WO2022070587A1 - 双極型蓄電池 - Google Patents

双極型蓄電池 Download PDF

Info

Publication number
WO2022070587A1
WO2022070587A1 PCT/JP2021/028488 JP2021028488W WO2022070587A1 WO 2022070587 A1 WO2022070587 A1 WO 2022070587A1 JP 2021028488 W JP2021028488 W JP 2021028488W WO 2022070587 A1 WO2022070587 A1 WO 2022070587A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame plate
storage battery
outer peripheral
bipolar
walls
Prior art date
Application number
PCT/JP2021/028488
Other languages
English (en)
French (fr)
Inventor
彰 田中
雅進 新垣
健一 須山
康雄 中島
広樹 田中
芳延 平
憲治 廣田
Original Assignee
古河電気工業株式会社
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河電池株式会社 filed Critical 古河電気工業株式会社
Priority to BR112023004662A priority Critical patent/BR112023004662A2/pt
Priority to EP21874890.3A priority patent/EP4224593A1/en
Priority to AU2021354234A priority patent/AU2021354234A1/en
Priority to CN202180054402.8A priority patent/CN116325280A/zh
Priority to JP2022553503A priority patent/JPWO2022070587A1/ja
Publication of WO2022070587A1 publication Critical patent/WO2022070587A1/ja
Priority to US18/188,867 priority patent/US20230223628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bipolar storage battery.
  • a cell member having an electrolytic layer containing an electrolytic solution such as sulfuric acid interposed between a positive electrode and a negative electrode having a metal layer such as lead and an active material layer, and a resin substrate alternate.
  • a resin frame-shaped frame surrounding the cells is arranged between the opposing substrates, and the cell members are electrically connected in series (for example, the following). See Patent Document 1 etc.).
  • the substrate and the frame are joined so that the electrolytic solution does not leak to the outside, and the bonded portion is housed inside the outer case so that stress is not applied to the joined portion from the outside. By doing so, the airtightness and mechanical strength were maintained. For this reason, the conventional bipolar storage battery as described above becomes bulky as the number of members increases, which causes a decrease in energy density. Therefore, it is an object of the present invention to provide a bipolar storage battery capable of increasing energy density while achieving both airtightness and mechanical strength.
  • a cell member having an electrolytic layer interposed between a positive electrode and a negative electrode and a plurality of resin frame plates accommodating the cell are alternately arranged.
  • a joint wall that is integrally projected on the facing surface of the other frame plate facing each other, is located inside the outer peripheral wall of the one frame plate, and surrounds the peripheral edge of the cell member. It is characterized in that the joint wall of the other frame plate and the facing surface of the one frame plate are joined by a joining material.
  • the outer peripheral wall is projected along the peripheral edge of the frame plate, and the joint wall is projected inside the outer peripheral wall so that the joint wall and the facing surface of the frame plate are opposed to each other. Since the bonding material is bonded between them, it is possible to prevent the electrolytic solution from leaking to the outside and to prevent the stress applied to the bonding material portion from the outside, so that the airtightness and mechanical strength are maintained. be able to. As a result, it is not necessary to store it inside the outer case or the like, the number of members can be reduced, and the compact size can be achieved. Therefore, the energy density can be increased while achieving both airtightness and mechanical strength. Can be done.
  • thermoplastic resin having sulfuric acid resistance for example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethylmethacrylate (acrylic resin)
  • acrylic resin for example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethylmethacrylate (acrylic resin)
  • ABS Acrylic nitrile-butadiene-styrene copolymer
  • Nylon polyamide
  • polypropylene etc.
  • substrates 111 which are square flat plate-shaped frame plates
  • first frame plate made of a thermoplastic resin having sulfuric acid resistance and forming a square flat plate.
  • the end plates 121 are arranged in the same manner as the substrate 111.
  • second frame plate made of a thermoplastic resin having sulfuric acid resistance and forming a square flat plate.
  • the end plates 131 are arranged in the same manner as the substrate 111.
  • an active material layer 141b for the positive electrode containing an active substance is disposed on the lead layer 141a for the positive electrode.
  • the positive electrode 141 is formed by such a lead layer 141a for a positive electrode and an active material layer 141b for a positive electrode.
  • the active material layer 142b for the negative electrode containing the active substance is disposed on the lead layer 142a for the negative electrode.
  • the negative electrode 142 is formed by such a lead layer 142a for a negative electrode and an active material layer 142b for a negative electrode.
  • An electrolytic layer 143 such as a glass fiber mat impregnated with an electrolytic solution such as sulfuric acid is disposed between the positive electrode 141 and the negative electrode 142, respectively.
  • the cell member 140 is formed by such a positive electrode 141, a negative electrode 142, and an electrolytic layer 143. These cell members 140 are electrically connected in series by a known means.
  • the substrate 111 includes means for electrically connecting the lead layer 141a for the positive electrode and the lead layer 142a for the negative electrode.
  • 101 is a positive electrode terminal and 102 is a negative electrode terminal. That is, the cell member 140 having the electrolytic layer 143 interposed between the positive electrode 141 and the negative electrode 142 and the resin frame plates 111, 121, 131 accommodating the cell member 140 are alternately laminated.
  • the cell members 140 are connected in series.
  • an outer peripheral wall 112 made of a thermoplastic resin having sulfuric acid resistance forming a square frame shape (frame shape) along the peripheral edge is integrally formed. It has been struck.
  • the peripheral edge of the cell member 140 is located inside the substrate 111 with respect to the outer peripheral wall 112 of the other surface (upper surface in FIG. 1) of the substrate 111.
  • the surrounding sulfuric acid-resistant thermoplastic resin joint walls 113 are integrally projected.
  • an outer peripheral wall 122 made of a thermoplastic resin having sulfuric acid resistance forming a square frame shape (frame shape) along the peripheral edge is formed on the other surface (upper surface in FIG. 1) of the first end plate 121. It is projected integrally.
  • a joint wall 133 made of a thermoplastic resin having sulfuric acid resistance surrounding the peripheral edge of the cell member 140 is integrally projected.
  • the outer peripheral walls 112 and 122 integrally projecting along the peripheral edge on the facing surfaces (upper surface in FIG. 1) of the frame plates 111 and 121 facing each other (lower in FIG. 1) and each other.
  • One of the frame plates 111 and 121 facing each other (upper in FIG. 1) is integrally projected on the facing surface (lower surface in FIG. 1) of the other (upper in FIG. 1) frame plates 111 and 131. It is provided with joint walls 113, 133 located inside the outer peripheral walls 112, 122 and surrounding the peripheral edge of the cell member 140.
  • the tip (lower end in FIG. 1) of the joint wall 133 of the second end plate 131 is an adhesive having sulfuric acid resistance (for example, the upper surface in FIG. 1) that is a joining material to the other surface (upper surface in FIG. 1) of the opposing substrate 111.
  • Epoxy resin adhesive Epoxy resin adhesive
  • the other end surface (upper surface in FIG. 1) of the first end plate 121 is joined with the tip end (lower end in FIG. 1) of the joining wall 113 of the opposing substrate 111 via an adhesive 151.
  • the tip (lower end in FIG. 1) of the joint wall 113 of the other substrate 111 facing each other (upper in FIG. 1) is the other surface (upper surface in FIG. 1) of one (lower in FIG. 1) substrate 111.
  • a gap is formed between the outer peripheral wall 122 of the first end plate 121 and one surface (lower surface in FIG. 1) of the opposing substrate 111, and between the outer peripheral wall 122 and the joint wall 113. There is. Between one surface (lower surface in FIG. 1) of the second end plate 131 and the outer peripheral wall 112 of the opposing substrate 111, and between the outer peripheral wall 112 and the joint wall 133 of the second end plate 131. Has a gap formed. Between the outer peripheral wall 112 of one of the substrates 111 facing each other (lower in FIG. 1) and one surface (lower surface in FIG. 1) of the other substrate 111 (upper in FIG. 1) and the outer peripheral wall. A gap is formed between the 112 and the joint wall 113.
  • each space partitioned by the facing frame plates 111, 121, 131, the joint walls 113, 133, and the adhesive 151 becomes a cell C and accommodates each cell member 140. ing.
  • the bonding walls 113 and 133 are bonded to the facing surface (the other surface) of the substrate 111 and the first end plate 121 facing each other via an adhesive 151. ..
  • the outer peripheral wall 112 is projected along the peripheral edge on the facing surface (the other surface) of the substrate 111 and the first end plate 121, it is possible to prevent stress applied to the adhesive 151 portion from the outside. , Airtightness and mechanical strength can be maintained.
  • the bipolar lead-acid battery 100 according to the present embodiment it is not necessary to store the lead-acid battery 100 inside an outer case or the like, the number of members can be reduced, and the size can be reduced. Therefore, according to the bipolar lead-acid battery 100 according to the present embodiment, it is possible to increase the energy density while achieving both airtightness and mechanical strength.
  • the outer peripheral walls 112 and 122 are projected along the peripheral edges of the frame plates 111 and 121, and the joint walls 113 and 133 are projected inside the outer peripheral walls 112 and 122.
  • a joining material (adhesive) 151 is joined between the joining walls 113 and 133 and the facing surfaces of the frame plates 111 and 121.
  • a gap is formed between the outer peripheral walls 112 and 122 and the facing surfaces (one surface) of the opposing substrate 111 and the second end plate 131, and the outer peripheral walls 112 and 122 and the joint walls 113 and 133 are formed.
  • a gap is formed between the two.
  • FIG. 2 A second embodiment of the bipolar storage battery according to the present invention will be described with reference to FIG. However, for the same parts as those in the above-described embodiment, the same reference numerals as those used in the description of the above-described embodiment will be used, and the description overlapping with the description in the above-mentioned embodiment will be omitted.
  • one surface (lower surface in FIG. 2) of the substrate 111 is joined on the other surface (upper surface in FIG. 2) of the substrate 111 of the bipolar lead-acid battery 200 according to the present embodiment.
  • an inner peripheral wall 224 made of a thermoplastic resin, which is located at the center of the cell and has sulfuric acid resistance and surrounds the peripheral edge of the cell member 140, is integrally projected. That is, one of the frame plates 111 and 121 (upper in FIG. 2) is integrally projected onto the facing surface (upper surface in FIG. 2) of the frame plates 111 and 121 on one side (lower in FIG. 2). It is provided with inner peripheral walls 214 and 224 located inside the joint walls 113 and 133 and surrounding the peripheral edge of the cell member 140.
  • the tip end side (lower end side in FIG. 2) of the joint walls 113 and 133 is between the facing surface (the other surface) of the facing substrate 111 and the first end plate 121 and between the outer peripheral walls 112 and 122.
  • the inner peripheral walls 214 and 224 are joined by a fusion material 252, which is a joining material made of a thermoplastic resin of the same material as the substrate 111, the first end plate 121, and the joining walls 113, 133.
  • each space partitioned by the facing frame plates 111, 121, 131, the joining walls 113, 133, the inner peripheral walls 214, 224, and the fusing material 252 becomes the cell C, and each cell member. It surrounds 140.
  • the tip side (lower end side in FIG. 2) of the joint walls 113 and 133 is inserted between the outer peripheral walls 112 and 122 and the inner peripheral walls 214 and 224. Is pressed against the other surface (upper surface in FIG. 2) of the substrate 111 and the first end plate 121 to generate frictional heat (vibration friction). As a result, the tip side of the joint walls 113 and 133 and the other surface portion of the substrate 111 and the first end plate 121 between the outer peripheral walls 112 and 122 and the inner peripheral walls 214 and 224 are melted to form a melt. , The fusing material 252.
  • the fusing material 252 is the facing surface (in FIG. 2) of the joint walls 113 and 133 of the frame plates 111 and 131 on the other side (upper side in FIG. 2) and the frame plates 111 and 121 on the other side (lower side in FIG. 2).
  • Top surface is a melt generated by vibration friction.
  • the welding material 252 is fused between the tip end side of the joining walls 113 and 133 and the other surface portion of the substrate 111 and the first end plate 121, and the tip end side and the outer peripheral wall of the joining walls 113 and 133 are fused. It also penetrates between 112, 122 and the inner peripheral walls 214, 224 and joins them (vibration welding).
  • the bipolar lead-acid battery 200 according to the present embodiment by such vibration welding, not only between the tips of the joining walls 113 and 133 and the facing surface (the other surface) of the substrate 111 and the first end plate 121, but also joining. Since the tip side of the walls 113, 133 and the inner peripheral walls 214, 224 and the outer peripheral walls 112, 122 are also joined, the joining range of the joining walls 113, 133 can be increased, and the joining strength can be further increased. can. Therefore, according to the bipolar lead-acid battery 200 according to the present embodiment, the same effect as that of the first embodiment described above can be obtained, and further, the electrolytic layer 143 can be obtained while cushioning the stress from the outside. It is possible to more reliably prevent the electrolytic solution impregnated in the above from leaking to the outside.
  • FIG. 3 A third embodiment of the bipolar storage battery according to the present invention will be described with reference to FIG. However, for the same parts as those in the above-described embodiment, the same reference numerals as those used in the description of the above-described embodiment will be used, and the description overlapping with the description in the above-mentioned embodiment will be omitted.
  • a square frame shape (frame shape) is formed along the peripheral edge on the other surface (upper surface in FIG. 3) of the substrate 111 of the bipolar lead-acid battery 300 according to the present embodiment.
  • An outer peripheral wall 312 made of a thermoplastic resin having sulfuric acid resistance is integrally projected.
  • On the other surface (upper surface in FIG. 3) of the first end plate 121, an outer peripheral wall 322 made of a thermoplastic resin having sulfuric acid resistance forming a square frame shape (frame shape) along the peripheral edge is formed. It is projected integrally.
  • a fusion splicer 352 which is a joining material made of a thermoplastic resin of the same material.
  • each space partitioned by the facing frame plates 111, 121, 131, the joining walls 113, 133, the inner peripheral walls 214, 224, and the fusing material 352 becomes the cell C, and each cell member. It surrounds 140.
  • the tip side (lower end side in FIG. 3) of the joint walls 113 and 133 is inserted between the outer peripheral walls 312 and 322 and the inner peripheral walls 214 and 224. When pressed with, the tips (upper end in FIG. 3) of the outer peripheral walls 312 and 322 are pressed against one surface (lower surface in FIG. 3) of the substrate 111 and the second end plate 131.
  • the tips (lower end in FIG. 3) of the joint walls 113 and 133 and the other surface portion (upper surface portion in FIG. 3) of the substrate 111 facing the tip and the first end plate 121 are melted and melted.
  • the tips of the outer peripheral walls 312 and 322 (upper end in FIG. 3) and one surface portion of the substrate 111 facing the tip and the second end plate 131 (lower surface portion in FIG. 3) are melted. Produces a melt, which becomes a fused material 352.
  • the fusing material 352 has a facing surface (in FIG. 3) between the joint walls 113 and 133 of the frame plates 111 and 131 on the other side (upper side in FIG. 3) and the frame plates 111 and 121 on one side (lower side in FIG. 3).
  • the fusing material 352 is provided between the tips of the joining walls 113 and 133 and the facing surface portion (the other surface portion) of the substrate 111 and the first end plate 121, and between the tips of the outer peripheral walls 312 and 322 and the substrate 111 and the first. It is fused between the facing surface portion (one surface portion) of the second end plate 131, and also penetrates between the joint walls 113 and 133 and the outer peripheral walls 312 and 322 and the inner peripheral walls 214 and 224. Join (vibration welding).
  • the tips of the joining walls 113 and 133 are vibration-welded and joined, but also the tips of the outer peripheral walls 312 and 322 are vibration-welded.
  • the outer peripheral walls 312 and 322 and the joint walls 113 and 133 can be joined over the entire length.
  • the joining range (area) of the joining walls 113 and 133 can be further increased as compared with the bipolar lead-acid battery 200 according to the second embodiment described above. can. Therefore, according to the bipolar lead-acid battery 300 according to the present embodiment, although the buffering capacity of the outer peripheral walls 112 and 122 due to external stress is lowered, the bipolar lead-acid battery according to the second embodiment described above is described. The joint strength of the joint walls 113 and 133 can be further increased as compared with 200.
  • the bipolar lead-acid battery according to the present invention is not limited to the bipolar lead-acid batteries 100, 200, and 300 according to the above-described embodiment.
  • heat welding by a hot plate or infrared heating or a solvent is used instead of the vibration welding. It is also possible to generate and weld a welding material by another welding treatment such as melting.
  • bipolar storage battery in which the adhesive 151 of the bipolar lead-acid battery 100 according to the first embodiment is replaced with the fusion material 252,352 of the bipolar lead-acid batteries 200 and 300 according to the second and third embodiments is used. It is also possible. Further, the bipolar type lead-acid battery 200 and 300 according to the second and third embodiments are replaced with the adhesive 151 of the bipolar lead-acid battery 100 according to the first embodiment. It is also possible.
  • the electrical conduction means provided on the substrate 111 is not limited to a specific method. For example, it is possible to electrically connect both sides of the substrate by containing conductive particles or conductive fibers in the entire substrate. It is also possible to incorporate a conductive member that enables electrical conduction into the substrate.
  • the bipolar storage battery according to the present invention can increase the energy density while achieving both airtightness and mechanical strength, so that it can be used extremely beneficially in industry.
  • Bipolar lead-acid battery 101 Positive electrode terminal 102 Negative electrode terminal 111 Substrate 112 Outer wall 113 Joint wall 121 First end plate 122 Outer wall 131 Second end plate 133 Joint wall 140 Cell member 141 Positive electrode 141a For positive electrode Lead layer 141b Positive electrode active material layer 142 Negative electrode 142a Negative electrode lead layer 142b Negative electrode active material layer 143 Electrolytic layer 151 Adhesive 200 Bipolar lead-acid battery 214 Inner peripheral wall 224 Inner peripheral wall 252 Fused material 300 Bipolar Type lead-acid battery 312 Outer wall 322 Outer wall 352 Fusing material C cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Saccharide Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

気密性及び機械的強度の両立を図りながらもエネルギ密度を高めることができる双極型蓄電池を提供する。双極型鉛蓄電池(100)において、互いに対向する一方のフレームプレート(111),(121)の対向面上に周縁に沿って一体的に突設された外周壁(112),(122)と、他方のフレームプレート(111),(131)の対向面上に一体的に突設されて一方のフレームプレート(111),(121)の外周壁(112),(122)よりも内側に位置すると共にセル部材(140)の周縁を包囲する接合壁(113),(133)とを備え、接合壁(113),(133)と一方のフレームプレート(111),(121)の対向面との間は、接合材(151)で接合されている。

Description

双極型蓄電池
 本発明は、双極型蓄電池に関する。
 双極型蓄電池は、鉛等の金属層及び活物質層をそれぞれ有する正極と負極との間に、硫酸等の電解液を含有する電解層を介在させたセル部材と、樹脂製の基板とが交互に複数積層されると共に、対向する基板の間にセルを包囲する樹脂製の額縁形のフレームが配設され、前記セル部材同士が電気的に直列接続されたものとなっている(例えば、下記特許文献1等参照)。
特表2017-508241号公報
 前述したような従来の双極型蓄電池においては、電解液を外部へ漏出させないように基板とフレームとの間が接合されると共に、外部から接合部分に応力が加わらないように外装ケースの内部に収められることにより、気密性及び機械的強度を保持するようにしていた。このため、前述したような従来の双極型蓄電池は、部材点数が多くなってしまうと共に嵩高くなってしまい、エネルギ密度の低下を招いてしまっていた。
 このようなことから、本発明は、気密性及び機械的強度の両立を図りながらもエネルギ密度を高めることができる双極型蓄電池を提供することを目的とする。
 前述した課題を解決するための、本発明に係る双極型蓄電池は、正極と負極との間に電解層を介在させたセル部材と、前記セルを収容する樹脂製のフレームプレートとが交互に複数積層されることにより、前記セル部材同士が直列に接続された双極型蓄電池であって、互いに対向する一方の前記フレームプレートの対向面上に周縁に沿って一体的に突設された外周壁と、互いに対向する他方の前記フレームプレートの対向面上に一体的に突設されて前記一方の前記フレームプレートの前記外周壁よりも内側に位置すると共に前記セル部材の周縁を包囲する接合壁と、を備え、前記他方の前記フレームプレートの前記接合壁と前記一方の前記フレームプレートの前記対向面との間は、接合材で接合されていることを特徴とする。
 本発明に係る双極型蓄電池によれば、フレームプレートの周縁に沿って外周壁が突設されると共に、外周壁よりも内側に接合壁が突設され、接合壁とフレームプレートの対向面との間を接合材が接合していることから、電解液の外部への漏出を防ぐことができると共に、外部から接合材部分へ加わる応力を防ぐことができるので、気密性及び機械的強度を保持することができる。その結果、外装ケース等の内部に収納する必要がなく、部材点数を減らすことができると共に、コンパクト化を図ることができるので、気密性及び機械的強度の両立を図りながらもエネルギ密度を高めることができる。
本発明に係る双極型蓄電池の第一の実施形態の概略構造を表す断面図である。 本発明に係る双極型蓄電池の第二の実施形態の概略構造を表す断面図である。 本発明に係る双極型蓄電池の第三の実施形態の概略構造を表す断面図である。
 本発明に係る双極型蓄電池の実施形態を図面に基づいて説明するが、本発明は図面に基づいて説明する以下の実施形態のみに限定されるものではない。
〈第一の実施形態〉
 本発明に係る双極型蓄電池の第一の実施形態を図1に基づいて説明する。
 図1に示すように、本実施形態に係るバイポーラ型鉛蓄電池100の内部には、耐硫酸性を有する熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレート(アクリル樹脂)、アクリルニトリルーブタジエンースチレン共重合体(ABS)、ポリアミド(ナイロン)、ポリカーボネート等)製の四角状の平板形をなすフレームプレートである基板111が間隔を空けて対向するように複数配列されている。バイポーラ型鉛蓄電池100の基板111の配列方向一方端側(図1中、下方端側)には、耐硫酸性を有する熱可塑性樹脂製の四角状の平板形をなすフレームプレートである第一の端板121が基板111と同様にして配列されている。バイポーラ型鉛蓄電池100の基板111の配列方向他方端側(図1中、上方端側)には、耐硫酸性を有する熱可塑性樹脂製の四角状の平板形をなすフレームプレートである第二の端板131が基板111と同様にして配列されている。
 基板111及び第一の端板121の他方面(図1中、上方面)上には、正極用の金属層である鉛又は鉛合金製の正極用鉛層141aがそれぞれ配設されている。正極用鉛層141a上には、活性物質を含有する正極用活物質層141bがそれぞれ配設されている。このような正極用鉛層141a及び正極用活物質層141bにより、正極141が形成されている。
 基板111及び第二の端板131の一方面(図1中、下方面)上には、負極用の金属層である鉛又は鉛合金製の負極用鉛層142aがそれぞれ配設されている。負極用鉛層142a上には、活性物質を含有する負極用活物質層142bがそれぞれ配設されている。このような負極用鉛層142a及び負極用活物質層142bにより、負極142が形成されている。
 正極141と負極142との間には、硫酸等の電解液を含浸されたガラス繊維マット等の電解層143がそれぞれ配設されている。このような正極141,負極142,電解層143により、セル部材140が形成されている。これらセル部材140は、公知の手段により電気的に直列接続されている。例えば、基板111が正極用鉛層141aと負極用鉛層142aとを電気的に接続する手段を備えている。なお、図1中、101は正極用端子、102は負極用端子である。
 つまり、正極141と負極142との間に電解層143を介在させたセル部材140と、セル部材140を収容する樹脂製のフレームプレート111,121,131とが交互に複数積層されることにより、セル部材140同士が直列に接続されているのである。
 基板111の他方面(図1中、上方面)上には、周縁に沿って四角状の枠形(額縁形)をなす耐硫酸性を有する熱可塑性樹脂製の外周壁112がそれぞれ一体的に突設されている。基板111の一方面(図1中、下方面)上には、基板111の他方面(図1中、上方面)の外周壁112よりも基板111の内側に位置すると共にセル部材140の周縁を包囲する耐硫酸性を有する熱可塑性樹脂製の接合壁113がそれぞれ一体的に突設されている。
 第一の端板121の他方面(図1中、上方面)上には、周縁に沿って四角状の枠形(額縁形)をなす耐硫酸性を有する熱可塑性樹脂製の外周壁122が一体的に突設されている。第二の端板131の一方面(図1中、下方面)上には、対向する基板111の他方面(図1中、上方面)の外周壁112よりも基板111の内側に位置すると共にセル部材140の周縁を包囲する耐硫酸性を有する熱可塑性樹脂製の接合壁133が一体的に突設されている。
 つまり、互いに対向する一方(図1中、下方)のフレームプレート111,121の対向面(図1中、上面)上に周縁に沿って一体的に突設された外周壁112,122と、互いに対向する他方(図1中、上方)のフレームプレート111,131の対向面(図1中、下面)上に一体的に突設されて一方(図1中、下方)のフレームプレート111,121の外周壁112,122よりも内側に位置すると共にセル部材140の周縁を包囲する接合壁113,133と、を備えている。
 第二の端板131の接合壁133の先端(図1中、下端)は、対向する基板111の他方面(図1中、上方面)に接合材である耐硫酸性を有する接着剤(例えば、エポキシ樹脂系接着剤)151を介して接合している。第一の端板121の他方面(図1中、上方面)には、対向する基板111の接合壁113の先端(図1中、下端)が接着剤151を介して接合している。互いに対向する他方(図1中、上方)の基板111の接合壁113の先端(図1中、下端)は、一方(図1中、下方)の基板111の他方面(図1中、上方面)に接着剤151を介して接合している。
 つまり、他方(図1中、上方)のフレームプレート111,131の接合壁113,133と一方(図1中、下方)のフレームプレート111,121の対向面(図1中、上面)との間は、接着剤(接合材)151で接合されているのである。
 第一の端板121の外周壁122と、対向する基板111の一方面(図1中、下方面)との間、及び、外周壁122と接合壁113との間は、隙間が形成されている。第二の端板131の一方面(図1中、下方面)と、対向する基板111の外周壁112との間、及び、外周壁112と第二の端板131の接合壁133との間は、隙間が形成されている。互いに対向する一方(図1中、下方)の基板111の外周壁112と、他方(図1中、上方)の基板111の一方面(図1中、下方面)との間、及び、外周壁112と接合壁113との間は、隙間が形成されている。
 つまり、一方(図1中、下方)のフレームプレート111,121の外周壁112,122と他方(図1中、上方)のフレームプレート111,131の対向面(図1中、下面)との間は、隙間が形成されると共に、一方(図1中、下方)のフレームプレート111,121の外周壁112,122と他方(図1中、上方)のフレームプレート111,131の接合壁113,133との間は、隙間が形成されているのである。
 なお、本実施形態においては、対向するフレームプレート111,121,131と接合壁113,133と接着剤151とで仕切られて包囲された各空間がセルCとなって各セル部材140を収容している。
 このような本実施形態に係るバイポーラ型鉛蓄電池100では、接合壁113,133が対向する基板111や第一の端板121の対向面(他方面)に接着剤151を介して接合している。これにより、電解層143に含浸されている電解液の外部への漏出を防ぐことができる。また、基板111や第一の端板121の対向面(他方面)に周縁に沿って外周壁112が突設されていることから、外部から接着剤151部分へ加わる応力を防ぐことができるので、気密性及び機械的強度を保持することができる。
 このため、本実施形態に係るバイポーラ型鉛蓄電池100においては、外装ケース等の内部に収納する必要がなく、部材点数を減らすことができると共に、コンパクト化を図ることができる。
 したがって、本実施形態に係るバイポーラ型鉛蓄電池100によれば、気密性及び機械的強度の両立を図りながらもエネルギ密度を高めることができる。
 すなわち、バイポーラ型鉛蓄電池100は、フレームプレート111,121の周縁に沿って外周壁112,122が突設されると共に、外周壁112,122よりも内側に接合壁113,133が突設され、接合壁113,133とフレームプレート111,121の対向面との間を接合材(接着剤)151が接合している。これにより、電解液の外部への漏出を防ぐことができると共に、外部から接合材151部分へ加わる応力を防ぐことができるので、気密性及び機械的強度を保持することができる。その結果、外装ケース等の内部に収納する必要がなく、部材点数を減らすことができると共に、コンパクト化を図ることができるので、気密性及び機械的強度の両立を図りながらもエネルギ密度を高めることができるのである。
 また、外周壁112,122と、対向する基板111や第二の端板131の対向面(一方面)との間に隙間が形成されると共に、外周壁112,122と接合壁113,133との間に隙間が形成されている。これにより、外周壁112,122が撓み易くなるので、外部からの応力を緩衝することができ、接着剤151部分へ加わる外部応力をより低減することができる。
〈第二の実施形態〉
 本発明に係る双極型蓄電池の第二の実施形態を図2に基づいて説明する。ただし、前述した実施形態と同様な部分については、前述した実施形態の説明で用いた符号と同様な符号を用いることにより、前述した実施形態での説明と重複する説明を省略する。
 図2に示すように、本実施形態に係るバイポーラ型鉛蓄電池200の基板111の他方面(図2中、上方面)上には、基板111の一方面(図2中、下方面)の接合壁113よりも基板111の内側に位置すると共にセル140の周縁を包囲する耐硫酸性を有する熱可塑性樹脂製の内周壁214がそれぞれ一体的に突設されている。
 第一の端板121の他方面(図2中、上方面)上には、対向する基板111の一方面(図2中、下方面)の外周壁112よりも第一の端板121の内側に位置すると共にセル部材140の周縁を包囲する耐硫酸性を有する熱可塑性樹脂製の内周壁224が一体的に突設されている。
 つまり、一方(図2中、下方)のフレームプレート111,121の対向面(図2中、上面)上に一体的に突設されて他方(図2中、上方)のフレームプレート111,131の接合壁113,133よりも内側に位置すると共にセル部材140の周縁を包囲する内周壁214,224を備えている。
 接合壁113,133の先端側(図2中、下端側)は、対向する基板111や第一の端板121の対向面(他方面)との間と、外周壁112,122との間と、内周壁214,224との間が、基板111や第一の端板121や接合壁113,133と同一材料の熱可塑性樹脂からなる接合材である融着材252で接合している。
 つまり、他方(図2中、上方)のフレームプレート111,131の接合壁113,133と一方(図2中、下方)のフレームプレート111,121の対向面(図2中、上面)との間が、融着材(接合材)252で接合される。また、接合壁113,133の先端側(図2中、下端側)と外周壁112,122との間及び接合壁113,133の先端側(図2中、下端側)と内周壁214,224との間が、融着材(接合材)252で接合されているのである。
 なお、本実施形態においては、対向するフレームプレート111,121,131と接合壁113,133と内周壁214,224と融着材252とで仕切られた各空間がセルCとなって各セル部材140を包囲している。
 このような本実施形態に係るバイポーラ型鉛蓄電池200においては、接合壁113,133の先端側(図2中、下端側)を外周壁112,122と内周壁214,224との間に入れ込んで押圧し、基板111や第一の端板121の他方面(図2中、上方面)に対して振動させて摩擦熱を発生させる(振動摩擦)。これにより、接合壁113,133の先端側、及び、外周壁112,122と内周壁214,224との間の基板111や第一の端板121の他方面部分が溶融して溶融物を生じ、融着材252となる。
 つまり、融着材252は、他方(図2中、上方)のフレームプレート111,131の接合壁113,133と一方(図2中、下方)のフレームプレート111,121の対向面(図2中、上面)との間の振動摩擦により生じた溶融物なのである。
 そして、融着材252は、接合壁113,133の先端側と基板111や第一の端板121の他方面部分との間を融着すると共に、接合壁113,133の先端側と外周壁112,122や内周壁214,224との間にも入り込んで当該間を接合する(振動溶着)。
 このような振動溶着による本実施形態に係るバイポーラ型鉛蓄電池200では、接合壁113,133の先端と基板111や第一の端板121の対向面(他方面)との間だけでなく、接合壁113,133の先端側と内周壁214,224及び外周壁112,122との間も接合されるので、接合壁113,133の接合範囲を増加させることができ、接合強度をさらに高めることができる。
 したがって、本実施形態に係るバイポーラ型鉛蓄電池200によれば、前述した第一の実施形態と同様な効果を得ることができると共に、さらに、外部からの応力の緩衝を図りながらも、電解層143に含浸されている電解液の外部への漏出をより確実に防ぐことができる。
〈第三の実施形態〉
 本発明に係る双極型蓄電池の第三の実施形態を図3に基づいて説明する。ただし、前述した実施形態と同様な部分については、前述した実施形態の説明で用いた符号と同様な符号を用いることにより、前述した実施形態での説明と重複する説明を省略する。
 図3に示すように、本実施形態に係るバイポーラ型鉛蓄電池300の基板111の他方面(図3中、上方面)上には、周縁に沿って四角状の枠形(額縁形)をなす耐硫酸性を有する熱可塑性樹脂製の外周壁312がそれぞれ一体的に突設されている。第一の端板121の他方面(図3中、上方面)上には、周縁に沿って四角状の枠形(額縁形)をなす耐硫酸性を有する熱可塑性樹脂製の外周壁322が一体的に突設されている。
 接合壁113,133の先端(図3中、下端)と基板111や第一の端板121の他方面(図3中、上方面)との間、外周壁312,322の内側面と接合壁113,133の外側面との間、内周壁214,224の外側面と接合壁113,133の内側面との間、外周壁312,322の先端(図3中、上端)と基板111や第二の端板131の一方面(図3中、下方面)との間は、基板111や第一の端板121や第二の端板131や接合壁113,133や外周壁312,322と同一材料の熱可塑性樹脂からなる接合材である融着材352で接合している。
 つまり、他方(図3中、上方)のフレームプレート111,131の接合壁113,133と一方(図3中、下方)のフレームプレート111,121の対向面(図3中、上面)との間、一方(図3中、下方)のフレームプレート111,121の外周壁312,322と他方(図3中、上方)のフレームプレート111,131の接合壁113,133との間、一方(図3中、下方)のフレームプレート111,121の内周壁214,224と他方(図3中、上方)のフレームプレート111,131の接合壁113,133との間、一方(図3中、下方)のフレームプレート111,121の外周壁312,322と他方(図3中、上方)のフレームプレート111,131の対向面(図3中、下面)との間は、融着材352で接合しているのである。
 なお、本実施形態においては、対向するフレームプレート111,121,131と接合壁113,133と内周壁214,224と融着材352とで仕切られた各空間がセルCとなって各セル部材140を包囲している。
 このような本実施形態に係るバイポーラ型鉛蓄電池300においては、接合壁113,133の先端側(図3中、下端側)を外周壁312,322と内周壁214,224との間に入れ込んで押圧すると、外周壁312,322の先端(図3中、上端)が基板111や第二の端板131の一方面(図3中、下方面)に押圧される。
 そして、基板111や第二の端板131を、対向する基板111や第一の端板121に対して振動させると、接合壁113,133の先端と基板111や第一の端板121の対向面(他方面)との間、及び、外周壁312,322の先端と基板111や第二の端板131の対向面(一方面)との間に摩擦熱が発生する(振動摩擦)。
 これにより、接合壁113,133の先端(図3中、下端)及び当該先端と対向する基板111や第一の端板121の他方面部分(図3中、上方面部分)が溶融して溶融物を生じると共に、外周壁312,322の先端(図3中、上端)及び当該先端と対向する基板111や第二の端板131の一方面部分(図3中、下方面部分)が溶融して溶融物を生じ、融着材352となる。
 つまり、融着材352は、他方(図3中、上方)のフレームプレート111,131の接合壁113,133と一方(図3中、下方)のフレームプレート111,121の対向面(図3中、上面)との間及び一方(図3中、下方)のフレームプレート111,121の外周壁312,322と他方(図3中、上方)のフレームプレート111,131の対向面(図3中、下面)との間の振動摩擦により生じた溶融物なのである。
 そして、融着材352は、接合壁113,133の先端と基板111や第一の端板121の対向面部分(他方面部分)との間及び外周壁312,322の先端と基板111や第二の端板131の対向面部分(一方面部分)との間を融着すると共に、接合壁113,133と外周壁312,322や内周壁214,224との間にも入り込んで当該間を接合する(振動溶着)。
 このような振動溶着による本実施形態に係るバイポーラ型鉛蓄電池300では、接合壁113,133の先端側を振動溶着して接合するだけでなく、さらに、外周壁312,322の先端も振動溶着して外周壁312,322の先端と共に外周壁312,322と接合壁113,133との間も全長にわたって接合することができる。
 このため、本実施形態に係るバイポーラ型鉛蓄電池300においては、前述した第二の実施形態に係るバイポーラ型鉛蓄電池200よりも、接合壁113,133の接合範囲(面積)をさらに増加させることができる。
 したがって、本実施形態に係るバイポーラ型鉛蓄電池300によれば、外部からの応力に対する外周壁112,122の緩衝能の低下を招いてしまうものの、前述した第二の実施形態に係るバイポーラ型鉛蓄電池200よりも、接合壁113,133の接合強度をさらに高めることができる。
〈他の実施形態〉
 なお、本発明に係る双極型蓄電池は、前述した実施形態に係るバイポーラ型鉛蓄電池100,200,300に限らない。他の実施形態として、例えば、第二,三の実施形態に係るバイポーラ型鉛蓄電池200,300の融着材252,352に関して、振動溶着に代えて、熱板や赤外線加熱による熱溶着や、溶剤溶解等の他の溶着処理によって融着材を発生させて溶着させることも可能である。
 また、第一の実施形態に係るバイポーラ型鉛蓄電池100の接着剤151を第二,三の実施形態に係るバイポーラ型鉛蓄電池200,300の融着材252,352に置き換えた双極型蓄電池とすることも可能である。さらに、第二,三の実施形態に係るバイポーラ型鉛蓄電池200,300の融着材252,352を第一の実施形態に係るバイポーラ型鉛蓄電池100の接着剤151に置き換えた双極型蓄電池とすることも可能である。
 すなわち、前述した実施形態に係るバイポーラ型鉛蓄電池100,200,300の各種技術的事項を必要に応じて適宜変更や置換等して構成した双極型蓄電池とすることも可能である。
 また、基板111に備えられる電気的導通手段は特定の方法に限定されるものではない。例えば、基板の全体に導電性粒子や導電性繊維を含有させることにより、基板の両面を電気的に接続できるようにすることも可能である。また、電気的導通を可能とする導電性部材を基板に組み込むことも可能である。
 本発明に係る双極型蓄電池は、気密性及び機械的強度の両立を図りながらもエネルギ密度を高めることができるので、産業上、極めて有益に利用することができる。
 100 双極(バイポーラ)型鉛蓄電池
 101 正極用端子
 102 負極用端子
 111 基板
 112 外周壁
 113 接合壁
 121 第一の端板
 122 外周壁
 131 第二の端板
 133 接合壁
 140 セル部材
 141 正極
 141a 正極用鉛層
 141b 正極用活物質層
 142 負極
 142a 負極用鉛層
 142b 負極用活物質層
 143 電解層
 151 接着剤
 200 双極(バイポーラ)型鉛蓄電池
 214 内周壁
 224 内周壁
 252 融着材
 300 双極(バイポーラ)型鉛蓄電池
 312 外周壁
 322 外周壁
 352 融着材
 C セル

Claims (10)

  1.  正極と負極との間に電解層を介在させたセル部材と、前記セル部材を収容する樹脂製のフレームプレートとが交互に複数積層されることにより、前記セル部材同士が直列に接続された双極型蓄電池であって、
     互いに対向する一方の前記フレームプレートの対向面上に周縁に沿って一体的に突設された外周壁と、
     互いに対向する他方の前記フレームプレートの対向面上に一体的に突設されて前記一方の前記フレームプレートの前記外周壁よりも内側に位置すると共に前記セル部材の周縁を包囲する接合壁と、
     を備え、
     前記他方の前記フレームプレートの前記接合壁と前記一方の前記フレームプレートの前記対向面との間は、接合材で接合されている
     ことを特徴とする双極型蓄電池。
  2.  前記一方の前記フレームプレートの前記外周壁と前記他方の前記フレームプレートの前記接合壁との間は、前記接合材が介在している
     ことを特徴とする請求項1に記載の双極型蓄電池。
  3.  前記一方の前記フレームプレートの前記対向面上に一体的に突設されて前記他方の前記フレームプレートの前記接合壁よりも内側に位置すると共に前記セル部材の周縁を包囲する内周壁を備え、
     前記一方の前記フレームプレートの前記内周壁と前記他方の前記フレームプレートの前記接合壁との間は、前記接合材で接合されている
     ことを特徴とする請求項1又は2に記載の双極型蓄電池。
  4.  前記一方の前記フレームプレートの前記外周壁と前記他方の前記フレームプレートの前記対向面との間は、隙間が形成されている
     ことを特徴とする請求項1から3のいずれか一項に記載の双極型蓄電池。
  5.  前記接合材は、接着剤又は融着材である
     ことを特徴とする請求項1から4のいずれか一項に記載の双極型蓄電池。
  6.  前記融着材は、前記他方の前記フレームプレートの前記接合壁と前記一方の前記フレームプレートの前記対向面との間の溶着処理により生じた溶融物である
     ことを特徴とする請求項5に記載の双極型蓄電池。
  7.  前記一方の前記フレームプレートの前記外周壁と前記他方の前記フレームプレートの前記対向面との間は、前記接合材で接合されている
     ことを特徴とする請求項1から3のいずれか一項に記載の双極型蓄電池。
  8.  前記接合材は、接着剤又は融着材である
     ことを特徴とする請求項7に記載の双極型蓄電池。
  9.  前記融着材は、前記他方の前記フレームプレートの前記接合壁と前記一方の前記フレームプレートの前記対向面との間及び前記一方の前記フレームプレートの前記外周壁と前記他方の前記フレームプレートの前記対向面との間の溶着処理により生じた溶融物である
     ことを特徴とする請求項8に記載の双極型蓄電池。
  10.  前記樹脂は、熱可塑性樹脂であることを特徴とする請求項1から9のいずれか一項に記載の双極型蓄電池。
PCT/JP2021/028488 2020-09-30 2021-07-30 双極型蓄電池 WO2022070587A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112023004662A BR112023004662A2 (pt) 2020-09-30 2021-07-30 Bateria bipolar
EP21874890.3A EP4224593A1 (en) 2020-09-30 2021-07-30 Bipolar storage battery
AU2021354234A AU2021354234A1 (en) 2020-09-30 2021-07-30 Bipolar storage battery
CN202180054402.8A CN116325280A (zh) 2020-09-30 2021-07-30 双极型蓄电池
JP2022553503A JPWO2022070587A1 (ja) 2020-09-30 2021-07-30
US18/188,867 US20230223628A1 (en) 2020-09-30 2023-03-23 Bipolar Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020165687 2020-09-30
JP2020-165687 2020-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,867 Continuation US20230223628A1 (en) 2020-09-30 2023-03-23 Bipolar Battery

Publications (1)

Publication Number Publication Date
WO2022070587A1 true WO2022070587A1 (ja) 2022-04-07

Family

ID=80949876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028488 WO2022070587A1 (ja) 2020-09-30 2021-07-30 双極型蓄電池

Country Status (7)

Country Link
US (1) US20230223628A1 (ja)
EP (1) EP4224593A1 (ja)
JP (1) JPWO2022070587A1 (ja)
CN (1) CN116325280A (ja)
AU (1) AU2021354234A1 (ja)
BR (1) BR112023004662A2 (ja)
WO (1) WO2022070587A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195673A (ja) * 1988-01-29 1989-08-07 Shin Kobe Electric Mach Co Ltd 電池
JP2003323869A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 電池および電池モジュール
JP2009521779A (ja) * 2005-12-21 2009-06-04 エフパワー アーベー バッテリーの製造方法および装置ならびにバッテリー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195673A (ja) * 1988-01-29 1989-08-07 Shin Kobe Electric Mach Co Ltd 電池
JP2003323869A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 電池および電池モジュール
JP2009521779A (ja) * 2005-12-21 2009-06-04 エフパワー アーベー バッテリーの製造方法および装置ならびにバッテリー

Also Published As

Publication number Publication date
EP4224593A1 (en) 2023-08-09
JPWO2022070587A1 (ja) 2022-04-07
BR112023004662A2 (pt) 2023-04-18
AU2021354234A1 (en) 2023-06-08
US20230223628A1 (en) 2023-07-13
CN116325280A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
KR101618488B1 (ko) 2차 전지의 제조 방법, 2차 전지, 용착 장치
JP5078282B2 (ja) 組電池
JP6110582B1 (ja) 蓄電モジュールの製造方法
EP3343691A1 (en) Battery module
JP4732462B2 (ja) ロック型バッテリパック
JP4916722B2 (ja) 二次電池
WO2010026774A1 (ja) 積層型二次電池
JP2018018582A (ja) 燃料電池単セルおよびその製造方法
KR102529975B1 (ko) 이차 전지용 케이스 및 이를 구비하는 배터리 모듈
JP2013502672A (ja) フレームを備えるガルバニ電池及びこれを製造する方法
JP5630202B2 (ja) 溶接方法および溶接装置および電池の製造方法
JP2020102320A (ja) 二次電池の製造方法
WO2022070587A1 (ja) 双極型蓄電池
JP2017004885A (ja) 二次電池の製造方法および製造装置
KR20100094898A (ko) 리튬전지 및 그 제조방법
JP7508172B2 (ja) 過融着防止構造を有する電池パックケース
JP2016001574A (ja) ラミネート外装電池
WO2022172596A1 (ja) バイポーラ型蓄電池
KR200465123Y1 (ko) 배터리의 접합 케이스
JPS5851665B2 (ja) 蓄電池
JP6748849B2 (ja) 燃料電池の膜電極接合体及び燃料電池
WO2022172595A1 (ja) バイポーラ型蓄電池
JP2024503340A (ja) 過融着を防止する防水電池パックケース
JP2019046741A (ja) 電気化学デバイスとその製造方法
US20230299400A1 (en) Bipolar Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553503

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023004662

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202327020028

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 112023004662

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230313

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874890

Country of ref document: EP

Effective date: 20230502

ENP Entry into the national phase

Ref document number: 2021354234

Country of ref document: AU

Date of ref document: 20210730

Kind code of ref document: A