WO2015111443A1 - 核酸分析装置 - Google Patents

核酸分析装置 Download PDF

Info

Publication number
WO2015111443A1
WO2015111443A1 PCT/JP2015/050425 JP2015050425W WO2015111443A1 WO 2015111443 A1 WO2015111443 A1 WO 2015111443A1 JP 2015050425 W JP2015050425 W JP 2015050425W WO 2015111443 A1 WO2015111443 A1 WO 2015111443A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
tank
cartridge
nucleic acid
pcr
Prior art date
Application number
PCT/JP2015/050425
Other languages
English (en)
French (fr)
Inventor
夢実 上野
秀樹 池井
基博 山崎
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2015111443A1 publication Critical patent/WO2015111443A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to a biochemical reaction cartridge and a nucleic acid analyzer used for extracting a substance by biochemical reaction and synthesizing and analyzing it as necessary.
  • a step of extracting a nucleic acid from a biological sample a step of amplifying the extracted nucleic acid, a step of labeling the nucleic acid, and (2) a detection step by electrophoresis or the like for analyzing the amount, length (base length) and base sequence of the nucleic acid after the pretreatment.
  • Each of these steps includes an operation of dispensing a plurality of reagents, mixing with a biological sample or nucleic acid solution, and heating (heat treatment), and performing these operations accurately and with high reproducibility is highly accurate. It is important to obtain analysis results.
  • PCR reaction polymerase chain reaction; Polymerase chain reaction
  • DNA fragment DNA fragment having a desired sequence
  • the amount of DNA fragment is amplified approximately twice by one temperature cycle (denaturation ⁇ primer annealing ⁇ extension reaction). Therefore, when the initial amount of DNA extracted from the biological sample is large, the number of PCR cycles can be reduced, and when the amount of DNA is small, the number of PCR cycles can be increased to level the amplified DNA concentration. As a result, it is possible to obtain good effects in improving analysis accuracy and reducing costs, such as improvement in reproducibility in the detection stage and relaxation of the dynamic range required for the detector.
  • Quantitative control of the reagent, DNA extract, and PCR product in the cartridge is important for mixing a small amount of reagent with the DNA extract and the PCR product in the cartridge for chemical reaction and analysis.
  • Patent Document 2 describes the measurement of the liquid volume, but does not describe the concentration of the DNA extract or the PCR product concentration of the PCR reaction solution. If the PCR product is in a low concentration, there arises a problem that it cannot be detected at the detection stage such as electrophoresis. On the other hand, when the concentration is high, the detection range is exceeded, and there is a problem that quantitative analysis cannot be performed.
  • An object of the present invention is to provide a nucleic acid analyzer capable of verifying the concentration of a DNA extract or a PCR product in a cartridge before nucleic acid detection means such as electrophoresis.
  • a nucleic acid analyzer comprises: A nucleic acid analyzer for performing DNA extraction, DNA amplification, and DNA detection, A cartridge in which reagents necessary for DNA extraction and DNA amplification are enclosed; A temperature control mechanism for controlling the temperature of at least a part of the cartridge; A liquid feed mechanism for feeding liquid in the cartridge; A DNA detection mechanism such as an electrophoresis unit for performing DNA detection by electrophoresis,
  • the cartridge has a first tank for DNA extraction, a second tank for mixing the extracted DNA and a PCR reagent, a third tank for performing PCR, and a flow path connecting these tanks.
  • Light is irradiated to the flow path between the first tank and the second tank, and the DNA extraction concentration is detected.
  • light is irradiated to the flow path on the downstream side (outlet side) of the third tank, and the PCR product concentration is detected.
  • the concentration of the DNA extract or PCR product and the normality of the liquid feeding process can be confirmed, and failure of DNA detection due to the low concentration of the PCR product can be prevented.
  • an abnormality in the process can be detected at an early stage, and therefore, there is an effect that waste of time due to re-reaction and inspection can be reduced.
  • FIG. 3 is a diagram illustrating a configuration example of a cartridge unit according to an embodiment.
  • FIG 10 is a diagram illustrating a configuration example of a cartridge unit according to a third embodiment.
  • the figure which shows an example of analysis operation which concerns on a 3rd Example.
  • the figure which shows the structural example of the pre-processing integrated DNA chip detection apparatus which concerns on a 4th Example.
  • the figure which shows the structural example 1 of the detector which concerns on a 6th Example.
  • the figure which shows the structural example 2 of the detector which concerns on a 6th Example.
  • FIG. 1 shows a configuration example of a pretreatment integrated capillary electrophoresis apparatus 1.
  • the pretreatment integrated capillary electrophoresis apparatus 1 includes a pretreatment unit 2 and an analysis unit 3.
  • the preprocessing unit 2 performs preprocessing for extracting and amplifying DNA from the biological sample solution, and the analysis unit 3 analyzes the DNA processed by the preprocessing unit 2 by capillary electrophoresis.
  • the detailed configuration of the preprocessing unit 2 will be described later.
  • the analysis unit 3 includes a capillary 5, a detection unit 6, an oven 8, and a high voltage power source 9.
  • connection means a state in which the DNA solution existing at one end of the flow path of the pretreatment unit 2 and one end of the capillary 5 are in physical contact and DNA can be introduced into the capillary by an external force such as electric force or pressure. Point to.
  • the capillary 5 is filled with a polymer for separating DNA according to the length (base length) or the like, and is held at a constant temperature by an oven 8.
  • a high voltage is applied to both ends of the capillary 5 by a high voltage power source 9, and the DNA introduced into the capillary is electrophoresed. And is detected by the detection unit 6.
  • the pretreatment refers to extraction of nucleic acid from a sample collected by swabbing the oral cavity or nasal cavity (swab sample) or a biological sample such as blood, and subjecting it to analysis such as base sequence analysis by capillary electrophoresis. Operations such as nucleic acid extraction, PCR reaction, DNA sequencing reaction, denature (denaturation) reaction (single-stranded DNA), and the like. Depending on the analysis target, the pretreatment may be completed only with nucleic acid extraction and PCR reaction, and capillary electrophoresis may be performed without a deenergization reaction.
  • FIG. 2 shows a configuration example of the preprocessing unit 2.
  • the pretreatment unit 2 includes a liquid feeding mechanism 12 and a temperature adjustment mechanism 13.
  • a cartridge 11 as a microfluidic device is attached to the pretreatment unit 2.
  • a membrane made of a deformable elastic body (elastomer) is affixed to the lower surface of the flat cartridge 11 (the surface that contacts the liquid feeding mechanism 12 or the temperature control mechanism 13).
  • a path is formed (not shown).
  • the liquid feeding mechanism 12 feeds fluid (DNA extract, PCR reaction liquid, reagent, etc.) to the support surface (mounting surface) that supports the cartridge 11 and the flow path formed in the cartridge 11 by air pressure.
  • Mechanism including the pump 7 of FIG. 1).
  • the liquid in the cartridge can be moved by deforming the membrane with air pressure, and the liquid can be moved not only in one direction but also in both directions and stirred.
  • the liquid feeding on the cartridge will be described later with reference to FIG.
  • the temperature adjustment mechanism 13 is composed of, for example, a Peltier element, and controls the fluid in the cartridge 11 to a temperature suitable for PCR.
  • the material of the cartridge 11 is desirably a material that transmits light and has good transparency, such as polycarbonate resin, polypropylene resin, or quartz material.
  • the DNA extraction concentration measurement laser 14 irradiates laser light toward the channel after DNA extraction, and the transmitted light is read by the DNA extraction concentration measurement light receiver 15.
  • the laser 14 is a solid-state laser, a semiconductor laser, an LED, or the like.
  • the wavelength is in the ultraviolet region.
  • the light receiver 15 is an element such as a photodiode, a photomultiplier tube, or a CCE camera that captures fine light and converts the amount of received light into signal
  • the amount of absorbed laser light varies depending on the extracted nucleic acid concentration. Therefore, the amount of change is read by the light receiver 15 and the concentration is measured. It is also possible to employ a method of quantifying the intensity of fluorescence by staining a nucleic acid with a fluorescent dye. In this case, the light source 14 in the visible light wavelength band can be used.
  • Fig. 3 shows an example of the cartridge configuration.
  • a DNA solution is sealed in the reagent storage tank 22.
  • a swab with a sample attached is inserted here to extract DNA.
  • the DNA extract passes through the flow path 28 and is sent to the reaction tank 23.
  • the PCR master mix sealed in the reagent storage tank 18 and the primer set sealed in the reagent storage tank 19 are fed to the reaction tank 23 through the mixing tanks 20 and 21.
  • mixing with a DNA extract and stirring are performed.
  • a laser beam is irradiated from the light source 14 to the flow path 28 for feeding the DNA extract.
  • the transmitted light (or fluorescence) is read by the light receiver 15 to measure the DNA extraction concentration.
  • the number of PCR is determined based on the DNA extraction concentration.
  • the cartridge is made of a material transparent to light.
  • reaction vessel 25 is mixed with Hi-Diformamide and stirred. After stirring, the solution is sent to the reaction vessel 26 and denatured (95 ° C. for 3 minutes). Thereafter, the solution is fed to the connecting portion 27.
  • the connecting part 27 is connected to one end of the capillary of the analyzing part 3 shown in FIG. 1, and the PCR product is introduced into the capillary for electrophoresis.
  • FIG. 4 shows the analysis procedure in this example.
  • Step 30 Sample DNA is collected with a swab, and the swab is inserted into the reagent storage tank 22.
  • Step 31 The reagent storage tank 22 is filled with a DNA solution, and is stirred and mixed to extract DNA.
  • Step 32 A laser beam is irradiated from the light source 14 to the flow path 28 for feeding the DNA extract to the reaction tank 23.
  • the reaction is read by the light receiver 15 and the DNA extraction concentration is measured.
  • the amount of transmitted laser light is converted to a concentration.
  • the number of PCR cycles is determined based on the DNA extraction concentration. If the DNA extraction concentration is low and there is a possibility that electrophoresis will fail, the process returns to step 30 and the DNA sample is collected again. Thereby, it is possible to prevent a failure of electrophoresis due to the low-concentration PCR product, and to shorten the working time.
  • Step 33 The PCR master mix is sent from the reagent storage tank 18 and the primer set is sent from the reagent storage tank 19 to the reaction tank 23 through the mixing tanks 20 and 21. In the reaction vessel 23, the PCR master mix, primer set, and DNA extract are stirred and mixed.
  • Step 34 A PCR reaction is performed in the reaction vessel 24 to amplify the DNA.
  • Steps 35, 36, 37, 38 A laser is irradiated to the flow path 29 for feeding the PCR product to the reaction tank 25, and the PCR product concentration is measured. If the PCR product concentration is sufficient for electrophoresis, the process proceeds to step 36. If the PCR product concentration is insufficient, the process proceeds to step 37 and the PCR reaction is performed again. In step 38, the PCR product concentration is measured again. If the PCR product concentration is sufficient, the process proceeds to step 36. If it is insufficient, the PCR master mix and primer set reagent feeding failure may be considered, and the process returns to step 33. In this example, PCR is retried only once, and if it does not increase here, it is determined that the reaction reagent is poorly fed.
  • Step 39 The PCR product is sent to the connection part 27 with the capillary and connected to one end of the capillary 5 of the analysis part 3. Electrophoresis is then performed.
  • the pre-processing integrated real-time PCR apparatus 100 includes a pre-processing unit 2, an analysis unit 101, and a dispensing unit 105 that transports a reaction solution prepared in the pre-processing unit 2 to the analysis unit 101. 106).
  • the configuration of the preprocessing unit 2 is the same as that shown in FIG.
  • the pretreatment unit 2 performs pretreatment for extracting DNA from the reaction solution and amplifying the PCR
  • the dispensing unit 105 is installed in a moving mechanism (not shown), and the pretreatment unit 2, the analysis unit 101,
  • the solution obtained as a result of the pretreatment is divided into predetermined wells of a reaction plate 104 having a plurality of reaction wells (not shown) installed on the thermal block 102 of the analysis unit 101.
  • the dispensing unit 105 can also be used for an operation of further dispensing one or more reagents (not shown) used in the real-time PCR reaction in the analysis unit 101.
  • the thermal block 102 heats and cools the reaction well to execute a PCR reaction, and the fluorescence signal from each reaction well is detected by the fluorescence measurement unit 103 to enable real-time PCR measurement.
  • FIG. 6 shows the detailed configuration of the cartridge according to the second embodiment of the present invention.
  • the PCR reaction solution is sent from the PCR reaction tank 24 through the flow path 29 to the tank 160.
  • the dispensing tip 106 of the dispensing unit shown in FIG. 5 is inserted into the tank 160, and the PCR reaction solution is transported to a predetermined well of the reaction plate 104.
  • the other operations are the same as the operations of the respective parts in FIG.
  • a tank 161 is provided on the downstream side of the flow path 29 and is further connected to the tank 160 through the flow path.
  • the concentration and the liquid amount suitable for performing the real-time PCR in the analysis unit 2 are obtained.
  • the PCR product is divided and further separated and quantified by a plurality of real-time PCR reactions.
  • FIG. 7 shows the analysis procedure in the second embodiment.
  • the difference from the analysis procedure in the first embodiment shown in FIG. 4 is that the PCR product is diluted at 170 and the real-time analysis is performed at 171.
  • the pretreatment integrated mass spectrometer 200 includes a pretreatment unit 2, a mass analysis unit 201, and a dispensing unit 204 that conveys a reaction solution prepared in the pretreatment unit 2 to the analysis unit 201.
  • the pretreatment unit 2 performs a pretreatment for extracting DNA from the reaction solution and amplifying the PCR, and the dispensing unit 204 is installed in a moving mechanism (not shown).
  • the pretreatment unit 2 and the mass analysis unit 201 The solution obtained as a result of the pretreatment is taken into the syringe 206 and introduced from the sample injection unit 205 into the flow path.
  • the flow of the buffer 209 continues to the ionization unit 207 by the pump 208, and the pre-processed solution introduced from 205 is introduced into the ionization unit 207 and ionized by this buffer flow.
  • the ionization unit for example, an ESI (electrospray ionization) method can be used.
  • the syringe 206 used for the dispensing unit 204 preferably employs a carrier having a carrier capable of performing desalting of the sample solution.
  • An example of such a dispensing tip is ZipTip (registered trademark) manufactured by Millipore MERK.
  • the detailed configuration of the cartridge of the preprocessing unit 2 in the present embodiment may be the same as that shown in FIG.
  • FIG. 9 (a) the syringe 206 shown in FIG. 8 is inserted into the tank 160, the solution is sucked, and conveyed to the sample injection unit 205 of the mass analysis unit.
  • a tank 161 is provided on the downstream side of the flow path 29 and further connected to the tank 160 by the flow path.
  • the PCR reaction solution is desalted. It shall have a carrier.
  • the syringe 206 used for the dispensing unit 204 may be a normal one (without a carrier).
  • FIG. 10 shows the analysis procedure in this example.
  • the difference from the analysis procedure in the first embodiment shown in FIG. 3 is that desalting of the PCR product is performed at 270 and mass spectrometry is performed at 171.
  • the pretreatment-integrated DNA chip detection device 300 includes a pretreatment unit 2, a DNA chip detection device 301, and a dispensing unit 305 that transports the reaction solution prepared in the pretreatment unit 2 to the DNA chip unit 301. .
  • the pretreatment unit 2 performs pretreatment for extracting DNA from the reaction solution and amplifying the PCR, and the dispensing unit 305 is installed in a moving mechanism (not shown).
  • the pretreatment unit 2 and the DNA chip detection device The solution obtained as a result of the pretreatment is introduced into a predetermined well of the DNA chip 304.
  • the preprocessing unit 2 is the same as that in FIG.
  • the detailed configuration of the cartridge of the preprocessing unit 2 in the present embodiment may be the same as that shown in FIG.
  • the tank 160 of FIG. 6A the dispensing tip 306 of the dispensing unit 305 shown in FIG. 11 is inserted, the solution is sucked, and conveyed to the DNA chip 304.
  • the tank 161 provided downstream of the flow path 29 and the flow path 29 are connected to the tank 160 by the flow path.
  • a buffer is added to the PCR reaction solution. By performing an operation such as addition, adjustment is made so that the conditions of the buffer and salt concentration are appropriate for the analysis unit 2 to react with the DNA chip.
  • the difference from the analysis procedure in the first embodiment shown in FIG. 4 is that 36 is adjusted so as to satisfy appropriate buffer and salt concentration conditions. It is that detection by is performed.
  • a real-time PCR reaction (a small amount of multiwell) tank or a DNA chip can be integrated with the cartridge.
  • 164 in FIG. 12 is an integration well (or DNA chip) for real-time PCR.
  • FIG. 13 shows a system for measuring this cartridge. In order to measure fluorescence (or luminescence) from the integrated well (or DNA chip) for partial real-time PCR indicated by 164 above the cartridge 11.
  • the fluorescence imaging detector 401 is arranged.
  • FIG. 14A to 14C show the configuration of each cartridge, and FIG. 15 shows the detection structure on the apparatus side.
  • a layer 30 into which a sample is inserted is provided, and the layer 30 is divided into two from there and conveyed to the DNA sample extraction layer 22.
  • the reliability of the measurement can be increased.
  • a different sample amount is placed in the next step, or the sample amount is made from the same sample by changing the primer amount, the number of PCRs, and the like. Therefore, by measuring a plurality of samples at the same time, only those that fall within the detection range can be used for analysis.
  • the same sample is extracted, divided into two, and conveyed to the mixed layer 23.
  • concentration after extraction is the same, measurement samples with different concentrations are created from the same sample by changing the amount of primer, the number of PCRs, etc. in the subsequent steps. Therefore, by measuring a plurality of samples at the same time, only those that fall within the detection range can be used for analysis.
  • FIG. 14 (c) two extraction layers 22 are provided. Therefore, a plurality of samples can be processed with one cartridge, and a sample for analysis can be created. By performing concentration measurement after extraction in each lane and after PCR, it is possible to adjust the concentration of the analysis sample so that the detection range is not exceeded even if samples in different states (concentration, amount) are introduced.
  • FIG. 15 shows the apparatus configuration.
  • a plurality of lanes after extraction and PCR are irradiated with a laser from a DNA extraction concentration measurement laser 14 or a PCR product concentration measurement laser 15.
  • the concentration measuring light receiver (DNA extraction concentration measuring light receiver 15 and PCR product concentration measuring light receiver 17) is positioned below a cartridge having a plurality of lanes.
  • a condensing lens 31 is provided for collecting light emission in the lane. The light collected by the lens forms an image on the light receiver.
  • the lens may be a double-sided convex single lens. Since the amount of light changes according to the analysis sample concentration in the lane, the sample concentration can be obtained from the amount of light on the light receiver.
  • the light receiver may be a one-dimensional sensor such as a photodiode or photomultiplier.
  • FIG. 16 shows an apparatus configuration for detecting concentrations in a plurality of lanes different from FIG.
  • An optical fiber 32 is connected to a condensing lens 31 for concentration measurement provided in the lower part of a plurality of lanes after cartridge extraction and PCR.
  • the plurality of optical fibers 32 transmit light to a light receiver that is a two-dimensional detector 33.
  • the light receiver may be one of the two-dimensional detectors 33 for light detection.
  • the two-dimensional detector 33 can use a CCD or a photodiode array.
  • FIG. 17 shows an apparatus configuration for detecting the density of a plurality of lanes when one condenser lens 31 is used.
  • a lens having a large visual field range such as a camera lens is used as the condenser lens 31 for concentration measurement provided in the lower part of the plurality of lanes after the extraction of the cartridge and the PCR.
  • the image of each lane is imaged on the two-dimensional detector 33 using the imaging lens 34.
  • the pinhole 35 is used, light corresponding to the lane of the cartridge can be collected as an image on the detector even if the image is blurred.
  • the change in the amount of light can be measured according to the sample concentration in the lane.
  • composition 9 of the pre-processing unit As a seventh embodiment, an example of concentration measurement by fluorescence detection will be described.
  • concentration detection by fluorescence using a fluorescent dye such as pico green may be performed.
  • concentration after PCR the concentration may be measured spectroscopically to distinguish extra primer DNA.
  • the DNA extraction concentration measurement laser 14 and the PCR product concentration measurement laser 16 are used as excitation lasers, and only the fluorescence is condensed by the detection optical filter 36, and the excitation light. Take the configuration to cut.
  • a spectroscopic element 37 is provided after condensing, and only the fluorescent component necessary for concentration measurement is condensed on the detector.
  • a diffraction grating or a prism can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明の核酸分析装置は、DNA抽出、DNA増幅、およびDNA検出を行う、核酸分析装置であって、DNA抽出、およびDNA増幅に必要な試薬が封入されたカートリッジと、カートリッジの少なくとも一部を温調するための温調機構と、カートリッジ内で送液を行うための送液機構と、DNA検出を電気泳動で行うための電気泳動部などのDNA検出機構と、を備え、前記カートリッジは、DNA抽出用の第1の槽と、抽出後のDNAとPCR試薬を混合する第2の槽と、PCRを行う第3の槽と、これらの槽を接続する流路を有し、第1の槽と第2の槽の間の流路及び/又は第3の槽の下流側(出口側)の流路に光を照射し、DNA抽出濃度及び/又はPCR産物濃度を検出する。DNA抽出液やPCR産物の濃度と送液プロセスの正常さを確認でき、PCR産物が低濃度であることによるDNA検出の失敗を防ぐ。反応・検査のやり直しによる時間の無駄を軽減できる。

Description

核酸分析装置
 本発明は、生化学反応により物質を抽出し、必要に応じて合成し分析するために用いる生化学反応用カートリッジ及び核酸分析装置に関する。
 遺伝子診断やDNA鑑定などの生体サンプルを遺伝子レベルで解析する手法では、一般的に、(1)生体サンプルから核酸を抽出する工程、抽出された核酸を増幅する工程、核酸に標識を付ける工程、などを含む前処理段階と、(2)前処理後の核酸の量、長さ(塩基長)や塩基配列を解析するための電気泳動法などによる検出段階が順番に実行される。これらの各段階は、それぞれ複数の試薬を分注し、生体サンプルや核酸溶液と混合し、加熱(熱処理)する操作を含み、これらの操作を正確に再現性良く実施することが、精度の高い解析結果を得るために重要である。
 核酸(DNA)を増幅する方法の1つとして、PCR反応(ポリメラーゼ連鎖反応;Polymerase Chain Reaction)が広く用いられている。PCR反応によって、微量の核酸であっても検出が可能となる。また、PCR反応は配列特異的な反応であるため、所望の配列を有するDNA断片(DNAフラグメント)だけを増幅して高感度に検出することができる。
 PCR反応においては、DNA断片の量は、1回の温度サイクル(変性→プライマアニール→伸長反応)で、おおよそ2倍に増幅されることが知られている。従って、生体サンプルから抽出された初期のDNA量が多い場合はPCRサイクル数を少なく、DNA量が少ない場合はPCRサイクル数を多くすることにより、増幅後のDNA濃度を平準化することができる。これにより、検出段階における再現性の向上、検出器に要求されるダイナミックレンジの緩和など、解析の精度向上やコスト削減に良い効果を得ることができる。
 また、近年では前処理の各工程で必要になる操作を、反応試薬の貯蔵槽や流路などが組み入れられたカートリッジ内で自動的に実行する手法が知られている(例えば特許文献1参照)。閉鎖されたカートリッジ内で処理することにより、サンプル間の汚染によって誤った結果を得てしまうというリスクを低減することができる。
 カートリッジ内の送液の性能を確認することによって、カートリッジ内で工程が正確に行われていることを検証するため、貯蔵槽内や反応槽内の液体の有無あるいは液量を検出する手法が知られている(例えば特許文献2参照)。
特開2007-330179号公報 特開2006-170654号公報
 カートリッジ内で微量の試薬とDNA抽出液やPCR産物を混合し、化学反応や分析を行うためには、カートリッジ内での試薬やDNA抽出液、PCR産物の量的制御が重要となる。
 量的制御の検証方法として、特許文献2では液量の計測について記載されているが、DNA抽出液のDNA濃度やPCR反応液のPCR産物濃度といった濃度については記載されていない。PCR産物が低濃度であると電気泳動などの検出段階で検出できないという問題が生じる。逆に高濃度であると、検出レンジをオーバしてしまい定量的な解析ができないという問題が生じる。
 本発明の目的は、電気泳動などの核酸の検出手段の前に、カートリッジ内でDNA抽出液やPCR産物の濃度の検証を行うことができる、核酸分析装置を提供することである。
 上記目的を達成するための本発明に係る核酸分析装置は、
DNA抽出、DNA増幅、およびDNA検出を行う、核酸分析装置であって、
DNA抽出、およびDNA増幅に必要な試薬が封入されたカートリッジと、
カートリッジの少なくとも一部を温調するための温調機構と、
カートリッジ内で送液を行うための送液機構と、
DNA検出を電気泳動で行うための電気泳動部などのDNA検出機構と、を備え、
前記カートリッジは、DNA抽出用の第1の槽と、抽出後のDNAとPCR試薬を混合する第2の槽と、PCRを行う第3の槽と、これらの槽を接続する流路を有し、
第1の槽と第2の槽の間の流路に光を照射し、DNA抽出濃度を検出する。また、第3の槽の下流側(出口側)の流路に光を照射し、PCR産物濃度を検出する。
 本発明に係る核酸分析装置では、DNA抽出液やPCR産物の濃度と、送液プロセスの正常さを確認でき、PCR産物が低濃度であることによるDNA検出の失敗などを防ぐことができる。これにより、プロセスの異常が早い段階で検出できるため、反応・検査のやり直しによる時間の無駄を軽減できる効果がある。
実施例に係る前処理一体型キャピラリ電気泳動装置の構成例を示す図。 実施例に係る前処理機構の構成例を示す図。 実施例に係るカートリッジ部の構成例を示す図。 実施例に係る分析操作の一例を示す図。 第2の実施例に係る前処理一体型リアルタイムPCR装置の構成例を示す図。 第2の実施例に係るカートリッジ部の構成例を示す図。 第2の実施例に係る分析操作の一例を示す図。 第3の実施例に係る前処理一体型質量分析装置の構成例を示す図。 第3の実施例に係るカートリッジ部の構成例を示す図。 第3の実施例に係る分析操作の一例を示す図。 第4の実施例に係る前処理一体型DNAチップ検出装置の構成例を示す図。 前処理とリアルタイムPCR(あるいはDNAチップ)を全て同一カートリッジ内に配置した場合の構成例 前処理とリアルタイムPCRの構成における検出装置を示す図。 第6の実施例に係るカートリッジ部の構成例を示す図。 第6の実施例に係る検出器の構成例1を示す図。 第6の実施例に係る検出器の構成例2を示す図。 第6の実施例に係る検出器の構成例3を示す図。 第7の実施例に係る検出器の構成例を示す図。
以下、本発明の実施の態様を、図面を参照しながら説明する。なお、本発明の実施の態様は後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。
 (装置の全体構成1)
 本実施例では、核酸分析装置の一例として、前処理一体型キャピラリ電気泳動装置について説明する。図1に、前処理一体型キャピラリ電気泳動装置1の構成例を示す。前処理一体型キャピラリ電気泳動装置1は、前処理部2と分析部3で構成される。前処理部2は、生体サンプル溶液からDNAを抽出して増幅する前処理を実行し、分析部3は、前処理部2で処理されたDNAをキャピラリ電気泳動により分析する。前処理部2の詳細構成については後述する。分析部3は、キャピラリ5と、検出部6と、オーブン8と、高圧電源9を有する。
 前処理一体型キャピラリ電気泳動装置1では、前処理の終了後、オートサンプラ4によって、前処理部2の流路の一端と分析部3のキャピラリ5の一端とが接続される。ここで接続とは、前処理部2の流路の一端に存在するDNA溶液とキャピラリ5の一端が物理的に接触し、電気力あるいは圧力などの外力によって、DNAがキャピラリ内部に導入されうる状態を指す。キャピラリ5はその内部に、DNAを長さ(塩基長)等に従って分離するためのポリマが充填されており、オーブン8により一定温度に保持されている。分析部3では、キャピラリ5の一端と前処理部2の流路の一端の接続後、キャピラリ5の両端部に高圧電源9で高電圧を印加して、キャピラリ内に導入されたDNAを電気泳動で分離し、検出部6において検出する。
 (前処理部の構成)
 ここでは前処理の概要を説明する。なお、前処理とは、スワブを用いて口腔、鼻腔などを拭って採取した試料(スワブ採取試料)や血液などの生体サンプルから核酸を抽出し、キャピラリ電気泳動による塩基配列解析などの分析に供するために処理する操作であり、核酸抽出、PCR反応、DNAシーケンス反応、ディネーチャ(変性)反応(DNAを1本鎖化する)などである。なお、解析対象によっては、核酸抽出とPCR反応のみで前処理を終え、ディネーチャ反応をせずにキャピラリ電気泳動を実行する場合もある。
 図2に、前処理部2の構成例を示す。前処理部2は、送液機構12と温調機構13とを有している。前処理部2には、マイクロ流体デバイスとしてのカートリッジ11が装着されている。平板状のカートリッジ11の下面(送液機構12あるいは温調機構13と接触する側の面)には変形可能な弾性体(エラストマー)を材料とするメンブレンが貼り付けられており、密閉された流路が形成されている(図示せず)。送液機構12は、前述のカートリッジ11を支持する支持面(載置面)と、カートリッジ11に形成された流路に流体(DNA抽出液、PCR反応液、試薬等)を空気圧によって送液する機構(図1のポンプ7を含む)とを有する。メンブレンを空気圧で変形させて、カートリッジ内の液体を移動させることができ、液を一方向の流れだけではなく、双方向に移動させたり、撹拌したりすることができる。カートリッジ上の送液に関しては後に図3を用いて説明する。温調機構13は、例えばペルチェ素子で構成され、カートリッジ11内の流体をPCRに適した温度に制御する。カートリッジ11の材質は、ポリカーボネート樹脂やポリプロピレン樹脂、もしくは石英材など、光を通し透明性が良いものが望ましい。DNA抽出濃度測定用レーザ14はレーザ光をDNA抽出後の流路に向けて照射し、その透過光をDNA抽出濃度測定用受光器15で読み取る。レーザ14は、固体レーザや半導体レーザ、LEDなどである。波長は紫外領域である。受光器15は、フォトダイオード、光電子倍増管、CCEカメラなど、微細な光を捕らえ、受光量を信号強度に変換する素子である。
 抽出された核酸濃度によって、レーザ光の吸収量が変化する。そこで、その変化量を受光器15にて読み取り、濃度測定を行う。核酸を蛍光色素で染色することにより、蛍光の強さで定量する方法を採用することもできる。この場合、可視光の波長帯の光源14を用いることができる。
 図3に、カートリッジの構成例を示す。試薬貯蔵槽22にはDNA溶解液が封入されている。ここにサンプルが付着したスワブを挿入しDNAを抽出する。DNA抽出液は流路28を通り、反応槽23に送液される。試薬貯蔵槽18に封入されたPCRマスターミックス、試薬貯蔵槽19に封入されたプライマーセットは混合槽20、21を経て反応槽23に送液される。この反応槽23でDNA抽出液と混合、撹拌が行われる。DNA抽出液を送液する流路28に光源14からレーザ光を照射する。透過光(あるいは蛍光)を受光器15で読み取り、DNA抽出濃度の測定を行う。DNA抽出濃度によってPCR回数の決定を行う。そして反応槽24に送液し、PCR反応を行う。またPCR産物を送液する流路29に光源16からレーザ光を照射し、受光器17で透過光(あるいは蛍光)を読み取り、PCR産物濃度の測定を行う。DNA抽出濃度とPCR産物濃度は光を利用して読み取るため、カートリッジは光に対して透明な材料で構成する。
 その後、反応槽25でHi-Diホルムアミドと混合し撹拌を行う。攪拌後に反応槽26に送液し、ディネーチャ(95℃3分)を行う。その後、接続部27に送液する。接続部27を図1に示す分析部3のキャピラリの一端に接続し、PCR産物をキャピラリに導入して電気泳動を行う。
 図4に、本実施例における分析手順を示した。
 [ステップ30]
 スワブでサンプルDNAを採取し、スワブを試薬貯蔵槽22に挿入する。
 [ステップ31]
 試薬貯蔵槽22にはDNA溶解液が封入されており、撹拌・混合を行い、DNAを抽出する。
 [ステップ32]
 反応槽23にDNA抽出液を送液する流路28に光源14からレーザ光を照射する。その反応を受光器15で読み取り、DNA抽出濃度の測定を行う。レーザ光の透過量を濃度に換算する。DNA抽出濃度よってPCRサイクル数の決定を行う。またDNA抽出濃度が低く、電気泳動が失敗する可能性がある場合、ステップ30に戻り、再びDNAサンプルの採取から行う。これにより、低濃度PCR産物による電気泳動の失敗を防ぐことができ、作業時間の短縮ができる。
 [ステップ33]
 PCRマスターミックスを試薬貯蔵槽18から、プライマーセットを試薬貯蔵槽19から混合槽20、21を経て反応槽23に送液する。反応槽23でPCRマスターミックス、プライマーセットとDNA抽出液を撹拌・混合する。
 [ステップ34]
 反応槽24でPCR反応を行い、DNAを増幅する。
 [ステップ35、36、37、38]
反応槽25にPCR産物を送液する流路29にレーザを照射し、PCR産物濃度を測定する。PCR産物濃度が電気泳動に十分な濃度であればステップ36のディネーチャに進む。PCR産物濃度が不十分の場合はステップ37に進み、再びPCR反応を行う。ステップ38でPCR産物濃度の測定を再び行う。ここでPCR産物濃度が十分であればステップ36のディネーチャに進む。不十分であればPCRマスターミックス、プライマーセットの試薬の送液不良が考えられるためステップ33に戻る。本実施例では、PCRの再試行は1回までとし、ここで増加しなければ、反応試薬の送液不良と判定する。
 [ステップ39]
 キャピラリとの接続部27にPCR産物を送液し、分析部3のキャピラリ5の一端と接続する。そして電気泳動を行う。
 (装置の全体構成2)
 図5を用いて本発明の第2の実施例を説明する。本実施例では、前処理カートリッジとリアルタイムPCR装置とを一体化した装置について説明する。前処理一体型リアルタイムPCR装置100は、前処理部2と分析部101と、前処理部2において作製された反応溶液を分析部101に搬送する分注部105(液体の入る部分は分注チップ106)で構成されている。前処理部2の構成は図1と同様である。前処理部2では、反応液からDNAを抽出してPCR増幅する前処理を実行し、分注部105は移動機構(図示せず)に設置されており、前処理部2と分析部101との間を移動して、前記前処理の結果得られた溶液を分析部101のサーマルブロック102の上に設置された複数の反応ウエル(図示せず)を有する反応プレート104の所定のウエルに分注する。分注部105は、分析部101において、リアルタイムPCR反応に用いられる1つ以上の試薬(図示せず)をさらに分注する操作にも用いることができる。サーマルブロック102は前記反応ウエルを加熱冷却してPCR反応を実行し、各反応ウエルからの蛍光信号は蛍光測定部103で検出されてリアルタイムPCR測定が可能となっている。
 (前処理部の構成2)
 図6に本発明の第2の実施例におけるカートリッジの詳細構成を記載する。
 図6(a)では、PCR反応液は、PCR反応槽24から流路29を通り、槽160に送られる。槽160には図5に示した分注部の分注チップ106が挿入されて、PCR反応液は反応プレート104の所定のウエルへ搬送される。それ以外は図3における各部の動作と同じである。
 また、図6(b)では、流路29の下流側に槽161を設け、さらに流路によって槽160に接続する構成になっている。ここでは、槽161において、PCR反応液を希釈することにより、分析部2においてリアルタイムPCRを実施するのに適した濃度と液量にしている。例えばPCR産物を分割しさらに複数のリアルタイムPCR反応で分別・定量するような場合である。
 図7には、第2の実施例における分析手順を記載した。図4に示した第1の実施例における分析手順との違いは、170においてPCR産物の希釈が行われ、171においてリアルタイム分析が行われることである。
 (装置の全体構成3)
 図8を用いて本発明のさらに別の実施例を説明する。本実施例では、前処理カートリッジと質量分析装置とを一体化した装置について説明する。前処理一体型質量分析装置200は、前処理部2と質量分析部201と、前処理部2において作製された反応溶液を分析部201に搬送する分注部204で構成されている。前処理部2では、反応液からDNAを抽出してPCR増幅する前処理を実行し、分注部204は移動機構(図示せず)に設置されており、前処理部2と質量分析部201との間を移動して、前記前処理の結果得られた溶液をシリンジ206に取り、試料注入部205から流路に導入する。流路には、ポンプ208によってバッファ209の流れがイオン化部207に続いており、205から導入された前処理後の溶液は、このバッファの流れによってイオン化部207に導入され、イオン化される。イオン化部としては、例えばESI(エレクトロスプレーイオン化)法を用いることができる。分注部204に用いられるシリンジ206には好ましくは、サンプル溶液の脱塩が実施できる担体を有するものを採用する。このような分注チップとしては、例えば、Millipore MERK社のZipTip(登録商標) がある。
 (前処理部の構成3)
 本実施例における前処理部2のカートリッジの詳細構成は、図6に示したものと同じ構成でよい。図9(a)では、槽160に図8に示したシリンジ206が挿入されて溶液を吸引し、質量分析部の試料注入部205へ搬送される。また、図9(b)においては、流路29の下流側に槽161を設け、さらに流路によって槽160に接続する構成になっているが、槽161においてはPCR反応液の脱塩を行う担体を有するものとする。このときは204の分注部に用いるシリンジ206は通常のもの(担体を有さない)でよい。
 図10には本実施例における分析手順を示す。図3に示した第1の実施例における分析手順との違いは、270においてPCR産物の脱塩が行われ、171において質量分析が行われることである。
 (装置の全体構成4)
 図11を用いて本発明のさらに別の実施例を説明する。本実施例では、核酸分析装置の一例として、前処理カートリッジとDNAチップとを一体化した装置について説明する。前処理一体型DNAチップ検出装置300は、前処理部2とDNAチップ検出装置301と、前処理部2において作製された反応溶液をDNAチップ部301に搬送する分注部305で構成されている。前処理部2では、反応液からDNAを抽出してPCR増幅する前処理を実行し、分注部305は移動機構(図示せず)に設置されており、前処理部2とDNAチップ検出装置301との間を移動して、前記前処理の結果得られた溶液をDNAチップ304の所定のウエルに導入する。前処理部2は、図1におけるものと同様である。
  (前処理部の構成4)
 本実施例における前処理部2のカートリッジの詳細構成は、図6に示したものと同じ構成でよい。図6(a)の槽160において、図11に示した分注部305の分注チップ306が挿入されて溶液を吸引し、DNAチップ304へ搬送される。また、図6(b)においては、流路29の下流側に設けられた槽161と、さらに流路によって槽160に接続する構成になっているが、槽161においてはPCR反応液にバッファを加えるなどの操作により、分析部2においてDNAチップで反応させるために適切なバッファや塩濃度の条件となるように調整している。
 本実施例における分析手順は図示しないが、図4に示した第1の実施例における分析手順との違いは、36において適切なバッファや塩濃度の条件となるように調整され、37においてDNAチップによる検出が行われることである。
 (前処理部の構成5)
 図12に示すように、リアルタイムPCR一体型やDNAチップ一体型では、リアルタイムPCR反応(微量のマルチウエル)槽やDNAチップを、カートリッジと一体化することも可能である。図12の164がリアルタイムPCR用の集積ウエル(または、DNAチップ)である。このカートリッジを測定するためのシステムを図13に示すが、カートリッジ11の上方に前記164で示した部分リアルタイムPCR用の集積ウエル(または、DNAチップ)をからの蛍光(あるいは発光)を計測するための蛍光イメージング検出器401を配置している。
 (前処理部の構成6)
 以下、実施例6として、複数レーンでの濃度検出を可能とする構成を示す。複数レーンでの検出とは、
1)1サンプルを2つ以上複数レーンに分割し、複数箇所での抽出、複数箇所でのPCR増幅
2)1サンプルを1か所で抽出、抽出後を2つ以上複数レーンに分割し、複数箇所でのPCR増幅
3)2つ以上複数サンプルを、同時に複数箇所で抽出及びPCR増幅
の場合に区分される。
 それぞれのカートリッジの構成を図14(a)-(c)、装置側の検出構造を図15、に示す。
 図14(a)には、サンプルを挿入する層30を設け、そこから2分割して、DNAサンプル抽出層22へ搬送する。同一サンプルを抽出、PCR増幅して測定することで、測定の信頼度を増すことができる。また、それぞれのレーンにて、抽出後、異なるサンプル量を次の工程におくることや、プライマー量、PCR回数等を変えることで、同一サンプルから異なった濃度の測定サンプルを作成する。そのため、複数濃度のサンプルを同時に測定することで、検出レンジに入るものだけを分析に使用することができる。
 また、図14(b)には、同一サンプルを抽出後、2つに分割して、混合層23へ搬送する。抽出後の濃度は、同一であるが、その後の工程にて、プライマー量、PCR回数等を変えることで、同一サンプルから異なった濃度の測定サンプルを作成する。そのため、複数濃度のサンプルを同時に測定することで、検出レンジに入るものだけを分析に使用することができる。
 図14(c)では、抽出層22が2つ設けられている。そのため、1つのカートリッジで、複数サンプルの処理を行い、分析用のサンプルを作成することができる。それぞれのレーンに抽出後、PCR後に濃度測定を行うことで、異なる状態(濃度、量)のサンプルが導入されても、検出レンジを超えないように、分析サンプルの濃度調整が可能となる。
 図15に、装置構成を示す。図3と同様、抽出及びPCR後の複数レーンに、DNA抽出濃度測定用レーザ14やPCR産物濃度測定用レーザ15からレーザを照射する。濃度測定用の受光器(DNA抽出濃度測定用受光器15、PCR産物濃度測定用受光器17)は、複数レーンを有するカートリッジの下方に位置する。レーン内の発光を集めるための集光レンズ31を設ける。レンズで集光された光は、受光器上に像を結像する。レンズは、両面凸の単レンズなどで良い。レーン内の分析サンプル濃度に応じて、光量が変化するため、受光器上での光量により、サンプル濃度を求めることができる。また、受光器は、フォトダイオードやフォトマルといった1次元センサで良い。
 (前処理部の構成7)
 図16に、図15と異なる複数レーンの濃度検出を行う装置構成を示す。カートリッジの抽出及びPCR後の複数レーンの下方部に設けられた濃度測定のための集光レンズ31に、光ファイバ32を接続する。複数の光ファイバ32は、2次元検出器33である受光器に光を伝達する。各レーンに対応して複数の集光レンズや光ファイバを必要とするものの、光検出のために受光器は2次元検出器33の1つで良い。2次元検出器33は、CCDやフォトダイオードアレイを用いることができる。
 (前処理部の構成8)
 図17に、集光レンズ31が1つを用いた場合の複数レーンの濃度検出を行う装置構成を示す。カートリッジの抽出及びPCR後の複数レーンの下方部に設けられた濃度測定のための集光レンズ31にカメラレンズ等の視野範囲の大きなレンズを用いる。一旦並行光にした後、結像レンズ34を用いて、2次元検出器33上に各レーンの像を結像する。その際、ピンホール35を用いると、像がぼけた状態でも、カートリッジのレーンに対応した光を検出器上の像として集めることができる。レーン中のサンプル濃度に応じて、光量変化を測定することができる。
 (前処理部の構成9)
 第7の実施例として、蛍光検出による濃度測定の例を説明する。抽出後の濃度測定に際し、通常260nmの吸光度を計測するが、ピコグリーンなど蛍光色素を用いた蛍光による濃度検出を行う場合がある。また、PCR後の濃度測定に際し、余分なプライマDNA区別のために分光して濃度測定する場合がある。その際、図18に示すように、DNA抽出濃度測定用レーザ14やPCR産物濃度測定用レーザ16を励起用のレーザとして用い、検出用光学フィルタ36にて、蛍光のみを集光し、励行光をカットする構成を取る。また、集光後に分光素子37を設け、濃度測定に必要とする蛍光成分だけを、検出器に集光する。分光素子37をとしては、回折格子やプリズムを用いることができる。
 以上、本発明の例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に理解される。各実施例を適宜組み合わせることも、本発明の範囲である。
1  前処理一体型キャピラリ電気泳動装置
2  前処理部
3  分析部
4  オートサンプラ
5  キャピラリ
6  検出部
7  ポンプ
8  オーブン
9  高圧電源
11  カートリッジ
12  送液機構
13  温調機構
14  DNA抽出濃度測定用レーザ
15  DNA抽出濃度測定用受光器
16  PCR産物濃度測定用レーザ
17  PCR産物濃度測定用受光器
18  PCRマスターミックス試薬封入槽
19  プライマーセット試薬封入槽
20  PCRマスターミックス試薬、プライマーセット撹拌・混合槽
21  PCRマスターミックス試薬、プライマーセット撹拌・混合槽
22  DNAサンプル抽出槽
23  DNAサンプルとPCRマスターミックス試薬、プライマー試薬の撹拌・混合槽
24  PCR反応槽
25  Hi-Diホルムアミドとの混合槽
26  ディネーチャ槽
27  キャピラリアレイとの接続部
28  DNA抽出濃度測定流路
29  PCR産物濃度測定流路
31  集光レンズ
32  光ファイバ
33  2次元検出器
34  結像レンズ
35  ピンホール
36  検出用光学フィルタ36
37  分光素子
100 前処理一体型リアルタイムPCR装置 
101 リアルタイムPCR部 
102 PCR温調部 
103 検出部 
104 反応プレート 
105 分注機(溶液搬送部) 
106 分注チップ 
160 分注チップアクセス部
161 希釈部
200 前処理一体型質量分析装置 
201 質量分析部
202 質量分離部(真空部) 
204 分注部 
205 サンプル注入部 
206 シリンジ 
207 イオン化部 
208 ポンプ 
209 バッファ(溶液) 
300 前処理一体型DNAチップ検出装置 
301  DNAチップ検出装置 
302 チップ温調部 
303 チップ検出部
304 DNAチップ 
305 分注機(溶液搬送部) 
306 分注チップ 
164 DNAチップ(または集積化されたリアルタイムPCR用ウエル)
401 蛍光イメージング検出器

Claims (8)

  1.  DNA抽出、DNA増幅、およびDNA検出を行う、核酸分析装置であって、
     DNA抽出、およびDNA増幅に必要な試薬が封入されたカートリッジと、
     カートリッジの少なくとも一部を温調する温調機構と、
     カートリッジ内で送液を行う送液機構と、
     DNA検出を電気泳動で行うための電気泳動機構と、を備え、
     前記カートリッジは、DNA抽出用の第1の槽と、抽出後のDNAとPCR試薬を混合する第2の槽と、PCRを行う第3の槽と、これらの槽を接続する流路を有し、
     第1の槽と第2の槽の間の流路に光を照射し、DNA抽出濃度を検出することを特徴とする、核酸分析装置。
  2.  DNA抽出、DNA増幅、およびDNA検出を行う、核酸分析装置であって、
     DNA抽出、およびDNA増幅に必要な試薬が封入されたカートリッジと、
     カートリッジの少なくとも一部を温調する温調機構と、
     カートリッジ内で送液を行う送液機構と、
     DNA検出を電気泳動で行うための電気泳動機構と、を備え、
     前記カートリッジは、DNA抽出用の第1の槽と、抽出後のDNAとPCR試薬を混合する第2の槽と、PCRを行う第3の槽と、これらの槽を接続する流路を有し、
     第3の槽の下流側の流路に光を照射し、PCR産物濃度を検出することを特徴とする、核酸分析装置。
  3.  DNA抽出、DNA増幅、およびDNA検出を行う、核酸分析装置であって、
     DNA抽出、およびDNA増幅に必要な試薬が封入されたカートリッジと、
     カートリッジを温調する温調機構と、
     カートリッジ内で送液を行う送液機構と、
     DNA検出を電気泳動で行うための電気泳動機構と、を備え、
     前記カートリッジは、DNA抽出用の第1の槽と、抽出後のDNAとPCR試薬を混合する第2の槽と、PCRを行う第3の槽と、これらの槽を接続する流路を有し、
     第1の槽と第2の槽の間の流路に光を照射し、DNA抽出濃度を検出すると共に、
     第3の槽の下流側の流路に光を照射し、PCR産物濃度を検出することを特徴とする、核酸分析装置。
  4.  請求項1に記載の核酸分析装置であって、
     第1の槽と第2の槽との間に光を照射する光源と、光源からの光を受光する受光部とが、第1の槽と第2の槽との間の流路を挟んで設けられていることを特徴とする、核酸分析装置。
  5.  請求項1に記載の核酸分析装置であって、
     第3の槽の下流側に光を照射する光源と、光源からの光を受光する受光部とが、3の槽の下流側の流路を挟んで設けられていることを特徴とする、核酸分析装置。
  6.  請求項2または3に記載の核酸分析装置であって、
    PCR反応終了後にPCR産物濃度を測定し、低濃度であったらPCR反応を再試行することを特徴とする核酸分析装置。
  7.  請求項1~6のいずれかに記載の核酸分析装置であって、
    カートリッジが光に対して透明な材料であることを特徴とする生化学用カートリッジを有する核酸分析装置。
  8.  カートリッジ上で、DNA抽出、及びPCR反応を行う工程、
     DNA抽出後にDNA抽出濃度をカートリッジ上で光検出する工程、
     PCR反応にPCR産物濃度をカートリッジ上で光検出する工程
    を備えた核酸分析方法。
PCT/JP2015/050425 2014-01-27 2015-01-09 核酸分析装置 WO2015111443A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014012076A JP2017077180A (ja) 2014-01-27 2014-01-27 核酸分析装置
JP2014-012076 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111443A1 true WO2015111443A1 (ja) 2015-07-30

Family

ID=53681251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050425 WO2015111443A1 (ja) 2014-01-27 2015-01-09 核酸分析装置

Country Status (2)

Country Link
JP (1) JP2017077180A (ja)
WO (1) WO2015111443A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058248A (ja) * 2020-09-30 2022-04-11 富佳生技股▲ふん▼有限公司 核酸検出キット及び核酸検出装置
CN114317225A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 核酸检测盒及核酸检测设备
CN114317222A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 核酸检测盒及核酸检测设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220099621A1 (en) * 2020-09-30 2022-03-31 Icare Diagnostics International Co. Ltd. Nucleic acid detection kit and nucleic acid detection device
TWI799879B (zh) * 2020-09-30 2023-04-21 富佳生技股份有限公司 檢測芯片、核酸檢測盒及核酸檢測設備

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372484B1 (en) * 1999-01-25 2002-04-16 E.I. Dupont De Nemours And Company Apparatus for integrated polymerase chain reaction and capillary electrophoresis
JP2003177114A (ja) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Dna解析チップ、dna解析チップ駆動装置、およびその方法
JP2007222105A (ja) * 2006-02-24 2007-09-06 Yamazaki Baking Co Ltd 加工食品中の菌種の同定方法
JP2008000045A (ja) * 2006-06-21 2008-01-10 Olympus Corp 核酸の検出方法
JP2008525037A (ja) * 2004-12-23 2008-07-17 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
WO2014017193A1 (ja) * 2012-07-23 2014-01-30 株式会社日立ハイテクノロジーズ 前処理・電気泳動用一体型カートリッジ、前処理一体型キャピラリ電気泳動装置及び前処理一体型キャピラリ電気泳動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372484B1 (en) * 1999-01-25 2002-04-16 E.I. Dupont De Nemours And Company Apparatus for integrated polymerase chain reaction and capillary electrophoresis
JP2003177114A (ja) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Dna解析チップ、dna解析チップ駆動装置、およびその方法
JP2008525037A (ja) * 2004-12-23 2008-07-17 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
JP2007222105A (ja) * 2006-02-24 2007-09-06 Yamazaki Baking Co Ltd 加工食品中の菌種の同定方法
JP2008000045A (ja) * 2006-06-21 2008-01-10 Olympus Corp 核酸の検出方法
WO2014017193A1 (ja) * 2012-07-23 2014-01-30 株式会社日立ハイテクノロジーズ 前処理・電気泳動用一体型カートリッジ、前処理一体型キャピラリ電気泳動装置及び前処理一体型キャピラリ電気泳動方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058248A (ja) * 2020-09-30 2022-04-11 富佳生技股▲ふん▼有限公司 核酸検出キット及び核酸検出装置
CN114317225A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 核酸检测盒及核酸检测设备
CN114317222A (zh) * 2020-09-30 2022-04-12 富佳生技股份有限公司 核酸检测盒及核酸检测设备

Also Published As

Publication number Publication date
JP2017077180A (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2015111443A1 (ja) 核酸分析装置
JP4170947B2 (ja) 生体試料成分検出法及びその装置
CN107923839A (zh) 用于测试装置、具有集成的反应和检测机构的站
KR20110080067A (ko) 샘플분석 카트리지 및 샘플분석 카트리지 리더
US9885700B2 (en) Method and apparatus for detecting elution of samples
US20150241353A1 (en) Method and system for optical analysis
WO2005047868A1 (ja) 蛍光測定装置
US9523123B2 (en) DNA detection method and DNA detection device
JP2007315772A (ja) 蛍光検出装置および生化学反応分析装置
JP7401993B2 (ja) 検査室用機器内の検出ユニットの検出器によって測定された信号光強度を補正する方法
EP1950555A2 (en) Microchip inspection system, microchip inspection apparatus and a computer readable medium
KR100912626B1 (ko) 현장진단용 멀티챔버 형광 측정용 광학 장치 및 이를이용한 멀티챔버 형광 측정 방법
US11119043B2 (en) Analyzer
JP2017123813A (ja) 検査装置
US20090303479A1 (en) Optical Apparatus and Method for the Inspection of Nucleic Acid Probes by Polarized Radiation
CN103087907B (zh) 用于生物pcr实时荧光检测系统检定和校正的相对标定系统
JP2009058256A (ja) 蛍光検出ユニット、反応検出装置、マイクロチップ検査システム
WO2022070662A1 (ja) 検査容器、検査装置及び核酸検査方法
TWI728885B (zh) 導光模組與應用此導光模組之生物檢測設備
JPWO2008090759A1 (ja) マイクロ総合分析システム
KR101105519B1 (ko) 요분석 방법 및 장치
KR20140034733A (ko) 샘플 수용 장치
JP7064217B2 (ja) 分析装置、分析方法、微量液体採取装置、および微量液体採取方法
US20220347682A1 (en) Systems and methods for determining presence and/or characteristics of target analytes in a sample
JP5339838B2 (ja) 遺伝子検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP