WO2022068948A1 - 空调器 - Google Patents
空调器 Download PDFInfo
- Publication number
- WO2022068948A1 WO2022068948A1 PCT/CN2021/124711 CN2021124711W WO2022068948A1 WO 2022068948 A1 WO2022068948 A1 WO 2022068948A1 CN 2021124711 W CN2021124711 W CN 2021124711W WO 2022068948 A1 WO2022068948 A1 WO 2022068948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- air conditioner
- area
- plate
- shaped sawtooth
- Prior art date
Links
- 238000009833 condensation Methods 0.000 claims abstract description 16
- 241001646071 Prioneris Species 0.000 claims description 94
- 238000009826 distribution Methods 0.000 claims description 8
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0011—Indoor units, e.g. fan coil units characterised by air outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0043—Indoor units, e.g. fan coil units characterised by mounting arrangements
- F24F1/005—Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
- F24F1/0063—Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/02—Ducting arrangements
- F24F13/06—Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
Definitions
- the invention belongs to the technical field of air treatment equipment, and in particular relates to an air conditioner.
- the air flow is sucked in from the air inlet, and finally blown out from the air outlet through the filter screen, the evaporator, the fan, the air duct inside the air conditioner and the air deflector.
- the resistance of the air flow is relatively large, and a large part of the air volume is lost in the flow process inside the air conditioner because of the resistance.
- the air output of the air conditioner is small due to the large air resistance, and in order to prevent condensation and frost in the existing air conditioner, the The uneven treatment of the inner surface of the air duct pipeline will increase the resistance of the air flow to a certain extent and reduce the problem of the air output of the air conditioner.
- the new air conditioner is provided with an air passage, the air passage includes a fan air passage and a heat exchanger air passage connected in sequence, a first area surface is arranged on the fan air passage, The air passage of the heat exchanger is provided with a second area surface, the wind resistance of the first area surface at a wind speed greater than or equal to a set value is smaller than that of the second area surface, and the first area surface and the The surfaces of the second area are all anti-condensation surfaces.
- the wind resistance of the surface of the second area is smaller than that of the surface of the first area; and/or, the rotational speed of the fan of the air conditioner during normal operation is greater than set value.
- the surface of the first area is a plate-shaped sawtooth convex structure, and correspondingly the surface of the second area is a triangular sawtooth convex structure.
- the surface of the first area is a plate-shaped sawtooth convex structure distributed in a staggered manner, and correspondingly, the surface of the second area is a plate-shaped sawtooth convex structure or a triangular sawtooth convex structure.
- the air conditioner further comprises an air guide plate, the air guide plate is arranged at the air outlet of the air passage of the heat exchanger, and the inner side of the air guide plate is distributed in a staggered manner The plate-shaped sawtooth raised structure.
- the cross-section of the plate-shaped sawtooth raised structures is one of a rectangle, a trapezoid, and a parallelogram, and the plate-shaped sawtooth raised structures are distributed in a continuous row of equal heights.
- the plate-shaped sawtooth convex structure is uniformly distributed with the same height, which diverges outward from the center of the surface of the first area as the center of the circle.
- the triangular saw-tooth raised structure is one of a continuous row-like distribution of equal heights, a row-like distribution of equal heights, or a uniform distribution of equal heights that diverges outward from the center of the surface of the first area. kind.
- the cross-section of the staggeredly distributed plate-shaped sawtooth raised structures is one of a rectangle, a trapezoid, and a parallelogram, and the staggeredly distributed plate-shaped sawtooth raised structures are of equal height and continuous columnar distribution.
- the size of the longest side of the rectangle, trapezoid and parallelogram is between 20-500 ⁇ m.
- an air passage is provided inside the air conditioner, and the air passage includes a fan air passage and a heat exchanger air passage connected in sequence, and a first air passage is arranged on the fan air passage.
- Area surface, a second area surface is provided at the air passage of the heat exchanger, the wind resistance of the first area surface at a wind speed greater than or equal to the set value is smaller than that of the second area surface, and both the first area surface and the second area surface are Anti-condensation surface.
- the wind speed at different air paths is different, and the wind speed on the fan air path is greater than the wind speed at the heat exchanger air path, and under the same surface wind resistance, the greater the wind speed, the greater the wind energy loss. Therefore, under the wind speed greater than or equal to the set value, the wind resistance of the surface of the first area selected by the present invention is smaller than that of the surface of the second area, and on the premise that condensation can be prevented, the wind energy loss at the higher wind speed can also be reduced. .
- the air conditioner of the present invention is provided with different area surfaces at different air passages, and under the wind speed greater than or equal to the set value, the wind resistance of the air passage of the fan of the present invention is smaller than that of the air passage of the heat exchanger. , so that the present invention can reduce the air resistance of the air flow when the air flows inside the air conditioner through targeted optimization of the area surfaces of different air passages of the air conditioner, thereby increasing the air output of the air conditioner.
- Fig. 1 is the structural schematic diagram of the air duct channel of the vertical air conditioner and the surface of each air duct area;
- Fig. 2 is the structural schematic diagram that the air duct of the air conditioner and the surface of each air duct area are arranged;
- FIG. 3 is a schematic structural diagram of a plate-shaped sawtooth raised structure
- FIG. 4 is a schematic structural diagram of a circular divergent and evenly distributed plate-type sawtooth raised structure
- FIG. 5 is a schematic structural diagram of a triangular sawtooth raised structure
- FIG. 6 is a schematic structural diagram of the staggeredly distributed plate-shaped sawtooth raised structures.
- 11-fan air passage 111-surface of the first area; 1111-plate-shaped sawtooth raised structure; 1112-staggered distribution of plate-shaped sawtooth raised structure;
- the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
- installed should be understood in a broad sense, for example, it may be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be the internal communication between two components.
- the air conditioner of the present invention is provided with an air channel 1.
- the air channel 1 includes a fan air passage 11 and a heat exchanger air passage 12 connected in sequence, a first area surface 111 is arranged on the fan air passage 11, a second area surface 121 is arranged at the heat exchanger air passage 12, and the first area
- the wind resistance of the surface 111 at a wind speed greater than or equal to the set value is smaller than that of the second area surface 121 , and both the first area surface 111 and the second area surface 112 are anti-condensation surfaces.
- the advantages of the above arrangement are: in the air conditioner, the wind speed at different air passages is different, and the wind speed on the fan air passage 11 is greater than the wind speed at the heat exchanger air passage 12, thus, the first area surface 111 and the first area surface 111.
- the second area surface 121 needs to satisfy that the wind resistance of the first area surface 111 is smaller than that of the second area surface 121 when the wind speed is greater than or equal to the set value.
- the air conditioner of the present invention is provided with different area surfaces at different air passages, and under the wind speed greater than or equal to the set value, the surface wind resistance of the fan air passage 11 is smaller than the surface wind resistance of the heat exchanger air passage 12 .
- the present invention optimizes the area surfaces at different air passages of the air conditioner to reduce the air resistance when the air flows inside the air conditioner, thereby increasing the air output of the air conditioner.
- the main contribution of the present invention compared to the prior art is that, because the wind speed difference between the fan air passage 11 and the heat exchanger air passage 12 is not large, it is difficult to find that there are major problems in this place, resulting in Those skilled in the art have not found a precedent for setting the bins specifically for the interior, but the inventor was not satisfied with the final air volume during the actual inspection. After years of exploration, it was found that most of the wind energy loss occurred on the surface of the first area. 111, therefore, the inventive concept of integrally disposing the area surface is proposed.
- each surface does not have absolute resistance or small resistance, but its own resistance follows the wind speed. There is a certain relationship, which makes the selection of wind resistance not aimless, the smaller the better, but the fan speed of the air conditioner, which is selected in a targeted manner. It only needs to satisfy the first area surface 111 is greater than or equal to the setting. The wind resistance at the wind speed of the value is less than that of the second area surface 121.
- the first area surface 111 and The second area surface 121 does not need to be considered, even in the case of a small wind speed, the wind resistance of the first area surface 111 is greater than the wind resistance of the second area surface 121, which is the wind speed range that the air conditioner cannot reach, so it will not affect the wind speed.
- Beneficial effects of the invention are not limited to the wind resistance of the second area surface 121, which is the wind speed range that the air conditioner cannot reach, so it will not affect the wind speed.
- the wind resistance of the second area surface 121 is smaller than that of the first area surface 111; and the speed of the fan of the air conditioner during normal operation is greater than the set value.
- the advantage of the above arrangement is that: according to the characteristics of the air path of the air conditioner itself, that is, the wind speed on the fan air path 11 is greater than the wind speed at the heat exchanger air path 12, therefore, the first area surface 111 and the second area surface 121 need to be It is satisfied that when the wind speed is less than the set value, the wind resistance of the second area surface 121 is smaller than that of the first area surface 111 , so that the second area surface 121 can exhibit excellent low wind resistance performance at the heat exchanger air passage 12 .
- the setting of the first area surface 111 and the second area surface 121 can also take into account the prevention of condensation and frost formation on the surface of the air passage channel 1 of the air conditioner. Therefore, the first area surface 111 and the second area surface 121 are respectively arranged on the air duct 11 of the air conditioner fan and the air duct 12 of the heat exchanger, which can simultaneously reduce wind resistance and prevent condensation.
- the first area surface 111 and the second area surface 121 respectively disposed on the fan air passage 11 and the heat exchanger air passage 12 in the air conditioner of the present invention will be further described below in detail.
- the first area surface 111 is a plate-shaped sawtooth convex structure 1111
- the second area surface 121 is a triangular sawtooth convex structure 1211 .
- the advantage of the above arrangement is that it is confirmed by aerodynamic simulation calculation and actual experiment that the wind resistance of the plate-shaped sawtooth raised structure 1111 is smaller than that of the triangular sawtooth raised structure 1211 at high wind speed.
- the plate-shaped sawtooth raised The wind resistance of the lifting structure 1111 is greater than that of the triangular sawtooth raised structure 1211, and the first area surface 111 and the second area surface 121 are respectively arranged on the fan air passage 11 and the heat exchanger air passage 12, and the wind speed on the fan air passage 11 It is greater than the wind speed at the air passage 12 of the heat exchanger.
- the first area surface 111 with the plate-shaped sawtooth raised structure 1111 can exhibit excellent low wind resistance performance on the fan air passage 11 with high wind speed, and at the same time, the first area surface 111 with the triangular sawtooth raised structure 1211 can also be made to exhibit excellent low wind resistance performance.
- the second-region surface 121 also exhibits excellent low wind resistance performance at the lower wind speed of the heat exchanger air passage 12 .
- the first area surface 111 is set as a plate-shaped sawtooth raised structure 1111 in this embodiment
- the second area surface 121 is correspondingly set as a triangular sawtooth raised structure 1211 as an example, respectively.
- the structures of the surface 111 and the surface 121 of the second region are described, but the structures of the surface of the first region 111 and the surface of the second region 121 in this embodiment are not limited to this, as long as the first region surface 111 can be set to be greater than or equal to It is sufficient that the wind resistance at the wind speed of the value is smaller than that of the second area surface 121 .
- the surface 111 of the first area is a plate-shaped sawtooth raised structure 1112 distributed in a staggered manner
- the second area surface 121 is a plate-shaped sawtooth raised structure 1111 or a triangular sawtooth raised structure 1211 .
- the advantage of the above arrangement is that the wind resistance of the staggered plate-shaped sawtooth raised structures 1112 is smaller than that of the plate-shaped sawtooth raised structures 1111 and the triangular sawtooth raised structures 1211, and the first area surface 111 and the second area surface 121 are respectively provided On the fan air passage 11 and at the heat exchanger air passage 12 , and the wind speed on the fan air passage 11 is greater than the wind speed at the heat exchanger air passage 12 .
- the first area surface 111 and the second area surface 121 are respectively suitable for the fan air passage 11 of high wind speed and the heat exchanger air passage 12 of lower wind speed, so as to realize the optimal design of the air passage surface of the air conditioner, so as to optimize the air passage of the air conditioner.
- the effect of channel wind resistance is respectively suitable for the fan air passage 11 of high wind speed and the heat exchanger air passage 12 of lower wind speed, so as to realize the optimal design of the air passage surface of the air conditioner, so as to optimize the air passage of the air conditioner.
- the air conditioner further includes an air guide plate 2, which is arranged at the air outlet of the air passage 12 of the heat exchanger, and the inner side surface 21 of the air guide plate is a plate-shaped sawtooth raised structure 1112 distributed in a staggered manner.
- the advantage of the above arrangement is that the air deflector 2 at the outlet of the air passage 12 of the heat exchanger of the air conditioner plays a role in controlling the blowing direction of the air flow in the air conditioner, and the air flow will flow separation at the boundary of the air deflector 2, thereby , when designing the inner area surface of the wind deflector 2, not only the wind resistance of the area surface, but also the effect of the area surface on the separation of the wind flow should be considered. Since the staggeredly distributed plate-shaped sawtooth raised structures 1112 have the effect of delaying the appearance of the turbulent state of the wind flow, the Reynolds number of the wind flow to be converted into a turbulent state after passing through the wind deflector 2 is higher, so that the laminar flow state exists for a longer time. .
- staggeredly distributed plate-shaped sawtooth raised structures 1112 are arranged on the inner side surface 21 of the air deflector, which can extend the air supply distance of the air conditioner, so as to send the air flow from the air conditioner to a farther distance, thereby avoiding direct wind blowing.
- the cross-section of the plate-shaped sawtooth raised structures 1111 is rectangular, and the plate-shaped sawtooth raised structures 1111 are distributed in a continuous row of equal heights.
- the plate-shaped sawtooth raised structure 1111 can be used in an air conditioner to reduce wind resistance, especially at higher wind speeds, the plate-shaped sawtooth raised structure 1111 has better performance in terms of wind resistance, and can It has a better effect on reducing wind resistance.
- the plate-shaped sawtooth protruding structure 1111 also has the advantages of easy processing and better effect of preventing condensation and frost on the surface of the air passage channel 1 of the air conditioner.
- the cross-section of the plate-shaped sawtooth raised structures 1111 is rectangular in this embodiment, and the plate-shaped sawtooth raised structures 1111 are distributed in a continuous row of equal heights as an example, respectively, for the plate-shaped sawtooth raised structures 1111
- the cross-sectional shape and the arrangement of the plate-shaped sawtooth raised structures 1111 are described, but the cross-sectional shape of the plate-shaped sawtooth raised structures 1111 and the arrangement of the plate-shaped sawtooth raised structures 1111 in this embodiment are not limited to this, as long as
- the plate-shaped sawtooth protruding structure 1111 is a plate-like structure and has the effect of reducing wind resistance, and at the same time, the arrangement of the plate-shaped sawtooth protruding structures 1111 can satisfy the use of the inner area surface of the air conditioner.
- the cross section of the plate-shaped sawtooth protruding structure 1111 is a trapezoid or a parallelogram. As shown in FIG. 4 , the arrangement can also be evenly distributed with the same height as the center of the surface 111 of the first region and the outward divergence.
- the advantage of the above arrangement is that: for the cross-sectional shape and arrangement of the different plate-shaped sawtooth raised structures 1111 given above, the advantage is that a suitable plate-shaped sawtooth can be selected according to the shape of the surface of different air duct areas in the air conditioner
- the cross-sectional shape and arrangement of the raised structures 1111 are more suitable for the air-conditioning air passage 1, so as to optimize the area surface of the air-conditioning air passage 1, and further reduce the area surface of the air passage 1. wind resistance.
- the general applicability of the plate-shaped sawtooth raised structures 1111 on the surface of the air passage channel 1 of the air conditioner can be improved.
- the triangular serrated protruding structures 1211 are distributed in a continuous row of equal heights.
- the triangular sawtooth raised structure 1211 can also have the effect of reducing wind resistance when applied to an air conditioner. It has a better effect on reducing wind resistance.
- the triangular serrated protruding structure 1211 is easier to process and has a better anti-condensation effect than the plate-shaped serrated protruding structure 1111 .
- the triangular serrated protruding structures 1211 are distributed in a continuous row of equal heights as an example to describe the arrangement of the triangular serrated protruding structures 1211 , the triangular serrated protruding structures of this embodiment are described.
- the arrangement of the 1211 is not limited to this, as long as the arrangement of the triangular sawtooth protruding structures 1211 can satisfy the use of the surface of the inner area of the air conditioner.
- the triangular serrated protruding structures 1211 are distributed in columns of equal heights; for another example, the triangular serrated protruding structures 1211 can also be arranged like the plate-shaped serrated protruding structures 1111 , and are arranged to diverge outward from the center of the first area surface 111 . Evenly distributed at equal heights.
- the advantage of the above arrangement is that: for the arrangement of the different triangular sawtooth raised structures 1211 given above, the advantage is that a suitable arrangement can be selected according to the shape of the surface of the different air duct areas in the air conditioner, so as to better It is suitable for the air duct 1 of the air conditioner, so as to optimize the area surface of the air duct 1 of the air conditioner, so as to better reduce the wind resistance of the area surface of the air duct 1 .
- the cross-sectional shapes and arrangement of different triangular serrated protruding structures 1211 by setting the cross-sectional shapes and arrangement of different triangular serrated protruding structures 1211 , the general applicability of the triangular serrated protruding structures 1211 on the surface of the air passage channel 1 of the air conditioner can be improved.
- the cross-sections of the staggeredly distributed plate-shaped sawtooth raised structures 1112 are rectangular, and the staggeredly distributed plate-shaped sawtooth raised structures 1112 are distributed in a continuous row of equal heights.
- the staggeredly distributed plate-shaped sawtooth raised structures 1112 have better performance in reducing wind resistance.
- the staggered plate-shaped sawtooth raised structures 1112 are applied to the air conditioner, which can not only reduce the surface wind resistance of the air channel 1 area, but also delay the appearance of turbulent flow in the air flow, which can prolong the air conditioning time.
- the air supply distance of the air conditioner is adjusted to realize the air flow blown from the air conditioner to a farther distance, thereby avoiding direct wind blowing.
- the cross-section of the staggeredly distributed plate-shaped sawtooth raised structures 1112 is taken as an example to describe the cross-sectional shape of the staggeredly distributed plate-shaped sawtooth raised structures 1112 in this embodiment, the The cross-sectional shape of the staggeredly distributed plate-shaped sawtooth protruding structures 1112 is not limited to this, as long as the staggeredly distributed plate-shaped sawtooth raised structures 1112 are plate-shaped and have the effect of reducing wind resistance.
- the cross-section of the staggeredly distributed plate-shaped sawtooth protruding structures 1112 is a trapezoid or a parallelogram.
- the advantage of the above arrangement is that: for the staggeredly distributed plate-shaped sawtooth raised structures 1112 with different cross-sectional shapes given above, the advantage is that a suitable one with the above
- the staggered and distributed plate-shaped sawtooth raised structures 1112 of any cross-sectional shape are more suitable for the air duct 1 of the air conditioner, so as to optimize the area surface of the air duct 1 of the air conditioner, so as to better reduce the air duct Wind resistance of the area surface of channel 1.
- the cross-sectional shapes of the plate-shaped sawtooth raised structures 1112 with different staggered distributions the general applicability of the randomly distributed plate-shaped sawtooth raised structures 1112 on the surface of the air passage channel 1 of the air conditioner can be improved.
- the size of the longest side of the rectangle, trapezoid, and parallelogram is between 20-500 ⁇ m, that is to say, these structures mentioned in the present invention are not conventional macro-structure layouts, but are all on the board
- the micro-adjustments made on the surface are difficult to distinguish with the naked eye, but can be clearly seen under a device that can magnify the field of view.
- the wind resistance of the first area surface 111 is smaller than that of the second area surface 121 .
- the plate-shaped sawtooth raised structures 1112 are arranged on the inner side surface 21 of the wind deflector.
- the area surface provided in the air passage channel 1 and the inner side surface 21 of the air deflector not only have the effect of reducing wind resistance, but also can prevent condensation and frost formation.
- This embodiment can simultaneously reduce the wind resistance of the air duct 1 of the air conditioner and prevent condensation and frost on the air duct 1 .
- the air conditioner of the present invention can obviously also be other forms of air conditioner equipment.
- the air conditioner may also be a wall-mounted air conditioner or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
- Air-Flow Control Members (AREA)
Abstract
现有空调器中,风流在空调器内部流动,由于空气阻力较大,使得空调器出风量较少,并且为了防止凝露结霜,在空调器的风道管路内部表面做不平整处理,在某种程度上也会增加空气流动的阻力,降低空调器出风量。为解决上述问题,提出一种空调器,在其内部设置有风路通道(1),风路通道(1)包括依次连接的风机风路(11)和换热器风路(12),在风机风路(11)上设置有第一区域表面(111),在换热器风路(12)处设置有第二区域表面(121),第一区域表面(111)在大于等于设定值的风速下的风阻小于第二区域表面(121)的风阻。通过对空调器不同风路处区域表面的优化,以降低风流在空调器内部流动时所受到的空气阻力。
Description
本发明属于空气处理设备技术领域,具体涉及一种空调器。
在空调器中,风流从进风口吸入,经过滤网、蒸发器、风机、空调器内部的风道以及导风板最终从出风口吹出。空气流动的阻力较大,很大一部分风量因为阻力损失在空调器内部的流动过程中。
现有的空调器,为了防止凝露结霜,在空调器的风道管路内部表面做不平整处理,这种方式在某种程度上也会增加空气流动的阻力,降低风量。由此,为了提高空调器的出风量,通常需要提高电机转速。
但是,通过提高电机转速的方式以实现提高空调器的出风量,在一定程度上增加了能耗、加大的机器噪音,同时降低了用户体验。
相应地,本领域需要一种能够同时兼顾防止凝露结霜和降低空气阻力的新的空调器来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决风流在空调器内部流动,由于空气阻力较大,使得空调器出风量较少,并且现有空调器为了防止凝露结霜,在空调器的风道管路内部表面做不平整处理,在某种程度上也会增加空气流动的阻力,降低空调器出风量的问题,本发明提供了一种能够同时兼顾防止凝露结霜和降低空气阻力的新的空调器,所述空调器内部设置有风路通道,所述风路通道包括依次连接的风机风路和换热器风路,在所述风机风路上设置有第一区域表面,在所述换热器风路处设置有第二区域表面,所述第一区域表面在大于等于设定值的风速下的风阻小于所述第二区域表面,并且所述第一区域表面和所述第二区域表面均为防凝露表面。
在上述空调器的优选技术方案中,风速小于设定值时,所述第二区域表面的风阻小于所述第一区域表面;并且/或者,所述空调器的风机在正常运转时的转速大于设定值。
在上述空调器的优选技术方案中,所述第一区域表面为板型锯齿凸起结构,相应地所述第二区域表面为三角形锯齿凸起结构。
在上述空调器的优选技术方案中,所述第一区域表面为错落分布的板型锯齿凸起结构,相应地所述第二区域表面为板型锯齿凸起结构或三角形锯齿凸起结构。
在上述空调器的优选技术方案中,所述空调器还包括导风板,所述导风板设置在所述换热器风路的出风口处,所述导风板的内侧面为错落分布的板型锯齿凸起结构。
在上述空调器的优选技术方案中,所述板型锯齿凸起结构的截面为矩形、梯形、平行四边形中的一种,并且所述板型锯齿凸起结构为等高连续列状分布。
在上述空调器的优选技术方案中,所述板型锯齿凸起结构为以第一区域表面中心为圆心向外发散等高均匀分布。
在上述空调器的优选技术方案中,所述三角形锯齿凸起结构为等高连续列状分布、等高间隔列状分布或以第一区域表面中心为圆心向外发散等高均匀分布中的一种。
在上述空调器的优选技术方案中,所述错落分布的板型锯齿凸起结构的截面为矩形、梯形、平行四边形中的一种,所述错落分布的板型锯齿凸起结构为等高连续列状分布。
在上述空调器的优选技术方案中,所述矩形、梯形、平行四边形的最长边的尺寸为20-500μm之间。
本领域人员能够理解的是,在本发明的技术方案中,空调器内部设置有风路通道,风路通道包括依次连接的风机风路和换热器风路,在风机风路上设置有第一区域表面,在换热器风路处设置有第二区域表面,第一区域表面在大于等于设定值的风速下的风阻小于第二区域表面,并且第一区域表面和第二区域表面均为防凝露表面。
在空调器中,不同风路处的风速不一样,且风机风路上的风速大于换热器风路处的风速,而在同样的表面风阻的情况下,风速越大风能损失也就越大。由此,在大于等于设定值的风速下,本发明所选取的第一区域表面的风阻小于第二区域表面,在能够防止凝露的前提下,还能够使风速较高处的风能损失降低。通过上述设置方式,使得本发明的空调器在不同的风路处设置不同的区域表面,且在大于等于设定值的 风速下,本发明的风机风路表面风阻小于换热器风路表面风阻,从而使本发明通过对空调器不同风路处区域表面针对性优化,以降低风流在空调器内部流动时所受到的空气阻力,进而提高空调器的出风量。
下面参照附图并结合立式空调器来描述本空调器。附图中:
图1为立式空调器风路通道及各风道区域表面的结构示意图;
图2为空调器风路通道及各风道区域表面设置的结构示意图;
图3为板型锯齿凸起结构的结构示意图;
图4为圆形发散等高均匀分布板型锯齿凸起结构的结构示意图;
图5为三角形锯齿凸起结构的结构示意图;
图6为错落分布的板型锯齿凸起结构的结构示意图。
附图标记列表:
1-风路通道;
11-风机风路;111-第一区域表面;1111-板型锯齿凸起结构;1112-错落分布的板型锯齿凸起结构;
12-换热器风路;121-第二区域表面;1211-三角形锯齿凸起结构;
2-导风板;
21-导风板内侧面。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,尽管说明书中是以矩形截面的为例对板型锯齿凸起结构进行描述的,但是,本发明显然可以采用其他各种截面的板型锯齿凸起结构,如梯形截面、平行四边形截面等,只要该板型锯齿凸起结构为板状结构且具有降低风阻的效果即可。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1-2,对现有空调器的风路通道以及在各风路通道上设置不同区域表面进行描述。
如图1-2所示,为解决现有技术中,风流在空调器内部流动,由于空气阻力较大,使得空调器出风量较少,并且现有空调器为了防止凝露结霜,在空调器的风道管路内部表面做不平整处理,在某种程度上也会增加空气流动的阻力,降低空调器出风量的问题,本发明的空调器内部设置有风路通道1,风路通道1包括依次连接的风机风路11和换热器风路12,在风机风路11上设置有第一区域表面111,在换热器风路12处设置有第二区域表面121,第一区域表面111在大于等于设定值的风速下的风阻小于第二区域表面121,并且第一区域表面111和第二区域表面112上均为防凝露表面。
上述设置方式的优点在于:在空调器中,不同风路处的风速不一样,且风机风路11上的风速大于换热器风路12处的风速,由此,第一区域表面111和第二区域表面121需要满足在大于等于设定值的风速下,第一区域表面111的风阻小于第二区域表面121。通过上述设置方式,使得本发明的空调器在不同的风路处设置不同的区域表面,且在大于等于设定值的风速下,风机风路11表面风阻小于换热器风路12表面风阻。从而使本发明通过对空调器不同风路处区域表面的优化,以降低风流在空调器内部流动时所受到的空气阻力,进而提高空调器的出风量。需要说明的是,本发明相对于现有技术的主要贡献在于,由于风机风路11和换 热器风路12的风速差距并不大,使得这个地方很难被发现存在较大的问题,导致本领域技术人员并没有出现专门针对内部进行分档设置的先例,而发明人在实际检测当中,对于最终的出风量不够满意,经常年探索之后,发现大多数的风能损失是在第一区域表面111,因此提出了整体的分体设置区域表面的发明构思。除此之外,发明人研究了多种表面形式并进行了实验对比,并根据空气动力学理论进行了仿真计算,发现每种表面并不是绝对的阻力大或阻力小,它自身的阻力跟风速是有一定关联的,这就使得风阻的选择并非无目的性的越小越好,而是针对空调器的风机风速,有针对性地选择,只需要满足第一区域表面111在大于等于设定值的风速下的风阻小于第二区域表面121即可,当小于设定值的风速,由于空调器并不能产生这种小风速的风,因此在小风速的情况下的第一区域表面111和第二区域表面121是不需要考虑的,哪怕是在小风速的情况下第一区域表面111的风阻大于第二区域表面121的风阻,这是空调器无法达到的风速范围,因此不会影响本发明的有益效果。
例如,在本实施例中,风速小于设定值时,第二区域表面121的风阻小于第一区域表面111;并且,空调器的风机在正常运转时的转速大于设定值。
上述设置方式的优点在于:根据空调器自身风路的特性,即风机风路11上的风速大于换热器风路12处的风速,由此,第一区域表面111和第二区域表面121需要满足在风速小于设定值时,第二区域表面121的风阻小于第一区域表面111,从而可使第二区域表面121在换热器风路12处表现出优秀的低风阻性能。同时,在本实施例中,第一区域表面111和第二区域表面121的设置还可兼顾防止空调器风路通道1表面凝露结霜。使得在空调器风机风路11上和换热器风路12处分别设置第一区域表面111和第二区域表面121可同时兼顾降低风阻和防凝露的作用。
下面进一步对在本发明的空调器中,分别设置在风机风路11上和换热器风路12处的第一区域表面111和第二区域表面121进行详细描述。
在一种可能的实施方式中,第一区域表面111为板型锯齿凸起结构1111,相应地第二区域表面121为三角形锯齿凸起结构1211。
上述设置方式的优点在于,通过空气动力学仿真计算以及实际实验证实,在高风速下板型锯齿凸起结构1111的风阻小于三角形锯齿 凸起结构1211,相反的,在低风速下板型锯齿凸起结构1111的风阻大于三角形锯齿凸起结构1211,并且第一区域表面111和第二区域表面121分别设置在风机风路11上和换热器风路12处,且风机风路11上的风速大于换热器风路12处的风速。由此,可使具有板型锯齿凸起结构1111的第一区域表面111在高风速的风机风路11上表现出优秀的低风阻性能,同时,也可使具有三角形锯齿凸起结构1211的第二区域表面121在较低风速的换热器风路12处同样表现出优秀的低风阻性能。
可以理解的是,虽然本实施例是以将第一区域表面111设置为板型锯齿凸起结构1111,相应地将第二区域表面121设置为三角形锯齿凸起结构1211为例分别对第一区域表面111和第二区域表面121结构进行说明的,但是本实施例的第一区域表面111和第二区域表面121的结构并不局限于此,只要能够满足第一区域表面111在大于等于设定值的风速下的风阻小于第二区域表面121即可。
例如,第一区域表面111为错落分布的板型锯齿凸起结构1112,相应地第二区域表面121为板型锯齿凸起结构1111或三角形锯齿凸起结构1211。
上述设置方式的优点在于,错落分布的板型锯齿凸起结构1112的风阻均小于板型锯齿凸起结构1111和三角形锯齿凸起结构1211,并且第一区域表面111和第二区域表面121分别设置在风机风路11上和换热器风路12处,且风机风路11上的风速大于换热器风路12处的风速。由此,将第一区域表面111设置为错落分布的板型锯齿凸起结构1112,相应地将第二区域121表面设置为板型锯齿凸起结构1111或三角形锯齿凸起结构1211,可使第一区域表面111和第二区域表面121分别适用于高风速的风机风路11和较低风速的换热器风路12,以实现空调器风路表面的优化设计,从而达到优化空调器风路通道风阻的效果。
在本实施例中,空调器还包括导风板2,导风板2设置在换热器风路12的出风口处,导风板内侧面21为错落分布的板型锯齿凸起结构1112。
上述设置方式的优点在于,空调器换热器风路12出口处导风板2在空调器中起到控制风流吹出方向的作用,并且风流在导风板2的边界会发生流动分离,由此,在设计导风板2的内部区域表面时,不仅要考虑区域表面的风阻,同时还要考虑区域表面对风流流动分离的效 果。由于错落分布的板型锯齿凸起结构1112对风流有延后湍流状态出现的作用,可使风流经过导风板2后转化成湍流状态的雷诺数较高,从而使层流状态存在的更长。因此,在导风板内侧面21设置错落分布的板型锯齿凸起结构1112,可延长空调器的送风距离,以实现将空调器吹出的风流送到更远处,从而避免风流直吹。
下面进一步参照图3-6,对本发明中的锯齿凸起结构以及排列方式进行详细描述。
如图3所示,在一种可能的实施方式中,板型锯齿凸起结构1111的截面为矩形、并且板型锯齿凸起结构1111为等高连续列状分布。
上述设置方式的优点在于:板型锯齿凸起结构1111应用于空调器中可以起到降低风阻的效果,尤其在较高风速下,板型锯齿凸起结构1111在风阻方面具有更好表现,可以对降低风阻起到更好的效果。此外,板型锯齿凸起结构1111还具有易加工以及较好的防止空调器风路通道1表面凝露结霜的效果等优势。
可以理解的是,虽然本实施例是以板型锯齿凸起结构1111的截面为矩形、并且板型锯齿凸起结构1111为等高连续列状分布为例分别对板型锯齿凸起结构1111的截面形状以及板型锯齿凸起结构1111的排列方式进行说明的,但是本实施例的板型锯齿凸起结构1111的截面形状以及板型锯齿凸起结构1111的排列方式并不局限于此,只要该板型锯齿凸起结构1111为板状结构且具有降低风阻的效果,同时板型锯齿凸起结构1111的排列方式能够满足空调器内部区域表面使用即可。
例如,板型锯齿凸起结构1111的截面为梯形或平行四边形。如图4所示,其排列方式也可以为以第一区域表面111中心为圆心向外发散等高均匀分布。
上述设置方式的优点在于:对于上述给出的不同板型锯齿凸起结构1111的截面形状以及排列方式,其优势在于可以根据空调器中不同的风道区域表面的形状来选择适合的板型锯齿凸起结构1111的截面形状以及排列方式,以更好的适用于空调器风路通道1,从而优化空调器风路通道1的区域表面,进而以更好的降低风路通道1的区域表面的风阻。在本实施例中,通过设置不同板型锯齿凸起结构1111的截面形状以及排列方式,可提高板型锯齿凸起结构1111在空调器风路通道1区域表面上的普遍适用性。
如图5所示,在一种可能的实施方式中,三角形锯齿凸起结构1211为等高连续列状分布。
上述设置方式的优点在于:三角形锯齿凸起结构1211应用于空调器中同样也可以起到降低风阻的效果,尤其在较低风速下,三角形锯齿凸起结构1211在风阻方面具有更好表现,可以对降低风阻起到更好的效果。此外,三角形锯齿凸起结构1211相比于板型锯齿凸起结构1111而言,更易加工以及具有更好的防凝露效果。
可以理解的是,虽然本实施例是以三角形锯齿凸起结构1211为等高连续列状分布为例对三角形锯齿凸起结构1211的排列方式进行说明的,但是本实施例的三角形锯齿凸起结构1211的排列方式并不局限于此,只要该三角形锯齿凸起结构1211的排列方式能够满足空调器内部区域表面使用即可。
例如,三角形锯齿凸起结构1211为等高间隔列状分布;再如,三角形锯齿凸起结构1211也可如同板型锯齿凸起结构1111,设置为以第一区域表面111中心为圆心向外发散等高均匀分布。
上述设置方式的优点在于:对于上述给出的不同三角形锯齿凸起结构1211的排列方式,其优势在于可以根据空调器中不同的风道区域表面的形状来选择适合的排列方式,以更好的适用于空调器风路通道1,从而优化空调器风路通道1的区域表面,进而以更好的降低风路通道1的区域表面的风阻。此外,在本实施例中,通过设置不同三角形锯齿凸起结构1211的截面形状以及排列方式,可提高三角形锯齿凸起结构1211在空调器风路通道1区域表面上的普遍适用性。
如图6所示,在一种可能的实施方式中,错落分布的板型锯齿凸起结构1112的截面为矩形,错落分布的板型锯齿凸起结构1112为等高连续列状分布。
上述设置方式的优点在于:与板型锯齿凸起结构1111和三角形锯齿凸起结构1211相比,错落分布的板型锯齿凸起结构1112在降低风阻方面具有更为优秀的表现。此外,错落分布的板型锯齿凸起结构1112应用于空调器中,不仅可以起到降低风路通道1区域表面风阻的作用,同时还还对风流有延后湍流状态出现的作用,可延长空调器的送风距离,以实现将空调器吹出的风流送到更远处,从而避免风流直吹。
可以理解的是,虽然本实施例是以错落分布的板型锯齿凸起结构1112的截面为矩形为例对错落分布的板型锯齿凸起结构1112的截面形状进行说明的,但是本实施例的错落分布的板型锯齿凸起结构1112的截面形状并不局限于此,只要该错落分布的板型锯齿凸起结构1112为板型,且具有降低风阻的效果即可。例如,错落分布的板型锯齿凸起结构1112的截面为梯形或平行四边形。
上述设置方式的优点在于:对于上述给出的具有不同截面形状的错落分布的板型锯齿凸起结构1112,其优势在于可以根据空调器中不同的风道区域表面的形状来选择适合的具有上述任一种截面形状的错落分布的板型锯齿凸起结构1112,以更好的适用于空调器风路通道1,从而优化空调器风路通道1的区域表面,进而以更好的降低风路通道1的区域表面的风阻。在本实施例中,通过设置不同错落分布的板型锯齿凸起结构1112的截面形状,可提高错落分布的板型锯齿凸起结构1112在空调器风路通道1区域表面上的普遍适用性。
在本实施例中,矩形、梯形、平行四边形的最长边的尺寸为20-500μm之间,也就是说,本发明所提及的这些结构均不是常规的宏观结构布局,而都是在板面上做的微观调整,肉眼难以分辨,但在能够放大视野的设备下能够清晰可见。
综上所述,在空调器中,由于不同风路处的风速不一样,且风机风路11上的风速大于换热器风路12处的风速,因此,在大于等于设定值的风速下,第一区域表面111的风阻小于第二区域表面121。通过在空调器不同风路处设置不同的区域表面,从而更好地适用于空调器中不同风路,以降低空调器风路通道1的风阻,实现空调器风路通道1风阻的整体优化。
此外,在设计空调器换热器风路12出口处导风板2的内部区域表面时,不仅要考虑区域表面的风阻,同时还要考虑区域表面对风流流动分离的效果。由此,在导风板内侧面21上设置错落分布的板型锯齿凸起结构1112。
并且,在本实施例中,设置在风路通道1中的区域表面以及导风板内侧面21除了具有可以降低风阻的效果,还可以起到防止凝露结霜的作用。本实施例可同时兼顾降低空调器风路通道1的风阻和防止在风路通道1上凝露结霜。
同时,通过设置不同的锯齿凸起结构的排列方式,可实现根据空调器中不同的风道区域表面的形状来选择适合的排列方式,以更好的适用于空调器风路通道1,从而优化空调器风路通道1的区域表面,进而以更好的降低风路通道1的区域表面的风阻。
需要说明的是,上述实施方式仅仅用来阐述本发明的原理,并非旨在与限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员能够对上述结构进行调整,以便本发明能够应用于更加具体的应用场景。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
最后需要说明的是,尽管本发明是以立式空调器为例进行描述的,但是本发明的空调器显然还可以为其他形式的空调器设备。例如,空调器还可以为壁挂式空调器等。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
Claims (10)
- 一种空调器,其特征在于,所述空调器内部设置有风路通道,所述风路通道包括依次连接的风机风路和换热器风路,在所述风机风路上设置有第一区域表面,在所述换热器风路处设置有第二区域表面,所述第一区域表面在大于等于设定值的风速下的风阻小于所述第二区域表面,并且所述第一区域表面和所述第二区域表面均为防凝露表面。
- 根据权利要求1所述的空调器,其特征在于,风速小于设定值时,所述第二区域表面的风阻小于所述第一区域表面;并且/或者,所述空调器的风机在正常运转时的转速大于设定值。
- 根据权利要求1所述的空调器,其特征在于,所述第一区域表面为板型锯齿凸起结构,相应地所述第二区域表面为三角形锯齿凸起结构。
- 根据权利要求1所述的空调器,其特征在于,所述第一区域表面为错落分布的板型锯齿凸起结构,相应地所述第二区域表面为板型锯齿凸起结构或三角形锯齿凸起结构。
- 根据权利要求3或4所述的空调器,其特征在于,所述空调器还包括导风板,所述导风板设置在所述换热器风路的出风口处,所述导风板的内侧面为错落分布的板型锯齿凸起结构。
- 根据权利要求3或4所述的空调器,其特征在于,所述板型锯齿凸起结构的截面为矩形、梯形、平行四边形中的一种,并且所述板型锯齿凸起结构为等高连续列状分布。
- 根据权利要求3或4所述的空调器,其特征在于,所述板型锯齿凸起结构为以第一区域表面中心为圆心向外发散等高均匀分布。
- 根据权利要求3或4所述的空调器,其特征在于,所述三角形锯齿凸起结构为等高连续列状分布、等高间隔列状分布或以第一区域表面中心 为圆心向外发散等高均匀分布中的一种。
- 根据权利要求4所述的空调器,其特征在于,所述错落分布的板型锯齿凸起结构的截面为矩形、梯形、平行四边形中的一种,所述错落分布的板型锯齿凸起结构为等高连续列状分布。
- 根据权利要求6所述的空调器,其特征在于,所述矩形、梯形、平行四边形的最长边的尺寸为20-500μm之间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110209974.0A CN112944459A (zh) | 2021-02-24 | 2021-02-24 | 空调器 |
CN202110209974.0 | 2021-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022068948A1 true WO2022068948A1 (zh) | 2022-04-07 |
Family
ID=76246147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/124711 WO2022068948A1 (zh) | 2021-02-24 | 2021-10-19 | 空调器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112944459A (zh) |
WO (1) | WO2022068948A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN214841180U (zh) * | 2021-02-24 | 2021-11-23 | 大连海尔空调器有限公司 | 空调器 |
CN112944459A (zh) * | 2021-02-24 | 2021-06-11 | 青岛海尔(胶州)空调器有限公司 | 空调器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008032238A (ja) * | 2006-07-26 | 2008-02-14 | Mitsubishi Electric Corp | 空気調和機 |
CN208025664U (zh) * | 2018-03-21 | 2018-10-30 | 广东美的制冷设备有限公司 | 立式空调器 |
CN110411001A (zh) * | 2019-07-01 | 2019-11-05 | 宁波奥克斯电气股份有限公司 | 一种导风组件及空调 |
CN110986169A (zh) * | 2019-11-12 | 2020-04-10 | 珠海格力电器股份有限公司 | 一种用于分风的风道组件及空调器 |
CN210801481U (zh) * | 2019-10-11 | 2020-06-19 | 任承钦 | 一种立柜复合式新风空调器 |
CN111895504A (zh) * | 2020-07-17 | 2020-11-06 | Tcl空调器(中山)有限公司 | 一种空调器室内机和空调器 |
CN112944459A (zh) * | 2021-02-24 | 2021-06-11 | 青岛海尔(胶州)空调器有限公司 | 空调器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000111133A (ja) * | 1998-09-30 | 2000-04-18 | Fujitsu General Ltd | 空気調和機 |
JP4320499B2 (ja) * | 2000-04-05 | 2009-08-26 | 三菱電機株式会社 | 空気調和機 |
JP2008175500A (ja) * | 2007-01-22 | 2008-07-31 | Matsushita Electric Ind Co Ltd | 空気調和機 |
JP5518013B2 (ja) * | 2011-08-18 | 2014-06-11 | 三菱電機株式会社 | 空気調和機の室内機、及びこの室内機を備えた空気調和機 |
JP2018091507A (ja) * | 2016-11-30 | 2018-06-14 | 三菱重工サーマルシステムズ株式会社 | 空気調和機の室内機 |
CN207035430U (zh) * | 2017-07-25 | 2018-02-23 | 珠海格力电器股份有限公司 | 风道组件及具有其的空调器 |
CN108397835B (zh) * | 2018-05-04 | 2024-04-26 | 广东美的制冷设备有限公司 | 导风圈结构、空调室外机及空调器 |
CN108397892B (zh) * | 2018-05-09 | 2023-10-24 | 珠海格力电器股份有限公司 | 蜗壳、风机及空调器 |
CN211177345U (zh) * | 2019-10-22 | 2020-08-04 | 青岛海尔空调器有限总公司 | 导风板组件及具有其的空调器 |
CN110836529A (zh) * | 2019-12-16 | 2020-02-25 | 宁波奥克斯电气股份有限公司 | 一种空调器的底座及空调器 |
CN111780242A (zh) * | 2020-06-08 | 2020-10-16 | 珠海格力电器股份有限公司 | 一种上下出风空调室内机、控制方法和空调器 |
CN111811124A (zh) * | 2020-08-10 | 2020-10-23 | 珠海格力电器股份有限公司 | 分隔结构及具有其的空调室内机 |
CN214841180U (zh) * | 2021-02-24 | 2021-11-23 | 大连海尔空调器有限公司 | 空调器 |
-
2021
- 2021-02-24 CN CN202110209974.0A patent/CN112944459A/zh active Pending
- 2021-10-19 WO PCT/CN2021/124711 patent/WO2022068948A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008032238A (ja) * | 2006-07-26 | 2008-02-14 | Mitsubishi Electric Corp | 空気調和機 |
CN208025664U (zh) * | 2018-03-21 | 2018-10-30 | 广东美的制冷设备有限公司 | 立式空调器 |
CN110411001A (zh) * | 2019-07-01 | 2019-11-05 | 宁波奥克斯电气股份有限公司 | 一种导风组件及空调 |
CN210801481U (zh) * | 2019-10-11 | 2020-06-19 | 任承钦 | 一种立柜复合式新风空调器 |
CN110986169A (zh) * | 2019-11-12 | 2020-04-10 | 珠海格力电器股份有限公司 | 一种用于分风的风道组件及空调器 |
CN111895504A (zh) * | 2020-07-17 | 2020-11-06 | Tcl空调器(中山)有限公司 | 一种空调器室内机和空调器 |
CN112944459A (zh) * | 2021-02-24 | 2021-06-11 | 青岛海尔(胶州)空调器有限公司 | 空调器 |
Also Published As
Publication number | Publication date |
---|---|
CN112944459A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022068948A1 (zh) | 空调器 | |
WO2018082437A1 (zh) | 空调出风结构和空调器 | |
CN204140495U (zh) | 一种离心风机蜗壳、离心风机及空调器 | |
WO2014069301A1 (ja) | 空気調和機 | |
CN106225072A (zh) | 空调系统及其换热结构 | |
CN105352345A (zh) | 微通道换热器及其空调器 | |
CN105485780B (zh) | 一种空调室内机 | |
CN105509280A (zh) | 空气整流装置及空调器 | |
CN109668288B (zh) | 一种可防回风的空调室内机和空调器 | |
CN109340915A (zh) | 空调室内机和空调器 | |
CN104566636A (zh) | 风管机及具有该风管机的空调器 | |
WO2019019821A1 (zh) | 一种出风结构、壁挂机以及空调器 | |
US20190186782A1 (en) | Flow guiding device for Air Conditioner, Method for Heat Dissipation Air Conditioner, and Supplementary Device | |
CN210441329U (zh) | 空气式放射空调机 | |
CN204902190U (zh) | 散热器、控制器及空调器 | |
TW200404126A (en) | Air-conditioner | |
WO2022068947A1 (zh) | 空调器 | |
CN111189213B (zh) | 一种可防回风的面板结构、空调室内机和空调器 | |
WO2022068949A1 (zh) | 换热器翅片及换热器 | |
CN109237842B (zh) | 蒸发器扰流结构、空调器室内机及电器设备 | |
CN207225019U (zh) | 车载空调及其离心风机安装结构 | |
CN207262677U (zh) | 挡风板和空调室内机 | |
CN215951590U (zh) | 空调器及空调机组 | |
CN107906613A (zh) | 风道系统、空调室内机及空调器 | |
CN105934637A (zh) | 空调机的室内机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21874602 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21874602 Country of ref document: EP Kind code of ref document: A1 |