Measurement described in International Publication No. 2019/027865.
  • Peel Adhesion Measurement described in International Publication No. 2019/027865.
  • Hastelloy B2 Nickel 68% by mass, molybdenum 28% by mass, iron 2% by mass, chromium 1% by mass, cobalt 1% by mass
  • Hastelloy C22 Nickel 56% by mass, molybdenum 13% by mass, iron 3% by mass, chromium 22% by mass, other 6% mass
  • SUS312L nickel 20% by mass, molybdenum 7% by mass, iron 47% by mass, chromium 21% by mass, etc.
  • SUS316L Nickel 15% by mass, molybdenum 3% by mass, iron 59% by mass, chromium 18% by mass, other 5% by mass
  • SUS304 Nickel 11% by mass, iron 64% by mass, chromium 20% by mass, other 5% by mass
  • SUS316 Nickel 14% by mass, molybdenum 3% by mass, iron 60% by mass, chromium 18% by mass, other 5% by mass
  • Example 1 A pressure vessel equipped with a Hastelloy B2 Maxblend blade was used as the reaction vessel. 100 parts by mass of EMMA1 in Table 1 was introduced into the reaction vessel, 233 parts by mass of toluene was added thereto, and the mixture was stirred at 60 ° C. under 0.02 MPa pressurization to dissolve EMMA1. To the obtained solution, 96 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added, and the mixture was stirred at 100 ° C. for 4 hours to saponify EMMA1 to convert a part of the methyl methacrylate unit into a sodium methacrylate unit. Converted.
  • Example 2 An ionomer resin was obtained in the same manner as in Example 1 except that a pressure-resistant container made of Hastelloy C22 was used as a reaction vessel instead of the pressure-resistant container made of Hastelloy B2 and EMMA2 was used instead of EMMA1.
  • the analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • Example 3 It is used as a Hastelloy C22 pressure-resistant container reaction tank instead of the Hastelloy B2 pressure-resistant container, and EMMA2 is used instead of EMMA1.
  • An ionomer resin was obtained in the same manner as in Example 1 except that it was added dropwise to the reaction solution. The analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • Example 4 An ionomer resin was obtained in the same manner as in Example 1 except that a pressure-resistant container made of SUS312L was used as a reaction tank instead of the pressure-resistant container made of Hastelloy B2 and EMMA2 was used instead of EMMA1.
  • the analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • Example 5 An ionomer resin was obtained in the same manner as in Example 1 except that a pressure-resistant container made of SUS316L was used as a reaction vessel instead of the pressure-resistant container made of Steroy B2 and EEA1 was used instead of EMMA1.
  • the analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • Example 6 With reference to the method described in US Pat. No. 6,518,365, ethylene and methacrylic acid are copolymerized to obtain an ethylene- (meth) acrylic acid copolymer, and then the copolymer is partially neutralized with sodium hydroxide. bottom.
  • An ionomer resin containing a transition metal was obtained by adding 3.4 ⁇ 10 -4 parts by mass of a 20% aqueous solution of iron (II) chloride in an extruder to 100 parts by mass of the obtained partially neutralized product. ..
  • the analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • Example 1 A pressure vessel made of SUS304 is used as a reaction vessel instead of a pressure vessel made of Hastelloy B2, and EMMA2 is used instead of EMMA1.
  • An ionomer resin was obtained in the same manner as in Example 1 except that it was added dropwise to the reaction solution. The analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • Comparative Example 2 An ionomer resin was obtained in the same manner as in Comparative Example 1 except that a pressure-resistant container made of SUS316 was used as a reaction tank instead of the pressure-resistant container made of SUS304. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin.
  • Example 3 An ionomer resin was obtained in the same manner as in Example 1 except that a pressure-resistant container made of Hastelloy C22 was used as a reaction vessel instead of the pressure-resistant container made of Hastelloy B2 and EMMA3 was used instead of EMMA1.
  • the analysis results and evaluation results of the obtained ionomer resin are shown in Tables 2 and 3.
  • the ionomer resin obtained in the examples has a lower water absorption haze and higher transparency even in a water-absorbed state than the ionomer resin obtained in the comparative example, under Wet conditions. It was confirmed that the peeling energy was high, the adhesiveness to the glass was high even under high humidity conditions, and the heat-resistant decomposition property was high. Further, the resin sheet produced by using the ionomer resin obtained in the examples had a small amount of gelled product and had a good appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含む、アイオノマー樹脂であって、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、前記アイオノマー樹脂中の遷移金属の含有量は0.01~100mg/kgである、アイオノマー樹脂に関する。

Description

アイオノマー樹脂、樹脂シートおよび合わせガラス
 本特許出願は日本国特許出願第2020-163733号(出願日:2020年9月29日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、アイオノマー樹脂およびその製造方法、該アイオノマー樹脂を含む層を1層以上有する樹脂シート、該樹脂シートからなる合わせガラス中間膜、および該合わせガラス中間膜を有する合わせガラスに関する。
 エチレン・不飽和カルボン酸共重合体の中和物であるアイオノマーは、透明性およびガラスとの接着性に優れるため、合わせガラスの中間膜に使用されている(例えば、特許文献1)。近年、合わせガラスに対する要求性能が高くなり、アイオノマー樹脂に対しても、合わせガラスの製作条件によらず高い透明性を保持すること、高温においても高い弾性率を維持し、合わせガラスの強度を低下させないこと、より着色が少なく外観が優れること、よりガラスとの接着性に優れ、ガラスと剥離しにくいこと等が求められるようになってきた。
 特許文献2には、部分的に中和されたα,β-エチレン性不飽和カルボン酸を導入しているイオノマーまたはイオノマーブレンドを含む少なくとも1つの層を有し、前記イオノマーまたはイオノマーブレンドが前記α,β-エチレン性不飽和カルボン酸の中和の全量を基準にして約1~約60%の範囲の量で1種以上の一価金属のイオンと、約40~約99%の範囲の量で1種以上の多価金属のイオンとを含む高分子シートが記載されている。
 特許文献3には、アイオノマー樹脂および接着促進剤を含み、前記接着促進剤がジアルコキシシラン化合物である樹脂組成物が記載されている。
米国特許第6432522号明細書 特表2009-512763号公報 国際公開第2019/027865号
 合わせガラスは、屋外で使用すると雨等の湿気により、特に合わせガラスの端部において、ガラスと合わせガラス中間膜との間で剥離が生じたり、白化して透明性の低下が生じたりする場合があった。そのため、高湿条件下においても透明性およびガラスとの接着性の高い合わせガラス中間膜を形成し得るアイオノマー樹脂が求められている。
 特許文献2には、同文献に記載のイオノマーまたはイオノマーブレンドは、相乗的に改善されたガラス粘着力を示すことが記載されている。しかしながら、本発明者らの検討によれば、特許文献2に記載のイオノマーは、高湿条件下においては、白化して透明性が低下しやすいことに加え、ガラスとの剥離が生じやすく、ガラスとの接着性が必ずしも十分ではない場合があることがわかった。
 特許文献3には、同文献に記載の樹脂組成物は、高湿条件下であっても、ガラスとの高い接着性を示すことが記載されている。しかしながら、本発明者らの検討によれば、特許文献3に記載の樹脂組成物は、成形加工時に架橋ゲルが生成しやすく、外観が良好な樹脂シートを得るにはさらなる改善が必要であることがわかった。
 したがって、本発明の目的は、高湿条件下であっても高い透明性およびガラス等の基材との高い接着性を有し、かつ、外観が良好なシートを成形し得るアイオノマー樹脂、およびその製造方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。すなわち本発明は、以下の好適な態様を提供するものである。
 〔1〕 (メタ)アクリル酸単位(A)、
 (メタ)アクリル酸中和物単位(B)、および
 エチレン単位(C)
を含む、アイオノマー樹脂であって、
 前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、
 前記アイオノマー樹脂中の遷移金属の含有量は0.01~100mg/kgである、
アイオノマー樹脂。
 〔2〕 前記アイオノマー樹脂は、さらに(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、〔1〕に記載のアイオノマー樹脂。
 〔3〕 前記遷移金属は、鉄、ニッケル、マンガンおよびクロムからなる群から選択される1種以上の金属である、〔1〕または〔2〕に記載のアイオノマー樹脂。
 〔4〕 〔1〕~〔3〕のいずれかに記載のアイオノマー樹脂を含む層を1層以上有する、樹脂シート。
 〔5〕 〔4〕に記載の樹脂シートからなる合わせガラス中間膜。
 〔6〕 2つのガラス板と、該2つのガラス板の間に配置された〔5〕に記載の合わせガラス中間膜とを有する、合わせガラス。
 〔7〕 エチレン-(メタ)アクリル酸エステル共重合体を強塩基によりけん化する工程、および
 前記工程により得られたけん化物を強酸により脱金属化する工程
を含み、前記けん化工程および/または前記脱金属化工程を遷移金属の存在下で行う、〔1〕~〔3〕のいずれかに記載のアイオノマー樹脂の製造方法。
 〔8〕 前記脱金属化を、けん化物の溶液に強酸を液中添加することにより行う、〔7〕に記載の方法。
 〔9〕 前記けん化工程および/または前記脱金属化工程を反応装置を用いて行い、前記反応装置の少なくとも一部は、遷移金属としてニッケルおよびクロムを合計で50質量%以上含む合金である、〔7〕または〔8〕に記載の方法。
 〔10〕 前記反応装置の少なくとも一部は、反応槽、撹拌翼、バッフル、ならびに、強塩基および/または強酸を反応槽内に供給するフィードラインからなる群から選択される少なくとも一部である、〔9〕に記載の方法。
 本発明によれば、高湿条件下であっても高い透明性およびガラスとの高い接着性を有し、かつ、外観が良好なシートを成形し得るアイオノマー樹脂、およびその製造方法を提供できる。
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。
 〔アイオノマー樹脂〕
 本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含み、アイオノマー樹脂中の遷移金属の含有量は0.01~100mg/kgである。
 本発明のアイオノマー樹脂は、遷移金属を含有し、その含有量は0.01~100mg/kgである。本発明者らは、アイオノマー樹脂に0.01~100mg/kgの遷移金属を含有させると、アイオノマー樹脂の透明性、特に高湿条件下における透明性(例えば高湿条件下における耐白化性)を維持しつつ、意外なことに、ガラスとの接着性、特に高湿条件下におけるガラスとの接着性が向上することを見出した。したがって、本発明のアイオノマー樹脂は、高湿条件下であっても、高い透明性およびガラスとの高い接着性を有する。アイオノマー樹脂中の遷移金属の含有量を0.01~100mg/kgとすることにより、アイオノマー樹脂の高湿条件下における透明性およびガラスとの接着性が向上し得る理由は明らかではないが、遷移金属とアイオノマー樹脂中の(メタ)アクリル酸単位(A)との相互作用によるため、および/または、遷移金属を含有しないアイオノマー樹脂と比較して、アイオノマー樹脂の吸水が抑制されるためであると考えられる。
 さらに、本発明者らは、本発明のアイオノマー樹脂は、(特に高湿条件下における)ガラスとの高い接着性を有するにもかかわらず、意外なことに、架橋ゲルが生成しにくく、その結果、外観が良好な樹脂シートを得やすいことも見出した。通常、シランカップリング剤等の接着促進剤を含有することによりガラスとの接着性が向上した樹脂は架橋ゲルが生成しやすく、外観が良好な樹脂シートを得にくい傾向にあるが、本発明のアイオノマー樹脂は、意外なことに、ガラスとの接着性が高く、さらに外観が良好な樹脂シートを得やすい。
 また、本発明者らは、アイオノマー樹脂中の遷移金属の含有量を0.01~100mg/kgとすることにより、アイオノマー樹脂の耐熱分解性も向上し得ることも見出した。本発明のアイオノマー樹脂が耐熱分解性に優れる理由は明らかでないが、遷移金属とアイオノマー樹脂中の(メタ)アクリル酸単位(A)との相互作用により、アイオノマー樹脂中の(メタ)アクリル酸単位(A)が熱によって脱離することを抑制しやすいためだと考えられる。
 一方、アイオノマー樹脂中の遷移金属の含有量が上記範囲外であると、アイオノマー樹脂の透明性(特に高湿条件下における透明性)、ガラスとの接着性(特に高湿条件下におけるガラスとの接着性)、およびアイオノマー樹脂の耐熱分解性が低下する傾向にある。遷移金属の含有量が0.01mg/kg未満であると、高湿条件下におけるガラスとの接着性が低下する傾向にあるため、高湿条件下ではガラスとの剥離が生じやすく、例えばアイオノマー樹脂からなる樹脂シートを合わせガラス中間膜として屋外で使用する場合、特に合わせガラスの端部において、ガラスと合わせガラス中間膜との間で剥離が発生しやすい。また、遷移金属の含有量が100mg/kgを超えると、アイオノマー樹脂の透明性、特に高湿条件下における透明性が低下しやすく、例えばアイオノマー樹脂からなる樹脂シートを合わせガラス中間膜として屋外で使用する場合、特に合わせガラスの端部において白化しやすい。また、遷移金属の含有量が100mg/kgを超えると、成形加工時にアイオノマー樹脂が着色しやすく、黄色度YIが大きくなりやすい。
 前記遷移金属の含有量は、透明性、高湿条件下におけるガラスとの接着性、および耐熱分解性を向上しやすい観点から、0.01mg/kg以上、好ましくは0.05mg/kg以上、より好ましくは0.1mg/kg以上、さらに好ましくは0.2mg/kg以上である。また、透明性および耐熱分解性を向上しやすい観点、ならびにアイオノマー樹脂の着色を抑制しやすい観点から、100mg/kg以下、好ましくは50mg/kg以下、より好ましくは20mg/kg以下、より好ましくは10mg/kg以下、さらに好ましくは5mg/kg以下である。アイオノマー樹脂中の遷移金属は、アイオノマー樹脂の製造方法により調整し得る。アイオノマー樹脂中の遷移金属の含有量は、誘電結合プラズマ(ICP)発光分光分析を用いて測定でき、例えば、実施例に記載の方法で測定できる。
 アイオノマー樹脂に含有される遷移金属としては、特に制限されず、例えば、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル等の第一遷移金属、および、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀等の第二遷移金属が挙げられる。これらの遷移金属は1種単独であっても2種以上の組み合わせであってもよい。
 本発明の一実施形態において、アイオノマー樹脂の高湿条件下における透明性、耐熱分解性、および高湿条件下におけるガラスとの接着性を高めやすい観点からは、前記遷移金属は、第一遷移金属であることが好ましく、より好ましくは鉄、ニッケル、マンガンおよびクロムからなる群から選択される1種以上の金属、さらに好ましくは少なくとも鉄を含む1種以上の金属である。
 本発明において、アイオノマー樹脂中に含有される遷移金属の状態は特に制限されない。遷移金属は、例えば遷移金属酸化物、遷移金属水酸化物、遷移金属ハロゲン化物、遷移金属塩等としてアイオノマー樹脂中に含有されていてもよく、アイオノマー樹脂中の(メタ)アクリル酸中和物単位(B)における金属イオンとして含有されていてもよい。
 本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。
 本発明において、「単位」とは、「由来の構成単位」を意味するものであり、例えば(メタ)アクリル酸単位とは、(メタ)アクリル酸由来の構成単位を示し、(メタ)アクリル酸中和物単位とは、(メタ)アクリル酸中和物由来の構成単位を示し、エチレン単位とはエチレン由来の構成単位を示す。また、本明細書において、「(メタ)アクリル酸」とは、メタクリル酸またはアクリル酸を示す。
 前記合計含有量が、アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であると、アイオノマー樹脂の透明性および弾性率(例えば50℃での弾性率)を向上しやすい。一方、前記合計含有量が上記上限値を超えると、アイオノマー樹脂の高い弾性率(例えば50℃での弾性率)が発現しにくい。また、前記合計含有量が上記下限値未満であると、アイオノマー樹脂は結晶性が高すぎると白化しやすい傾向があるため、例えば合わせガラスを作製する際に高温で処理した後に徐冷する場合等、アイオノマー樹脂を徐冷して該樹脂の結晶化が促進された状態における透明性(徐冷時の透明性)が低下しやすい。
 前記合計含有量は、アイオノマー樹脂の透明性(特に徐冷時の透明性)およびガラスとの接着性を向上しやすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、アイオノマー樹脂の弾性率、および成形加工性を向上しやすい観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。
 前記単位(A)および前記単位(B)の合計含有量は、アイオノマー樹脂の製造方法により調整し得る。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属化反応工程を含む方法によりアイオノマー樹脂を製造する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を、前記けん化反応および脱金属化反応によって、(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換する各反応の反応度(変換割合)によって調整できる。また、米国特許第8399096号に記載されるように、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合してアイオノマー樹脂を製造する場合には、共重合させるエチレンと(メタ)アクリル酸との割合により調整できる。
 (メタ)アクリル酸単位(A)を構成する単量体の例としては、アクリル酸、メタクリル酸が挙げられ、耐熱性およびガラス等の基材に対する接着性の観点から、好ましくはメタクリル酸である。これら(メタ)アクリル酸単位は1種単独でも2種以上を組み合わせてもよい。
 (メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは4.5モル%以上、より好ましくは5.0モル%以上、さらに好ましくは5.5モル%以上、特に好ましくは5.8モル%以上であり、また、好ましくは9.0モル%以下、より好ましくは8.5モル%以下、さらに好ましくは8.0モル%以下、特に好ましくは7.5モル%以下である。単位(A)の前記含有量が上記下限値以上であると、アイオノマー樹脂の透明性およびガラス等の基材に対する接着性を向上しやすい。また、上記上限値以下であると、成形加工性を向上しやすい。
 (メタ)アクリル酸中和物とは、(メタ)アクリル酸の水素イオンを金属イオンで置き換えたものである。(メタ)アクリル酸中和物単位(B)としては、前記(メタ)アクリル酸単位(A)の中和物単位が好ましい。前記金属イオンの例としては、リチウム、ナトリウム、カリウム等のアルカリ金属イオン;マグネシウム、カルシウム等のアルカリ土類金属イオン;亜鉛、アルミニウム等の12~13族の非遷移金属イオン;および遷移金属イオン等が挙げられる。遷移金属イオンとしては、上述のアイオノマー樹脂に含有され得る遷移金属のイオンが挙げられる。このような金属イオンは1種単独であっても2種以上の組み合わせであってもよい。
 (メタ)アクリル酸中和物単位(B)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸中和物単位(B)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0.65モル%以上、より好ましくは1.0モル%以上、さらに好ましくは1.5モル%以上、特に好ましくは1.7モル%以上であり、また、好ましくは3.0モル%以下、より好ましくは2.7モル%以下、さらに好ましくは2.6モル%以下、特に好ましくは2.5モル%以下である。単位(B)の含有量が上記下限値以上であると、透明性および弾性率を向上しやすく、上記上限値以下であると、成形加工時の溶融粘度の上昇を抑制しやすい。
 前記単位(A)および前記単位(B)の各含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を製造する場合、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を、前記けん化反応および脱金属反応によって、(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換する各反応における反応度によって調整できる。
 <エチレン単位(C)>
 エチレン単位(C)の含有量は、アイオノマー樹脂の耐衝撃性を高めやすい観点から、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上であり、また、アイオノマー樹脂の透明性(特に徐冷時の透明性)を高めやすい観点から、好ましくは94モル%以下、より好ましくは91モル%以下である。エチレン単位(C)の含有量が上記下限値以上であると、機械的強度および成形加工性を向上しやすく、また、上記上限値以下であると、アイオノマー樹脂が結晶化にくくなり、透明性(特に徐冷時の透明性)を向上しやすい。
 本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)に加えて、より高い透明性を得やすい観点から、さらに(メタ)アクリル酸エステル単位(D)を含むことが好ましい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、透明性(特に徐冷時の透明性)を向上しやすい観点から、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。すなわち、本発明の好適な実施形態において、本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量が上記上限値以下であると、アイオノマー樹脂の高い弾性率を発現しやすく、また、前記合計含有量が下限値以上であると、アイオノマー樹脂の透明性、特に徐冷時の透明性を高めやすい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合において、前記単位(A)、前記単位(B)および前記単位(D)の前記合計含有量は、透明性(特に徐冷時の透明性)およびガラス等の基材に対する接着性を向上しやすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、アイオノマー樹脂の弾性率および成形加工性を向上しやすい観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。
 前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、アイオノマー樹脂の原料により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属化反応工程を含む方法によりアイオノマー樹脂を製造する場合には、アイオノマー樹脂の原料であるエチレン-(メタ)アクリル酸エステル共重合体の(メタ)アクリル酸エステル変性量により調整できる。また、米国特許第8399096号に記載されるように、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合してアイオノマー樹脂を製造する場合には、共重合させるエチレンと(メタ)アクリル酸との割合により調整できる。
 (メタ)アクリル酸エステル単位(D)を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリル等が挙げられる。
 これらのうち、透明性または耐熱性の観点から、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチルであり、より好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルであり、さらに好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルであり、特に好ましい単量体は、(メタ)アクリル酸メチルである。これら(メタ)アクリル酸エステルは1種単独でも2種以上の組み合わせでもよい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は特に制限されない。本発明の一実施形態において、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、より好ましくは0.01モル%以上、さらに好ましくは0.05モル%以上、特に好ましくは0.08モル%以上であり、また、好ましくは1.0モル%以下、より好ましくは0.7モル%以下、さらに好ましくは0.5モル%以下である。単位(D)の含有量が上記下限値以上、かつ上記上限値以下であるとアイオノマー樹脂の透明性を向上しやすい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合の前記単位(D)の含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を製造する場合、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位(D)を、(メタ)アクリル酸単位(A)に変換する前記けん化反応の反応度によって調整できる。
 本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)以外の他の単量体単位を含んでいてもよい。他の単量体単位の例としては、(メタ)アクリル酸単位(A)以外のカルボン酸単位(A1)、(メタ)アクリル酸中和物単位(B)以外のカルボン酸中和物単位(B1)等が挙げられる。
 前記カルボン酸単位(A1)を構成する単量体の例としては、イタコン酸、無水マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル等が挙げられ、好ましくはマレイン酸モノメチル、マレイン酸モノエチルである。前記カルボン酸中和物単位(B1)を構成する単量体の例としては、前記カルボン酸単位(A1)の中和物単位等が挙げられる。なお、カルボン酸中和物は、カルボン酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンとしては、上述の(メタ)アクリル酸中和物単位(B)における金属イオンと同様のものが挙げられ、該金属イオンは、1種単独でも2種以上の組み合わせでもよい。
 これらの他の単量体単位は1種単独でも2種以上の組み合わせでもよい。
 アイオノマー樹脂が上記他の単量体単位を含む場合、その合計含有量、例えば(A1)および(B1)の合計含有量は、本発明の効果を損なわない範囲で適宜選択すればよく、例えば、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは5モル%以下、より好ましくは3モル%以下、さらに好ましくは1モル%以下であり、また、好ましくは0.01モル%以上、より好ましくは0.1モル%以上である。
 本発明のアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合の(メタ)アクリル酸エステル単位(D)、および他の単量体単位(例えば単位(A1)および単位(B1))の各含有量は、まず、アイオノマー樹脂中の単量体単位を熱分解ガスクロマトグラフィーで同定し、次いで、核磁気共鳴分光法(NMR)および元素分析を用いることによって、求めることができる。より具体的には実施例に記載の方法により求めることができる。また、上記の分析方法と、IRおよび/またはラマン分析とを組合せた方法で求めることもできる。これらの分析の前にアイオノマー樹脂以外の成分を、再沈殿法やソックスレー抽出法にて除去しておくことが好ましい。
 本発明の一実施形態において、本発明のアイオノマー樹脂の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、例えば、アイオノマー樹脂をエチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属化反応工程を含む方法によりアイオノマー樹脂を製造する場合には、原料であるエチレン-(メタ)アクリル酸エステルを合成する際の重合温度により調整できる。炭素1000個当たりの分岐度は、固体NMRを用いて広帯域双極子デカップリング/マジック角回転(DD/MAS)法にて測定できる。
 本発明の一実施形態において、本発明のアイオノマー樹脂の融点は、耐熱性および耐熱分解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上であり、また、合わせガラスを作製する際、ガラスとの接着力が発現し易いという観点から、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。前記融点は、JIS K7121:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温の融解ピークのピックトップ温度から求めることができる。
 本発明の一実施形態において、本発明のアイオノマー樹脂の融解熱は、好ましくは0J/g以上25J/g以下である。前記融解熱は、JIS K7122:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温時の融解ピークの面積から算出することができる。
 本発明の一実施形態において、JIS K7210に準拠し、190℃、2.16Kgの条件で測定される本発明のアイオノマー樹脂のメルトフローレート(MFR)は、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.7g/10分以上、さらにより好ましくは1.0g/10分以上、特に好ましくは1.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、特に好ましくは10g/10分以下である。アイオノマー樹脂のMFRが上記下限値以上かつ上限値以下であると、熱による劣化を抑えた成形加工がしやすく、耐貫通性に優れる樹脂シートを得やすい。
 アイオノマー樹脂の融点、融解熱およびMFRは、アイオノマー樹脂の分子量、ならびにアイオノマー樹脂の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量により調整し得る。
 本発明の一実施形態において、本発明のアイオノマー樹脂の動的粘弾性測定で測定される50℃での貯蔵弾性率(E’)は、良好な自立性(すなわち、高い弾性率)、特に高温環境下における自立性(高温環境下における高い弾性率)の観点から、好ましくは20MPa以上、より好ましくは30MPa以上、さらに好ましくは40MPa以上、特に好ましくは50MPa以上である。貯蔵弾性率(E’)の上限値は特に制限されず、1000MPaであってよい。前記貯蔵弾性率は、アイオノマー樹脂の分子量、ならびに(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量によって調整できる。なお、アイオノマー樹脂の50℃での貯蔵弾性率(E’)は、動的粘弾性測定によって測定できる。
 本発明のアイオノマー樹脂は、上述のように遷移金属を0.01~100mg/kg含有するため、高い耐熱分解性を有する。本発明の好適な実施形態において、本発明のアイオノマー樹脂の窒素雰囲気下、10℃/分昇温時の1%重量減少温度(Td1)は、好ましくは330℃以上、より好ましくは350℃以上、さらに好ましくは360℃以上、特に好ましくは370℃以上であり、通常450℃以下である。アイオノマー樹脂の1%重量減少温度が上記下限値以上であると、アイオノマー樹脂の溶融成形時等の発泡および/または熱分解を低減しやすく、気泡および/または樹脂の熱分解によって生じる黒色異物等の欠点を有さない中間膜を得やすい。なお、本明細書中において、1%重量減少温度は200℃時点の重量を基準として、重量減少率が1%となる際の温度を表す。前記1%重量減少温度はJIS K7120-1987に従って測定でき、例えば、実施例に記載の方法で測定できる。
 本発明のアイオノマー樹脂は高い透明性を有しており、本発明の好適な実施形態において、本発明のアイオノマー樹脂のシート厚さ0.8mmにおけるヘイズは、好ましくは2.0%以下、より好ましくは1.5%以下、さらに好ましくは1.0%以下である。ヘイズが小さいほどアイオノマー樹脂の透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。なお、アイオノマー樹脂のヘイズは、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。
 本発明のアイオノマー樹脂は、遷移金属の含有量が0.01~100mg/kgであるため、高湿条件下であっても高い透明性を有する。アイオノマー樹脂の高湿条件下における透明性は、アイオノマー樹脂が吸水した状態のヘイズ(吸水ヘイズ)によって評価できる。本発明の好適な実施形態において、本発明のアイオノマー樹脂が吸水した状態のシート厚さ0.8mmにおけるヘイズ(吸水ヘイズ)は、好ましくは9.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下である。吸水ヘイズが小さいほどアイオノマー樹脂の吸水した状態における透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。なお、吸水ヘイズはアイオノマー樹脂を23℃のイオン交換水に浸漬させた状態で300時間保持し、イオン交換水から取出し、表面に付着した水分をふき取ったアイオノマー樹脂を試験片として、ヘイズメーターを用い、JIS K7136:2000に準拠して測定でき、例えば、実施例に記載の方法で測定できる。
 本発明のアイオノマー樹脂は、樹脂中の(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)の合計含有量が6モル%以上であるため、結晶化しにくく、徐冷時においても高い透明性を有する。本発明の好適な実施形態において、本発明のアイオノマー樹脂の徐冷により該樹脂の結晶化を促進させた状態のヘイズ(徐冷ヘイズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、さらにより好ましくは3.0%以下、特に好ましくは2.5%以下である。ヘイズが小さいほどアイオノマー樹脂の透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。徐冷ヘイズは、シート厚さ0.8mmのアイオノマー樹脂を2つのガラス板の間に配置して合わせガラスを作製し、該合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズを、ヘイズメーターでJIS K7136:2000に準拠して測定することによって得られる。
 本発明のアイオノマー樹脂は、樹脂中の遷移金属の含有量が100mg/kg以下であるため、着色性が低く、成形加工時にも着色が生じにくい。本発明のアイオノマー樹脂のシート厚さ0.8mmにおける黄色度(YI)は、着色が生じにくい観点から、好ましくは3.0以下、より好ましくは2.0以下、さらに好ましくは1.5以下、特に好ましくは1.0以下である。黄色度(YI)が小さいほどアイオノマー樹脂の着色性が小さくなるため、下限値は特に制限されず、例えば、0であってよい。なお、黄色度(YI)は測色色差計を用い、JIS Z8722に準拠して測定でき、例えば実施例に記載の方法で測定できる。
 本発明のアイオノマー樹脂のガラスとの接着性は、剥離試験によって測定されるガラスとアイオノマー樹脂との剥離エネルギーによって評価できる。標準条件下(23℃、50%RH)において測定されるガラスとアイオノマー樹脂との剥離エネルギーは、好ましくは2kJ/m以上、より好ましくは2.5kJ/m以上、さらに好ましくは3kJ/m以上、特に好ましくは3.5kJ/m以上である。また、高湿条件下におけるガラスとの接着性は、Wet条件下における剥離試験によって測定されるガラスとアイオノマー樹脂との剥離エネルギーによって評価できる。Wet条件下において測定されるガラスとアイオノマー樹脂との剥離エネルギーは、好ましくは0.05kJ/m以上、より好ましくは0.1kJ/m以上、さらに好ましくは0.15kJ/m以上、特に好ましくは0.2kJ/m以上である。標準条件下および高湿条件下における前記剥離エネルギーの上限は特に制限されず、10kJ/m以下であってよい。前記剥離試験は、例えば国際公開第2019/027865号公報に記載の剥離接着力測定(Peel Adhesion Measurement)として記載されている方法で行われ得る。前記標準条件下およびWet条件下において測定される剥離エネルギーは、例えば実施例に記載の方法により測定できる。
 本発明のアイオノマー樹脂は、例えば、エチレン-(メタ)アクリル酸エステル共重合体(X)を原料とし、
 エチレン-(メタ)アクリル酸エステル共重合体(X)を強塩基によりけん化する工程(けん化工程)、および
 前記工程により得られたけん化物を強酸により脱金属化する工程(脱金属化工程)
を含み、
 前記けん化工程および/または前記脱金属化工程を遷移金属の存在下で行う方法(以降、製造方法(I)ともいう)によって製造できる。
 前記製造方法(I)では、エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換することにより、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)および場合により(メタ)アクリル酸エステル単位(D)を含むアイオノマー樹脂が得られる。
 前記製造方法(I)は、前記けん化工程および脱金属化工程により、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換する方法であってもよく(以下、方法(1)ともいう)、前記けん化工程および脱金属化工程の後に、さらに得られた脱金属化物を中和する中和工程を含む方法により、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換する方法(以下、方法(2)ともいう)であってもよい。
 前記方法(1)では、具体的には、エチレン-(メタ)アクリル酸エステル共重合体を、強塩基によってけん化することより、(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸中和物単位に変換して、けん化物であるエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸中和物共重合体またはエチレン-(メタ)アクリル酸中和物共重合体を得て、次いで、得られたけん化物中の(メタ)アクリル酸中和物単位の一部を強酸によって脱金属して、(メタ)アクリル酸単位に変換することにより、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)および場合により(メタ)アクリル酸エステル単位(D)を含むアイオノマー樹脂が得られる。
 前記方法(2)では、具体的には、前記方法(1)において、エチレン-(メタ)アクリル酸エステル共重合体を強塩基によってけん化することより得られたけん化物中の(メタ)アクリル酸中和物単位を全て強酸によって脱金属して、(メタ)アクリル酸単位に変換して、エチレン-(メタ)アクリル酸共重合体を得て、次いで、得られた脱金属化物中の(メタ)アクリル酸単位の一部を金属イオンによって中和して、(メタ)アクリル酸中和物単位に変換することにより、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)および場合により(メタ)アクリル酸エステル単位(D)を含むアイオノマー樹脂が得られる。
 前記方法(1)および方法(2)のうち、反応回数を減らしてアイオノマー樹脂の製造効率を向上しやすい観点からは、方法(1)によりアイオノマー樹脂を製造することが好ましい。
 エチレン-(メタ)アクリル酸エステル共重合体(X)を原料とし、けん化工程および脱金属化工程を含む前記製造方法(I)では、前記けん化工程および/または前記脱金属化工程を遷移金属の存在下で行うことにより、遷移金属を含有するアイオノマー樹脂が得られる。
 本発明において「けん化工程および/または脱金属化工程を遷移金属の存在下で行う」とは、けん化工程におけるけん化反応および/または脱金属化工程における脱金属化反応を、該反応系内に遷移金属が存在する状態で行うことを意味する。反応系内に存在する遷移金属は、1種単独であっても、2種以上の組合せであってもよい。けん化反応および/または脱金属化反応の反応系内に遷移金属を存在させる方法は特に制限されず、例えば遷移金属を含む反応装置を用いる方法、反応系内に遷移金属を含む部材等を投入する方法、遷移金属の酸化物、水酸化物、ハロゲン化物、塩等の粉末および/またはそれらを溶媒に分散または溶解させた状態で反応系内に添加する方法等のいずれの方法であってもよい。
 けん化反応に用いる強塩基および/または脱金属化反応に用いる強酸によって、反応系内に存在する遷移金属が腐食されることにより、アイオノマー樹脂に遷移金属が含有される。例えば、反応系内に存在する遷移金属が腐食されると、腐食によりイオン化して反応系内に溶出した遷移金属イオンが、(メタ)アクリル酸中和物単位(B)中の金属イオン、または(メタ)アクリル酸単位(A)中の(メタ)アクリル酸の水素イオンと置換することにより、(メタ)アクリル酸中和物単位(B)における金属イオンとして遷移金属がアイオノマー樹脂中に含有され得る。また、反応系内に溶出した遷移金属イオンが、反応系内に存在し得る酸素イオンおよび/またはハロゲンイオンと反応することにより、酸化物および/またはハロゲン化物として、アイオノマー樹脂中に含有され得る。
 反応系内に存在する前記遷移金属としては、アイオノマー樹脂に含有され得る上述の遷移金属が挙げられる。反応系内に存在する遷移金属は、例えば、単一の金属元素からなる純金属であっても、少なくとも1種の遷移金属を含む合金であってもよい。また、遷移金属の状態は特に制限されず、例えば金属イオン、酸化物、水酸化物、ハロゲン化物、金属塩等の状態であってもよい。
 本発明の一実施形態において、反応系内に存在する遷移金属は、高湿条件下におけるガラスとの接着性を高めやすい観点から、少なくとも1種の遷移金属を含む合金であることが好ましく、より好ましくは鉄、ニッケル、マンガンおよびクロムからなる群から選択される1種以上の金属を含む合金、さらに好ましくは鉄、ニッケル、マンガンおよびクロムからなる群から選択される2種以上の金属を含む合金である。
 本発明の一実施形態において、前記少なくとも1種の遷移金属を含む合金は、けん化工程に用いる強塩基に対する耐アルカリ腐食性、および脱金属化工程に用いる強酸に対する耐酸腐食性を高め、アイオノマー樹脂中の遷移金属の含有量を100ppm以下に調整しやすい観点からは、SUS304、SUS316、SUS316L、SUS312L、SUS310S、SUS836L、SUS890Lなどのオーステナイト系ステンレス鋼;ハステロイB2、ハステロイB3、ハステロイB4、ハステロイC4、ハステロイC2000、ハステロイC22、ハステロイC276、インコネルX750、インコネル625、インコネル600、インコネル601、インコネル625、インコネル718、インコロイ825などのニッケル基合金であることが好ましい。
 本発明の一実施形態において、前記合金は、けん化工程に用いる強塩基に対する耐アルカリ腐食性、および脱金属化工程に用いる強酸に対する耐酸腐食性を高め、アイオノマー樹脂中の遷移金属の含有量を100ppm以下に調整しやすい観点からは、ニッケルおよびクロムを合計で50質量%以上含む合金であることが好ましい。ニッケルおよびクロムの合計含有量は、より好ましくは60質量%以上、さらに好ましくは70質量%以上であってよい。また、ニッケルおよびクロムの合計含有量は、前記合金の耐久性の観点からは、好ましくは98質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下であってよい。
 本発明の一実施形態において、けん化工程および/または脱金属化工程を反応装置内で行い、前記反応装置の少なくとも一部が少なくも1種の遷移金属を含むことが好ましい。このように、反応装置の少なくとも一部が少なくも1種の遷移金属を含む反応装置内でけん化工程および/または脱金属化工程を行うことにより、けん化工程および/または前記脱金属化工程を遷移金属の存在下で行うことできる。
 少なくとも1種の遷移金属を含む反応装置の少なくとも一部は、少なくとも1種の遷移金属を含む合金であることが好ましく、少なくとも1種の遷移金属を含む合金としては、好ましい態様を含め、上述の合金が挙げられる。なかでも、前記合金は、けん化工程に用いる強塩基に対する耐アルカリ腐食性、および脱金属化工程に用いる強酸に対する耐酸腐食性を高め、アイオノマー樹脂中の遷移金属の含有量を100ppm以下に調整しやすい観点から、ニッケルおよびクロムを合計で50質量%以上含む合金であることが好ましい。
 前記反応装置の少なくとも一部は、反応装置内において、けん化反応で用いる強塩基および/または脱金属化反応で用いる強酸が接触して、遷移金属の腐食が進行し得る部分であれば特に制限されず、例えば強塩基および/または強酸を含む液と接液し得る部分であっても、強塩基および/または強酸を含む気体と接触し得る部分であってもよい。
 本発明の一実施形態において、前記反応装置の少なくとも一部としては、前記反応装置を構成し得る要素の一部であってよく、例えば、反応槽、撹拌翼、バッフル、ならびに、強塩基および/または強酸を反応槽内に供給するフィードライン等の少なくとも一部が挙げられる。これらは単独であっても2以上の組合せあってもよい。なお強塩基および/または強酸を反応槽内に供給するフィードラインには、前記フィードラインを構成し得る配管、添加ノズル、バルブ等が含まれる。
 本発明の一実施形態において、前記反応装置の少なくとも一部は、反応槽の少なくとも一部(例えば反応槽の底部、側部等)であることが好ましく、より好ましくは反応槽全体であることが好ましい。
 本発明の一実施形態において、エチレン-(メタ)アクリル酸エステル共重合体(X)を原料としてアイオノマー樹脂を製造する前記製造方法(I)では、けん化工程および前記脱金属化工程の両方を遷移金属の存在下で行っても、いずれか一方のみを遷移金属の存在下で行ってもよい。
 上記エチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリル等が挙げられる。これらのうち、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、より好ましい単量体は(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、さらに好ましい単量体は(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、特に好ましくは(メタ)アクリル酸メチルである。これら(メタ)アクリル酸エステルは1種単独であっても2種以上の組み合わせであってもよい。
 エチレン-(メタ)アクリル酸エステル共重合体(X)の具体例としては、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸n-プロピル共重合体、エチレン-メタクリル酸n-プロピル共重合体、エチレン-アクリル酸イソプロピル共重合体、エチレン-メタクリル酸イソプロピル共重合体、エチレン-アクリル酸n-ブチル共重合体、エチレン-メタクリル酸n-ブチル共重合体、エチレン-アクリル酸sec-ブチル共重合体、エチレン-メタクリル酸sec-ブチル共重合体等が挙げられる。
 これらの共重合体として、市販品を用いてもよく、US2013/0274424、特開2006-233059または特開2007-84743に記載の高温高圧ラジカル重合法によって合成したものを用いてもよい。前記市販品としては、例えば、住友化学(株)製「アクリフト」(登録商標)WK307、日本ポリエチレン(株)製「レクスパール」(登録商標)A4250等が挙げられる。
 エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、好ましくは6モル%以上、より好ましくは6.5モル%以上、さらに好ましくは7モル%以上、特に好ましくは7.5モル%以上であり、また、好ましくは10モル%以下、より好ましくは9.9モル%以下、さらに好ましくは9.5モル%以下である。共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、得られるアイオノマー樹脂中の(メタ)アクリル酸単位(A)、および(メタ)アクリル酸中和物単位(B)、ならびに、含まれる場合の(メタ)アクリル酸エステル単位(D)の合計含有量と対応するため、共重合体(X)中の(メタ)アクリル酸エステル単位の含有量が上記下限値以上であると、得られるアイオノマー樹脂の透明性、特に徐冷時の透明性を高めやすく、また、前記含有量が上記上限値以下であると、得られるアイオノマー樹脂の弾性率を高めやすい。
 共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、エチレンと(メタ)アクリル酸エステルとの共重合比によって調整できる。なお、前記含有量は、上述のアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合(メタ)アクリル酸エステル単位(D)、および他の単量体単位(例えば単位(A1)および単位(B1))の各含有量と同様に、熱分解ガスクロマトグラフィー、核磁気共鳴分光法(NMR)および元素分析によって求めることができる。
 本発明の一実施形態において、JIS K7210に準拠し、190℃、2.16Kgの条件で測定されるエチレン-(メタ)アクリル酸エステル共重合体(X)のメルトフローレート(MFR)は、好ましくは5g/10分以上、より好ましくは10g/10分以上、さらに好ましくは50g/10分以上、さらにより好ましくは100g/10分以上であり、好ましくは400g/10分以下、より好ましくは350g/10分以下、さらに好ましくは300g/10分以下、さらにより好ましくは250g/10分以下である。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRが上記下限値以上かつ上記上限値以下であると、得られるアイオノマー樹脂の成形加工性および強度を向上しやすい。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRは、重合度および(メタ)アクリル酸エステル単位の含有量によって調整し得る。前記MFRは、例えば、実施例に記載の方法で測定できる。
 エチレン-(メタ)アクリル酸エステル共重合体(X)の重量平均分子量は、得られるアイオノマー樹脂の成形加工性および強度を向上しやすい観点から、好ましくは15,000g/モル以上、より好ましくは20,000g/モル以上、さらに好ましくは30,000g/モル以上であり、好ましくは200,000g/モル以下、より好ましくは100,000g/モル以下である。また、同様の観点から、エチレン-(メタ)アクリル酸エステル共重合体(X)の数平均分子量は、好ましくは5,000g/モル以上、より好ましくは10,000g/モル以上、さらに好ましくは15,000g/モル以上であり、好ましくは100,000g/モル以下、より好ましくは50,000g/モル以下である。前記重量平均分子量および数平均分子量は、重合時の重合開始剤および/または連鎖移動剤の量により調整できる。これらのエチレン-(メタ)アクリル酸エステル共重合体(X)の分子量(重量平均分子量および数平均分子量)は、カラム(TSKgel GMHHR-H(20)HTの3本直列)および1,2,4-トリクロロベンゼン溶媒を用いて、カラム温度140℃の条件で、ポリスチレン換算で測定できる。
 エチレン-(メタ)アクリル酸エステル共重合体(X)の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、前記共重合体(X)を重合する際の重合温度により調整できる。前記分岐度は、エチレン-(メタ)アクリル酸エステル共重合体を重水素化オルトジクロロベンゼンに溶解させ、13C-NMRのインバースゲートデカップリング法によって測定できる。
 けん化工程におけるけん化反応に用いる強塩基の例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられ、けん化反応に使用する溶媒への溶解性および経済性の観点から、好ましくは水酸化ナトリウム、水酸化カリウムである。
 強塩基の添加量は、例えば、エチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位100モル部に対して、好ましくは100~300モル部、より好ましくは120~250モル部、さらに好ましくは150~200モル部である。
 強塩基の添加方法は特に制限されず、例えば反応槽内の気相部を経由してエチレン-(メタ)アクリル酸エステル共重合体(X)を含む液に添加しても、反応槽内の気相部を経由することなく前記液に直接液中添加してもよい。
 上記けん化反応に用いる溶媒の例としては、テトラヒドロフラン、ジオキサン等のエーテル類;クロロホルム、ジクロロベンゼン等のハロゲン含有溶媒;メチルブチルケトン等の炭素数6以上のケトン類;炭化水素化合物とメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類との混合溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族化合物;芳香族化合物とアルコール類との混合溶媒等が挙げられる。これらの溶媒は単独で、または2以上組み合わせて使用してもよい。
 これらのうち、けん化反応前後の樹脂の溶解性の観点から、好ましい溶媒は炭化水素化合物とアルコール類との混合溶媒、芳香族化合物とアルコール類との混合溶媒であり、より好ましい溶媒はトルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒である。前記混合溶媒における炭化水素化合物または芳香族化合物とアルコール類と割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、炭化水素化合物または芳香族化合物とアルコール類との質量割合(炭化水素化合物または芳香族化合物/アルコール類)は、50/50~90/10であってよい。
 上記けん化反応を行う際の温度としては、その反応性およびエチレン-(メタ)アクリル酸エステル共重合体(X)の溶解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、よりさらに好ましくは80℃以上、特に好ましくは100℃以上である。該温度の上限は、けん化反応による遷移金属の腐食の過度な進行を抑制しやすく、アイオノマー樹脂中の遷移金属の含有量を100mg/kg以下に調整しやすい観点から、好ましく180℃以下、より好ましくは150℃以下、さらに好ましくは140℃以下、よりさらに好ましくは130℃以下、特に好ましくは120℃以下である。
 上記けん化反応は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、上記けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。
 脱金属化工程における脱金属化反応に用いる強酸の例としては、塩酸、硝酸、硫酸、トルエンスルホン酸等が挙げられる。けん化反応に用いる強塩基と脱金属化反応に用いる強酸とから副生する塩を洗浄除去しやすい観点から、好ましくは塩酸、硝酸、硫酸等の無機酸である。上記脱金属化に用いる溶媒としては、上述のけん化反応に用いる溶媒と同様の溶媒を選択できる。
 強酸の添加量は、(メタ)アクリル酸中和物単位(B)を任意の値に調節するために、強塩基の添加量に合わせて適した量を選択することができる。
 強酸の添加方法は、例えば、反応槽内の気相部を経由してけん化物の溶液に強酸を添加する方法であってもよく、反応槽内の気相部を経由することなくけん化物の溶液に直接強酸を液中添加する方法であってもよい。
 反応槽内の気相部を経由してけん化物の溶液に強酸を添加する場合、添加する強酸が反応槽の気相部壁面に接触しにくくする観点から、強酸の添加は、反応槽中心から反応槽壁面までの距離のうち最も短い距離を距離Lとしたときに、反応槽中心から前記距離Lの20%以内の領域の直上部から、気相部を経由して添加することが好ましい。また、反応槽内の気相部を経由して添加する場合、添加する強酸が反応槽の気相部壁面に接触しにくくする観点から、強酸の添加は、液面から好ましくは2m以内、より好ましくは1m以内の距離の位置から行うことが好ましい。例えば、強酸をフィードラインにより反応槽内に供給する場合、添加ノズルのフィード口を、反応槽中心から前記距離Lの20%以内の領域であって、液面から2m以内または1m以内の位置に設置して、反応槽内の気相部を経由してけん化物の溶液に強酸を添加してもよい。上記のようにして、添加する強酸が反応槽の気相部壁面に接触しにくくすることにより、強酸による遷移金属の腐食の進行度合いを制御しやすく、アイオノマー樹脂中の遷移金属の含有量を観点から、0.01~100mg/kgの範囲内に調整しやすい。
 反応槽内の気相部を経由することなくけん化物の溶液に強酸を直接液中に添加する場合、強酸をけん化物の溶液に添加する添加ノズルのフィード口を、けん化物の溶液の液面以下とすることにより、気相部を経由することなく強酸を液中に直接添加することが好ましい。また、フィード口を反応槽の底部、または前記液面以下の反応槽の側部に設置して、気相部を経由することなく強酸を液中に直接添加することが好ましい。
 本発明の一実施形態において、アイオノマー樹脂中の遷移金属の含有量を100mg/kg以下に調整しやすい観点からは、脱金属化を、けん化物の溶液に強酸を反応槽内の気相部を経由することなく、液中添加することにより行うことが好ましい。
 上記脱金属化において、強酸のけん化物の溶液への添加は、添加した強酸を均一に混合しやすい観点から、反応槽内の溶液を撹拌しながら行うことが好ましい。撹拌方法は特に制限されないが、例えばマックスブレンド翼、三枚後退翼、パドル翼、多段パドル翼、タービン翼、アンカー翼などの工業的に汎用な任意形状の撹拌翼によって、撹拌する方法であってよい。これらの撹拌翼のなかでも、添加した強酸を均一に混合しやすい観点から、マックスブレンド翼によって撹拌することが好ましい。
 上記脱金属化を行う際の温度は、反応溶液の粘度を低くしやすい観点から、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは40℃以上であり、脱金属化反応による遷移金属の腐食の過度な進行を抑制しやすく、アイオノマー樹脂中の遷移金属の含有量を100mg/kg以下に調整しやすい観点から、好ましく180℃以下、より好ましくは150℃以下、さらに好ましくは120℃以下である。
 上記脱金属化は、上記けん化反応と同様に、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、上記けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。
 上記方法(2)の中和工程において、(メタ)アクリル酸単位の一部を中和して(メタ)アクリル酸中和物単位に変換する際に用いる中和剤は、金属イオンを含有するイオン性化合物であれば特に制限されない。前記金属イオンの例としては、リチウム、カリウム、ナトリウム等のアルカリ金属イオン、マグネシウム、カルシウム等のアルカリ土類金属イオン、亜鉛、ニッケル、鉄、チタン等の遷移金属イオン、アルミニウムイオン等が挙げられる。例えば、金属イオンがナトリウムカチオンである場合、中和剤の例としては、水酸化ナトリウム、酢酸ナトリウム、炭酸水素ナトリウム等が挙げられる。また、(メタ)アクリル酸ナトリウム単位を含有するアイオノマー樹脂等の重合体も中和剤として用いることができる。
 前記脱金属化工程後、または脱金属化工程後にさらに中和工程を含む場合には中和工程後、得られた反応液中の反応生成物である粗アイオノマー樹脂を反応混合物から分離精製することにより、本発明のアイオノマー樹脂を得ることができる。分離精製する分離精製工程は、慣用の方法、例えば濾過、洗浄、濃縮、再沈殿、再結晶、シリカゲルカラムトグラフィー等の分離手段によりおこなってよい。
 本発明の一実施形態において、前記分離精製工程は、副生した塩を洗浄除去しやすい観点から、粗アイオノマー樹脂の溶液に貧溶媒を添加して粒状樹脂を析出させ、次いで析出した粒状樹脂を洗浄液で洗浄することにより行うことが好ましい。
 前記粗アイオノマー樹脂の溶液は、脱金属化工程または脱金属化工程後の中和工程後に得られた粗アイオノマー樹脂を溶媒に溶解させることにより調製でき、脱金属化工程または脱金属化工程後の中和工程後に得られた反応液を粗アイオノマー樹脂の溶液として用いてもよい。
 粗アイオノマー樹脂の溶液における溶媒としては、粗アイオノマー樹脂を溶解可能な溶媒であれば特に制限されず、上記けん化反応に用いる溶媒と同様の溶媒が例示される。なかでも、粗アイオノマー樹脂の溶解性の観点から、トルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒が好ましい。前記混合溶媒における芳香族化合物とアルコール類との割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、芳香族化合物とアルコール類との質量割合(芳香族化合物/アルコール類)は、50/50~90/10、好ましくは65/35~85/15であってよい。
 粗アイオノマー樹脂の溶液の濃度は、粒子径の小さな粒状樹脂が得やすく、その結果、粗アイオノマー樹脂中に過剰な遷移金属が存在する場合に、過剰な遷移金属を除去し得る観点および副生した塩を除去しやすい観点から、好ましくは30質量%以下、より好ましくは15質量%以下であり、また、好ましくは1質量%以上、より好ましくは5質量%以上である。
 粗アイオノマー樹脂の溶液の温度は、析出する粒状樹脂の凝集または膠着を抑制しやすく、アイオノマー樹脂中の過剰な遷移金属および副生した塩を除去しやすい観点から、アイオノマー樹脂の融点以下であることが好ましく、より好ましくは60℃以下、さらに好ましくは50℃以下である。また、粗アイオノマー樹脂の溶液の流動性の観点から、前記温度は、より好ましくは25℃以上、さらに好ましくは30℃以上である。
 粗アイオノマー樹脂の溶液に添加する貧溶媒としては、粗アイオノマー樹脂の溶液と混合し、アイオノマー樹脂が溶解しない溶媒であれば特に制限されず、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;n-ヘキサン、シクロヘキサン、ヘプタン等の炭化水素化合物等が挙げられる。これらは1種単独で使用しても、2種以上を組合せて使用してもよい。これらのなかでも、沸点が低いためアイオノマー樹脂を乾燥しやすく、また、粒状樹脂中の過剰な遷移金属および副生した塩を除去しやすい観点から、前記貧溶媒は好ましくはメタノール、2-プロパノール等のアルコール類、水、およびこれらの混合溶媒、より好ましくはメタノール等のアルコール類である。
 貧溶媒の添加量は、粗アイオノマー樹脂の溶液の濃度に応じて適宜選択してよい。例えば、貧溶媒の添加量は、粗アイオノマー樹脂の溶液100質量部に対して、好ましくは30質量部以上、より好ましくは60質量部以上であり、特に好ましくは100質量部以上である。貧溶媒の添加量の上限値は特に制限されず、貧溶媒の添加量の上限値は、粗アイオノマー樹脂の溶液100質量部に対して、通常1000質量部以下である。
 粗アイオノマー樹脂の溶液に貧溶媒を添加する方法は特に制限されず、例えば、粗アイオノマー樹脂の溶液に貧溶媒を一度に添加してもよく、滴加等により複数回に分けて添加してもよい。粒状樹脂の粒子径が小さくなりやすくなり、それにより粒状樹脂中の過剰な遷移金属および副生した塩の除去性を向上しやすく、その結果、アイオノマー樹脂の透明性を向上しやすい観点から、貧溶媒の添加は比較的短時間で行うことが好ましく、一度に添加することがより好ましい。貧溶媒を複数回に分けて添加する場合には、貧溶媒の添加を1時間以内、より好ましくは30分間以内、さらに好ましくは10分間以内に完了することが好ましい。
 粗アイオノマー樹脂の溶液に貧溶媒を添加した後、粗アイオノマー樹脂の溶液と貧溶媒との混合液を撹拌することが好ましい。撹拌速度は特に制限されないが、撹拌速度が速いほど、粒子径の小さな粒状粒子を得やすくなる。撹拌時間は特に制限されず、例えば、粒状粒子が析出して、粗アイオノマー樹脂の溶液と貧溶媒との混合液がスラリー状になるまで撹拌すればよく、具体的には、好ましくは1秒間以上3時間以下、より好ましくは10秒間以上1時間以下、さらに好ましくは1分間以上30分間以下である。
 粗アイオノマー樹脂の溶液に貧溶媒を添加して析出させる粒状樹脂のピークトップ粒子径は、粒状樹脂の比表面積を大きくすることにより粒状樹脂中の副生した塩を除去しやすい観点から、また、過剰な遷移金属の含有量を低減しやすくして、その結果、アイオノマー樹脂中の遷移金属の含有量を0.01~100mg/kgの範囲内に調整しやすい観点から、700μm以下、好ましくは650μm以下、より好ましくは600μm以下、さらに好ましくは550μm以下である。また、粒状樹脂の濾過性を向上しやすく、アイオノマー樹脂の製造効率を向上しやすい観点から、好ましくは50μm以上、より好ましくは70μm以上、好ましくは80μm以上である。
 粗アイオノマー樹脂の溶液に貧溶媒を添加して析出させる粒状樹脂のピークトップ粒子径は、粗アイオノマー樹脂の溶液の濃度および温度によって調整できる。具体的には、粗アイオノマー樹脂の溶液の濃度および/または温度を低くすると、析出する粒状樹脂のピークトップ粒子径を小さくでき、粗アイオノマー樹脂の溶液の濃度および/または温度を高くすると、析出する粒状樹脂のピークトップ粒子径を大きくできる。また、粒状樹脂のピークトップ粒子径は、貧溶媒の添加方法および粗アイオノマー樹脂の溶液と貧溶媒との混合液の撹拌速度によっても調整できる。
 析出した粒状樹脂を洗浄する洗浄液としては、アイオノマー樹脂が溶解しない溶媒であれば、特に制限されない。好ましい洗浄液の例としては、メタノール、エタノール、1-プロパノール、2-イソプロパノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。これらは1種単独で使用しても、2種以上を組合せて使用してもよい。
 これらの洗浄液のなかでも、過剰な遷移金属および副生した塩を除去しやすい観点から、アルコール類、水、およびこれらの混合液が好ましい。さらに、洗浄液の比重を粒状樹脂よりも小さくすることにより、洗浄液と粒状樹脂との接触面積を増大させることによって、遷移金属および副生した塩の除去性を高めやすく、粒状樹脂中に含まれる有機化合物等の不純物を除去しやすい観点、および洗浄後に得られるアイオノマー樹脂を乾燥しやすくする観点から、より好ましい洗浄液は、水とアルコール類との混合液である。好ましいアルコール類は、乾燥しやすいこと、および水との相溶性が高いことから、メタノール、エタノール、より好ましくはメタノールである。
 水とアルコール類との混合液における水とアルコール類との割合(水/アルコール類(質量%))は、好ましくは20/80~80/20、より好ましくは30/70~70/30である。
 粒状樹脂を洗浄液で洗浄する方法の例としては、粒状樹脂が析出した粒状樹脂分散液から、粒状樹脂を濾取して、濾取した粒状樹脂を洗浄液と混合後、脱液する方法が挙げられる。より具体的には、前記粒状樹脂分散液から濾取した粒状樹脂と洗浄液とを混合後、洗浄液から粒状樹脂を濾取し(以下、洗浄工程(a)ともいう)、次いで、濾取した粒状樹脂を新たな洗浄液と混合後、洗浄液から粒状樹脂を濾取する(以下、洗浄工程(b)ともいう)ことにより、洗浄する方法が挙げられる。粒状樹脂に含まれる遷移金属および副生した塩を除去しやすい観点およびアイオノマー樹脂の製造効率の観点から、粒状樹脂の洗浄は、バッチプロセスの場合、例えば1回の洗浄工程(a)の後、洗浄工程(b)を1~10回行うことが好ましく、1回の洗浄工程(a)の後の洗浄工程(b)の回数は、より好ましくは1~6回、さらに好ましくは1~4回である。
 1回の洗浄工程あたりの前記洗浄液の使用量は、洗浄する粒状樹脂の量に応じて適宜選択してよい。例えば、1回の洗浄工程あたりの前記洗浄液の使用量は乾燥時の粒状樹脂100質量部に対して、好ましくは100質量部~2000倍量、より好ましくは200質量部~1000質量部、さらに好ましくは300質量部~700質量部である。
 粒状樹脂を洗浄液で洗浄することにより得られたアイオノマー樹脂は、必要に応じて乾燥してもよい。乾燥温度としては、好ましくはアイオノマー樹脂の融点以下、より好ましくは80℃以下であってよい。
 本発明のアイオノマー樹脂は、前記製造方法(I)以外の方法でも製造し得る。本発明のアイオノマー樹脂を製造し得る前記製造方法(I)以外の方法としては、例えば、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合して得られた共重合体を部分中和した後、得られた部分中和物に遷移金属を添加する方法(以降、製造方法(II)ともいう)が挙げられる。前記製造方法(II)では、
 エチレンと(メタ)アクリル酸とを共重合して、エチレン-(メタ)アクリル酸共重合体を得る工程(共重合工程)、
 得られたエチレン-(メタ)アクリル酸共重合体を強塩基により部分中和する工程(部分中和工程)、および
 得られた部分中和物に遷移金属を添加する工程(添加工程)
を含む方法によって、遷移金属を0.01~100mg/kg含有するアイオノマー樹脂を製造し得る。
 前記共重合工程および前記部分中和工程により、前記部分中和物を得る方法は、米国特許第6518365号明細書、米国特許第8399096号明細書における樹脂の製造方法を参照することができる。
 前記共重合工程および前記部分中和工程により得られた部分中和物に遷移金属を添加して、混合することにより、樹脂中の遷移金属の含有量が0.01~100mg/kgであるアイオノマー樹脂を製造できる。前記部分中和物に添加し得る遷移金属としては、本発明のアイオノマー樹脂に含有され得る遷移金属が挙げられる。前記樹脂に添加する際の遷移金属の状態は、特に制限されず、例えば遷移金属酸化物、遷移金属水酸化物、遷移金属ハロゲン化物、遷移金属塩等であってよく、これらを溶媒に分散または溶解させた状態で添加してもよい。
 遷移金属の添加量は、アイオノマー樹脂中の遷移金属の含有量が0.01~100mg/kgの範囲内となるように適宜選択すればよく、例えば、前記共重合工程および前記部分中和工程により得られた樹脂100質量部に対して、0.01×10-4~100×10-4質量部であってよく、好ましくは0.05×10-4~50×10-4質量部、より好ましくは0.1×10-4~10×10-4質量部、さらに好ましくは0.2×10-4~5×10-4質量部であってよい。
 前記部分中和物と遷移金属との混合は、混合撹拌装置、押出機等を用いて混合してよい。
 また、本発明のアイオノマー樹脂は、前記製造方法(I)において、けん化工程および脱金属化工程を遷移金属の非存在下で行うことにより得られた粗アイオノマー樹脂に遷移金属を添加する方法(以降、製造方法(III)ともいう)によっても製造し得る。また、本発明のアイオノマー樹脂は、前記製造方法(II)において、前記部分中和物の製造中に、例えば共重合工程と部分中和工程との間に、遷移金属を添加する方法(以降、製造方法(IV)ともいう)によっても製造し得る。製造方法(III)および製造方法(IV)において添加する遷移金属としては、製造方法(II)と同様のものを使用し得る。
 前記製造方法(I)~(IV)のなかでも、製造工程の簡易性の観点から、製造方法(I)により、アイオノマー樹脂を製造することが好ましい。
 本発明の一実施形態において、本発明のアイオノマー樹脂に、必要に応じて添加剤を添加して、樹脂組成物としてもよい。樹脂組成物は、本発明のアイオノマー樹脂と添加剤とを含んでなる。
 樹脂組成物に含まれ得る添加剤の例としては、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、有機色素、艶消し剤、蛍光体等が挙げられる。これらの添加剤のなかでも、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、有機色素が好ましい。添加する場合、添加剤は1種単独でも2種以上の組み合わせでもよい。
 本発明において、樹脂組成物は添加剤として、シランカップリング剤等の接着促進剤を含んでもよいが、架橋ゲルの生成を抑制して、外観が良好な樹脂シートを得やすい観点からは、接着促進剤を含まないことが好ましい。
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる。紫外線吸収剤の例としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 ベンゾトリアゾール類は紫外線被照による着色等の光学特性低下を抑制する効果が高いため、紫外線吸収剤として好ましい。好ましいベンゾトリアゾール類の例としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール]((株)ADEKA製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノール等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 トリアジン類の紫外線吸収剤の例としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン((株)ADEKA製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477やTINUVIN460)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン等を挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 老化防止剤としては、公知の材料が例示される。具体的な老化防止剤の例としては、ヒドロキノン、ヒドロキノンモノメチルエーテル、2,5-ジ-t-ブチルフェノール、2,6-ジ(t-ブチル)-4-メチルフェノール、モノ(またはジ、またはトリ)(α-メチルベンジル)フェノール等のフェノール系化合物;2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のビスフェノール系化合物;2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール等のベンズイミダゾール系化合物;6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体等のアミン-ケトン系化合物;N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン等の芳香族二級アミン系化合物;1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素等のチオウレア系化合物等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤等が挙げられる。これらの酸化防止剤は1種を単独でも2種以上の組み合わせでもよい。なかでも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との組み合わせがより好ましい。
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを組み合わせる場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、好ましくは1:5~2:1、より好ましくは1:2~1:1である。
 好ましいリン系酸化防止剤の例としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト((株)ADEKA製;商品名:アデカスタブHP-10)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン((株)ADEKA製;商品名:アデカスタブPEP-36)等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 好ましいヒンダードフェノール系酸化防止剤の例としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。好ましい熱劣化防止剤の例としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学(株)製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学(株)製;商品名スミライザーGS)等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好ましい光安定剤の例としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 膠着防止剤の例としては、脂肪酸の塩もしくはエステル、多価アルコールのエステル、無機塩、無機酸化物、粒子状の樹脂が挙げられる。好ましい膠着防止剤の例としては、ステアリン酸カルシウム、炭酸カルシウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、二酸化ケイ素(エボニック社製;商品名アエロジル)、粒子状のアクリル樹脂等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 滑剤の例としては、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 離型剤の例としては、セチルアルコール、ステアリルアルコール等の高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライド等のグリセリン高級脂肪酸エステル等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 高分子加工助剤は、通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子が用いられる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよく、組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。これらは1種単独でも2種以上の組み合わせでもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましい。高分子加工助剤の極限粘度は好ましくは3~6dl/gである。極限粘度が小さすぎると成形性の改善効果が低い傾向があり、極限粘度が大きすぎると共重合体の成形加工性の低下を招く傾向がある。
 有機色素の例としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。有機色素は1種単独でも2種以上の組み合わせでもよい。
 蛍光体の例としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。
 これらの添加剤を添加する場合、各種添加剤の含有量は、本発明の効果を損なわない範囲で適宜選択でき、各種添加剤の合計含有量は、樹脂組成物の総質量に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。
 各種の添加剤は、アイオノマー樹脂を製造する際に添加してもよく、アイオノマー樹脂の製造後に添加してもよく、後述の樹脂シートの製造時に添加してもよい。
 本発明のアイオノマー樹脂および本発明における樹脂組成物は、保存、運搬、または成形時の利便性を高めるために、ペレット等の形態にしてよい。アイオノマー樹脂および樹脂組成物をペレット化する場合は、例えば、溶融押出法にて得られるストランドをカットすることにより得ることができる。溶融押出法によってペレット化する場合における溶融押出時の樹脂または樹脂組成物の温度は、押出機からの吐出を安定化しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。また、前記温度は、樹脂が熱分解して劣化することを抑制する観点から、好ましくは250℃以下、より好ましくは230℃以下である。本発明のアイオノマー樹脂および本発明における樹脂組成物は耐熱分解性が高いため、このように溶融押出法によりペレット化する際に、アイオノマー樹脂が熱分解して黒色異物が生じる等の問題が起こりにくい。
 〔樹脂シート〕
 本発明は本発明のアイオノマー樹脂を含む層を1層以上有する樹脂シートも包含する。本発明の樹脂シートは、本発明のアイオノマー樹脂を含む層(以下、層(x)ともいう)を1層以上有する。層(x)は本発明のアイオノマー樹脂または本発明における樹脂組成物を含んでなる層である。
 本発明の樹脂シートは、層(x)のみから構成されていてもよく、層(x)を少なくとも1層含む積層体であってもよい。前記積層体としては、特に限定されないが、例えば、2層以上の層(x)を含む積層体、1層以上の層(x)と1層以上の他の層とを含む積層体等が挙げられる。層(x)または他の層が複数の層である場合、各層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。
 前記他の層としては、公知の樹脂を含む層が例示される。該樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステルのうちポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリテトラフロロエチレン、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、液晶ポリマー、ポリイミド、熱可塑性エラストマー等を用いることができる。また、他の層も、必要に応じて、前記添加剤、ならびに、可塑剤、ブロッキング防止剤、顔料、染料、遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子または有機遮熱性材料)、機能性無機化合物等の添加剤を1種以上含有してよい。
 本発明の一実施形態において、樹脂シートと基材とを熱圧着する際の泡抜け性に優れる観点から、本発明の樹脂シートは表面にメルトフラクチャーやエンボス等、従来公知の方法で凹凸構造を有することが好ましい。メルトフラクチャーおよびエンボスの形状は、従来公知のものを適宜選択してよい。
 本発明の樹脂シートにおける層(x)1層の厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、特に好ましくは0.4mm以上であり、また、好ましくは5mm以下、より好ましくは4mm以下、さらに好ましくは2mm以下、特に好ましくは1mm以下である。樹脂シートにおける層(x)が複数の層である場合、樹脂シートにおける複数の層(x)1層の厚さは同じでも異なっていてもよい。
 本発明の樹脂シートの厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、さらにより好ましくは0.4mm以上、とりわけ好ましくは0.5mm以上、とりわけより好ましくは0.6mm以上、とりわけさらに好ましくは0.7mm以上、特に好ましくは0.75mm以上であり、また、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下、さらにより好ましくは5mm以下、とりわけ好ましくは4mm以下、とりわけより好ましくは2mm以下、とりわけさらに好ましくは1mm以下である。
 樹脂シートの厚さは従来公知の方法、例えば接触式または非接触式の厚み計等を用いて測定される。樹脂シートはロール状に巻き取った状態であっても、1枚1枚の枚葉の状態であってもよい。
 本発明の好適な実施形態において、本発明の樹脂シートは、本発明のアイオノマー樹脂のヘイズ、吸水ヘイズ、徐冷ヘイズ、ガラスとの接着性および黄色度を有し得る。
 本発明の樹脂シートは、合わせガラスを製造する際に発泡しにくいという観点から、含水量が少ない方が好ましい。樹脂シートの含水量は好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.02質量%以下、特に好ましくは0.01質量%以下である。前記含有量は電量滴定法により測定できる。
 〔樹脂シートの製造方法〕
 本発明の樹脂シートの製造方法は特に限定されない。例えば、本発明のアイオノマー樹脂および任意の添加剤を均一に混練した後、押出法、カレンダー法、プレス法、溶液キャスト法、溶融キャスト法、インフレーション法等の公知の製膜方法により層(x)を製造できる。層(x)は単独で樹脂シートとして使用してもよい。また、必要に応じて、2層以上の層(x)、または1層以上の層(x)と1層以上の他の層とをプレス成形等で積層させて積層樹脂シートにしてもよく、2層以上の層(x)、または1層以上の層(x)と1層以上の他の層とを共押出法により成形して積層樹脂シートとしてもよい。層(x)または他の層が複数の層である場合、各層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。
 公知の製膜方法のなかでも、押出機を用いて樹脂シートを製造する方法が好適に用いられる。押出時の樹脂温度は、押出機からの樹脂の吐出を安定化しやすく、機械トラブルを低減しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。押出し時の樹脂温度は、樹脂の分解および分解に伴う樹脂の劣化を低減しやすい観点から、好ましくは250℃以下、より好ましくは230℃以下である。また、揮発性物質を効率的に除去するために、減圧によって押出機のベント口から、揮発性物質を除去することが好ましい。
 〔合わせガラス中間膜および合わせガラス〕
 本発明の樹脂シートは、合わせガラス中間膜(単に中間膜ともいう)として好適に使用できる。したがって、本発明は、本発明の樹脂シートからなる合わせガラス中間膜を包含する。また、本発明は、2つのガラス板と、該2つのガラス板の間に配置された本発明の合わせガラス中間膜とを有する、合わせガラスも包含する。本発明の合わせガラスは、前記樹脂シートからなる合わせガラス中間膜を有するため、優れた透明性を有することができる。
 本発明の中間膜と積層させるガラス板としては、例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラス等の無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネート等の従来公知の有機ガラス等を使用し得る。これらは無色または有色のいずれであってもよい。これらは1種を使用してもよく、2種以上を併用してもよい。また、1枚のガラス板の厚さは、100mm以下であることが好ましく、2枚のガラス板の厚さは同じでも異なっていてもよい。
 本発明の樹脂シートを2枚のガラスに挟んでなる合わせガラスは、従来公知の方法で製造できる。例えば真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。また上記方法により仮圧着した後に、オートクレーブに投入して本接着する方法も挙げられる。
 真空ラミネーター装置を用いる場合、例えば1×10-6~1×10-1MPaの減圧下、60~200℃、特に80~160℃でガラス板、中間膜、および任意の層(例えば接着性樹脂層等)をラミネートすることにより、合わせガラスを製造できる。真空バッグまたは真空リングを用いる方法は、例えば欧州特許第1235683号明細書に記載されており、約2×10-2~3×10-2MPa程度の圧力下、100~160℃でガラス板、中間膜および任意の層をラミネートすることにより、合わせガラスを製造できる。
 ニップロールを用いる製造方法の例としては、ガラス板、中間膜および任意の層を積層し、中間膜の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば赤外線ヒーター等で30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は合わせガラスの厚さや構成により適宜選択されるが、例えば0.5~1.5MPaの圧力下、100~160℃にて0.5~3時間処理することが好ましい。
 本発明のアイオノマー樹脂が高い透明性およびガラスへの高い接着性を有するため、本発明の合わせガラスは透明性に優れる。本発明の一実施形態において、中間膜のシート厚さが0.8mmの場合の合わせガラスのヘイズは、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズが小さいほどアイオノマー樹脂の透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。なお、合わせガラスのヘイズは、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。
 本発明の一実施形態において、本発明の合わせガラスは、140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後においても透明性に優れる。中間膜のシート厚さが0.8mmの合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズ(徐冷ヘイズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、特に好ましくは3.0%以下である。ヘイズが小さいほど合わせガラスの透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。徐冷ヘイズもまた、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。
 本発明の合わせガラスは着色が少なく、可能な限り、無色であることが好ましい。本発明の合わせガラスの黄色度(YI)は、中間膜のシート厚さが0.8mmである場合、好ましくは2.0以下、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.0以下である。黄色度(YI)が小さいほどアイオノマー樹脂の着色性が小さくなるため、下限値は特に制限されず、例えば、0であってよい。なお、黄色度(YI)は測色色差計を用い、JIS Z8722に準拠して測定される。
 本発明の合わせガラスにおける、中間膜のガラスとの接着性は、剥離試験によって測定されるガラスとアイオノマー樹脂との剥離エネルギーによって評価できる。標準条件下(23℃、50%RH)において測定されるガラスとアイオノマー樹脂との剥離エネルギーは、好ましくは2kJ/m以上、より好ましくは2.5kJ/m以上、さらに好ましくは3kJ/m以上、特に好ましくは3.5kJ/m以上である。また、高湿条件下におけるガラスとの接着性は、Wet条件下における剥離試験によって測定されるガラスとアイオノマー樹脂との剥離エネルギーによって評価できる。Wet条件下において測定されるガラスとアイオノマー樹脂との剥離エネルギーは、好ましくは0.05kJ/m以上、より好ましくは0.1kJ/m以上、さらに好ましくは0.15kJ/m以上、特に好ましくは0.2kJ/m以上である。標準条件下および高湿条件下における前記剥離エネルギーの上限は特に制限されず、10kJ/m以下であってよい。前記剥離試験は、例えば国際公開第2019-027865号公報に記載の剥離接着力測定(Peel Adhesion Measurement)として記載されている方法で行われ得る。前記標準条件下およびWet条件下において測定される剥離エネルギーは、例えば実施例に記載の方法により測定できる
 本発明の合わせガラスにおける中間膜のガラス板との接着性は、例えば、国際公開第1999―058334号公報に記載の圧縮せん断強度試験(Compression shear strength test)によっても評価できる。圧縮せん断強度は、前記接着力を高めやすい観点から、好ましくは15MPa以上、より好ましくは20MPa以上、特に好ましくは25MPa以上である。また、圧縮せん断強度は、合わせガラスの耐貫通性を高めやすい観点から、50MPa以下であってよい。
 上記のように、本発明のアイオノマー樹脂を含む層を1層以上有する樹脂シートは合わせガラス中間膜として有用である。該合わせガラス中間膜は、ガラス等の基材への接着性、透明性、自立性に優れる点から、特に、構造材料用合わせガラスの中間膜として好ましい。また、構造材料用合わせガラスの中間膜に限らず、自動車等の移動体、建築物、太陽電池等の各種用途における合わせガラス中間膜としても好適であるが、これらの用途に限定されるものではない。
 以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。
 〔単量体単位の含有量〕
 (原料樹脂)
 実施例および比較例において原料として用いたエチレン-(メタ)アクリル酸エステル共重合体を重トルエンまたは重THFに溶解させ、H-NMR(400MHz、日本電子(株)製)にて組成を定量した。
 (アイオノマー樹脂)
 実施例および比較例で得られたアイオノマー樹脂について、該アイオノマー樹脂における(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)の含有量の分析を、以下のようにして行った。
 実施例および比較例で得られたアイオノマー樹脂をそれぞれ脱水トルエン/脱水酢酸(75/25質量%)の混合溶媒に溶解し、100℃にて2時間反応させた後、アセトン/水(80/20質量%)の混合溶媒に再沈殿させることで(メタ)アクリル酸中和物単位(B)を(メタ)アクリル酸単位(A)に変換した。得られた樹脂を十分水で洗浄した後、乾燥し、乾燥した樹脂について下記(1)~(3)を行った。
 (1)熱分解GC-MSにより、樹脂を構成する単量体単位の成分を分析した。
 (2)JIS K0070-1992に準じて、樹脂の酸価を測定した。
 (3)重水素化トルエンと重水素化メタノールとの混合溶媒を用いて、樹脂のH-NMR(400MHz、日本電子(株)製)測定を行った。
 (4)また、実施例および比較例で得られたアイオノマー樹脂を、それぞれ、硝酸によるマイクロ波分解前処理に付した後、ICP発光分析(Thermo Fisher Scientific社製、「iCAP6500Duo」)によって、(メタ)アクリル酸中和物単位(B)の金属イオンの種類と量を同定した。
 上記(1)から、(メタ)アクリル酸エステル単位(D)および(メタ)アクリル酸単位(A)の種類と構造を同定した。その情報、ならびに上記(2)および(3)の情報から、エチレン単位(C)/(メタ)アクリル酸エステル単位(D)/((メタ)アクリル酸単位(A)と(メタ)アクリル酸中和物単位(B)の合計)の比率を算出した。さらに、上記(4)の情報からエチレン単位(C)/(メタ)アクリル酸エステル単位(D)/(メタ)アクリル酸単位(A)/(メタ)アクリル酸中和物単位(B)の比率を算出した。
 〔アイオノマー樹脂中の遷移金属の含有量〕
 実施例および比較例で得られたアイオノマー樹脂0.1gに、硝酸6.0mlを添加し、マイクロ波分解装置(CEM社製、「Discover SP-D80」)を用いて分解を行った。前記分解は、硝酸を添加したアイオノマー樹脂をマイクロ波分解装置付属の容器に入れ、初期温度(23℃)から210℃まで4分間かけて昇温し、昇温後210℃で4分間保持し、次いで、容器温度が80℃に下がるまで分解装置内の空冷用のファンを用いて冷却することにより行った。
 冷却後、得られた分解物の溶液を50mlのPFA製メスフラスコで希釈し、次いで0.45μm厚の濾過フィルターを用いて濾過を行い、次いで、高周波誘導結合プラズマ発光分光分析(Thermo Fisher SCIENTIFIC社製、「iCAP6500Duo」)により、樹脂脂組成物中の遷移金属含有量を測定した。
 〔流動性(メルトフローレート(MFR))〕
 JIS K7210に準拠して、実施例および比較例で用いた原料樹脂、および実施例および比較例で得られたアイオノマー樹脂のメルトフローレートを測定した。具体的には、各樹脂をシリンダ内で溶融し、190℃、2.16kg荷重条件の下で、シリンダ底部に設置された公称孔径2.095mmのダイから押し出し、10分間あたりに押し出される樹脂量(g/10分)を測定した。
 〔耐熱分解性〕
 JIS K7120-1987に準拠して、実施例および比較例で得られたアイオノマー樹脂の耐熱分解性を評価した。具体的には、示差熱熱重量同時測定装置TG-DTA7200((株)日立ハイテクサイエンス製)を用い、昇温速度10℃/分、流量50mL/分の窒素雰囲気下で、各樹脂を20℃~550℃まで加熱した際の重量減少率を測定した。200℃時点の重量を基準に重量減少率が1%となる際の温度である1%重量減少温度(Td1)を耐熱分解性の指標とした。
 〔黄色度(YI)〕
 実施例および比較例で得られたアイオノマー樹脂をそれぞれ210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmの樹脂シートを得た。得られた樹脂シートを日本電色工業株式会社製の測色色差計「ZE-2000」(商品名)を用い、JIS Z8722に準拠して測定した。得られた値を元にJIS K7373に準拠して算出した黄色度の値をイエロインデックス(YI)とした。
 〔高湿条件下における透明性(吸水ヘイズ)〕
 高湿条件下における透明性を、以下の方法で吸水ヘイズを測定することにより評価した。上述の方法と同様にして得られた樹脂シートを50mm四方に切り出し、切り出したサンプルを23℃のイオン交換水に浸漬させた状態で300時間保持し、吸水サンプルを得た。イオン交換水から取出した吸水サンプルの表面に付着した水分を拭き取った後、吸水サンプルのヘイズをヘイズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。
 〔徐冷時の透明性(徐冷ヘイズ)〕
 上述の方法と同様にして得られた樹脂シートを厚さ2.7mmのフロートガラス2枚に挟み、真空ラミネーター(日清紡メカトロニクス(株)製 1522N)を使用し、100℃で真空ラミネーター内を1分間減圧し、減圧度および温度を保持したまま30kPaで5分間プレスして、仮接着体を得た。得られた仮接着体をオートクレーブに投入し、140℃、1.2MPaで30分間処理して、30cm角の大きさの合わせガラスを得た。
 上述の方法にて得られた合わせガラスを140℃まで加熱したのち、0.1℃/分の速度で23℃まで徐冷した。徐冷操作後の合わせガラスのヘイズをヘイズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。
 〔標準条件(Dry条件)下におけるガラスとの接着性〕
 上述の方法と同様にして得られた合わせガラスを、国際公開第2019/027865号公報に記載の剥離接着力測定(Peel Adhesion Measurement)として記載されている方法に従い、万能試験機(MTS Criterion M45)を用い、23℃、50%RH条下にて、1cm/分の速度で90°方向に剥離試験を行い、剥離力PDryを測定した。剥離力PDry、剥離試験片の幅Wから、Dry条件下における剥離エネルギーγを下記式により算出した。
 Dry条件下における剥離エネルギーγDry〔kJ/m〕=PDry〔kJ/m〕/W〔m〕
 〔Wet条件下におけるガラスとの接着性〕
 高湿条件下におけるガラスとの接着性を、以下の方法でWet条件下における剥離エネルギーを測定することにより評価した。上述の方法と同様にして得られた合わせガラスを、国際公開第2019/027865号公報に記載の剥離接着力測定(Peel Adhesion Measurement)として記載されている方法に従い、万能試験機(MTS Criterion M45)を用い、23℃、50%RH条下にて1cm/分の速度で90°方向に剥離試験を行った。試験片を100mm剥離したところで、ガラスと剥離面の間に水を垂らしWet状態とし、0.025cm/分の速度で剥離を再開し、Wet状態における剥離力PWetを測定した。剥離力PWet、剥離試験片の幅WからWet条件下における剥離エネルギーγWetを下式より算出した。
 Wet条件下における剥離エネルギーγWet〔kJ/m〕=PWet〔kJ/m〕/W〔m〕
 〔樹脂シートの外観評価〕
 上述の方法と同様にして得られた30cm角の大きさの合わせガラスを目視観察し、樹脂シートのゲル化物の有無を確認し、下記基準で評価した。
 A:確認されたゲル化物が5個未満
 B:確認されたゲル化物が5個以上
 上記基準において、A評価は、樹脂シートの外観が良好であることを意味する。
 〔原料樹脂〕
 実施例および比較例において、アイオノマー樹脂の原料として用いた各エチレン-(メタ)アクリル酸エステル共重合体(X)のメタクリル酸メチル(MMA)変性量またはアクリル酸エチル(EA)変性量、およびMFRを表1に示す。
 例えば、EMMA1として住友化学(株)製「アクリフト」(登録商標)WK307、EEA1として日本ポリエチレン(株)製「レクスパール」(登録商標)A4250を用いることができる。
Figure JPOXMLDOC01-appb-T000001
 〔反応槽の材質〕
 エチレン-(メタ)アクリル酸エステル共重合体(X)を原料として用いた実施例および比較例において、エチレン-(メタ)アクリル酸エステル共重合体(X)のけん化反応および脱金属化反応を行った各反応槽の材質およびその組成を以下に示す。
 ハステロイB2:ニッケル68質量%、モリブデン28質量%、鉄2質量%、クロム1質量%、コバルト1質量%
 ハステロイC22:ニッケル56質量%、モリブデン13質量%、鉄3質量%、クロム22質量%、その他6%質量
 SUS312L:ニッケル20質量%、モリブデン7質量%、鉄47質量%、クロム21質量%、その他5%質量
 SUS316L:ニッケル15質量%、モリブデン3質量%、鉄59質量%、クロム18質量%、その他5質量%
 SUS304:ニッケル11質量%、鉄64質量%、クロム20質量%、その他5質量%
 SUS316:ニッケル14質量%、モリブデン3質量%、鉄60質量%、クロム18質量%、その他5質量%
 〔実施例1〕
 ハステロイB2製のマックスブレンド翼を備えた耐圧容器を反応槽として用いた。前記反応槽に、表1中のEMMA1、100質量部を導入し、そこにトルエン233質量部を加えて、0.02MPa加圧下、60℃で撹拌し、EMMA1を溶解させた。得られた溶液に水酸化ナトリウムのメタノール溶液(20質量%)96質量部を添加し、100℃で4時間撹拌し、EMMA1をけん化して、メタクリル酸メチル単位の一部をメタクリル酸ナトリウム単位に変換した。次いで、この溶液を50℃まで冷却した後に、塩酸(20質量%)83質量部を反応液中に直接添加し、50℃で1時間撹拌して、メタクリル酸ナトリウム単位の一部をメタクリル酸に変換し、粗アイオノマー樹脂溶液を得た。
 得られた粗アイオノマー樹脂溶液にトルエン/メタノール(75/25質量%)の混合溶媒を粗アイオノマー樹脂濃度が10質量%となるように添加して、該溶液を希釈した。次いで、得られた粗アイオノマー樹脂の希釈溶液を34℃に調整した後、前記希釈溶液に34℃のメタノールを粗アイオノマー樹脂溶液100質量部に対して430質量部添加して、粒状樹脂を析出させた。次いで、得られた粒状樹脂を濾取した後、濾取した粒状樹脂100質量部と水/メタノール(50/50質量%)の混合溶媒600質量部とを混合した。前記混合により得られたスラリーを40℃で1時間撹拌し、その後、粒状樹脂を室温にて濾取した。水/メタノールの混合溶媒による粒状樹脂の洗浄をさらに3回行い、洗浄されたアイオノマー樹脂を得た。
 得られたアイオノマー樹脂を8時間以上真空乾燥した後、分析し、特性を評価した。アイオノマー樹脂1の分析結果および評価結果を表2および表3に示す。
 〔実施例2〕
 ハステロイB2製の耐圧容器に代えてハステロイC22製の耐圧容器を反応槽として用い、EMMA1に代えてEMMA2を用いた以外は、実施例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔実施例3〕
 ハステロイB2製の耐圧容器に代えてハステロイC22製の耐圧容器反応槽として用い、EMMA1に代えてEMMA2を用い、塩酸を反応槽上部の液面より1mの距離のノズルから気相部を経由して反応液に滴下して添加した以外は、実施例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔実施例4〕
 ハステロイB2製の耐圧容器に代えてSUS312L製の耐圧容器を反応槽として用い、EMMA1に代えてEMMA2を用いた以外は、実施例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔実施例5〕
 ステロイB2製の耐圧容器に代えてSUS316L製の耐圧容器を反応槽として用い、EMMA1に代えてEEA1を用いた以外は、実施例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔実施例6〕
 米国特許第6518365号に記載の方法を参考に、エチレンおよびメタアクリル酸を共重合してエチレン-(メタ)アクリル酸共重合体を得た後、該共重合体を水酸化ナトリウムにより部分中和した。得られた部分中和物100質量部に、3.4×10-4質量部の塩化鉄(II)20%水溶液を押出機中で添加することにより、遷移金属を含有するアイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔比較例1〕
 ハステロイB2製の耐圧容器に代えてSUS304製の耐圧容器を反応槽として用い、EMMA1に代えてEMMA2を用い、塩酸を反応槽上部の液面より3mの距離のノズルから気相部を経由して反応液に滴下して添加した以外は、実施例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔比較例2〕
 SUS304製の耐圧容器に代えてSUS316製の耐圧容器を反応槽として用いた以外は、比較例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2示す。
 〔比較例3〕
 ハステロイB2製の耐圧容器に代えてハステロイC22製の耐圧容器を反応槽として用い、EMMA1に代えてEMMA3を用いた以外は、実施例1と同様にして、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔比較例4〕
 米国特許第6518365号に記載の方法を参考に、エチレンおよびメタアクリル酸を共重合してエチレン-(メタ)アクリル酸共重合体を得た後、該共重合体を水酸化ナトリウムにより部分中和することにより、アイオノマー樹脂を得た。得られたアイオノマー樹脂の分析結果および評価結果を表2および表3に示す。
 〔比較例5〕
 比較例4で得られたアイオノマー樹脂100質量部にシランカップリング剤として3-グリシドキシプロピルメチルジエトキシシラン0.2質量部を溶融混練にて加えることにより、樹脂組成物を得た。得られた樹脂組成物の分析結果および評価結果を表2および表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、実施例で得られたアイオノマー樹脂は、比較例で得られたアイオノマー樹脂よりも、吸水ヘイズが低く、吸水した状態であっても透明性が高いこと、Wet条件下における剥離エネルギーが高く、高湿条件下であってもガラスとの接着性が高いこと、および耐熱分解性が高いことが確認された。また、実施例で得られたアイオノマー樹脂を用いて製造された樹脂シートは、ゲル化物が少なく、外観が良好であった。

Claims (10)

  1.  (メタ)アクリル酸単位(A)、
     (メタ)アクリル酸中和物単位(B)、および
     エチレン単位(C)
    を含む、アイオノマー樹脂であって、
     前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、
     前記アイオノマー樹脂中の遷移金属の含有量は0.01~100mg/kgである、
    アイオノマー樹脂。
  2.  前記アイオノマー樹脂は、さらに(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、請求項1に記載のアイオノマー樹脂。
  3.  前記遷移金属は、鉄、ニッケル、マンガンおよびクロムからなる群から選択される1種以上の金属である、請求項1または2に記載のアイオノマー樹脂。
  4.  請求項1~3のいずれかに記載のアイオノマー樹脂を含む層を1層以上有する、樹脂シート。
  5.  請求項4に記載の樹脂シートからなる合わせガラス中間膜。
  6.  2つのガラス板と、該2つのガラス板の間に配置された請求項5に記載の合わせガラス中間膜とを有する、合わせガラス。
  7.  エチレン-(メタ)アクリル酸エステル共重合体を強塩基によりけん化する工程、および
     前記工程により得られたけん化物を強酸により脱金属化する工程
    を含み、前記けん化工程および/または前記脱金属化工程を遷移金属の存在下で行う、請求項1~3のいずれかに記載のアイオノマー樹脂の製造方法。
  8.  前記脱金属化を、けん化物の溶液に強酸を液中添加することにより行う、請求項7に記載の方法。
  9.  前記けん化工程および/または前記脱金属化工程を反応装置を用いて行い、前記反応装置の少なくとも一部は、遷移金属としてニッケルおよびクロムを合計で50質量%以上含む合金である、請求項7または8に記載の方法。
  10.  前記反応装置の少なくとも一部は、反応槽、撹拌翼、バッフル、ならびに、強塩基および/または強酸を反応槽内に供給するフィードラインからなる群から選択される少なくとも一部である、請求項9に記載の方法。
PCT/JP2021/034820 2020-09-29 2021-09-22 アイオノマー樹脂、樹脂シートおよび合わせガラス WO2022071065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022505432A JP7186329B2 (ja) 2020-09-29 2021-09-22 アイオノマー樹脂、樹脂シートおよび合わせガラス
US18/028,781 US20230331887A1 (en) 2020-09-29 2021-09-22 Ionomer resin, resin sheet, and laminated glass
EP21875367.1A EP4223795A1 (en) 2020-09-29 2021-09-22 Ionomer resin, resin sheet, and laminated glass
CN202180066479.7A CN116348430A (zh) 2020-09-29 2021-09-22 离聚物树脂、树脂片及夹层玻璃
KR1020237010337A KR20230075444A (ko) 2020-09-29 2021-09-22 아이오노머 수지, 수지 시트, 및 접합 유리

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163733 2020-09-29
JP2020-163733 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022071065A1 true WO2022071065A1 (ja) 2022-04-07

Family

ID=80950495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034820 WO2022071065A1 (ja) 2020-09-29 2021-09-22 アイオノマー樹脂、樹脂シートおよび合わせガラス

Country Status (6)

Country Link
US (1) US20230331887A1 (ja)
EP (1) EP4223795A1 (ja)
JP (1) JP7186329B2 (ja)
KR (1) KR20230075444A (ja)
CN (1) CN116348430A (ja)
WO (1) WO2022071065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270540A1 (ja) * 2021-06-23 2022-12-29 株式会社クラレ アイオノマー樹脂組成物を含んでなる層を有する樹脂シートおよび合わせガラス

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823850A (ja) * 1981-08-04 1983-02-12 Asahi Chem Ind Co Ltd 耐衝撃性ポリアミド組成物
JPS6357665A (ja) * 1986-08-29 1988-03-12 Nippon Petrochem Co Ltd ポリエステル樹脂組成物
WO1999058334A2 (en) 1998-05-14 1999-11-18 E.I. Du Pont De Nemours And Company Glass laminates for threat resistant window systems
US6432522B1 (en) 1999-02-20 2002-08-13 Saint-Gobain Vitrage Transparent acoustical and mechanical barrier
US6518365B1 (en) 1999-07-28 2003-02-11 E. I. Du Pont De Nemours And Company High melt swell polymer
EP1235683B1 (de) 1999-10-25 2003-08-20 Ht Troplast Ag Verfahren und folie zur herstellung von verbundsicherheitsscheiben
JP2006233059A (ja) 2005-02-25 2006-09-07 Sumitomo Chemical Co Ltd エチレン共重合体樹脂の高圧重合方法
JP2007084743A (ja) 2005-09-26 2007-04-05 Sumitomo Chemical Co Ltd エチレン系重合体樹脂の高圧重合方法
JP2009512763A (ja) 2005-10-21 2009-03-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 混合イオンイオノマーシート及びそれから製造された高強度積層物
JP2009518464A (ja) * 2005-11-30 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 積層安全ガラスでの使用に適した熱可塑性樹脂組成物
US8399096B2 (en) 2008-10-31 2013-03-19 E I Du Pont De Nemours And Company High-clarity ionomer compositions and articles comprising the same
US20130274424A1 (en) 2010-12-22 2013-10-17 Basell Polyolefine Gmbh Process for monitoring the polymerization of ethylene or ethylene and comonomers in a tubular-reactor at high-pressures
JP2015054411A (ja) * 2013-09-10 2015-03-23 三井・デュポンポリケミカル株式会社 酸化金属膜の製造方法
WO2019027865A1 (en) 2017-07-31 2019-02-07 Kuraray America, Inc. IONOMER INTERMEDIATE LAYER HAVING ENHANCED ADHESION PROPERTIES
JP2020163733A (ja) 2019-03-29 2020-10-08 積水化成品工業株式会社 樹脂複合体
WO2020241515A1 (ja) * 2019-05-31 2020-12-03 株式会社クラレ アイオノマー、樹脂シート及び合わせガラス
WO2021124951A1 (ja) * 2019-12-19 2021-06-24 株式会社クラレ アイオノマー樹脂、樹脂シートおよび合わせガラス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613264B2 (ja) * 1985-04-25 1994-02-23 三菱電機株式会社 緩速走行装置
JP7501157B2 (ja) * 2019-07-02 2024-06-18 日本ポリエチレン株式会社 ダイシングテープ基材用樹脂、それを含む樹脂組成物、ダイシングテープ基材及びダイシングテープ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823850A (ja) * 1981-08-04 1983-02-12 Asahi Chem Ind Co Ltd 耐衝撃性ポリアミド組成物
JPS6357665A (ja) * 1986-08-29 1988-03-12 Nippon Petrochem Co Ltd ポリエステル樹脂組成物
WO1999058334A2 (en) 1998-05-14 1999-11-18 E.I. Du Pont De Nemours And Company Glass laminates for threat resistant window systems
US6432522B1 (en) 1999-02-20 2002-08-13 Saint-Gobain Vitrage Transparent acoustical and mechanical barrier
US6518365B1 (en) 1999-07-28 2003-02-11 E. I. Du Pont De Nemours And Company High melt swell polymer
EP1235683B1 (de) 1999-10-25 2003-08-20 Ht Troplast Ag Verfahren und folie zur herstellung von verbundsicherheitsscheiben
JP2006233059A (ja) 2005-02-25 2006-09-07 Sumitomo Chemical Co Ltd エチレン共重合体樹脂の高圧重合方法
JP2007084743A (ja) 2005-09-26 2007-04-05 Sumitomo Chemical Co Ltd エチレン系重合体樹脂の高圧重合方法
JP2009512763A (ja) 2005-10-21 2009-03-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 混合イオンイオノマーシート及びそれから製造された高強度積層物
JP2009518464A (ja) * 2005-11-30 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 積層安全ガラスでの使用に適した熱可塑性樹脂組成物
US8399096B2 (en) 2008-10-31 2013-03-19 E I Du Pont De Nemours And Company High-clarity ionomer compositions and articles comprising the same
US20130274424A1 (en) 2010-12-22 2013-10-17 Basell Polyolefine Gmbh Process for monitoring the polymerization of ethylene or ethylene and comonomers in a tubular-reactor at high-pressures
JP2015054411A (ja) * 2013-09-10 2015-03-23 三井・デュポンポリケミカル株式会社 酸化金属膜の製造方法
WO2019027865A1 (en) 2017-07-31 2019-02-07 Kuraray America, Inc. IONOMER INTERMEDIATE LAYER HAVING ENHANCED ADHESION PROPERTIES
JP2020163733A (ja) 2019-03-29 2020-10-08 積水化成品工業株式会社 樹脂複合体
WO2020241515A1 (ja) * 2019-05-31 2020-12-03 株式会社クラレ アイオノマー、樹脂シート及び合わせガラス
WO2021124951A1 (ja) * 2019-12-19 2021-06-24 株式会社クラレ アイオノマー樹脂、樹脂シートおよび合わせガラス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270540A1 (ja) * 2021-06-23 2022-12-29 株式会社クラレ アイオノマー樹脂組成物を含んでなる層を有する樹脂シートおよび合わせガラス

Also Published As

Publication number Publication date
EP4223795A1 (en) 2023-08-09
JP7186329B2 (ja) 2022-12-08
CN116348430A (zh) 2023-06-27
KR20230075444A (ko) 2023-05-31
JPWO2022071065A1 (ja) 2022-04-07
US20230331887A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP6913264B1 (ja) アイオノマー樹脂、樹脂シートおよび合わせガラス
WO2021124950A1 (ja) アイオノマー樹脂の製造方法
WO2020241515A1 (ja) アイオノマー、樹脂シート及び合わせガラス
JP6370683B2 (ja) 熱可塑性樹脂フィルムとその製造方法、加飾フィルム、積層フィルム、および積層体
JP7124246B1 (ja) アイオノマー樹脂
JP7186329B2 (ja) アイオノマー樹脂、樹脂シートおよび合わせガラス
EP2868673A1 (en) Method for producing (meth)acrylic resin composition
WO2021079886A1 (ja) 樹脂シート及びその製造方法
WO2022270542A1 (ja) アイオノマー樹脂を含んでなる樹脂組成物、樹脂シートおよび合わせガラス
WO2023008485A1 (ja) アイオノマー樹脂粒状物の製造方法
WO2022270540A1 (ja) アイオノマー樹脂組成物を含んでなる層を有する樹脂シートおよび合わせガラス
WO2022270545A1 (ja) アイオノマー樹脂組成物、樹脂シートおよび合わせガラス
WO2023032909A1 (ja) アイオノマー樹脂組成物、樹脂シートおよび合わせガラス
JP2024086238A (ja) アイオノマー樹脂粒状物の製造方法およびアイオノマー樹脂粒状物
JP2024094995A (ja) アイオノマー樹脂組成物、樹脂シートおよび合わせガラス
WO2020184307A1 (ja) 中間膜用コアシェル型重合体、樹脂組成物、合わせガラス用中間膜
JP2016094535A (ja) 熱可塑性樹脂組成物とその製造方法、成形体、熱可塑性樹脂フィルム、積層フィルム、および積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505432

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875367

Country of ref document: EP

Effective date: 20230502