WO2022172595A1 - バイポーラ型蓄電池 - Google Patents

バイポーラ型蓄電池 Download PDF

Info

Publication number
WO2022172595A1
WO2022172595A1 PCT/JP2021/047000 JP2021047000W WO2022172595A1 WO 2022172595 A1 WO2022172595 A1 WO 2022172595A1 JP 2021047000 W JP2021047000 W JP 2021047000W WO 2022172595 A1 WO2022172595 A1 WO 2022172595A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar
rim
positive electrode
negative electrode
frame unit
Prior art date
Application number
PCT/JP2021/047000
Other languages
English (en)
French (fr)
Inventor
広樹 田中
康雄 中島
健一 須山
彰 田中
芳延 平
憲治 廣田
Original Assignee
古河電気工業株式会社
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河電池株式会社 filed Critical 古河電気工業株式会社
Priority to CN202180092409.9A priority Critical patent/CN116802883A/zh
Priority to EP21925838.1A priority patent/EP4293791A1/en
Priority to JP2022581215A priority patent/JPWO2022172595A1/ja
Publication of WO2022172595A1 publication Critical patent/WO2022172595A1/ja
Priority to US18/362,893 priority patent/US20240021885A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/14Assembling a group of electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiment of the present invention relates to a bipolar storage battery.
  • a storage battery is used to level the power load. That is, when the amount of power generation is greater than the amount of consumption, the storage battery is charged with the difference, and when the amount of power generation is less than the amount of consumption, the difference is discharged from the storage battery.
  • a lead-acid battery is often used from the viewpoint of economy, safety, and the like.
  • a substrate made of resin is provided inside a frame (rim) made of resin and has a picture frame shape.
  • a positive lead layer and a negative lead layer are provided.
  • the positive electrode lead layer is adjacent to the positive electrode active material layer.
  • the negative electrode lead layer is adjacent to the negative electrode active material layer.
  • a glass mat (electrolytic layer) containing an electrolytic solution is disposed inside the frame-shaped spacer made of resin. A plurality of frames and spacers are alternately laminated and assembled.
  • the positive electrode lead layer and the negative electrode lead layer are directly bonded inside the multiple holes formed in the substrate. That is, it is a bipolar lead-acid battery in which a plurality of cell members and substrates having perforations (communication holes) for communicating between one surface side and the other surface side are alternately laminated.
  • the cell member includes a positive electrode having a positive electrode lead layer provided with a positive electrode active material layer, a negative electrode having a negative electrode lead layer provided with a negative electrode active material layer, and an electrolytic layer interposed between the positive electrode and the negative electrode.
  • the positive electrode lead layer of one cell member and the negative electrode lead layer of the other cell member are inserted into the perforations of the substrate and joined together, thereby connecting the cell members in series. It's becoming
  • a bipolar storage battery is configured by being accommodated inside the exterior case so that stress is not applied to the joint portion from the outside.
  • the present invention prevents electrolyte from leaking to the outside and deterioration of mechanical strength by firmly bonding the plates that hold the cell members together, thereby improving the airtightness and mechanical strength of the cell interior. It is an object of the present invention to provide a bipolar storage battery capable of achieving compactness while reducing the number of parts.
  • a bipolar storage battery includes a bipolar plate having a positive electrode provided on one surface and a negative electrode provided on the other surface, and an internal rim provided on the peripheral edge of the bipolar plate.
  • an end frame unit composed of an internal frame unit, an end plate forming a cell between opposing bipolar plates, and an end rim provided on the peripheral edge of the end plate;
  • each plate holding the cell member can be firmly bonded, so that leakage of the electrolytic solution to the outside and deterioration of the mechanical strength can be prevented, and the airtightness inside the cell can be maintained. It is possible to provide a bipolar storage battery that can ensure sufficient mechanical strength and can be made compact while reducing the number of parts.
  • the ratio of the width L1 of the inner rim or the end rim to the value indicating the welding depth is 2. .7 times or more and 16.0 times or less.
  • FIG. 2 is a cross-sectional view showing, in particular, the structure of an internal frame unit in an enlarged manner in the bipolar lead-acid battery according to the embodiment of the present invention
  • FIG. 5 is an explanatory diagram for explaining the depth of welding with respect to welding used in the embodiment of the present invention
  • FIG. 2 is a graph showing test results obtained with respect to an embodiment of the present invention
  • FIG. 2 is a graph showing test results obtained with respect to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view showing the outline of the structure of a bipolar lead-acid battery 1 according to an embodiment of the present invention.
  • the bipolar lead-acid battery 1 has, for example, a substantially rectangular parallelepiped shape. is configured.
  • the number of stacked internal frame units 11 is set so that the storage capacity of the bipolar lead-acid battery 1 is a desired value.
  • a negative terminal 107 is fixed to the first end frame unit 12, and the negative electrode 110 fixed to the first end frame unit 12 and the negative terminal 107 are electrically connected.
  • a positive electrode terminal 108 is fixed to the second end frame unit 13, and the positive electrode 120 fixed to the second end frame unit 13 and the positive electrode terminal 108 are electrically connected.
  • the internal frame unit 11 is a substrate having a rectangular planar shape and having a positive electrode 120 provided on one surface and a negative electrode 110 provided on the other surface (such a substrate is hereinafter referred to as a “bipolar plate” as appropriate). ) 111 and an inner rim 112 of, for example, a square frame shape (picture frame shape) provided on the periphery of the bipolar plate 111 .
  • the bipolar plates 111 of the internal frame unit 11 are arranged between the cell members 130 adjacent to each other in the stacking direction of the cell members 130 (vertical direction in FIG. 1).
  • Each inner rim 112 of each inner frame unit 11 has joint surfaces 112a facing each other in the stacking direction of the cell members 130 (vertical direction in FIG. 1).
  • the bipolar plate 111 is integrated inside the internal rim 112 . Moreover, the bipolar plate 111 is positioned in the middle of the inner rim 112 in the thickness direction (vertical direction in FIG. 1). The inner rim 112 has a thickness greater than the thickness of the bipolar plate 111 .
  • the internal frame unit 11 is made of thermoplastic resin (for example, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polymethyl methacrylate (acrylic resin), acrylonitrile-butanediene-styrene copolymer (ABS), polyamide (nylon), Polycarbonate, etc.).
  • thermoplastic resins have excellent moldability and excellent sulfuric acid resistance. Therefore, for example, even if the bipolar plate 111 comes into contact with the electrolytic solution, the bipolar plate 111 is unlikely to be decomposed, deteriorated, corroded, or the like.
  • the bipolar plate 111 is provided with a communication hole (not shown) that allows communication between one surface and the other surface. Then, the positive electrode lead layer 101 and the negative electrode lead layer 102 are joined together through the communication hole, thereby electrically connecting the two, and conducting between the positive electrode 120 and the negative electrode 110 .
  • the positive electrode 120 is made of lead or a lead alloy and includes a positive electrode lead layer 101 arranged on one surface of the bipolar plate 111, a positive electrode active material layer 103 arranged on the positive electrode lead layer 101, It has The positive electrode lead layer 101 is adhered to one surface of the bipolar plate 111 by an adhesive layer such as an adhesive (not shown) provided between the one surface of the bipolar plate 111 and the positive electrode lead layer 101 . Therefore, on one surface of the bipolar plate 111 (the surface facing downward in the drawing such as FIG. 1), the adhesive layer, the positive electrode lead layer 101, and the positive electrode active material layer 103 are laminated in this order. It is
  • the negative electrode 110 is made of lead or a lead alloy and includes a negative electrode lead layer 102 arranged on the other side of the bipolar plate 111 (the surface facing upward in the drawings such as FIG. 1 ), and a negative electrode lead layer 102 . and a negative electrode active material layer 104 disposed on the layer 102 .
  • the negative electrode lead layer 102 is adhered to the other surface of the bipolar plate 111 by an adhesive layer such as an adhesive (not shown) provided between the other surface of the bipolar plate 111 and the negative electrode lead layer 102 .
  • the positive electrode 120 and the negative electrode 110 are electrically connected through the communication hole described above.
  • the first end frame unit 12 includes a first end plate 121 having a rectangular planar shape, and a square frame-shaped (picture frame-shaped) first end plate 121 provided on the peripheral edge of the first end plate 121, for example. 1 end rim 122 .
  • a first end plate 121 is integrated inside a first end rim 122 .
  • the first end frame unit 12 is also made of a thermoplastic resin having sulfuric acid resistance.
  • the first end frame unit 12 surrounds the side surface of the cell member 130 and the negative electrode 110 side on one end side (lower end side in FIG. 1) of the bipolar lead-acid battery 1 .
  • a first end plate 121 surrounds the negative electrode 110 side of the cell member 130 and a first end rim 122 surrounds the sides of the cell member 130 .
  • the first end plate 121 is arranged parallel to the bipolar plate 111 of the inner frame unit 11, and the first end rim 122 is arranged to contact the inner rim 112 of the adjacent inner frame unit 11. It is That is, the first end rim 122 has a joint surface 122a that faces the inner rim 112 of the inner frame unit 11 in the stacking direction of the cell members 130 (vertical direction in FIG. 1).
  • the thickness of the first end plate 121 is greater than that of the bipolar plate 111 .
  • the first end rim 122 has a thickness greater than the thickness of the first end plate 121 .
  • the first end plate 121 is set to be located at one end (lower end in FIG. 1) in the thickness direction (vertical direction in FIG. 1) of the first end rim 122 .
  • a negative electrode lead layer 102 is provided on the other surface of the first end plate 121 .
  • a negative electrode active material layer 104 is provided on the negative electrode lead layer 102 on the first end plate 121 .
  • an electrolytic layer made of a glass fiber mat or the like impregnated with an electrolytic solution such as sulfuric acid is provided.
  • a layer 105 is provided.
  • the second end frame unit 13 includes a second end plate 131 having a rectangular planar shape and a second end plate 131 having, for example, a rectangular frame shape (picture frame shape) provided on the peripheral edge of the second end plate 131 . 2 end rims 132 .
  • a second end plate 131 is integrated inside a second end rim 132 .
  • the second end frame unit 13 is also made of a thermoplastic resin having sulfuric acid resistance.
  • the second end frame unit 13 surrounds the side surface of the cell member 130 and the positive electrode 120 side on the other end side (upper end side in FIG. 1) of the bipolar lead-acid battery 1 .
  • a second end plate 131 surrounds the positive electrode 120 side of the cell member 130 and a second end rim 132 surrounds the sides of the cell member 130 .
  • the second end plate 131 is arranged parallel to the bipolar plate 111 of the inner frame unit 11 , and the second end rim 132 is arranged to contact the inner rim 112 of the adjacent inner frame unit 11 . It is That is, the second end rim 132 has a joint surface 132a that faces the inner rim 112 of the inner frame unit 11 in the stacking direction of the cell members 130 (vertical direction in FIG. 1).
  • the second end plate 131 has a thickness greater than that of the bipolar plate 111 .
  • the second end rim 132 has a thickness greater than the thickness of the second end plate 131 .
  • the second end plate 131 is set to be positioned at the other end (upper end in FIG. 1) in the thickness direction (vertical direction in FIG. 1) of the second end rim 132 .
  • a positive electrode lead layer 101 is provided on one surface of the second end plate 131 .
  • a positive electrode active material layer 103 is provided on the positive electrode lead layer 101 on the second end plate 131 .
  • the electrolytic layer 105 described above is provided between the positive electrode active material layer 103 on the second end plate 131 and the negative electrode active material layer 104 on the opposing bipolar plate 111 .
  • the bipolar plate 111, the positive electrode lead layer 101, the positive electrode active material layer 103, the negative electrode lead layer 102, and the A bipolar electrode 140 is configured by the negative electrode active material layer 104 .
  • a bipolar electrode is a single electrode that functions as both a positive electrode and a negative electrode.
  • a plurality of cell members 130 each having an electrolytic layer 105 interposed between the positive electrode 120 and the negative electrode 110 are alternately laminated and assembled. It has a battery configuration in which they are connected in series.
  • the above-described cell members 130 are stacked and arranged at intervals in the stacking direction (vertical direction in FIG. 1).
  • the inner frame unit 11, the first end frame unit 12, and the second end frame unit 13 form a plurality of cells (spaces) C that individually accommodate a plurality of cell members 130. .
  • the cell members 130 adjacent to each other in the stacking direction are electrically connected in series.
  • the bipolar plate 111 interposed between the cell members 130 adjacent in the stacking direction is provided with the above-described communication hole for electrically connecting the positive electrode lead layer 101 and the negative electrode lead layer 102 . .
  • examples of the welding method include various welding methods such as vibration welding, ultrasonic welding, and hot plate welding.
  • vibration welding is performed by vibrating surfaces to be welded while pressurizing them during welding, and the welding cycle is fast and reproducibility is good. Therefore, vibration welding is more preferably used.
  • FIG. 2 is a cross-sectional view showing an enlarged structure of the internal frame unit 11 in the bipolar lead-acid battery 1 according to the embodiment of the present invention. That is, the internal frame unit 11 shown in FIG. 2 is joined to the internal frame unit 11 stacked from below in the direction of the drawing so as to be further laminated.
  • vibration welding is performed to join the joint surfaces 112a of the internal rims 112 of the adjacent internal frame units 11 to each other, and one joint surface 112a is pressed against the other joint surface 112a and vibrated. Frictional heat is generated to melt and join the one joint surface 112a and the other joint surface 112a.
  • the value of the welding depth is set so that the following relationship is established between the welding depth and the width of the internal rim 112 when vibration welding is performed.
  • FIG. 3 is an explanatory diagram illustrating the depth of welding used in the embodiment of the present invention.
  • FIG. 3 shows how two members shown above and below are welded by vibration welding. From the left, (a) contact, (b) during vibration welding, and (c) after welding. . That is, transition of the welding process is shown from (a) to (c).
  • the upper member will be referred to as “upper member” and the lower member will be referred to as "lower member”.
  • FIG. 3 shows a state in which the upper member and the lower member are in contact with each other. In this state, vibration welding has not yet been performed, and only the upper member and the lower member are in contact with each other. Also, in FIG. 3, the end of the upper member and the end of the lower member are drawn with dashed lines. That is, the height between the dashed lines is the height of the upper member and the lower member before welding.
  • the members are vibrated while pressing both the upper member and the lower member in the vertical direction.
  • the member to be vibrated may be either the upper member or the lower member, or may be both.
  • the upper member is vibrated here.
  • the lower member is fixed.
  • Conditions for vibration welding include frequency, amplitude, time, stress, and the like.
  • the joint surface melts after joining, so that the height of the upper member and the lower member becomes shorter than before joining.
  • the difference between the height of the upper member and the lower member before joining and the height of the upper member and the lower member after joining is the welding depth indicated by symbol W in FIG.
  • the welding depth is also one of the conditions for performing the vibration welding described above, and is set as follows in the present embodiment.
  • the inner rim 112, or the first end rim 122 and the second end rim 132 (hereinafter referred to as the first end rim 122 and the second 2 and the end rims 132 are collectively referred to as “end rims”). .
  • This ratio is one of the conditions set when performing vibration welding. If this ratio is outside the above range, it will be difficult to obtain sufficient welding strength.
  • the above ratio is a value that can be derived by performing a tensile test and calculating the tensile strength retention rate from the breaking strength of the unwelded breaking strength. Specifically, after preparing a sample for performing a tensile test, a tensile tester is used to set the sample so that the strain rate obtained by dividing the distance between the gauge lines from the tensile speed is 0.285 min -1 . The strength is obtained by calculating the cross-sectional area from the tensile strength and the tensile breaking strength. The ratio of the value L1 of the width of the inner rim or the end rim to the value w indicating the welding depth between the adjacent rims is the value at which the maintenance rate is 80% or more.
  • Table 1 shows the ratio of the value of the rim width to the value w indicating the welding depth, that is, the rim width (L1)/welding depth (w).
  • the right column shows the tensile strength retention rate (%) corresponding to each of the above ratios.
  • the ratio of the rim width value to the value w indicating the welding depth at which the tensile strength retention rate (%) exceeds 80% is 2.7 times or more and 16.0 times or less. Moreover, when this relationship is expressed in a graph, it is as shown in FIG.
  • FIG. 4 is a graph showing the test results of tensile tests obtained with respect to the embodiment of the present invention.
  • the horizontal axis indicates the ratio of the rim width value to the welding depth value w.
  • the vertical axis indicates the tensile strength retention rate (%) corresponding to the ratio.
  • the horizontal axis showing the above-mentioned tensile strength retention rate (%) of 80% is emphasized.
  • the ratio of the value of the rim width to the value w indicating the width is 2.7 times or more and 16.0 times or less.
  • the ratio of the value L1 of the width of the inner rim or the end rim to the value w indicating the welding depth is 2.7 times or more and 16.0 times or less. It is preferable to set the welding depth so that the ratio is 0.0 or less.
  • this ratio applies not only to the weld joint between the inner rims 112 of the inner frame unit 11, but also to the inner rim 112 and the first end rim constituting the first end frame unit 12. 122 and also between the inner rim 112 and the second end rim 132 forming the second end frame unit 13 .
  • the thickness of the bipolar plate 111 is the distance between one surface on which the positive electrode 120 is provided and the other surface on which the negative electrode 110 is provided, which is indicated by symbol L2 in FIG.
  • the ratio of the value L1 of the width of the internal rim 112 to the value L2 indicating the thickness of the bipolar plate 111 is 2.0 times or more and 3.5 times or less.
  • Table 2 shows the relationship between the ratio of the width value L1 of the internal rim 112 to the value L2 indicating the thickness of the bipolar plate 111 and the tensile strength retention rate (%).
  • the left column shows the ratio of the value L1 of the width of the internal rim 112 to the value L2 representing the thickness of the bipolar plate 111, that is, L1/L2.
  • the right column shows the tensile strength retention rate (%) corresponding to each of the above ratios. As shown in Table 2, the tensile strength retention rate (%) exceeds 80% when the ratio is 2.0 times or more and 3.5 times or less.
  • FIG. 5 shows Table 2 as a graph.
  • FIG. 5 is a graph showing test results obtained for an embodiment of the present invention. As in FIG. 4, the horizontal axis showing the tensile strength retention rate (%) of 80% is emphasized, but the tensile strength retention rate (%) exceeds 80% when the above ratio is 2.0 times It is more than 3.5 times or less.
  • the above ratio is 3.5 times or more, the strength tends to be lowered, which is not preferable.
  • the above ratio is 2.0 times or more and 3.5 times or less, it is possible to reduce the weight and size while suppressing the decrease in strength and the decrease in heat dissipation. It is highly preferred as it can provide a type storage battery.
  • the width of the internal rim 112 in the internal frame unit 11 is taken as an example, but the rim width value L1 is The same applies to the width value of the first end rim 122 of the first end frame unit 12 or the width value of the second end rim 132 of the second end frame unit 13. is.
  • the rim width it can be preferably selected from the range of 2.0 mm to 10.0 mm, for example.
  • the plates holding the cell members can be firmly joined together.
  • the embodiment of the present invention has been described by taking a bipolar lead-acid battery as an example.
  • other storage batteries that use other metals (e.g., aluminum, copper, nickel), alloys, and conductive resins instead of lead for the current collector, the application is naturally excluded. not something to do.
  • Bipolar type lead-acid battery 11 Internal frame unit 12 First end frame unit 13 Second end frame unit 101 Positive electrode lead layer 102.
  • Electrolytic layer 110 Negative electrode 111 Bipolar plate 112 Rim 120 Positive electrode 121 First end plate 122 First end rim 130 Cell member 131 Second end plate 132 Second end rim 140 Bipolar electrode

Abstract

セル部材を保持する各プレートを強固に接合することで、電解液が外部に漏洩してしまうことや機械的強度が低下することを防止してセル内部の気密性や機械的強度を確保するとともに、部品点数を減らしつつコンパクト化を図ることができるバイポーラ型蓄電池を提供する。一方の面に正極(120)が設けられて他方の面に負極(110)が設けられたバイポーラプレート(111)と、バイポーラプレート(111)の周縁部に設けられる内部リム(112)と、から構成される内部用フレームユニット(11)を備え、内部用フレームユニット(11)が複数積層され、隣接する内部リム(112)間が溶着されたバイポーラ型鉛蓄電池(1)であって、間の溶着の深さを示す値に対する、内部リム(112)の幅L1の値の比率が、2.7倍以上16.0倍以下である。

Description

バイポーラ型蓄電池
 本発明の実施の形態は、バイポーラ型蓄電池に関する。
 近年、太陽光や風力等の自然エネルギーを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。
 このような鉛蓄電池では、例えば、額縁形をなす樹脂からなるフレーム(リム)の内側に、樹脂からなる基板(バイポーラプレート)が設けられており、基板の一方の面及び他方の面には、正極用鉛層及び負極用鉛層が配設されている。正極用鉛層には、正極用活物質層が隣接している。負極用鉛層には、負極用活物質層が隣接している。また、額縁形をなす樹脂からなるスペーサの内側には、電解液を含有するガラスマット(電解層)が配設されている。そして、フレームとスペーサとが交互に複数積層されて組み付けられている。
 さらに正極用鉛層と負極用鉛層とは、基板に複数形成された穿孔の内部で直接的に接合されている。すなわち、一方の面側と他方の面側とを連通させる穿孔(連通孔)を有する基板とセル部材とが交互に複数積層された双極(バイポーラ)型鉛蓄電池である。セル部材は、正極用鉛層に正極用活物質層を設けた正極と、負極用鉛層に負極用活物質層を設けた負極と、正極と負極との間に介在する電解層と、を有し、一方のセル部材の正極用鉛層と他方のセル部材の負極用鉛層とが基板の穿孔の内部に没入されて接合されることにより、セル部材同士が直列に接続されたものとなっている。
 ここでフレームとスペーサとの接合に際しては、以下の特許文献1に記載されているように、例えば超音波を用いた溶接が行われる。また、外部から接合部分に応力が加わらないように外装ケースの内部に収容されることでバイポーラ型蓄電池が構成される。
特許第6571091号
 しかしながら、このような構成で気密性や機械的強度を保持することとすると、場合によっては接合における強度を補うべく他の部品を用いる必要が出てくる等、バイポーラ型蓄電池を構成する部品点数が多くなってしまうことがあり得る。一方で、やみくもに部品点数を削減してしまうと、例えば、電解液が電池外部に漏洩してしまう等、外部応力に対する機械的強度の不足に起因した問題が生じてしまう可能性もある。
 本発明は、セル部材を保持する各プレートを強固に接合することで、電解液が外部に漏洩してしまうことや機械的強度が低下することを防止してセル内部の気密性や機械的強度を確保するとともに、部品点数を減らしつつコンパクト化を図ることができるバイポーラ型蓄電池を提供することを目的とする。
 本発明の一態様に係るバイポーラ型蓄電池は、一方の面に正極が設けられて他方の面に負極が設けられたバイポーラプレートと、バイポーラプレートの周縁部に設けられる内部リムと、から構成される内部用フレームユニットと、対向するバイポーラプレートとの間でセルを構成するエンドプレートと、エンドプレートの周縁部に設けられる端部リムと、から構成される端部用フレームユニットと、を備え、内部用フレームユニットが複数積層されると共に、積層方向両端側に端部用フレームユニットが配設され、隣接する内部リム間及び隣接する内部リムと端部リムとの間が溶着されたバイポーラ型蓄電池であって、間の溶着の深さを示す値に対する、内部リム又は端部リムの幅の値の比率が、2.7倍以上16.0倍以下であることを特徴とする。
 本発明によれば、セル部材を保持する各プレートを強固に接合することができるので、電解液が外部に漏洩してしまうことや機械的強度が低下することを防止してセル内部の気密性や機械的強度を確保するとともに、部品点数を減らしつつコンパクト化を図ることができるバイポーラ型蓄電池を提供することができる。
 具体的には、内部用フレームユニットと端部用フレームユニットとを溶着して積層する際に、溶着の深さを示す値に対する、内部リム又は端部リムの幅L1の値の比率が、2.7倍以上16.0倍以下とする。このような比率の下で接合を行うことによって、内部用フレームユニットと端部用フレームユニットとが強固に接合される。そのため、電解液が外部に漏洩してしまうことや機械的強度が低下することを防止してセル内部の気密性や機械的強度を確保することができる。
 また、バイポーラ型蓄電池を構成するに必須の構成要素のみを用いてバイポーラ型蓄電池の気密性や機械的強度を確保することができるので、部品点数を減らしつつコンパクト化を図ることができる。
本発明の実施の形態に係るバイポーラ型鉛蓄電池の構造の概略を示す概略断面図である。 本発明の実施の形態に係るバイポーラ型鉛蓄電池において、特に内部用フレームユニットの構造を拡大して示す断面図である。 本発明の実施の形態において用いられる溶着に関して、溶着の深さを説明する説明図である。 本発明の実施の形態に関して得られた試験結果を示すグラフである。 本発明の実施の形態に関して得られた試験結果を示すグラフである。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下に説明する実施の形態は、本発明の一例を示したものである。また、本実施の形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。この実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。なお、以下においては、様々な蓄電池の中から鉛蓄電池を例に挙げて説明する。
 本発明の実施の形態に係るバイポーラ型鉛蓄電池について、図1を参照して説明する。図1は、本発明の実施の形態に係るバイポーラ型鉛蓄電池1の構造の概略を示す概略断面図である。
 図1に示すバイポーラ型鉛蓄電池1は、内部用フレームユニット(フレームユニット)11と、第1の端部用フレームユニット12(フレームユニット)と、内部用フレームユニット11を挟んで第1の端部用フレームユニット12に対向する位置に配置される第2の端部用フレームユニット(フレームユニット)13とを備えている。
 そして、内部用フレームユニット11が第1の端部用フレームユニット12と第2の端部用フレームユニット13との間に複数積層されることによって、例えば、略直方体形状をなすバイポーラ型鉛蓄電池1が構成される。積層される内部用フレームユニット11の個数は、バイポーラ型鉛蓄電池1の蓄電容量が所望の数値になるように設定される。
 また、第1の端部用フレームユニット12には負極端子107が固定されており、当該第1の端部用フレームユニット12に固定された負極110と負極端子107とが電気的に接続されている。一方、第2の端部用フレームユニット13には正極端子108が固定されており、当該第2の端部用フレームユニット13に固定された正極120と正極端子108とが電気的に接続されている。
 内部用フレームユニット11は、平面形状が長方形で一方の面上に正極120が設けられ、他方の面上に負極110が設けられる基板(以下、このような基板を適宜、「バイポーラプレート」と表す)111と、バイポーラプレート111の周縁部に設けられる、例えば、四角状の枠形(額縁形)の内部リム112とを備える。
 内部用フレームユニット11のバイポーラプレート111は、セル部材130の積層方向(図1における上下方向)で隣り合うセル部材130の間に配置されている。各内部用フレームユニット11の各内部リム112は、セル部材130の積層方向(図1における上下方向)で互いに対向する接合面112aを備えている。
 バイポーラプレート111は内部リム112の内側に一体化されている。また、バイポーラプレート111は、内部リム112の厚さ方向(図1における上下方向)の中程に位置している。内部リム112は、バイポーラプレート111の厚さよりも厚い厚さとなっている。
 内部用フレームユニット11は、熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレート(アクリル樹脂)、アクリルニトリルーブタンジエンースチレン共重合体(ABS)、ポリアミド(ナイロン)、ポリカーボネート等)で形成されている。これらの熱可塑性樹脂は、成形性が優れているとともに耐硫酸性も優れている。よって、例えばバイポーラプレート111に電解液が接触したとしても、バイポーラプレート111に分解、劣化、腐食等が生じにくい。
 バイポーラプレート111には、一方の面と他方の面とを連通させる図示しない連通孔が設けられている。そして、当該連通孔の内部を介して正極用鉛層101と負極用鉛層102とが接合されることによって、両者が電気的に接続され、正極120と負極110との導通が図られる。
 正極120は、鉛又は鉛合金からなり且つバイポーラプレート111の一方の面の上に配置される正極用鉛層101と、正極用鉛層101の上に配置される正極用活物質層103と、を備えている。この正極用鉛層101は、バイポーラプレート111の一方の面と正極用鉛層101の間に設けられる、図示しない接着剤等の接着層によってバイポーラプレート111の一方の面に接着されている。従って、バイポーラプレート111の一方の面(図1等の図面においては、紙面における下方を向く面)の上に、接着層、正極用鉛層101、正極用活物質層103が、この記載順に積層されている。
 負極110は、鉛又は鉛合金からなり且つバイポーラプレート111の他方の面(図1等の図面においては、紙面における上方を向く面)の上に配置される負極用鉛層102と、負極用鉛層102の上に配置される負極用活物質層104と、を備えている。この負極用鉛層102は、バイポーラプレート111の他方の面と負極用鉛層102の間に設けられる、図示しない接着剤等の接着層によってバイポーラプレート111の他方の面に接着されている。そしてこれら正極120と負極110は、上述した連通孔を介して電気的に接続されている。
 第1の端部用フレームユニット12は、平面形状が長方形の第1のエンドプレート121と、第1のエンドプレート121の周縁部に設けられる、例えば、四角状の枠形(額縁形)の第1の端部リム122とからなる。第1のエンドプレート121は第1の端部リム122の内側に一体化されている。第1の端部用フレームユニット12も、耐硫酸性を有する熱可塑性樹脂製である。
 第1の端部用フレームユニット12は、バイポーラ型鉛蓄電池1の一方端側(図1における下方端側)において、セル部材130の側面と負極110側を囲うものである。第1のエンドプレート121がセル部材130の負極110側を囲い、第1の端部リム122が、セル部材130の側面を囲っている。
 第1のエンドプレート121は、内部用フレームユニット11のバイポーラプレート111と平行に配置され、第1の端部リム122は、隣に位置する内部用フレームユニット11の内部リム112と接するように配列されている。つまり、第1の端部リム122は、セル部材130の積層方向(図1における上下方向)で、内部用フレームユニット11の内部リム112と対向する接合面122aを備えている。
 第1のエンドプレート121は、バイポーラプレート111の厚さよりも厚い厚さとなっている。第1の端部リム122は、第1のエンドプレート121の厚さよりも厚い厚さとなっている。第1のエンドプレート121は、第1の端部リム122の厚さ方向(図1における上下方向)で一方端(図1における下方端)に位置するように設定されている。
 そして、第1のエンドプレート121の他方の面上には、負極用鉛層102が設けられている。第1のエンドプレート121上の負極用鉛層102には、負極用活物質層104が設けられている。第1のエンドプレート121上の負極用活物質層104と、対向するバイポーラプレート111の正極用活物質層103との間には、硫酸等の電解液が含浸されたガラス繊維マット等からなる電解層105が設けられている。
 第2の端部用フレームユニット13は、平面形状が長方形の第2のエンドプレート131と、第2のエンドプレート131の周縁部に設けられる、例えば、四角状の枠形(額縁形)の第2の端部リム132とからなる。第2のエンドプレート131は第2の端部リム132の内側に一体化されている。第2の端部用フレームユニット13も耐硫酸性を有する熱可塑性樹脂製である。
 第2の端部用フレームユニット13は、バイポーラ型鉛蓄電池1の他方端側(図1における上方端側)において、セル部材130の側面と正極120側を囲うものである。第2のエンドプレート131がセル部材130の正極120側を囲い、第2の端部リム132が、セル部材130の側面を囲っている。
 第2のエンドプレート131は、内部用フレームユニット11のバイポーラプレート111と平行に配置され、第2の端部リム132は、隣に位置する内部用フレームユニット11の内部リム112と接するように配列されている。つまり、第2の端部リム132は、セル部材130の積層方向(図1における上下方向)で、内部用フレームユニット11の内部リム112と対向する接合面132aを備えている。
 第2のエンドプレート131は、バイポーラプレート111の厚さよりも厚い厚さとなっている。第2の端部リム132は、第2のエンドプレート131の厚さよりも厚い厚さとなっている。第2のエンドプレート131は、第2の端部リム132の厚さ方向(図1における上下方向)で他方端(図1における上方端)に位置するように設定されている。
 第2のエンドプレート131の一面上には、正極用鉛層101が設けられている。第2のエンドプレート131上の正極用鉛層101には、正極用活物質層103が設けられている。第2のエンドプレート131上の正極用活物質層103と、対向するバイポーラプレート111の負極用活物質層104との間には、上述した電解層105が設けられている。
 このような構成を有する本発明の実施の形態のバイポーラ型鉛蓄電池1においては、上述したように、バイポーラプレート111、正極用鉛層101、正極用活物質層103、負極用鉛層102、及び負極用活物質層104によって、バイポーラ電極140が構成されている。バイポーラ電極とは、1枚の電極で正極、負極両方の機能を有する電極である。そして、本発明の実施の形態のバイポーラ型鉛蓄電池1は、正極120と負極110との間に電解層105を介在させてなるセル部材130を交互に複数積層して組み付けることにより、セル部材130同士を直列に接続した電池構成を有している。
 上述したセル部材130は、図1に示すように、積層方向(図1における上下方向)に、間隔を空けて積層して配置されている。そして、内部用フレームユニット11、第1の端部用フレームユニット12、及び第2の端部用フレームユニット13は、複数のセル部材130を個別に収容する複数のセル(空間)Cを形成する。
 そして、積層方向に隣接するセル部材130同士は電気的に直列に接続されている。このため、積層方向に隣接するセル部材130同士の間に介在するバイポーラプレート111は、正極用鉛層101と負極用鉛層102とを電気的に接続する、上述した連通孔が設けられている。
 また、隣接する内部用フレームユニット11の内部リム112の接合面112a間、第1の端部用フレームユニット12の端部リム122の接合面122aと隣接する内部用フレームユニット11の内部リム112の接合面112aとの間、第2の端部用フレームユニット13の端部リム132の接合面132aと隣接する内部用フレームユニット11の内部リム112の接合面112aとの間は、それぞれ溶着接合されている。
 ここで、溶着の方法としては、例えば、振動溶着、超音波溶着、熱板溶着といった、各種溶着の方法を挙げることができる。このうち振動溶着は、接合の際に接合の対象となる面を加圧しながら振動させることで溶着するものであり、溶着のサイクルが早く、再現性も良い。そこでより好適には、振動溶着が用いられる。
 ここで図2は、本発明の実施の形態に係るバイポーラ型鉛蓄電池1において、特に内部用フレームユニット11の構造を拡大して示す断面図である。すなわち、図2に示す内部用フレームユニット11は、図面方向下から積層された内部用フレームユニット11にさらに積層する形で接合される。
 具体的には、隣接する内部用フレームユニット11の内部リム112の接合面112a同士を接合するに当たって振動溶着を行い、一方の接合面112aを他方の接合面112aに対して押圧し、振動させて摩擦熱を発生させ、一方の接合面112aと他方の接合面112aとを溶融接合させる。
 さらに本実施形態おいては、振動溶着を行う際の溶着の深さと内部リム112の幅との間に以下の関係が成り立つように溶着の深さの値を設定している。
 ここで溶着の深さについて、図3を用いて説明する。図3は、本発明の実施の形態において用いられる溶着に関して、溶着の深さを説明する説明図である。図3では、上下に示される2つの部材を振動溶着を用いて溶着する様子を示しており、左から(a)接触時、(b)振動溶着中、(c)溶着後、を示している。すなわち、(a)から(c)に向けて溶着処理の推移が示されている。なお、以下の説明においては、適宜上側の部材を「上部材」、下側の部材を「下部材」と表す。
 (a)では、上部材と下部材とが接触した状態が示されている。この状態ではまだ振動溶着は行われておらず、ただ上部材と下部材とが接触しているだけである。また、図3においては、上部材の端部と下部材の端部のそれぞれに破線を引いている。すなわち、破線と破線との間が溶着前の上部材と下部材との高さ、ということになる。
 この状態から、上部材及び下部材の両者を上下方向に加圧しつつ、部材を振動させる。但し、振動させる部材は上部材、下部材のいずれでもよく、或いは、両者であっても良い。図3(b)の矢印に示すように、ここでは上部材を振動させる。この際、下部材は固定されている。上部材が振動することにより上部材と下部材とが接触する接合部において摩擦による剪断発熱が生じ、上部材と下部材とが溶着する。なお、振動溶着を行う際の条件としては、周波数、振幅、時間、応力等を挙げることができる。
 このように上部材と下部材とは互いの接合面が溶けることによって接合される。そのため、(c)に示すように、接合後には接合面が溶けることによって、上部材と下部材との高さが接合前に比べて短くなる。この接合前の上部材と下部材との高さと接合後の上部材と下部材との高さの差が、図3において符号Wで示される溶着の深さである。この溶着の深さも上述した振動溶着を行う際の条件の1つであり、本実施の形態において以下のように設定する。
 すなわち、隣接するリム間の溶着の深さを示す値wに対する、内部リム112、或いは、第1の端部リム122及び第2の端部リム132(以下、第1の端部リム122と第2の端部リム132とをまとめて表す際には、「端部リム」と表す。)の幅の値L1の比率を2.7倍以上16.0倍以下となるように設定している。
 この比率は、振動溶着を行う際に設定される条件の1つである。この比率が上記範囲外であると、十分な溶着強度を得ることが難しくなってしまう。
 上記比率は、引張試験を行って、破断強度を未溶着の破断強度から引張強度維持率を算出することで導き出すことができる値である。具体的には、引張試験を行うためのサンプルを用意した後、引張試験機を用いて、引張速度から標線間を除して求められる歪速度が0.285min-1となるようにサンプルを引っ張り、引張破断力から断面積計算を行って強度を求めたものである。上述した隣接するリム間の溶着の深さを示す値wに対する、内部リム、或いは、端部リムの幅の値L1の比率は、維持率が80%以上となった値である。
 具体的には、以下の表1に示す通りである。表1において左欄には溶着の深さを示す値wに対するリムの幅の値の比率、すなわち、リムの幅(L1)/溶着の深さ(w)が示されている。一方、右欄には上記各比率に対応する引張強度維持率(%)が示されている。
Figure JPOXMLDOC01-appb-T000001
 表1によると、引張強度維持率(%)が80%を超える溶着の深さを示す値wに対するリムの幅の値の比率は、2.7倍以上16.0倍以下である。また、この関係をグラフに表すと図4の通りである。
 図4は、本発明の実施の形態に関して得られた引張試験の試験結果を示すグラフである。図4に示すグラフにおいて横軸は溶着の深さを示す値wに対するリムの幅の値の比率を示している。一方縦軸は当該比率に対応する引張強度維持率(%)が示されている。グラフでは上述した引張強度維持率(%)が80%を示す横軸を強調して示しているが、グラフに現れているように、引張強度維持率(%)が80%を超える溶着の深さを示す値wに対するリムの幅の値の比率は、2.7倍以上16.0倍以下である。
 また、ここでは溶着の深さを示す値wに対する、内部リム又は端部リムの幅の値L1の比率が、2.7倍以上16.0倍以下としたが、特に、2.7以上8.0以下の比率となるように溶着の深さを設定すると好ましい。
 なお、この比率については、内部用フレームユニット11の内部リム112同士の間の溶着接合の場合のみならず、内部リム112と第1の端部用フレームユニット12を構成する第1の端部リム122との間の溶着接合の場合や、内部リム112と第2の端部用フレームユニット13を構成する第2の端部リム132との間の溶着接合の場合にも適用される。
 また、内部リム、或いは、端部リムの幅の値L1においては、さらにバイポーラプレート111の厚みとの関係を考慮することができる。ここでバイポーラプレート111の厚みとは、正極120が設けられる一方の面と負極110が設けられる他方の面との間、図2において符号L2で示す値である。具体的には、バイポーラプレート111の厚みを示す値L2に対する内部リム112の幅の値L1の比率が、2.0倍以上3.5倍以下である。
 このようなバイポーラプレート111の厚みを示す値L2に対する内部リム112の幅の値L1の比率と引張強度維持率(%)との関係を示すのが、以下に示す表2である。
Figure JPOXMLDOC01-appb-T000002
 表2において左欄にはバイポーラプレート111の厚みを示す値L2に対する内部リム112の幅の値L1の比率、すなわち、L1/L2が示されている。一方、右欄には上記各比率に対応する引張強度維持率(%)が示されている。表2に示されているように、引張強度維持率(%)が80%を超える値を示すのは、上記比率が2.0倍以上3.5倍以下のときである。
 そして当該表2をグラフで表すと図5の通りである。図5は、本発明の実施の形態に関して得られた試験結果を示すグラフである。図4と同様に、引張強度維持率(%)が80%を示す横軸を強調して示しているが、引張強度維持率(%)が80%を超えるのは上記比率が2.0倍以上3.5倍以下のときである。
 上記比率が、3.5倍以上であると、強度の低下を引き起こし易くなって好ましくなく、2.0倍以下であると、放熱し難くなって好ましくない。他方、上記比率が、2.0倍以上3.5倍以下であると、強度低下の抑制及び放熱性の低下を抑制しつつ、軽量化及び小型化を図ることができ、高エネルギー密度のバイポーラ型蓄電池を提供することができるので、非常に好ましい。
 なお、ここでリムの幅の値L1は、図2を示して説明しているため、内部用フレームユニット11における内部リム112の幅を例に挙げているが、リムの幅の値L1は、第1の端部用フレームユニット12の第1の端部リム122の幅の値、或いは、第2の端部用フレームユニット13の第2の端部リム132の幅の値であっても同様である。
 また、リム幅については様々な長さがあるが、好適には例えば、2.0mmから10.0mmの範囲の中から選択することができる。
 以上説明した通り、リム間を上述した比率の下で接合することによって、また、当該接合が行われる際における、リムの厚みとバイポーラプレートの厚みとを上述した比率を満たすように設定することによって、セル部材を保持する各プレートを強固に接合することができる。そして各プレートが強固に接合されることによって、電解液が外部に漏洩してしまうことや機械的強度が低下することを防止してセル内部の気密性や機械的強度を確保することができる。
 また、バイポーラ型蓄電池を構成するに必須の構成要素のみを用いてバイポーラ型蓄電池の気密性や機械的強度を確保することができるので、部品点数を減らしつつコンパクト化を図ることができる。
 また、上述したように、本発明の実施の形態においては双極型鉛蓄電池を例に挙げて説明した。但し、集電体に鉛ではなく他の金属(例えば、アルミニウム、銅、ニッケル)や合金、導電性樹脂を用いるような他の蓄電池においても上記説明内容が当てはまる場合には、当然その適用を排除するものではない。
    1・・・バイポーラ型鉛蓄電池
   11・・・内部用フレームユニット
   12・・・第1の端部用フレームユニット
   13・・・第2の端部用フレームユニット
  101・・・正極用鉛層
  102・・・負極用鉛層
  103・・・正極用活物質層
  104・・・負極用活物質層
  105・・・電解層
  110・・・負極
  111・・・バイポーラプレート
  112・・・リム
  120・・・正極
  121・・・第1のエンドプレート
  122・・・第1の端部リム
  130・・・セル部材
  131・・・第2のエンドプレート
  132・・・第2の端部リム
  140・・・バイポーラ電極

Claims (3)

  1.  一方の面に正極が設けられて他方の面に負極が設けられたバイポーラプレートと、前記バイポーラプレートの周縁部に設けられる内部リムと、から構成される内部用フレームユニットと、
     対向する前記バイポーラプレートとの間でセルを構成するエンドプレートと、前記エンドプレートの周縁部に設けられる端部リムと、から構成される端部用フレームユニットと、を備え、
     前記内部用フレームユニットが複数積層されると共に、積層方向両端側に前記端部用フレームユニットが配設され、
     隣接する前記内部リム間及び隣接する前記内部リムと前記端部リムとの間が溶着されたバイポーラ型蓄電池であって、
     前記間の溶着の深さを示す値に対する、前記内部リム又は前記端部リムの幅の値の比率が、2.7倍以上16.0倍以下であることを特徴とするバイポーラ型蓄電池。
  2.  前記バイポーラプレートの厚みを示す値に対する、前記内部リム又は前記端部リムの幅の値の比率が、2.0倍以上3.5倍以下であることを特徴とする請求項1に記載のバイポーラ型蓄電池。
  3.  前記正極は正極用集電体を、前記負極は負極用集電体をそれぞれ備え、前記正極用集電体および前記負極用集電体は、鉛又は鉛合金からなることを特徴とする請求項1または請求項2に記載のバイポーラ型蓄電池。
PCT/JP2021/047000 2021-02-10 2021-12-20 バイポーラ型蓄電池 WO2022172595A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180092409.9A CN116802883A (zh) 2021-02-10 2021-12-20 双极型蓄电池
EP21925838.1A EP4293791A1 (en) 2021-02-10 2021-12-20 Bipolar storage battery
JP2022581215A JPWO2022172595A1 (ja) 2021-02-10 2021-12-20
US18/362,893 US20240021885A1 (en) 2021-02-10 2023-07-31 Bipolar Storage Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-020218 2021-02-10
JP2021020218 2021-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/362,893 Continuation US20240021885A1 (en) 2021-02-10 2023-07-31 Bipolar Storage Battery

Publications (1)

Publication Number Publication Date
WO2022172595A1 true WO2022172595A1 (ja) 2022-08-18

Family

ID=82838684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047000 WO2022172595A1 (ja) 2021-02-10 2021-12-20 バイポーラ型蓄電池

Country Status (5)

Country Link
US (1) US20240021885A1 (ja)
EP (1) EP4293791A1 (ja)
JP (1) JPWO2022172595A1 (ja)
CN (1) CN116802883A (ja)
WO (1) WO2022172595A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323869A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 電池および電池モジュール
JP2018133201A (ja) * 2017-02-15 2018-08-23 株式会社豊田自動織機 蓄電モジュール
WO2020203101A1 (ja) * 2019-03-29 2020-10-08 株式会社豊田自動織機 蓄電モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306549A (ja) * 1989-05-19 1990-12-19 Japan Storage Battery Co Ltd 鉛蓄電池
JP3211712B2 (ja) * 1997-03-27 2001-09-25 トヨタ自動車株式会社 樹脂成形体の振動溶着方法
WO2006105188A1 (en) * 2005-03-31 2006-10-05 Firefly Energy Inc. Modular bipolar battery
US9941546B2 (en) * 2011-09-09 2018-04-10 East Penn Manufacturing Co., Inc. Bipolar battery and plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323869A (ja) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd 電池および電池モジュール
JP2018133201A (ja) * 2017-02-15 2018-08-23 株式会社豊田自動織機 蓄電モジュール
WO2020203101A1 (ja) * 2019-03-29 2020-10-08 株式会社豊田自動織機 蓄電モジュール

Also Published As

Publication number Publication date
CN116802883A (zh) 2023-09-22
JPWO2022172595A1 (ja) 2022-08-18
EP4293791A1 (en) 2023-12-20
US20240021885A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
JP6571091B2 (ja) 密閉型バイポーラ電池アセンブリ及びその製造方法
JP5078282B2 (ja) 組電池
JP5952402B2 (ja) 製造工程性の向上したジェリーロール及びこれを備えた電池セル
KR101769107B1 (ko) 스페이서의 교체가 용이한 구조를 갖는 가압 트레이
US8808908B2 (en) Battery module of novel structure
JP4920477B2 (ja) 新規な電極リード−電極タブ結合部を有する電極組立体及びこれを備えた電気化学セル
KR102529975B1 (ko) 이차 전지용 케이스 및 이를 구비하는 배터리 모듈
JP2021515957A (ja) 電極タブ溶接部の圧接部サイズが相異なる電極組立体及びこれを製造する超音波溶接装置
WO2022172595A1 (ja) バイポーラ型蓄電池
KR101924428B1 (ko) 플렉서블 전지용 금속탭
JP2020522849A (ja) バッテリーモジュール、これを含むバッテリーパック及び自動車
JP2001052659A (ja) 積層形ポリマー電解質電池
WO2022172596A1 (ja) バイポーラ型蓄電池
JP7205723B2 (ja) 超音波接合方法
KR101354142B1 (ko) 초음파 용접 장치
WO2023068111A1 (ja) バイポーラ型蓄電池
KR20190061573A (ko) 전극탭과 리드의 접합방법
JP2022060708A (ja) 双極型鉛蓄電池
JP6537133B2 (ja) 接続部材、電気化学セルモジュール、電気化学セルの直列接続方法、及び、電気化学セルモジュールの製造方法
CN215680896U (zh) 一种电池连接结构、电池模组、电池包
KR101278507B1 (ko) 전극 구조체 강도를 개선한 이차 전지
WO2024004764A1 (ja) 双極型蓄電池
CN219267725U (zh) 一种电芯和电池
US20240021883A1 (en) Bipolar Storage Battery
JP2022159905A (ja) 双極型蓄電池及び双極型蓄電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581215

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092409.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021925838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021925838

Country of ref document: EP

Effective date: 20230911