WO2022070662A1 - 検査容器、検査装置及び核酸検査方法 - Google Patents

検査容器、検査装置及び核酸検査方法 Download PDF

Info

Publication number
WO2022070662A1
WO2022070662A1 PCT/JP2021/030484 JP2021030484W WO2022070662A1 WO 2022070662 A1 WO2022070662 A1 WO 2022070662A1 JP 2021030484 W JP2021030484 W JP 2021030484W WO 2022070662 A1 WO2022070662 A1 WO 2022070662A1
Authority
WO
WIPO (PCT)
Prior art keywords
accommodating portion
plug
nucleic acid
flow path
inspection
Prior art date
Application number
PCT/JP2021/030484
Other languages
English (en)
French (fr)
Inventor
威史 濱
裕康 石井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022553540A priority Critical patent/JP7334363B2/ja
Publication of WO2022070662A1 publication Critical patent/WO2022070662A1/ja
Priority to US18/190,284 priority patent/US20230226540A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/047Additional chamber, reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/14Means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts

Definitions

  • the present invention relates to a test container, a test device, and a nucleic acid test method.
  • nucleic acid amplification method examples include a polymerase chain reaction (PCR) method and a LAMP (Loop-Mediated Isothermal Amplification) method.
  • PCR polymerase chain reaction
  • LAMP Loop-Mediated Isothermal Amplification
  • a sample solution containing nucleic acid is subjected to a specific nucleic acid sequence (target DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) to be detected, hereinafter collectively referred to as target DNA. ) Is mixed with an amplification reagent for amplifying. Then, after going through the target DNA amplification step, the presence or absence of the target DNA is determined to inspect whether or not the sample contains the target DNA detection target nucleic acid.
  • target DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • Tests using nucleic acid amplification methods such as the PCR method are currently also used to test for the presence or absence of influenza and new corona.
  • Demand for point-of-care testing (POCT) is increasing for rapid diagnosis, and there is a demand for a testing device that can easily perform nucleic acid amplification.
  • Patent Document 1 proposes a microchannel chip that can be used in POCT.
  • Patent Document 1 includes a syringe containing air for pushing the sample liquid into the reaction space and a syringe containing a reagent that reacts with the sample liquid, and is a microchannel chip capable of internally mixing the sample liquid and the reagent. Is disclosed.
  • target DNA amplification by PCR includes a step of dissociating double-stranded DNA into single-stranded DNA at a high temperature (heat denaturation step), and then lowering the temperature to bind a primer to the single-stranded DNA (annealing step). It is realized by repeating the step (extension step) of newly synthesizing double-stranded DNA by polymerase using single-stranded DNA as a template.
  • amplification is performed by RT (reverse transcription) -PCR.
  • RT reverse transcription
  • the LAMP method is a method of advancing the amplification reaction while maintaining a constant temperature of around 65 ° C.
  • the nucleic acid amplification reaction includes a step of heating a liquid in which a sample liquid and an amplification reagent are mixed. At this time, if the sample liquid and the gas contained in the reagent foam due to the heat treatment, there is a possibility that the amplification step may be hindered and the amplification step may take a long time, or sufficient amplification may not be possible. In POCT applications, it is required to shorten the time required for inspection and improve the inspection accuracy.
  • Patent Document 1 The microchannel chip described in Patent Document 1 is not described as being used for a nucleic acid amplification test. Therefore, no problems and solutions that occur in the reaction including the heating step are described.
  • an object of the present invention is to provide an inspection container, an inspection apparatus, and a nucleic acid inspection method capable of inspecting with high inspection accuracy in an inspection including a heating step.
  • the inspection container of this disclosure is The input port for inputting the sample liquid and A removable lid that covers the slot and A first accommodating portion for accommodating the sample liquid dropped from the inlet, which is provided so that the inlet has an opening end face, and a first accommodating portion.
  • a second cylinder having one end connected to the second accommodating portion via a third flow path and having the other end opened to the outside.
  • the first plug which is movable in the first cylinder, Equipped with a second plug that is movably provided in the second cylinder, By pressing and moving the first plug and the second plug from the outside, it is possible to pressurize the internal space including the first storage part, the second storage part, the first flow path, the second flow path and the third flow path. Is.
  • the internal space is sealed by the first plug and the second plug, and when the first plug is pressed from the outside and moved to the internal space side in the first cylinder,
  • the second plug may be configured to move from the internal space side to the outside side in the second cylinder in conjunction with the movement of the first plug.
  • the inspection container of the present disclosure has an air hole in a part of the second cylinder, and the internal space can be pressurized by moving the second plug closer to the internal space than the air hole. There may be.
  • the inspection container of the present disclosure is provided with a purification chamber for removing impurities in the sample liquid in the middle of the first flow path.
  • the reagent may be contained in the second storage portion.
  • a third accommodating portion accommodating a reagent may be provided in the middle of the first flow path.
  • the inspection container of the present disclosure it is preferable to provide a third accommodating portion between the purification chamber and the second accommodating portion in the middle of the first flow path.
  • a stirring flow path for promoting mixing of the sample liquid and the reagent may be provided between the third accommodating portion and the second accommodating portion.
  • the bottom surface of the second accommodating portion is made of a film.
  • the inspection container of the present disclosure may include an amplification reagent for amplifying a specific nucleic acid sequence and a probe for determining the nucleic acid sequence.
  • the inspection device of the present disclosure includes the inspection container of the present disclosure and A pressing machine including a first pressing portion for externally pressing the first plug in the first cylinder of the inspection container and a second pressing portion for pressing the second plug in the second cylinder from the outside is provided. It is an inspection device that sends the sample liquid contained in the first storage portion of the inspection container to the second storage portion by pressing the first plug by the first pressing portion and moving it to the internal space side.
  • the first heating unit provided at a position in contact with the bottom surface of the second storage unit of the inspection container, and the first heating unit for heating the liquid contained in the second storage unit, is used. It is preferable to prepare.
  • a second heating unit provided at a position in contact with the bottom surface of the first storage unit of the inspection container, the second heating unit for heating the liquid contained in the first storage unit, is used. You may be prepared.
  • the inspection device of the present disclosure may include a detection unit for detecting whether or not a detection target is contained in the sample liquid in the second storage unit.
  • the reagent in the inspection container, includes an amplification reagent for amplifying a specific nucleic acid sequence and a fluorescent probe for determining the nucleic acid sequence.
  • the detection unit emits an excitation light source that irradiates the liquid contained in the second storage unit with excitation light for exciting the fluorescence probe, and fluorescence emitted from the fluorescence probe excited by the irradiation of the excitation light. It may be equipped with a light detector to detect,
  • the nucleic acid test method of the present disclosure is: A sample collected from a living body using a sampling tool is immersed in a nucleic acid extract to extract nucleic acid from the sample. A liquid containing nucleic acid is charged as a sample liquid from the input port of the test container. The slot is sealed with a lid, The sample liquid contained in the first storage portion is sent to the second storage portion by a pressing machine. In the second storage unit, a specific nucleic acid sequence is amplified by controlling the temperature of the mixed solution of the sample solution and the reagent. The mixture is irradiated with an excitation light source, and the fluorescence generated from the fluorescent probe is detected using a photodetector. This is a nucleic acid test method for determining the presence or absence of a specific nucleic acid sequence.
  • inspection can be performed with high inspection accuracy.
  • FIG. 3A is the 3A-3A line cut end face of FIG. 1
  • FIG. 3B is the 3B-3B line cut end face of FIG. 1
  • FIG. 3C is the 3C-3C line cut end face of FIG.
  • FIG. 3A is the 3A-3A line cut end face of FIG. 1
  • FIG. 3B is the 3B-3B line cut end face of FIG. 1
  • FIG. 3C is the 3C-3C line cut end face of FIG.
  • It is a figure for demonstrating the liquid feeding method in the inspection container 1.
  • FIG. It is a figure for demonstrating the liquid feeding method in the inspection container 2 of the design change example 1.
  • FIG. It is a figure for demonstrating the pressurizing method in the inspection container 2 of the design change example 1.
  • FIG. It is a top view which shows typically the inspection container 3 of the design change example 2.
  • FIG. 3A is the 3A-3A line cut end face of FIG. 1
  • FIG. 3B is the 3B-3B line cut end face of FIG. 1
  • FIG. 13A is the 13A-13A line cut end face of FIG. 11
  • 13B is the 13B-13B line cut end face of FIG. 11
  • 13C is the 13C-13C line cut end face of FIG. 11
  • FIG. 13D is the 13D-13D line cut of FIG.
  • the end face, FIG. 13E, is the 13E-13E line cut end face of FIG.
  • FIG. 16A is a plan view showing the positional relationship between the inspection container 6 and the pressing machine 108 in the inspection device 100
  • FIG. 16B is a sectional view taken along line 16B-16B of FIG. 16A. It is a figure for demonstrating an inspection method.
  • FIG. 1 is a plan view schematically showing the inspection container 1 of the first embodiment
  • FIG. 2 is a perspective view of the inspection container 1 shown in FIG. 3A of FIG. 3 shows the 3A-3A line cut end face of FIG. 1
  • FIG. 3B shows the 3B-3B line cut end face of FIG. 1
  • FIG. 3C shows the 3C-3C line cut end face of FIG.
  • the inspection container 1 of the present embodiment is a nucleic acid inspection cartridge having a card-shaped outer shape and an internal flow path structure.
  • the test container 1 determines whether or not the sample contains a detection target by, for example, amplifying and enabling detection of a specific nucleic acid sequence in a sample having a specific nucleic acid sequence which is a detection target. Used to detect. Specifically, it is used, for example, for testing for the presence or absence of an infectious disease such as influenza.
  • the inspection container 1 has, for example, a flat surface size of about a credit card and a thickness of about 1 cm.
  • the inspection container 1 is composed of a main body member 1A in which recesses and holes forming a part of a flow path structure including a flow path and an accommodating portion are formed, and a bottom member 1B forming a bottom surface of the flow path. ..
  • the main body member 1A can be used without particular limitation as long as it is a known resin molded plastic material, but polycarbonate, polypropylene, cycloolefin or silicone resin is preferable from the viewpoint of heat resistance and transparency.
  • the bottom member 1B is formed of, for example, a thin plate or a film.
  • any known resin molded plastic material can be used without particular limitation, but from the viewpoint of adhesion to the main body member 1A, the same material as the main body member 1A is preferable.
  • the inspection container 1 includes a charging port 12, a lid portion 14, a first accommodating portion 16, a second accommodating portion 18, a first flow path 20, a first cylinder 31, a second cylinder 32, and a second cylinder.
  • the first plug 33 and the second plug 34 are provided.
  • the inspection container 1 further includes a second flow path 24 and a third flow path 26.
  • the charging port 12 is an opening for charging the sample liquid 40.
  • the lid portion 14 covers the loading port 12 and is a lid portion that can be attached to and detached from the opening of the loading port 12.
  • the lid portion 14 is formed so as to be screwable to the tubular portion 15 forming the input port 12.
  • the attachment / detachment method is not particularly limited, and for example, the lid portion 14 and the tubular portion 15 may be attached / detached using a snap-type cap structure or an adhesive.
  • the lid portion 14 opens the charging port 12 when the sample liquid is charged, but closes the charging port 12 to eliminate contamination from the outside and prevent evaporation of the sample liquid 40 from the inside except when the sample liquid is charged. do.
  • the sample liquid 40 is, for example, a liquid obtained by extracting nucleic acid from a sample collected from a subject's nasal cavity, pharynx, oral cavity, affected area, or the like.
  • the surface provided with the charging port 12 is referred to as the upper surface of the inspection container 1, and the bottom member 1B side is referred to as the lower surface of the inspection container 1.
  • the upper surface of the main body member 1A is the same as the upper surface of the inspection container 1
  • the lower surface of the main body member 1A is the surface in contact with the upper surface of the bottom member 1B
  • the lower surface of the bottom member 1B is the same as the lower surface of the inspection container 1.
  • the first storage unit 16 is provided so that the charging port 12 serves as the opening end surface, and stores the sample liquid 40 dropped from the charging port 12.
  • the shape of the first accommodating portion 16 is not particularly limited, and can be arbitrarily selected such as a columnar shape, a conical shape, and a frustum shape.
  • the input port 12 is formed by the opening of the tubular portion 15 formed by penetrating the main body member 1A in the thickness direction and protruding from the surface of the main body member 1A, and the main body of the tubular portion 15 is formed.
  • the first accommodating portion 16 is formed by the inner side portion of the member 1A and the bottom member 1B.
  • the second accommodating unit 18 is an accommodating unit capable of accommodating a liquid, and functions as a reaction unit for reacting the sample liquid 40 with the reagent 42.
  • the reagent 42 includes an amplification reagent for amplifying the nucleic acid sequence to be inspected and a probe for determining.
  • the second accommodating portion 18 is formed by a recess provided on the lower surface of the main body member 1A and a bottom member 1B.
  • the reagent 42 is stored in the second storage unit 18 in advance.
  • the reagent 42 may be provided between the first storage unit 16 and the second storage unit 18, and may not necessarily be stored in the second storage unit 18.
  • the reagent 42 includes an amplification reagent for amplifying a specific nucleic acid sequence, a probe for detecting a specific nucleic acid sequence, and the like.
  • the amplification reagent include primers, polymerases, substrates such as dNTP, salts and the like. Further, it may contain an additive such as a reducing agent, a buffer or the like.
  • the amplification symmetric nucleic acid is RNA, it may further contain a reverse transcription primer and a reverse transcriptase.
  • the reagent 42 is appropriately selected depending on the amplification method and the detection method.
  • the reagent 42 may include an amplification reagent and a fluorescent probe.
  • the form of the reagent to be enclosed is not particularly limited, and either a liquid or solid reagent can be used.
  • a powdery reagent prepared by freeze-drying a liquid reagent, or a reagent molded into pellets or granules may be encapsulated.
  • the first flow path 20 connects the first accommodating portion 16 and the second accommodating portion 18.
  • the sample liquid 40 charged into the first storage unit 16 is sent to the second storage unit 18 through the first flow path 20.
  • the first flow path 20 is formed on the lower surface of the main body member 1A by a linear recess extending from the first accommodating portion 16 to the second accommodating portion 18 and an upper surface of the bottom member 1B (see FIG. 3).
  • the second flow path 24 and the third flow path 26 are also formed by a linear recess formed on the lower surface of the main body member 1A and the upper surface of the bottom member 1B.
  • the first cylinder 31 is a first cylinder 31 in which one end 31b is connected to the first accommodating portion 16 via a second flow path 24, and the other end 31a is provided so as to open to the outside.
  • the second cylinder 32 is a second cylinder 32 in which one end 32b is connected to the second accommodating portion 18 via the third flow path 26, and the other end 32a is provided so as to open to the outside.
  • the first cylinder 31 and the second cylinder 32 are tubular portions formed in the surface direction of the main body member 1A, and are formed from the end of the main body member 1A toward the inside.
  • the first plug 33 is provided so as to be movable in the first cylinder 31.
  • the second plug 34 is provided so as to be movable in the second cylinder 32.
  • the first plug 33 and the second plug 34 are rubber plugs as an example, and have a function of shutting off the outside air in each of the first cylinder 31 and the second cylinder 32.
  • the first pressing portion of the pressing machine described later can be inserted from the other end 31a that opens to the outside, and the first pressing portion allows the first plug 33 to be inserted into the internal space in the first cylinder 31. It can be pressed to the side.
  • the second pressing portion of the pressing machine described later can be inserted from the other end 32a that opens to the outside, and the second plug 34 is inserted into the second cylinder 32 by the second pressing portion. It can be pressed toward the internal space side. When not pressed by the pressing machine, the internal space is at atmospheric pressure.
  • the inspection container 1 has a first accommodating portion 16, a second accommodating portion 18, a first flow path 20, a second flow path 24, and a second by moving the first plug 33 and the second plug 34 by pressing them from the outside.
  • the internal space including the three flow paths 26 can be pressurized.
  • the gas in the sample liquid 40 and the reagent 42 may be generated as bubbles and inhibit nucleic acid amplification.
  • the internal space can be pressurized to suppress foaming. It is possible to suppress the inhibition of nucleic acid amplification by foaming. Therefore, since the nucleic acid amplification step in the second accommodating portion 18 can be advanced without being hindered, the inspection accuracy can be improved without delaying the amplification time or causing insufficient amplification.
  • the second accommodating portion 18 and the first heating portion 112 are used when heating the first accommodating portion 16 and the second accommodating portion 18 in the inspection device 100 described later. It is possible to improve the contact with the first accommodating portion 16 and the contact with the second heating portion 114.
  • the bottom member 1B may expand or contract to cause twisting, resulting in a decrease in contact with the heated portion and a decrease in heating efficiency.
  • twisting does not occur in the bottom member 1B, and the contact property between the bottom member 1B and the heating portion is improved. The heating efficiency can be improved.
  • the internal space of the inspection container 1 is sealed by the first plug 33 and the second plug 34.
  • the first plug 33 is arranged on the other end 31a side that opens to the outside from the center in the length direction of the first cylinder 31.
  • the second plug 34 is arranged at one end 32b side from the center in the length direction of the second cylinder 32. In this state, as shown in FIG. 4, when the first plug 33 is pressed from the outside (arrow P1) in the first cylinder 31 and moved to the internal space side as shown by the broken line arrow A1, the internal space is added.
  • the second plug 34 in the second cylinder 32 is interlocked and moves so as to be pushed out from the internal space side to the outside side as shown by the broken line arrow A2.
  • the pressure in the internal space is adjusted by the movement of the second plug 34 in conjunction with the movement of the first plug 33, and the sample liquid 40 stored in the first storage unit 16 is sent to the second storage unit 18. It can be liquid (arrow B). Since the second plug 34 can move in conjunction with the movement of the first plug 33, the liquid can be sent with a weak pressure.
  • FIG. 5 is a plan view schematically showing the inspection container 2 of the design modification example of the inspection container 1 of the first embodiment.
  • the inspection container 2 is different from the inspection container 1 of the first embodiment in that an air hole 36 is provided in a part of the second cylinder 32.
  • the first plug 33 is arranged on the other end 31a side that opens to the outside from the center in the length direction of the first cylinder 31.
  • the second plug 34 is arranged on the other end 32a side of the second cylinder 32 with respect to the air hole 36.
  • the internal space is opened by the air hole 36.
  • the first plug 33 is moved along with the movement of the first plug 33.
  • the sample liquid 40 stored in the storage unit 16 can be sent to the second storage unit 18. Further, with the movement of the first plug 33, the air in the second cylinder 32 is discharged from the air hole 36.
  • the internal space can be sealed.
  • the internal space can be pressurized by pressing the first plug 33 and the second plug 34 from the outside (arrows P1 and P2), respectively, from the state where the internal space is sealed. Therefore, even in this test container 2, the gas in the sample liquid 40 and the reagent 42 may be generated as bubbles and inhibit nucleic acid amplification. Foaming can be suppressed by pressurizing the internal space when the sample liquid 40 and the reagent 42 are reacted in the second storage unit 18 and when the liquid in the second storage unit 18 is heated.
  • FIG. 7 is a plan view schematically showing the inspection container 3 of the design modification example 2 of the inspection container 1 of the first embodiment.
  • FIG. 8 is an enlarged view of the second stopper 34 provided in the second cylinder 32, and FIG. 8 shows the second stopper 34 provided in the second cylinder 32 in the inspection container 3 described later. A state in which the second pushing rod 103 of the second pressing portion 104 is set is shown, and FIG. 8B shows a state before setting the second pushing rod 103 in the second plug 34.
  • the inspection container 3 is different from the inspection container 1 of the first embodiment in that the second plug 34 has a recessed hole 34a that meshes with the protrusion 103a at the tip of the second push rod 103.
  • the protrusion 103a of the second push-in rod 103 and the hole 34a of the second plug 34 are fitted, the second push-in rod 103 and the second plug 34 are integrated, and the second plug 34 is forced. It is possible to adjust the pressure in the internal space by moving it in a targeted manner.
  • the first plug 33 is arranged on the other end 31a side that opens to the outside from the center in the length direction of the first cylinder 31.
  • the second plug 34 is arranged at one end 32b side of the center of the second cylinder 32 in the length direction.
  • the second plug 34 in the second cylinder 32 is moved to the outside side (to the right in the figure) by the second push rod 103, the second plug 34 moves to the first accommodating portion 16.
  • the stored sample liquid 40 can be sent to the second storage unit 18.
  • the first plug 33 in the first cylinder 31 is interlocked and moves so as to be pulled into the internal space side.
  • the first plug 33 in the first cylinder 31 is also provided with a hole for matching with the protrusion at the tip of the first push rod 101, and the first plug 33 of the first push rod 101 and the second push rod 103, respectively.
  • the movement of the first cylinder 31 and the second cylinder 32 may be independently controlled by engaging with the second plug 34.
  • the internal space can be pressurized by pushing the second plug 34 toward the internal space side by the second pushing rod 103 and pressing the first plug 33 from the outside toward the internal space side. Therefore, even in this test container 3, the gas in the sample liquid 40 and the reagent 42 may be generated as bubbles and inhibit nucleic acid amplification. Foaming can be suppressed by pressurizing the internal space when the sample liquid 40 and the reagent 42 are reacted in the second storage unit 18 and when the liquid in the second storage unit 18 is heated. , It is possible to suppress the inhibition of nucleic acid amplification by foaming. Therefore, since the nucleic acid amplification step in the second accommodating portion 18 can be advanced without being hindered, the inspection accuracy can be improved without delaying the amplification time or causing insufficient amplification.
  • FIG. 9 is a plan view schematically showing the inspection container 4 of the second embodiment.
  • the inspection container 4 includes a purification chamber 50 in the middle of the first flow path 20 connecting the first accommodating portion 16 and the second accommodating portion 18.
  • the first flow path 20 is a first flow path first portion 20a connecting the first accommodating portion 16 and the purification chamber 50, and a first flow path second portion 20b connecting the purification chamber 50 and the second accommodating portion 18. It is composed of and.
  • the purification chamber 50 is a chamber for removing impurities from the sample liquid.
  • the purification method is not particularly limited, and a known method can be used. For example, a membrane filter method, an ultrafiltration method, a dialysis method, a gel filtration method, a desalting method, or the like can be used. Further, a method of trapping impurities by using an adsorbent such as an ion exchange resin or a molecular sieve may be used.
  • an adsorbent such as an ion exchange resin or a molecular sieve
  • the main inspection container 4 has the same configuration as the inspection container 1 of the first embodiment except for the above configuration. Therefore, the same effect can be obtained.
  • FIG. 10 is a plan view schematically showing the inspection container 5 of the third embodiment.
  • the inspection container 5 includes a third accommodating portion 56 in the middle of the first flow path 20 connecting the first accommodating portion 16 and the second accommodating portion 18.
  • the first flow path 20 is a first flow path first portion 20a connecting the first accommodating portion 16 and the third accommodating portion 56, and a first flow path second connecting the purification chamber 50 and the second accommodating portion 18. It is composed of a part 20b.
  • the reagent 42 is stored in the third storage unit 56.
  • the reagent 42 includes, for example, an amplification reagent and a probe for detection. Since the reagent 42 is provided in the middle of the first flow path 20 connecting the first storage unit 16 and the second storage unit 18, the reagent can be used while the sample liquid 40 passes through the first flow path 20. Since it is dissolved and mixed with the sample liquid, amplification can be started immediately after reaching the second storage unit 18, and the time of the amplification step can be shortened.
  • the main inspection container 5 has the same configuration as the inspection container 1 of the first embodiment except for the above configuration. Therefore, the same effect can be obtained.
  • FIG. 11 is a plan view schematically showing the inspection container 6 of the fourth embodiment
  • FIG. 12 is a perspective view of the inspection container 6 shown in FIG. 13A of FIG. 13 is the 13A-13A line cut end surface of FIG. 11, 13B is the 13B-13B line cut end surface of FIG. 11, 13C is the 13C-13C line cut end surface of FIG. 11, and
  • FIG. 13D is a diagram. 11 13D-13D line cut end face and FIG. 13E show the 13E-13E line cut end face of FIG. 11, respectively.
  • the inspection container 6 of the present embodiment is composed of a main body member 6A in which recesses and holes forming a part of a flow path structure including a flow path and an accommodating portion are formed, and a bottom member 6B forming a bottom surface of the flow path. It is configured.
  • the main body member 6A and the bottom member 6B in this example are made of the same material as the main body member 1A and the bottom member 1B in the inspection container 1.
  • the inspection container 6 includes a charging port 12, a lid portion 14, a first accommodating portion 16, a second accommodating portion 18, a first flow path 20, a first cylinder 31, and the like.
  • a second cylinder 32, a first plug 33, and a second plug 34 are provided.
  • the inspection container 1 further includes a second flow path 24 and a third flow path 26.
  • the purification chamber 50 and the third accommodating portion 56 are provided in order from the first accommodating portion 16 side.
  • the first flow path 20 is a first flow path first portion 20a connecting the first accommodating portion 16 and the purification chamber 50, and a first flow path second portion connecting the purification chamber 50 and the third accommodating portion 56. It is composed of 20b and a first flow path third portion 20c connecting the third accommodating portion 56 and the second accommodating portion 18.
  • the purification chamber 50 is composed of a hole provided in the vicinity of the center of the main body member 6A in the thickness direction and a bottom member 6B, and the purification filter 51 is in the middle of the hole in the purification chamber 50 in the thickness direction. Is provided.
  • the third accommodating portion 56 is an accommodating portion for accommodating the reagent 42, and is composed of a recess provided at a position adjacent to the purification chamber 50 on the lower surface of the main body member 6A and a bottom member 6B (FIG. 12, FIG. See 13C).
  • the first flow path first portion 20a is composed of a recess extending from the first accommodating portion 16 to the purification chamber 50 on the lower surface of the main body member 6A and a bottom member 6B.
  • the first flow path first portion 20a communicates with the first accommodating portion 16 and the purification chamber 50 on the lower surface of the main body member 6A.
  • the first flow path second portion 20b has a recess extending from the purification chamber 50 to the third accommodating portion on the upper surface of the main body member 6A, a purification chamber opening on the upper surface, and a sealing member 55 covering the first flow path second portion 20b. It is composed of and. After the purification filter 51 is inserted into the purification chamber 50, the sealing member 55 covers the purification chamber 50 and the first flow path second portion 20b and is fixed to the upper surface of the main body member 6A. The first flow path second part 20b communicates with the purification chamber 50 and the third flow path on the upper surface of the main body member 6A.
  • the first flow path third portion 20c is composed of a recess extending from the third accommodating portion 56 to the second accommodating portion 18 on the lower surface of the main body member 6A and a bottom member 6B.
  • the first flow path third portion 20c communicates with the third accommodating portion 56 and the second accommodating portion 18 on the lower surface of the main body member 6A.
  • the sample liquid 40 stored in the first storage unit 16 is sent to the second storage unit 18 by the following route.
  • the lower surface of the main body member 6A is connected to the purification chamber 50 that passes from the first accommodating portion 16 through the first flow path first portion 20a provided on the lower surface of the main body member 6A and communicates with the first flow path first portion 20a. Inflow from.
  • the sample liquid 40 flowing into the purification chamber 50 passes through the purification filter 51 in the purification chamber 50 and communicates with the purification chamber 50 on the upper surface of the main body member 6A. It flows into the second part 20b of the flow path.
  • the sample liquid 40 flowing into the first flow path second part 20b is from the upper part of the third storage part 56 to which the first flow path second part 20b communicates with the third storage part 56. Inflow to. Further, the liquid is sent to the third accommodating portion 56 through the first flow path third portion 20c communicating with the lower surface of the main body member 6A to the second accommodating portion 18.
  • the configurations of the first cylinder 31, the second cylinder 32, the first plug 33, and the second plug 34 are the same as those of the inspection container 1 of the first embodiment, and thus perform the same functions. The same effect as that of the inspection container 1 can be obtained.
  • the purification chamber 50 is provided, it is possible to suppress the inhibition of nucleic acid amplification by impurities contained in the sample liquid 40, and more accurate inspection is possible.
  • the reagent 42 is provided downstream of the purification chamber 50 in the middle of the first flow path 20 connecting the first accommodating portion 16 and the second accommodating portion 18, the sample liquid 40 is the first flow. Since the reagent dissolves and is mixed with the sample liquid while passing through the passage 20, amplification can be started immediately after reaching the second accommodating portion 18, and the time of the amplification step can be shortened. be able to.
  • FIG. 14 is a plan view schematically showing the inspection container 7 of the fifth embodiment.
  • the inspection container 7 is the inspection container 6 of the fourth embodiment, and is provided between the third accommodating portion 56 and the second accommodating portion 18 and has a stirring flow path 22 in the first flow path third portion 20c. It is a composition.
  • the stirring flow path 22 is a bellows-shaped flow path, but the stirring flow path 22 may be configured as long as it can generate turbulent flow, and for example, a baffle plate is provided in the straight flow path. It may be configured.
  • the inspection container 7 has the same configuration as the inspection container 6 of the fourth embodiment except for the above configuration. Therefore, the same effect as that of the inspection container 6 can be obtained.
  • FIG. 15 is a diagram showing a schematic configuration of the inspection device 100 of one embodiment.
  • the inspection device 100 includes an inspection container 6, a pressing machine 108, a first heating unit 112, a second heating unit 114, a detection unit 120, a monitor 130, and an ID (identification) management unit 140.
  • FIG. 16A is a plan view showing the positional relationship between the inspection container 6 and the pressing machine 108 in the inspection device 100.
  • FIG. 16B is a sectional view taken along line 16B-16B of FIG. 16A showing the positional relationship between the inspection container 6 and the detection unit 120 in the inspection device 100.
  • the horizontal plane of the inspection container 6 may be aligned with the horizontal plane of the inspection device 100, may be inclined, or may be oriented in the vertical direction.
  • the inspection container 6 of the fourth embodiment is provided, but any of the inspection containers 1 to 7 may be used.
  • the pressing machine 108 controls the first pressing portion 102 provided with the first pushing rod 101, the second pressing portion 104 provided with the second pushing rod 103, the first pressing portion 102, and the second pressing portion 104.
  • a control unit 106 is provided.
  • the first pressing portion 102 and the second pressing portion 104 can push in and out the first pushing rod 101 and the second pushing rod 103 by an actuator using a stepping motor, a solenoid, or the like.
  • the actuator may be configured by using power such as pneumatic pressure.
  • the first pressing portion 102 is arranged at a position where the first pushing rod 101 can be inserted into the first cylinder 31 from the other end 31a that opens to the outside of the first cylinder 31 with the inspection container 6 installed.
  • the first push rod 101 can push and move the first plug 33 toward the internal space side in the first cylinder 31.
  • the second pressing portion 104 is arranged at a position where the second pushing rod 103 can be inserted into the second cylinder 32 from the other end 32a that opens to the outside of the second cylinder 32 with the inspection container 6 installed.
  • the second push rod 103 can push and move the second plug 34 toward the internal space side in the second cylinder 32.
  • the sample liquid 40 is charged into the first storage portion 16 of the inspection container 6, and the lid portion 14 is closed, so that the first plug 33 is pressed by the first pressing portion 102 in a state where the internal space is sealed. By moving to the space side, the sample liquid 40 stored in the first storage unit 16 of the inspection container 6 can be sent to the second storage unit 18.
  • the internal space of the inspection container 6 can be pressurized by pressing the first plug 33 with the first pressing unit 102 and pressing the second plug 34 with the second pressing unit 104.
  • the first heating unit 112 is provided at a position where it comes into contact with the bottom surface of the second accommodating unit 18 of the inspection container 6.
  • the first heating unit 112 heats the liquid contained in the second storage unit 18.
  • the liquid stored in the second storage unit 18 is a mixed liquid of the sample liquid 40 and the reagent 42.
  • the first heating unit 112 heats a mixed solution of the sample solution 40 and the reagent 42 to promote nucleic acid amplification.
  • the second heating unit 114 is provided at a position where it comes into contact with the bottom surface of the first storage unit 16 of the inspection container 6.
  • the second heating unit 114 heats the liquid contained in the first storage unit 16.
  • the liquid contained in the second storage unit 18 is the sample liquid 40.
  • the second heating unit 114 heats the sample liquid 40 for pretreatment.
  • the inspection device 100 may not include the second heating unit 114 when heating for the pretreatment of the sample liquid 40 is not required.
  • the first heating unit 112 is provided with a Pelche element or the like and is capable of temperature control, and carries out a temperature cycle in the amplification step.
  • the second heating unit 114 does not require a temperature cycle like the first heating unit 112, and is composed of, for example, a heater.
  • a known heating mechanism can be used as the heating mechanism used for each of the first heating unit 112 and the second heating unit 114, and the heating mechanism is not particularly limited.
  • the detection unit 120 detects whether or not the sample liquid 40 contains an object to be detected in the second storage unit 18.
  • the detection unit 120 includes an excitation light source 122, a wavelength selection filter 123, and a photodetector 124.
  • the detection unit 120 is arranged above the second storage unit 18 of the inspection container 6.
  • the excitation light source 122 irradiates the excitation light L1 having a specific wavelength into the second accommodating portion 18 via the wavelength selection filter 123.
  • the photodetector 124 detects the fluorescence L2 that is excited by the excitation light L1 and is generated from the fluorescent probe.
  • the excitation light L1 is selected according to the excitation wavelength of the fluorescent probe.
  • a filter for adjusting the intensity and the amount of light, a lens for converging the excitation light L1 and condensing the fluorescence L2 derived from the detection probe to the photodetector 124, or an optical system may be included.
  • the excitation light source 122 an LED, a laser, or the like is used.
  • the wavelength selection filter 123 is a filter that transmits only the wavelength of the light emitted from the excitation light source 122 according to the excitation wavelength of the probe.
  • the photodetector 124 for example, a photodiode, a photomultiplier tube, or the like is applied.
  • the monitor 130 is, for example, a touch panel display, and the measurement can be started or the inspection result can be displayed by operating the touch panel.
  • the ID management unit 140 is provided with a barcode reader that reads the barcode 142 provided in the inspection container 6 and manages the ID of the inspection container 6.
  • nucleic acid test method A nucleic acid test method of one embodiment using the test device 100 of the above embodiment will be described with reference to FIG.
  • This nucleic acid test method includes a nucleic acid extraction step (STEP1), an amplification step (STEP2), and a detection step (STEP3).
  • the nucleic acid extraction step of STEP 1 is performed outside the inspection device 100, and the amplification step and the detection step are performed in the inspection device 100.
  • a sample is collected from a living body using a collection tool 151 such as a swab prepared separately from the inspection device 100. Specifically, it is collected from the nasal cavity, pharynx, inside of the oral cavity or the affected area of the subject using a collection tool. Alternatively, body fluids such as nasal cavity, pharynx, lavage fluid inside the oral cavity, saliva, urine or blood are collected as samples.
  • a collection tool 151 such as a swab prepared separately from the inspection device 100. Specifically, it is collected from the nasal cavity, pharynx, inside of the oral cavity or the affected area of the subject using a collection tool.
  • body fluids such as nasal cavity, pharynx, lavage fluid inside the oral cavity, saliva, urine or blood are collected as samples.
  • a nucleic acid such as DNA or RNA is extracted from the sample using an extractor 152 prepared separately from the test device 100, and the sample liquid 40 is brought into the state.
  • the extractor 152 contains a nucleic acid extract, and a sample is immersed in the nucleic acid extract to extract nucleic acid.
  • a known nucleic acid extraction method can be used without particular limitation. For example, a method using a surfactant or a chaotropic substance, or a method of applying physical shear such as ultrasonic waves or a bead mill can be mentioned.
  • a dripping cap 153 provided with a coarse filter 153a for removing coarse substances is attached to the extractor 152, and the sample liquid 40 is charged from the charging port 12 of the inspection container 6.
  • the sample liquid 40 may be sucked from the extractor 152 with a pipette or the like and charged from the charging port 12.
  • the charging port 12 is closed by the lid portion 14 to seal the internal space of the inspection container 6.
  • This inspection container 6 is installed in the inspection container installation portion of the inspection device 100, and the following amplification step and detection step are carried out in the inspection device 100.
  • the sample liquid 40 stored in the first storage unit 16 is heated by using the second heating unit 114.
  • the heating temperature may be in a temperature range that does not adversely affect the nucleic acid, but is preferably about 50 ° C to 95 ° C, for example.
  • the sample liquid 40 that has been heat-treated as a pretreatment in the first storage unit 16 is sent to the second storage unit 18.
  • the first push rod 101 of the first pressing portion 102 is inserted from the other end 31a that opens to the outside of the first cylinder 31, and the first plug 33 is pushed and moved toward the internal space side of the inspection container 6.
  • the sample liquid 40 stored in the first storage unit 16 can be sent to the second storage unit 18.
  • the pressure in the internal space is adjusted by the second plug 34 in the second cylinder 32 moving toward the outside by pushing the first plug 33 and pressurizing the internal space.
  • the liquid can be sent with a weak pressure.
  • the sample liquid 40 is sent from the first storage unit 16 to the second storage unit 18 via the purification chamber 50 and the third storage unit 56.
  • the contaminants in the sample liquid 40 are removed by the purification filter 51, and the sample liquid 40 from which the impurities have been removed is sent to the third storage unit 56.
  • the third accommodating portion 56 is provided with the reagent 42, and when the sample liquid 40 flows into the third accommodating portion 56, the reagent 42 is dissolved, and the sample liquid 40 and the reagent 42 are mixed while being second. The liquid is sent to the accommodating portion 18.
  • the second pushing rod 103 of the second pressing portion 104 is inserted from the other end 32a that opens to the outside of the second cylinder 32.
  • the second plug 34 is pressed to pressurize the internal space.
  • the mixed solution in the second accommodating portion 18 is heated by the first heating unit 112 to amplify a specific nucleic acid sequence.
  • the amplification method is not limited, but for example, an RT-PCR method or a PCR method is used.
  • a step of dissociating the double-stranded DNA into a single-stranded DNA at a high temperature heat denaturation step
  • a step of lowering the temperature to bind the primer to the single-stranded DNA annealing step
  • a single-strand Using the strand DNA as a template the step (extension step) of newly synthesizing double-stranded DNA by polymerase is repeated.
  • the temperature cycle of the heat denaturation step, the annealing step and the extension step one cycle of 94 ° C. for 1 minute, 50 to 60 ° C. for 1 minute, and 72 ° C. for 1 to 5 minutes as one cycle is repeated 20 to 50 times. Be done.
  • the heat denaturation step and the annealing step may be performed at one temperature.
  • a temperature cycle for example, one cycle of 94 ° C. for 1 minute and 60 ° C. for 1 minute as one cycle is repeated 20 to 50 times.
  • the temperature and time of the temperature cycle in the amplification step are not particularly limited and are arbitrarily selected depending on the performance of the polymerase and the primer.
  • Fluorescence is detected for each cycle of the above temperature cycle, and the amplification status is monitored in real time. That is, in this example, the amplification step and the detection step are carried out in parallel. The result of fluorescence detection is displayed on the monitor 130.
  • the nucleic acid sequence is amplified in the amplification step, and fluorescence is detected by irradiating the fluorescent probe labeled with the specific nucleic acid sequence with excitation light. ..
  • fluorescence is not detected even when irradiated with excitation light. This makes it possible to determine the presence or absence of a specific nucleic acid sequence.
  • the first plug 33 and the second plug 34 are pressed from the outside (arrows P1 and P2) in a state where the internal space of the inspection container 6 is sealed.
  • the space can be pressurized.
  • the mixed liquid of the sample liquid 40 and the reagent 42 is heated by using the first heating unit 112 in the pressurized state, the foaming that may occur during heating can be suppressed, and the nucleic acid amplification is inhibited by the foaming. Can be suppressed. Therefore, since the nucleic acid amplification step in the second accommodating portion 18 can be advanced without being hindered, the inspection accuracy can be improved without delaying the amplification time or causing insufficient amplification.
  • the presence or absence of nucleic acid is determined by the fluorescence method using a fluorescent probe, but the method for detecting the presence or absence of nucleic acid is not limited to the fluorescence method, but the nucleic acid chromatographic method. , Other detection methods such as light scattering method, sequencing method and electrochemical method may be used. These can be realized by appropriately changing the detection unit.
  • the detection method by the fluorescence method or the electrochemical method is particularly preferable because it can be detected in real time and a strongly positive patient can be quickly determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

加熱工程を含む検査において、高い検査精度で検査可能な検査容器、検査装置及び核酸検査方法を得る。検査容器(1)は、検体液(40)を投入する投入口(12)と、投入口(12)を覆う着脱可能な蓋部(14)と、投入口(12)から滴下された検体液(40)を収容する第1収容部(16)と、液体を収容可能な第2収容部(18)であって、検体液(40)と試薬(42)とを反応させる第2収容部(18)と、第1収容部(16)と第2収容部(18)とを接続する第1流路(20)と、第2流路(24)を介して第1収容部(16)に一端が接続された第1シリンダ(31)であって、他端が外部に開口した第1シリンダ(31)と、第3流路(26)を介して第2収容部(18)に一端が接続された第2シリンダ(32)であって、他端が外部に開口した第2シリンダ(32)と、第1シリンダ(31)内を移動可能に備えられた第1栓(33)と、第2シリンダ(32)内を移動可能に備えられた第2栓(34)とを備え、第1栓(33)及び第2栓(34)を外部から押圧して移動させることにより、第1収容部(16)、第2収容部(18)、第1流路(20)、第2流路(24)及び第3流路(26)を含む内部空間を加圧可能である。

Description

検査容器、検査装置及び核酸検査方法
 本発明は、検査容器、検査装置及び核酸検査方法に関する。
 遺伝子診断の技術において、検体に含まれる微量な核酸を増幅する技術が検討されている。核酸増幅方法としては、例えば、ポリメラーゼ連鎖反応(Polymerase Chain Reaction:PCR)法、LAMP(Loop-Mediated Isothermal Amplification)法などが挙げられる。
 核酸増幅検査においては、検体から核酸を抽出した後、核酸を含む検体液を、検出対象となる特定の核酸配列(ターゲットDNA(deoxyribonucleic acid)あるいはRNA(ribonucleic acid)、以下、総称してターゲットDNAと称する。)を増幅させるための増幅試薬と混合する。その後、ターゲットDNAの増幅工程を経た後にターゲットDNAの有無を判別することで検体にターゲットDNA検出対象核酸が含まれているか否かの検査を行う。
 PCR法等の核酸増幅方法を用いた検査は、現在、インフルエンザ及び新型コロナなどの罹患の有無の検査にも用いられている。迅速な診断のため、臨床現場即時検査(Point of Care Testing:POCT)の需要が高まっており、核酸増幅を簡便に実施可能な検査装置が求められている。
 特許文献1は、POCTにおいて使用可能なマイクロ流路チップが提案されている。特許文献1には、検体液を反応空間に押し出すための空気を収容したシリンジ、及び検体液と反応させる試薬を収容したシリンジを備え、内部で検体液と試薬の混合が可能なマイクロ流路チップが開示されている。
特開2018-197694号公報
 例えば、PCRによるターゲットDNA増幅は、二本鎖DNAを高温で一本鎖DNAに解離させる工程(熱変性工程)、その後温度を下げてプライマーを一本鎖DNAに結合させる工程(アニーリング工程)、および一本鎖DNAを鋳型として、ポリメラーゼにより、新たに二重鎖DNAを合成する工程(伸長工程)を繰り返すことで実現される。なお、ターゲットがRNAの場合には、RT(reverse transcription)-PCRにより増幅を行う。温度サイクルの一例として、94℃で1分、50~60℃で1分、72℃で1~5分を1サイクルとして、20~30回繰り返すものが挙げられる。また、LAMP法は、65℃付近の一定温度に保った状態で増幅反応を進める手法である。このように、一般に、核酸増幅反応には検体液と増幅試薬を混合させた液体を加熱する工程を含む。この際、検体液及び試薬中に含まれる気体が加熱処理によって発泡すると、増幅工程を阻害して増幅工程に時間がかかる、あるいは、十分な増幅ができない、などの問題が生じる可能性がある。POCT用途においては、検査に要する時間を短縮し、かつ検査精度を向上させることが求められる。
 特許文献1に記載のマイクロ流路チップは、核酸増幅検査に用いることについては記載されていない。そのため、加熱工程を含む反応において生じる問題点及び解決手法については何ら記載されていない。
 本開示の技術は、上記事情に鑑みてなされたものであって、加熱工程を含む検査において、高い検査精度で検査可能な検査容器、検査装置及び核酸検査方法を提供することを目的とする。
 本開示の検査容器は、
 検体液を投入する投入口と、
 投入口を覆う着脱可能な蓋部と、
 投入口が開口端面として有する様に設けられた、投入口から滴下された検体液を収容する第1収容部と、
 液体を収容可能な第2収容部であって、検体液と試薬とを反応させる第2収容部と、
 第1収容部と第2収容部とを接続する第1流路と、
 第2流路を介して第1収容部に一端が接続された第1シリンダであって、他端が外部に開口した第1シリンダと、
 第3流路を介して第2収容部に一端が接続された第2シリンダであって、他端が外部に開口した第2シリンダと、
 第1シリンダ内を移動可能に備えられた第1栓と、
 第2シリンダ内を移動可能に備えられた第2栓とを備え、
 第1栓及び第2栓を外部から押圧して移動させることにより、第1収容部、第2収容部、第1流路、第2流路及び第3流路を含む内部空間を加圧可能である。
 本開示の検査容器においては、第1栓及び第2栓によって、内部空間が密閉されており、第1シリンダ内において、第1栓を外部から押圧して内部空間側に移動させた場合に、第1栓の移動に連動して第2栓が第2シリンダ内において内部空間側から外部側へと移動する構成であってもよい。
 本開示の検査容器は、第2シリンダの一部に空気穴が設けられており、第2栓を空気穴よりも内部空間側に移動させることにより、内部空間の加圧が可能となる構成であってもよい。
 本開示の検査容器は、第1流路の途中に、検体液中に夾雑物を除去する精製チャンバを備えることが好ましい。
 本開示の検査容器においては、試薬が第2収容部に収容されていてもよい。
 本開示の検査容器においては、第1流路の途中に、試薬を収容した第3収容部を備えてもよい。
 本開示の検査容器においては、第1流路の途中であって、精製チャンバと第2収容部との間に、第3収容部を備えることが好ましい。
 本開示の検査容器においては、第3収容部と第2収容部との間に検体液と試薬との混合を促進する撹拌流路を備えてもよい。
 本開示の検査容器は、第2収容部の底面が、フィルムにより構成されていることが好ましい。
 本開示の検査容器においては、試薬が特定の核酸配列を増幅する増幅試薬と、核酸配列判定用のプローブを含んでもよい。
 本開示の検査装置は、本開示の検査容器と、
 検査容器の第1シリンダ内の第1栓を外部から押圧する第1押圧部と、第2シリンダ内の第2栓を外部から押圧する第2押圧部とを備えた押圧機を備え、
 第1栓を第1押圧部によって押圧して内部空間側に移動させることにより、検査容器の第1収容部に収容された検体液を第2収容部に送液する、検査装置である。
 本開示の検査装置においては、検査容器の第2収容部の底面と接触する位置に設けられた第1加熱部であって、第2収容部に収容された液体を加熱する第1加熱部を備えることが好ましい。
 本開示の検査装置においては、検査容器の第1収容部の底面と接触する位置に設けられた第2加熱部であって、第1収容部に収容された液体を加熱する第2加熱部を備えていてもよい。
 本開示の検査装置においては、第2収容部において、検体液中に検出対象物が含まれているか否かを検出する検出部を備えてもよい。
 本開示の検査装置においては、検査容器において、試薬が特定の核酸配列を増幅する増幅試薬と、核酸配列判定用の蛍光プローブを含み、
 検出部が、第2収容部に収容されている液体に対して、蛍光プローブを励起するための励起光を照射する励起光源と、励起光の照射により励起された蛍光プローブから発光される蛍光を検出する光検出器を備えてもよい、
 本開示の核酸検査方法は、
 採取具を用いて生体から採取した検体を核酸抽出液に浸漬し、検体から核酸を抽出し、
 検査容器の投入口から、検体液として核酸を含む液体を投入し、
 投入口を蓋部によって密閉し、
 第1収容部に収容された検体液を、押圧機によって、第2収容部に送液し、
 第2収容部において、検体液と試薬との混合液を温調することにより特定の核酸配列を増幅し、
 励起光源を混合液に照射し、光検出器を用いて蛍光プローブから生じる蛍光を検出し、
 特定の核酸配列の有無を判定する、核酸検査方法である。
 本開示の検査容器、検査装置及び核酸検査方法によれば、高い検査精度で検査可能である。
第1実施形態の検査容器1を模式的に示す平面図である。 検査容器1の斜視図である。 図3Aは図1の3A-3A線切断端面、図3Bは図1の3B-3B線切断端面、図3Cは図1の3C-3C線切断端面である。 検査容器1における送液方法を説明するための図である。 設計変更例1の検査容器2における送液方法を説明するための図である。 設計変更例1の検査容器2における加圧方法を説明するための図である。 設計変更例2の検査容器3を模式的に示す平面図である。 検査容器3の第2栓の拡大図である。 第2実施形態の検査容器4を模式的に示す平面図である。 第3実施形態の検査容器5を模式的に示す平面図である。 第4実施形態の検査容器6を模式的に示す平面図である。 検査容器6の一部分解斜視図である。 図13Aは図11の13A-13A線切断端面、図13Bは図11の13B-13B線切断端面、図13Cは図11の13C-13C線切断端面、図13Dは図11の13D-13D線切断端面、図13Eは図11の13E-13E線切断端面である。 第5実施形態の検査容器7を模式的に示す平面図である。 一実施形態の検査装置100の概略構成を示す図である。 図16Aは検査装置100における検査容器6と押圧機108との位置関係を示す平面図であり、図16Bは図16Aの16B-16B線断面図である。 検査方法を説明するための図である。
 以下、図面を参照して本開示の実施形態を詳細に説明する。なお、図面中の各構成要素の縮尺等は実際のものとは適宜変更している。
「第1実施形態の検査容器」
 図1は、第1実施形態の検査容器1を模式的に示す平面図であり、図2は、図1に示す検査容器1の斜視図である。また、図3の図3Aは、図1の3A-3A線切断端面、図3Bは図1の3B-3B線切断端面、図3Cは図1の3C-3C線切断端面をそれぞれ示す。
 本実施形態の検査容器1はカード状の外形を有し、内部に流路構造を有する核酸検査用カートリッジである。検査容器1は、例えば、検出対象物である特定の核酸配列を有する検体中の特定の核酸配列を増幅して検出可能とすることによって、検体中に検出対象物が含まれているか否かを検出するために用いられる。具体的には、例えば、インフルエンザなどの感染症の罹患の有無の検査に用いられる。検査容器1は、例えば、クレジットカード程度の平面サイズと1cm程度の厚みを有する。
 検査容器1は、流路及び収容部を含む流路構造の一部を構成する凹部および孔部が形成された本体部材1Aと、流路の底面を構成する底部材1Bとから構成されている。
 本体部材1Aは、公知の樹脂成型プラスチック材料であれば、特に制限なく利用できるが、耐熱性及び透明性の観点から、ポリカーボネート、ポリプロピレン、シクロオレフィンあるいはシリコーン樹脂が好ましい。
 底部材1Bは、例えば、薄板あるいはフィルムにより形成されている。底部材1Bとしては、公知の樹脂成型プラスチック材料であれば、特に制限なく利用できるが、本体部材1Aとの密着性の観点から、本体部材1Aと同じ材質が好ましい。
 本検査容器1は、投入口12と、蓋部14と、第1収容部16と、第2収容部18と、第1流路20と、第1シリンダ31と、第2シリンダ32と、第1栓33と、第2栓34とを備える。また、検査容器1は第2流路24及び第3流路26をさらに備える。
 投入口12は、検体液40を投入するための開口である。蓋部14は投入口12を覆い、投入口12の開口に着脱可能な蓋部である。本例においては、蓋部14は投入口12を形成する筒状部15に螺合可能に形成されている。着脱方法に関して特に制限はなく、例えば、スナップ式のキャップ構造や粘着剤を用いて蓋部14と筒状部15を着脱してもよい。蓋部14は、検体液投入時には投入口12を開放するが、検体液投入時以外は、投入口12を閉じて外部からのコンタミの混入を排除すると共に内部からの検体液40の蒸発を防止する。検体液40は、例えば、被験者の鼻腔、咽頭、口腔及び患部などから採取した検体から核酸を抽出した液体である。
 なお、以下において、投入口12が設けられている面を検査容器1の上面、底部材1B側を検査容器1の下面と称する。ここで、本体部材1Aの上面は検査容器1の上面と同一であり、本体部材1Aの下面は底部材1Bの上面と接する面であり、底部材1Bの下面は検査容器1の下面と同一である。
 第1収容部16は、投入口12が開口端面となる様に設けられており、投入口12から滴下された検体液40を収容する。第1収容部16の形状に特に制限はなく、柱状、錐状、錐台状など任意に選択することができる。
 本検査容器1においては、本体部材1Aを厚み方向に貫き、本体部材1Aの表面から突出して形成された筒状部15の開口によって、投入口12が構成されており、筒状部15の本体部材1Aの内部側部分と底部材1Bとによって、第1収容部16が形成されている。
 第2収容部18は、液体を収容可能な収容部であり、検体液40と試薬42とを反応させる反応部として機能する。試薬42としては、検査対象の核酸配列を増幅するための増幅試薬及び判定するためのプローブが含まれる。第2収容部18は本体部材1Aの下面に設けられた凹部と、底部材1Bとによって形成されている。
 本例において、試薬42は、予め第2収容部18に収容されている。但し、試薬42は、第1収容部16から第2収容部18までの間に備えられていればよく、必ずしも、第2収容部18に収容されていなくてもよい。試薬42としては、特定の核酸配列を増幅するための増幅試薬、特定の核酸配列を検出するためのプローブなどが含まれる。増幅試薬としては、プライマー、ポリメラーゼ、dNTPなどの基質及び塩などが挙げられる。さらに、還元剤などの添加材やバッファーなどを含んでいてもよい。増幅対称の核酸がRNAである場合、逆転写プライマー、逆転写酵素をさらに含んでいてもよい。試薬42は増幅方法および検出方法に応じて適宜選択される。例えば、蛍光法により特定の核酸配列の検出を行う場合には、試薬42が増幅試薬と蛍光プローブを含み得る。封入される試薬形態としては特に制限はなく、液体、固体いずれの試薬も用いられる。例えば、液体試薬を凍結乾燥して作製した粉体状の試薬や、ペレット状や粒状に成型した試薬を封入してもよい。
 第1流路20は、第1収容部16と第2収容部18とを接続する。第1収容部16に投入された検体液40は第1流路20を通って第2収容部18に送液される。第1流路20は、本体部材1Aの下面に第1収容部16から第2収容部18に延びる線状の凹部と、底部材1Bの上面とによって形成されている(図3参照)。なお、第2流路24及び第3流路26も同様に、本体部材1Aの下面に形成された線状の凹部と底部材1Bの上面とによって形成されている。
 第1シリンダ31は、第2流路24を介して第1収容部16に一端31bが接続された第1シリンダ31であって、他端31aが外部に開口するように設けられている。
 第2シリンダ32は、第3流路26を介して第2収容部18に一端32bが接続された第2シリンダ32であって、他端32aが外部に開口するように設けられている。
 第1シリンダ31及び第2シリンダ32は、本体部材1Aの面方向に形成された筒状部であり、本体部材1Aの端から内部側に向かって形成されている。
 第1栓33は、第1シリンダ31内を移動可能に備えられている。第2栓34は、第2シリンダ32内を移動可能に備えられている。第1栓33及び第2栓34は、一例としてゴム栓であり、第1シリンダ31及び第2シリンダ32内のそれぞれにおいて、外気を遮断する機能を有する。
 第1シリンダ31は外部に開口する他端31aから、後述する押圧機の第1押圧部が挿入可能となっており、第1押圧部によって、第1栓33を第1シリンダ31内において内部空間側に押圧可能である。同様に、第2シリンダ32は外部に開口する他端32aから、後述する押圧機の第2押圧部が挿入可能となっており、第2押圧部によって、第2栓34を第2シリンダ32において内部空間側に押圧可能である。押圧機によって、押圧していない状態では、内部空間は大気圧となっている。
 検査容器1は、第1栓33及び第2栓34を外部から押圧して移動させることにより、第1収容部16、第2収容部18、第1流路20、第2流路24及び第3流路26を含む内部空間を加圧可能に構成されている。検体液40及び試薬42中の気体が泡となって発生し、核酸増幅を阻害する可能性がある。第2収容部18内において、検体液40と試薬42とを混合した後に、第2収容部18内の液体を加熱する際に、内部空間を加圧することで、発泡を抑制することができ、発泡により核酸増幅が阻害されるのを抑制することができる。そのため、第2収容部18における核酸増幅工程を阻害されることなく進行させることができるので、増幅時間の遅延を生じたり、増幅不足を生じたりすることなく、検査精度を向上させることができる。
 なお、検査容器1の底部材1Bがフィルムである場合、後述の検査装置100において、第1収容部16及び第2収容部18を加熱する際に、第2収容部18と第1加熱部112との接触性、及び第1収容部16と第2加熱部114との接触性を高めることができる。一方で、ある程度以上に加熱すると、底部材1Bは膨張、もしくは収縮して撚れが生じて加熱部との接触性が低下して加熱効率が低下する場合がある。これに対し、検査容器1の内部空間を加圧し内部空間を適度に加圧することにより、底部材1Bに撚れが生じないようにして、底部材1Bと加熱部との接触性を改善し、加熱効率を向上させることができる。
 第1収容部16に検体液40を収容し、蓋部14により投入口12を閉じた場合、検査容器1は、第1栓33及び第2栓34によって、内部空間は密閉されている。図4に示すように、送液前の初期状態において、第1栓33は、第1シリンダ31の長さ方向の中心よりも外部に開口する他端31a側に配置されている。他方、第2栓34は、第2シリンダ32の長さ方向の中心よりも一端32b側に配置されている。この状態で、図4に示すように、第1シリンダ31内において第1栓33を外部から押圧(矢印P1)して破線矢印A1で示すように内部空間側に移動させると、内部空間が加圧されることにより、第2シリンダ32内の第2栓34が連動して破線矢印A2で示すように内部空間側から外部側へと押し出されるように移動する。第1栓33の移動に連動して第2栓34が移動することにより内部空間の圧力が調整され、第1収容部16に収容されている検体液40を、第2収容部18へと送液(矢印B)することができる。第1栓33の移動に連動して第2栓34が移動可能であるので、弱い押圧で送液が可能である。
「設計変更例1」
 図5は、第1実施形態の検査容器1の設計変更例の検査容器2を模式的に示す平面図である。なお、以下の設計変更例及び実施形態において、第1実施形態の検査容器1と同等の要素には同等の符号を付し、詳細な説明を省略する。本検査容器2においては、第2シリンダ32の一部に空気穴36が設けられている点が第1実施形態の検査容器1と異なる。
 図5に示すように、送液前の初期状態において、第1栓33は、第1シリンダ31の長さ方向の中心よりも外部に開口する他端31a側に配置されている。第2栓34は、空気穴36よりも第2シリンダ32の他端32a側に配置されている。この際、内部空間は、空気穴36によって開放されている。この状態で、図5に示すように、第1シリンダ31内において第1栓33を外部から押圧(矢印P1)して内部空間側に移動させると、第1栓33の移動に伴い、第1収容部16に収容されている検体液40を、第2収容部18へと送液することができる。また、この第1栓33の移動に伴い、第2シリンダ32内の空気が空気穴36から排出される。
 また、第2栓34を空気穴36よりも内部空間側となる第2シリンダ32の一端32b側に移動させると、内部空間を密閉した状態とすることができる。さらに、内部空間を密閉した状態から、図6に示すように、第1栓33及び第2栓34をそれぞれ外部から押圧する(矢印P1、P2)ことにより、内部空間を加圧することができる。従って、本検査容器2においても、検体液40及び試薬42中の気体が泡となって発生し、核酸増幅を阻害する可能性がある。第2収容部18内において、検体液40と試薬42とを反応させる際に、第2収容部18内の液体を加熱する際に、内部空間を加圧することで、発泡を抑制することができ、発泡により核酸増幅が阻害されるのを抑制することができる。そのため、第2収容部18における核酸増幅工程を阻害されることなく進行させることができるので、増幅時間の遅延を生じたり、増幅不足を生じたりすることなく、検査精度を向上させることができる。
「設計変更例2」
 図7は、第1実施形態の検査容器1の設計変更例2の検査容器3を模式的に示す平面図である。図8は、第2シリンダ32に備えられている第2栓34の拡大図であり、図8が本検査容器3においては、第2シリンダ32に備えられている第2栓34に、後述の第2押圧部104の第2押込み棒103をセットした状態を示し、図8Bは第2栓34に第2押込み棒103をセットする前の状態を示す。
 本検査容器3は、第2栓34が、第2押込み棒103の先端の突起103aと篏合する凹部形状の穴34aを有している点で第1実施形態の検査容器1と異なる。
 図8に示すように、第2押込み棒103の突起103aと第2栓34の穴34aを嵌合して、第2押込み棒103と第2栓34を一体化して、第2栓34を強制的に動かすことで、内部空間の圧力を調整することが可能である。送液前の初期状態において、第1栓33を、第1シリンダ31の長さ方向の中心よりも外部に開口する他端31a側に配置しておく。第2栓34は、第2シリンダ32の長さ方向の衷心よりも一端32b側に配置しておく。この状態で、第2シリンダ32中の第2栓34を第2押込み棒103によって、外部側(図中右方向)に移動させると、第2栓34の移動に伴い、第1収容部16に収容されている検体液40を、第2収容部18へと送液することができる。この際、第2栓34の移動に伴い、第1シリンダ31内の第1栓33が連動して内部空間側に引き込まれるように移動する。
 また、さらに、第1シリンダ31内の第1栓33についても第1押込み棒101の先端の突起と篏合する穴を備え、第1押込み棒101及び第2押込み棒103のそれぞれ第1栓33第2栓34に篏合することにより、第1シリンダ31及び第2シリンダ32の移動を独立して制御してもよい。
 また第2栓34を第2押込み棒103によって、内部空間側に押込み、第1栓33についても外部から内部空間側に押圧することにより、内部空間を加圧することができる。従って、本検査容器3においても、検体液40及び試薬42中の気体が泡となって発生し、核酸増幅を阻害する可能性がある。第2収容部18内において、検体液40と試薬42とを反応させる際に、第2収容部18内の液体を加熱する際に、内部空間を加圧することで、発泡を抑制することができ、発泡により核酸増幅が阻害されるのを抑制することができる。そのため、第2収容部18における核酸増幅工程を阻害されることなく進行させることができるので、増幅時間の遅延を生じたり、増幅不足を生じたりすることなく、検査精度を向上させることができる。
「第2実施形態の検査容器」
 図9は、第2実施形態の検査容器4を模式的に示す平面図である。
 検査容器4は、第1収容部16と第2収容部18とを接続する第1流路20の途中に精製チャンバ50を備えている。第1流路20は第1収容部16と精製チャンバ50とを接続する第1流路第1部20aと、精製チャンバ50と第2収容部18とを接続する第1流路第2部20bとから構成されている。
 精製チャンバ50は、検体液から夾雑物を除去するためのチャンバである。精製方法としては、特に限定されず、公知の方法を用いることができる。例えば、メンブレンフィルター法、限外ろ過法、透析法、ゲルろ過法あるいは脱塩法などを利用できる。また、イオン交換樹脂あるいはモレキュラーシーブなどの吸着剤を用いて、夾雑物をトラップする方法を用いてもよい。精製チャンバ50を備えることにより、検体液40中に含まれる夾雑物による核酸の増幅阻害を抑制でき、より精度の高い検査が可能となる。
 本検査容器4は、上記構成以外は、第1実施形態の検査容器1と同様の構成をしている。したがって、同様の効果を得ることができる。
「第3実施形態の検査容器」
 図10は、第3実施形態の検査容器5を模式的に示す平面図である。
 検査容器5は、第1収容部16と第2収容部18とを接続する第1流路20の途中に第3収容部56を備えている。第1流路20は第1収容部16と第3収容部56とを接続する第1流路第1部20aと、精製チャンバ50と第2収容部18とを接続する第1流路第2部20bとから構成されている。
 第3収容部56には、試薬42が収容されている。試薬42としては、例えば、増幅試薬と検出用のプローブを備える。第1収容部16と第2収容部18とを接続する第1流路20の途中に試薬42が備えられているので、検体液40が第1流路20を通過している間に試薬が溶解し、検体液と混合されるため、第2収容部18に到達した後、すぐに増幅を開始することができ、増幅工程の時間の短縮を図ることができる。
 本検査容器5は、上記構成以外は、第1実施形態の検査容器1と同様の構成をしている。したがって、同様の効果を得ることができる。
「第4実施形態の検査容器」
 図11は、第4実施形態の検査容器6を模式的に示す平面図であり、図12は、図11に示す検査容器6の斜視図である。また、図13の図13Aは、図11の13A-13A線切断端面、図13Bは図11の13B-13B線切断端面、図13Cは図11の13C-13C線切断端面、図13Dは、図11の13D-13D線切断端面、及び図13Eは図11の13E-13E線切断端面をそれぞれ示す。
 本実施形態の検査容器6は、流路及び収容部を含む流路構造の一部を構成する凹部および孔部が形成された本体部材6Aと、流路の底面を構成する底部材6Bとから構成されている。本例における本体部材6A及び底部材6Bは検査容器1における本体部材1A及び底部材1Bと同様の材料により構成される。
 本検査容器6は、検査容器1と同様に、投入口12と、蓋部14と、第1収容部16と、第2収容部18と、第1流路20と、第1シリンダ31と、第2シリンダ32と、第1栓33と、第2栓34とを備える。また、検査容器1は第2流路24及び第3流路26をさらに備える。さらに、第1流路20の途中に、第1収容部16側から順に精製チャンバ50及び第3収容部56を備えている。第1流路20は、第1収容部16と精製チャンバ50とを接続する第1流路第1部20aと、精製チャンバ50と第3収容部56とを接続する第1流路第2部20bと、第3収容部56と第2収容部18とを接続する第1流路第3部20cとから構成されている。
 精製チャンバ50は、本体部材6Aの中心近傍に設けられた厚み方向に貫く孔と、底部材6Bとによって構成され、精製チャンバ50を構成する孔の本体部材6Aの厚み方向の途中に精製フィルタ51が備えられている。
 第3収容部56は、試薬42を収容する収容部であり、本体部材6Aの下面の精製チャンバ50に隣接する位置に設けられた凹部と、底部材6Bとによって構成される(図12、図13C参照)。
 第1流路第1部20aは、本体部材6Aの下面に第1収容部16から精製チャンバ50に延びる凹部と、底部材6Bによって構成されている。第1流路第1部20aは、第1収容部16及び精製チャンバ50と本体部材6Aの下面で連通している。
 第1流路第2部20bは、本体部材6Aの上面に精製チャンバ50から第3収容部に延びる凹部と、上面に開口する精製チャンバ及び第1流路第2部20bを覆う封止部材55とから構成されている。封止部材55は精製チャンバ50に精製フィルタ51が挿入された後、精製チャンバ50と第1流路第2部20bを覆って本体部材6Aの上面に固定され。第1流路第2部20bは、精製チャンバ50及び第3流路と本体部材6Aの上面で連通している。
 第1流路第3部20cは、本体部材6Aの下面に第3収容部56から第2収容部18に延びる凹部と、底部材6Bによって構成されている。第1流路第3部20cは、第3収容部56及び第2収容部18と、本体部材6Aの下面で連通している。
 上記構成により、第1収容部16に収容されている検体液40は、下記のルートによって第2収容部18へ送液される。まず、第1収容部16から本体部材6Aの下面に設けられている第1流路第1部20aを通過し、第1流路第1部20aに連通する精製チャンバ50に本体部材6Aの下面から流入する。図13Bに破線矢印で示すように、精製チャンバ50に流入した検体液40は、精製チャンバ50内において、精製フィルタ51を通過して、本体部材6Aの上面において、精製チャンバ50に連通する第1流路第2部20bに流入する。第1流路第2部20bに流入した検体液40は、図13Cにおいて破線矢印で示すように、第1流路第2部20bが連通する第3収容部56の上部から第3収容部56に流入する。さらに、第3収容部56に、本体部材6Aの下面で連通する第1流路第3部20cを通過して第2収容部18に送液される。
 本検査容器6において、第1シリンダ31、第2シリンダ32、第1栓33及び第2栓34の構成は第1実施形態の検査容器1と同一の構成であり、同一の機能を奏するので、検査容器1と同様の効果を得ることができる。
 また、精製チャンバ50を備えているので、検体液40中に含まれる夾雑物による核酸の増幅阻害を抑制でき、より精度の高い検査が可能である。
 さらに、第1収容部16と第2収容部18とを接続する第1流路20の途中であって、精製チャンバ50の下流に試薬42が備えられているので、検体液40が第1流路20を通過している間に試薬が溶解し、検体液と混合されるため、第2収容部18に到達した後、すぐに増幅を開始することができ、増幅工程の時間の短縮を図ることができる。
「第5実施形態の検査容器」
 図14は、第5実施形態の検査容器7を模式的に示す平面図である。
 検査容器7は、第4実施形態の検査容器6において、第3収容部56と第2収容部18との間であって、第1流路第3部20c中に攪拌流路22を備えた構成である。本例において、攪拌流路22は蛇腹状の流路であるが、攪拌流路22は、乱流を生じさせることができる構成であればよく、例えば、直線流路中に邪魔板を備えた構成であってもよい。
 第3収容部56と第2収容部18との間に、攪拌流路22を備えることによって、試薬42の溶解を進めると共に、検体液40と試薬42の混合を促進させることができる。また、本検査容器7は、上記構成以外は、第4実施形態の検査容器6と同様の構成をしている。したがって、検査容器6と同様の効果を得ることができる。
「検査装置」
 図15は、一実施形態の検査装置100の概略構成を示す図である。本検査装置100は、検査容器6と、押圧機108と、第1加熱部112と、第2加熱部114と、検出部120と、モニタ130と、ID(identification)管理部140とを備える。図16Aは、検査装置100における検査容器6と押圧機108との位置関係を示す平面図である。また、図16Bは、検査装置100における検査容器6と検出部120との位置関係を示す図16Aの16B-16B線断面図である。なお、検査容器6の水平面は検査装置100の水平面に対して一致していても良く、傾斜していたり、垂直方向を向いていても良い。
 本構成においては、第4の実施形態の検査容器6を備えているが、検査容器1から7のいずれを用いてもよい。
 押圧機108は、第1押込み棒101を備えた第1押圧部102と、第2押込み棒103を備えた第2押圧部104と、第1押圧部102及び第2押圧部104を制御する押圧制御ユニット106を備える。第1押圧部102及び第2押圧部104は、ステッピングモータあるいはソレノイドなどを用いたアクチュエータで第1押込み棒101及び第2押込み棒103を押し込んだり、引き出したりすることができる。アクチュエータは空気圧などの動力を用いた構成でもよい。
 第1押圧部102は、検査容器6が設置された状態で第1押込み棒101が第1シリンダ31の外部に開口する他端31aから第1シリンダ31内に挿入可能な位置に配置される。第1押込み棒101によって、第1シリンダ31内で第1栓33を内部空間側に押圧して移動させることができる。
 第2押圧部104は、検査容器6が設置された状態で第2押込み棒103が第2シリンダ32の外部に開口する他端32aから第2シリンダ32内に挿入可能な位置に配置される。第2押込み棒103によって、第2シリンダ32内で第2栓34を内部空間側に押圧して移動させることができる。
 検査容器6の第1収容部16に検体液40が投入されて、蓋部14を閉じることによって、内部空間が密閉された状態で、第1栓33を第1押圧部102によって押圧して内部空間側に移動させることにより、検査容器6の第1収容部16に収容された検体液40を第2収容部18に送液することができる。
 また、第1押圧部102で第1栓33を押圧し、かつ、第2押圧部104で第2栓34を押圧することで、検査容器6の内部空間を加圧することができる。
 第1加熱部112は、検査容器6の第2収容部18の底面と接触する位置に設けられている。第1加熱部112は、第2収容部18に収容された液体を加熱する。ここで、第2収容部18に収容される液体は、検体液40と試薬42との混合液である。第1加熱部112は、検体液40と試薬42との混合液を加熱して、核酸増幅を促進させる。
 第2加熱部114は、検査容器6の第1収容部16の底面と接触する位置に設けられている。第2加熱部114は、第1収容部16に収容された液体を加熱する。ここで、第2収容部18に収容される液体は、検体液40である。第2加熱部114は、前処理のために検体液40を加熱する。なお、検査装置100は、検体液40の前処理のための加熱が不要な場合には、第2加熱部114を備えていなくてもよい。
 第1加熱部112は、ペルチェ素子などを備え温調可能とされており、増幅工程における温度サイクルを実施する。他方、第2加熱部114は、第1加熱部112のような温度サイクルは不要であり、例えば、ヒーターから構成される。第1加熱部112及び第2加熱部114それぞれに用いられる加熱機構は、公知の加熱機構を用いることができ、特に制限されない。
 検出部120は、第2収容部18において、検体液40中に検出対象物が含まれているか否かを検出する。検出部120は、励起光源122と、波長選択フィルタ123と、光検出器124とを備える。検出部120は、検査容器6の第2収容部18の上方に配置されている。励起光源122は、波長選択フィルタ123を介して、特定の波長の励起光L1を第2収容部18内に照射する。光検出器124は、励起光L1によって励起されて蛍光プローブから生じる蛍光L2を検出する。励起光L1は蛍光プローブの励起波長に応じて選択される。また、必要に応じて、強度や光量を調整するフィルタ、励起光L1を収束したり検出プローブ由来の蛍光L2を光検出器124へ集光するためのレンズ、あるいは光学系などを含んでもよい。
 励起光源122としては、LEDあるいはレーザなどが用いられる。波長選択フィルタ123は、励起光源122から発せられた光のうちプローブの励起波長に応じた波長のみを透過するフィルタである。光検出器124としては、例えばフォトダイオードあるいは光電子増倍管などが適用される。
 モニタ130は、例えばタッチパネルディスプレイであり、タッチパネル操作で測定をスタートさせたり、検査結果を表示したりする。
 ID管理部140は、検査容器6に備えられたバーコード142を読み取るバーコードリーダを備え、検査容器6のIDを管理する。
「核酸検査方法」
 上記実施形態の検査装置100を用いた一実施形態の核酸検査方法について図17を参照して説明する。
 本核酸検査方法は、核酸抽出工程(STEP1)と、増幅工程(STEP2)と、検出工程(STEP3)とを含む。STEP1の核酸抽出工程は、検査装置100外で行い、増幅工程及び検出工程は検査装置100において行う。
(核酸抽出工程)
 まず、検査装置100とは別途に用意したスワブなどの採取具151を用いて生体から検体を採取する。具体的には、被験者の鼻腔、咽頭、口腔内部あるいは患部から採取具を用いて採取する。もしくは、鼻腔、咽頭、口腔内部の洗浄液、唾液、尿あるいは血液などの体液を検体として採取する。
 次いで、検査装置100とは別途に用意した抽出具152を用いて検体からDNAあるはRNAなどの核酸を抽出し、検体液40の状態にする。本例において、抽出具152は核酸抽出液を収容しており、核酸抽出液中に検体を浸漬して核酸の抽出を行う。核酸抽出方法としては、公知の核酸抽出方法を特に制限なく利用できる。例えば、界面活性剤やカオトロピック物質を用いる方法、超音波やビーズミルなどの物理的なせん断を加える方法が挙げられる。
(増幅工程)
 抽出具152に粗大物を除去する粗フィルタ153aを備えた滴下用のキャップ153を付け、検査容器6の投入口12から検体液40を投入する。なお、抽出具152から検体液40をピペットなどで吸い取り、投入口12から投入してもよい。検体液40の投入完了後には蓋部14により投入口12を閉じて、検査容器6の内部空間を密閉する。
 この検査容器6を検査装置100の検査容器設置部に設置し、以下の増幅工程及び検出工程を検査装置100において実施する。
 第1収容部16に収容された検体液40を、第2加熱部114を用いて加熱する。加熱により、核酸の溶出を促進したり、制限酵素を不活性化して抽出した核酸の分解を抑制したりすることができる。加熱温度としては、核酸に悪影響を及ぼさない温度範囲であればよいが、例えば、50℃から95℃程度が好ましい。
 第1収容部16内において前処理としての加熱処理がなされた検体液40を、第2収容部18に向けて送液する。第1シリンダ31の外部に開口する他端31aから第1押圧部102の第1押込み棒101を挿入して、第1栓33を検査容器6の内部空間側に押圧して移動させる。これによって、第1収容部16に収容されている検体液40を第2収容部18へと送液することができる。この際、第1栓33が押し込まれて内部空間が加圧されることにより、第2シリンダ32内の第2栓34が外部側に向かって移動することにより内部空間内の圧力が調整され、弱い押圧で送液することができる。
 検体液40は、第1収容部16から精製チャンバ50及び第3収容部56を経て第2収容部18に送液される。精製チャンバ50においては精製フィルタ51によって検体液40中の夾雑物が除去され、夾雑物が除去された検体液40が第3収容部56へと送液される。第3収容部56には試薬42が備えられており、第3収容部56に検体液40が流入することで、試薬42が溶解されて、検体液40と試薬42が混合されつつ、第2収容部18へと送液される。
 第2収容部18に検体液40と試薬42の混合液が送液された後、第2シリンダ32の外部に開口する他端32aから第2押圧部104の第2押込み棒103を挿入して、第2栓34を押圧して、内部空間を加圧する。この加圧状態で、第1加熱部112により第2収容部18内の混合液を加熱し、特定の核酸配列を増幅させる。なお、増幅方法は限定されるものではないが、例えば、RT-PCR法、あるいはPCR法を用いる。PCR法を用いる場合、二本鎖DNAを高温で一本鎖DNAに解離させる工程(熱変性工程)、その後温度を下げてプライマーを一本鎖DNAに結合させる工程(アニーリング工程)、および一本鎖DNAを鋳型として、ポリメラーゼにより、新たに二重鎖DNAを合成する工程(伸長工程)を繰り返す。熱変性工程、アニーリング工程及び伸長工程の温度サイクルの一例として、94℃で1分、50~60℃で1分、72℃で1~5分を1サイクルとして、20~50回繰り返すものが挙げられる。また、熱変性工程、アニーリング工程を1つの温度で行ってもよい。このような温度サイクルの一例としては、例えば、94℃で1分、60℃で1分を1サイクルとして、20~50回繰り返すものが挙げられる。増幅工程における温度サイクルの温度、時間は特に制限はなく、ポリメラーゼやプライマーの性能により任意に選択される。
(検出工程)
 上記の温度サイクルの1サイクルごとに蛍光検出を行いリアルタイムに増幅状況をモニタリングする。すなわち、本例においては、増幅工程と検出工程とを並行して実施する。蛍光検出の結果はモニタ130に表示する。
 検体液40内に特定の核酸配列が存在した場合、増幅工程でその核酸配列が増幅され、この特定の核酸配列に標識される蛍光プローブに励起光が照射されることにより、蛍光が検出される。他方、検体液40内に特定の核酸配列が存在しない場合には、励起光を照射しても蛍光が検出されない。これによって、特定の核酸配列の有無を判定することができる。
 本検査装置100を用いた検査方法によれば、検査容器6の内部空間を密閉した状態で、第1栓33及び第2栓34をそれぞれ外部から押圧する(矢印P1、P2)ことにより、内部空間を加圧することができる。そして、加圧した状態で、第1加熱部112を用いて検体液40と試薬42の混合液を加熱するので、加熱時に生じ得る発泡を抑制することができ、発泡により核酸増幅が阻害されるのを抑制することができる。そのため、第2収容部18における核酸増幅工程を阻害されることなく進行させることができるので、増幅時間の遅延を生じたり、増幅不足を生じたりすることなく、検査精度を向上させることができる。
 上記検査装置100を用いた検査方法においては、蛍光プローブを用いた蛍光法により、核酸の有無の判定を行っているが、核酸の有無の検出方法としては、蛍光法に限らず、核酸クロマト法、光散乱法、シーケンス法及び電気化学法などの他の検出方法を用いてもよい。これらは、検出部を適宜変更することで実現可能である。なお、リアルタイムに検出が可能であり、強陽性患者を迅速に判定できる点から、蛍光法あるいは電気化学法による検出方法が特に好ましい。
1、2、3、4、5、6、7  検査容器
1A、6A    本体部材
1B、6B    底部材
12   投入口
14   蓋部
15   筒状部
16   第1収容部
18   第2収容部
20   第1流路
20a 第1流路第1部
20b 第1流路第2部
20c 第1流路第3部
22   攪拌流路
24   第2流路
26   第3流路
31   第1シリンダ
31a 第1シリンダの他端
31b 第1シリンダの一端
32   第2シリンダ
32a 第2シリンダの他端
32b 第2シリンダの一端
33   第1栓
34   第2栓
34a 第2栓の凹部形状の穴
36   空気穴
40   検体液
42   試薬
50   精製チャンバ
51   精製フィルタ
55   封止部材
56   第3収容部
100 検査装置
101 第1押込み棒
102 第1押圧部
103 第2押込み棒
103a      第2押込み棒の突起
104 第2押圧部
106 押圧制御ユニット
108 押圧機
112 第1加熱部
114 第2加熱部
120 検出部
122 励起光源
123 波長選択フィルタ
124 光検出器
130 モニタ
140 管理部
142 バーコード
151 採取具
152 抽出具
153 キャップ
153a      粗大フィルタ

Claims (16)

  1.  検体液を投入する投入口と、
     前記投入口を覆う着脱可能な蓋部と、
     前記投入口が開口端面として有する様に設けられた、前記投入口から滴下された検体液を収容する第1収容部と、
     液体を収容可能な第2収容部であって、前記検体液と試薬とを反応させる第2収容部と、
     前記第1収容部と前記第2収容部とを接続する第1流路と、
     第2流路を介して前記第1収容部に一端が接続された第1シリンダであって、他端が外部に開口した第1シリンダと、
     第3流路を介して前記第2収容部に一端が接続された第2シリンダであって、他端が外部に開口した第2シリンダと、
     前記第1シリンダ内を移動可能に備えられた第1栓と、
     前記第2シリンダ内を移動可能に備えられた第2栓とを備え、
     前記第1栓及び前記第2栓を外部から押圧して移動させることにより、前記第1収容部、前記第2収容部、前記第1流路、前記第2流路及び前記第3流路を含む内部空間を加圧可能である、検査容器。
  2.  前記第1栓及び第2栓によって、前記内部空間が密閉されており、前記第1シリンダ内において、前記第1栓を外部から押圧して前記内部空間側に移動させた場合に、前記第1栓の移動に連動して前記第2栓が前記第2シリンダ内において前記内部空間側から前記外部側へと移動する、請求項1に記載の検査容器。
  3.  前記第2シリンダの一部に空気穴が設けられており、前記第2栓を前記空気穴よりも前記内部空間側に移動させることにより、前記内部空間の加圧が可能となる請求項1に記載の検査容器。
  4.  前記第1流路の途中に、前記検体液中に夾雑物を除去する精製チャンバを備えた、請求項1から3のいずれか1項に記載の検査容器。
  5.  前記試薬が前記第2収容部に収容されている、請求項1から4のいずれか1項に記載の検査容器。
  6.  前記第1流路の途中に、前記試薬を収容した第3収容部を備えた、請求項1から4のいずれか1項に記載の検査容器。
  7.  前記第1流路の途中であって、前記精製チャンバと前記第2収容部との間に、前記第3収容部を備えた、請求項4を引用する請求項6に記載の検査容器。
  8.  前記第3収容部と前記第2収容部との間に前記検体液と前記試薬との混合を促進する撹拌流路を備えた、請求項6又は7に記載の検査容器。
  9.  前記第2収容部の底面が、フィルムにより構成されている、請求項1から8のいずれか1項に記載の検査容器。
  10.  前記試薬が特定の核酸配列を増幅する増幅試薬と、核酸配列判定用のプローブを含む、請求項1から9のいずれか1項に記載の検査容器。
  11.  請求項1から9のいずれか1項に記載の検査容器と、
     前記検査容器の前記第1シリンダ内の前記第1栓を外部から押圧する第1押圧部と、前記第2シリンダ内の前記第2栓を外部から押圧する第2押圧部とを備えた押圧機を備え、 前記第1栓を前記第1押圧部によって押圧して前記内部空間側に移動させることにより、前記検査容器の前記第1収容部に収容された前記検体液を前記第2収容部に送液する、検査装置。
  12.  前記検査容器の前記第2収容部の底面と接触する位置に設けられた第1加熱部であって、前記第2収容部に収容された液体を加熱する第1加熱部を備えた、請求項11に記載の検査装置。
  13.  前記検査容器の前記第1収容部の底面と接触する位置に設けられた第2加熱部であって、前記第1収容部に収容された液体を加熱する第2加熱部を備えた、請求項11又は12に記載の検査装置。
  14.  前記第2収容部において、前記検体液中に検出対象物が含まれているか否かを検出する検出部を備えた請求項11から13のいずれか1項に記載の検査装置。
  15.  前記検査容器において、前記試薬が特定の核酸配列を増幅する増幅試薬と、核酸配列判定用の蛍光プローブを含み、
     前記検出部が、前記第2収容部に収容されている液体に対して、前記蛍光プローブを励起するための励起光を照射する励起光源と、前記励起光の照射により励起された前記蛍光プローブから発光される蛍光を検出する光検出器を備えた、請求項14に記載の検査装置。
  16.  請求項15に記載の検査装置を用いた核酸検査方法であって、
     採取具を用いて生体から採取した検体を核酸抽出液に浸漬し、前記検体から核酸を抽出し、
     前記検査容器の前記投入口から、前記検体液として前記核酸を含む液体を投入し、
     前記投入口を前記蓋部によって密閉し、
     前記第1収容部に収容された前記検体液を、前記押圧機によって、前記第2収容部に送液し、
     前記第2収容部において、前記検体液と前記試薬との混合液を温調することにより前記特定の核酸配列を増幅し、
     前記励起光源を前記混合液に照射し、前記光検出器を用いて前記蛍光プローブから生じる蛍光を検出し、
     前記特定の核酸配列の有無を判定する、核酸検査方法。
PCT/JP2021/030484 2020-09-29 2021-08-20 検査容器、検査装置及び核酸検査方法 WO2022070662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022553540A JP7334363B2 (ja) 2020-09-29 2021-08-20 検査容器、検査装置及び核酸検査方法
US18/190,284 US20230226540A1 (en) 2020-09-29 2023-03-27 Test container, test device, and nucleic acid test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163979 2020-09-29
JP2020-163979 2020-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/190,284 Continuation US20230226540A1 (en) 2020-09-29 2023-03-27 Test container, test device, and nucleic acid test method

Publications (1)

Publication Number Publication Date
WO2022070662A1 true WO2022070662A1 (ja) 2022-04-07

Family

ID=80949917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030484 WO2022070662A1 (ja) 2020-09-29 2021-08-20 検査容器、検査装置及び核酸検査方法

Country Status (3)

Country Link
US (1) US20230226540A1 (ja)
JP (1) JP7334363B2 (ja)
WO (1) WO2022070662A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055165A1 (ja) * 2005-11-11 2007-05-18 Konica Minolta Medical & Graphic, Inc. 核酸の分離方法、核酸検査用マイクロリアクタ、核酸検査システム
JP2007135504A (ja) * 2005-11-21 2007-06-07 Konica Minolta Medical & Graphic Inc 増幅部位にビーズを保持する核酸検査用マイクロリアクタ
JP2008139096A (ja) * 2006-11-30 2008-06-19 Canon Inc 生化学反応カートリッジの検査方法および検査装置と生化学処理装置
JP2011158463A (ja) * 2010-01-06 2011-08-18 Toshiba Corp 試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置
JP2013521780A (ja) * 2010-03-09 2013-06-13 ネットバイオ・インコーポレーテッド 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
US20150203904A1 (en) * 2012-06-26 2015-07-23 Axxin Pty Ltd Nucleic acid amplification and detection kit
JP2015530601A (ja) * 2012-10-08 2015-10-15 ゼネラル・エレクトリック・カンパニイ マイクロ流体素子を用いるlal反応性物質試験方法及び装置
JP2018505660A (ja) * 2014-12-31 2018-03-01 クリック ダイアグノスティクス,インコーポレイテッド 分子診断試験のためのデバイス及び方法
JP2018141686A (ja) * 2017-02-27 2018-09-13 シスメックス株式会社 検体処理チップを用いた送液方法、検体処理チップの送液装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055165A1 (ja) * 2005-11-11 2007-05-18 Konica Minolta Medical & Graphic, Inc. 核酸の分離方法、核酸検査用マイクロリアクタ、核酸検査システム
JP2007135504A (ja) * 2005-11-21 2007-06-07 Konica Minolta Medical & Graphic Inc 増幅部位にビーズを保持する核酸検査用マイクロリアクタ
JP2008139096A (ja) * 2006-11-30 2008-06-19 Canon Inc 生化学反応カートリッジの検査方法および検査装置と生化学処理装置
JP2011158463A (ja) * 2010-01-06 2011-08-18 Toshiba Corp 試薬保持容器、その製造方法、および試薬保持容器を備えた検出装置
JP2013521780A (ja) * 2010-03-09 2013-06-13 ネットバイオ・インコーポレーテッド 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
US20150203904A1 (en) * 2012-06-26 2015-07-23 Axxin Pty Ltd Nucleic acid amplification and detection kit
JP2015530601A (ja) * 2012-10-08 2015-10-15 ゼネラル・エレクトリック・カンパニイ マイクロ流体素子を用いるlal反応性物質試験方法及び装置
JP2018505660A (ja) * 2014-12-31 2018-03-01 クリック ダイアグノスティクス,インコーポレイテッド 分子診断試験のためのデバイス及び方法
JP2018141686A (ja) * 2017-02-27 2018-09-13 シスメックス株式会社 検体処理チップを用いた送液方法、検体処理チップの送液装置

Also Published As

Publication number Publication date
JP7334363B2 (ja) 2023-08-28
JPWO2022070662A1 (ja) 2022-04-07
US20230226540A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
KR102651024B1 (ko) 진단 테스트 시스템 및 방법
US9988676B2 (en) Microfluidic cartridge
US10563253B2 (en) Cartridge interface module
CN208008804U (zh) 用于分子诊断装置的光学模块
JP5887041B2 (ja) ポリメラーゼ連鎖反応のための加圧可能なカートリッジ
RU2739951C2 (ru) Реакционный сосуд и реакционное устройство, предназначенные для проведения полимеразной цепной реакции
KR20070011525A (ko) 샘플 조제 제어를 위한 방법 및 장치
EP3401015A1 (en) Surface measurement sensing-based real time nucleic acid amplification measuring device
JP2009543054A (ja) 分析装置、抽出及び検出システム及びpcr反応方法
JP2008128906A (ja) マイクロ流体チップの駆動制御方法
JP2009178146A (ja) 生体試料反応用チップおよび生体試料反応方法
EP1371419A1 (en) Method and device for detecting the presence of an analyte in a test sample
WO2015111443A1 (ja) 核酸分析装置
US20080181822A1 (en) Microchip inspection system, microchip inspection apparatus and a computer readable medium
WO2022070662A1 (ja) 検査容器、検査装置及び核酸検査方法
JP2009543548A (ja) 分析装置
WO2007055165A1 (ja) 核酸の分離方法、核酸検査用マイクロリアクタ、核酸検査システム
WO2023189118A1 (ja) 検査容器及び核酸検査方法
JP2020058395A (ja) 反応処理装置、反応処理方法および分注方法
JPWO2008096564A1 (ja) マイクロチップ検査システム、マイクロチップ検査装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874965

Country of ref document: EP

Kind code of ref document: A1