WO2022070446A1 - Motor drive circuit and motor module - Google Patents

Motor drive circuit and motor module Download PDF

Info

Publication number
WO2022070446A1
WO2022070446A1 PCT/JP2020/048420 JP2020048420W WO2022070446A1 WO 2022070446 A1 WO2022070446 A1 WO 2022070446A1 JP 2020048420 W JP2020048420 W JP 2020048420W WO 2022070446 A1 WO2022070446 A1 WO 2022070446A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
phase
pulse
pwm signal
connection
Prior art date
Application number
PCT/JP2020/048420
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 片岡
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080105615.4A priority Critical patent/CN116250173A/en
Publication of WO2022070446A1 publication Critical patent/WO2022070446A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor drive circuit and a motor module.
  • This application claims priority based on Japanese Patent Application No. 2020-164999 filed in Japan on September 30, 2020, the contents of which are incorporated herein by reference.
  • a two-phase modulation method is known as a drive method for a three-phase motor (for example, Patent Document 1).
  • the inverter device described in Patent Document 1 compares the command values of two phases other than the one kept on or off among the three phases with two triangular reference waves having 180-degree phases different from each other and having the same amplitude and frequency.
  • a control means for PWM-controlling the on / off of each switching element corresponding to each phase is provided.
  • the control means switches one of the triangular reference waves being compared with the command value of one of the three phases kept on or off to the other of the triangular reference waves.
  • the current flowing in and out of the capacitor is compared with the case where the command values of the two phases other than the one phase, which are kept on or off among the three phases, are compared with the same triangular reference wave for PWM control. Can be reduced.
  • the inverter device described in Patent Document 1 is limited to the case where the phase switching of the PWM signal is kept on or off. That is, the triangular reference wave used in the PWM waveform generation of each phase is fixed to one of the two triangular reference waves having a 180-degree phase difference during the switching period, and the switching is performed. The triangular reference wave is not switched inside.
  • the output voltage pattern as shown in FIG. 4B of Patent Document 1 is given, since the motor connected to the output is an inductive load, the current waveform is delayed with respect to the voltage waveform.
  • the present invention has been made in view of the above problems, and an object thereof is a motor drive circuit and a motor module capable of switching the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after switching. Is to provide.
  • the exemplary motor drive circuit of the present invention controls the drive of a three-phase motor by a two-phase modulation method.
  • the motor drive circuit includes a first input terminal, a second input terminal, a capacitor, three series bodies, and a signal generation unit.
  • a first voltage is applied to the first input terminal.
  • a second voltage lower than the first voltage is applied to the second input terminal.
  • the capacitor is connected between the first input terminal and the second input terminal.
  • the signal generation unit generates a PWM signal to be input to each of the three series.
  • the PWM signal includes a positive phase PWM signal and a negative phase PWM signal.
  • the reverse phase PWM signal has a different phase from the positive phase PWM signal.
  • the signal generation unit switches the phase switching of the PWM signal at the phase switching timing.
  • the PWM signal is between the positive phase PWM signal and the negative phase PWM signal, and further has a connecting pulse set before and after the phase switching timing.
  • the splicing pulse set has a splicing on pulse and a splicing off pulse.
  • the tether-on pulse has a tether-on period.
  • the tether-off pulse has a tether-off period.
  • the connection on period is shorter than the on period of one PWM cycle before or after the phase switching. It was
  • An exemplary motor module of the present invention comprises the motor drive circuit described above and a three-phase motor.
  • the three-phase motor is driven by the motor drive circuit.
  • FIG. 1 is a block diagram of a motor module according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an inverter unit.
  • FIG. 3 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a motor module 200 according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing the inverter unit 110. It was
  • the motor module 200 includes a motor drive circuit 100 and a three-phase motor M.
  • the three-phase motor M is driven by the motor drive circuit 100.
  • the three-phase motor M is, for example, a brushless DC motor.
  • the three-phase motor M has a U phase, a V phase and a W phase. It was
  • the motor drive circuit 100 controls the drive of the three-phase motor M by a two-phase modulation method.
  • the motor drive circuit 100 includes an inverter unit 110 and a signal generation unit 120. It was
  • the motor drive circuit 100 includes three output terminals 102.
  • the three output terminals 102 include an output terminal 102u, an output terminal 102v, and an output terminal 102w.
  • the three output terminals 102 output the three-phase output voltage and the three-phase output current to the three-phase motor M.
  • the output terminal 102u outputs the U-phase output voltage Vu and the U-phase output current Iu to the three-phase motor M.
  • the output terminal 102v outputs the V-phase output voltage Vv and the V-phase output current Iv to the three-phase motor M.
  • the output terminal 102w outputs the W-phase output voltage Vw and the W-phase output current Iw to the three-phase motor M. It was
  • the motor drive circuit 100 includes a first input terminal P, a second input terminal N, a capacitor C, and three series bodies 112. More specifically, in the present embodiment, the motor drive circuit 100 includes an inverter unit 110, and the inverter unit 110 includes a first input terminal P, a second input terminal N, a capacitor C, and three series. It is equipped with 112.
  • the inverter unit 110 further includes a DC voltage source B.
  • the DC voltage source B may be outside the inverter unit 110. It was
  • a first voltage V1 is applied to the first input terminal P.
  • the first input terminal P is connected to the DC voltage source B. It was
  • a second voltage V2 is applied to the second input terminal N.
  • the second input terminal N is connected to the DC voltage source B.
  • the second voltage V2 is lower than the first voltage V1. It was
  • the capacitor C is connected between the first input terminal P and the second input terminal N. It was
  • the semiconductor switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the semiconductor switching element may be another transistor such as a field effect transistor.
  • the three series 112u includes a series 112u, a series 112v, and a series 112w.
  • the three series 112 are connected in parallel to each other. One end of each of the three series 112 is connected to the first input terminal P. The other end of each of the three series 112 is connected to the second input terminal N.
  • a rectifying element D is connected in parallel to each of these semiconductor switching elements, with the first input terminal P side (upper side of the paper surface) as the cathode and the second input terminal N side (lower side of the paper surface) as the anode.
  • a parasitic diode may be used as this rectifying element.
  • Each of the three series 112 has a first semiconductor switching element and a second semiconductor switching element.
  • the series 112u has a first semiconductor switching element Up and a second semiconductor switching element Un.
  • the series 112v has a first semiconductor switching element Vp and a second semiconductor switching element Vn.
  • the series 112w has a first semiconductor switching element Wp and a second semiconductor switching element Wn. It was
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are connected to the first input terminal P.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are semiconductor switching elements on the high voltage side. It was
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are connected to the second input terminal N.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are semiconductor switching elements on the low voltage side. It was
  • the first semiconductor switching element and the second semiconductor switching element are connected at the connection point 114. Specifically, the first semiconductor switching element Up and the second semiconductor switching element Un are connected at the connection point 114u. The first semiconductor switching element Vp and the second semiconductor switching element Vn are connected at the connection point 114v. The first semiconductor switching element Wp and the second semiconductor switching element Wn are connected at the connection point 114w. It was
  • connection points 114 in each of the three series 112 are connected to the three output terminals 102. Specifically, the connection point 114u in the series 112u is connected to the output terminal 102u. The connection point 114v in the series 112v is connected to the output terminal 102v. The connection point 114w in the series 112w is connected to the output terminal 102w. It was
  • PWM signals are input to the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp.
  • the PWM signal is output from the signal generation unit 120.
  • the PWM signal input to the first semiconductor switching element Up may be referred to as “Up PWM signal”.
  • the PWM signal input to the first semiconductor switching element Vp may be described as "VpPWM signal”.
  • the PWM signal input to the first semiconductor switching element Wp may be described as "Wp PWM signal”.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are switched on and off in a predetermined PWM cycle.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned on when the UpPWM signal, VpPWM signal, and WpPWM signal are at HIGH level, respectively.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned off when the UpPWM signal, VpPWM signal, and WpPWM signal are at the LOW level, respectively.
  • a PWM signal is input to the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn.
  • the PWM signal is output from the signal generation unit 120.
  • the PWM signal input to the second semiconductor switching element Un may be referred to as “UnPWM signal”.
  • the PWM signal input to the second semiconductor switching element Vn may be described as "VnPWM signal”.
  • the PWM signal input to the second semiconductor switching element Wn may be described as "WnPWM signal”.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are switched on and off in a predetermined PWM cycle.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned on when the UnPWM signal, the VnPWM signal, and the WnPWM signal are at the HIGH level, respectively.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned off when the UnPWM signal, the VnPWM signal, and the WnPWM signal are at the LOW level, respectively.
  • the signal generation unit 120 includes a carrier generation unit 122, a voltage command value generation unit 124, and a comparison unit 126.
  • the signal generation unit 120 is a hardware circuit composed of a processor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), and the like. Then, the processor of the signal generation unit 120 functions as the carrier generation unit 122, the voltage command value generation unit 124, and the comparison unit 126 by executing the computer program stored in the storage device. It was
  • the signal generation unit 120 controls the inverter unit 110. Specifically, the signal generation unit 120 controls the inverter unit 110 by generating a PWM signal and outputting the PWM signal. More specifically, the signal generation unit 120 generates a PWM signal to be input to each of the three series 112. It was
  • the carrier generation unit 122 generates a carrier signal.
  • the carrier signal is, for example, a triangular wave.
  • the carrier signal may be a sawtooth wave. It was
  • the voltage command value generation unit 124 generates a voltage command value.
  • the voltage command value corresponds to the voltage value output from the motor drive circuit 100. That is, the voltage command value generation unit 124 generates a voltage value corresponding to the output voltage Vu, the output voltage Vv, and the output voltage Vw as the voltage command value. It was
  • the comparison unit 126 generates a PWM signal by comparing the carrier signal with the voltage command value. It was
  • FIG. 3 is a diagram showing a PWM signal according to an embodiment of the present invention.
  • FIG. 3 shows a one-phase PWM signal among the three-phase PWM signals.
  • the positive phase PWM period PT is a period during which the positive phase PWM signal PS is output.
  • the reverse phase PWM period NT is a period during which the reverse phase PWM signal NS is output.
  • the connected pulse set period AT is a period during which the connected pulse set AS is output.
  • the current waveform ignores the contribution of current ripple due to switching of other phases, and extracts and shows only the switching ripple component due to switching of this phase. It was
  • the PWM signal includes a positive phase PWM signal PS and a negative phase PWM signal NS.
  • the reverse phase PWM signal NS has a different phase from the positive phase PWM signal PS.
  • the reverse phase PWM signal NS is 180 degrees out of phase with the positive phase PWM signal PS. It was
  • the signal generation unit 120 generates a PWM signal by comparing the carrier signal CAS with the voltage command value V.
  • the signal generation unit 120 switches the phase switching of the PWM signal at the phase switching timing tsw.
  • the signal generation unit 120 switches the phase of the PWM signal from the positive phase to the negative phase at the phase switching timing tsw. That is, the phase of the PWM signal is the positive phase before the phase switching timing tsw.
  • the phase of the PWM signal is out of phase.
  • the phase switching timing tsw is the timing of the peak of the carrier signal CAS.
  • the carrier signal CAS is a triangular wave. It was
  • the signal generation unit 120 changes the voltage command value V at the phase switching timing tsw.
  • the signal generation unit 120 changes the voltage command value from V to 1-V.
  • the comparison unit 126 compares the voltage command value with the carrier signal CAS and generates a PWM signal. Specifically, when the phase of the PWM signal is positive, the PWM signal is turned off when the carrier signal CAS is equal to or higher than the voltage command value. On the other hand, the comparison unit 126 compares the voltage command value with the carrier signal CAS, and turns on the PWM signal when the carrier signal CAS is less than the voltage command value. On the other hand, when the phase of the PWM signal is opposite, the PWM signal is turned on when the carrier signal CAS is equal to or higher than the voltage command value.
  • the comparison unit 126 compares the voltage command value with the carrier signal CAS, and turns off the PWM signal when the carrier signal CAS is less than the voltage command value. In this way, the signal generation unit 120 changes the phase of the PWM signal by changing the voltage command value and the method of determination processing of the comparison unit 126. It was
  • the PWM signal is between the positive phase PWM signal PS and the negative phase PWM signal NS, and further has a pulse set AS connected before and after the phase switching timing tsw.
  • the tethered pulse set AS has a tethered on-pulse ASon and a tethered off-pulse ASoff.
  • the tether-on-pulse ASon has a tether-on period ATon.
  • the tether-off pulse ASoff has a tether-off period AToff.
  • the connected pulse set AS is located within a time range within one PWM cycle before and after the phase switching timing tsw. It was
  • connection on period ATon is shorter than the on period for one cycle of the PWM cycle before or after the phase switching.
  • the connection on period A Ton is shorter than the on period Ton for one cycle of the PWM cycle before the phase switching.
  • the PWM signal is between the positive phase PWM signal PS and the negative phase PWM signal NS, and has a pulse set AS connected before and after the phase switching timing tsw. Therefore, it is possible to switch the PWM phase with respect to one of the phases under PWM control while suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase. As a result, it is possible to reduce the capacitor ripple current while suppressing an unintended increase or decrease in the phase current immediately after switching the PWM signal phase, which causes torque unevenness and noise. It was
  • the connecting pulse set AS is located within a time range within one PWM cycle before and after the phase switching timing tsw. Therefore, it is possible to switch the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase, which tends to cause a long on (or off) duration. As a result, it is possible to reduce the capacitor ripple current while suppressing the unintended increase / decrease in the phase current from causing torque unevenness and noise. It was
  • connection off period AToff is shorter than the off period for one cycle of the PWM cycle before or after the phase switching. Therefore, it is possible to reduce the capacitor ripple current while suppressing the unintended increase / decrease in the phase current from causing torque unevenness and noise.
  • the ratio of the connection on period ATon and the connection off period AToff is the same as the ratio of the on period Ton and the off period Toff for one cycle of the PWM cycle before or after the phase switching. Therefore, as shown in the current waveform shown in FIG. 3, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed.
  • the ratio of the connection on period ATon to the connection off period AToff may be slightly different from the ratio of the on period Ton and the off period Toff for one cycle of the PWM cycle before or after the phase switching. It was
  • connection off period AToff precedes the connection on period ATon
  • the ratio of the off period to the period of the connection pulse set AS is the same as the ratio of the off period to the PWM cycle before the phase switching.
  • the ratio of the on period to the period of the connected pulse set AS is the same as the ratio of the on period to the PWM cycle after the phase switching. Therefore, as shown in the current waveform shown in FIG. 3, the current value at the end of the connected pulse set AS period substantially coincides with the current peak value before the phase switching. Therefore, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed.
  • the ratio of the off period to the period of the connected pulse set AS may be slightly different from the ratio of the off period to the PWM cycle before the phase switching. Further, the ratio of the on period to the period of the connected pulse set AS may be slightly different from the ratio of the on period to the PWM cycle after the phase switching. It was
  • the connected on-pulse ASon may have a plurality of pulses. Even when the connected on-pulse ASon has a plurality of pulses, the capacitor ripple current can be reduced. It was
  • connection off pulse ASoff may have a plurality of pulses. Even when the connected off-pulse ASoff has a plurality of pulses, the capacitor ripple current can be reduced. It was
  • the PWM phase of the phase By switching the PWM phase of the phase during switching using this embodiment, it is possible to suppress the capacitor ripple current while suppressing the torque unevenness and noise of the motor.
  • the rotation angle section in which the capacitor ripple current decreases when reverse phase PWM is applied and the reverse phase The rotation angle section in which the capacitor ripple current deteriorates when PWM is applied is repeated every 60 degrees of electric rotation angle. Therefore, switching is being performed using this embodiment so that the PWM phases of the two switching phases are different in the former rotation angle section and the PWM phases of the two switching phases are the same in the latter rotation angle section.
  • the switching timing between the positive phase PWM and the negative phase PWM can be determined based on the zero crossing point of the motor current.
  • FIG. 4 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the signal generation unit 120 switches the phase of the PWM signal from the reverse phase to the positive phase at the phase switching timing tsw. It was
  • the PWM signal is between the positive phase PWM signal PS and the negative phase PWM signal NS, and has a pulse set AS connected before and after the phase switching timing tsw. Therefore, it is possible to switch the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase, which tends to cause a long on (or off) duration. As a result, the capacitor ripple current can be reduced while suppressing the generation of torque unevenness and noise. It was
  • connection on period ATon precedes the connection off period AToff
  • the ratio of the on period to the period of the connection pulse set AS is the same as the ratio of the on period to the PWM cycle before the phase switching.
  • the ratio of the off period to the period of the connected pulse set AS is the same as the ratio of the off period to the PWM cycle after the phase switching. Therefore, as shown in the current waveform shown in FIG. 4, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed.
  • the ratio of the on period to the period of the connected pulse set AS may be slightly different from the ratio of the on period to the PWM cycle before the phase switching.
  • the ratio of the off period to the period of the connected pulse set AS may be slightly different from the ratio of the off period to the PWM cycle after phase switching. It was
  • phase switching timing tsw is the timing of the peak of the carrier signal CAS, but the phase switching timing tsw is deviated from the timing of the peak of the carrier signal CAS. You may. It was
  • FIG. 5 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the PWM signal further includes a front-phase PWM signal PS, a reverse-phase PWM signal NS, a connecting pulse set AS, a front pulse set BS, and a rear pulse set CS.
  • the pre-pulse set BS is located in front of the connecting pulse set AS.
  • the posterior pulse set CS is located after the connecting pulse set AS. It was
  • the pre-pulse set BS has a pre-on-pulse B Son and a pre-off-pulse BS off.
  • the pre-on-pulse B Son has a pre-on-period Bton.
  • the pre-off pulse BSoff has a pre-off period BToff.
  • the period of the pre-pulse set BS is the same as that of the previous PWM signal, that is, the positive phase PWM signal PS in the present embodiment. It was
  • the rear pulse set CS has a rear on-pulse CSon and a rear off-pulse CSoff.
  • the post-on-pulse CSon has a post-on-period CTon.
  • the post-off pulse CSoff has a post-off period CToff.
  • the period of the rear pulse set CS is the same as the PWM signal after this, that is, the reverse phase PWM signal NS in this embodiment. It was
  • phase switching timing tsw is delayed by a time t from the timing of the peak of the carrier signal CAS. It was
  • the signal generation unit 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS, and the rear pulse set CS. In the present embodiment, the signal generation unit 120 adjusts the pulse lengths of the connecting pulse set AS and the rear pulse set CS. It was
  • the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the connection-on-period ATon and the post-on-period CTon so as to compensate for the delay of the time t. Specifically, the signal generation unit 120 sets the voltage command value to 1 so that the connection-on-period ATon and the post-on-period CTon are each longer by t / 2 as compared with the case where the voltage command value is 1-V. The value shifted from ⁇ V is used as the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by a value corresponding to the time t / 2 in terms of the pulse length. It was
  • CToff Toff-t.
  • CTon Ton + t / 2.
  • the signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection-on-period ATTon and the post-on-period CTon. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0.
  • the signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff.
  • the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff.
  • the sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0.
  • the adjustment value of the connection off period AToff is t2a
  • the adjustment value of the front off period BToff is t2b
  • the adjustment value of the rear off period CToff is t2c
  • t2a t
  • the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 3, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. Further, in the example shown in FIG. 3, at the moment of the phase switching timing tsw, the current amplitude becomes ⁇ I / 2, and the current waveform during the connected pulse set AS period is temporarily biased to the higher side. In the example shown, the bias of the current waveform is suppressed. Therefore, it is possible to further suppress the fluctuation of the average current due to the switching operation. By setting the value of t to, for example, 2 to 10% of the period of the carrier signal CAS, fluctuations in the average current can be effectively suppressed. It was
  • FIG. 6 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the signal generation unit 120 switches the phase of the PWM signal from the reverse phase to the positive phase at the phase switching timing tsw. Similar to the embodiment shown in FIG. 5, the phase switching timing tsw is delayed by a time t from the timing of the peak of the carrier signal CAS. It was
  • the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-off time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff so as to compensate for the portion delayed by the time t. Specifically, the signal generation unit 120 shifts the voltage command value from V so that the connection off period AToff and the post-off period CToff are each longer by t / 2 as compared with the case where the voltage command value is V. The set value is used as the voltage command value. It was
  • CTon Ton-t.
  • CToff Toff + t / 2.
  • the signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection-on-period ATTon and the post-on-period CTon. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0.
  • the signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff.
  • the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff.
  • the sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0.
  • the adjustment value of the connection off period AToff is t2a
  • the adjustment value of the front off period BToff is t2b
  • the adjustment value of the rear off period CToff is t2c
  • t2a -t / 2
  • t2a + t2b + t2c 0.
  • the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. Further, in the example shown in FIG. 4, at the moment of the phase switching timing tsw, the current amplitude becomes ⁇ I / 2, and the current waveform during the connected pulse set AS period is temporarily biased to the lower side. In the example shown, the bias of the current waveform is suppressed. Therefore, it is possible to further suppress the fluctuation of the average current due to the switching operation. By setting the value of t to, for example, 2 to 10% of the period of the carrier signal CAS, fluctuations in the average current can be effectively suppressed. It was
  • the signal generation unit 120 shifts the voltage command value by the value corresponding to the time t / 2 in terms of the pulse length, but it is converted into the pulse length.
  • the voltage command value may be shifted by a value corresponding to the time t. It was
  • FIG. 7 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the connection-on-period ATon and the post-on-period CTon so as to compensate for the delay of the time t. Specifically, the signal generation unit 120 sets the voltage command value to 1-V so that the connection-on-period ATon and the post-on-period CTon are each longer by t as compared with the case where the voltage command value is 1-V. The value shifted from is used as the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by the value corresponding to the time t in terms of the pulse length. It was
  • CToff Toff-t.
  • CTon Ton.
  • the signal generation unit 120 does not adjust the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. It was
  • the signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff.
  • the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff.
  • the sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0.
  • the adjustment value of the connection off period AToff is t2a
  • the adjustment value of the front off period BToff is t2b
  • the adjustment value of the rear off period CToff is t2c
  • t2a t
  • the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. In this example, by setting the value of t to, for example, 5 to 20% of the period of the carrier signal CAS, the fluctuation of the average current can be effectively suppressed. It was
  • the signal generation unit 120 adjusts the connection on period ATon and the post-on period CTon so as to compensate for the delay by the time t.
  • the signal generation unit 120 may adjust the pre-on period BTon so as to compensate for the amount delayed by the time t. It was
  • FIG. 8 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the pre-on period BTon so as to compensate in advance for the amount delayed by the time t. Specifically, the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from V so that the previous ON period BTon is longer by t as compared with the case where the voltage command value is V. ..
  • the signal generation unit 120 shifts the voltage command value from V so that the turn-on time of the pre-on-pulse BSon is advanced by t / 2 and the turn-off time of the pre-on-pulse BSon is delayed by t / 2.
  • the value is the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by a value corresponding to the time t / 2 in terms of the pulse length. It was
  • the signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection on period ATon and the pre-on period Bton. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0.
  • the signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff.
  • the signal generation unit 120 adjusts the connection off period AToff and the pre-off period BToff.
  • the sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0.
  • the adjustment value of the connection off period AToff is t2a
  • the adjustment value of the front off period BToff is t2b
  • the adjustment value of the rear off period CToff is t2c
  • t2a t / 2
  • t2b -t / 2
  • t2c 0.
  • t2a + t2b + t2c 0. It was
  • the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. It was
  • phase switching timing tsw is delayed from the timing of the peak of the carrier signal CAS, but the phase switching timing tsw is later than the timing of the peak of the carrier signal CAS. It may be early. It was
  • FIG. 9 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the phase switching timing tsw is advanced by time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is advanced by the time t. Therefore, the signal generation unit 120 adjusts the pre-on period BTon so as to adjust the minute earlier by the time t. Specifically, the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from V so that the previous ON period BTon is shorter by t as compared with the case where the voltage command value is V. ..
  • the signal generation unit 120 shifts the voltage command value from V so that the turn-on time of the front on-pulse B Son is delayed by t / 2 and the turn-off time of the front on-pulse B Son is advanced by t / 2.
  • the value is the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by a value corresponding to the time t / 2 in terms of the pulse length. It was
  • the signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection on period ATon and the pre-on period Bton. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0.
  • the signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff.
  • the signal generation unit 120 adjusts the connection off period AToff and the pre-off period BToff.
  • the sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0.
  • the adjustment value of the connection off period AToff is t2a
  • the adjustment value of the front off period BToff is t2b
  • the adjustment value of the rear off period CToff is t2c
  • t2a -t / 2
  • t2b t / 2
  • t2c 0.
  • t2a + t2b + t2c 0. It was
  • the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation.
  • the carrier signal CAS is a triangular wave, but the carrier signal CAS may be a sawtooth. It was
  • FIG. 10 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the carrier signal CAS is a sawtooth wave.
  • the signal generation unit 120 switches the phase of the PWM signal from the positive phase to the negative phase at the phase switching timing tsw. It was
  • the PWM signal includes a positive-phase PWM signal PS, a reverse-phase PWM signal NS, a connecting pulse set AS, a front pulse set BS, and a rear pulse set CS. It was
  • the difference between the current increase in the on period and the current decrease in the off period, that is, the current decrease from the turn-off of the front on-pulse B Son to the turn-on of the rear on-pulse C Son becomes ⁇ I. Therefore, the current Ia at the turn-on of the front on-pulse B Son and the current Ib at the turn-on of the rear on-pulse B Son can be matched. As a result, it is possible to suppress fluctuations in the average current due to the phase switching operation of the PWM signal. It was
  • the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from 1-V so that the connection-on period ATton becomes Toff ⁇ Ton / T. It was
  • FIG. 11 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the carrier signal CAS is a sawtooth wave.
  • the signal generation unit 120 switches the phase of the PWM signal from the opposite phase to the positive phase at the phase switching timing tsw. It was
  • the PWM signal includes a positive-phase PWM signal PS, a reverse-phase PWM signal NS, a connecting pulse set AS, a front pulse set BS, and a rear pulse set CS. It was
  • the connecting on-pulse ASon of the connecting pulse set AS and the rear-on-pulse CSon of the rear pulse set CS are connected to each other. It was
  • the off period between the front on-pulse BSon and the rear-on-pulse CSon is Toff + TonToff / T.
  • the difference between the current increase in the on period and the current decrease in the off period, that is, the current decrease from the turn-off of the front on-pulse B Son to the turn-on of the rear on-pulse C Son becomes ⁇ I. Therefore, the current Ic at the turn-on of the front on-pulse B Son can be matched with the current Id at the turn-on of the rear on-pulse B Son. As a result, it is possible to suppress fluctuations in the average current due to the phase switching operation of the PWM signal. It was
  • the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from V so that the connection-on period ATton becomes Ton-TonToff / T at the phase switching timing tsw. It was
  • the voltage command value was changed, but the voltage command value may be constant. It was
  • FIG. 12 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
  • the voltage command value is constant.
  • the phase of the carrier signal CAS is changed at the phase switching timing tsw. Specifically, the carrier signal CAS is switched from a peak to a valley at the phase switching timing tsw. Therefore, it is not necessary to switch between the positive phase and the negative phase in the comparison process between the carrier signal CAS and the voltage command value in the comparison unit 126 of the signal generation unit 120. For example, when the carrier signal is larger than the voltage command value, it is off, and when the carrier signal is larger than the voltage command value, it is on. Therefore, it is possible to simplify the calculation in the process of switching the phase of the PWM signal. It was
  • phase switching timing tsw may deviate from the timing of the peak of the carrier signal CAS, as in the example described with reference to FIGS. 5 to 9. It was
  • the carrier signal CAS was a triangular wave
  • the carrier signal CAS was a sawtooth.
  • the signal CAS may switch between the triangular wave and the saw blade at the phase switching timing tsw.
  • the carrier signal CAS may be a triangular wave
  • the carrier signal CAS may be a sawtooth wave
  • the carrier signal CAS may be a sawtooth wave
  • the carrier signal CAS may be a triangular wave.
  • FIGS. 1 to 12 The embodiments of the present invention have been described above with reference to the drawings (FIGS. 1 to 12). However, the present invention is not limited to the above embodiment, and can be implemented in various embodiments without departing from the gist thereof.
  • the drawings are schematically shown mainly for each component for easy understanding, and the thickness, length, number, etc. of each of the illustrated components are different from the actual ones for the convenience of drawing creation. .. Further, the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. be.
  • N ... 2nd input terminal, NS ... reverse phase PWM signal, P ... 1st input terminal, PS ... positive phase PWM signal, V1 ... 1st voltage , V2 ... second voltage, tsw ... phase switching timing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Brushes (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

Provided is a motor drive circuit capable of carrying out switching of PWM phases by limiting the occurrence of long continuous on (or off) times immediately after switching of a PWM signal phase. The motor drive circuit 100 comprises a first input terminal P, a second input terminal N, a capacitor C, three series units 112, and a signal generation part 120. The PWM signal includes a positive phase PWM signal PS and a negative phase PWM signal NS. The PWM signal additionally has a connecting pulse set AS before and after a phase switch timing tsw and between the positive phase PWM signal PS and the negative phase PWM signal NS. The connecting pulse set AS has a connecting on pulse ASon and a connecting off pulse ASoff. The connecting on pulse ASon has a connecting on period ATon. The connecting off pulse ASoff has a connecting off period AToff. The connecting on period ATon is shorter than an on period of one cycle of a PWM cycle before the phase switch or after the phase switch.

Description

モータ駆動回路およびモータモジュールMotor drive circuit and motor module
本発明は、モータ駆動回路およびモータモジュールに関する。本願は、2020年9月30日に日本に出願された特願2020-164999号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a motor drive circuit and a motor module. This application claims priority based on Japanese Patent Application No. 2020-164999 filed in Japan on September 30, 2020, the contents of which are incorporated herein by reference.
3相モータの駆動方式として、2相変調方式が知られている(例えば、特許文献1)。特許文献1に記載のインバータ装置は、3相のうちオンまたはオフに保たれる1相以外の2相の指令値を互いに180度位相が異なり振幅および周波数の等しい2つの三角基準波とそれぞれ比較し、各相に対応するスイッチング素子のそれぞれのオン、オフをPWM制御する制御手段を備える。制御手段は、3相のうちオンまたはオフに保たれる1相の指令値と比較している三角基準波の一方を三角基準波の他方に切り替える。これにより、3相のうちオンまたはオフに保たれる1相以外の2相の指令値を同じ三角基準波と比較してPWM制御する場合に比べて、コンデンサに出入りする電流(コンデンサリップル電流)を減少させることができる。 A two-phase modulation method is known as a drive method for a three-phase motor (for example, Patent Document 1). The inverter device described in Patent Document 1 compares the command values of two phases other than the one kept on or off among the three phases with two triangular reference waves having 180-degree phases different from each other and having the same amplitude and frequency. Further, a control means for PWM-controlling the on / off of each switching element corresponding to each phase is provided. The control means switches one of the triangular reference waves being compared with the command value of one of the three phases kept on or off to the other of the triangular reference waves. As a result, the current flowing in and out of the capacitor (capacitor ripple current) is compared with the case where the command values of the two phases other than the one phase, which are kept on or off among the three phases, are compared with the same triangular reference wave for PWM control. Can be reduced.
特開2006-197707号公報Japanese Unexamined Patent Publication No. 2006-197707
しかしながら、特許文献1に記載のインバータ装置は、PWM信号の位相の切り替えが、切り替える相がオンまたはオフに保たれる場合に限られる。すなわち、それぞれの相のPWM波形生成において用いられる三角基準波は、その相がスイッチングを行っている期間においては、180度位相が異なる2つの三角基準波のうちの一方に固定されており、スイッチング中に三角基準波を切り替えることは行わない。ところで、特許文献1図4(b)のような出力電圧パターンを与えた場合、出力に接続されたモータは誘導性の負荷であることから、電圧波形に対し、電流波形は遅延を生じる。この時、一部の回転角区間では、スイッチング中の2つの相を180度位相が異なる三角波でPWM制御すると、インバータからコンデンサへの電流の逆流が発生することになり、コンデンサリップル電流を減少させる効果を弱めてしまう。場合によっては、同一の三角波を用いた場合よりもトータルのコンデンサリップル電流を増加させてしまうこともある。これを抑制するには、インバータからコンデンサへの電流逆流が発生しない回転角区間はスイッチング中の2相のPWM信号の位相を異ならせ、逆流が発生する回転角区間は同じPWM信号の位相を切り替えねばならない。しかし、特許文献1に記載のインバータ装置で、切り替える相がオンまたはオフに保たれていないときに、PWM信号の位相の切り替えを行った場合には、PWM信号位相の切り替え直後に長いオン(またはオフ)継続時間が生じる可能性がある。  However, the inverter device described in Patent Document 1 is limited to the case where the phase switching of the PWM signal is kept on or off. That is, the triangular reference wave used in the PWM waveform generation of each phase is fixed to one of the two triangular reference waves having a 180-degree phase difference during the switching period, and the switching is performed. The triangular reference wave is not switched inside. By the way, when the output voltage pattern as shown in FIG. 4B of Patent Document 1 is given, since the motor connected to the output is an inductive load, the current waveform is delayed with respect to the voltage waveform. At this time, in a part of the rotation angle section, if the two phases being switched are PWM controlled by a triangular wave having a phase difference of 180 degrees, a backflow of current from the inverter to the capacitor will occur, and the capacitor ripple current will be reduced. It weakens the effect. In some cases, the total capacitor ripple current may be increased as compared with the case where the same triangular wave is used. To suppress this, the phase of the two-phase PWM signal during switching is different in the rotation angle section where no current backflow from the inverter to the capacitor occurs, and the phase of the same PWM signal is switched in the rotation angle section where backflow occurs. I have to. However, in the inverter device described in Patent Document 1, when the phase of the PWM signal is switched when the phase to be switched is not kept on or off, it is turned on (or long) immediately after the switching of the PWM signal phase. Off) Duration may occur. It was
本発明は上記課題に鑑みてなされたものであり、その目的は切り替え直後に長いオン(またはオフ)継続時間が生じることを抑制してPWM位相の切り替えを行うことができるモータ駆動回路およびモータモジュールを提供することにある。 The present invention has been made in view of the above problems, and an object thereof is a motor drive circuit and a motor module capable of switching the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after switching. Is to provide.
本発明の例示的なモータ駆動回路は、2相変調方式で3相モータの駆動を制御する。前記モータ駆動回路は、第1入力端子と、第2入力端子と、コンデンサと、3つの直列体と、信号生成部とを備える。前記第1入力端子には、第1の電圧が印加される。前記第2入力端子には、前記第1の電圧よりも低い第2の電圧が印加される。前記コンデンサは、前記第1入力端子と前記第2入力端子との間に接続される。前記3つの直列体は、2つの半導体スイッチング素子が直列に接続されている。前記信号生成部は、前記3つの直列体のそれぞれに入力するPWM信号を生成する。前記PWM信号は、正相PWM信号と、逆相PWM信号とを含む。前記逆相PWM信号は、前記正相PWM信号と位相が異なる。前記信号生成部は、前記PWM信号の位相の切替を位相切替タイミングで切り替える。前記PWM信号は、前記正相PWM信号と前記逆相PWM信号との間であって、前記位相切替タイミングの前後に繋ぎパルスセットをさらに有する。前記繋ぎパルスセットは、繋ぎオンパルスと、繋ぎオフパルスとを有する。前記繋ぎオンパルスは、繋ぎオン期間を有する。前記繋ぎオフパルスは、繋ぎオフ期間を有する。前記繋ぎオン期間は、位相切替前または位相切替後のPWM周期の1周期分のオン期間よりも短い。  The exemplary motor drive circuit of the present invention controls the drive of a three-phase motor by a two-phase modulation method. The motor drive circuit includes a first input terminal, a second input terminal, a capacitor, three series bodies, and a signal generation unit. A first voltage is applied to the first input terminal. A second voltage lower than the first voltage is applied to the second input terminal. The capacitor is connected between the first input terminal and the second input terminal. In the three series, two semiconductor switching elements are connected in series. The signal generation unit generates a PWM signal to be input to each of the three series. The PWM signal includes a positive phase PWM signal and a negative phase PWM signal. The reverse phase PWM signal has a different phase from the positive phase PWM signal. The signal generation unit switches the phase switching of the PWM signal at the phase switching timing. The PWM signal is between the positive phase PWM signal and the negative phase PWM signal, and further has a connecting pulse set before and after the phase switching timing. The splicing pulse set has a splicing on pulse and a splicing off pulse. The tether-on pulse has a tether-on period. The tether-off pulse has a tether-off period. The connection on period is shorter than the on period of one PWM cycle before or after the phase switching. It was
本発明の例示的なモータモジュールは、上記に記載のモータ駆動回路と、3相モータとを備える。前記3相モータは、前記モータ駆動回路によって駆動される。 An exemplary motor module of the present invention comprises the motor drive circuit described above and a three-phase motor. The three-phase motor is driven by the motor drive circuit.
例示的な本発明によれば、PWM信号位相の切り替え直後に長いオン(またはオフ)継続時間が生じることを抑制してPWM位相の切り替えを行うことができる。 According to an exemplary invention, it is possible to switch the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase.
図1は、本発明の実施形態に係るモータモジュールのブロック図である。FIG. 1 is a block diagram of a motor module according to an embodiment of the present invention. 図2は、インバータ部を示す回路図である。FIG. 2 is a circuit diagram showing an inverter unit. 図3は、本発明の実施形態に係るPWM信号を示す図である。FIG. 3 is a diagram showing a PWM signal according to an embodiment of the present invention. 図4は、本発明の実施形態に係るPWM信号を示す図である。FIG. 4 is a diagram showing a PWM signal according to an embodiment of the present invention. 図5は、本発明の実施形態に係るPWM信号を示す図である。FIG. 5 is a diagram showing a PWM signal according to an embodiment of the present invention. 図6は、本発明の実施形態に係るPWM信号を示す図である。FIG. 6 is a diagram showing a PWM signal according to an embodiment of the present invention. 図7は、本発明の実施形態に係るPWM信号を示す図である。FIG. 7 is a diagram showing a PWM signal according to an embodiment of the present invention. 図8は、本発明の実施形態に係るPWM信号を示す図である。FIG. 8 is a diagram showing a PWM signal according to an embodiment of the present invention. 図9は、本発明の実施形態に係るPWM信号を示す図である。FIG. 9 is a diagram showing a PWM signal according to an embodiment of the present invention. 図10は、本発明の実施形態に係るPWM信号を示す図である。FIG. 10 is a diagram showing a PWM signal according to an embodiment of the present invention. 図11は、本発明の実施形態に係るPWM信号を示す図である。FIG. 11 is a diagram showing a PWM signal according to an embodiment of the present invention. 図12は、本発明の実施形態に係るPWM信号を示す図である。FIG. 12 is a diagram showing a PWM signal according to an embodiment of the present invention.
以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the figure, the same or corresponding parts are designated by the same reference numerals and the description is not repeated. It was
図1および図2を参照して、本発明の実施形態に係るモータについて説明する。図1は、本発明の実施形態に係るモータモジュール200のブロック図である。図2は、インバータ部110を示す回路図である。  A motor according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a block diagram of a motor module 200 according to an embodiment of the present invention. FIG. 2 is a circuit diagram showing the inverter unit 110. It was
図1に示すように、モータモジュール200は、モータ駆動回路100と、3相モータMとを備える。3相モータMは、モータ駆動回路100によって駆動される。3相モータMは、例えば、ブラシレスDCモータである。3相モータMは、U相、V相およびW相を有する。  As shown in FIG. 1, the motor module 200 includes a motor drive circuit 100 and a three-phase motor M. The three-phase motor M is driven by the motor drive circuit 100. The three-phase motor M is, for example, a brushless DC motor. The three-phase motor M has a U phase, a V phase and a W phase. It was
モータ駆動回路100は、2相変調方式で3相モータMの駆動を制御する。モータ駆動回路100は、インバータ部110と、信号生成部120とを備える。  The motor drive circuit 100 controls the drive of the three-phase motor M by a two-phase modulation method. The motor drive circuit 100 includes an inverter unit 110 and a signal generation unit 120. It was
モータ駆動回路100は、3つの出力端子102を備える。3つの出力端子102は、出力端子102uと、出力端子102vと、出力端子102wとを含む。3つの出力端子102は、3相の出力電圧と3相の出力電流とを3相モータMへ出力する。詳しくは、出力端子102uは、U相の出力電圧Vuと、U相の出力電流Iuとを3相モータMへ出力する。出力端子102vは、V相の出力電圧Vvと、V相の出力電流Ivとを3相モータMへ出力する。出力端子102wは、W相の出力電圧Vwと、W相の出力電流Iwとを3相モータMへ出力する。  The motor drive circuit 100 includes three output terminals 102. The three output terminals 102 include an output terminal 102u, an output terminal 102v, and an output terminal 102w. The three output terminals 102 output the three-phase output voltage and the three-phase output current to the three-phase motor M. Specifically, the output terminal 102u outputs the U-phase output voltage Vu and the U-phase output current Iu to the three-phase motor M. The output terminal 102v outputs the V-phase output voltage Vv and the V-phase output current Iv to the three-phase motor M. The output terminal 102w outputs the W-phase output voltage Vw and the W-phase output current Iw to the three-phase motor M. It was
図2に示すように、モータ駆動回路100は、第1入力端子Pと、第2入力端子Nと、コンデンサCと、3つの直列体112とを備える。より具体的には、本実施形態では、モータ駆動回路100は、インバータ部110を備え、インバータ部110は、第1入力端子Pと、第2入力端子Nと、コンデンサCと、3つの直列体112とを備える。インバータ部110は、直流電圧源Bをさらに備える。なお、直流電圧源Bは、インバータ部110の外部にあってもよい。  As shown in FIG. 2, the motor drive circuit 100 includes a first input terminal P, a second input terminal N, a capacitor C, and three series bodies 112. More specifically, in the present embodiment, the motor drive circuit 100 includes an inverter unit 110, and the inverter unit 110 includes a first input terminal P, a second input terminal N, a capacitor C, and three series. It is equipped with 112. The inverter unit 110 further includes a DC voltage source B. The DC voltage source B may be outside the inverter unit 110. It was
第1入力端子Pには、第1の電圧V1が印加される。第1入力端子Pは、直流電圧源Bに接続されている。  A first voltage V1 is applied to the first input terminal P. The first input terminal P is connected to the DC voltage source B. It was
第2入力端子Nには、第2の電圧V2が印加される。第2入力端子Nは、直流電圧源Bに接続されている。第2の電圧V2は、第1の電圧V1よりも低い。  A second voltage V2 is applied to the second input terminal N. The second input terminal N is connected to the DC voltage source B. The second voltage V2 is lower than the first voltage V1. It was
コンデンサCは、第1入力端子Pと第2入力端子Nとの間に接続される。  The capacitor C is connected between the first input terminal P and the second input terminal N. It was
3つの直列体112には、2つの半導体スイッチング素子が直列に接続されている。半導体スイッチング素子は、例えば、IGBT(絶縁ゲートバイポーラトランジスタ)である。なお、半導体スイッチング素子は、電界効果トランジスタのような他のトランジスタであってもよい。3つの直列体112は、直列体112uと、直列体112vと、直列体112wとを含む。3つの直列体112は、互いに並列に接続されている。3つの直列体112の各々は、一端が第1入力端子Pに接続されている。3つの直列体112の各々は、他端が第2入力端子Nに接続されている。これらの半導体スイッチング素子にはそれぞれ、第1入力端子P側(紙面上側)をカソード、第2入力端子N側(紙面下側)をアノードとして、整流素子Dが並列に接続される。半導体スイッチング素子として電界効果トランジスタを用いる場合には、寄生ダイオードをこの整流素子として用いてもよい。  Two semiconductor switching elements are connected in series to the three series bodies 112. The semiconductor switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor). The semiconductor switching element may be another transistor such as a field effect transistor. The three series 112u includes a series 112u, a series 112v, and a series 112w. The three series 112 are connected in parallel to each other. One end of each of the three series 112 is connected to the first input terminal P. The other end of each of the three series 112 is connected to the second input terminal N. A rectifying element D is connected in parallel to each of these semiconductor switching elements, with the first input terminal P side (upper side of the paper surface) as the cathode and the second input terminal N side (lower side of the paper surface) as the anode. When a field effect transistor is used as the semiconductor switching element, a parasitic diode may be used as this rectifying element. It was
3つの直列体112の各々は、第1半導体スイッチング素子と、第2半導体スイッチング素子とを有する。詳しくは、直列体112uは、第1半導体スイッチング素子Upと、第2半導体スイッチング素子Unとを有する。直列体112vは、第1半導体スイッチング素子Vpと、第2半導体スイッチング素子Vnとを有する。直列体112wは、第1半導体スイッチング素子Wpと、第2半導体スイッチング素子Wnとを有する。  Each of the three series 112 has a first semiconductor switching element and a second semiconductor switching element. Specifically, the series 112u has a first semiconductor switching element Up and a second semiconductor switching element Un. The series 112v has a first semiconductor switching element Vp and a second semiconductor switching element Vn. The series 112w has a first semiconductor switching element Wp and a second semiconductor switching element Wn. It was
第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、第1入力端子Pに接続される。換言すると、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、高電圧側の半導体スイッチング素子である。  The first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are connected to the first input terminal P. In other words, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are semiconductor switching elements on the high voltage side. It was
第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、第2入力端子Nに接続される。換言すると、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、低電圧側の半導体スイッチング素子である。  The second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are connected to the second input terminal N. In other words, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are semiconductor switching elements on the low voltage side. It was
第1半導体スイッチング素子と第2半導体スイッチング素子とは接続点114において接続されている。詳しくは、第1半導体スイッチング素子Upと、第2半導体スイッチング素子Unとは、接続点114uにおいて接続されている。第1半導体スイッチング素子Vpと、第2半導体スイッチング素子Vnとは、接続点114vにおいて接続されている。第1半導体スイッチング素子Wpと、第2半導体スイッチング素子Wnとは、接続点114wにおいて接続されている。  The first semiconductor switching element and the second semiconductor switching element are connected at the connection point 114. Specifically, the first semiconductor switching element Up and the second semiconductor switching element Un are connected at the connection point 114u. The first semiconductor switching element Vp and the second semiconductor switching element Vn are connected at the connection point 114v. The first semiconductor switching element Wp and the second semiconductor switching element Wn are connected at the connection point 114w. It was
3つの直列体112の各々における接続点114が、3つの出力端子102に接続されている。詳しくは、直列体112uにおける接続点114uが、出力端子102uに接続されている。直列体112vにおける接続点114vが、出力端子102vに接続されている。直列体112wにおける接続点114wが、出力端子102wに接続されている。  The connection points 114 in each of the three series 112 are connected to the three output terminals 102. Specifically, the connection point 114u in the series 112u is connected to the output terminal 102u. The connection point 114v in the series 112v is connected to the output terminal 102v. The connection point 114w in the series 112w is connected to the output terminal 102w. It was
第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpには、PWM信号が入力される。PWM信号は、信号生成部120から出力される。以下、本明細書において、第1半導体スイッチング素子Upに入力されるPWM信号を「UpPWM信号」と記載することがある。また、第1半導体スイッチング素子Vpに入力されるPWM信号を「VpPWM信号」と記載することがある。第1半導体スイッチング素子Wpに入力されるPWM信号を「WpPWM信号」と記載することがある。第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体ス
イッチング素子Wpは、所定のPWM周期でオンとオフとが切り替えられる。例えば、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、それぞれ、UpPWM信号、VpPWM信号およびWpPWM信号がHIGHレベルの場合に、オンとなる。一方、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、それぞれ、UpPWM信号、VpPWM信号およびWpPWM信号がLOWレベルの場合に、オフとなる。 
PWM signals are input to the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp. The PWM signal is output from the signal generation unit 120. Hereinafter, in the present specification, the PWM signal input to the first semiconductor switching element Up may be referred to as “Up PWM signal”. Further, the PWM signal input to the first semiconductor switching element Vp may be described as "VpPWM signal". The PWM signal input to the first semiconductor switching element Wp may be described as "Wp PWM signal". The first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are switched on and off in a predetermined PWM cycle. For example, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned on when the UpPWM signal, VpPWM signal, and WpPWM signal are at HIGH level, respectively. On the other hand, the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned off when the UpPWM signal, VpPWM signal, and WpPWM signal are at the LOW level, respectively.
第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnには、PWM信号が入力される。PWM信号は、信号生成部120から出力される。以下、本明細書において、第2半導体スイッチング素子Unに入力されるPWM信号を「UnPWM信号」と記載することがある。また、第2半導体スイッチング素子Vnに入力されるPWM信号を「VnPWM信号」と記載することがある。第2半導体スイッチング素子Wnに入力されるPWM信号を「WnPWM信号」と記載することがある。第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、所定のPWM周期でオンとオフとが切り替えられる。例えば、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、それぞれ、UnPWM信号、VnPWM信号およびWnPWM信号がHIGHレベルの場合に、オンとなる。一方、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、それぞれ、UnPWM信号、VnPWM信号およびWnPWM信号がLOWレベルの場合に、オフとなる。  A PWM signal is input to the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn. The PWM signal is output from the signal generation unit 120. Hereinafter, in the present specification, the PWM signal input to the second semiconductor switching element Un may be referred to as “UnPWM signal”. Further, the PWM signal input to the second semiconductor switching element Vn may be described as "VnPWM signal". The PWM signal input to the second semiconductor switching element Wn may be described as "WnPWM signal". The second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are switched on and off in a predetermined PWM cycle. For example, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned on when the UnPWM signal, the VnPWM signal, and the WnPWM signal are at the HIGH level, respectively. On the other hand, the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned off when the UnPWM signal, the VnPWM signal, and the WnPWM signal are at the LOW level, respectively. It was
図1に示すように、信号生成部120は、キャリア生成部122と、電圧指令値生成部124と、比較部126とを有する。信号生成部120は、CPU(Central Processing Unit)のようなプロセッサー、およびASIC(Application Specific Integrated Circuit)等によって構成されるハードウェア回路である。そして、信号生成部120のプロセッサーは、記憶装置に記憶されたコンピュータープログラムを実行することによって、キャリア生成部122と、電圧指令値生成部124と、比較部126として機能する。  As shown in FIG. 1, the signal generation unit 120 includes a carrier generation unit 122, a voltage command value generation unit 124, and a comparison unit 126. The signal generation unit 120 is a hardware circuit composed of a processor such as a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), and the like. Then, the processor of the signal generation unit 120 functions as the carrier generation unit 122, the voltage command value generation unit 124, and the comparison unit 126 by executing the computer program stored in the storage device. It was
信号生成部120は、インバータ部110を制御する。具体的には、信号生成部120は、PWM信号を生成してPWM信号を出力することによって、インバータ部110を制御する。より具体的には、信号生成部120は、3つの直列体112のそれぞれに入力するPWM信号を生成する。  The signal generation unit 120 controls the inverter unit 110. Specifically, the signal generation unit 120 controls the inverter unit 110 by generating a PWM signal and outputting the PWM signal. More specifically, the signal generation unit 120 generates a PWM signal to be input to each of the three series 112. It was
キャリア生成部122は、キャリア信号を生成する。キャリア信号は、例えば、三角波である。なお、キャリア信号は、鋸波であってもよい。  The carrier generation unit 122 generates a carrier signal. The carrier signal is, for example, a triangular wave. The carrier signal may be a sawtooth wave. It was
電圧指令値生成部124は、電圧指令値を生成する。電圧指令値は、モータ駆動回路100から出力する電圧値に相当する。すなわち、電圧指令値生成部124は、出力電圧Vu、出力電圧Vvおよび出力電圧Vwに応じた電圧値を電圧指令値として生成する。  The voltage command value generation unit 124 generates a voltage command value. The voltage command value corresponds to the voltage value output from the motor drive circuit 100. That is, the voltage command value generation unit 124 generates a voltage value corresponding to the output voltage Vu, the output voltage Vv, and the output voltage Vw as the voltage command value. It was
比較部126は、キャリア信号と、電圧指令値とを比較することによってPWM信号を生成する。  The comparison unit 126 generates a PWM signal by comparing the carrier signal with the voltage command value. It was
図1~図3を参照して、本発明の実施形態に係るPWM信号について説明する。図3は、本発明の実施形態に係るPWM信号を示す図である。図3では、3相のPWM信号のうち、1相のPWM信号を示している。図3において、正相PWM期間PTは、正相PWM信号PSが出力される期間である。また、逆相PWM期間NTは、逆相PWM信号NSが出力される期間である。また、繋ぎパルスセット期間ATは、繋ぎパルスセットASが出力される期間である。電流波形は、他の相のスイッチングによる電流リプルの寄与を無視し、この相のスイッチングによるスイッチングリプル成分のみを抽出して図示している。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 3 is a diagram showing a PWM signal according to an embodiment of the present invention. FIG. 3 shows a one-phase PWM signal among the three-phase PWM signals. In FIG. 3, the positive phase PWM period PT is a period during which the positive phase PWM signal PS is output. Further, the reverse phase PWM period NT is a period during which the reverse phase PWM signal NS is output. Further, the connected pulse set period AT is a period during which the connected pulse set AS is output. The current waveform ignores the contribution of current ripple due to switching of other phases, and extracts and shows only the switching ripple component due to switching of this phase. It was
図3に示すように、PWM信号は、正相PWM信号PSと、逆相PWM信号NSとを含む。逆相PWM信号NSは、正相PWM信号PSと位相が異なる。本実施形態では、逆相PWM信号NSは、正相PWM信号PSと位相が180度ずれている。  As shown in FIG. 3, the PWM signal includes a positive phase PWM signal PS and a negative phase PWM signal NS. The reverse phase PWM signal NS has a different phase from the positive phase PWM signal PS. In the present embodiment, the reverse phase PWM signal NS is 180 degrees out of phase with the positive phase PWM signal PS. It was
信号生成部120は、キャリア信号CASと電圧指令値Vとを比較することによって、PWM信号を生成する。信号生成部120は、PWM信号の位相の切替を位相切替タイミングtswで切り替える。ここでは、信号生成部120は、PWM信号の位相を位相切替タイミングtswで正相から逆相に切り替える。すなわち、位相切替タイミングtswよりも前が、PWM信号の位相が正相である。一方、位相切替タイミングtswよりも後が、PWM信号の位相が逆相である。本実施形態では、位相切替タイミングtswは、キャリア信号CASの山のタイミングである。本実施形態では、キャリア信号CASは、三角波である。  The signal generation unit 120 generates a PWM signal by comparing the carrier signal CAS with the voltage command value V. The signal generation unit 120 switches the phase switching of the PWM signal at the phase switching timing tsw. Here, the signal generation unit 120 switches the phase of the PWM signal from the positive phase to the negative phase at the phase switching timing tsw. That is, the phase of the PWM signal is the positive phase before the phase switching timing tsw. On the other hand, after the phase switching timing tsw, the phase of the PWM signal is out of phase. In the present embodiment, the phase switching timing tsw is the timing of the peak of the carrier signal CAS. In this embodiment, the carrier signal CAS is a triangular wave. It was
信号生成部120は、位相切替タイミングtswにおいて、電圧指令値Vを変更する。ここでは、信号生成部120は、電圧指令値をVから1-Vに変更する。比較部126は、電圧指令値とキャリア信号CASとを比較し、PWM信号を生成する。詳しくは、PWM信号の位相が正相の場合、キャリア信号CASが電圧指令値以上の場合に、PWM信号をオフにする。一方、比較部126は、電圧指令値とキャリア信号CASとを比較し、キャリア信号CASが電圧指令値未満の場合に、PWM信号をオンにする。一方、PWM信号の位相が逆相の場合、キャリア信号CASが電圧指令値以上の場合に、PWM信号をオンにする。一方、比較部126は、電圧指令値とキャリア信号CASとを比較し、キャリア信号CASが電圧指令値未満の場合に、PWM信号をオフにする。このように、信号生成部120は、電圧指令値と、比較部126の判定処理の方法とを変更することによって、PWM信号の位相を変更する。  The signal generation unit 120 changes the voltage command value V at the phase switching timing tsw. Here, the signal generation unit 120 changes the voltage command value from V to 1-V. The comparison unit 126 compares the voltage command value with the carrier signal CAS and generates a PWM signal. Specifically, when the phase of the PWM signal is positive, the PWM signal is turned off when the carrier signal CAS is equal to or higher than the voltage command value. On the other hand, the comparison unit 126 compares the voltage command value with the carrier signal CAS, and turns on the PWM signal when the carrier signal CAS is less than the voltage command value. On the other hand, when the phase of the PWM signal is opposite, the PWM signal is turned on when the carrier signal CAS is equal to or higher than the voltage command value. On the other hand, the comparison unit 126 compares the voltage command value with the carrier signal CAS, and turns off the PWM signal when the carrier signal CAS is less than the voltage command value. In this way, the signal generation unit 120 changes the phase of the PWM signal by changing the voltage command value and the method of determination processing of the comparison unit 126. It was
PWM信号は、正相PWM信号PSと逆相PWM信号NSとの間であって、位相切替タイミングtswの前後に繋ぎパルスセットASをさらに有する。繋ぎパルスセットASは、繋ぎオンパルスASonと、繋ぎオフパルスASoffとを有する。繋ぎオンパルスASonは、繋ぎオン期間ATonを有する。繋ぎオフパルスASoffは、繋ぎオフ期間AToffを有する。繋ぎパルスセットASは、位相切替タイミングtswの前後のPWM1周期以内の時間範囲に位置する。  The PWM signal is between the positive phase PWM signal PS and the negative phase PWM signal NS, and further has a pulse set AS connected before and after the phase switching timing tsw. The tethered pulse set AS has a tethered on-pulse ASon and a tethered off-pulse ASoff. The tether-on-pulse ASon has a tether-on period ATon. The tether-off pulse ASoff has a tether-off period AToff. The connected pulse set AS is located within a time range within one PWM cycle before and after the phase switching timing tsw. It was
繋ぎオン期間ATonは、位相切替前または位相切替後のPWM周期の1周期分のオン期間よりも短い。本実施形態では、繋ぎオン期間ATonは、位相切替前のPWM周期の1周期分のオン期間Tonよりも短い。詳しくは、繋ぎオン期間ATonは、位相切替前のPWM周期の1周期分のオン期間Tonの1/2の長さである。すなわち、ATon=Ton/2である。  The connection on period ATon is shorter than the on period for one cycle of the PWM cycle before or after the phase switching. In the present embodiment, the connection on period A Ton is shorter than the on period Ton for one cycle of the PWM cycle before the phase switching. Specifically, the connection on period A Ton is half the length of the on period Ton for one cycle of the PWM cycle before the phase switching. That is, ATon = Ton / 2. It was
PWM信号は、正相PWM信号PSと逆相PWM信号NSとの間であって、位相切替タイミングtswの前後に繋ぎパルスセットASを有する。したがって、PWM制御中の相の一方に対して、PWM信号位相の切り替え直後に長いオン(またはオフ)継続時間が生じることを抑制してPWM位相の切り替えを行うことができる。その結果、PWM信号位相の切り替え直後に、意図しない相電流の増減が発生してトルクむらや騒音の原因となることを抑制したうえで、コンデンサリップル電流を低減できる。  The PWM signal is between the positive phase PWM signal PS and the negative phase PWM signal NS, and has a pulse set AS connected before and after the phase switching timing tsw. Therefore, it is possible to switch the PWM phase with respect to one of the phases under PWM control while suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase. As a result, it is possible to reduce the capacitor ripple current while suppressing an unintended increase or decrease in the phase current immediately after switching the PWM signal phase, which causes torque unevenness and noise. It was
また、繋ぎパルスセットASは、位相切替タイミングtswの前後のPWM1周期以内の時間範囲に位置する。したがって、長いオン(またはオフ)継続時間が生じやすいPWM信号位相の切り替え直後に長いオン(またはオフ)継続時間が生じることを抑制してPWM位相の切り替えを行うことができる。その結果、意図しない相電流の増減が発生してトルクむらや騒音の原因となることを抑制したうえで、コンデンサリップル電流を低減できる。  Further, the connecting pulse set AS is located within a time range within one PWM cycle before and after the phase switching timing tsw. Therefore, it is possible to switch the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase, which tends to cause a long on (or off) duration. As a result, it is possible to reduce the capacitor ripple current while suppressing the unintended increase / decrease in the phase current from causing torque unevenness and noise. It was
また、繋ぎオフ期間AToffは、位相切替前または位相切替後のPWM周期の1周期分のオフ期間よりも短い。したがって、意図しない相電流の増減が発生してトルクむらや騒音の原因となることを抑制したうえで、コンデンサリップル電流を低減できる。本実施形態では、繋ぎオフ期間AToffは、位相切替前のPWM周期の1周期分のオフ期間Toffよりも短い。詳しくは、繋ぎオフ期間AToffは、位相切替前のPWM周期の1周期分のオフ期間Toffの1/2の長さである。すなわち、AToff=Toff/2である。  Further, the connection off period AToff is shorter than the off period for one cycle of the PWM cycle before or after the phase switching. Therefore, it is possible to reduce the capacitor ripple current while suppressing the unintended increase / decrease in the phase current from causing torque unevenness and noise. In the present embodiment, the connection off period AToff is shorter than the off period Toff for one cycle of the PWM cycle before the phase switching. Specifically, the connection off period AToff is half the length of the off period Toff for one cycle of the PWM cycle before the phase switching. That is, AToff = Toff / 2. It was
また、繋ぎオン期間ATonと繋ぎオフ期間AToffの比は、位相切替前または位相切替後のPWM周期の1周期分のオン期間Tonとオフ期間Toffとの比と同じである。したがって、図3に示す電流波形のように、位相切り替え前後の平均電流の変動を抑えることができ、モータのトルクむらや騒音をより抑制できる。なお、繋ぎオン期間ATonと繋ぎオフ期間AToffの比は、位相切替前または位相切替後のPWM周期の1周期分のオン期間Tonとオフ期間Toffとの比と僅かに異なっていてもよい。  Further, the ratio of the connection on period ATon and the connection off period AToff is the same as the ratio of the on period Ton and the off period Toff for one cycle of the PWM cycle before or after the phase switching. Therefore, as shown in the current waveform shown in FIG. 3, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed. The ratio of the connection on period ATon to the connection off period AToff may be slightly different from the ratio of the on period Ton and the off period Toff for one cycle of the PWM cycle before or after the phase switching. It was
また、繋ぎオフ期間AToffが繋ぎオン期間ATonに先行するとともに、繋ぎパルスセットASの期間に占めるオフ期間の比率が、位相切替前のPWM周期に占めるオフ期間の比率と同じである。また、繋ぎパルスセットASの期間に占めるオン期間の比率が、位相切替後のPWM周期に占めるオン期間の比率と同じである。したがって、図3に示す電流波形のように、繋ぎパルスセットAS期間終了時の電流値が位相切替前の電流ピーク値とほぼ一致することになる。このため、位相切り替え前後の平均電流の変動を抑えることができ、モータのトルクむらや騒音をより抑制できる。なお、繋ぎパルスセットASの期間に占めるオフ期間の比率が、位相切替前のPWM周期に占めるオフ期間の比率と僅かに異なっていてもよい。また、繋ぎパルスセットASの期間に占めるオン期間の比率が、位相切替後のPWM周期に占めるオン期間の比率と僅かに異なっていてもよい。  Further, the connection off period AToff precedes the connection on period ATon, and the ratio of the off period to the period of the connection pulse set AS is the same as the ratio of the off period to the PWM cycle before the phase switching. Further, the ratio of the on period to the period of the connected pulse set AS is the same as the ratio of the on period to the PWM cycle after the phase switching. Therefore, as shown in the current waveform shown in FIG. 3, the current value at the end of the connected pulse set AS period substantially coincides with the current peak value before the phase switching. Therefore, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed. The ratio of the off period to the period of the connected pulse set AS may be slightly different from the ratio of the off period to the PWM cycle before the phase switching. Further, the ratio of the on period to the period of the connected pulse set AS may be slightly different from the ratio of the on period to the PWM cycle after the phase switching. It was
また、繋ぎパルスセットASの周期は、位相切替前または位相切替後のPWM周期の1/2である。すなわち、AT=T/2である。したがって、位相切り替え前後の平均電流の変動を抑えることができ、モータのトルクむらや騒音をより抑制できる。  Further, the cycle of the connected pulse set AS is ½ of the PWM cycle before or after the phase switching. That is, AT = T / 2. Therefore, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed. It was
なお、繋ぎオンパルスASonは、複数のパルスを有していてもよい。繋ぎオンパルスASonが、複数のパルスを有する場合であっても、コンデンサリップル電流を低減できる。  The connected on-pulse ASon may have a plurality of pulses. Even when the connected on-pulse ASon has a plurality of pulses, the capacitor ripple current can be reduced. It was
なお、繋ぎオフパルスASoffは、複数のパルスを有していてもよい。繋ぎオフパルスASoffが、複数のパルスを有する場合であっても、コンデンサリップル電流を低減できる。  The connection off pulse ASoff may have a plurality of pulses. Even when the connected off-pulse ASoff has a plurality of pulses, the capacitor ripple current can be reduced. It was
以上の構成により、スイッチング中の相において正相PWMと逆相PWMとの切替えを行っても、平均電流の変動を抑えることができ、モータのトルクむらムラや騒音を抑制できる。このため、スイッチング中の2相の一方に逆相PWMを適用した方がコンデンサリップル電流を抑制できる回転角区間においては逆相PWMを適用し、逆相PWMを適用するとかえってコンデンサへの逆流電流が発生しコンデンサリップル電流を悪化させる回転角区間においては正相PWMを適用する、という動作が可能となり、コンデンサリップル電流を効果的に抑制してコンデンサの発熱を抑え、コンデンサの小型化および低コスト化を実現する。と同時に、正相PWMと逆相PWMとの切替えに伴うモータのトルクむらムラや騒音を抑制できる。2相変調方式のうち、例えばスイッチングしない相をオンに固定する期間とオフに固定する期間とを電気回転角60度ごとに切り替える変調方式の場合には、電圧波形に対し電流波形が遅延することにより、逆相PWMを適用するとコンデンサリップル電流が悪化する回転角区間を生じる場合がある。そこで、このような回転角区間のみ、スイッチングする2つの相のPWM位相が同じ位相となるように、
本実施形態を用いてスイッチング中の相のPWM位相の切り替えを行うことにより、モータのトルクむらや騒音を抑制しつつコンデンサリップル電流を抑えることができる。また2相変調方式のうち、スイッチングしない相をオンのみに固定する方式や、オフのみに固定する方式の場合には、逆相PWMを適用するとコンデンサリップル電流が減少する回転角区間と、逆相PWMを適用するとコンデンサリップル電流が悪化する回転角区間とが、電気回転角60度ごとに繰り返される。そこで、前者の回転角区間ではスイッチングする2つの相のPWM位相が異なり、後者の回転角区間ではスイッチングする2つの相のPWM位相が同じ位相となるように、本実施形態を用いてスイッチング中の相のPWM位相を切り替えることにより、モータのトルクむらや騒音を抑制しつつコンデンサリップル電流を抑えることができる。正相PWMと逆相PWMとの切替えタイミングは、モータ電流のゼロクロス点に基づいて決定することができる。 
With the above configuration, even if the normal phase PWM and the negative phase PWM are switched in the switching phase, the fluctuation of the average current can be suppressed, and the torque unevenness and noise of the motor can be suppressed. For this reason, when the reverse phase PWM is applied to one of the two phases during switching, the reverse phase PWM is applied in the rotation angle section where the capacitor ripple current can be suppressed, and when the reverse phase PWM is applied, the backflow current to the capacitor is rather increased. It is possible to apply positive-phase PWM in the rotation angle section that occurs and worsens the capacitor ripple current, effectively suppresses the capacitor ripple current, suppresses the heat generation of the capacitor, and reduces the size and cost of the capacitor. To realize. At the same time, it is possible to suppress uneven torque and noise of the motor due to switching between positive phase PWM and negative phase PWM. Of the two-phase modulation methods, for example, in the case of a modulation method in which the period in which the non-switching phase is fixed on and the period in which the non-switching phase is fixed is switched every 60 degrees of the electric rotation angle, the current waveform is delayed with respect to the voltage waveform. Therefore, when the reverse phase PWM is applied, a rotation angle section in which the capacitor ripple current deteriorates may occur. Therefore, only in such a rotation angle section, the PWM phases of the two switching phases are the same.
By switching the PWM phase of the phase during switching using this embodiment, it is possible to suppress the capacitor ripple current while suppressing the torque unevenness and noise of the motor. Of the two-phase modulation methods, in the case of the method of fixing the non-switching phase to only on or the method of fixing only to off, the rotation angle section in which the capacitor ripple current decreases when reverse phase PWM is applied and the reverse phase The rotation angle section in which the capacitor ripple current deteriorates when PWM is applied is repeated every 60 degrees of electric rotation angle. Therefore, switching is being performed using this embodiment so that the PWM phases of the two switching phases are different in the former rotation angle section and the PWM phases of the two switching phases are the same in the latter rotation angle section. By switching the PWM phase of the phase, it is possible to suppress the capacitor ripple current while suppressing the torque unevenness and noise of the motor. The switching timing between the positive phase PWM and the negative phase PWM can be determined based on the zero crossing point of the motor current.
次に、図1、図2および図4を参照して、本発明の実施形態に係るPWM信号の逆相から正相への切り替えについて説明する。図4は、本発明の実施形態に係るPWM信号を示す図である。  Next, switching from the reverse phase to the positive phase of the PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 4. FIG. 4 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
図4に示すように、信号生成部120は、PWM信号の位相を位相切替タイミングtswで逆相から正相に切り替える。  As shown in FIG. 4, the signal generation unit 120 switches the phase of the PWM signal from the reverse phase to the positive phase at the phase switching timing tsw. It was
図3で示したPWM信号と同様に、PWM信号は、正相PWM信号PSと逆相PWM信号NSとの間であって、位相切替タイミングtswの前後に繋ぎパルスセットASを有する。したがって、長いオン(またはオフ)継続時間が生じやすいPWM信号位相の切り替え直後に長いオン(またはオフ)継続時間が生じることを抑制してPWM位相の切り替えを行うことができる。その結果、トルクむらや騒音の発生を抑えながら、コンデンサリップル電流を低減できる。  Similar to the PWM signal shown in FIG. 3, the PWM signal is between the positive phase PWM signal PS and the negative phase PWM signal NS, and has a pulse set AS connected before and after the phase switching timing tsw. Therefore, it is possible to switch the PWM phase by suppressing the occurrence of a long on (or off) duration immediately after the switching of the PWM signal phase, which tends to cause a long on (or off) duration. As a result, the capacitor ripple current can be reduced while suppressing the generation of torque unevenness and noise. It was
繋ぎオン期間ATonは、位相切替前のPWM周期の1周期分のオン期間Tonの1/2の長さである。すなわち、ATon=Ton/2である。  The connection on period A Ton is half the length of the on period Ton for one cycle of the PWM cycle before the phase switching. That is, ATon = Ton / 2. It was
繋ぎオフ期間AToffは、位相切替前のPWM周期の1周期分のオフ期間Toffの1/2の長さである。すなわち、AToff=Toff/2である。  The connection off period AToff is half the length of the off period Toff for one cycle of the PWM cycle before the phase switching. That is, AToff = Toff / 2. It was
また、繋ぎオン期間ATonが繋ぎオフ期間AToffに先行するとともに、繋ぎパルスセットASの期間に占めるオン期間の比率が、位相切替前のPWM周期に占めるオン期間の比率と同じである。また、繋ぎパルスセットASの期間に占めるオフ期間の比率が、位相切替後のPWM周期に占めるオフ期間の比率と同じである。したがって、図4に示す電流波形のように、位相切り替え前後の平均電流の変動を抑えることができ、モータのトルクむらや騒音をより抑制できる。なお、繋ぎパルスセットASの期間に占めるオン期間の比率は、位相切替前のPWM周期に占めるオン期間の比率と僅かに異なっていてもよい。また、繋ぎパルスセットASの期間に占めるオフ期間の比率が、位相切替後のPWM周期に占めるオフ期間の比率と僅かに異なっていてもよい。  Further, the connection on period ATon precedes the connection off period AToff, and the ratio of the on period to the period of the connection pulse set AS is the same as the ratio of the on period to the PWM cycle before the phase switching. Further, the ratio of the off period to the period of the connected pulse set AS is the same as the ratio of the off period to the PWM cycle after the phase switching. Therefore, as shown in the current waveform shown in FIG. 4, fluctuations in the average current before and after phase switching can be suppressed, and torque unevenness and noise of the motor can be further suppressed. The ratio of the on period to the period of the connected pulse set AS may be slightly different from the ratio of the on period to the PWM cycle before the phase switching. Further, the ratio of the off period to the period of the connected pulse set AS may be slightly different from the ratio of the off period to the PWM cycle after phase switching. It was
図4に示す電流波形のように、逆相から正相に位相を切り替える場合についても、位相切り替え前後の平均電流の変動を抑えることができ、モータのトルクむらや騒音をより抑制できる。  Even when the phase is switched from the opposite phase to the positive phase as in the current waveform shown in FIG. 4, the fluctuation of the average current before and after the phase switching can be suppressed, and the torque unevenness and noise of the motor can be further suppressed. It was
なお、図3および図4を参照して説明した例では、位相切替タイミングtswは、キャリア信号CASの山のタイミングであったが、位相切替タイミングtswは、キャリア信号CASの山のタイミングからずれていてもよい。  In the example described with reference to FIGS. 3 and 4, the phase switching timing tsw is the timing of the peak of the carrier signal CAS, but the phase switching timing tsw is deviated from the timing of the peak of the carrier signal CAS. You may. It was
図1、図2および図5を参照して、本発明の実施形態に係るPWM信号について説明する。図5は、本発明の実施形態に係るPWM信号を示す図である。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 5. FIG. 5 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
図5に示すように、PWM信号は、正相PWM信号PSと、逆相PWM信号NSと、繋ぎパルスセットASとに加えて、前パルスセットBSと、後パルスセットCSとをさらに有する。前パルスセットBSは、繋ぎパルスセットASの前に位置する。後パルスセットCSは、繋ぎパルスセットASの後に位置する。  As shown in FIG. 5, the PWM signal further includes a front-phase PWM signal PS, a reverse-phase PWM signal NS, a connecting pulse set AS, a front pulse set BS, and a rear pulse set CS. The pre-pulse set BS is located in front of the connecting pulse set AS. The posterior pulse set CS is located after the connecting pulse set AS. It was
前パルスセットBSは、前オンパルスBSonと、前オフパルスBSoffとを有する。前オンパルスBSonは、前オン期間BTonを有する。前オフパルスBSoffは、前オフ期間BToffを有する。前パルスセットBSの周期は、これよりも前のPWM信号、すなわち本実施形態では正相PWM信号PSと、同じである。  The pre-pulse set BS has a pre-on-pulse B Son and a pre-off-pulse BS off. The pre-on-pulse B Son has a pre-on-period Bton. The pre-off pulse BSoff has a pre-off period BToff. The period of the pre-pulse set BS is the same as that of the previous PWM signal, that is, the positive phase PWM signal PS in the present embodiment. It was
後パルスセットCSは、後オンパルスCSonと、後オフパルスCSoffとを有する。後オンパルスCSonは、後オン期間CTonを有する。後オフパルスCSoffは、後オフ期間CToffを有する。後パルスセットCSの周期は、これよりも後のPWM信号、すなわち本実施形態では逆相PWM信号NSと、同じである。  The rear pulse set CS has a rear on-pulse CSon and a rear off-pulse CSoff. The post-on-pulse CSon has a post-on-period CTon. The post-off pulse CSoff has a post-off period CToff. The period of the rear pulse set CS is the same as the PWM signal after this, that is, the reverse phase PWM signal NS in this embodiment. It was
位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ遅延している。  The phase switching timing tsw is delayed by a time t from the timing of the peak of the carrier signal CAS. It was
信号生成部120は、繋ぎパルスセットAS、前パルスセットBSおよび後パルスセットCSの少なくとも2つのパルス長を調整する。本実施形態では、信号生成部120は、繋ぎパルスセットASおよび後パルスセットCSのパルス長を調整する。  The signal generation unit 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS, and the rear pulse set CS. In the present embodiment, the signal generation unit 120 adjusts the pulse lengths of the connecting pulse set AS and the rear pulse set CS. It was
本実施形態では、位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ遅延している。したがって、切り替えに伴うターンオンの時刻が時間tだけ遅れる。このため、信号生成部120は、時間tだけ遅れた分を補償するように、繋ぎオン期間ATonおよび後オン期間CTonを調整する。詳しくは、信号生成部120は、繋ぎオン期間ATonおよび後オン期間CTonが、それぞれ、電圧指令値を1-Vとした場合と比較してt/2だけ長くなるように、電圧指令値を1-Vからシフトさせた値を電圧指令値とする。すなわち、信号生成部120は、パルス長に換算して時間t/2に相当する値だけ電圧指令値をシフトさせる。  In the present embodiment, the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the connection-on-period ATon and the post-on-period CTon so as to compensate for the delay of the time t. Specifically, the signal generation unit 120 sets the voltage command value to 1 so that the connection-on-period ATon and the post-on-period CTon are each longer by t / 2 as compared with the case where the voltage command value is 1-V. The value shifted from −V is used as the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by a value corresponding to the time t / 2 in terms of the pulse length. It was
この場合、繋ぎオフ期間AToffは、切り替えに伴うターンオンの時刻が時間tだけ遅れているため、Toff/2+tとなる。すなわち、AToff=Toff/2+tである。  In this case, the connection-off period AToff is Toff / 2 + t because the turn-on time associated with the switching is delayed by the time t. That is, AToff = Toff / 2 + t. It was
また、繋ぎオン期間ATonは、ターンオンが時間tだけ遅れる代わりに、電圧指令値のシフトによりターンオフもt/2遅れるため、Ton/2-t/2となる。すなわち、ATon=Ton/2-t/2である。  Further, the connection-on period ATon is Ton / 2-t / 2 because the turn-on is delayed by t / 2 due to the shift of the voltage command value instead of the turn-on being delayed by the time t. That is, ATon = Ton / 2-t / 2. It was
また、後オフ期間CToffは、電圧指令値のシフトにより時間tだけ短くなり、Toff-tとなる。すなわち、CToff=Toff-tである。  Further, the post-off period CToff is shortened by the time t due to the shift of the voltage command value, and becomes Toff-t. That is, CToff = Toff-t. It was
また、後オン期間CTonは、電圧指令値のシフトによりt/2だけ延び、Ton+t/2となる。すなわち、CTon=Ton+t/2である。  Further, the post-on period CTon is extended by t / 2 due to the shift of the voltage command value, and becomes Ton + t / 2. That is, CTon = Ton + t / 2. It was
信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonと、後オン期間CTonとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオン期間ATonと、後オン期間CTonとを調整する。繋ぎオン期間ATonの調整値と、前オン期間BTonの調整値と、後オン期間CTonの調整値との和は0である。本実施形態では、繋ぎオン期間ATonの調整値をt1a、前オン期間BTonの調整値をt1b、後オン期間CTonの調整値をt1cとした場合、t1a=-t/2、t1b=0、t1c=t/2となる。したがって、t1a+t1b+t1c=0となる。  The signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection-on-period ATTon and the post-on-period CTon. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0. In the present embodiment, when the adjustment value of the connection on period ATon is t1a, the adjustment value of the front on period Bton is t1b, and the adjustment value of the rear on period CTon is t1c, t1a = −t / 2, t1b = 0, t1c. = T / 2. Therefore, t1a + t1b + t1c = 0. It was
信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffと、後オフ期間CToffとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオフ期間AToffと、後オフ期間CToffとを調整する。繋ぎオフ期間AToffの調整値と、前オフ期間BToffの調整値と、後オフ期間CToffの調整値との和は0である。繋ぎオフ期間AToffの調整値をt2a、前オフ期間BToffの調整値をt2b、後オフ期間CToffの調整値をt2cとした場合、t2a=t、t2b=0、t2c=-tとなる。したがって、t2a+t2b+t2c=0となる。  The signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff. In the present embodiment, the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff. The sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0. When the adjustment value of the connection off period AToff is t2a, the adjustment value of the front off period BToff is t2b, and the adjustment value of the rear off period CToff is t2c, t2a = t, t2b = 0, and t2c = -t. Therefore, t2a + t2b + t2c = 0. It was
図1、図2および図5を参照して説明したように、信号生成部120は、繋ぎパルスセットAS、前パルスセットBSおよび後パルスセットCSの少なくとも2つのパルス長を調整する。さらに、図3に示したPWM信号と比較して、オン時間、オン時間のそれぞれ合計時間は変化しない。したがって、切替動作に伴う平均電流の変動を抑えることができる。さらに、図3で示した例では、位相切替タイミングtswの瞬間は、電流振幅がΔI/2となり、繋ぎパルスセットAS期間中の電流波形が一時的に高い側に偏っているが、図5で示した例では、電流波形の偏りは抑制されている。したがって、より切替動作に伴う平均電流の変動を抑えることができる。tの値としては、例えばキャリア信号CASの周期の2~10%に設定することで、効果的に平均電流の変動を抑制できる。  As described with reference to FIGS. 1, 2 and 5, the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 3, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. Further, in the example shown in FIG. 3, at the moment of the phase switching timing tsw, the current amplitude becomes ΔI / 2, and the current waveform during the connected pulse set AS period is temporarily biased to the higher side. In the example shown, the bias of the current waveform is suppressed. Therefore, it is possible to further suppress the fluctuation of the average current due to the switching operation. By setting the value of t to, for example, 2 to 10% of the period of the carrier signal CAS, fluctuations in the average current can be effectively suppressed. It was
次に、図1、図2および図6を参照して、本発明の実施形態に係るPWM信号の逆相から正相への切り替えについて説明する。図6は、本発明の実施形態に係るPWM信号を示す図である。  Next, switching from the reverse phase to the positive phase of the PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2, and 6. FIG. 6 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
図6に示すように、信号生成部120は、PWM信号の位相を位相切替タイミングtswで逆相から正相に切り替える。図5で示した実施形態と同様に、位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ遅延している。  As shown in FIG. 6, the signal generation unit 120 switches the phase of the PWM signal from the reverse phase to the positive phase at the phase switching timing tsw. Similar to the embodiment shown in FIG. 5, the phase switching timing tsw is delayed by a time t from the timing of the peak of the carrier signal CAS. It was
本実施形態では、位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ遅延している。したがって、切り替えに伴うターンオフの時刻が時間tだけ遅れる。このため、信号生成部120は、時間tだけ遅れた分を補償するように、繋ぎオフ期間AToffおよび後オフ期間CToffを調整する。詳しくは、信号生成部120は、繋ぎオフ期間AToffおよび後オフ期間CToffが、それぞれ、電圧指令値をVとした場合と比較してt/2だけ長くなるように、電圧指令値をVからシフトさせた値を電圧指令値とする。  In the present embodiment, the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-off time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff so as to compensate for the portion delayed by the time t. Specifically, the signal generation unit 120 shifts the voltage command value from V so that the connection off period AToff and the post-off period CToff are each longer by t / 2 as compared with the case where the voltage command value is V. The set value is used as the voltage command value. It was
この場合、繋ぎオン期間ATonは、切り替えに伴うターンオフの時刻が時間tだけ遅れているため、Ton/2+tとなる。なわち、ATon=Ton/2+tである。  In this case, the connection-on period ATon is Ton / 2 + t because the turn-off time associated with the switching is delayed by the time t. That is, ATon = Ton / 2 + t. It was
また、繋ぎオフ期間AToffは、ターンオフが時間tだけ遅れる代わりに、電圧指令値のシフトによりターンオンもt/2遅れるため、Toff/2-t/2となる。すなわち、AToff=Toff/2-t/2である。  Further, the connection-off period AToff is Toff / 2-t / 2 because the turn-off is delayed by the time t but the turn-on is also delayed by t / 2 due to the shift of the voltage command value. That is, AToff = Toff / 2-t / 2. It was
また、後オン期間CTonは、電圧指令値のシフトにより時間tだけ短くなり、Ton-tとなる。すなわち、CTon=Ton-tである。  Further, the post-on period CTon is shortened by the time t due to the shift of the voltage command value, and becomes Ton-t. That is, CTon = Ton-t. It was
また、後オフ期間CToffは、電圧指令値のシフトによりt/2だけ延び、Toff+t/2となる。すなわち、CToff=Toff+t/2である。  Further, the post-off period CToff is extended by t / 2 due to the shift of the voltage command value, and becomes Toff + t / 2. That is, CToff = Toff + t / 2. It was
信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonと、後オン期間CTonとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオン期間ATonと、後オン期間CTonとを調整する。繋ぎオン期間ATonの調整値と、前オン期間BTonの調整値と、後オン期間CTonの調整値との和は0である。本実施形態では、繋ぎオン期間ATonの調整値をt1a、前オン期間BTonの調整値をt1b、後オン期間CTonの調整値をt1cとした場合、t1a=t、t1b=0、t1c=-tとなる。したがって、t1a+t1b+t1c=0となる。  The signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection-on-period ATTon and the post-on-period CTon. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0. In the present embodiment, when the adjustment value of the connection on period ATon is t1a, the adjustment value of the front on period Bton is t1b, and the adjustment value of the rear on period CTon is t1c, t1a = t, t1b = 0, t1c = -t. Will be. Therefore, t1a + t1b + t1c = 0. It was
信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffと、後オフ期間CToffとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオフ期間AToffと、後オフ期間CToffとを調整する。繋ぎオフ期間AToffの調整値と、前オフ期間BToffの調整値と、後オフ期間CToffの調整値との和は0である。繋ぎオフ期間AToffの調整値をt2a、前オフ期間BToffの調整値をt2b、後オフ期間CToffの調整値をt2cとした場合
、t2a=-t/2、t2b=0、t2c=t/2となる。したがって、t2a+t2b+t2c=0となる。 
The signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff. In the present embodiment, the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff. The sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0. When the adjustment value of the connection off period AToff is t2a, the adjustment value of the front off period BToff is t2b, and the adjustment value of the rear off period CToff is t2c, t2a = -t / 2, t2b = 0, t2c = t / 2. Become. Therefore, t2a + t2b + t2c = 0.
図1、図2および図6を参照して説明したように、信号生成部120は、繋ぎパルスセットAS、前パルスセットBSおよび後パルスセットCSの少なくとも2つのパルス長を調整する。さらに、図4に示したPWM信号と比較して、オン時間、オン時間のそれぞれ合計時間は変化しない。したがって、切替動作に伴う平均電流の変動を抑えることができる。さらに、図4で示した例では、位相切替タイミングtswの瞬間は、電流振幅がΔI/2となり、繋ぎパルスセットAS期間中の電流波形が一時的に低い側に偏っているが、図6で示した例では、電流波形の偏りは抑制されている。したがって、より切替動作に伴う平均電流の変動を抑えることができる。tの値としては、例えばキャリア信号CASの周期の2~10%に設定することで、効果的に平均電流の変動を抑制できる。  As described with reference to FIGS. 1, 2 and 6, the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. Further, in the example shown in FIG. 4, at the moment of the phase switching timing tsw, the current amplitude becomes ΔI / 2, and the current waveform during the connected pulse set AS period is temporarily biased to the lower side. In the example shown, the bias of the current waveform is suppressed. Therefore, it is possible to further suppress the fluctuation of the average current due to the switching operation. By setting the value of t to, for example, 2 to 10% of the period of the carrier signal CAS, fluctuations in the average current can be effectively suppressed. It was
なお、図5を参照して説明した例では、信号生成部120は、パルス長に換算して時間t/2に相当する値だけ電圧指令値をシフトさせていたが、パルス長に換算して時間tに相当する値だけ電圧指令値をシフトさせてもよい。  In the example described with reference to FIG. 5, the signal generation unit 120 shifts the voltage command value by the value corresponding to the time t / 2 in terms of the pulse length, but it is converted into the pulse length. The voltage command value may be shifted by a value corresponding to the time t. It was
図1、図2および図7を参照して、本発明の実施形態に係るPWM信号について説明する。図7は、本発明の実施形態に係るPWM信号を示す図である。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 7. FIG. 7 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
本実施形態では、位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ遅延している。したがって、切り替えに伴うターンオンの時刻が時間tだけ遅れる。このため、信号生成部120は、時間tだけ遅れた分を補償するように、繋ぎオン期間ATonおよび後オン期間CTonを調整する。詳しくは、信号生成部120は、繋ぎオン期間ATonおよび後オン期間CTonが、それぞれ、電圧指令値を1-Vとした場合と比較してtだけ長くなるように、電圧指令値を1-Vからシフトさせた値を電圧指令値とする。すなわち、信号生成部120は、パルス長に換算して時間tに相当する値だけ電圧指令値をシフトさせる。  In the present embodiment, the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the connection-on-period ATon and the post-on-period CTon so as to compensate for the delay of the time t. Specifically, the signal generation unit 120 sets the voltage command value to 1-V so that the connection-on-period ATon and the post-on-period CTon are each longer by t as compared with the case where the voltage command value is 1-V. The value shifted from is used as the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by the value corresponding to the time t in terms of the pulse length. It was
この場合、繋ぎオフ期間AToffは、切り替えに伴うターンオンの時刻が時間tだけ遅れているため、Toff/2+tとなる。すなわち、AToff=Toff/2+tである。  In this case, the connection-off period AToff is Toff / 2 + t because the turn-on time associated with the switching is delayed by the time t. That is, AToff = Toff / 2 + t. It was
また、繋ぎオン期間ATonは、ターンオンが時間tだけ遅れる代わりに、電圧指令値のシフトによりターンオフもt遅れるため、Ton/2となる。すなわち、ATon=Ton/2である。  Further, the connection-on period ATon is Ton / 2 because the turn-on is delayed by the time t, but the turn-off is also delayed by the shift of the voltage command value. That is, ATon = Ton / 2. It was
また、後オフ期間CToffは、電圧指令値のシフトにより時間tだけ短くなり、Toff-tとなる。すなわち、CToff=Toff-tである。  Further, the post-off period CToff is shortened by the time t due to the shift of the voltage command value, and becomes Toff-t. That is, CToff = Toff-t. It was
また、後オン期間CTonは、Tonとなる。すなわち、CTon=Tonである。  In addition, the post-on period CTon becomes Ton. That is, CTon = Ton. It was
本実施形態では、信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonと、後オン期間CTonとを調整しない。  In the present embodiment, the signal generation unit 120 does not adjust the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. It was
信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffと、後オフ期間CToffとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオフ期間AToffと、後オフ期間CToffとを調整する。繋ぎオフ期間AToffの調整値と、前オフ期間BToffの調整値と、後オフ期間CToffの調整値との和は0である。繋ぎオフ期間AToffの調整値をt2a、前オフ期間BToffの調整値をt2b、後オフ期間CToffの調整値をt2cとした場合、t2a=t、t2b=0、t2c=-tとなる。したがって、t2a+t2b+t2c=0となる。  The signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff. In the present embodiment, the signal generation unit 120 adjusts the connection off period AToff and the post-off period CToff. The sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0. When the adjustment value of the connection off period AToff is t2a, the adjustment value of the front off period BToff is t2b, and the adjustment value of the rear off period CToff is t2c, t2a = t, t2b = 0, and t2c = -t. Therefore, t2a + t2b + t2c = 0. It was
図1、図2および図7を参照して説明したように、信号生成部120は、繋ぎパルスセットAS、前パルスセットBSおよび後パルスセットCSの少なくとも2つのパルス長を調整する。さらに、図4に示したPWM信号と比較して、オン時間、オン時間のそれぞれ合計時間は変化しない。したがって、切替動作に伴う平均電流の変動を抑えることができる。なお、この例ではtの値として、例えばキャリア信号CASの周期の5~20%に設定することで平均電流の変動を効果的に抑えることができる。  As described with reference to FIGS. 1, 2 and 7, the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. In this example, by setting the value of t to, for example, 5 to 20% of the period of the carrier signal CAS, the fluctuation of the average current can be effectively suppressed. It was
なお、図5~図7を参照して説明した例では、信号生成部120は、時間tだけ遅れた分を補償するように、繋ぎオン期間ATonおよび後オン期間CTonを調整していたが、信号生成部120は、時間tだけ遅れた分を補償するように、前オン期間BTonを調整してもよい。  In the example described with reference to FIGS. 5 to 7, the signal generation unit 120 adjusts the connection on period ATon and the post-on period CTon so as to compensate for the delay by the time t. The signal generation unit 120 may adjust the pre-on period BTon so as to compensate for the amount delayed by the time t. It was
図1、図2および図8を参照して、本発明の実施形態に係るPWM信号について説明する。図8は、本発明の実施形態に係るPWM信号を示す図である。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 8. FIG. 8 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
本実施形態では、位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ遅延している。したがって、切り替えに伴うターンオンの時刻が時間tだけ遅れる。このため、信号生成部120は、時間tだけ遅れる分を前もって補償するように、前オン期間BTonを調整する。詳しくは、信号生成部120は、前オン期間BTonが、電圧指令値をVとした場合と比較してtだけ長くなるように、電圧指令値をVからシフトさせた値を電圧指令値とする。より詳しくは、信号生成部120は、前オンパルスBSonのターンオンの時間がt/2早まるように、かつ、前オンパルスBSonのターンオフの時間がt/2遅れるように、電圧指令値をVからシフトさせた値を電圧指令値とする。すなわち、信号生成部120は、パルス長に換算して時間t/2に相当する値だけ電圧指令値をシフトさせる。  In the present embodiment, the phase switching timing tsw is delayed by the time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is delayed by the time t. Therefore, the signal generation unit 120 adjusts the pre-on period BTon so as to compensate in advance for the amount delayed by the time t. Specifically, the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from V so that the previous ON period BTon is longer by t as compared with the case where the voltage command value is V. .. More specifically, the signal generation unit 120 shifts the voltage command value from V so that the turn-on time of the pre-on-pulse BSon is advanced by t / 2 and the turn-off time of the pre-on-pulse BSon is delayed by t / 2. The value is the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by a value corresponding to the time t / 2 in terms of the pulse length. It was
この場合、前オフ期間BToffは、電圧指令値のシフトにより時間t/2だけ短くなり、Toff-t/2となる。すなわち、BToff=Toff-t/2である。  In this case, the pre-off period BToff is shortened by the time t / 2 due to the shift of the voltage command value, and becomes Toff-t / 2. That is, BToff = Toff-t / 2. It was
また、前オン期間BTonは、電圧指令値のシフトにより、ターンオンが時間t/2だけ早まり、ターンオフが時間t/2だけ遅れるため、Ton+tとなる。すなわち、BTon=Ton+tである。  Further, the pre-on period BTon becomes Ton + t because the turn-on is advanced by the time t / 2 and the turn-off is delayed by the time t / 2 due to the shift of the voltage command value. That is, Bton = Ton + t. It was
また、繋ぎオフ期間AToffは、ターンオフが時間t/2だけ遅れており、切り替えに伴うターンオンの時刻が時間tだけ遅れているため、Toff/2+t/2となる。すなわち、AToff=Toff/2+t/2である。  Further, the connection-off period AToff is Toff / 2 + t / 2 because the turn-off is delayed by the time t / 2 and the turn-on time due to the switching is delayed by the time t. That is, AToff = Toff / 2 + t / 2. It was
また、繋ぎオン期間ATonは、ターンオンが時間tだけ遅れるため、Ton/2-tとなる。すなわち、ATon=Ton/2-tである。  Further, the connection-on period ATon is Ton / 2-t because the turn-on is delayed by the time t. That is, ATon = Ton / 2-t. It was
信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonと、後オン期間CTonとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonとを調整する。繋ぎオン期間ATonの調整値と、前オン期間BTonの調整値と、後オン期間CTonの調整値との和は0である。本実施形態では、繋ぎオン期間ATonの調整値をt1a、前オン期間BTonの調整値をt1b、後オン期間CTonの調整値をt1cとした場合、t1a=-t、t1b=t、t1c=0となる。したがって、t1a+t1b+t1c=0となる。  The signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection on period ATon and the pre-on period Bton. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0. In the present embodiment, when the adjustment value of the connection on period ATon is t1a, the adjustment value of the front on period Bton is t1b, and the adjustment value of the rear on period CTon is t1c, t1a = −t, t1b = t, t1c = 0. Will be. Therefore, t1a + t1b + t1c = 0. It was
信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffと、後オフ期間CToffとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffとを調整する。繋ぎオフ期間AToffの調整値と、前オフ期間BToffの調整値と、後オフ期間CToffの調整値との和は0である。繋ぎオフ期間AToffの調整値をt2a、前オフ期間BToffの調整値をt2b、後オフ期間CToffの調整値をt2cとした場合、t2a=t/2、t2b=-t/2、t2c=0となる。したがって、t2a+t2b+t2c=0となる。  The signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff. In the present embodiment, the signal generation unit 120 adjusts the connection off period AToff and the pre-off period BToff. The sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0. When the adjustment value of the connection off period AToff is t2a, the adjustment value of the front off period BToff is t2b, and the adjustment value of the rear off period CToff is t2c, t2a = t / 2, t2b = -t / 2, t2c = 0. Become. Therefore, t2a + t2b + t2c = 0. It was
図1、図2および図8を参照して説明したように、信号生成部120は、繋ぎパルスセットAS、前パルスセットBSおよび後パルスセットCSの少なくとも2つのパルス長を調整する。さらに、図4に示したPWM信号と比較して、オン時間、オン時間のそれぞれ合計時間は変化しない。したがって、切替動作に伴う平均電流の変動を抑えることができる。  As described with reference to FIGS. 1, 2 and 8, the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation. It was
なお、図5~図8を参照して説明した例では、位相切替タイミングtswは、キャリア信号CASの山のタイミングから遅れていたが、位相切替タイミングtswは、キャリア信号CASの山のタイミングよりも早くてもよい。  In the example described with reference to FIGS. 5 to 8, the phase switching timing tsw is delayed from the timing of the peak of the carrier signal CAS, but the phase switching timing tsw is later than the timing of the peak of the carrier signal CAS. It may be early. It was
図1、図2および図9を参照して、本発明の実施形態に係るPWM信号について説明する。図9は、本発明の実施形態に係るPWM信号を示す図である。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 9. FIG. 9 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
本実施形態では、位相切替タイミングtswは、キャリア信号CASの山のタイミングから、時間tだけ早まっている。したがって、切り替えに伴うターンオンの時刻が時間tだけ早まる。このため、信号生成部120は、時間tだけ早まった分を調整するように、前オン期間BTonを調整する。詳しくは、信号生成部120は、前オン期間BTonが、電圧指令値をVとした場合と比較してtだけ短くなるように、電圧指令値をVからシフトさせた値を電圧指令値とする。より詳しくは、信号生成部120は、前オンパルスBSonのターンオンの時間がt/2遅れるように、かつ、前オンパルスBSonのターンオフの時間がt/2早まるように、電圧指令値をVからシフトさせた値を電圧指令値とする。すなわち、信号生成部120は、パルス長に換算して時間t/2に相当する値だけ電圧指令値をシフトさせる。  In the present embodiment, the phase switching timing tsw is advanced by time t from the timing of the peak of the carrier signal CAS. Therefore, the turn-on time associated with the switching is advanced by the time t. Therefore, the signal generation unit 120 adjusts the pre-on period BTon so as to adjust the minute earlier by the time t. Specifically, the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from V so that the previous ON period BTon is shorter by t as compared with the case where the voltage command value is V. .. More specifically, the signal generation unit 120 shifts the voltage command value from V so that the turn-on time of the front on-pulse B Son is delayed by t / 2 and the turn-off time of the front on-pulse B Son is advanced by t / 2. The value is the voltage command value. That is, the signal generation unit 120 shifts the voltage command value by a value corresponding to the time t / 2 in terms of the pulse length. It was
この場合、前オフ期間BToffは、ターンオフが時間t/2だけ延びるため、Toff+t/2となる。すなわち、BToff=Toff+t/2である。  In this case, the pre-off period BToff is Toff + t / 2 because the turn-off is extended by the time t / 2. That is, BToff = Toff + t / 2. It was
また、前オン期間BTonは、電圧指令値のシフトにより、ターンオンが時間t/2だけ遅れて、ターンオフが時間t/2だけ早まるため、Ton-tとなる。すなわち、BTon=Ton-tである。  Further, the pre-on period BTon becomes Ton-t because the turn-on is delayed by the time t / 2 and the turn-off is advanced by the time t / 2 due to the shift of the voltage command value. That is, BTon = Ton-t. It was
また、繋ぎオフ期間AToffは、ターンオフが時間t/2だけ早まり、切り替えに伴うターンオンの時刻が時間tだけ早まっているため、Toff/2-t/2となる。すなわち、AToff=Toff/2-t/2である。  Further, the connection-off period AToff is Toff / 2-t / 2 because the turn-off is advanced by the time t / 2 and the turn-on time associated with the switching is advanced by the time t. That is, AToff = Toff / 2-t / 2. It was
また、繋ぎオン期間ATonは、ターンオンが時間tだけ早まるため、Ton/2+tとなる。すなわち、ATon=Ton/2+tである。  Further, the connection-on period ATon is Ton / 2 + t because the turn-on is advanced by the time t. That is, ATon = Ton / 2 + t. It was
信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonと、後オン期間CTonとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオン期間ATonと、前オン期間BTonとを調整する。繋ぎオン期間ATonの調整値と、前オン期間BTonの調整値と、後オン期間CTonの調整値との和は0である。本実施形態では、繋ぎオン期間ATonの調整値をt1a、前オン期間BTonの調整値をt1b、後オン期間CTonの調整値をt1cとした場合、t1a=t、t1b=-t、t1c=0となる。したがって、t1a+t1b+t1c=0となる。  The signal generation unit 120 adjusts at least two of the connection-on-period ATon, the pre-on-period Bton, and the post-on-period CTon. In the present embodiment, the signal generation unit 120 adjusts the connection on period ATon and the pre-on period Bton. The sum of the adjustment value of the connection-on period ATton, the adjustment value of the front-on period Bton, and the adjustment value of the rear-on period CTon is 0. In the present embodiment, when the adjustment value of the connection on period ATon is t1a, the adjustment value of the front on period Bton is t1b, and the adjustment value of the rear on period CTon is t1c, t1a = t, t1b = -t, t1c = 0. Will be. Therefore, t1a + t1b + t1c = 0. It was
信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffと、後オフ期間CToffとの少なくとも2つを調整する。本実施形態では、信号生成部120は、繋ぎオフ期間AToffと、前オフ期間BToffとを調整する。繋ぎオフ期間AToffの調整値と、前オフ期間BToffの調整値と、後オフ期間CToffの調整値との和は0である。繋ぎオフ期間AToffの調整値をt2a、前オフ期間BToffの調整値をt2b、後オフ期間CToffの調整値をt2cとした場合、t2a=-t/2、t2b=t/2、t2c=0となる。したがって、t2a+t2b+t2c=0となる。  The signal generation unit 120 adjusts at least two of the connection off period AToff, the pre-off period BToff, and the post-off period CToff. In the present embodiment, the signal generation unit 120 adjusts the connection off period AToff and the pre-off period BToff. The sum of the adjustment value of the connection off period AToff, the adjustment value of the front off period BToff, and the adjustment value of the rear off period CToff is 0. When the adjustment value of the connection off period AToff is t2a, the adjustment value of the front off period BToff is t2b, and the adjustment value of the rear off period CToff is t2c, t2a = -t / 2, t2b = t / 2, t2c = 0. Become. Therefore, t2a + t2b + t2c = 0. It was
図1、図2および図9を参照して説明したように、信号生成部120は、繋ぎパルスセットAS、前パルスセットBSおよび後パルスセットCSの少なくとも2つのパルス長を調整する。さらに、図4に示したPWM信号と比較して、オン時間、オン時間のそれぞれ合計時間は変化しない。したがって、切替動作に伴う平均電流の
変動を抑えることができる。 
As described with reference to FIGS. 1, 2 and 9, the signal generator 120 adjusts at least two pulse lengths of the connecting pulse set AS, the front pulse set BS and the rear pulse set CS. Further, as compared with the PWM signal shown in FIG. 4, the total time of the on time and the on time does not change. Therefore, it is possible to suppress fluctuations in the average current due to the switching operation.
なお、図3~図9を参照して説明した例では、キャリア信号CASは三角波であったが、キャリア信号CASは鋸歯でもよい。  In the example described with reference to FIGS. 3 to 9, the carrier signal CAS is a triangular wave, but the carrier signal CAS may be a sawtooth. It was
図1、図2および図10を参照して、本発明の実施形態に係るPWM信号について説明する。図10は、本発明の実施形態に係るPWM信号を示す図である。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 10. FIG. 10 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
図10に示すように、本実施形態では、キャリア信号CASは、鋸波である。ここでは、信号生成部120は、PWM信号の位相を位相切替タイミングtswで正相から逆相に切り替える。  As shown in FIG. 10, in this embodiment, the carrier signal CAS is a sawtooth wave. Here, the signal generation unit 120 switches the phase of the PWM signal from the positive phase to the negative phase at the phase switching timing tsw. It was
PWM信号は、正相PWM信号PSと、逆相PWM信号NSと、繋ぎパルスセットASと、前パルスセットBSと、後パルスセットCSとを有する。  The PWM signal includes a positive-phase PWM signal PS, a reverse-phase PWM signal NS, a connecting pulse set AS, a front pulse set BS, and a rear pulse set CS. It was
PWM信号の位相の切替動作に伴う平均電流の変動を抑制するためには、前オンパルスBSonのターンオン時の電流Iaと、後オンパルスCSonのターンオン時の電流Ibとをなるべく合致させることが好ましい。つまり、前オンパルスBSonのターンオフから、後オンパルスCSonのターンオンまでの時間2Toffの間に、電流がΔIだけ低下するように、繋ぎオン期間ATonを設定することが好ましい。  In order to suppress the fluctuation of the average current due to the phase switching operation of the PWM signal, it is preferable to match the current Ia at the time of turn-on of the front on-pulse BSon with the current Ib at the time of turn-on of the rear on-pulse C Son as much as possible. That is, it is preferable to set the connection-on period ATon so that the current drops by ΔI during the time 2Toff from the turn-off of the front on-pulse B Son to the turn-on of the rear on-pulse C Son. It was
時間Tonだけオンすると電流がΔI増加、時間Toffだけオフすると電流がΔI減少するのであるから、繋ぎオン期間ATonは、T=Ton+Toffとして、ATon=Toff×Ton/Tと設定することが好ましい。  When the time Ton is turned on, the current increases by ΔI, and when the time Tof is turned off, the current decreases by ΔI. Therefore, it is preferable to set the connection on period ATon as T = Ton + Toff and ATon = Toff × Ton / T. It was
ATon=Toff×Ton/Tと設定した場合、前オンパルスBSonから後オンパルスCSonまでの間のオフ期間は、2Toff-ATon=Toff×(1+Toff/T)。オン期間の電流上昇分は、ΔI×ATon/Ton=ΔI・Toff/T。オフ期間の電流減少分は、ΔI×Toff×(1+Toff/T)/Toff=ΔI+ΔI・Toff/T。したがって、オン期間の電流上昇分とオフ期間の電流減少分との差分、すなわち、前オンパルスBSonのターンオフから後オンパルスCSonのターンオンまでの電流減少は、ΔIとなる。したがって、前オンパルスBSonのターンオン時の電流Iaと、後オンパルスCSonのターンオン時の電流Ibとを一致させることができる。この結果、PWM信号の位相の切替動作に伴う平均電流の変動を抑制することができる。  When ATon = Toff × Ton / T is set, the off period between the front on-pulse BSon and the rear-on-pulse CSon is 2Toff-ATon = Toff × (1 + Toff / T). The amount of current increase during the on period is ΔI × ATton / Ton = ΔI · Toff / T. The amount of current decrease during the off period is ΔI × Toff × (1 + Toff / T) / Toff = ΔI + ΔI · Toff / T. Therefore, the difference between the current increase in the on period and the current decrease in the off period, that is, the current decrease from the turn-off of the front on-pulse B Son to the turn-on of the rear on-pulse C Son becomes ΔI. Therefore, the current Ia at the turn-on of the front on-pulse B Son and the current Ib at the turn-on of the rear on-pulse B Son can be matched. As a result, it is possible to suppress fluctuations in the average current due to the phase switching operation of the PWM signal. It was
信号生成部120は、位相切替タイミングtswにおいて、繋ぎオン期間ATonが、Toff×Ton/Tとなるように、電圧指令値を1-Vからシフトさせた値を電圧指令値とする。  In the phase switching timing tsw, the signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from 1-V so that the connection-on period ATton becomes Toff × Ton / T. It was
次に、図1、図2および図11を参照して、本発明の実施形態に係るPWM信号の逆相から正相への切り替えについて説明する。図11は、本発明の実施形態に係るPWM信号を示す図である。  Next, switching from the reverse phase to the positive phase of the PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2, and 11. FIG. 11 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
図11に示すように、本実施形態では、キャリア信号CASは、鋸波である。ここでは、信号生成部120は、PWM信号の位相を位相切替タイミングtswで逆相から正相に切り替える。  As shown in FIG. 11, in the present embodiment, the carrier signal CAS is a sawtooth wave. Here, the signal generation unit 120 switches the phase of the PWM signal from the opposite phase to the positive phase at the phase switching timing tsw. It was
PWM信号は、正相PWM信号PSと、逆相PWM信号NSと、繋ぎパルスセットASと、前パルスセットBSと、後パルスセットCSとを有する。  The PWM signal includes a positive-phase PWM signal PS, a reverse-phase PWM signal NS, a connecting pulse set AS, a front pulse set BS, and a rear pulse set CS. It was
本実施形態では、繋ぎパルスセットASの繋ぎオンパルスASonと、後パルスセットCSの後オンパルスCSonとはつながっている。  In the present embodiment, the connecting on-pulse ASon of the connecting pulse set AS and the rear-on-pulse CSon of the rear pulse set CS are connected to each other. It was
PWM信号の位相の切替動作に伴う平均電流の変動を抑制するためには、前オンパルスBSonのターンオン時の電流Icと、後オンパルスCSonのターンオン時の電流Idとをなるべく合致させることが好ましい。つまり、前オンパルスBSonのターンオフから、後オンパルスCSonのターンオンまでの時間Tの間に、電流がΔIだけ低下するように、繋ぎオン期間ATonを設定することが好ましい。  In order to suppress the fluctuation of the average current due to the phase switching operation of the PWM signal, it is preferable to match the current Ic at the turn-on of the front on-pulse BSon with the current Id at the turn-on of the rear on-pulse C Son as much as possible. That is, it is preferable to set the connection-on period AToon so that the current decreases by ΔI during the time T from the turn-off of the front on-pulse B Son to the turn-on of the rear on-pulse C Son. It was
時間Tonだけオンすると電流がΔI増加、時間Toffだけオフすると電流がΔI減少するのであるから、繋ぎオン期間ATonは、T=Ton+Toffとして、ATon=Ton-TonToff/Tと設定することが好ましい。  Since the current increases by ΔI when only the time Ton is turned on and the current decreases by ΔI when the time Tof is turned off, it is preferable to set ATon = Ton-TonToff / T as T = Ton + Toff. It was
ATon=Ton-TonToff/Tと設定した場合、前オンパルスBSonから後オンパルスCSonまでの間のオフ期間は、Toff+TonToff/T。オン期間の電流上昇分は、ΔI×ATon/Ton=ΔI-ΔI・Toff/T。オフ期間の電流減少分は、ΔI×(Toff+TonToff/T)/Toff=ΔI+ΔI・Ton/T。したがって、オン期間の電流上昇分とオフ期間の電流減少分との差分、すなわち、前オンパルスBSonのターンオフから後オンパルスCSonのターンオンまでの電流減少は、ΔIとなる。したがって、前オンパルスBSonのターンオン時の電流Icと、後オンパルスCSonのターンオン時の電流Idとを一致させることができる。その結果、PWM信号の位相の切替動作に伴う平均電流の変動を抑制することができる。  When ATon = Ton-TonToff / T is set, the off period between the front on-pulse BSon and the rear-on-pulse CSon is Toff + TonToff / T. The amount of current increase during the on period is ΔI × ATton / Ton = ΔI−ΔI · Toff / T. The amount of current decrease during the off period is ΔI × (Toff + TonToff / T) / Toff = ΔI + ΔI · Ton / T. Therefore, the difference between the current increase in the on period and the current decrease in the off period, that is, the current decrease from the turn-off of the front on-pulse B Son to the turn-on of the rear on-pulse C Son becomes ΔI. Therefore, the current Ic at the turn-on of the front on-pulse B Son can be matched with the current Id at the turn-on of the rear on-pulse B Son. As a result, it is possible to suppress fluctuations in the average current due to the phase switching operation of the PWM signal. It was
信号生成部120は、位相切替タイミングtswにおいて、繋ぎオン期間ATonが、Ton-TonToff/Tとなるように、電圧指令値をVからシフトさせた値を電圧指令値とする。  The signal generation unit 120 sets the voltage command value as the voltage command value by shifting the voltage command value from V so that the connection-on period ATton becomes Ton-TonToff / T at the phase switching timing tsw. It was
なお、図3~図11を参照して説明した例では、電圧指令値を変更していたが、電圧指令値は一定でもよい。  In the example described with reference to FIGS. 3 to 11, the voltage command value was changed, but the voltage command value may be constant. It was
図1、図2および図12を参照して、本発明の実施形態に係るPWM信号について説明する。図12は、本発明の実施形態に係るPWM信号を示す図である。  The PWM signal according to the embodiment of the present invention will be described with reference to FIGS. 1, 2 and 12. FIG. 12 is a diagram showing a PWM signal according to an embodiment of the present invention. It was
図12に示すように、本実施形態では、電圧指令値は一定である。本実施形態では、位相切替タイミングtswにおいて、キャリア信号CASの位相を変更する。詳しくは、位相切替タイミングtswにおいて、キャリア信号CASを山から谷へ切り替える。したがって、信号生成部120の比較部126の、キャリア信号CASと電圧指令値との比較処理も、正相および逆相で切り替える必要が無い。例えば、キャリア信号が電圧指令値よりも大きいとオフ、キャリア信号が電圧指令値よりも大きいとオンのように、正相および逆相で処理を統一できる。したがって、PWM信号の位相の切り替え処理にあたって、演算を簡略化することができる。  As shown in FIG. 12, in this embodiment, the voltage command value is constant. In the present embodiment, the phase of the carrier signal CAS is changed at the phase switching timing tsw. Specifically, the carrier signal CAS is switched from a peak to a valley at the phase switching timing tsw. Therefore, it is not necessary to switch between the positive phase and the negative phase in the comparison process between the carrier signal CAS and the voltage command value in the comparison unit 126 of the signal generation unit 120. For example, when the carrier signal is larger than the voltage command value, it is off, and when the carrier signal is larger than the voltage command value, it is on. Therefore, it is possible to simplify the calculation in the process of switching the phase of the PWM signal. It was
なお、図12を参照して説明した例でも、図5~図9を参照して説明した例と同様に、位相切替タイミングtswが、キャリア信号CASの山のタイミングからずれていてもよい。  In the example described with reference to FIG. 12, the phase switching timing tsw may deviate from the timing of the peak of the carrier signal CAS, as in the example described with reference to FIGS. 5 to 9. It was
なお、図3~図9および図12を参照して説明した例では、キャリア信号CASは三角波、図10および図11を参照して説明した例では、キャリア信号CASは鋸歯であったが、キャリア信号CASは三角波と鋸歯とを位相切替タイミングtswにおいて、三角波と鋸歯とを切り替えるようにしてもよい。例えば、正相の場合、キャリア信号CASは三角波とし、逆相の場合、キャリア信号CASは鋸波としてもよい。あるいは、正相の場合、キャリア信号CASは鋸波とし、逆相の場合、キャリア信号CASは三角波としてもよい。  In the example described with reference to FIGS. 3 to 9 and 12, the carrier signal CAS was a triangular wave, and in the examples described with reference to FIGS. 10 and 11, the carrier signal CAS was a sawtooth. The signal CAS may switch between the triangular wave and the saw blade at the phase switching timing tsw. For example, in the case of a positive phase, the carrier signal CAS may be a triangular wave, and in the case of a reverse phase, the carrier signal CAS may be a sawtooth wave. Alternatively, in the case of a positive phase, the carrier signal CAS may be a sawtooth wave, and in the case of a reverse phase, the carrier signal CAS may be a triangular wave. It was
以上、図面(図1~図12)を参照しながら本発明の実施形態を説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数等は、図面作成の都合上から実際とは異なる。また、上記の実施形態で示す各構成要素の材質や形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiments of the present invention have been described above with reference to the drawings (FIGS. 1 to 12). However, the present invention is not limited to the above embodiment, and can be implemented in various embodiments without departing from the gist thereof. The drawings are schematically shown mainly for each component for easy understanding, and the thickness, length, number, etc. of each of the illustrated components are different from the actual ones for the convenience of drawing creation. .. Further, the material, shape, dimensions, etc. of each component shown in the above embodiment are merely examples, and are not particularly limited, and various changes can be made without substantially deviating from the effects of the present invention. be.
100・・・モータ駆動回路、112、112u、112v、112w・・・直列体、120・・・信号生成部、200・・・モータモジュール、AS・・・繋ぎパルスセット、ASoff・・・繋ぎオフパルス、ASon・・・繋ぎオンパルス、AToff・・・繋ぎオフ期間、ATon・・・繋ぎオン期間、BS・・・前パルスセット、BSoff・・・前オフパルス、BSon・・・前オンパルス、Toff・・・ 前オフ期間、BTon・・・前オン期間、C・・・コンデンサ、CS・・・後パルスセット、CSoff・・・後オフパルス、CSon・・・後オンパルス、CToff・・・後オフ期間、CTon・・・後オン期間、N・・・第2入力端子、NS・・・逆相PWM信号、P・・・第1入力端子、PS・・・正相PWM信号、V1・・・第1の電圧、V2・・・第2の電圧、tsw・・・位相切替タイミング
 
100 ... motor drive circuit, 112, 112u, 112v, 112w ... series, 120 ... signal generator, 200 ... motor module, AS ... connecting pulse set, ASoff ... connecting off pulse , ASon ・ ・ ・ Connection on pulse, AToff ・ ・ ・ Connection off period, ATon ・ ・ ・ Connection on period, BS ・ ・ ・ Previous pulse set, BSoff ・ ・ ・ Previous off pulse, BSon ・ ・ ・ Previous on pulse, Toff ・ ・ ・Front off period, Bton ... front on period, C ... capacitor, CS ... rear pulse set, CSoff ... rear off pulse, CSon ... rear on pulse, CToff ... rear off period, CTon ... After-on period, N ... 2nd input terminal, NS ... reverse phase PWM signal, P ... 1st input terminal, PS ... positive phase PWM signal, V1 ... 1st voltage , V2 ... second voltage, tsw ... phase switching timing

Claims (13)


  1.  2相変調方式で3相モータの駆動を制御するモータ駆動回路であって、

     第1の電圧が印加される第1入力端子と、

     前記第1の電圧よりも低い第2の電圧が印加される第2入力端子と、

     前記第1入力端子と前記第2入力端子との間に接続されるコンデンサと、

     2つの半導体スイッチング素子が直列に接続されている3つの直列体と、

     前記3つの直列体のそれぞれに入力するPWM信号を生成する信号生成部とを備え、

     前記PWM信号は、正相PWM信号と、逆相PWM信号とを含み、

     前記逆相PWM信号は、前記正相PWM信号と位相が異なり、

     前記信号生成部は、前記PWM信号の位相の切替を位相切替タイミングで切り替え、

     前記PWM信号は、前記正相PWM信号と前記逆相PWM信号との間であって、前記位相切替タイミングの前後に繋ぎパルスセットをさらに有し、

     前記繋ぎパルスセットは、

     繋ぎオン期間を有する繋ぎオンパルスと、

     繋ぎオフ期間を有する繋ぎオフパルスとを有し、

     前記繋ぎオン期間は、位相切替前または位相切替後のPWM周期の1周期分のオン期間よりも短い、モータ駆動回路。

    It is a motor drive circuit that controls the drive of a three-phase motor by a two-phase modulation method.

    The first input terminal to which the first voltage is applied and

    A second input terminal to which a second voltage lower than the first voltage is applied, and

    A capacitor connected between the first input terminal and the second input terminal,

    Three series bodies in which two semiconductor switching elements are connected in series,

    It is provided with a signal generation unit that generates a PWM signal to be input to each of the three series.

    The PWM signal includes a positive phase PWM signal and a negative phase PWM signal.

    The reverse phase PWM signal has a different phase from the positive phase PWM signal.

    The signal generation unit switches the phase switching of the PWM signal at the phase switching timing.

    The PWM signal is between the positive phase PWM signal and the negative phase PWM signal, and further has a connecting pulse set before and after the phase switching timing.

    The connecting pulse set is

    With a connection-on pulse that has a connection-on period,

    With a tether-off pulse with a tether-off period,

    The connection on period is shorter than the on period of one PWM cycle before or after the phase switching, that is, the motor drive circuit.

  2.  前記繋ぎパルスセットは、前記位相切替タイミングの前後のPWM1周期以内の時間範囲に位置する、請求項1に記載のモータ駆動回路。

    The motor drive circuit according to claim 1, wherein the connecting pulse set is located within a time range within one PWM cycle before and after the phase switching timing.

  3.  前記繋ぎオフ期間は、位相切替前または位相切替後のPWM周期の1周期分のオフ期間よりも短い、請求項1または請求項2に記載のモータ駆動回路。

    The motor drive circuit according to claim 1 or 2, wherein the connection off period is shorter than the off period for one cycle of the PWM cycle before or after the phase switching.

  4.  前記繋ぎオン期間と前記繋ぎオフ期間の比は、位相切替前または位相切替後のPWM周期の1周期分のオン期間とオフ期間との比と同じである、請求項1から請求項3のいずれか1項に記載のモータ駆動回路。

    Any of claims 1 to 3, wherein the ratio of the connection on period to the connection off period is the same as the ratio of the on period and the off period for one cycle of the PWM cycle before or after the phase switching. The motor drive circuit according to claim 1.

  5.  前記繋ぎオン期間が前記繋ぎオフ期間に先行するとともに、

     前記繋ぎパルスセットの期間に占める前記オン期間の比率が、位相切替前のPWM周期に占めるオン期間の比率と同じであり、

     前記繋ぎパルスセットの期間に占める前記オフ期間の比率が、位相切替後のPWM周期に占めるオフ期間の比率と同じである、請求項1から請求項3のいずれか1項に記載のモータ駆動回路。

    The connection-on period precedes the connection-off period, and

    The ratio of the on period to the period of the connected pulse set is the same as the ratio of the on period to the PWM cycle before phase switching.

    The motor drive circuit according to any one of claims 1 to 3, wherein the ratio of the off period to the period of the connected pulse set is the same as the ratio of the off period to the PWM cycle after phase switching. ..

  6.  前記繋ぎオフ期間が前記繋ぎオン期間に先行するとともに、

     前記繋ぎパルスセットの期間に占める前記オフ期間の比率が、位相切替前のPWM周期に占めるオフ期間の比率と同じであり、

     前記繋ぎパルスセットの期間に占める前記オン期間の比率が、位相切替後のPWM周期に占めるオン期間の比率と同じである、請求項1から請求項3のいずれか1項に記載のモータ駆動回路。

    The connection-off period precedes the connection-on period, and

    The ratio of the off period to the period of the connected pulse set is the same as the ratio of the off period to the PWM cycle before phase switching.

    The motor drive circuit according to any one of claims 1 to 3, wherein the ratio of the on period to the period of the connected pulse set is the same as the ratio of the on period to the PWM cycle after phase switching. ..

  7.  前記繋ぎパルスセットの周期は、位相切替前または位相切替後のPWM周期の1/2である、請求項1から請求項6のいずれか1項に記載のモータ駆動回路。

    The motor drive circuit according to any one of claims 1 to 6, wherein the cycle of the connected pulse set is ½ of the PWM cycle before or after the phase switching.

  8.  前記PWM信号は、

     前記繋ぎパルスセットの前に位置する前パルスセットと、

     前記繋ぎパルスセットの後に位置する後パルスセットとをさらに有し、

     前記前パルスセットは、

     前オン期間を有する前オンパルスと、

     前オフ期間を有する前オフパルスとを有し、

     前記後パルスセットは、

     後オン期間を有する後オンパルスと、

     後オフ期間を有する後オフパルスとを有し、

     前記信号生成部は、前記繋ぎパルスセット、前記前パルスセットおよび前記後パルスセットの少なくとも2つのパルス長を調整する、請求項1から請求項7のいずれか1項に記載のモータ駆動回路。

    The PWM signal is

    The pre-pulse set located in front of the connecting pulse set and

    Further having a post-pulse set located after the spliced pulse set,

    The pre-pulse set

    With a pre-on pulse with a pre-on period,

    With a pre-off pulse with a pre-off period,

    The post-pulse set

    With a post-on pulse with a post-on period,

    With a post-off pulse and with a post-off period,

    The motor drive circuit according to any one of claims 1 to 7, wherein the signal generation unit adjusts at least two pulse lengths of the connecting pulse set, the front pulse set, and the rear pulse set.

  9.  前記信号生成部は、前記繋ぎオン期間と、前記前オン期間と、前記後オン期間との少なくとも2つを調整し、

     前記繋ぎオン期間の調整値と、前記前オン期間の調整値と、前記後オン期間の調整値との和は0である、請求項8に記載のモータ駆動回路。

    The signal generation unit adjusts at least two of the connection-on period, the pre-on period, and the post-on period.

    The motor drive circuit according to claim 8, wherein the sum of the adjustment value of the connection-on period, the adjustment value of the front-on period, and the adjustment value of the rear-on period is 0.

  10.  前記信号生成部は、前記繋ぎオフ期間と、前記前オフ期間と、前記後オフ期間との少なくとも2つを調整し、

     前記繋ぎオフ期間の調整値と、前記前オフ期間の調整値と、前記後オフ期間の調整値との和は0である、請求項8または請求項9に記載のモータ駆動回路。

    The signal generation unit adjusts at least two of the connection off period, the pre-off period, and the post-off period.

    The motor drive circuit according to claim 8 or 9, wherein the sum of the adjustment value of the connection off period, the adjustment value of the front off period, and the adjustment value of the rear off period is 0.

  11.  前記繋ぎオンパルスは、複数のパルスを有する、請求項1から請求項10のいずれか1項に記載のモータ駆動回路。

    The motor drive circuit according to any one of claims 1 to 10, wherein the connected on-pulse has a plurality of pulses.

  12.  前記繋ぎオフパルスは、複数のパルスを有する、請求項1から請求項11のいずれか1項に記載のモータ駆動回路。

    The motor drive circuit according to any one of claims 1 to 11, wherein the connection off pulse has a plurality of pulses.

  13.  請求項1から請求項12のいずれか1項に記載のモータ駆動回路と、

     前記モータ駆動回路によって駆動される3相モータとを備える、モータモジュール。

    The motor drive circuit according to any one of claims 1 to 12.

    A motor module including a three-phase motor driven by the motor drive circuit.
PCT/JP2020/048420 2020-09-30 2020-12-24 Motor drive circuit and motor module WO2022070446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080105615.4A CN116250173A (en) 2020-09-30 2020-12-24 Motor driving circuit and motor module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020164999 2020-09-30
JP2020-164999 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070446A1 true WO2022070446A1 (en) 2022-04-07

Family

ID=80950054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048420 WO2022070446A1 (en) 2020-09-30 2020-12-24 Motor drive circuit and motor module

Country Status (3)

Country Link
CN (1) CN116250173A (en)
TW (1) TWI784727B (en)
WO (1) WO2022070446A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806784B (en) * 2022-09-30 2023-06-21 台達電子工業股份有限公司 Power conversion circuit for driving motor and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029099A1 (en) * 2010-08-30 2012-03-08 三菱電機株式会社 Heat pump device, heat pump system and three-phase inverter control method
JP2016067169A (en) * 2014-09-25 2016-04-28 株式会社安川電機 Matrix converter, power generation system, and power conversion method
JP2018207570A (en) * 2017-05-30 2018-12-27 株式会社富士通ゼネラル Power conversion device
JP6732063B1 (en) * 2019-02-19 2020-07-29 三菱電機株式会社 Electric power conversion device, generator motor control device, and electric power steering device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378606B2 (en) * 2009-10-08 2013-02-19 Microchip Technology Incorporated Synchronized minimum frequency pulse width modulation drive for sensorless brushless direct current motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029099A1 (en) * 2010-08-30 2012-03-08 三菱電機株式会社 Heat pump device, heat pump system and three-phase inverter control method
JP2016067169A (en) * 2014-09-25 2016-04-28 株式会社安川電機 Matrix converter, power generation system, and power conversion method
JP2018207570A (en) * 2017-05-30 2018-12-27 株式会社富士通ゼネラル Power conversion device
JP6732063B1 (en) * 2019-02-19 2020-07-29 三菱電機株式会社 Electric power conversion device, generator motor control device, and electric power steering device

Also Published As

Publication number Publication date
TWI784727B (en) 2022-11-21
CN116250173A (en) 2023-06-09
TW202220366A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
US7777587B2 (en) Minimum pulse width for pulse width modulation control
US7729146B2 (en) Power converter control and power conversion method
US7327181B2 (en) Multiple phase simultaneous switching preventing circuit, PWM inverter and its driving method
US20120212170A1 (en) Inverter device and electric device using same
US11368109B2 (en) Power conversion system with PWM carrier transition smoothing and autotuning
WO2022070446A1 (en) Motor drive circuit and motor module
CN115514225A (en) Maximum conduction time trigger circuit of multiphase control system
JP4873317B2 (en) Inverter device
CN106067738B (en) Power conversion device
EP3952082A1 (en) Semiconductor device, power conversion device using same, and driving method for semiconductor device
US6969963B2 (en) PWM controlled motor drive
WO2023053595A1 (en) Motor control device
JP2005328668A (en) Drive circuit of self arc-extinguishing semiconductor device
Barba et al. Dead time reduction strategy for gan-based low-voltage inverter in motor drive system
JP7202244B2 (en) power converter
KR101422961B1 (en) Driver device for power factor correction circuit
JP7236855B2 (en) Three-phase AC controller and three-phase AC control system
WO2022181037A1 (en) Inverter control device, inverter circuit, motor module, and inverter control method
JP5163047B2 (en) Electric motor control apparatus and electric motor control method
US20240128916A1 (en) Inverter circuit and motor module
EP4120559A1 (en) Pwm driving method for an electric motor with zero-crossing compensation
JP5857189B2 (en) Inverter device
WO2022059218A1 (en) Motor drive circuit and motor module
WO2023032150A1 (en) Power conversion device and aircraft equipped with power conversion device
JPH11235079A (en) Motor-driven apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP