WO2022068707A1 - 投影装置及智能眼镜 - Google Patents

投影装置及智能眼镜 Download PDF

Info

Publication number
WO2022068707A1
WO2022068707A1 PCT/CN2021/120555 CN2021120555W WO2022068707A1 WO 2022068707 A1 WO2022068707 A1 WO 2022068707A1 CN 2021120555 W CN2021120555 W CN 2021120555W WO 2022068707 A1 WO2022068707 A1 WO 2022068707A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection device
diffractive
refractive index
diffractive structure
lens mechanism
Prior art date
Application number
PCT/CN2021/120555
Other languages
English (en)
French (fr)
Inventor
孔德卿
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022068707A1 publication Critical patent/WO2022068707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/147Optical correction of image distortions, e.g. keystone
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application belongs to the technical field of smart glasses, and in particular relates to a projection device and smart glasses.
  • the smart glasses can project a virtual image through the projection device configured by themselves, so that the user can see the virtual image.
  • the projection device of the current smart glasses includes a large number of lenses to balance or eliminate the chromatic aberration generated during the projection process, thereby improving the accuracy of light modulation.
  • using a larger number of lenses to eliminate chromatic aberration will lead to a larger volume of the projection device, which will lead to a larger size and weight of the smart glasses, and ultimately lead to a relatively bulky smart glasses. Obviously, this will lead to a poor wearing experience for the user.
  • the purpose of the embodiments of the present application is to provide a projection device and smart glasses, which can solve the problem that the user's wearing experience is poor due to the large size and weight of the smart glasses.
  • the present application discloses a projection device, the disclosed projection device includes a projection screen and a first lens mechanism, wherein the first lens mechanism includes a diffractive structure and a refractive index compensation layer, and the first lens mechanism and The projection screens are arranged opposite to each other, and the refractive index compensation layer and the diffractive structure are superimposed in the light transmission direction of the first lens mechanism.
  • the present application discloses smart glasses.
  • the disclosed smart glasses include a glasses body and the above-mentioned projection device.
  • the glasses body includes a spectacle lens, the spectacle lens is opposite to the projection device, and the projection screen projects The light can be projected onto the spectacle lenses after passing through the first lens mechanism.
  • the projection device disclosed in the embodiments of the present application improves the structure of the projection device described in the background art, so that the first lens mechanism includes a diffractive structure and a refractive index compensation layer.
  • the diffractive structure can The chromatic aberration caused by diffraction of light and the chromatic aberration caused by refraction cancel each other out, so that the projection device does not need to be additionally configured with multiple lenses for eliminating chromatic aberration.
  • This structure enables the projection device to eliminate chromatic aberration and ensure projection quality.
  • the number of lenses of the projection device further reduces the size of the projection device and also reduces the weight of the projection device. This can make the quality and volume of the smart glasses equipped with the projection device smaller, thereby improving the wearing experience of the smart glasses.
  • the refractive index compensation layer can reduce the difference between the refractive indices of the diffractive surfaces of the diffractive structure, so that the diffraction efficiency can be improved.
  • FIG. 1 is a schematic structural diagram of a projection device disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another projection device disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first lens mechanism disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another first lens mechanism disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the smart glasses disclosed in an embodiment of the present application.
  • 200-first lens mechanism 210-diffraction structure, 211-diffraction protrusion, 212-base layer, 212a-first surface, 212b-second surface, 212c-third surface, 220-refractive index compensation layer, 221-th four surfaces;
  • 300-second lens mechanism 310-lens holder, 320-lens;
  • 500-glasses body 500-glasses body, 510-glass legs, 520-glasses frame, 530-glasses, 540-diffraction waveguide, 541-incidence grating, 542-reflection grating, 543-exit grating;
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • an embodiment of the present application discloses a projection device 400 .
  • the disclosed projection device 400 can be applied to smart glasses.
  • the disclosed projection device 400 includes a projection screen 100 and a first lens mechanism 200 .
  • the projection screen 100 is a light projection device of the projection apparatus 400 .
  • the projection screen 100 may be LCOS (Liquid Crystal on Silicon, liquid crystal on silicon, also called liquid crystal on silicon), which is a very small-sized matrix liquid crystal display device.
  • the projection screen 100 may be an OLED (Organic Light-Emitting Diode, organic light-emitting semiconductor), and the projection screen 100 may also be a MicroLED (Micro Light Emitting Diode, a micro light-emitting diode).
  • OLED Organic Light-Emitting Diode, organic light-emitting semiconductor
  • MicroLED Micro Light Emitting Diode, a micro light-emitting diode
  • the embodiment of the present application does not limit the specific type of the projection screen 100.
  • the first lens mechanism 200 is a light distribution device.
  • the first lens mechanism 200 is disposed opposite to the projection screen 100.
  • the first lens mechanism 200 can adjust the light projected by the projection screen 100 so that it becomes collimated light to exit, thereby improving the projection performance. Effect.
  • the first lens mechanism 200 includes a refracting and diffractive lens, and the refracting and diffractive lens can refract and diffract the light projected by the projection screen 100, and then achieve the purpose of collimation through refracting and diffracting.
  • the light projected by the projection screen 100 passes through the first lens mechanism 200 and is projected on the projected component, thereby forming a virtual image on the projected component, so that the user can see the virtual image, wherein,
  • the projected component may be a projected wall, a projected screen, a spectacle lens of smart glasses, etc.
  • the embodiment of the present application does not limit the specific type of the projected component.
  • the refractive diffractive lens may include a diffractive structure 210 and a refractive index compensation layer 220 , and the refractive index compensation layer 220 and the diffractive structure 210 are stacked in the light transmission direction of the first lens mechanism 200 .
  • the diffractive structure 210 can refract and diffract the passing light. According to the principle of refraction and diffraction, it can be known that both the refraction and diffraction of the light will cause chromatic aberration.
  • the diffractive structure 210 can not only refract light, but also diffract light, the chromatic aberration caused by the diffraction of light by the diffractive structure 210 and the chromatic aberration caused by refraction of light will cancel each other, so that the light in the projection process can be alleviated or even eliminated The resulting chromatic aberration can improve the projection quality.
  • the refractive index compensation layer 220 can reduce the difference between the refractive indices of the diffractive surfaces of the diffractive structure 210 , thereby reducing the difficulty of the manufacturing process of the diffractive structure 210 and improving the diffraction efficiency.
  • the diffractive structure 210 may be provided between the refractive index compensation layer 220 and the projection screen 100 , or the refractive index compensation layer 220 may be provided between the diffractive structure 210 and the projection screen 100 .
  • the embodiment of the present application does not limit the arrangement order of the refractive index compensation layer 220 and the diffractive structure 210 .
  • the projection device 400 disclosed in the embodiment of the present application improves the structure of the projection device described in the background art, so that the first lens mechanism 200 includes a diffractive structure 210 and a refractive index compensation layer 220, and the light emitted from the projection screen 100 passes through the diffractive structure After 210, the diffractive structure 210 can make the chromatic aberration caused by diffraction of light and the chromatic aberration caused by refraction to cancel each other, so that the projection device 400 does not need to be additionally configured with multiple lenses for eliminating chromatic aberration. This structure enables the projection device 400 to eliminate both.
  • the chromatic aberration ensures the projection quality, reduces the number of lenses of the projection device 400 , and reduces the length of the optical path, thereby reducing the size of the projection device 400 and reducing the weight of the projection device 400 . This can make the quality and volume of the smart glasses equipped with the projection device 400 smaller, thereby improving the wearing experience of the smart glasses.
  • the refractive index compensation layer 220 can reduce the difference between the refractive indices of the diffractive surfaces of the diffractive structure 210, so that the diffraction efficiency can be improved.
  • the projection device 400 disclosed in the embodiment of the present application is beneficial to realize the miniaturization of the projection device, and further facilitates the installation in other devices.
  • the projection apparatus disclosed in the embodiment of the present application may further include a housing 600, the projection screen 100 is arranged in the housing 600, the first lens mechanism 200 may be at least partially arranged in the housing 600, and the housing 600 can realize the projection screen 100 and With the installation of the first lens mechanism 200 , at the same time, the housing 600 can prevent the light projected by the projection screen 100 from being affected by other stray light before passing through the first lens mechanism 200 .
  • the housing 600 also facilitates the overall installation of the projection device 400 .
  • the housing 600 may be fixed on the temples 510 of the smart glasses, so as to realize the installation of the projection apparatus 400 on the temples 510 .
  • the diffractive structure 210 may include a plurality of concentrically disposed diffractive protrusions 211 . During the process of light passing through the diffractive protrusions 211 , diffraction and refraction phenomena may occur to the light.
  • the diffractive structure 210 may further include a base layer 212 , and the diffractive protrusions 211 are disposed on the base layer 212 .
  • the base layer 212 can provide a foundation for the diffractive protrusions 211, so that the diffractive protrusions 211 have high strength and are not easily damaged.
  • the base layer 212 also facilitates the forming of the diffractive protrusions 211 .
  • the base layer 212 is also a light-transmitting material, which needs to be able to ensure the passage of ambient light.
  • the material of the base layer 212 is the same as the material of the diffractive protrusions 211 , and both can be made of glass material, optical plastic and other materials.
  • a plurality of diffractive protrusions 211 are arranged concentrically, so that the formed diffractive structure 210 is a sawtooth structure.
  • two adjacent diffractive The distance between the tops of the diffractive structure 211 (ie the period ⁇ of the diffractive structure 210 ) may decrease, and then the period ⁇ of the diffractive structure 210 gradually decreases from the center of the diffractive structure 210 to the edge of the diffractive structure 210 .
  • the plurality of diffractive protrusions 211 include annular protrusions arranged concentrically. This arrangement can make the area close to the diffractive structure 210 have a better diffraction effect in the area close to the edge.
  • the distance between the tops of the two adjacent diffractive protrusions 211 may be greater than 0.5 ⁇ m and less than 1.5 mm. It should be noted that the diffractive protrusions 211 It has a root and a top, the top of the diffractive protrusion 211 is the top of the diffractive protrusion 211 , and the root of the diffractive protrusion 211 is the bottom end of the diffractive protrusion 211 .
  • the distance between the tops of the two adjacent diffractive protrusions 211 can better ensure the diffraction effect, which helps to offset the chromatic aberration caused by the diffraction to offset the chromatic aberration caused by the refraction.
  • the height h d of the diffractive protrusions 211 may be greater than 0.1 ⁇ m and less than 50 ⁇ m. After testing, the height of the above-mentioned diffraction protrusions 211 can better ensure the diffraction effect. It should be noted that the height of the diffractive protrusion 211 refers to the dimension in the direction from the bottom end to the top end of the diffractive protrusion 211 . Specifically, in the radial direction away from the center of the diffractive structure 210, the height of the diffractive protrusions 211 decreases or increases. Of course, the heights of all the diffractive protrusions 211 of the diffractive structure 210 may be equal.
  • the diffractive structure 210 may further include a base layer 212.
  • the central thickness h p of the base layer 212 may be greater than 0.5 mm and less than 5 mm, and the edge thickness of the base layer 212 may be greater than 0.2 mm and less than 5 mm, In the case where the central thickness of the base layer 212 is greater than the edge thickness of the base layer 212, a more obvious refraction effect can be achieved, so that the refraction effect can be improved.
  • the central thickness of the base layer 212 can be considered as the thickness at the position of the central axis of the diffractive structure 210 (ie the optical axis of the diffractive structure 210 ), and the edge thickness of the diffractive structure 210 can be considered as the thickness at the circular edge of the diffractive structure 210 thickness.
  • the diffraction protrusions 211 may be located between the base layer 212 and the refractive index compensation layer 220. In this case, the diffraction protrusions 211 can better protect the base layer 212 and the refractive index compensation layer 220. .
  • the diffractive structure 210 may be made of various materials.
  • the diffractive structure 210 may be made of glass material.
  • the diffractive structure 210 is a glass structure.
  • the diffractive structure 210 may be made of optical plastic.
  • the diffractive structure 210 is an optical plastic structural member, and the optical plastic is light in weight, which is beneficial to reduce the mass of the diffractive structure 210 , thereby helping to reduce the quality of the projection device 400 .
  • the optical plastic structure can be processed by injection molding, which makes the processing of the diffractive structure 210 simpler, more suitable for mass production, and has a lower processing cost.
  • various optical plastics such as PC (Polycarbonate, polycarbonate), COC (Cyclic Oleflns Copolymet, cyclic olefin copolymer), COP (Cycio Olefins Polymer, cyclic olefin polymer), etc.
  • the specific types of optical plastics are not specifically limited in the embodiments of the present application.
  • the refractive index compensation layer 220 may be an optical embossing glue layer, and the refractive index compensation layer 220 may be made by imprinting on the diffractive structure 210 .
  • Such a method for forming the refractive index compensation layer 220 has the advantages of low material cost and less process difficulty, so that the manufacturing method of the refractive index compensation layer 220 has strong operability and is suitable for mass production.
  • the refractive index compensation layer 220 may be a UV-curable embossing glue or a thermosetting embossing glue, and the embodiment of the present application does not limit the specific type of the refractive index compensation layer 220 .
  • the refractive index compensation layer 220 is stamped and formed on the diffractive structure 210, which can more effectively avoid the phenomenon of falling off or warping caused by the different thermal expansion coefficients after the refractive index compensation layer 220 and the diffractive structure 210 are connected.
  • the thickness hi of the refractive index compensation layer 220 may be greater than 5 ⁇ m and less than 500 ⁇ m. After testing, this thickness range enables the refractive index compensation layer 220 to have a better refractive compensation effect.
  • the refractive index n p of the diffractive structure 210 may be greater than 1.3 RIU and less than 1.9 RIU (RIU, Refractive index unit, refractive index unit).
  • RIU Refractive index unit
  • the diffractive structure 210 in this refractive index range can make the light When passing through, a better refraction effect is obtained, so that the chromatic aberration caused by the refraction can better offset the chromatic aberration caused by the diffraction, and finally a better projection quality can be obtained.
  • the refractive index ni of the refractive index compensation layer 220 may be greater than 1.3 RIU and less than 1.9 RIU. After testing, the refractive index compensation layer 220 in this refractive index range can play a better compensation role.
  • the projection apparatus 400 disclosed in the embodiments of the present application may further include a second lens mechanism 300 , and the second lens mechanism 300 may be disposed between the first lens mechanism 200 and the projection screen 100 .
  • the second lens mechanism 300 may include a common lens, such as a convex lens, a concave lens, etc.
  • the embodiment of the present application does not limit the specific type and quantity of the lens included in the second lens mechanism 300 .
  • the second lens mechanism 300 may include a lens holder 310 and at least two lenses 320, and the at least two lenses 320 are mounted on the lens holder 310, so as to facilitate the pre-assembled integral installation.
  • the second lens mechanism 300 can adjust the light projected to the first lens mechanism 200 , so as to more effectively adjust parameters such as the outgoing field angle of the light, and at the same time, achieve higher quality collimated light modulation.
  • the projection device 400 disclosed in the embodiment of the present application may be equipped with a traditional lens on the basis of the projection screen 100 and the first lens mechanism 200, and the number N of the lens satisfies 0 ⁇ N ⁇ 9. When N is equal to 0, it can be considered that the projection apparatus 400 does not include the second lens mechanism 300 .
  • the surface of the base layer 212 facing away from the diffractive protrusions 211 is the first surface 212a
  • the first surface 212a may be a flat surface, a concave surface or a convex surface.
  • the surface shape of the first surface 212a may be a spherical surface or an aspheric surface, and the embodiment of the present application does not limit the specific surface shape of the first surface 212a.
  • the surface of the base layer 212 used to support the diffractive protrusions 211 is the second surface 212b
  • the second surface 212b can be considered as the reference surface of the diffractive structure 210
  • the second surface 212b can be a plane, a spherical surface or an aspherical surface.
  • the application embodiment does not limit the specific surface shape of the second surface 212b.
  • the surface where the tops of all diffractive protrusions 211 are located is the third surface 212c, and the height of the diffractive protrusions 211 can be considered as the distance between the second surface 212b and the third surface 212c.
  • the surface equation of the diffractive structure 210 is shown in the following formula (1).
  • the second surface 212b is an aspherical surface
  • the The aspherical surface is the first aspherical surface.
  • x d is the distance between each point of the diffractive structure 210 and the reference plane of the diffractive structure 210, the distance is the distance along the optical axis, c is the curvature of the second surface 212b, K is the conic constant, A 2n is the aspheric coefficient of the 2nth power, r is the distance of the ambient light from the optical axis, and n is the number of diffraction rings included in the diffraction structure 210 counted from the center to the edge of the diffraction structure 210, that is, the diffraction protrusion 211.
  • the diffraction protrusion 211 is a ring-shaped protrusion
  • one ring-shaped protrusion is a diffraction ring zone
  • h d is the height of the diffraction structure 210 calculated by the scalar diffraction theory, that is, the third surface 212c and the The distance between the second surfaces 212b can also be considered as the height of the diffractive protrusions 211, 0.1 ⁇ m ⁇ h d ⁇ 50 ⁇ m
  • is the optical path caused by diffraction of the diffractive structure 210, which can be calculated by the following formula (2).
  • C 2n is the phase coefficient of the power of 2n
  • is the wavelength of the ambient light
  • r is the distance of the ambient light from the optical axis.
  • the surface of the refractive index compensation layer 220 facing away from the diffractive structure 210 is the fourth surface 221, and the fourth surface 221 may be a plane, a spherical or an aspherical surface.
  • the surface type equation of the fourth surface 221 is represented by the following formula (3).
  • the aspherical surface is a second aspherical surface.
  • c is the curvature of the fourth surface 221
  • K is the conic constant
  • a 2n is the aspheric coefficient of the 2nth power
  • r is the distance of the ambient light from the optical axis
  • the optical axis in this paper refers to The optical axis of the diffractive structure 210
  • x is the distance between each point of the fourth surface 221 and the base plane (the first base plane)
  • the base plane is a plane passing through the center of the fourth surface 221 and perpendicular to the optical axis
  • the distance is the distance along the optical axis.
  • the first surface 212a can be a plane, a spherical surface or an aspherical surface.
  • the surface equation of the first surface 212a can also be the following formula (4) shown.
  • c is the curvature of the first surface 212a
  • K is the conic constant
  • a 2n is the aspheric coefficient of the 2nth power
  • r is the distance of the ambient light from the optical axis
  • x is each point of the first surface 212a
  • the distance from the base surface (second base surface), the base surface passing through the center of the first surface 212a and perpendicular to the optical axis, is the distance along the optical axis direction.
  • the first-order diffraction of the diffractive structure 210 is the diffraction order for projection, and the diffracted light of other orders will become glare, which will adversely affect the projection imaging.
  • the glare is reduced
  • the embodiment of the present invention discloses smart glasses.
  • the disclosed smart glasses include a glasses body 500 and the projection device 400 described above.
  • the glasses body 500 includes a spectacle lens 530 , and the spectacle lens 530 may be a projected component of the projection device 400 , and the projection device 400 is disposed opposite to the spectacle lens 530 .
  • the light projected by the projection screen 100 can pass through the first lens mechanism 200 and then be projected onto the spectacle lenses 530 , and finally a virtual image can be formed on the spectacle lenses 530 .
  • the glasses main body 500 includes temples 510 and a frame 520 , the glasses 530 are arranged on the frame 520 , and the legs 510 are rotatably connected to the frame 520 .
  • the projection device 400 may be arranged on the temple 510 .
  • the projection device may be arranged on the temple 510 by bonding, welding, or the like.
  • the projection device 400 may be disposed on the temple 510 by means of a screw connection, so that maintenance personnel can easily disassemble and repair.
  • the smart glasses may include two spectacle lenses 530 , and the smart glasses may include two projection devices 400 , each of which is matched with one spectacle lens 530 .
  • the spectacle lens 530 is provided with a diffractive waveguide 540.
  • the diffractive waveguide 540 includes an incident grating 541, a turning grating 542, and an exit grating 543.
  • the incident grating 541, the turning grating 542, and the exit grating 543 are connected by optical paths in sequence, thereby realizing light sequential transmission.
  • the light exit direction of the exit grating 543 is the direction of the inner surface of the spectacle lens 530 , that is, the direction of the surface of the spectacle lens 530 facing the human eye.
  • the light emitted by the projection screen 100 passes through the first lens mechanism 200 and then is projected to the spectacle lens 530 , the incident grating 541 receives the light and conducts a waveguide, and the light passing through the incident grating 541 is reflected in the diffraction waveguide 540 in the form of total reflection.
  • the light in the diffractive waveguide 540 is finally transmitted from the diffractive waveguide 540 to the human eye in the form of collimated light from the exit grating 543 after being diffracted by the inflection grating 542, and finally realizes the light from the diffractive waveguide 540. of the shot.
  • the real light from the environment is directly projected to the human eye through the diffractive waveguide 540, and the virtual light and real light projected by the projection screen 100 from the exit grating 543 finally enter the human eye at the same time, and are imaged on the retina through the human eye lens, so that the user can simultaneously See virtual images and surroundings for augmented reality effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Projection Apparatus (AREA)
  • Lenses (AREA)

Abstract

一种投影装置(400),包括投影屏幕(100)和第一透镜机构(200),其中,第一透镜机构(200)包括衍射结构(210)和折射率补偿层(220),第一透镜机构(200)与投影屏幕(100)相对设置,且折射率补偿层(220)与衍射结构(210)在第一透镜机构(200)的透光方向叠置。还公开一种智能眼镜,包括眼镜主体(500)和投影装置(400),眼镜主体(500)包括眼镜片(530),眼镜片(530)与投影装置(400)相对,投影屏幕(100)投射的光线可经过第一透镜机构(200)后投射至眼镜片(530)上。

Description

投影装置及智能眼镜
交叉引用
本发明要求在2020年09月30日提交中国专利局、申请号为202011070186.X、发明名称为“投影装置及智能眼镜”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于智能眼镜技术领域,具体涉及一种投影装置及智能眼镜。
背景技术
随着智能眼镜的发展,用户对智能眼镜的要求也越来越高。智能眼镜能够通过自身配置的投影装置进行虚拟图像的投影,从而使得用户可以看到虚拟图像。
目前的智能眼镜的投影装置中包含有较多数量的镜片来平衡或消除投影过程中产生的色差,从而提高对光线调制的准确度。但是,较多数量的镜片用于消除色差会导致投影装置的体积较大,进而会导致智能眼镜的外形尺寸较大及重量也较大,最终导致智能眼镜比较笨重。很显然,这会导致用户的穿戴感受较差。
发明内容
本申请实施例的目的是提供一种投影装置及智能眼镜,能够解决因智能眼镜的外形尺寸较大和重量较大而导致用户的穿戴感受较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请公开一种投影装置,所公开的投影装置包括投影屏幕和第一透镜机构,其中,所述第一透镜机构包括衍射结构和折射率补偿层,所述第一透镜机构与所述投影屏幕相对设置,且所述折射率补偿层与所述衍 射结构在所述第一透镜机构的透光方向叠置。
第二方面,本申请公开一种智能眼镜,所公开的智能眼镜包括眼镜主体和上述的投影装置,所述眼镜主体包括眼镜片,所述眼镜片与所述投影装置相对,所述投影屏幕投射的光线可经过所述第一透镜机构后投射至所述眼镜片上。
本申请采用的技术方案能够达到以下有益效果:
本申请实施例公开的投影装置对背景技术中所述的投影装置的结构进行改进,使得第一透镜机构包括衍射结构和折射率补偿层,在投影屏幕发出的光线经过衍射结构后,衍射结构能够使得对光线衍射产生的色差和折射产生的色差相互抵消,进而使得投影装置无需额外配置用于消除色差的多个镜片,此种结构能够使得投影装置既能消除色差而保证投影质量,又能减少投影装置的镜片数量,进而使得投影装置的尺寸变小,同时也能够减小投影装置的重量。这能够使得配置有投影装置的智能眼镜的质量和体积均较小,进而能够提升智能眼镜的穿戴感受。
与此同时,由于第一透镜机构还包括折射率补偿层,折射率补偿层能够减小衍射结构的衍射面的折射率之差,使得能够提高折衍射效率。
附图说明
图1为本申请实施例公开的一种投影装置的结构示意图;
图2为本申请实施例公开的另一种投影装置的结构示意图;
图3为本申请实施例公开的一种第一透镜机构的结构示意图;
图4为本申请实施例公开的另一种第一透镜机构的结构示意图;
图5为本申请实施例公开的智能眼镜的结构示意图。
附图标记说明:
100-投影屏幕;
200-第一透镜机构、210-衍射结构、211-衍射凸起、212-基层、212a-第一 表面、212b-第二表面、212c-第三表面、220-折射率补偿层、221-第四表面;
300-第二透镜机构、310-镜片支架、320-镜片;
400-投影装置;
500-眼镜主体、510-眼镜腿、520-眼镜框、530-眼镜片、540-衍射波导、541-入射光栅、542-转折光栅、543-出射光栅;
600-壳体。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
请参考图1至图5,本申请实施例公开一种投影装置400,所公开的投影装置400可应用于智能眼镜中,所公开的投影装置400包括投影屏幕100和第一透镜机构200。
投影屏幕100是投影装置400的光线投射器件。投影屏幕100可以是LCOS(Liquid Crystal on Silicon,液晶附硅,也叫硅基液晶),LCOS是一种尺寸非常小的矩阵液晶显示装置。投影屏幕100可以是OLED(OrganicLight-Emitting Diode,有机发光半导体),投影屏幕100还可以是 MicroLED(Micro Light Emitting Diode,微发光二极管),本申请实施例不限制投影屏幕100的具体种类。
第一透镜机构200为配光器件,第一透镜机构200与投影屏幕100相对设置,第一透镜机构200能够对投影屏幕100投射的光线进行调整,使其变成准直光出射,从而提高投影效果。在本申请实施例中,第一透镜机构200包括折衍射镜片,折衍射镜片能够对投影屏幕100投射的光线进行折衍射,进而通过折衍射达到准直的目的。
在具体的工作过程中,投影屏幕100投射的光线,穿过第一透镜机构200后投射在被投影部件上,从而在被投影部件上形成虚拟图像,进而使得用户可以看到虚拟图像,其中,被投影部件可以为被投影墙、被投影幕、智能眼镜的眼镜片等,本申请实施例不限制被投影部件的具体种类。
在本申请实施例中,折衍射镜片可以包括衍射结构210和折射率补偿层220,折射率补偿层220与衍射结构210在第一透镜机构200的透光方向叠置。衍射结构210能够对通过的光线进行折射和衍射,根据折射和衍射原理可知,对光线的折射和衍射均会产生色差。由于衍射结构210既能够对光线进行折射,又能够对光线进行衍射,因此衍射结构210对光线进行衍射产生的色差和对光线进行折射产生的色差会相互抵消,从而能够缓解甚至消除投影过程中光线产生的色差,进而能够提升投影质量。
折射率补偿层220能够减小衍射结构210的衍射面的折射率之差,进而能够降低衍射结构210的制造工艺难度,提升折衍射效率。
具体的,衍射结构210可以设于折射率补偿层220与投影屏幕100之间,也可以是:折射率补偿层220设于衍射结构210与投影屏幕100之间。本申请实施例不限制折射率补偿层220和衍射结构210的布置顺序。
本申请实施例公开的投影装置400对背景技术中所述的投影装置的结构进行改进,使得第一透镜机构200包括衍射结构210和折射率补偿层220,在投影屏幕100发出的光线经过衍射结构210后,衍射结构210能够使得对 光线衍射产生的色差和折射产生的色差相互抵消,进而使得投影装置400无需额外配置用于消除色差的多个镜片,此种结构能够使得投影装置400既能消除色差而保证投影质量,又能减少投影装置400的镜片数量,减小光路长度,进而使得投影装置400的尺寸变小,同时也能够减小投影装置400的重量。这能够使得配置有投影装置400的智能眼镜的质量和体积均较小,进而能够提升智能眼镜的穿戴感受。
与此同时,由于第一透镜机构200还包括折射率补偿层220,折射率补偿层220能够减小衍射结构210的衍射面的折射率之差,使得能够提高折衍射效率。
本申请实施例公开的投影装置400有利于实现投影装置的小型化,进而更有利于在其它设备中的搭载。
本申请实施例公开的投影装置还可以包括壳体600,投影屏幕100设置在壳体600内,第一透镜机构200可以至少部分设置于壳体600之内,壳体600能够实现投影屏幕100和第一透镜机构200的安装,同时,壳体600能够避免投影屏幕100投射的光线在经过第一透镜机构200之前受到其它杂散光的影响。当然,壳体600也方便投影装置400的整体安装。例如,在投影装置400应用于智能眼镜的情况下,壳体600可以固定在智能眼镜的眼镜腿510上,从而实现投影装置400在眼镜腿510上的安装。
在本申请实施例中,衍射结构210可以包括多个同心设置的衍射凸起211,在光线穿过衍射凸起211的过程中,光线会出现衍射现象和折射现象。
在进一步的技术方案中,衍射结构210还可以包括基层212,衍射凸起211设置在基层212上。基层212能够为衍射凸起211提供设置基础,从而使得衍射凸起211的强度较高,不易损坏。与此同时,基层212也方便衍射凸起211的成型。当然,基层212也为透光材料,需要能够确保环境光线的通过。具体的,基层212的材质与衍射凸起211的材质相同,均可以为玻璃材质、光学塑料等材料制成。
多个同心设置的衍射凸起211,使得形成的衍射结构210为锯齿状结构,一种可选的方案中,在衍射结构210的中心向远离该中心的径向上,相邻的两个衍射凸起211的顶端之间的距离(即衍射结构210的周期Λ)可以递减,进而衍射结构210的周期Λ从衍射结构210的中心到衍射结构210的边缘逐渐递减。在衍射结构210为圆形结构的情况下,多个衍射凸起211包括同心设置的环状凸起。此种布置能够使得靠近衍射结构210在靠近边缘的区域具有较好的衍射效果。
在进一步的技术方案中,相邻的两个衍射凸起211的顶端之间的距离(与衍射结构210的周期Λ相等)可以大于0.5μm且小于1.5mm,需要说明的是,衍射凸起211具有根部和顶部,衍射凸起211的顶部则为衍射凸起211的顶端,衍射凸起211的根部则为衍射凸起211的底端。经过检测,上述相邻的两个衍射凸起211的顶端之间的距离,能够较好地确保衍射效果,有助于使得衍射产生的色差来抵消折射产生的色差。
在进一步的技术方案中,衍射凸起211的高度h d可以大于0.1μm且小于50μm。经过检测,上述衍射凸起211的高度,能够较好地确保衍射效果。需要说明的是,衍射凸起211的高度,指的是衍射凸起211的底端至顶端方向上的尺寸。具体的,在衍射结构210的中心向远离该中心的径向上,衍射凸起211的高度递减或递增,当然,衍射结构210的所有衍射凸起211的高度均可以相等。
如上文所述,衍射结构210还可以包括基层212,一种可选的方案中,基层212的中心厚度h p可以大于0.5mm且小于5mm,基层212的边缘厚度可以大于0.2mm且小于5mm,基层212的中心厚度大于基层212的边缘厚度的情况下,能够起到更明显的折射作用,从而能够提升折射效果。需要说明的是,基层212的中心厚度可以认为是衍射结构210的中心轴(即衍射结构210的光轴)位置的厚度,衍射结构210的边缘厚度可以认为是衍射结构210的圆形边缘处的厚度。
一种具体的实施方式中,衍射凸起211可以位于基层212与折射率补偿层220之间,在此种情况下,衍射凸起211能够较好地得到基层212和折射率补偿层220的防护。
在本申请实施例中,衍射结构210的材质可以有多种,一种可选的方案中,衍射结构210可以由玻璃材质制成,在此种情况下,衍射结构210为玻璃结构件。在另一种可选的方案中,衍射结构210可以由光学塑料制成,在此种情况下,衍射结构210为光学塑料结构件,光学塑料质轻,从而有利于减小衍射结构210的质量,进而有利于减小投影装置400的质量。
此外,光学塑料结构件可以通过注塑成型的方式进行加工,注塑成型的方式使得衍射结构210的加工较为简单,更适用于大批量的生产,而且加工成本较低。在本申请实施例中,光学塑料可以有多种,例如PC(Polycarbonate,聚碳酸酯)、COC(Cyclic OleflnsCopolymet,环烯烃类共聚合物)、COP(Cycio Olefins Polymer,环烯烃聚合物)等,本申请实施例对光学塑料的具体种类不作具体限制。
在本申请实施例中,折射率补偿层220可以为光学压印胶层,折射率补偿层220可以在衍射结构210上压印制成。此种折射率补偿层220的成型方法具有物料成本低、工艺难度较小等优势,使得折射率补偿层220的制造方法具有较强的可操作性,适合大批量的制造生产。本申请实施例中,折射率补偿层220可以为紫外光固化型压印胶,也可以是热固性压印胶,本申请实施例不限制折射率补偿层220的具体种类。
与此同时,折射率补偿层220通过在衍射结构210上压印成型,能够更有效地避免折射率补偿层220和衍射结构210连接后因为热膨胀系数不同而产生的脱落或翘曲现象。
在进一步的技术方案中,折射率补偿层220的厚度h i可以大于5μm且小于500μm,经过检测,此厚度范围能够使得折射率补偿层220具备较好的折射补偿效果。
在本申请实施例中,衍射结构210的折射率n p可以大于1.3RIU且小于1.9RIU(RIU,Refractive index unit,折射率单位),经过检测,此种折射率范围的衍射结构210能够使得光线通过时,得到较佳的折射效果,从而能够使得折射产生的色差较好地抵消衍射产生的色差,最终能够得到较好的投影质量。
一种可选的方案中,折射率补偿层220的折射率n i可以大于1.3RIU且小于1.9RIU。经过检测,此种折射率范围的折射率补偿层220能够起到较好的补偿作用。
在进一步的技术方案中,本申请实施例公开的投影装置400还可以包括第二透镜机构300,第二透镜机构300可以设置在第一透镜机构200与投影屏幕100之间。第二透镜机构300可以包括普通的镜片,例如凸透镜、凹透镜等,本申请实施例不限制第二透镜机构300所包含的镜片的具体种类及数量。
一种可选的方案中,第二透镜机构300可以包括镜片支架310和至少两个镜片320,所述的至少两个镜片320安装在镜片支架310上,从而方便预先组装后进行整体式的安装。第二透镜机构300能够对投射至第一透镜机构200的光线进行调节,从而能够更有效地调整光线的出射视场角等参数,同时也能实现更高质量的准直光调制。
本申请实施例公开的投影装置400可以在投影屏幕100和第一透镜机构200的基础之上再搭载传统的镜片,该镜片的数量N满足0≤N≤9。在N等于0时,可以认为投影装置400不包括第二透镜机构300。
如上文所述,基层212背离衍射凸起211的表面为第一表面212a,第一表面212a可以是平面、凹面或凸面。具体的,第一表面212a的面型可以是球面或非球面,本申请实施例不限制第一表面212a的具体面型。在基层212背离衍射凸起211的表面为球面或非球面的情况下,能够更加优化衍射结构210的折射效果。
具体的,基层212用于支撑衍射凸起211的表面为第二表面212b,第二表面212b可以认为是衍射结构210的基准面,第二表面212b可以是平面、球面或非球面,同样,本申请实施例不限制第二表面212b的具体面型。所有的衍射凸起211的顶端所在的表面为第三表面212c,衍射凸起211的高度可以认为是第二表面212b和第三表面212c之间的距离。
一种具体的实施方式中,在第二表面212b为非球面的情况下,衍射结构210的面型方程为以下公式(1)所示,为了方便区分,第二表面212b为非球面时,该非球面为第一非球面。
Figure PCTCN2021120555-appb-000001
公式(1)中,x d为衍射结构210的各个点距衍射结构210的基准面的距离,该距离为沿光轴方向的距离,c为第二表面212b的曲率,K为圆锥常数,A 2n为2n次方的非球面系数,r是环境光线距光轴的距离,n为衍射结构210所包括的自衍射结构210的中心向边缘计数的衍射环带数,也就是衍射凸起211的数量,在衍射凸起211为环状凸起的情况下,一个环状凸起为一个衍射环带,h d为由标量衍射理论计算出的衍射结构210的高度,也就是第三表面212c与第二表面212b之间的距离,也可以认为是衍射凸起211的高度,0.1μm<h d<50μm,φ为衍射结构210衍射产生的光程,可以由以下公式(2)计算。
φ=(C 2r 2+C 4r 4+C 6r 6+…+C 2nr 2n)×2π/λ  (2)
公式(2)中,C 2n为2n次方的相位系数,λ为环境光线的波长,r是环境光线距光轴的距离。
在另一个具体的实施方式中,折射率补偿层220背离衍射结构210的表面为第四表面221,第四表面221可以是平面、球面或非球面。在第四表面221为非球面的情况下,第四表面221的面型方程为以下公式(3)所示。为了方便区分,在第四表面221为非球面时,该非球面为第二非球面。
Figure PCTCN2021120555-appb-000002
公式(3)中,c为第四表面221的曲率,K为圆锥常数,A 2n为2n次方的非球面系数,r是环境光线距光轴的距离,本文中的光轴,指的是衍射结构210的光轴,x为第四表面221的各个点与基面(第一基面)之间的距离,该基面为经过第四表面221的中心、且与光轴垂直的面,该距离为沿光轴方向的距离。
在又一具体的实施方式中,第一表面212a可以为平面、球面或非球面,在第一表面212a为非球面的情况下,第一表面212a的面型方程也可以为以下公式(4)所示。
Figure PCTCN2021120555-appb-000003
公式(4)中,c为第一表面212a的曲率,K为圆锥常数,A 2n为2n次方的非球面系数,r是环境光线距光轴的距离,x为第一表面212a的各个点与基面(第二基面)之间的距离,该基面经过第一表面212a的中心、且与光轴垂直的面,该距离为沿光轴方向的距离。
在本申请实施例中,衍射结构210的1级衍射为投影用衍射级次,而其它级次衍射光会成为眩光,进而对投影成像产生不良影响,为了使得1级衍射达到最大效率而削减眩光现象,衍射结构210的高度h d根据衍射结构210和折射率补偿层220的折射率差Δn=|n i-n p|并由标量衍射理论计算决定。
基于本发明实施例公开的投影装置400,本发明实施例公开一种智能眼镜,所公开的智能眼镜包括眼镜主体500和上文所述的投影装置400,眼镜主体500包括眼镜片530,眼镜片530可以为投影装置400的被投影部件,投影装置400与眼镜片530相对设置。在具体的投影过程中,投影屏幕100投射的光线可经过第一透镜机构200后投射至眼镜片530上,最终能够在眼镜片530上形成虚拟图像。
一种具体的实施方式中,眼镜主体500包括眼镜腿510和眼镜框520,眼镜片530设置在眼镜框520上,眼镜腿510与眼镜框520转动相连。在智能眼镜的组装过程中,投影装置400可以设置在眼镜腿510上,具体的,投影设备可以通过粘接、焊接等方式实现设置在眼镜腿510上。一种可选的方式中,投影装置400可以通过螺纹连接件连接的方式设置在眼镜腿510上,从而使得维护人员方便拆卸和维修。
具体的,智能眼镜可以包括两个眼镜片530,智能眼镜可以包括两个投影装置400,每个投影装置400与一个眼镜片530配合。
在本申请实施例中,眼镜片530设置有衍射波导540,衍射波导540包括入射光栅541、转折光栅542和出射光栅543,入射光栅541、转折光栅542和出射光栅543依次光路衔接,进而实现光线的依次传导。出射光栅543的出光方向为眼镜片530的内侧表面的朝向,即眼镜片530朝向人眼的表面的朝向。
在具体的工作过程中,投影屏幕100发出的光线经过第一透镜机构200后投射至眼镜片530,入射光栅541接收光线后进行波导,经过入射光栅541的光线以全反射的形式在衍射波导540中向转折光栅542传播,之后经过转折光栅542的衍射后,衍射波导540中的光线最终以准直光的形式从出射光栅543从衍射波导540中射向人眼,最终实现从衍射波导540中的射出。同时,来自环境的真实光线直接穿过衍射波导540投射向人眼,投影屏幕100最终从出射光栅543投射的虚拟光和真实光同时进入人眼,经过人眼晶状体成像于视网膜上,使得用户同时看到虚拟图像和周围环境,实现增强现实的效果。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种投影装置,包括投影屏幕(100)和第一透镜机构(200),其中:
    所述第一透镜机构(200)包括衍射结构(210)和折射率补偿层(220),所述第一透镜机构(200)与所述投影屏幕(100)相对设置,且所述折射率补偿层(220)与所述衍射结构(210)在所述第一透镜机构(200)的透光方向叠置。
  2. 根据权利要求1所述的投影装置,其中,所述衍射结构(210)包括多个同心设置的衍射凸起(211),在所述衍射结构(210)的中心向远离所述中心的径向上,相邻的两个所述衍射凸起(211)的顶端之间的距离递减。
  3. 根据权利要求2所述的投影装置,其中,相邻的两个所述衍射凸起(211)的顶端之间的距离大于0.5μm且小于1.5mm,或者,所述衍射凸起(211)的高度大于0.1μm且小于50μm。
  4. 根据权利要求1所述的投影装置(400),其中,所述衍射结构(210)包括基层(212)和多个同心设置的所述衍射凸起(211),所述衍射凸起(211)设置在所述基层(212)上。
  5. 根据权利要求4所述的投影装置(400),其中,所述基层(212)的中心厚度大于0.5mm且小于5mm,所述基层(212)的边缘厚度大于0.2mm且小于5mm。
  6. 根据权利要求1所述的投影装置(400),其中,所述衍射结构(210)为光学塑料结构件,所述折射率补偿层(220)为光学压印胶层。
  7. 根据权利要求1所述的投影装置(400),其中,所述衍射结构(210)的折射率大于1.3RIU且小于1.9RIU,所述折射率补偿层(220)的折射率大于1.3RIU且小于1.9RIU。
  8. 根据权利要求1所述的投影装置(400),其中,所述投影装置(400)还包括第二透镜机构(300),所述第二透镜机构(300)设于所述第一透镜机构(200)与所述投影屏幕(100)之间。
  9. 根据权利要求1所述的投影装置(400),其中,所述折射率补偿层(220)的厚度大于5μm且小于500μm。
  10. 一种智能眼镜,包括眼镜主体(500)和权利要求1至9中任一项所述的投影装置(400),所述眼镜主体(500)包括眼镜片(530),所述眼镜片(530)与所述投影装置(400)相对,所述投影屏幕(100)投射的光线可经过所述第一透镜机构(200)后投射至所述眼镜片(530)上。
  11. 根据权利要求10所述的智能眼镜,其中,所述眼镜主体(500)包括眼镜腿(510)和眼镜框(520),所述眼镜腿(510)与所述眼镜框(520)转动相连,所述眼镜片(530)设置在所述眼镜框(520)上,所述投影装置(400)设置在所述眼镜腿(510)上。
PCT/CN2021/120555 2020-09-30 2021-09-26 投影装置及智能眼镜 WO2022068707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011070186.XA CN112180602B (zh) 2020-09-30 2020-09-30 投影装置及智能眼镜
CN202011070186.X 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068707A1 true WO2022068707A1 (zh) 2022-04-07

Family

ID=73948576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120555 WO2022068707A1 (zh) 2020-09-30 2021-09-26 投影装置及智能眼镜

Country Status (2)

Country Link
CN (1) CN112180602B (zh)
WO (1) WO2022068707A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180603B (zh) * 2020-09-30 2023-05-19 维沃移动通信有限公司 投影装置及智能眼镜
CN112180602B (zh) * 2020-09-30 2023-06-02 维沃移动通信有限公司 投影装置及智能眼镜
CN112882143A (zh) * 2021-01-26 2021-06-01 维沃移动通信有限公司 微棱镜、摄像模组和电子设备
CN114755841B (zh) * 2022-03-25 2023-07-14 北京京东方技术开发有限公司 一种眼镜及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020186179A1 (en) * 2001-06-07 2002-12-12 Knowles Gary R. Optical display device
WO2007145116A1 (ja) * 2006-06-13 2007-12-21 Panasonic Corporation 複合光学素子およびその製造方法
JP2010102000A (ja) * 2008-10-22 2010-05-06 Panasonic Corp 回折光学素子および回折光学素子の製造方法
CN104520736A (zh) * 2013-07-29 2015-04-15 松下知识产权经营株式会社 衍射光学元件、衍射光学元件的制造方法、以及衍射光学元件的制造方法中使用的模具
CN104755968A (zh) * 2012-10-26 2015-07-01 高通股份有限公司 透视式近眼显示器
CN112180602A (zh) * 2020-09-30 2021-01-05 维沃移动通信有限公司 投影装置及智能眼镜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576874B1 (ko) * 2004-10-25 2006-05-10 삼성전기주식회사 회절광학소자를 이용한 광학계
CN104536088B (zh) * 2015-01-24 2018-05-08 上海理湃光晶技术有限公司 齿形镶嵌平面波导光学器件
CN105572877B (zh) * 2016-02-03 2018-11-09 上海群英软件有限公司 一种头戴式增强现实智能显示装置
CN107544145B (zh) * 2016-06-28 2021-06-01 松下知识产权经营株式会社 头部佩戴型显示器装置
US10948714B2 (en) * 2016-11-18 2021-03-16 Akonia Holographies LLC Dispersion compensation
CN108008538A (zh) * 2018-01-17 2018-05-08 上海渺视光学科技有限公司 微棱镜波导结构近眼显示视频眼镜
DE102018107365A1 (de) * 2018-03-28 2019-10-02 Carl Zeiss Vision International Gmbh Verfahren zum Herstellen eines optischen Bauteils mit einer gekrümmten Grenzfläche mit vorbestimmter Oberflächenrauheit
JP7205166B2 (ja) * 2018-11-01 2023-01-17 セイコーエプソン株式会社 表示装置
US10690831B2 (en) * 2018-11-20 2020-06-23 Facebook Technologies, Llc Anisotropically formed diffraction grating device
CN110927967A (zh) * 2019-12-03 2020-03-27 Oppo广东移动通信有限公司 增强现实眼镜
CN111240015B (zh) * 2020-01-17 2020-12-18 北京理工大学 双侧对射出光均匀的衍射波导

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020186179A1 (en) * 2001-06-07 2002-12-12 Knowles Gary R. Optical display device
WO2007145116A1 (ja) * 2006-06-13 2007-12-21 Panasonic Corporation 複合光学素子およびその製造方法
JP2010102000A (ja) * 2008-10-22 2010-05-06 Panasonic Corp 回折光学素子および回折光学素子の製造方法
CN104755968A (zh) * 2012-10-26 2015-07-01 高通股份有限公司 透视式近眼显示器
CN104520736A (zh) * 2013-07-29 2015-04-15 松下知识产权经营株式会社 衍射光学元件、衍射光学元件的制造方法、以及衍射光学元件的制造方法中使用的模具
CN112180602A (zh) * 2020-09-30 2021-01-05 维沃移动通信有限公司 投影装置及智能眼镜

Also Published As

Publication number Publication date
CN112180602B (zh) 2023-06-02
CN112180602A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2022068707A1 (zh) 投影装置及智能眼镜
JP7131145B2 (ja) ヘッドマウントディスプレイ
JP6545359B2 (ja) 光学モジュール、光学装置及びウェアラブル表示装置
US11372250B2 (en) Head-mounted display having reflective elements
WO2022068709A1 (zh) 摄像装置及电子设备
US10539798B2 (en) Optics of wearable display devices
KR102544660B1 (ko) 광학 렌즈
CN217932284U (zh) 光学透镜组及头戴式电子装置
US20200041795A1 (en) Virtual image display device and enlargement optical system
WO2022068763A1 (zh) 投影装置及智能眼镜
WO2022068712A1 (zh) 摄像装置及电子设备
TWM633841U (zh) 光學透鏡組和頭戴式電子裝置
US20220078400A1 (en) Ocular optical system
WO2022068678A1 (zh) 摄像装置及电子设备
TWI781709B (zh) 頭戴式顯示器
TWI810955B (zh) 光學鏡頭以及顯示裝置
TWI845026B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置
TWI838385B (zh) 投影鏡頭及投影光機
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置
US20230418080A1 (en) Optical system and display device
TWI813395B (zh) 光學透鏡組和頭戴式電子裝置
TWI792331B (zh) 光學鏡頭及顯示裝置
CN216485808U (zh) 目镜镜头及近眼显示装置
WO2024131877A1 (zh) 一种投射模组
CN208270837U (zh) 一种镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874367

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21874367

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.10.2023)