WO2022071019A1 - 吸着フィルター - Google Patents

吸着フィルター Download PDF

Info

Publication number
WO2022071019A1
WO2022071019A1 PCT/JP2021/034551 JP2021034551W WO2022071019A1 WO 2022071019 A1 WO2022071019 A1 WO 2022071019A1 JP 2021034551 W JP2021034551 W JP 2021034551W WO 2022071019 A1 WO2022071019 A1 WO 2022071019A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption filter
volume
activated carbon
adsorption
pore volume
Prior art date
Application number
PCT/JP2021/034551
Other languages
English (en)
French (fr)
Inventor
啓太 高橋
哲也 花本
寛枝 吉延
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=80950349&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022071019(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to US17/912,929 priority Critical patent/US20230149901A1/en
Priority to KR1020227032970A priority patent/KR20230078947A/ko
Priority to CN202180024815.1A priority patent/CN115335143A/zh
Priority to JP2022530282A priority patent/JP7180036B2/ja
Publication of WO2022071019A1 publication Critical patent/WO2022071019A1/ja
Priority to JP2022152814A priority patent/JP2022188136A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28028Particles immobilised within fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/08Special characteristics of binders
    • B01D2239/086Binders between particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials

Definitions

  • the present invention relates to an adsorption filter made of a molded body containing activated carbon and a binder.
  • an adsorption filter made of an activated carbon molded body is generally used.
  • Patent Document 1 discloses a method for manufacturing a turbidity-reducing filter body that can be used for a longer period of time by adjusting the hardness difference between the inflow filter material portion and the outflow filter medium portion of the activated carbon molded body.
  • Patent Document 2 discloses a water purification cartridge provided with an activated carbon molded body and a non-woven fabric, which can achieve both high turbidity removing performance and a sufficiently long clogging life.
  • Patent Document 3 describes the powdered activated carbon (a) and the fibrous binder (b) having a central particle size of 80 ⁇ m to 120 ⁇ m and a standard deviation ⁇ g of 1.3 to 1.9 in the particle size distribution.
  • the activated carbon molded product obtained by molding a mixture containing the above is disclosed. According to the activated carbon molded product of Patent Document 3, it is described that it is excellent in the ability to remove free residual chlorine, volatile organic compounds, CAT and 2-MIB, and is also excellent in turbidity filtration ability.
  • An object of the present invention is to provide an adsorption filter having excellent ultrafine particle removing performance while maintaining good water permeability.
  • the present inventors have reached the present invention as a result of diligent studies to solve the above problems.
  • the adsorption filter according to the aspect of the present invention is an adsorption filter made of a molded body containing activated carbon and a binder.
  • the pore volume having a pore diameter of 10 ⁇ m or more based on the volume of the adsorption filter measured by the mercury intrusion method is 0.10 cm 3 / cc to 0.39 cm 3 / cc.
  • the adsorption filter according to a further aspect of the present invention is an adsorption filter made of a molded body containing activated carbon and a binder.
  • the pore volume with a pore diameter of 7 ⁇ m or less based on the volume of the adsorption filter measured by the mercury intrusion method is 0.15 cm 3 / cc or more, and
  • the total pore volume of the adsorption filter measured by the mercury intrusion method on a volume basis is 0.50 cm 3 / cc to 0.73 cm 3 / cc.
  • FIG. 1 shows a perspective view showing an example of a mold for preparing an adsorption filter according to the present embodiment.
  • FIG. 2 is a perspective view showing an example of an adsorption filter in the present embodiment obtained by using the mold of FIG. 1.
  • FIG. 3 is a diagram illustrating a method of cutting a sample when measuring the pore volume and the pore mode diameter of the adsorption filter.
  • FIG. 4 is a diagram illustrating a method of cutting a measurement sample at the time of measuring the particle size distribution of activated carbon (carbide after heat treatment) in the adsorption filter.
  • FIG. 5 is a perspective view showing an example of an automatic grinder for manufacturing an adsorption filter.
  • FIG. 1 shows a perspective view showing an example of a mold for preparing an adsorption filter according to the present embodiment.
  • FIG. 2 is a perspective view showing an example of an adsorption filter in the present embodiment obtained by using the mold of FIG. 1.
  • FIG. 3 is a diagram illustrating
  • FIG. 6 is a graph showing the pore mode diameter of the adsorption filter and the section pore volume thereof.
  • FIG. 7 is a diagram showing the correlation between the pore volume of the adsorption filter having a pore diameter of 10 ⁇ m or more and the ultrafine particle removing performance.
  • FIG. 8 is a diagram showing the correlation between the pore volume of the adsorption filter having a pore diameter of 7 ⁇ m or less and the ultrafine particle removing performance.
  • the activated carbon molded bodies of Patent Document 1, Patent Document 2 and Patent Document 3 described above have been evaluated for their turbidity removing performance.
  • the turbidity removal performance test performed on the filter of the activated carbon molded body is specified by, for example, JIS S3201: 2019, and in the test, kaolin of about 1 ⁇ m to 20 ⁇ m is turbid component (particulate matter). ), And evaluate its removal performance.
  • the turbidity removing performance is evaluated based on the test.
  • the adsorption filter made of an activated carbon molded body is required to have the ability to remove fine particles (generally, a particle size of 1 ⁇ m to 20 ⁇ m) and ultrafine particles having a particle size of 1 ⁇ m or less. I'm starting.
  • the activated carbon molded body includes a wet molded body and a dry molded body depending on the manufacturing method thereof.
  • the wet molded body tends to have a relatively low density and low water flow resistance, and is also excellent in removing organic compounds and the like, which are generally considered to be harmful. However, due to its low density and low water flow resistance, it is expected that it will be difficult to have the ability to remove even ultrafine particles.
  • the dry molded body has a higher density than the wet molded body. Therefore, although it can be expected to have ultrafine particle removing performance, it becomes unsuitable for applications such as a water purification filter because the water flow resistance becomes high. Therefore, there is a demand for an adsorption filter made of an activated carbon molded body that can achieve both low water flow resistance and ultrafine particle removal performance.
  • the adsorption filter in the present embodiment is an adsorption filter made of a molded body containing activated carbon and a binder, and has a pore volume of 10 ⁇ m or more based on the volume of the adsorption filter measured by the mercury intrusion method. It is 10 cm 3 / cc to 0.39 cm 3 / cc.
  • the adsorption filter in the other embodiment is an adsorption filter made of a molded body containing activated carbon and a binder, and has a fine pore diameter of 7 ⁇ m or less based on the volume of the adsorption filter measured by the mercury intrusion method.
  • the pore volume is 0.15 cm 3 / cc or more, and the total pore volume of the adsorption filter measured by the mercury intrusion method based on the volume is 0.50 cm 3 / cc to 0.73 cm 3 / cc. ..
  • the void volume in the filter is appropriately controlled, and the pore volume at a predetermined pore diameter or more is specified. Adjust so that it is within the range. As a result, both water permeability and ultrafine particle removing performance can be achieved at the same time.
  • the adsorption filter in the present embodiment has a pore volume of 10 ⁇ m or more based on the volume of the adsorption filter measured by the mercury intrusion method (hereinafter, also simply referred to as “pore volume of 10 ⁇ m or more”). It is 0.10 cm 3 / cc to 0.39 cm 3 / cc.
  • pore volume of 10 ⁇ m or more By setting the pore volume of the pore diameter of 10 ⁇ m or more to 0.10 cm 3 / cc or more, good water permeability can be maintained in the adsorption filter of the present embodiment.
  • the adsorption filter in the present embodiment is remarkably excellent in the ultrafine particle removing performance.
  • the pore volume having a pore diameter of 10 ⁇ m or more is preferably 0.37 cm 3 / cc or less, more preferably 0.35 cm 3 / cc or less, and further preferably 0.33 cm 3 / cc or less.
  • the pore volume having a pore diameter of 10 ⁇ m or more is preferably 0.12 cm 3 / cc or more, and more preferably 0.15 cm 3 / cc or more.
  • the adsorption filter in the present embodiment preferably has a total pore volume (hereinafter, also simply referred to as “total pore volume”) of 0.50 cm 3 / based on the volume of the adsorption filter measured by the mercury intrusion method. It is cc to 0.73 cm 3 / cc.
  • total pore volume By setting the total pore volume to 0.50 cm 3 / cc or more, the adsorption filter can obtain more excellent water permeability, and can be suitably used for applications such as a water purification filter.
  • the total pore volume By setting the total pore volume to 0.73 cm 3 / cc or less, a sufficient amount of activated carbon can be retained, and the adsorption performance as a general filter can be improved.
  • the total pore volume is more preferably 0.53 cm 3 / cc or more, still more preferably 0.56 cm 3 / cc or more.
  • the total pore volume is more preferably 0.70 cm 3 / cc or less, still more preferably 0.67 cm 3 / cc or less.
  • the adsorption filter in the other embodiment is a pore volume having a pore diameter of 7 ⁇ m or less based on the volume of the adsorption filter measured by the mercury intrusion method (hereinafter, simply “pore volume having a pore diameter of 7 ⁇ m or less”.
  • pore volume having a pore diameter of 7 ⁇ m or less (Also referred to as) is 0.15 cm 3 / cc or more, and the total pore volume is 0.50 cm 3 / cc to 0.73 cm 3 / cc.
  • the adsorption filter can maintain good water permeability and is adsorbed as a general filter. Performance can be improved.
  • the pore volume having a pore diameter of 7 ⁇ m or less is preferably 0.16 cm 3 / cc or more, more preferably 0.17 cm 3 / cc or more, and further preferably 0.18 cm 3 / cc or more.
  • the upper limit of the pore volume having a pore diameter of 7 ⁇ m or less is not particularly limited, but for example, the pore volume having a pore diameter of 7 ⁇ m or less is preferably 0.30 cm 3 / cc or less, more preferably 0.28 cm 3 /. It is cc or less.
  • the preferable upper limit value and lower limit value of the total pore volume in the adsorption filter of the other embodiment are the same as those of the adsorption filter in the above-described embodiment.
  • the adsorption filter has a pore volume of 0.10 cm 3 / cc to 0.39 cm 3 / cc having a pore diameter of 10 ⁇ m or more, and in addition, the adsorption filter has a pore diameter of 7 ⁇ m or less. It is preferable that the pore volume is 0.15 cm 3 / cc or more and the total pore volume is 0.50 cm 3 / cc to 0.73 cm 3 / cc. In other words, it is preferable that the adsorption filter satisfies both conditions defined in the above two embodiments.
  • the ratio of the pore volume having a pore diameter of 10 ⁇ m or more to the total pore volume is preferably 12% or more.
  • the ratio of the pore volume having a pore diameter of 10 ⁇ m or more is more preferably 15% or more, still more preferably 20% or more, particularly preferably 25% or more, and most preferably 30% or more.
  • the ratio of the pore volume having a pore diameter of 10 ⁇ m or more is preferably 80% or less, more preferably 65% or less, and further preferably 60% or less.
  • the ratio of the pore volume having a pore diameter of 7 ⁇ m or less to the total pore volume is preferably 22% or more.
  • the adsorption filter can obtain more excellent ultrafine particle removing performance.
  • the ratio of the pore volume having a pore diameter of 7 ⁇ m or less is more preferably 25% or more.
  • the ratio of the pore volume having a pore diameter of 7 ⁇ m or less is preferably 48% or less, more preferably 45% or less.
  • the adsorption filter in the present embodiment preferably has a pore mode diameter (hereinafter, also simply referred to as “pore mode diameter”) measured by the mercury intrusion method of 15 ⁇ m or less.
  • pore mode diameter measured by the mercury intrusion method
  • the pore mode diameter is more preferably 13 ⁇ m or less, still more preferably 11 ⁇ m or less.
  • the lower limit of the pore mode diameter is not particularly limited, but it is sufficient that the pore mode diameter becomes extremely small and does not significantly affect the water permeability of the filter.
  • the pore mode diameter is preferably 6 ⁇ m or more, more preferably 7 ⁇ m or more.
  • the pore volume having a pore diameter of 10 ⁇ m or more, the pore volume having a pore diameter of 7 ⁇ m or less, the total pore volume, and the pore mode diameter measured by the mercury intrusion method will be described in later examples.
  • the measurement can be performed using a mercury intrusion method pore volume measuring device (“MicroActive AutoPore V 9620” manufactured by Micromeritics Co., Ltd.). Further, from the measured values of these pore volumes, the ratio (%) of the pore volume having a pore diameter of 10 ⁇ m or more to the total pore volume and the ratio (%) of the pore volume having a pore diameter of 7 ⁇ m or less to the total pore volume. ) Can be obtained.
  • the molded layer of the filter is a measurement sample having a size of about 1 cm square, but it is preferable that the size of this measurement sample is appropriately changed depending on the filter size. For example, in the case of a spout-in type filter, it is desirable to measure with a measurement sample of about 5 mm square.
  • the pore volume having a pore diameter of 10 ⁇ m or more, the pore volume having a pore diameter of 7 ⁇ m or less, the total pore volume, and the pore mode diameter have their values by various methods. Can be controlled. By controlling the value of the pore volume, at the same time, the ratio of the pore volume having a pore diameter of 10 ⁇ m or more to the total pore volume and the ratio of the pore volume having a pore diameter of 7 ⁇ m or less to the total pore volume are also controlled. can do.
  • the physical properties of the raw material activated carbon and its blending amount when two or more types of activated carbon with different physical properties are used, their blending ratio, the type of raw material binder and its blending amount, the blending amount of any component of the raw material, the adsorption filter.
  • the value can be controlled by appropriately selecting and appropriately adjusting the treatment conditions (suction pressure, drying time, etc.) and the like in the production of the above.
  • a pore volume having a pore diameter of 10 ⁇ m or more, a pore volume having a pore diameter of 7 ⁇ m or less, a total pore volume and fineness can be used. It is preferable to control the value of the hole mode diameter.
  • the density of the adsorption filter (hereinafter, also simply referred to as “filter density”) in the present embodiment is preferably 0.59 g / cm 3 or less.
  • the filter density is 0.59 g / cm 3 or less, the water flow resistance can be kept better, and for example, it can be suitably used for a water purification filter or the like. In addition, clogging of the filter can be suppressed.
  • the filter density is preferably 0.35 g / cm 3 or more. When the filter density is 0.35 g / cm 3 or more, the total amount of activated carbon becomes a suitable amount, and the removal performance of ultrafine particles and other ordinary harmful substances can be kept good.
  • the filter density is more preferably 0.38 g / cm 3 or more, further preferably 0.40 g / cm 3 or more, and particularly preferably 0.42 g / cm 3 or more.
  • the filter density is more preferably 0.57 g / cm 3 or less, further preferably 0.55 g / cm 3 or less, and particularly preferably 0.53 g / cm 3 or less.
  • the filter density can be measured by the methods described in detail in later examples.
  • the value of the filter density can be controlled by various methods. For example, the physical properties of the raw material activated carbon and its blending amount, when two or more types of activated carbon with different physical properties are used, their blending ratio, the type of raw material binder and its blending amount, the blending amount of any component of the raw material, the adsorption filter.
  • the value can be controlled by appropriately selecting and appropriately adjusting the treatment conditions (suction pressure, drying time, etc.) and the like in the production of the above.
  • the adsorption filter in this embodiment preferably has a benzene saturated adsorption amount of 18% to 35%.
  • the benzene saturated adsorption amount of the adsorption filter conforms to the activated carbon test method of JIS K 1474: 2014, and at 25 ° C., the mass is passed through air containing solvent vapor which is 1/10 of the solvent saturation concentration. It can be obtained from the increase (%) of the sample when it becomes constant.
  • the benzene saturated adsorption amount is 18% or more, sufficient removal performance especially for organic substances can be obtained.
  • the benzene saturated adsorption amount is 35% or less, it is possible to prevent the pore diameter from increasing in the overactivated state, and it is possible to suppress the possibility that the adsorption retention capacity of harmful substances is reduced.
  • the benzene saturated adsorption amount is more preferably 20% or more, still more preferably 22% or more.
  • the saturated benzene adsorption amount is more preferably 33% or less, still more preferably 30% or less.
  • the benzene saturated adsorption amount of the adsorption filter in the present embodiment for example, the physical properties of the activated carbon as a raw material and the blending amount thereof, and when two or more kinds of activated carbons having different physical properties are used, the blending ratio thereof and the like are appropriately selected and appropriately adjusted. By doing so, the value can be controlled.
  • the carbide obtained by heat-treating the adsorption filter in the present embodiment at 900 ° C. for 20 minutes has a particle size of 10 ⁇ m or less.
  • the particle content is preferably 2% by volume or more.
  • the adsorption filter by subjecting the adsorption filter to such a heat treatment, components such as a binder are removed from the adsorption filter, and activated carbon in the adsorption filter remains as carbide.
  • the adsorption filter in the present embodiment before the heat treatment is more excellent. It has the ability to remove ultrafine particles.
  • the particle content of activated carbon (carbide after heat treatment) in the adsorption filter having a particle diameter of 10 ⁇ m or less is more preferably 4% by volume or more, still more preferably 6% by volume or more.
  • the upper limit of the particle content of the activated carbon having a particle diameter of 10 ⁇ m or less in the adsorption filter is not limited, but the particle size may not significantly affect the water permeability of the adsorption filter in the present embodiment before the heat treatment because the particle size is extremely small. .. For example, it may be 10% by volume or less.
  • the particle content of activated carbon (carbide after heat treatment) in the adsorption filter with a particle size of 10 ⁇ m or less mainly depends on the physical properties of the raw material activated carbon and the blending ratio of two or more types of activated carbon with different physical properties. It is a value that changes. Therefore, their values can be controlled by appropriately selecting and adjusting them appropriately.
  • the adsorption filter in the present embodiment has a 0% particle size (hereinafter, also simply referred to as “D0”) of 7 ⁇ m or less in the volume-based cumulative particle size distribution of the activated carbon (carbide after heat treatment) in the adsorption filter. preferable.
  • D0 0% particle size
  • the adsorption filter in the present embodiment before the heat treatment has more excellent ultrafine particle removing performance.
  • the D0 of activated carbon (carbide after heat treatment) in the adsorption filter is more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less.
  • the lower limit of D0 is not limited, but it does not have a great influence on the water permeability of the adsorption filter before the heat treatment. For example, it may be 1 ⁇ m or more.
  • D0 of the activated carbon (carbide after heat treatment) in the adsorption filter is also a value that mainly changes according to the compounding ratio of the activated carbon as a raw material and when two or more types of activated carbon having different physical characteristics are used. Therefore, their values can be controlled by appropriately selecting and adjusting them appropriately.
  • the particle content of the activated carbon (carbonized material after heat treatment) in the adsorption filter having a particle diameter of 10 ⁇ m or less and the D0 of the activated carbon (carbonized material after heat treatment) in the adsorption filter are as described in the later examples. Similar to activated carbon as a normal raw material, it can be measured by a laser diffraction / scattering method using, for example, a wet particle size distribution measuring device (“Microtrac MT3300EX-II” manufactured by Microtrac Bell).
  • the adsorption filter in this embodiment is made of a molded body containing activated carbon and a binder.
  • the activated carbon (preferably granular activated carbon) as a raw material used for the adsorption filter in the present embodiment is not particularly limited, and can be used alone or in combination of two or more types of activated carbon having different physical characteristics.
  • the physical properties of the active charcoal as a raw material include, for example, the packing density of the activated charcoal (g / cm 3 ), the 10% particle size in the volume-based cumulative particle size distribution (hereinafter, also simply referred to as “D10”), and the volume-based cumulative particle size distribution.
  • D10 the 10% particle size in the volume-based cumulative particle size distribution
  • D90 90% particle size in the volume-based cumulative particle size distribution
  • the voids can be controlled when the adsorption filter is molded by adjusting the blending ratio of activated carbon having different physical characteristics, and the pore volume (and / or the pore diameter of 7 ⁇ m or less) having a pore diameter of 10 ⁇ m or more can be controlled. This is because the pore volume and the total pore volume) can be easily adjusted to be within the specific range defined in the present embodiment.
  • the activated carbon having different physical characteristics examples include powdered activated carbon X having smaller D10, D50 and / or D90 and containing a large amount of fine powder, and powdered activated carbon Y having larger D10, D50 and / or D90. It is preferable to use it in combination.
  • the activated carbon Y is formed by the activated carbon Y when molding the adsorption filter by using the activated carbon Y in combination with the activated carbon X at a mass ratio larger than the same level. Voids that are too large are properly filled with fine powder of activated carbon X.
  • the voids of the molded body are appropriately controlled, and the pore volume having a pore diameter of 10 ⁇ m or more (and / or the pore volume having a pore diameter of 7 ⁇ m or less and the total pore volume) is specified in the present embodiment. It is adjusted within the range of.
  • the particle size distribution of the raw material activated carbon is not particularly limited, but it is preferable that the content of particles having a particle diameter of 10 ⁇ m or less is more than 2% by volume. Specifically, in the particle size distribution of the activated carbon as a raw material, since the content of particles having a particle size of 10 ⁇ m or less is more than 2% by volume, the amount of fine powder contained in the activated carbon in the adsorption filter increases. The filter exhibits better ultrafine particle removal performance. When two or more types of activated carbon are used in combination, the particle content of the raw material activated carbon having a particle diameter of 10 ⁇ m or less varies depending on the physical characteristics of each activated carbon and the blending ratio of each activated carbon. Therefore, their values can be controlled by appropriately selecting and adjusting them appropriately.
  • the particle content of the activated carbon as a raw material having a particle diameter of 10 ⁇ m or less is more preferably 3% by volume or more, further preferably 4% by volume or more, still more preferably 5% by volume or more.
  • the upper limit of the particle content of the activated carbon as a raw material having a particle diameter of 10 ⁇ m or less is not limited, but the fine powder contained in the activated carbon in the adsorption filter becomes excessive, which should not greatly affect the water permeability of the molded adsorption filter. Just do it. For example, it may be 15% by volume or less.
  • the filling densities of the activated carbon as raw materials, D10, D50 and D90 are, for example, the types of carbonaceous materials used as raw materials for activated carbon described later, and the activation treatment method and treatment of the carbonic material in the production of activated carbon.
  • the values can be controlled by appropriately selecting and appropriately selecting the conditions (heating temperature and time, etc.), pulverization conditions and classification conditions.
  • the particle content of D10, D50 and D90, and the activated carbon as a raw material having a particle diameter of 10 ⁇ m or less as described in later examples, for example, a wet particle size distribution measuring device (manufactured by Microtrac Bell, Inc., “Microtrac”). It can be analyzed and measured by a laser diffraction / scattering method using MT3300EX-II ”) or the like.
  • activated carbon obtained by carbonizing a carbonaceous material that is a raw material of activated carbon as necessary, then activating it, and if necessary, performing a washing treatment, a drying treatment, and a crushing treatment. It can also be used.
  • the carbonaceous material used as a raw material is not particularly limited, but for example, a plant-based carbonaceous material (for example, wood, shavings, coal, fruit husks such as coconut husks and walnut husks, fruit seeds, pulp production by-products, lignin, etc.
  • a plant-based carbonaceous material for example, wood, shavings, coal, fruit husks such as coconut husks and walnut husks, fruit seeds, pulp production by-products, lignin, etc.
  • Plant-derived materials such as waste sugar honey), mineral-based carbonaceous materials (eg, mineral-derived materials such as peat, sub-charcoal, brown charcoal, bituminous charcoal, smokeless charcoal, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch), Synthetic resin-based carbonaceous materials (for example, materials derived from synthetic resins such as phenol resin, polyvinylidene chloride, acrylic resin), natural fiber-based carbonaceous materials (for example, natural fibers such as cellulose, recycled fibers such as rayon, etc.) Material derived from fiber) and the like. These carbonaceous materials may be used alone or in combination of two or more.
  • mineral-based carbonaceous materials eg, mineral-derived materials such as peat, sub-charcoal, brown charcoal, bituminous charcoal, smokeless charcoal, coke, coal tar, coal pitch, petroleum distillation residue, petroleum pitch
  • Synthetic resin-based carbonaceous materials for example, materials derived from synthetic resins such as phenol resin, polyvinylidene chlor
  • coconut shells or phenolic resins are preferable from the viewpoint that micropores involved in the volatile organic compound removal performance specified in JIS S3201: 2019 are likely to develop.
  • these carbonaceous materials are usually subjected to, for example, 400 ° C. to 800 ° C., preferably 500 ° C. to 800 ° C., and more preferably 550 ° C. in an environment where oxygen or air is shielded.
  • the carbonization treatment can be performed at about 750 ° C. After that, the particle size may be adjusted if necessary.
  • the activation treatment is a treatment in which pores are formed on the surface of a carbonaceous material and converted into activated carbon which is a porous body.
  • the activation treatment can be carried out by a method general in the art, and is not particularly limited, and mainly includes two types of treatment methods, gas activation treatment and drug activation treatment. Of these, when used for water purification treatment, gas activation treatment is preferable from the viewpoint of residual impurities.
  • the gas activation treatment is a treatment for heating a carbonaceous material in the presence of, for example, water vapor, carbon dioxide, air, oxygen, combustion gas, or a mixed gas thereof.
  • the heating temperature is not particularly limited, but is, for example, 700 ° C. to 1100 ° C., preferably 800 ° C. to 980 ° C., and more preferably 850 ° C. to 950 ° C.
  • the activation time and the rate of temperature rise are not particularly limited, and may be appropriately adjusted according to the type, shape, and size of the carbonaceous material to be selected. Considering safety and reactivity, it is preferable to use a water vapor-containing gas containing 10% by volume to 40% by volume of water vapor.
  • an activator such as zinc chloride, calcium chloride, phosphoric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide is mixed with a carbonaceous material to create an inert gas atmosphere. It may be carried out by a known method of heating below.
  • Activated carbon after activation treatment is washed and dried as necessary.
  • a plant-based carbonaceous material such as coconut shell or a mineral-based carbonaceous material containing impurities such as alkali metal, alkaline earth metal and transition metal is used as a raw material for activated carbon, ash and chemicals are removed. Clean as needed. Mineral acid or water is used for cleaning, and hydrochloric acid having high cleaning efficiency is preferable as the mineral acid.
  • the activated carbon after the activation treatment is pulverized and / or classified as necessary.
  • the crushing treatment is performed using a crushing device generally used for crushing activated carbon, for example, a high-speed rotary mill such as an erotic fall mill, a rod mill, a roller mill, a hammer mill, a blade mill, a pin mill, a ball mill, a jet mill, or the like.
  • a crushing device generally used for crushing activated carbon
  • a high-speed rotary mill such as an erotic fall mill, a rod mill, a roller mill, a hammer mill, a blade mill, a pin mill, a ball mill, a jet mill, or the like.
  • the classification treatment include methods generally used for classification of activated carbon, for example, classification using a sieve, wet classification, and dry classification.
  • the wet classifier include classifiers that utilize principles such as gravity classification, inertial classification, hydraulic classification, and centrifugal classification.
  • the dry classifier include classifiers
  • the shape of the activated carbon obtained through such treatment or the commercially available activated carbon may be any of powder, particle, fibrous (thread-like, woven cloth (cloth) -like, felt-like) and the like, and may be appropriately used depending on the intended use. You can choose. Of these shapes, a powder with high adsorption performance per volume is preferable.
  • the binder used for the adsorption filter in the present embodiment is not particularly limited, and a binder having a powdery or fibrous shape can be used alone or in combination of two or more. Of these, it is preferable to include a fibrous binder from the viewpoint of excellent water permeability when the adsorption filter is molded.
  • the fibrous binder is not particularly limited as long as it can be shaped by entwining activated carbon, and can be widely used regardless of whether it is a synthetic product or a natural product.
  • a binder include acrylic fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, cellulose fiber, nylon fiber, aramid fiber, pulp and the like.
  • the fiber length of the fibrous binder is preferably 4 mm or less.
  • the fibrous binder contains an acrylic fibrous binder. Further, it is more preferable that the fibrous binder contains a cellulosic fibrous binder. Further, these fibrous binders may be used in combination of two or more. For example, it is more preferable to use both an acrylic fibrous binder and a cellulosic fibrous binder in combination. By using a cellulosic fibrous binder in combination, it is possible to reduce the outflow of fine powder from the adsorption filter in the present embodiment.
  • the blending ratio of the acrylic fibrous binder and the cellulose-based fibrous binder is such that the cellulose-based fibrous binder is preferably 30 parts by mass to 70 parts by mass, more preferably 40 parts by mass with respect to 100 parts by mass of the acrylic fibrous binder. It is a mass part to 60 parts by mass.
  • the water permeability of the fibrous binder is preferably about 1 mL to 200 mL in terms of CSF value.
  • the CSF value is more preferably 10 mL to 150 mL.
  • the CSF value is a value measured with reference to the "Pulp drainage test method" Canadian standard freeness method specified in JIS P 8121: 2012. Specifically, in the measurement, the value is set to be evaluated using tap water having a conductivity of about 100 ⁇ s / cm. The CSF value can be adjusted, for example, by making the binder fibril.
  • the CSF value of the fibrous binder is 1 mL or more, sufficient water permeability can be maintained, a decrease in the strength of the molded body can be suppressed, and a risk of pressure loss can be prevented. Further, when the CSF value is 200 mL or less, the powdered activated carbon can be sufficiently retained, the decrease in the strength of the molded body can be suppressed, and the possibility that the adsorption performance can be deteriorated can be prevented.
  • two or more kinds of fibrous binders are used in combination, it is preferable that the CSF value in a state where two or more kinds of fibrous binders are mixed satisfies the above range.
  • the CSF value of the acrylic fibrous binder is preferably 20 mL or more, more preferably 50 mL or more.
  • the CSF value of the acrylic fibrous binder is preferably 200 mL or less, more preferably 150 mL or less.
  • the cellulosic fibrous binder is the cellulose fibrous binder with respect to 100 parts by mass of the acrylic fibrous binder.
  • the CSF value in the state of blending 50 parts by mass is preferably 1 mL or more, and more preferably 10 mL or more.
  • the cellulose-based fibrous binder preferably has a CSF value of 50 mL or less, preferably 40 mL or less, in a state where 50 parts by mass of the cellulose-based fibrous binder is blended with 100 parts by mass of the acrylic fibrous binder. Is more preferable.
  • the blending ratio of the activated carbon and the binder is not particularly limited, and when the adsorption filter is molded, the pore volume having a pore diameter of 10 ⁇ m or more (and / or the pore volume having a pore diameter of 7 ⁇ m or less and the total pore volume) is not particularly limited. ) May be appropriately set so as to be within the specific range specified in the present embodiment.
  • the amount is preferably about 3 parts by mass to 8 parts by mass of the binder with respect to 100 parts by mass of activated carbon.
  • a molded body of an adsorption filter having sufficient strength can be obtained.
  • the amount of the binder By setting the amount of the binder to 8 parts by mass or less, it is possible to suppress the deterioration of the adsorption performance of the activated carbon in the adsorption filter.
  • the mixing ratio of the binder to 100 parts by mass of activated carbon is more preferably 4 parts by mass or more, and further preferably 5 parts by mass or more.
  • the mixing ratio of the binder to 100 parts by mass of activated carbon is more preferably 7 parts by mass or less, still more preferably 6 parts by mass or less.
  • the adsorption filter in the present embodiment may contain any other functional component as long as the effect of the present invention is not impaired.
  • a zeolite powder lead adsorbent
  • ion exchange resin a chelate resin and the like
  • various adsorbents containing silver ions or silver compounds may be contained alone or in combination of two or more.
  • silver-impregnated activated carbon added in an amount that does not affect the physical properties of the adsorption filter in the present embodiment can be mentioned.
  • the blending amount of these other optional components is not particularly limited, but when the adsorption filter is molded, the pore volume having a pore diameter of 10 ⁇ m or more (and / or the pore volume having a pore diameter of 7 ⁇ m or less) and the total fineness.
  • the hole volume may be appropriately set so as to be within the specific range specified in the present embodiment. For example, 1 part by mass to 20 parts by mass can be blended with respect to 100 parts by mass of the entire adsorption filter.
  • the adsorption filter made of a molded body containing activated carbon and a binder in the present embodiment further contains a core, and may be a cylindrical adsorption filter.
  • the cylindrical shape can reduce the water flow resistance. Further, when the cartridge is used as a cartridge by filling the housing as described later, there is an advantage that the cartridge can be easily loaded and replaced in the water purifier.
  • the core is not particularly limited as long as it is inserted into the hollow portion of the cylindrical adsorption filter and can reinforce the cylindrical adsorption filter.
  • a trical pipe, a netron pipe, a ceramic filter and the like can be mentioned.
  • a non-woven fabric or the like can be wrapped around the outer circumference of the core for use.
  • the method for producing the adsorption filter in the present embodiment may be performed by any method known to those skilled in the art, and is not particularly limited.
  • the slurry suction method is preferable from the viewpoint of efficient production.
  • the manufacturing method is not limited to the manufacturing method.
  • the cylindrical adsorption filter (molded body) in the present embodiment has a slurry preparation step, a suction filtration step, a rolling step if necessary, a drying step, and a grinding step if necessary. It can be manufactured by a method including.
  • a slurry preparation step powdered activated carbon and a fibrous binder are dispersed in water to prepare a slurry.
  • the suction filtration step the prepared slurry is suctioned and filtered to obtain a preformed body.
  • the shape of the outer surface is adjusted as necessary by compressing the preformed body after suction filtration on a shaping table.
  • the drying step the preformed body having been shaped is dried to obtain a dried molded body.
  • the outer surface of the dried molded body is ground as needed.
  • the powdered activated carbon and the fibrous binder are used, for example, the fibrous binder is 4 parts by mass to 8 parts by mass with respect to 100 parts by mass of the powdered activated carbon, and the solid content concentration is 0.1.
  • a slurry dispersed in a solvent is prepared so as to be in an amount of 10% by mass to 10% by mass, preferably 1% by mass to 5% by mass.
  • the solvent is not particularly limited, but it is preferable to use water or the like.
  • the molding time can be shortened and the productivity can be improved. Further, it is possible to prevent the density of the molded body from becoming too high, and to maintain good water permeability.
  • each reference numeral represents a mold 1, a core body 2, a suction hole 3, flanges 4, 4', and a filtrate discharge port 5.
  • a large number of suction holes 3 are provided on the surface of the core body 2, flanges 4 and 4'are attached to both ends, and a filtrate discharge port 5 is provided.
  • the mold 1 for the cylindrical molded body is used.
  • the core as described above is attached to the mold 1, placed in the prepared slurry, and filtered while being sucked from the inside of the mold 1 from the filtrate discharge port 5 to attach the slurry to the mold 1.
  • a conventional method for example, a method of suction using a suction pump or the like can be used. In this way, the premolded body is attached to the mold 1.
  • a rolling step may be performed in order to adjust the outer diameter of the premolded body to a predetermined size, increase the roundness, and reduce the unevenness of the outer peripheral surface. can.
  • the mold 1 with the preformed body obtained in the suction filtration step attached may be placed on a table and moved back and forth while being pressed by a predetermined force.
  • the suction filtration step and the rolling step performed as needed may be performed any number of times in order to obtain a desired pore volume, adsorption filter density, and the like.
  • the drying temperature is, for example, 100 ° C to 150 ° C, particularly 110 ° C to 130 ° C.
  • the drying time is, for example, about 4 to 24 hours, particularly about 8 to 16 hours.
  • a grinding step can be performed to further adjust the outer diameter of the adsorption filter or to reduce the unevenness of the outer peripheral surface.
  • the grinding method is not particularly limited as long as the outer surface of the dried molded body can be ground (or polished), and any grinding method known to those skilled in the art may be used. From the viewpoint of grinding uniformity, a method using a grinder that rotates and grinds the molded body itself is preferable.
  • the grinding process is not limited to the method using a grinder, and for example, a molded body fixed to a rotating shaft may be ground with a fixed flat plate-shaped grindstone.
  • the generated grinding residue is likely to be deposited on the grinding surface, so it is effective to grind while blowing air.
  • the adsorption filter in this embodiment can be used as, for example, a water purification filter, a filter for artificial dialysis, or the like.
  • a water purification filter or a filter for dialysis for example, an adsorption filter can be manufactured by the above-mentioned manufacturing method, shaped and dried, and then cut into a desired size and shape to be used. Further, if necessary, a cap may be attached to the tip portion, or a non-woven fabric may be attached to the surface.
  • the adsorption filter in this embodiment can be filled in a housing and used as a water purification cartridge.
  • the water purification cartridge is loaded into a water purifier and used for water flow, and as the water flow method, a full filtration method or a circulation filtration method in which the entire amount of raw water is filtered can be adopted.
  • a water purification filter adsorption filter in the present embodiment
  • the water purification filter can be used in combination with a known non-woven fabric filter, various adsorbents, mineral additives, ceramic filter materials and the like.
  • the adsorption filter according to the aspect of the present invention is an adsorption filter made of a molded body containing activated carbon and a binder.
  • the pore volume having a pore diameter of 10 ⁇ m or more based on the volume of the adsorption filter measured by the mercury intrusion method is 0.10 cm 3 / cc to 0.39 cm 3 / cc.
  • the density of the adsorption filter is preferably 0.59 g / cm 3 or less.
  • the total pore volume of the adsorption filter measured by the mercury intrusion method on a volume basis is 0.50 cm 3 / cc to 0.73 cm 3 / cc.
  • the pore volume having a pore diameter of 7 ⁇ m or less based on the volume of the adsorption filter measured by the mercury intrusion method is 0.15 cm 3 / cc or more.
  • the adsorption filter according to a further aspect of the present invention is an adsorption filter made of a molded body containing activated carbon and a binder.
  • the pore volume with a pore diameter of 7 ⁇ m or less based on the volume of the adsorption filter measured by the mercury intrusion method is 0.15 cm 3 / cc or more, and
  • the total pore volume of the adsorption filter measured by the mercury intrusion method on a volume basis is 0.50 cm 3 / cc to 0.73 cm 3 / cc.
  • the ratio of is preferably 22% or more.
  • the pore mode diameter measured by the mercury intrusion method is 15 ⁇ m or less.
  • the content of particles having a particle diameter of 10 ⁇ m or less is 2% by volume or more. preferable.
  • the benzene saturation adsorption amount obtained from the increase of the sample when the mass becomes constant by passing air containing solvent vapor which is 1/10 of the solvent saturation concentration at 25 ° C. is 18% to 35%. % Is particularly preferable.
  • the 0% particle size in the cumulative particle size distribution on a volume basis is 7 ⁇ m or less in the carbide obtained by heat-treating the adsorption filter in an inert gas at 900 ° C. for 20 minutes.
  • the binder contains a fibrous binder.
  • the fibrous binder contains an acrylic fibrous binder.
  • the fibrous binder contains a cellulosic fibrous binder.
  • Powdered activated carbon A Carbonized coconut shell charcoal from the Philippines is steam-activated at 900 ° C, the activation time is adjusted to the desired benzene adsorption amount, and the obtained coconut shell activated carbon is washed with dilute hydrochloric acid and desalted with ion-exchanged water.
  • Granular activated carbon JIS K 1474, 18 ⁇ 42 mesh, benzene adsorption amount 29.5 wt%) was obtained.
  • the obtained granular activated carbon was pulverized with a ball mill to obtain powdered activated carbon A having a D50 of 19.5 ⁇ m.
  • Powdered activated carbon B Carbonized coconut shell charcoal from the Philippines is steam-activated at 900 ° C, the activation time is adjusted to the desired benzene adsorption amount, and the obtained coconut shell activated carbon is washed with dilute hydrochloric acid and desalted with ion-exchanged water. Granular activated carbon (JIS K 1474, 18 ⁇ 42 mesh, benzene adsorption amount 30.1 wt%) was obtained. The obtained granular activated carbon was pulverized with a ball mill, and fine powder was removed using a dry classifier to obtain powdered activated carbon B having a D50 of 36.8 ⁇ m.
  • Powdered activated carbon C Carbonized coconut shell charcoal from the Philippines is steam-activated at 900 ° C, the activation time is adjusted to the desired benzene adsorption amount, and the obtained coconut shell activated carbon is washed with dilute hydrochloric acid and desalted with ion-exchanged water.
  • Granular activated carbon JIS K 1474, 18 ⁇ 42 mesh, benzene adsorption amount 27.9 wt%) was obtained.
  • the obtained granular activated carbon was pulverized with a ball mill and fine powder was removed using a dry classifier to obtain powdered activated carbon C having a D50 of 33.2 ⁇ m.
  • Powdered activated carbon D Carbonized coconut shell charcoal from the Philippines is steam-activated at 900 ° C, the activation time is adjusted to the desired benzene adsorption amount, and the obtained coconut shell activated carbon is washed with dilute hydrochloric acid and desalted with ion-exchanged water.
  • Granular activated carbon JIS K 1474, 18 ⁇ 42 mesh, benzene adsorption amount 29.7 wt%) was obtained.
  • the obtained granular activated carbon was pulverized with a ball mill and then classified with a 325 mesh sieve to obtain powdered activated carbon D having a D50 of 145.3 ⁇ m.
  • Powdered activated carbon E Bituminous coal was used as a carbonaceous raw material, and carbonization was carried out at 650 ° C. to obtain a dry distillation product. The obtained dry distillation product is put into a furnace, the activation time is adjusted so that the desired amount of benzene is adsorbed, and the obtained coal-based activated carbon is washed with dilute hydrochloric acid and desalted with ion-exchanged water to obtain acid-washed activated carbon. Obtained.
  • the obtained acid-washed activated carbon was put into the furnace again, and the activation time was adjusted so as to obtain the desired benzene adsorption amount to obtain granular activated carbon (JIS K 1474, 10 ⁇ 32 mesh, benzene adsorption amount 42.1 wt%). rice field.
  • the obtained granular activated carbon was pulverized with a ball mill to obtain powdered activated carbon E having a D50 of 36.8 ⁇ m.
  • the phenol resin fiber was oxidized at 300 ° C. for 1 hour, and the obtained oxidized product was carbonized at 700 ° C. for 1 hour.
  • the obtained phenol resin fiber after carbonization treatment was activated at an activation temperature of 950 ° C. to obtain a phenol resin-based fibrous activated carbon having a BET specific surface area of 1850 m 2 / g.
  • binder (binder) -Acrylic fiber binder: manufactured by Japan Exlan Co., Ltd., "Acrylic fiber Bi-PUL / F", CSF value 83 mL Cellulose-based fibrous binder (The CSF value is 28 mL when 50 parts by mass of the cellulosic fibrous binder is blended with 100 parts by mass of the acrylic fibrous binder (CSF value 83 mL)).
  • -Powder binder high-density polyethylene powder binder: "Miperon MX-220" manufactured by Mitsui Chemicals, Inc.
  • the adsorption filter density (g / cm 3 ) was calculated according to the following formula after the obtained adsorption filter was dried at 120 ° C. for 2 hours.
  • the adsorption filter density refers to the density of only the molded layer of activated carbon.
  • Adsorption filter density (mass of adsorption filter activated carbon molded layer) / (volume of adsorption filter activated carbon molded layer)
  • the pore volume of the adsorption filter was measured using a mercury intrusion method pore volume measuring device (“MicroActive AutoPore V 9620” manufactured by Micromeritics Co., Ltd.). The measured pressure was 0.7 kPa-420 MPa. After cutting the molded layer composed of activated carbon and the binder of the cylindrical adsorption filter as shown in FIG. 3, the cut pieces were further cut into a size of about 1 cm square.
  • the pore volume (cm 3 / g) was calculated. Then, by multiplying these values by the adsorption filter density obtained above, the pore volume (cm 3 / cc) having a pore diameter of 10 ⁇ m or more and the pore diameter of 7 ⁇ m or less based on the volume of the adsorption filter is obtained.
  • the pore mode diameter ( ⁇ m) of the adsorption filter was the pore diameter showing the peak value of the obtained pore distribution.
  • the obtained charcoal was used as a sample for measuring the particle size distribution of the activated charcoal in the adsorption filter, and 0% in the cumulative particle size distribution based on the volume of the activated charcoal in the adsorption filter by the same method as the method for measuring the particle size distribution of the activated charcoal as the raw material described above.
  • the particle size (D0) ( ⁇ m) and the particle content (% by volume) having a particle size of 10 ⁇ m or less were measured.
  • benzene adsorption performance of adsorption filter For the benzene adsorption performance of the adsorption filter, refer to the activated carbon test method (JIS K 1474: 1991) in the Japanese Industrial Standards, and pass air containing solvent vapor, which is 1/10 of the solvent saturation concentration, at 25 ° C. to the mass. The benzene saturated adsorption amount (%) was obtained from the increase in the amount of the sample when the value became constant. As the measurement sample, a sample obtained by cutting out a part of the adsorption filter and pulverizing it was used, and the adsorption performance of the sample after pulverization was evaluated.
  • sample waters are filtered through a 0.2 ⁇ m membrane filter (ADVANTEC, MEMBRANE FILTER A020B025A WHITE (cellulose mixed ester, 0.2 ⁇ m, 25 mm, with black ruled lines)), and the membrane filter is dried at 60 ° C. rice field.
  • ADVANTEC MEMBRANE FILTER A020B025A WHITE (cellulose mixed ester, 0.2 ⁇ m, 25 mm, with black ruled lines)
  • BX51-34-FL manufactured by OLYMPUS
  • the removal rate (%) by processing the particles was calculated.
  • the fluorescent particle removal rate when 10940 L of water was passed was evaluated, and a removal rate of 95% or more was used as a pass criterion for ultrafine particle removal performance.
  • Example 1 The powdered activated carbon A, the powdered activated carbon B, the acrylic fibrous binder, the cellulosic fibrous binder and the titanosilicate-based lead adsorbent were prepared so as to have a total of 1.055 kg in the blending ratio shown in Table 2 below. , Added tap water. The amount of slurry after the addition was 20 L. In Table 2, the particle content (% by volume) of the activated carbon as a raw material measured by the above method and having a particle diameter of 10 ⁇ m or less is also shown.
  • the core was attached to the above-mentioned mold for cylindrical molding (outer diameter 60 mm ⁇ , center pole diameter 30 mm ⁇ , and outer diameter flange spacing 84.9 mmH) shown in FIG. 1, and the obtained slurry was slightly smaller than the outer diameter of the mold. It was molded by suction only at 450 mmHg up to a large diameter of 62 mm ⁇ , and then dried.
  • the obtained molded body was mounted on the automatic grinder shown in FIG. 5, and the molded body rotation speed was 360 rotations / minute, the grindstone rotation speed was 2535 rotations / minute, and the grindstone moving speed was 300 mm / 10 seconds (3 cm / sec).
  • the outer surface of the molded body was ground to obtain a cylindrical adsorption filter having an outer diameter of 60 mm ⁇ , an inner diameter of 30 mm ⁇ , and a height of 84.9 mmH.
  • the density of the adsorption filter, the pore volume and the pore mode diameter in the mercury porosimeter, the particle size distribution of the activated carbon (carbide after heat treatment) in the adsorption filter, and the particle size distribution of the activated carbon (carbide after heat treatment) in the adsorption filter are obtained by the above-mentioned method.
  • the benzene adsorption performance was measured. The results of measuring the physical properties of these adsorption filters are summarized in Table 3 below.
  • the non-woven fabric was wrapped in a single layer around the outer circumference of the obtained adsorption filter. Further, a donut-shaped packing formed of a foamed polyethylene sheet having a thickness of 2 mm and having an outer diameter of 60 mm ⁇ and an inner diameter of 30 mm ⁇ was bonded to both ends of the adsorption filter with a hot melt adhesive.
  • Example 2 As shown in Table 2 below, in Example 2, a cylindrical adsorption filter was obtained by the same method as in Example 1 except that the cellulosic fibrous binder was not blended in the raw material.
  • the physical property measurement results and performance evaluation results of the adsorption filter in Example 2 are summarized in Table 3 below.
  • Example 3 As shown in Table 2 below, in Example 3, the amount of powdered activated carbon A was slightly increased and the amount of powdered activated carbon B was slightly decreased as compared with Example 1. A cylindrical adsorption filter was obtained in the same manner as in Example 1 except for the above. The physical property measurement results and performance evaluation results of the adsorption filter in Example 3 are summarized in Table 3 below.
  • Example 4 As shown in Table 2 below, in Example 4, the amount of powdered activated carbon A was further increased and the amount of powdered activated carbon B was further decreased as compared with Example 3. A cylindrical adsorption filter was obtained in the same manner as in Example 3 except for the above. The physical property measurement results and performance evaluation results of the adsorption filter in Example 4 are summarized in Table 3 below.
  • Example 5 As shown in Table 2 below, in Example 5, the cylindrical adsorption filter was provided in the same manner as in Example 1 except that the powdered activated carbon A was changed to the powdered activated carbon E and the blending amount was changed. Obtained.
  • the physical property measurement results and performance evaluation results of the adsorption filter in Example 5 are summarized in Table 3 below.
  • Example 6 As shown in Table 2 below, in Example 6, the same compounding conditions as in Example 1 were used. In Example 6, when molding the adsorption filter, the obtained slurry is sucked and molded at 450 mmHg up to 70 mm ⁇ , which is larger than the outer diameter of the mold, and then the rolling step is sandwiched until the outer diameter becomes 63 mm ⁇ . A cylindrical adsorption filter was obtained in the same manner as in Example 1 except that the surface was molded and then dried. The physical property measurement results and performance evaluation results of the adsorption filter in Example 6 are summarized in Table 3 below.
  • Example 7 As shown in Table 2 below, in Example 7, a cylindrical adsorption filter was obtained by the same method as in Example 1 except that the titanosilicate-based lead adsorbent was not blended. The physical property measurement results and performance evaluation results of the adsorption filter in Example 7 are summarized in Table 3 below.
  • Comparative Example 1 As shown in Table 2 below, in Comparative Example 1, the same method as in Example 1 was used except that the powdered activated carbon A was not contained and only the powdered activated carbon B was used in the blending of the powdered activated carbon. A cylindrical adsorption filter was obtained. The physical property measurement results and performance evaluation results of the adsorption filter in Comparative Example 1 are summarized in Table 3 below.
  • the obtained mixture was filled into a tubular stainless steel mold having an inner diameter of 65 mm ⁇ , a core diameter of 30 mm ⁇ , and a height of 90 mm with a lid on one side while gradually vibrating with a mallet, and the lid was placed on the open side. And fixed the contents.
  • the mold filled with the mixture was put into a dryer at 160 ° C., heated for 120 minutes, and then allowed to cool to 50 ° C. or lower. After that, the lid was removed and the molded product was taken out from the mold so as not to damage the molded product.
  • the obtained molded product was cut to prepare a dry molded body having an outer diameter of 65 mm ⁇ , an inner diameter of 30 mm ⁇ , and a height of 84 mm. Finally, both ends of the obtained molded body were cut with a saw to prepare an adsorption filter having a height of 64 mm.
  • Table 3 The physical property measurement results and performance evaluation results of the adsorption filter in Comparative Example 2 are summarized in Table 3 below.
  • ⁇ Comparative Example 3> In a 100 L small beater, 1.5 kg of fibrous activated carbon was added to 100 L of tap water by dry weight, and then 0.075 kg of acrylic fibrous binder was added by dry weight to beat the mixture. .. Specifically, the fibrous activated carbon was subdivided by dispersing and mixing the fibrous activated carbon and the binder, and further narrowing the gap between the fixed teeth and the rotating teeth of the beater. When the fiber length of the fibrous activated carbon is shortened due to subdivision, the filling property is improved when molded into a specific shape, so that the weight per unit volume increases. This weight per unit volume was called the beating density and was used as a measure of the shortness of the fibrous activated carbon.
  • the following molded body was prepared. Specifically, a 300-mesh wire mesh is wound around a central shaft with a small hole diameter of 3 mm ⁇ for suction and a pitch of 5 mm, and a mold with a central shaft diameter of 18 mm ⁇ , an outer diameter of 40 mm ⁇ , and an outer diameter flange spacing of 50 mmH is prepared, and the slurry is sucked from the center. By doing so, a molded body of a cylindrical suction filter was produced.
  • the beating density was calculated from the dimensions and weight of the dried product of this molded product and found to be 0.183 g / ml. In Comparative Example 3, this slurry having a beating density of 0.183 g / ml was used as a standard slurry.
  • Comparative Example 3 the same method as in Example 1 was used except that a predetermined amount of powdered activated carbon C was added to the standard slurry in the blending of the raw materials so as to have the blending ratio shown in Table 2 below. A cylindrical adsorption filter was obtained. The physical property measurement results and performance evaluation results of the adsorption filter in Comparative Example 3 are summarized in Table 3 below.
  • Comparative Example 4 is the same as Comparative Example 2 except that the powdered activated carbon D, the titanosilicate-based lead adsorbent, and the high-density polyethylene powder binder were used in the blending ratios shown in Table 2 below.
  • a cylindrical adsorption filter was obtained by the above method.
  • the physical property measurement results and performance evaluation results of the adsorption filter in Comparative Example 4 are summarized in Table 4 below.
  • FIG. 6 shows a graph of the pore mode diameter and the section pore volume of the adsorption filter in Examples 1 to 7 and Comparative Examples 1 to 3 measured by a mercury porosimeter.
  • FIG. 7 the pore volume (cm 3 / cc) and ultrafine particle removal of the adsorption filters having a pore diameter of 10 ⁇ m or more in Examples 1 to 7 and Comparative Examples 1 and 3 measured with a mercury porosimeter are shown. The correlation with the performance (%) is shown. Further, in FIG. 8, the pore volume (cm 3 / cc) having a pore diameter of 7 ⁇ m or less and the removal of ultrafine particles in Examples 1 to 7 and Comparative Examples 1 and 3 to 4 measured by a mercury porosimeter are shown. The correlation with the performance (%) is shown. Comparative Example 2 is not shown because it stopped halfway as shown in Table 3 above.
  • the adsorption filters of Examples 1 to 7 had excellent ultrafine particle removing performance and maintained good water permeability.
  • the adsorption filter of Comparative Example 1 did not satisfy the acceptance criteria of the ultrafine particle removing performance, and the adsorption filter of Comparative Example 2 did not satisfy the acceptance criteria of the initial water flow resistance.
  • Comparing Example 1 and Comparative Example 1 although the total pore volume and the pore mode diameter are about the same values, the adsorption filter of Comparative Example 1 has a pore diameter of 10 ⁇ m or more in this embodiment. It did not meet both the specified range of pore volume and the specified range of pore volume with a pore diameter of 7 ⁇ m or less. Specifically, as shown in FIG.
  • the pore distribution of Comparative Example 1 has a pore diameter of 10 ⁇ m or more in a direction in which the pore diameter is larger than that of Example 1. It can be seen that there are more in the range. Further, the pore distribution of Comparative Example 1 is smaller than that of Example 1 in the direction in which the pore diameter is smaller, specifically in the range of the pore diameter of 7 ⁇ m or less. I understand. Therefore, it is assumed that there is a difference in the effect of the ultrafine particle removal performance. As described above, it is considered that in the adsorption filters of Examples 1 to 7, the pore volume of the adsorption filter having a pore diameter of 10 ⁇ m or more and the pore volume of the pore diameter of 7 ⁇ m or less are suitably controlled.
  • the adsorption filter of the present invention for example, by using it as a water purification filter or the like, it is possible to exhibit excellent ultrafine particle removing performance while maintaining good water permeability.

Abstract

本発明に係る吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径10μm以上の細孔容積が0.10cm/cc~0.39cm/ccである。

Description

吸着フィルター
 本発明は、活性炭とバインダーとを含む成型体からなる吸着フィルターに関する。
 近年、水道水の水質に関する安全衛生上の関心が高まってきており、水道水中に含まれる遊離残留塩素、トリハロメタン類等のVOC(揮発性有機化合物)、農薬、カビ臭等の有害物質を除去することが望まれている。
 このような有害物質を除去するため、一般的に、活性炭成型体からなる吸着フィルターが用いられている。
 活性炭成型体からなる吸着フィルターは、水道水中に含まれる濁り成分(粒子状物質)の除去性能も有することが望まれる。そのため、例えば、特許文献1には、活性炭成型体の流入濾材部と流出濾材部との硬度差を調整することによって、より長期間の使用が可能な濁度低減フィルター体の製造方法が開示されている。また、例えば、特許文献2には、活性炭成型体と不織布とを備える、高い濁り除去性能と十分に長い目詰まり寿命とを両立可能な浄水カートリッジが開示されている。さらに、例えば、特許文献3には、中心粒子径が80μm~120μmで、かつ粒径分布における標準偏差σgが1.3~1.9である粉末状活性炭(a)および繊維状バインダー(b)を含む混合物を成型してなる活性炭成型体について開示されている。特許文献3の活性炭成型体によると、遊離残留塩素、揮発性有機化合物、CATおよび2-MIBの除去能に優れ、さらに濁りろ過能力にも優れることが記載されている。
特開2015-033680号公報 特開2016-140788号公報 国際公開第2011/016548号
 本発明は、良好な通水性を維持しつつ、かつ優れた超微粒子除去性能を有する吸着フィルターを提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、本発明に到達した。
 本発明の局面に係る吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、
 水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径10μm以上の細孔容積が0.10cm/cc~0.39cm/ccである。
 あるいは、本発明のさらなる局面に係る吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、
 水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積が0.15cm/cc以上であり、かつ、
 水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積が0.50cm/cc~0.73cm/ccである。
図1は、本実施形態における吸着フィルターを調製するための型枠の1例を示す斜視図を示す。 図2は、図1の型枠を用いて得られる本実施形態における吸着フィルターの1例を示す斜視図である。 図3は、吸着フィルターの細孔容積および細孔モード径の測定の際のサンプルの切り取り方を説明する図である。 図4は、吸着フィルター中の活性炭(熱処理後の炭化物)の粒度分布の測定の際の測定用サンプルの切り取り方を説明する図である。 図5は、吸着フィルターを製造するための自動研削機の1例を示す斜視図である。 図6は、吸着フィルターの細孔モード径とその区間細孔容積を示すグラフである。 図7は、吸着フィルターの細孔直径10μm以上の細孔容積と超微粒子除去性能との相関を示す図である。 図8は、吸着フィルターの細孔直径7μm以下の細孔容積と超微粒子除去性能との相関を示す図である。
 上述した特許文献1、特許文献2および特許文献3の活性炭成型体では、濁り除去性能が評価されている。一般的に、活性炭成型体のフィルターに対して行われる濁り除去性能試験は、例えばJIS S 3201:2019で規定されており、当該試験では、約1μm~20μm程度のカオリンを濁り成分(粒子状物質)とし、その除去性能を評価する。特許文献1、特許文献2および特許文献3の活性炭成型体の評価においても、当該試験に基づき濁り除去性能が評価されている。
 しかしながら、最近では、さらなる安全衛生上の観点から、活性炭成型体からなる吸着フィルターに対して、微粒子(一般には粒径1μm~20μm)、さらには粒径1μm以下の超微粒子の除去性能が求められ始めている。
 活性炭成型体は、その製造方法によって湿式成型体と乾式成型体とが存在する。湿式成型体は、比較的密度が低く、通水抵抗も低い傾向にあり、かつ一般的に有害とされる有機化合物等の除去性能にも優れている。しかしながら、その密度が低く、低通水抵抗であるために、超微粒子まで除去する性能を持たせることは困難と予測される。一方、乾式成型体は湿式成型体と比較すると密度が高い。そのため、超微粒子除去性能に期待できるが、通水抵抗が高くなってしまうため、浄水フィルター等の用途に不向きとなってしまう。そのため、低通水抵抗と超微粒子除去性能とを両立可能な活性炭成型体からなる吸着フィルターが求められる。
 以下、本発明の実施形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
 本実施形態における吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、水銀圧入法により測定される吸着フィルターの体積基準での細孔直径10μm以上の細孔容積が0.10cm/cc~0.39cm/ccである。
 あるいは、もう一つの本実施形態における吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、水銀圧入法により測定される吸着フィルターの体積基準での細孔直径7μm以下の細孔容積が0.15cm/cc以上であり、かつ、水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積が0.50cm/cc~0.73cm/ccである。
 これらのような構成を有することにより、良好な通水性を維持しつつ、かつ優れた超微粒子除去性能を有する吸着フィルターを提供することができる。
 具体的には、原料の活性炭の物性、配合比率等を適切に選択および適宜調整することによって、フィルター中の空隙容積を適切に制御して、所定の細孔直径以上における細孔容積が特定の範囲内になるように調整する。その結果、通水性と超微粒子除去性能とを両立させることができる。
 [吸着フィルターの物性]
 本実施形態における吸着フィルターは、水銀圧入法により測定される吸着フィルターの体積基準での細孔直径10μm以上の細孔容積(以下、単に「細孔直径10μm以上の細孔容積」とも称する)が0.10cm/cc~0.39cm/ccである。細孔直径10μm以上の細孔容積を0.10cm/cc以上にすることによって、本実施形態の吸着フィルターにおいて、良好な通水性を維持することができる。細孔直径10μm以上の細孔容積を0.39cm/cc以下にすることによって、本実施形態における吸着フィルターは、超微粒子除去性能に顕著に優れる。
 細孔直径10μm以上の細孔容積は、好ましくは0.37cm/cc以下であり、より好ましくは0.35cm/cc以下、さらに好ましくは0.33cm/cc以下である。細孔直径10μm以上の細孔容積は、好ましくは0.12cm/cc以上であり、より好ましくは0.15cm/cc以上である。
 さらに、本実施形態における吸着フィルターは、好ましくは、水銀圧入法により測定される吸着フィルターの体積基準での全細孔容積(以下、単に「全細孔容積」とも称する)が0.50cm/cc~0.73cm/ccである。全細孔容積を0.50cm/cc以上とすることによって、吸着フィルターはより優れた通水性を得ることができ、例えば浄水フィルター等の用途に好適に用いることができる。全細孔容積を0.73cm/cc以下とすることによって、十分量の活性炭を保持することができ、一般的なフィルターとしての吸着性能を良好にすることができる。
 全細孔容積は、より好ましくは0.53cm/cc以上であり、さらに好ましくは0.56cm/cc以上である。また、全細孔容積は、より好ましくは0.70cm/cc以下であり、さらに好ましくは0.67cm/cc以下である。
 あるいは、もう一つの本実施形態における吸着フィルターは、水銀圧入法により測定される吸着フィルターの体積基準での細孔直径7μm以下の細孔容積(以下、単に「細孔直径7μm以下の細孔容積」とも称する)が0.15cm/cc以上であり、かつ、全細孔容積が0.50cm/cc~0.73cm/ccである。細孔直径7μm以下の細孔容積を0.15cm/cc以上にすることによって、本実施形態の吸着フィルターは、超微粒子除去性能に顕著に優れる。同時に、全細孔容積を0.50cm/cc~0.73cm/ccの範囲内にすることによって、吸着フィルターは、良好な通水性を維持することができ、一般的なフィルターとしての吸着性能を良好にすることができる。
 細孔直径7μm以下の細孔容積は、好ましくは0.16cm/cc以上、より好ましくは0.17cm/cc以上、さらに好ましくは0.18cm/cc以上である。また、細孔直径7μm以下の細孔容積の上限は特に限定されないが、例えば、細孔直径7μm以下の細孔容積は、好ましくは0.30cm/cc以下、より好ましくは0.28cm/cc以下である。
 なお、もう一つの本実施形態の吸着フィルターにおける、全細孔容積の好ましい上限数値および下限数値は、先に述べた実施形態における吸着フィルターの場合と同じである。
 さらなる別の実施形態における吸着フィルターは、細孔直径10μm以上の細孔容積が0.10cm/cc~0.39cm/ccであり、加えて、当該吸着フィルターは、細孔直径7μm以下の細孔容積が0.15cm/cc以上であり、かつ、全細孔容積が0.50cm/cc~0.73cm/ccであることが好ましい。換言すると、吸着フィルターが、上述した2つの実施形態において規定されている両方の条件を満たすことが好ましい。
 加えて、本実施形態における吸着フィルターは、全細孔容積に対する細孔直径10μm以上の細孔容積の割合が、12%以上であることが好ましい。細孔直径10μm以上の細孔容積の割合を12%以上にすることによって、吸着フィルターはより優れた超微粒子除去性能を得ることができる。細孔直径10μm以上の細孔容積の割合は、より好ましくは15%以上、さらに好ましくは20%以上、特に好ましくは25%以上、最も好ましくは30%以上である。また、細孔直径10μm以上の細孔容積の割合は、80%以下であることが好ましく、65%以下であることがより好ましく、60%以下であることがさらに好ましい。
 さらに、本実施形態における吸着フィルターは、全細孔容積に対する細孔直径7μm以下の細孔容積の割合が、22%以上であることが好ましい。細孔直径7μm以下の細孔容積の割合を22%以上にすることによって、吸着フィルターはより優れた超微粒子除去性能を得ることができる。細孔直径7μm以下の細孔容積の割合は、より好ましくは25%以上である。また、細孔直径7μm以下の細孔容積の割合は、48%以下であることが好ましく、45%以下であることがより好ましい。
 加えて、本実施形態における吸着フィルターは、好ましくは、水銀圧入法により測定される細孔モード径(以下、単に「細孔モード径」とも称する)が15μm以下である。細孔モード径を15μm以下とすることによって、吸着フィルターはより優れた超微粒子除去性能を得ることができる。
 細孔モード径は、より好ましくは13μm以下であり、さらに好ましくは11μm以下である。細孔モード径の下限は特に限定されないが、細孔モード径が極端に小さくなって、フィルターの通水性に大きな影響を与えなければよい。例えば、細孔モード径は、好ましくは6μm以上であり、より好ましくは7μm以上である。
 本明細書において、水銀圧入法により測定される、細孔直径10μm以上の細孔容積、細孔直径7μm以下の細孔容積、全細孔容積および細孔モード径は、後の実施例で述べるように、水銀圧入法細孔容積測定装置(マイクロメリティックス社製「MicroActive AutoPore V 9620」)を用いて測定することができる。さらに、これらの細孔容積の測定値から、全細孔容積に対する細孔直径10μm以上の細孔容積の割合(%)および全細孔容積に対する細孔直径7μm以下の細孔容積の割合(%)を求めることができる。なお、後述の実施例ではフィルターの成型層を約1cm角の大きさの測定試料としているが、この測定試料の大きさはフィルターサイズによって適宜変更することが好ましい。例えば、スパウトインタイプ用のフィルターであれば約5mm角の測定試料で測定することが望ましい。
 上述してきたような本実施形態の吸着フィルターにおける、細孔直径10μm以上の細孔容積、細孔直径7μm以下の細孔容積、全細孔容積および細孔モード径は、様々な方法によってその値を制御することができる。なお、細孔容積の値を制御することによって、同時に、全細孔容積に対する細孔直径10μm以上の細孔容積の割合と全細孔容積に対する細孔直径7μm以下の細孔容積の割合も制御することができる。例えば、原料の活性炭の物性およびその配合量、異なる物性の2種以上の活性炭を使用する場合はそれらの配合比率、原料のバインダーの種類およびその配合量、原料の任意成分の配合量、吸着フィルターの製造の際における処理条件(吸引圧力、乾燥時間等)等を適切に選択および適宜調整することによって、その値を制御することができる。特に、後に詳細に述べるように、異なる物性の2種以上の活性炭を原料として用いることにより、細孔直径10μm以上の細孔容積、細孔直径7μm以下の細孔容積、全細孔容積および細孔モード径の値を制御すると好ましい。
 本実施形態における吸着フィルターの密度(以下、単に「フィルター密度」とも称する)は、0.59g/cm以下であることが好ましい。フィルター密度が0.59g/cm以下であることによって、通水抵抗をより良好に保つことができ、例えば浄水フィルター等に好適に用いることができる。また、フィルターの目詰まりも抑えることができる。また、フィルター密度は、0.35g/cm以上であることが好ましい。フィルター密度が0.35g/cm以上であることによって、活性炭の総量が好適な量となり、超微粒子および他の通常の有害物質の除去性能を良好に保つことができる。
 フィルター密度は、より好ましくは0.38g/cm以上、さらに好ましくは0.40g/cm以上、特に好ましくは0.42g/cm以上である。フィルター密度を0.38g/cm以上にすることによって、吸着フィルターはより優れたクロロホルム(有害物質)除去性能を有する。また、フィルター密度は、より好ましくは0.57g/cm以下、さらに好ましくは0.55g/cm以下、特に好ましくは0.53g/cm以下である。本明細書において、フィルター密度は、後の実施例で詳細に述べる方法で測定することができる。
 フィルター密度は、様々な方法によってその値を制御することができる。例えば、原料の活性炭の物性およびその配合量、異なる物性の2種以上の活性炭を使用する場合はそれらの配合比率、原料のバインダーの種類およびその配合量、原料の任意成分の配合量、吸着フィルターの製造の際における処理条件(吸引圧力、乾燥時間等)等を適切に選択および適宜調整することによって、その値を制御することができる。特に、後に詳細に述べるように、異なる物性の2種以上の活性炭を原料として用いることによって、フィルター密度の値を制御すると好ましい。
 本実施形態における吸着フィルターは、ベンゼン飽和吸着量が18%~35%であると好ましい。本明細書において、吸着フィルターのベンゼン飽和吸着量は、JIS K 1474:2014の活性炭試験方法に準拠し、25℃において、溶剤飽和濃度の1/10となる溶剤蒸気を含む空気を通し、質量が一定となったときの試料の増量(%)から求めることができる。
 ベンゼン飽和吸着量が18%以上であることによって、特に有機物についての十分な除去性能を得ることができる。ベンゼン飽和吸着量が35%以下であることによって、過賦活状態で細孔直径が増大することを防止することができ、有害物質の吸着保持能力が低下するおそれを抑制することができる。ベンゼン飽和吸着量は、より好ましくは20%以上、さらに好ましくは22%以上である。また、ベンゼン飽和吸着量は、より好ましくは33%以下、さらに好ましくは30%以下である。
 本実施形態における吸着フィルターのベンゼン飽和吸着量は、例えば、原料の活性炭の物性およびその配合量、異なる物性の2種以上の活性炭を使用する場合はそれらの配合比率等を適切に選択および適宜調整することによって、その値を制御することができる。
 本実施形態における吸着フィルターを、不活性ガス、具体的には窒素ガス中において900℃で20分間熱処理(以下、単に「熱処理」とも称する)して得られる炭化物において、粒子径が10μm以下である粒子の含有率が2体積%以上であると好ましい。
 具体的には、吸着フィルターにこのような熱処理を施すことによって、当該吸着フィルターからバインダー等の成分が除去されて、吸着フィルター中の活性炭が炭化物として残る。残留した吸着フィルター中の活性炭(熱処理後の炭化物)の粒度分布において、粒子径が10μm以下である粒子の含有率が2体積%以上であると、熱処理前の本実施形態における吸着フィルターはより優れた超微粒子除去性能を有する。
 吸着フィルター中の活性炭(熱処理後の炭化物)の粒子径10μm以下の粒子含有率は、より好ましくは4体積%以上、さらに好ましくは6体積%以上である。吸着フィルター中の活性炭の粒子径10μm以下の粒子含有率の上限は限定されないが、粒度が極端に小さすぎることにより、熱処理前の本実施形態における吸着フィルターの通水性に大きな影響を与えなければよい。例えば、10体積%以下であればよい。
 吸着フィルター中の活性炭(熱処理後の炭化物)の粒子径10μm以下の粒子含有率は、主として、原料の活性炭の物性および異なる物性の2種以上の活性炭を使用する場合はそれらの配合比率に応じて変化する値である。従って、それらを適切に選択および適宜調整することによって、その値を制御することができる。
 さらに、本実施形態における吸着フィルターは、その吸着フィルター中の活性炭(熱処理後の炭化物)の体積基準の累計粒度分布における0%粒子径(以下、単に「D0」とも称する)が7μm以下であると好ましい。D0が7μm以下であると、熱処理前の本実施形態における吸着フィルターはより優れた超微粒子除去性能を有する。
 吸着フィルター中の活性炭(熱処理後の炭化物)のD0は、より好ましくは5μm以下、さらに好ましくは3μm以下である。D0の下限は限定されないが、熱処理前の吸着フィルターの通水性に大きな影響を与えなければよい。例えば、1μm以上であればよい。
 吸着フィルター中の活性炭(熱処理後の炭化物)のD0も、主として、原料の活性炭の物性および異なる物性の2種以上の活性炭を使用する場合はそれらの配合比率に応じて変化する値である。従って、それらを適切に選択および適宜調整することによって、その値を制御することができる。
 本明細書において、吸着フィルター中の活性炭(熱処理後の炭化物)の粒子径10μm以下の粒子含有率および吸着フィルター中の活性炭(熱処理後の炭化物)のD0は、後の実施例に記載の通り、通常の原料の活性炭と同様に、例えば、湿式粒度分布測定装置(マイクロトラック・ベル社製、「Microtrac MT3300EX-II」)等を用いたレーザー回折・散乱法により測定することができる。
 [吸着フィルターの構成]
 本実施形態における吸着フィルターは、活性炭とバインダーとを含む成型体からなる。
 (活性炭)
 本実施形態における吸着フィルターに使用される原料の活性炭(好ましくは粒状活性炭)は、特に限定されず、単独または異なる物性の2種以上の活性炭を組み合わせて使用することができる。
 原料の活性炭の物性としては、例えば、活性炭の充填密度(g/cm)、体積基準の累計粒度分布における10%粒子径(以下、単に「D10」とも称する)、体積基準の累計粒度分布における50%粒子径(以下、単に「D50」とも称する)、体積基準の累計粒度分布における90%粒子径(以下、単に「D90」とも称する)等を挙げることができる。
 本実施形態では、異なる物性の2種以上の活性炭を組み合わせて使用することが好ましい。これは、異なる物性の活性炭の配合比率を調整することにより、吸着フィルターを成型する際、その空隙を制御することができ、細孔直径10μm以上の細孔容積(および/または細孔直径7μm以下の細孔容積と全細孔容積)が本実施形態において規定される特定の範囲内になるように容易に調整できるためである。
 異なる物性の活性炭としては、例えば、より小さいD10、D50および/またはD90を有し微粉を多く含む粉末状の活性炭Xと、より大きいD10、D50および/またはD90を有する粉末状の活性炭Yとを組み合わせて使用すると好ましい。このような活性炭Xと活性炭Yとを組み合わせて用いる場合、活性炭Xに対して活性炭Yを同程度よりも大きい質量比で組み合わせて用いることによって、吸着フィルターを成型する際、活性炭Yにより形成される大き過ぎる空隙が活性炭Xの微粉により適切に埋められる。その結果、成型体の空隙が適切に制御され、細孔直径10μm以上の細孔容積(および/または細孔直径7μm以下の細孔容積と全細孔容積)が本実施形態において規定される特定の範囲内に調整される。
 原料の活性炭の粒度分布は、特には限定されないが、粒子径が10μm以下である粒子の含有率が2体積%超であると好ましい。具体的には、原料の活性炭の粒度分布において、粒子径が10μm以下である粒子の含有率が2体積%超であることによって、吸着フィルター中の活性炭に含有される微粉が多くなるため、当該フィルターはより優れた超微粒子除去性能を示す。原料の活性炭の粒子径10μm以下の粒子含有率は、活性炭が2種以上組み合わせて使用される場合、それぞれの活性炭の物性およびそれぞれの活性炭の配合比率等に応じて変化する。従って、それらを適切に選択および適宜調整することによって、その値を制御することができる。
 原料の活性炭の粒子径10μm以下の粒子含有率は、より好ましくは3体積%以上、さらに好ましくは4体積%以上、よりさらに好ましくは5体積%以上である。原料の活性炭の粒子径10μm以下の粒子含有率の上限は限定されないが、吸着フィルター中の活性炭に含有される微粉が過剰になってしまい、成型される吸着フィルターの通水性に大きな影響を与えなければよい。例えば、15体積%以下であればよい。
 本明細書において、原料の活性炭の充填密度、D10、D50およびD90は、例えば、後述する活性炭の原料となる炭素質材料の種類ならびに活性炭の製造の際における炭素質材料の賦活処理方法とその処理条件(加熱温度および時間等)、粉砕条件および分級条件を適切に選択および適宜調整することによって、その値を制御することができる。さらに、D10、D50およびD90、ならびに原料の活性炭における粒子径10μm以下の粒子含有率については、後の実施例に記載の通り、例えば、湿式粒度分布測定装置(マイクロトラック・ベル社製、「Microtrac MT3300EX-II」)等を用いたレーザー回折・散乱法により分析および測定することができる。
 原料の活性炭は市販品を使用してもよい。あるいは、例えば、活性炭の原料となる炭素質材料に対して必要に応じて炭化処理を行った後、賦活処理、ならびに必要に応じて洗浄処理、乾燥処理および粉砕処理を行うことによって得られる活性炭を使用することもできる。
 原料となる炭素質材料としては、特に限定されないが、例えば植物系炭素質材料(例えば、木材、鉋屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生成物、リグニン、廃糖蜜等の植物由来の材料)、鉱物系炭素質材料(例えば、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチ等の鉱物由来の材料)、合成樹脂系炭素質材料(例えば、フェノール樹脂、ポリ塩化ビニリデン、アクリル樹脂等の合成樹脂由来の材料)、天然繊維系炭素質材料(例えば、セルロース等の天然繊維、レーヨン等の再生繊維等の天然繊維由来の材料)等が挙げられる。これらの炭素質材料は、単独で使用してもよく、または2種類以上を組み合わせて使用することができる。
 これらの炭素質材料のうち、JIS S 3201:2019に規定されている揮発性有機化合物除去性能に関与するミクロ細孔が発達し易いという観点から、ヤシ殻またはフェノール樹脂が好ましい。
 炭化処理を必要とする場合、これらの炭素質材料に対して、通常、酸素または空気を遮断した環境下において、例えば400℃~800℃、好ましくは500℃~800℃、さらに好ましくは550℃~750℃程度で炭化処理を行うことができる。その後、必要に応じて粒度調整を行ってもよい。
 その後、炭素質材料に対して賦活処理を行う。賦活処理とは、炭素質材料の表面に細孔を形成し、多孔質体である活性炭に変える処理である。賦活処理は、当該技術分野において一般的な方法により行うことができ、特に限定されず、主に、ガス賦活処理または薬剤賦活処理の2種類の処理方法を挙げることができる。これらのうち、浄水処理用として使用する場合、不純物の残留が少ないという観点から、ガス賦活処理が好ましい。
 ガス賦活処理は、例えば、水蒸気、二酸化炭素、空気、酸素、燃焼ガス、またはこれらの混合ガスの存在下で、炭素質材料を加熱する処理である。加熱温度は、特に限定されないが、例えば、700℃~1100℃、好ましくは800℃~980℃、より好ましくは850℃~950℃程度の温度において行われる。賦活時間および昇温速度は特に限定されず、選択する炭素質材料の種類、形状、サイズに応じて適宜調整すればよい。安全性および反応性を考慮すると、水蒸気を10容量%~40容量%で含有する水蒸気含有ガスを用いて行うことが好ましい。薬剤賦活処理としては、例えば、塩化亜鉛、塩化カルシウム、リン酸、硫酸、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の賦活剤を炭素質材料と混合し、不活性ガス雰囲気下で加熱する公知の方法で行ってもよい。
 賦活処理後の活性炭は、必要に応じて洗浄および乾燥する。具体的には、アルカリ金属、アルカリ土類金属および遷移金属等の不純物を含むヤシ殻等の植物系炭素質材料または鉱物系炭素質材料を活性炭の原料とした場合、灰分や薬剤等を除去するために必要に応じて洗浄する。洗浄には鉱酸や水が用いられ、鉱酸としては洗浄効率の高い塩酸が好ましい。
 賦活処理後の活性炭は、必要に応じて粉砕処理および/または分級処理される。粉砕処理は、一般的に活性炭の粉砕に用いられる粉砕装置、例えば、エロフォールミル、ロッドミル、ローラーミル、ハンマーミル、ブレードミル、ピンミル等の高速回転ミル、ボールミル、ジェットミル等を用いて行うことができる。分級処理は、一般的に活性炭の分級に用いられる方法、例えば篩を用いた分級、湿式分級、乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。
 このような処理を経て得られた活性炭または市販の活性炭の形状は、粉末状、粒子状、繊維状(糸状、織り布(クロス)状、フェルト状)等のいずれの形状でもよく、用途によって適宜選択することができる。これらの形状のうち、体積当たりの吸着性能の高い粉末状が好ましい。
 (バインダー)
 本実施形態における吸着フィルターに使用されるバインダーは、特に限定されず、形状が粉末状または繊維状のバインダーを単独または2種以上組み合わせて使用することができる。これらのうち、吸着フィルターを成型した際に通水性に優れるとの観点から、繊維状バインダーを含むと好ましい。
 繊維状バインダーとしては、活性炭を絡めて賦形できるものであれば、特に限定されず、合成品、天然品を問わず幅広く使用可能である。このようなバインダーとしては、例えば、アクリル系繊維、ポリエチレン系繊維、ポリプロピレン系繊維、ポリアクリロニトリル系繊維、セルロース系繊維、ナイロン系繊維、アラミド繊維、パルプなどが挙げられる。繊維状バインダーの繊維長は4mm以下であることが好ましい。
 繊維状バインダーがアクリル系繊維状バインダーを含むと好ましい。さらに、繊維状バインダーがセルロース系繊維状バインダーを含むとより好ましい。また、これらの繊維状バインダーは2種以上を組み合わせて使用してもよい。例えば、アクリル系繊維状バインダーおよびセルロース系繊維状バインダーの両方を組み合わせて使用するとより好ましい。セルロース系繊維状バインダーを組み合わせて用いることによって、本実施形態における吸着フィルターからの微粉の流出を低減することができる。アクリル系繊維状バインダーとセルロース系繊維状バインダーとの配合比率は、アクリル系繊維状バインダー100質量部に対して、セルロース系繊維状バインダーが、好ましくは30質量部~70質量部、より好ましくは40質量部~60質量部である。
 本実施形態において、繊維状バインダーの通水性は、CSF値で1mL~200mL程度であることが好ましい。また、CSF値は10mL~150mLであることがより好ましい。ここで、本明細書において、CSF値は、JIS P 8121:2012に規定されている「パルプの濾水度試験方法」カナダ標準ろ水度法を参考にして測定される値とする。具体的には、測定において、伝導度が100μs/cm程度となる水道水を用いて評価される値とする。なお、CSF値は、例えばバインダーをフィブリル化させることによって調整できる。
 繊維状バインダーのCSF値が1mL以上であることによって、十分な通水性を維持し、成型体の強度の低下を抑制し、圧力損失のおそれを防止することができる。さらに、CSF値が200mL以下であることによって、粉末状の活性炭を十分に保持することができ、成型体の強度の低下も抑制し、吸着性能が低下するおそれを防止することができる。なお、繊維状バインダーが2種以上組み合わされて使用される場合には、2種以上の繊維状バインダーが混合された状態でのCSF値が上記範囲を満たすことが好ましい。
 具体的には、繊維状バインダーがアクリル系繊維状バインダーを含む場合、当該アクリル系繊維状バインダーのCSF値は20mL以上であることが好ましく、50mL以上であることがより好ましい。また、当該アクリル系繊維状バインダーのCSF値は200mL以下であることが好ましく、150mL以下であることがより好ましい。このような範囲にすることによって、繊維状バインダーがアクリル系繊維状バインダー以外の他の繊維状バインダーを含む場合であっても、当該アクリル系繊維状バインダーが含まれる繊維状バインダー全体としてのCSF値が適切な値となり、成型体の強度改善、圧力損失の低減、粉末活性炭の保持および吸着性能の維持を可能にすることができる。また、同様の観点から、繊維状バインダーがアクリル系繊維状バインダーおよびセルロース系繊維状バインダーを含む場合、セルロース系繊維状バインダーは、アクリル系繊維状バインダー100質量部に対して当該セルロース系繊維状バインダーを50質量部配合した状態でのCSF値が1mL以上であることが好ましく、10mL以上であることがより好ましい。また、セルロース系繊維状バインダーは、アクリル系繊維状バインダー100質量部に対して当該セルロース系繊維状バインダーを50質量部配合した状態でのCSF値が50mL以下であることが好ましく、40mL以下であることがより好ましい。
 活性炭とバインダーとの配合比率は、特に限定されず、吸着フィルターが成型された際に、細孔直径10μm以上の細孔容積(および/または細孔直径7μm以下の細孔容積と全細孔容積)が本実施形態において規定される特定の範囲内になるように適宜設定すればよい。例えば、活性炭による吸着性能および吸着フィルターの成型性等の観点も考慮すると、活性炭100質量部に対して、好ましくはバインダー3質量部~8質量部程度である。バインダーの量を3質量部以上にすることによって、十分な強度を有する吸着フィルターの成型体を得ることができる。バインダーの量を8質量部以下にすることによって、吸着フィルター中の活性炭の吸着性能が低下することを抑制することができる。
 活性炭100質量部に対するバインダーの混合比率は、より好ましくは4量部以上、さらに好ましくは5質量部以上である。また、活性炭100質量部に対するバインダーの混合比率は、より好ましくは7質量部以下、さらに好ましくは6質量部以下である。
 (任意成分)
 さらに、本実施形態における吸着フィルターには、本発明の効果が阻害されない限り、他の任意の機能性成分が含まれていてもよい。例えば、溶解性鉛を吸着除去できるゼオライト系粉末(鉛吸着剤)、イオン交換樹脂もしくはキレート樹脂等が挙げられる。さらに、抗菌性を付与するため、銀イオンもしくは銀化合物を含んだ各種吸着剤等を単独または2種以上組み合わせて含んでいてもよい。このような吸着剤の一例として、本実施形態における吸着フィルターの物性等に影響を及ぼさない量で添加される、銀添着活性炭が挙げられる。これらの他の任意成分の配合量は、特に限定されないが、吸着フィルターが成型された際に、細孔直径10μm以上の細孔容積(および/または細孔直径7μm以下の細孔容積と全細孔容積)が本実施形態において規定される特定の範囲内になるように適宜設定すればよい。例えば、吸着フィルター全体100質量部に対して、1質量部~20質量部配合することができる。
 本実施形態における活性炭とバインダーとを含む成型体からなる吸着フィルターは、さらに中芯を含んでおり、円筒状吸着フィルターであってもよい。円筒形状にすることによって、通水抵抗を低下することができる。さらに、後述するようにハウジングに充填してカートリッジとして使用する場合、浄水器へのカートリッジの装填および交換作業が簡単にできるという利点がある。
 中芯としては、円筒状吸着フィルターの中空部に挿入され、円筒状吸着フィルターを補強できるものであれば特に限定されない。例えば、トリカルパイプ、ネトロンパイプ、セラミックフィルター等が挙げられる。さらに、中芯の外周に不織布等を巻き付けて使用することもできる。
 [吸着フィルターの製造方法]
 本実施形態における吸着フィルターの製造方法は、当業者に公知の任意の方法によって行われればよく、特に限定されない。効率よく製造できるという観点から、スラリー吸引方法が好ましい。
 以下、本実施形態における円筒状吸着フィルターの製造方法の1例を詳細に説明するが、当該製造方法に限定されることはない。
 具体的には、例えば、本実施形態における円筒状吸着フィルター(成型体)は、スラリー調製工程と、吸引濾過工程と、必要に応じた転動工程と、乾燥工程と、必要に応じた研削工程とを含む方法により製造することができる。スラリー調製工程では、粉末状活性炭および繊維状バインダーを水中に分散させて、スラリーを調製する。吸引濾過工程では、調製したスラリーを吸引しながら濾過して予備成型体を得る。転動工程では、吸引濾過後の予備成型体を整形台上で圧縮することにより、必要に応じて外表面の形状を整える。乾燥工程では、形状を整えた予備成型体を乾燥して、乾燥した成型体を得る。研削工程では、乾燥させた成型体の外表面を必要に応じて研削する。以下、各々の工程について、より詳細に説明する。
 (スラリー調製工程)
 スラリー調製工程では、粉末状活性炭および繊維状バインダーを、例えば、粉末状活性炭100質量部に対して繊維状バインダーを4質量部~8質量部となるように、かつ、固形分濃度が0.1質量%~10質量%、好ましくは1質量%~5質量%になるように、溶媒に分散させたスラリーを調製する。溶媒は特に限定はされないが、水等を用いることが好ましい。スラリーの固形分濃度を高すぎない濃度に調整することによって、分散を容易に均一にすることができ、成型体に斑が生じることを防止することができる。一方、スラリーの固形分濃度が低すぎない濃度に調整することによって、成型時間を短縮することができ、生産性を向上させることができる。さらに、成型体の密度が高くなり過ぎることも抑制し、良好な通水性を保つことができる。
 (吸引濾過工程)
 吸引濾過工程について、図1を用いて説明する。図1において各符号は、型枠1、芯体2、吸引用孔3、フランジ4、4’、および濾液排出口5を表している。吸引濾過工程では、例えば、図1に示すような、芯体2の表面に多数の吸引用穴3を有し、両端にフランジ4、4’が取り付けられ、濾液排出口5が設けられている円筒状成型体用の型枠1を使用する。まず、型枠1に前述したような中芯を取り付け、調製したスラリー中に入れ、濾液排出口5から型枠1の内側から吸引しながら濾過することにより、スラリーを型枠1に付着させる。吸引方法としては、慣用の方法、例えば、吸引ポンプ等を用いて吸引する方法等を利用することができる。このようにして、予備成型体を型枠1に付着させる。
 (転動工程)
 必要に応じて、吸引濾過工程の後、予備成型体の外径を所定の大きさに調整し、真円度を高め、かつ外周面の凹凸を減少させるために、転動工程を行うこともできる。転動工程では、吸引濾過工程で得られた予備成型体を付着させたままの型枠1を台上に載せ、所定の力で押さえつけながら前後に動かせばよい。
 なお、吸引濾過工程および必要に応じて行われる転動工程は、所望する細孔容積および吸着フィルター密度等を得るために、任意の回数において行っても構わない。
 (乾燥工程)
 次いで、型枠1の両端のフランジ4、4’を取り外し、芯体2を抜き取る。これによって、中空円筒型の予備成型体を得ることができる。乾燥工程では、このように型枠1から取り外した予備成型体を、乾燥機等で乾燥することにより、図2に示す成型体6(本実施形態における吸着フィルター)を得ることができる。
 乾燥温度は、例えば、100℃~150℃、特に110℃~130℃程度である。乾燥時間は、例えば、4~24時間、特に8~16時間程度である。乾燥温度が高すぎない温度にすることによって、繊維状バインダーの変質もしくは溶融による濾過性能の低下または成型体の強度の低下を生じ難くすることができる。乾燥温度が低すぎない温度にすることによって、乾燥時間の短縮することができ、乾燥が不十分になることを防止することができる。
 (研削工程)
 必要に応じて、乾燥工程の後、吸着フィルターの外径をさらに調整するため、または外周面の凹凸を減少させるために、研削工程を行うこともできる。研削方法は、乾燥した成型体の外表面を研削(または研磨)できれば、特に限定されず、当業者に公知の任意の研削方法を用いればよい。研削の均一性の観点から、成型体自体を回転させて研削する研削機を用いる方法が好ましい。
 なお、研削工程は、研削機を用いた方法に限定されず、例えば、回転軸に固定した成型体に対して、固定した平板状の砥石で研削してもよい。この方法では、発生する研削滓が研削面に堆積し易いため、エアブローしながら研削すると効果的である。
 [吸着フィルターの用途等]
 本実施形態における吸着フィルターは、例えば、浄水フィルター、人工透析用フィルター等として使用することができる。浄水フィルターまたは人工透析用フィルターとして使用する場合、例えば、吸着フィルターを上述した製造方法によって製造し、整形および乾燥後、所望の大きさおよび形状に切断してフィルターを使用することができる。さらに、必要に応じて、先端部分にキャップを装着したり、または表面に不織布を装着させてもよい。
 本実施形態における吸着フィルターは、ハウジングに充填して浄水用カートリッジとして使用することができる。浄水用カートリッジは浄水器に装填され、通水に供されるが、通水方式としては、原水を全量濾過する全濾過方式または循環濾過方式を採用することができる。浄水器に装填される浄水用カートリッジは、例えば、浄水フィルター(本実施形態における吸着フィルター)をハウジングに充填して使用すればよい。あるいは、浄水フィルターは、公知の不織布フィルター、各種吸着剤、ミネラル添加材、セラミック濾過材等とさらに組合せて使用することもできる。
 以上、本発明の概要について説明したが、本実施形態における吸着フィルターをまとめると以下の通りである。
 本発明の局面に係る吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、
 水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径10μm以上の細孔容積が0.10cm/cc~0.39cm/ccである。
 前述の吸着フィルターにおいて、前記吸着フィルターの密度が0.59g/cm以下であることが好ましい。
 前述の吸着フィルターにおいて、水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積が0.50cm/cc~0.73cm/ccであることがより好ましい。
 前述の吸着フィルターにおいて、水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積に対する水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径10μm以上の細孔容積の割合が、12%以上であることがさらに好ましい。
 前述の吸着フィルターにおいて、水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積が、0.15cm/cc以上であることが特に好ましい。
 前述の吸着フィルターにおいて、水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積に対する水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積の割合が、22%以上であることがより好ましい。
 あるいは、本発明のさらなる局面に係る吸着フィルターは、活性炭とバインダーとを含む成型体からなる吸着フィルターであって、
 水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積が0.15cm/cc以上であり、かつ、
 水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積が0.50cm/cc~0.73cm/ccである。
 前述の吸着フィルターにおいて、水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積に対する水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積の割合が、22%以上であることが好ましい。
 前述の吸着フィルターにおいて、水銀圧入法により測定される細孔モード径が15μm以下であることがより好ましい。
 前述の吸着フィルターにおいて、前記吸着フィルターを、不活性ガス中において900℃で20分間熱処理して得られる炭化物において、粒子径が10μm以下である粒子の含有率が2体積%以上であることがさらに好ましい。
 前述の吸着フィルターにおいて、25℃において、溶剤飽和濃度の1/10となる溶剤蒸気を含む空気を通し、質量が一定となったときの試料の増量から求められるベンゼン飽和吸着量が18%~35%であることが特に好ましい。
 前述の吸着フィルターにおいて、前記吸着フィルターを、不活性ガス中において900℃で20分間熱処理して得られる炭化物において、体積基準の累計粒度分布における0%粒子径が7μm以下であることが好ましい。
 前述の吸着フィルターにおいて、前記バインダーが繊維状バインダーを含むことがより好ましい。
 上記吸着フィルターにおいて、前記繊維状バインダーが、アクリル系繊維状バインダーを含むことがさらに好ましい。
 上記吸着フィルターにおいて、前記繊維状バインダーが、セルロース系繊維状バインダーを含むことが特に好ましい。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。
 まず、各実施例および各比較例において用いた原料、原料の粉末状活性炭の物性測定方法、ならびに、製造した吸着フィルターの物性測定方法および評価方法の詳細について説明する。
 [吸着フィルターの原料]
 (粉末状活性炭および繊維状活性炭)
 以下、原料に使用した粉末状活性炭および繊維状活性炭の製造方法を記載するが、必要な物性を満足すれば製造方法は特に限定されるものではない。
 ・粉末状活性炭A
 フィリピン産のヤシ殻を炭化したヤシ殻炭を900℃で水蒸気賦活し、目的のベンゼン吸着量になるように賦活時間を調整し、得られたヤシ殻活性炭を希塩酸洗浄、イオン交換水で脱塩することで粒状活性炭(JIS K 1474、18×42メッシュ、ベンゼン吸着量29.5wt%)を得た。得られた粒状活性炭を、ボールミルで粉砕し、D50が19.5μmの粉末状活性炭Aを得た。
 ・粉末状活性炭B
 フィリピン産のヤシ殻を炭化したヤシ殻炭を900℃で水蒸気賦活し、目的のベンゼン吸着量になるように賦活時間を調整し、得られたヤシ殻活性炭を希塩酸洗浄、イオン交換水で脱塩することで粒状活性炭(JIS K 1474、18×42メッシュ、ベンゼン吸着量30.1wt%)を得た。得られた粒状活性炭を、ボールミルで粉砕し、乾式分級機を用いて微粉末を除去し、D50が36.8μmの粉末状活性炭Bを得た。
 ・粉末状活性炭C
 フィリピン産のヤシ殻を炭化したヤシ殻炭を900℃で水蒸気賦活し、目的のベンゼン吸着量になるように賦活時間を調整し、得られたヤシ殻活性炭を希塩酸洗浄、イオン交換水で脱塩することで粒状活性炭(JIS K 1474、18×42メッシュ、ベンゼン吸着量27.9wt%)を得た。得られた粒状活性炭を、ボールミルで粉砕し、乾式分級機を用いて微粉末を除去し、D50が33.2μmの粉末状活性炭Cを得た。
 ・粉末状活性炭D
 フィリピン産のヤシ殻を炭化したヤシ殻炭を900℃で水蒸気賦活し、目的のベンゼン吸着量になるように賦活時間を調整し、得られたヤシ殻活性炭を希塩酸洗浄、イオン交換水で脱塩することで粒状活性炭(JIS K 1474、18×42メッシュ、ベンゼン吸着量29.7wt%)を得た。得られた粒状活性炭をボールミルで粉砕した後に、325メッシュの篩で分級し、D50が145.3μmの粉末状活性炭Dを得た。
 ・粉末状活性炭E
 炭素質原料を瀝青炭とし、650℃で乾留をすることで乾留品を得た。得られた乾留品を炉に投入し、目的のベンゼン吸着量になるように賦活時間を調整し、得られた石炭系活性炭を希塩酸洗浄、イオン交換水で脱塩することで、酸洗浄活性炭を得た。得られた酸洗浄活性炭を、再度炉に投入し、目的のベンゼン吸着量になるように賦活時間を調整し粒状活性炭(JIS K 1474、10×32メッシュ、ベンゼン吸着量42.1wt%)を得た。得られた粒状活性炭を、ボールミルで粉砕し、D50が36.8μmの粉末状活性炭Eを得た。
 粉末状活性炭A~粉末状活性炭Eの詳細な物性を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ・繊維状活性炭
 フェノール樹脂繊維を300℃で1時間酸化処理して、得られた酸化処理品に対して700℃で1時間乾留処理を行った。得られた乾留処理後のフェノール樹脂繊維を、賦活温度950℃で賦活処理を行い、BET比表面積1850m/gのフェノール樹脂系繊維状活性炭を得た。
 (バインダー)
 ・アクリル系繊維状バインダー:日本エクスラン工業(株)製、「アクリル繊維Bi-PUL/F」、CSF値83mL
 ・セルロース系繊維状バインダー(上記アクリル系繊維状バインダー(CSF値83mL)100質量部に対して当該セルロース系繊維状バインダーを50質量部配合した状態でのCSF値が28mLである)
 ・粉末バインダー(高密度ポリエチレン粉末バインダー):三井化学(株)製、「ミペロンMX-220」
 (その他)
 ・チタノシリケート系鉛吸着剤:Solenis社製、「ATS」、平均粒子径20μm
 ・中芯:ダイワボウプログレス(株)製、「PMF-30CS-30-33」
 ・不織布:シンワ(株)製、「9540-F」
 [原料の活性炭の粒度分布の測定]
 原料の活性炭のD10(μm)、D50(μm)およびD90(μm)、ならびに粒子径10μm以下の粒子含有率(体積%)は、レーザー回折・散乱法により測定した。すなわち、測定対象である活性炭を界面活性剤と共にイオン交換水中に入れ、超音波振動を与え均一分散液を作製し、湿式粒度分布測定装置(マイクロトラック・ベル社製、「Microtrac MT3300EX-II」)を用いて測定した。界面活性剤には、富士フイルム和光純薬株式会社製の「ポリオキシエチレン(10)オクチルフェニルエーテル」を用いた。分析条件を以下に示す。
 (分析条件)
測定回数;3回の平均値
測定時間;30秒
分布表示;体積
粒径区分;標準
計算モード;MT3000II
溶媒名;WATER
測定上限;2000μm、測定下限;0.021μm
残分比;0.00
通過分比;0.00
残分比設定;無効
粒子透過性;吸収
粒子屈折率;N/A
粒子形状;N/A
溶媒屈折率;1.333
DV値;0.0882
透過率(TR);0.880~0.900
拡張フィルター;無効
流速;70%
超音波出力;40W
超音波時間;180秒
 [吸着フィルター密度の測定]
 吸着フィルター密度(g/cm)は、得られた吸着フィルターを120℃で2時間乾燥した後、以下の式に従って算出した。なお、吸着フィルター密度とは、活性炭の成型層のみの密度を指す。
 吸着フィルター密度=(吸着フィルター活性炭の成型層の質量)/(吸着フィルター活性炭の成型層の体積)
 [水銀ポロシメータでの吸着フィルターの細孔容積および細孔モード径の測定]
 吸着フィルターの細孔容積は、水銀圧入法細孔容積測定装置(マイクロメリティックス社製、「MicroActive AutoPore V 9620」)を用いて測定した。測定圧力は0.7kPa-420MPaとした。円筒状吸着フィルターの活性炭とバインダーから成る成型層を図3のように切り取った後、切断した断片をさらに約1cm角の大きさに切り取った。切り取った約1cm角のサンプルについて、吸着フィルターの重量基準での細孔直径10μm以上の細孔容積(cm/g)、細孔直径7μm以下の細孔容積(cm/g)および全細孔容積(cm/g)を算出した。そして、これらの値に、上記で求めた吸着フィルター密度を乗じることで、吸着フィルターの体積基準での細孔直径10μm以上の細孔容積(cm/cc)、細孔直径7μm以下の細孔容積(cm/cc)および全細孔容積(cm/cc)を算出した。さらに、算出したこれらの細孔容積の値から、全細孔容積(cm/cc)に対する細孔直径10μm以上の細孔容積(cm/cc)の割合(%)と、全細孔容積(cm/cc)に対する細孔直径7μm以下の細孔容積(cm/cc)の割合(%)を求めた。また、吸着フィルターの細孔モード径(μm)は、得られた細孔分布のピーク値を示す細孔径とした。
 [吸着フィルター中の活性炭(熱処理後の炭化物)の粒度分布の測定]
 後述する各実施例および各比較例で製造され、外周不織布およびパッキンを取り付ける前の吸着フィルターを、長軸方向に端面から図4に示すようにカッターナイフで体積が約6cmとなるように任意に切り取り、サンプルとした。切り取ったサンプルを、坩堝に入れ、窒素雰囲気中900℃で20分間熱処理した後、室温まで窒素雰囲気中で冷却した。得られた炭化物を吸着フィルター中の活性炭の粒度分布測定用サンプルとし、上述した原料の活性炭の粒度分布の測定方法と同様の方法で、吸着フィルター中の活性炭の体積基準の累計粒度分布における0%粒子径(D0)(μm)および粒子径10μm以下の粒子含有率(体積%)を測定した。
 [吸着フィルターのベンゼン吸着性能の測定]
 吸着フィルターのベンゼン吸着性能を、日本工業規格における活性炭試験方法(JIS K 1474:1991)を参考にして、25℃にて、溶剤飽和濃度の1/10となる溶剤蒸気を含む空気を通し、質量が一定となったときの試料の増量からベンゼン飽和吸着量(%)を求めた。測定試料としては、吸着フィルターの一部を切り取って粉砕したものを使用し、粉砕後の試料の吸着性能を評価した。
 [超微粒子除去性能の測定]
 Thermo Fisher Scientific社製の蛍光粒子Fluoro-Max(商標)Green Fluorescent Polymer Microspheres G500(粒子直径0.5μm)を使用し、濃度を10000個/ml以上とした希釈水を水温20±3℃に調整し、試験水とした。この試験水を、円筒状吸着フィルターの外側から内側に向かって、2.85L/分の流量で流し、経時的に試験水と処理水とを同時に採取して試料水とした。これらの試料水を、0.2μmのメンブレンフィルター(ADVANTEC社製、MEMBRANE FILTER A020B025A WHITE(セルロース混合エステル、0.2μm、25mm、黒罫線入り))でろ過し、当該メンブレンフィルターを60℃で乾燥させた。乾燥後のメンブレンフィルターをスライドガラス上に固定し、蛍光顕微鏡(OLYMPUS社製、「BX51-34-FL」)で観察することで、両試料水中の蛍光粒子数を算出し、試験水中に含まれる粒子の処理による除去率(%)を計算した。この除去性能の試験では、10940L通水時の蛍光粒子除去率を評価し、除去率95%以上を超微粒子除去性能における合格基準とした。
 [初期通水抵抗の測定]
 円筒状吸着フィルターの外側から内側に向かって20±3℃の水を2.85L/分の流量で通水し、通水開始10分後の通水抵抗(MPa)を測定した。この試験では、初期通水抵抗0.2MPa以下を合格基準とした。なお、本通水抵抗の値は、ハウジングによる抵抗を除いた値とした。
 [クロロホルム(有害物質)除去性能の測定]
 クロロホルムの濃度が300ppbの試験水を、円筒状吸着フィルターの外側から内側に向かって、20±2.5℃、2.85L/分の流量で流した。クロロホルムの除去率が95%未満になった時点での積算通水量(L)を、クロロホルム除去性能として評価した。
 [通水微粉量の測定]
 円筒状吸着フィルターに対して2.85L/分の流量で通水することにより、通水直後の流出水を100ml採取した。採取後の流出水について、紫外可視分光光度計((株)島津製作所製、「UV-1800」)を用いて吸光度を測定し、事前に作成した検量線から流出水中の微粉量を求めた。
 次に、各実施例および各比較例における吸着フィルターの製造方法、ならびに製造した吸着フィルターの物性測定結果および性能評価結果について詳細に説明する。
 <実施例1>
 粉末状活性炭A、粉末状活性炭B、アクリル系繊維状バインダー、セルロース系繊維状バインダーおよびチタノシリケート系鉛吸着剤を、後の表2に示す配合比率において合計1.055kgとなるように調製し、水道水を追加した。添加後のスラリー量は、20Lとした。なお、表2には、上述した方法で測定される原料の活性炭の粒子径10μm以下の粒子含有率(体積%)も併記した。
 次いで、前述した図1に示す円筒状成型用の型枠(外径60mmφ、中軸径30mmφおよび外径鍔間隔84.9mmH)に中芯を装着し、得られたスラリーを金型外径より若干大きい62mmφまで、450mmHgで吸引のみ実施して成型し、その後乾燥した。次いで、得られた成型体を、図5に示される自動研削機に装着し、成型体回転数360回転/分、砥石回転数2535回転/分、砥石移動速度300mm/10秒(3cm/秒)で、成型体の外表面を研削し、外径60mmφ、内径30mmφおよび高さ84.9mmHの円筒状吸着フィルターを得た。
 このようにして得た吸着フィルターに対し、上述した方法で、吸着フィルターの密度、水銀ポロシメータでの細孔容積および細孔モード径、吸着フィルター中の活性炭(熱処理後の炭化物)の粒度分布、ならびにベンゼン吸着性能を測定した。これらの吸着フィルターの物性測定の結果を、後の表3にまとめて示す。
 その後、得られた吸着フィルターの外周に不織布を1重に巻き付けた。さらに、厚さ2mmの発泡ポリエチレンシートで形成され、外径60mmφ、内径30mmφのドーナツ状に打ち抜かれたパッキンを、ホットメルト接着剤で吸着フィルター両端に接着した。
 不織布を巻き付け、パッキンを接着させた吸着フィルターを、平均直径96mm、長さ約240mm、内在量約1809cmのステンレス製ハウジングに装填した。これを用いて、外側から内側に通水し、上述した方法で、超微粒子除去性能、初期通水抵抗、クロロホルム(有害物質)除去性能および通水微粉量について評価した。これらの性能評価結果も、後の表3にまとめて示す。
 <実施例2>
 後の表2に示すように、実施例2では、原料においてセルロース系繊維状バインダーを配合しないこと以外は実施例1と同様の方法で、円筒状吸着フィルターを得た。実施例2における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <実施例3>
 後の表2に示すように、実施例3では、粉末状活性炭の配合量において、実施例1と比べて粉末状活性炭Aの量を少し増加させ、粉末状活性炭Bの量を少し減少させたこと以外は実施例1と同様の方法で、円筒状吸着フィルターを得た。実施例3における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <実施例4>
 後の表2に示すように、実施例4では、粉末状活性炭の配合量において、実施例3と比べて粉末状活性炭Aの量をさらに増加させ、粉末状活性炭Bの量をさらに減少させたこと以外は実施例3と同様の方法で、円筒状吸着フィルターを得た。実施例4における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <実施例5>
 後の表2に示すように、実施例5では、粉末状活性炭Aを粉末状活性炭Eに変更し、配合量を変更したこと以外は、実施例1と同様の方法で、円筒状吸着フィルターを得た。実施例5における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <実施例6>
 後の表2に示すように、実施例6では、実施例1と同じ配合条件とした。実施例6では、吸着フィルターの成型の際に、得られたスラリーを金型外径より大きい70mmφまで、450mmHgで吸引して成型し、次いで、外径が63mmφとなるまで転動工程を挟んで表面を成型し、その後乾燥させたこと以外は、実施例1と同様の方法で、円筒状吸着フィルターを得た。実施例6における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <実施例7>
 後の表2に示すように、実施例7では、チタノシリケート系鉛吸着剤を配合しなかったこと以外は、実施例1と同様の方法で、円筒状吸着フィルターを得た。実施例7における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <比較例1>
 後の表2に示すように、比較例1では、粉末状活性炭の配合において、粉末状活性炭Aは含有させず、粉末状活性炭Bのみを用いたこと以外は実施例1と同様の方法で、円筒状吸着フィルターを得た。比較例1における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <比較例2>
 後の表2に示す配合比率において、粉末状活性炭A、粉末状活性炭Bおよびチタノシリケート系鉛吸着剤を混合し、合計1.6kgの混合粉末とした。さらに、後の表2に示す配合比率に対応する0.4kgの高密度ポリエチレン粉末バインダーを当該混合粉末に加えた。その後、この混合粉末をマイクロスピードミキサー(宝工機(株)製、「MS-25型」)に投入し2分間攪拌した。次に、得られた混合物を、片側に蓋をした内径65mmφ、中芯径30mmφ、高さ90mmの筒状ステンレス製金型に少しずつ木槌で振動を与えながら充填し、開放側に蓋をして内容物を固定した。混合物を充填した金型を160℃の乾燥機に投入し、120分間加熱した後、50℃以下まで放冷した。その後、蓋を外して、成型物を壊さないように金型から成型物を抜き出した。次いで、得られた成型物を切断し、外径65mmφ、内径30mmφ、高さ84mmの乾式成型体を作製した。最終的に、得られた成型体の両端をノコギリで切断し、高さを64mmとした吸着フィルターを作製した。比較例2における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <比較例3>
 100Lの小型ビーターに、水道水100Lに対して、繊維状活性炭を乾燥重量で1.5kg投入し、次いでアクリル系繊維状バインダーを乾燥重量で0.075kg相当分を投入して、叩解を行った。具体的には、繊維状活性炭とバインダーとの分散混合を行い、さらに、ビーターの固定歯と回転歯との隙間を狭めることによって、繊維状活性炭を細分化した。細分化により繊維状活性炭の繊維長が短くなると、特定の形状に成型したとき、充填性が向上するため、単位容積当たりの重量が増加する。この単位容積当たりの重量を叩解密度と称し、繊維状活性炭の短さの尺度とした。叩解密度を測定するため、次のような成型体を作製した。具体的には、吸引用小孔径3mmΦ、ピッチ5mmの中軸に300メッシュの金網を巻きつけ、中軸径18mmΦ、外径40mmΦ、外径鍔間隔50mmHの金型を用意し、中心部からスラリーを吸引することによって、円筒状吸着フィルターの成型体を作製した。この成型体の乾燥品の寸法および重量から叩解密度を算出すると、0.183g/mlであった。比較例3では、この叩解密度0.183g/mlのスラリーを標準スラリーとして使用した。
 比較例3では、原料の配合において、この標準スラリーに後の表2に示す配合比率となるよう、所定の量の粉末状活性炭Cを加えたこと以外は、実施例1と同様の方法で、円筒状吸着フィルターを得た。比較例3における吸着フィルターの物性測定結果および性能評価結果は、後の表3にまとめて示す。
 <比較例4>
 比較例4では、原料の配合において、後の表2に示す配合比率で、粉末状活性炭D、チタノシリケート系鉛吸着剤および高密度ポリエチレン粉末バインダーを使用したこと以外は、比較例2と同様の方法で、円筒状吸着フィルターを得た。比較例4における吸着フィルターの物性測定結果および性能評価結果は、後の表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2において、「‐」は含まれていないことを意味する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 さらに、図6に、水銀ポロシメータで測定した実施例1~実施例7および比較例1~比較例3における吸着フィルターの細孔モード径とその区間細孔容積のグラフを示す。
 加えて、図7に、水銀ポロシメータで測定した実施例1~実施例7ならびに比較例1および比較例3における吸着フィルターの細孔直径10μm以上の細孔容積(cm/cc)と超微粒子除去性能(%)との相関を示す。また、図8に、水銀ポロシメータで測定した実施例1~実施例7ならびに比較例1および比較例3~比較例4における細孔直径7μm以下の細孔容積(cm/cc)と超微粒子除去性能(%)との相関を示す。比較例2については、上記表3に示す通り、途中停止したため示していない。
 図7に示すように、細孔直径10μm以上の細孔容積が約0.39(cm/cc)以下程度である場合、優れた超微粒子除去性能を示していた。さらに、図8に示すように、本実施例の結果によると、細孔直径7μm以下の細孔容積が約0.15(cm/cc)以上程度である場合、優れた超微粒子除去性能を示していた。
 [考察]
 実施例1~実施例7の吸着フィルターは、上記表3に示すように、優れた超微粒子除去性能を有し、かつ良好な通水性を維持していた。それに対して、比較例1の吸着フィルターは超微粒子除去性能の合格基準を満たさず、比較例2の吸着フィルターは初期通水抵抗の合格基準を満たしていなかった。実施例1と比較例1とを比較すると、全細孔容積や細孔モード径は同程度の数値であるにもかかわらず、比較例1の吸着フィルターは本実施形態における細孔直径10μm以上の細孔容積の規定範囲および細孔直径7μm以下の細孔容積の規定範囲の両方を満たしていなかった。詳細には、図6に示すように、比較例1の細孔分布は、実施例1の細孔分布と比べて、細孔直径がより大きい方向において、具体的には細孔直径10μm以上の範囲においてより多く存在していることが分かる。さらに、比較例1の細孔分布は、実施例1の細孔分布と比べて、細孔直径がより小さい方向において、具体的には細孔直径7μm以下の範囲においてより少なく存在していることが分かる。そのため、超微粒子除去性能の効果に差異が出たと想定される。このように、実施例1~実施例7の吸着フィルターは、吸着フィルターの細孔直径10μm以上の細孔容積および細孔直径7μm以下の細孔容積が好適に制御されたと考えられる。
 この出願は、2020年10月1日に出願された日本国特許出願特願2020-167069号を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体例等を参照しながら実施形態および実施例を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態および実施例を変更および/または改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明の吸着フィルターによれば、例えば浄水フィルター等として使用することによって、良好な通水性を維持しつつ、かつ優れた超微粒子除去性能を発揮させることができる。

Claims (15)

  1.  活性炭とバインダーとを含む成型体からなる吸着フィルターであって、
     水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径10μm以上の細孔容積が0.10cm/cc~0.39cm/ccである、吸着フィルター。
  2.  前記吸着フィルターの密度が0.59g/cm以下である、請求項1に記載の吸着フィルター。
  3.  水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積が0.50cm/cc~0.73cm/ccである、請求項1または2に記載の吸着フィルター。
  4.  水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積に対する水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径10μm以上の細孔容積の割合が、12%以上である、請求項1~3のいずれか1項に記載の吸着フィルター。
  5.  水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積が、0.15cm/cc以上である、請求項1~4のいずれか1項に記載の吸着フィルター。
  6.  水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積に対する水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積の割合が、22%以上である、請求項1~5のいずれか1項に記載の吸着フィルター。
  7.  活性炭とバインダーとを含む成型体からなる吸着フィルターであって、
     水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積が0.15cm/cc以上であり、かつ、
     水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積が0.50cm/cc~0.73cm/ccである、吸着フィルター。
  8.  水銀圧入法により測定される前記吸着フィルターの体積基準での全細孔容積に対する水銀圧入法により測定される前記吸着フィルターの体積基準での細孔直径7μm以下の細孔容積の割合が、22%以上である、請求項7に記載の吸着フィルター。
  9.  水銀圧入法により測定される細孔モード径が15μm以下である、請求項1~8のいずれか1項に記載の吸着フィルター。
  10.  前記吸着フィルターを、不活性ガス中において900℃で20分間熱処理して得られる炭化物において、粒子径が10μm以下である粒子の含有率が2体積%以上である、請求項1~9のいずれか1項に記載の吸着フィルター。
  11.  25℃において、溶剤飽和濃度の1/10となる溶剤蒸気を含む空気を通し、質量が一定となったときの試料の増量から求められるベンゼン飽和吸着量が18%~35%である、請求項1~10のいずれか1項に記載の吸着フィルター。
  12.  前記吸着フィルターを、不活性ガス中において900℃で20分間熱処理して得られる炭化物において、体積基準の累計粒度分布における0%粒子径が7μm以下である、請求項1~11のいずれか1項に記載の吸着フィルター。
  13.  前記バインダーが繊維状バインダーを含む、請求項1~12のいずれか1項に記載の吸着フィルター。
  14.  前記繊維状バインダーが、アクリル系繊維状バインダーを含む、請求項13に記載の吸着フィルター。
  15.  前記繊維状バインダーが、セルロース系繊維状バインダーを含む、請求項13または14に記載の吸着フィルター。
PCT/JP2021/034551 2020-10-01 2021-09-21 吸着フィルター WO2022071019A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/912,929 US20230149901A1 (en) 2020-10-01 2021-09-21 Adsorption filter
KR1020227032970A KR20230078947A (ko) 2020-10-01 2021-09-21 흡착 필터
CN202180024815.1A CN115335143A (zh) 2020-10-01 2021-09-21 吸附过滤器
JP2022530282A JP7180036B2 (ja) 2020-10-01 2021-09-21 吸着フィルター
JP2022152814A JP2022188136A (ja) 2020-10-01 2022-09-26 吸着フィルター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020167069 2020-10-01
JP2020-167069 2020-10-01

Publications (1)

Publication Number Publication Date
WO2022071019A1 true WO2022071019A1 (ja) 2022-04-07

Family

ID=80950349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034551 WO2022071019A1 (ja) 2020-10-01 2021-09-21 吸着フィルター

Country Status (6)

Country Link
US (1) US20230149901A1 (ja)
JP (2) JP7180036B2 (ja)
KR (1) KR20230078947A (ja)
CN (1) CN115335143A (ja)
TW (1) TW202222399A (ja)
WO (1) WO2022071019A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2016140788A (ja) * 2015-01-30 2016-08-08 株式会社Lixil 浄水カートリッジ及び浄水器
WO2019131305A1 (ja) * 2017-12-28 2019-07-04 株式会社クラレ 吸着フィルター
WO2019235043A1 (ja) * 2018-06-08 2019-12-12 株式会社Lixil 活性炭成形体
JP2020019016A (ja) * 2014-11-19 2020-02-06 株式会社クラレ 吸着フィルター

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101770549B1 (ko) 2009-08-06 2017-08-23 주식회사 쿠라레 활성탄 성형체 및 이를 사용한 정수기
JP6489735B2 (ja) 2013-08-09 2019-03-27 フタムラ化学株式会社 濁度低減フィルター体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112518A (ja) * 2013-12-10 2015-06-22 株式会社タカギ 成形吸着体およびそれを用いた浄水器
JP2020019016A (ja) * 2014-11-19 2020-02-06 株式会社クラレ 吸着フィルター
JP2016140788A (ja) * 2015-01-30 2016-08-08 株式会社Lixil 浄水カートリッジ及び浄水器
WO2019131305A1 (ja) * 2017-12-28 2019-07-04 株式会社クラレ 吸着フィルター
WO2019235043A1 (ja) * 2018-06-08 2019-12-12 株式会社Lixil 活性炭成形体

Also Published As

Publication number Publication date
US20230149901A1 (en) 2023-05-18
KR20230078947A (ko) 2023-06-05
JPWO2022071019A1 (ja) 2022-04-07
JP7180036B2 (ja) 2022-11-29
CN115335143A (zh) 2022-11-11
TW202222399A (zh) 2022-06-16
JP2022188136A (ja) 2022-12-20

Similar Documents

Publication Publication Date Title
JP6596015B2 (ja) 吸着フィルター
WO2014061740A1 (ja) 水処理フィルター及びその製造方法
JP6902588B2 (ja) 吸着フィルター
JP7303118B2 (ja) 吸着フィルター
JP6144655B2 (ja) 成形吸着体およびそれを用いた浄水器
JP7356458B2 (ja) 浄水用フィルター及びそれを用いた浄水器
JP2021176634A (ja) めっき液精製用フィルターおよびめっき液精製用吸着剤
WO2022071019A1 (ja) 吸着フィルター
WO2023189806A1 (ja) 吸着フィルター
WO2023008437A1 (ja) 浄水フィルターおよび浄水器
WO2021085266A1 (ja) 吸着フィルター、並びに、それを用いためっき液精製用フィルター、めっき液精製装置及びめっき液精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875321

Country of ref document: EP

Kind code of ref document: A1