WO2022068712A1 - 摄像装置及电子设备 - Google Patents

摄像装置及电子设备 Download PDF

Info

Publication number
WO2022068712A1
WO2022068712A1 PCT/CN2021/120606 CN2021120606W WO2022068712A1 WO 2022068712 A1 WO2022068712 A1 WO 2022068712A1 CN 2021120606 W CN2021120606 W CN 2021120606W WO 2022068712 A1 WO2022068712 A1 WO 2022068712A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
diffractive
refractive
lens mechanism
protrusions
Prior art date
Application number
PCT/CN2021/120606
Other languages
English (en)
French (fr)
Inventor
孔德卿
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022068712A1 publication Critical patent/WO2022068712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present application belongs to the technical field of communication equipment, and in particular relates to a camera device and electronic equipment.
  • the electronic equipment is usually equipped with a camera device to realize the camera function.
  • a camera device to realize the camera function.
  • the performance of the camera device continues to be optimized.
  • the size of the camera device configured in the electronic equipment is getting larger and larger, which can achieve better optical performance.
  • the purpose of the embodiments of the present application is to provide a camera device and an electronic device, which can solve the contradiction between the thickness of the electronic device and the size of the camera device in the background art.
  • an embodiment of the present application discloses a camera device comprising a photosensitive chip, a first lens mechanism and a second lens mechanism, wherein the first lens mechanism is disposed between the photosensitive chip and the second lens mechanism, so The second lens mechanism includes a refractive and diffractive lens. In the direction of projecting light to the photosensitive chip, the refractive and diffractive lens is arranged in sequence with the first lens mechanism.
  • the camera device further includes a filter.
  • the light sheet is located between the photosensitive chip and the first lens mechanism, the ambient light passing through the second lens mechanism can be refracted and diffracted by the refracting and diffracting lens, and the ambient light after being refracted and diffracted can pass through in sequence
  • the first lens mechanism and the filter are projected onto the photosensitive chip.
  • an embodiment of the present application discloses an electronic device, including the above-mentioned camera device.
  • the structure of the imaging device in the background technology is improved, so that the second lens mechanism includes a refracting and diffractive lens.
  • the refracting and diffractive lens can make the chromatic aberration caused by diffraction.
  • the chromatic aberration caused by refraction and refraction cancels each other out.
  • the refracting lens and the first lens mechanism are arranged in sequence.
  • the ambient light passing through the second lens mechanism can be refracted and diffracted by the refracting lens, and after the refracting and diffracting
  • the ambient light can be filtered by the filter after passing through the first lens mechanism, and then projected onto the photosensitive chip to realize the imaging of the photosensitive chip.
  • the imaging device by replacing some of the lenses with refractive diffractive lenses, since the refractive diffractive lenses can offset chromatic aberration, the imaging device does not need to be additionally configured with lenses for eliminating chromatic aberration, thereby reducing the number of lenses.
  • the structure can make the camera device not only offset the chromatic aberration and ensure the image quality, but also reduce the number of lenses of the camera device, thereby reducing the size of the camera module, and finally solving the problem between the size of the camera device and the thickness of the electronic equipment. contradiction.
  • FIG. 1 is a schematic structural diagram of a first camera device disclosed in an embodiment of the present application
  • FIG. 2 is a partial structural schematic diagram of a refractive diffractive lens in a first imaging device disclosed in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a second camera device disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a third camera device disclosed in an embodiment of the present application.
  • Fig. 5 is a partial structural schematic diagram of a refractive diffractive lens in a third imaging device disclosed in an embodiment of the present application.
  • 300-second lens mechanism 300a-first lens, 300b-second lens, 310-fold diffractive lens, 311-base layer, 311a-first surface, 311b-second surface, 311c-third surface, 312-diffraction bulge,
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • an embodiment of the present application discloses a camera device, and the disclosed camera device can be applied to electronic equipment.
  • the disclosed camera device includes a photosensitive chip 100 , a first lens mechanism 200 , a second lens mechanism 300 and a filter 400 .
  • the photosensitive chip 100 is a component used for imaging in the camera device. During the specific shooting process, the ambient light reflected by the photographed object can finally be projected on the photosensitive chip 100, and the photosensitive surface of the photosensitive chip 100 can convert the light signal into and The electrical signal corresponding to the light signal, so as to achieve the purpose of imaging. Under normal circumstances, the photosensitive chip 100 may be a CCD (Charge Coupled Device, charge coupled device) device, or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) device, and the embodiment of the present application does not limit the photosensitive chip 100. specific type.
  • CCD Charge Coupled Device, charge coupled device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • the first lens mechanism 200 and the second lens mechanism 300 are both light distribution devices.
  • the camera device may include a lens holder. Both the first lens mechanism 200 and the second lens mechanism 300 are installed in the lens barrel of the lens of the camera device. , and then the lens is installed on the lens bracket, thereby realizing the installation of the first lens mechanism 200 and the second lens mechanism 300 .
  • the first lens mechanism 200 is arranged between the photosensitive chip 100 and the second lens mechanism 300 .
  • the second lens mechanism 300 and the first lens mechanism 200 are arranged in sequence, and the second lens mechanism 300 and the first lens mechanism 300 are arranged in sequence.
  • the lens mechanisms 200 are all capable of optically adjusting ambient light to achieve the purpose of light distribution. In a specific working process, ambient light may pass through the second lens mechanism 300 and the first lens mechanism 200 in sequence and then be projected onto the photosensitive chip 100 , and finally realize the photosensitive imaging of the photosensitive chip 100 .
  • the first lens mechanism 200 may include common lenses, such as convex lenses, concave lenses, etc. The embodiments of the present application do not limit the specific types and quantities of lenses included in the first lens mechanism 200 .
  • the first lens mechanism 200 may include a lens holder 210 and at least two third lenses 220, and the at least two third lenses 220 are mounted on the lens holder 210, so as to facilitate the pre-assembled integral assembly. Install.
  • the second lens mechanism 300 includes a refracting and diffractive lens 310, and the refracting and diffractive lens 310 can refract and diffract ambient light.
  • the refracting mirror 310 and the first lens mechanism 200 are arranged in sequence.
  • the refractive diffractive lens 310 can refract and diffract the passing ambient light. According to the principle of refraction and diffraction, it can be known that the process of refraction and diffraction of the ambient light will produce chromatic aberration.
  • the refractive diffractive lens 310 can both refract and diffract ambient light, the chromatic aberration caused by the diffraction of the ambient light by the refractive lens 310 and the chromatic aberration generated by the refraction of the ambient light will cancel each other out, thereby reducing the It even eliminates chromatic aberration caused by ambient light during shooting.
  • the light filter 400 is located between the photosensitive chip 100 and the first lens mechanism 200 , and the ambient light passing through the first lens mechanism 200 can be filtered by the light filter 400 and then projected onto the photosensitive chip 100 .
  • the filter 400 can filter out the interfering light of the camera device during the shooting process.
  • the filter 400 can be an infrared filter, an infrared filter.
  • the sheet can absorb the infrared light in the ambient light passing through the first lens mechanism 200, thereby making the imaging effect of the camera device better.
  • the ambient light passing through the second lens mechanism 300 can be refracted and diffracted by the refracting lens 310, and the ambient light after being refracted and diffracted can be projected to the photosensitive chip through the first lens mechanism 200 and the filter 400 in sequence. 100 on.
  • the refractive diffractive lens 310 has a diffractive structure, and the diffractive structure can play a role in diffracting ambient light.
  • the diffractive structure may be located on one side of the refractive diffractive lens 310 .
  • the diffractive structure may be located on the image side of the refractive diffractive lens 310 , or may be located on the object side of the refractive diffractive lens 310 .
  • the diffractive structure may also be located inside the refractive diffractive mirror 310 , as long as the diffraction of ambient light is not affected, and the present application does not limit the specific position of the diffractive structure in the refractive diffraction mirror 310 .
  • the structure of the imaging device in the background technology is improved, so that the second lens mechanism 300 includes a refracting mirror 310.
  • the refracting mirror 310 can make the The chromatic aberration caused by diffraction and the chromatic aberration caused by refraction cancel each other.
  • the refracting mirror 310 and the first lens mechanism 200 are arranged in sequence, and the ambient light passing through the second lens mechanism 300 can be refracted by the diffraction mirror.
  • 310 refraction diffraction, and the ambient light after refraction and diffraction can be projected by the first lens mechanism 200 and then filtered by the filter 400 and finally projected onto the photosensitive chip 100 to realize the imaging of the photosensitive chip 100 .
  • the imaging device by replacing some of the lenses with the refracting lens 310, since the refracting lens 310 can cancel the chromatic aberration, the imaging device does not need to be additionally equipped with a lens for eliminating chromatic aberration.
  • the device can not only offset chromatic aberration to ensure image quality, but also reduce the number of lenses of the camera device, thereby reducing the size of the camera module, and finally solving the contradiction between the size of the camera device and the thickness of the electronic equipment.
  • the refracting and diffractive lens 310 is made of glass material.
  • the refracting and diffractive lens 310 is a glass structural member.
  • the refractive diffractive lens 310 may be made of optical plastic.
  • the refractive diffractive lens 310 is an optical plastic structural member, and the optical plastic is light in weight, which is beneficial to reduce the refractive index of the diffractive lens. 310 quality, which is beneficial to reduce the quality of the lens of the camera device.
  • the zoom motor can drive the lens to move. Since the mass of the lens can be reduced, the camera device does not need to be equipped with a zoom motor with high power, which not only helps to reduce the cost of the camera device, but also reduces the cost of the camera device. Energy consumption can also be reduced.
  • the optical plastic structure can be processed by injection molding, which makes the processing of the refractive diffractive lens 310 relatively simple, more suitable for mass production, and has a lower processing cost.
  • various optical plastics such as PC (Polycarbonate, polycarbonate), COC (Cyclic Oleflns Copolymet, cyclic olefin copolymer), COP (Cycio Olefins Polymer, cyclic olefin polymer), etc.
  • the specific types of optical plastics are not specifically limited in the embodiments of the present application.
  • the refractive index n d of the refractive index lens 310 may be greater than 1.5 RIU and less than 1.8 RIU (RIU, Refractive index unit, refractive index unit).
  • RIU Refractive index unit
  • the refractive index lens 310 in this refractive index range can be When the projected ambient light passes through, a better refraction effect can be obtained, so that the chromatic aberration caused by the refraction can better offset the chromatic aberration caused by the diffraction, and finally a better imaging quality can be obtained.
  • the refractive diffractive lens 310 may include a plurality of concentrically disposed diffractive protrusions 312 , and the plurality of concentrically disposed diffractive protrusions 312 form a diffractive structure of the refractive and diffractive lens 310 .
  • the diffractive protrusion 312 may face the first lens mechanism 200.
  • the refraction surface refers to the surface of the refractive diffractive lens 310 facing away from the diffractive protrusions 312 , which is the first surface 311 a described later.
  • a plurality of concentrically arranged diffractive protrusions 312 make the diffractive structure formed by the refractive diffractive lens 310 be a sawtooth structure.
  • the distance between the top ends of the two diffractive protrusions 312 ie, the period ⁇ of the diffractive structure
  • the period ⁇ of the diffractive structure gradually decreases from the center of the diffractive structure to the edge of the diffractive structure.
  • the refractive diffractive lens 310 can be a circular lens
  • the plurality of diffractive protrusions 312 are annular protrusions arranged concentrically.
  • the distance between the tops of the two adjacent diffractive protrusions 312 may be greater than 0.5 ⁇ m and less than 300 ⁇ m. It should be noted that the diffractive protrusions 312 have roots. and the top, the top of the diffractive protrusion 312 is the top of the diffractive protrusion 312 , and the root of the diffractive protrusion 312 is the bottom end of the diffractive protrusion 312 .
  • the distance between the tops of the two adjacent diffractive protrusions 312 can better ensure the diffraction effect, which is helpful for offsetting the chromatic aberration caused by the diffraction to offset the chromatic aberration caused by the refraction.
  • the height h d of the diffractive protrusions 312 may be greater than 0.1 ⁇ m and less than 30 ⁇ m. After testing, the height of the diffractive protrusions 312 can better ensure the diffractive effect. It should be noted that the height of the diffractive protrusion 312 refers to the dimension in the direction from the bottom end to the top end of the diffractive protrusion 312 . Specifically, in the radial direction away from the center of the refracting mirror 310, the height of the diffraction protrusions 312 may decrease or increase. Of course, the heights of all the diffraction protrusions 312 of the refracting mirror 310 may also be equal.
  • the refractive diffractive lens 310 may further include a base layer 311, the diffractive protrusions 312 may be disposed on the base layer 311, the surface of the base layer 311 facing away from the diffraction protrusions 312 is the first surface 311a, and the first surface 311a may be a plane, Concave or convex, the specific surface type may be spherical or aspherical, and the specific surface type can be optimized and determined according to requirements.
  • the embodiment of the present application does not limit the specific surface type of the first surface 311a. In the case where the surface of the base layer 311 facing away from the diffractive protrusions 312 is spherical or aspherical, the refraction effect of the diffractive lens 310 can be more optimized.
  • the central thickness h c of the base layer 311 may be greater than 0.1 mm and less than 0.6 mm, and the edge thickness of the base layer 311 may be greater than 0.1 mm and less than 0.5 mm, in the case that the central thickness of the base layer 311 is greater than the edge thickness.
  • the refractive diffractive lens 310 can play a more obvious refraction effect.
  • the thickness of the center of the diffractive lens 310 can be considered as the thickness of the central axis of the diffractive lens 310 (ie, the optical axis of the diffractive lens 310 ), and the thickness of the edge of the diffractive lens 310 can be considered to be the thickness of the diffractive lens 310 thickness at the rounded edge of the .
  • the base layer 311 can provide a foundation for the diffractive protrusions 312, so that the diffractive protrusions 312 have high strength and are not easily damaged. At the same time, the base layer 311 also facilitates the molding of the diffractive protrusions 312 .
  • the base layer 311 may also be a light-transmitting material, so as to ensure the passage of ambient light.
  • the material of the base layer 311 is the same as the material of the diffractive protrusions 312 , and both can be made of glass material, optical plastic and other materials.
  • the aspherical surface equation of the first surface 311a is shown in the following formula (1):
  • c is the curvature of the first surface 311a
  • K is the conic constant
  • a 2n is the aspheric coefficient of the 2nth power
  • r is the distance of the ambient light from the optical axis
  • the optical axis in this paper refers to The optical axis of the diffraction lens 310 is refracted
  • x r is the distance between each point of the first surface 311a and the base surface
  • the base surface is a surface passing through the center of the first surface 311a and perpendicular to the optical axis
  • the distance is along the The distance in the direction of the optical axis.
  • the surface of the base layer 311 for supporting the diffractive protrusions 312 is the second surface 311b
  • the second surface 311b is the reference surface of the diffractive structure
  • the second surface 311b can be a plane, a spherical surface or an aspherical surface
  • the embodiment of the present application does not limit the specific surface shape of the second surface 311b.
  • the surface where the tops of all the diffractive protrusions 312 are located is the third surface 311c, and the height of the diffractive structure can be considered as the distance between the second surface 311b and the third surface 311c.
  • x d is the distance between each point of the diffractive structure and the reference plane of the diffractive structure, the distance is the distance along the optical axis, c is the curvature of the second surface 311b, K is the conic constant, and A 2n is The aspheric coefficient of the 2nth power, r is the distance of the ambient light from the optical axis, n is the number of diffraction rings counted from the center to the edge of the self-refracting diffraction lens 310 included in the diffraction structure, that is, the number of diffraction protrusions 312,
  • the diffraction protrusions 312 are annular protrusions
  • one annular protrusion is a diffraction ring zone
  • h d is the height of the diffraction structure calculated by the scalar diffraction theory, that is, the third surface 311c and the second surface The distance between 311b, 0.1 ⁇ m ⁇ h d
  • C 2n is the phase coefficient of the power of 2n
  • is the wavelength of the ambient light
  • r is the distance of the ambient light from the optical axis.
  • the first-order diffraction of the diffractive structure is the diffraction order for imaging, and the diffracted light of other orders will become glare, which will adversely affect imaging.
  • the refractive index, the height of the diffractive structure is the height of the diffractive protrusion 312 .
  • the refractive diffractive lens 310 can be an integral injection molding structure, that is, during the manufacturing process, the base layer 311 and the diffractive protrusions 312 can be molded together. This production process has the advantages of simple processing and high production efficiency.
  • the second lens mechanism 300 may include a first lens 300a and a second lens 300b, and in a direction close to the first lens mechanism 200, the first lens 300a and the second lens 300b may be sequentially It is arranged that the second mirror 300b is located between the first mirror 300a and the first lens mechanism 200 , and the first mirror 300a or the second mirror 300b is a refracting mirror 310 . In the case where the second lens 300b is a refractive lens 310, the second lens 300b is located between the first lens 300a and the first lens mechanism 200, so that better protection can be obtained.
  • the refracting mirror 310 includes a plurality of concentrically arranged diffractive protrusions 312.
  • the diffractive protrusion 312 may be located on the side of the second lens 300b facing the first lens 300a (as shown in FIG. 4 ), or the diffractive protrusion 312 may be located on the second lens 300b facing the first lens mechanism 200 side (as shown in Figure 3).
  • the embodiments of the present application do not limit the orientation of the diffractive protrusions 312 .
  • the total number N of lenses including the refractive diffractive lens 310 may satisfy 4 ⁇ N ⁇ 9. Among them, all mirror surfaces of all lenses contain at least 4 aspheric surfaces.
  • the imaging device disclosed in the embodiment of the present application may include a plurality of refracting and diffractive mirrors 310, and the refracting and diffractive mirrors 310 are arranged in sequence in the projection direction of the ambient light, so as to achieve multiple refracting and diffraction, and achieve the purpose of better eliminating chromatic aberration.
  • the embodiment of the present application The specific number of the refractive diffractive mirrors 310 is not limited.
  • the embodiment of the present application discloses an electronic device, and the disclosed electronic device includes the camera device described above.
  • the electronic devices disclosed in the embodiments of the present application may be smart phones, micro-photography equipment, AR (Augmented Reality, augmented reality) devices, game consoles, e-books, etc.
  • the embodiments of the present application do not limit the specific types of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)

Abstract

本申请公开了一种摄像装置,包括感光芯片(100)、第一透镜机构(200)、第二透镜机构(300)和滤光片(400),第一透镜机构(200)设于感光芯片(100)与第二透镜机构(300)之间,第二透镜机构(300)包括折衍射镜片(310),在向感光芯片(100)投射光线的方向上,折衍射镜片(310)与第一透镜机构(200)依次设置,滤光片(400)位于感光芯片(100)与第一透镜机构(200)之间,通过第二透镜机构(300)的环境光线可被折衍射镜片(310)折衍射,且经过折衍射后的环境光线可依次经过第一透镜机构(200)和滤光片(400)投射至感光芯片(100)上。本申请还公开了一种电子设备。

Description

摄像装置及电子设备
交叉引用
本发明要求在2020年09月30日提交中国专利局、申请号为202011062847.4、发明名称为“摄像装置及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信设备技术领域,具体涉及一种摄像装置及电子设备。
背景技术
电子设备通常配置有摄像装置,进而实现摄像功能。随着用户的拍摄需求的提升,摄像装置的性能持续在优化。为了提升成像质量,电子设备配置的摄像装置的尺寸越来越大,进而能够实现更好的光学性能。
我们知道,电子设备向着轻薄化的方向发展,电子设备的厚度较难随意增加。在此种情况下,摄像装置的尺寸越来越大会与电子设备的轻薄化的需求产生矛盾,使得电子设备较难配置性能更优的摄像装置,很显然,这会影响电子设备的性能。
发明内容
本申请实施例的目的是提供一种摄像装置及电子设备,能够解决背景技术中的电子设备存在厚度与摄像装置的尺寸之间的矛盾。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例公开一种摄像装置包括感光芯片、第一透镜机构和第二透镜机构,所述第一透镜机构设于所述感光芯片与所述第二透镜机构之间,所述第二透镜机构包括折衍射镜片,在向所述感光芯片投射光线的方向上,所述折衍射镜片与所述第一透镜机构依次设置,所述摄像装置还包 括滤光片,所述滤光片位于所述感光芯片与所述第一透镜机构之间,通过所述第二透镜机构的环境光线可被所述折衍射镜片折衍射,且经过折衍射后的所述环境光线可依次经过所述第一透镜机构和所述滤光片投射至所述感光芯片上。
第二方面,本申请实施例公开一种电子设备,包括上文所述的摄像装置。
本申请采用上述技术方案能够达到以下有益效果:
本申请实施例公开的摄像装置,通过对背景技术中的摄像装置的结构进行改进,使得第二透镜机构包括折衍射镜片,在环境光线经过折衍射镜片时,折衍射镜片能够使得衍射产生的色差和折射产生的色差相互抵消,在向感光芯片投射光线的方向上,折衍射镜片与第一透镜机构依次设置,通过第二透镜机构的环境光线可被折衍射镜片折衍射,且经过折衍射后的环境光线可经过第一透镜机构后被滤光片滤光,进而投射至感光芯片上,实现感光芯片的成像。
本申请实施例公开的摄像装置,通过将部分镜片更换为折衍射镜片,由于折衍射镜片能够抵消色差,进而能够使得摄像装置无需额外配置用于消除色差的镜片,从而能够减少镜片数量,此种结构能够使得摄像装置既能抵消色差而保证成像质量,又能减少摄像装置的镜片数量,进而能使得摄像模组的尺寸变小,最终能解决摄像装置的尺寸大小与电子设备的厚度之间的矛盾。
附图说明
图1为本申请实施例公开的第一种摄像装置的结构示意图;
图2为本申请实施例公开的第一种摄像装置中的折衍射镜片的局部结构示意图;
图3为本申请实施例公开的第二种摄像装置的结构示意图;
图4为本申请实施例公开的第三种摄像装置的结构示意图;
图5为本申请实施例公开的第三种摄像装置中的折衍射镜片的局部结构 示意图。
附图标记说明:
100-感光芯片、
200-第一透镜机构、210-镜片支架、220-第三镜片、
300-第二透镜机构、300a-第一镜片、300b-第二镜片、310-折衍射镜片、311-基层、311a-第一表面、311b-第二表面、311c-第三表面、312-衍射凸起、
400-滤光片。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的摄像装置进行详细地说明。
如图1-图5所示,本申请实施例公开一种摄像装置,所公开的摄像装置可应用于电子设备。所公开的摄像装置包括感光芯片100、第一透镜机构200、第二透镜机构300和滤光片400。
感光芯片100是摄像装置中用于成像的部件,在具体的拍摄过程中,所 拍摄的物体反射的环境光线最终能够投射到感光芯片100上,感光芯片100的感光面可以将光信号转换为与光信号相对应的电信号,从而达到成像的目的。在通常情况下,感光芯片100可以是CCD(Charge Coupled Device,电荷耦合)器件,也可以是CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)器件,本申请实施例中不限制感光芯片100的具体种类。
第一透镜机构200和第二透镜机构300均为配光器件,在通常情况下,摄像装置可以包括镜头支架,第一透镜机构200和第二透镜机构300均安装在摄像装置的镜头的镜筒中,然后通过镜头安装在镜头支架,进而实现第一透镜机构200和第二透镜机构300的安装。
第一透镜机构200设于感光芯片100与第二透镜机构300之间,在靠近感光芯片100的方向上,第二透镜机构300与第一透镜机构200依次设置,第二透镜机构300和第一透镜机构200均能够对环境光线进行光学调节,达到配光的目的。在具体的工作过程中,环境光线可依次经过第二透镜机构300和第一透镜机构200之后投射至感光芯片100上,最终实现感光芯片100的感光成像。
在本申请实施例中,第一透镜机构200可以包括普通的镜片,例如凸透镜、凹透镜等,本申请实施例不限制第一透镜机构200所包含的镜片的具体种类及数量。一种可选的方案中,第一透镜机构200可以包括镜片支架210和至少两个第三镜片220,至少两个第三镜片220安装在镜片支架210上,从而方便预先组装后进行整体式的安装。
第二透镜机构300包括折衍射镜片310,折衍射镜片310能够对环境光线进行折衍射。在向感光芯片100投射光线的方向上,折衍射镜片310与第一透镜机构200依次设置。折衍射镜片310能够对通过的环境光线进行折射和衍射,根据折射和衍射的原理可知,对环境光线的折射和衍射过程均会产生色差。由于折衍射镜片310既能够对环境光线进行折射,又能够对环境光 线进行衍射,因此折衍射镜片310对环境光线进行衍射产生的色差和对环境光线进行折射产生的色差会相互抵消,从而能够缓解甚至消除拍摄过程中环境光线产生的色差。
滤光片400位于感光芯片100与第一透镜机构200之间,经过第一透镜机构200的环境光线能够经过滤光片400的滤光后再投射至感光芯片100上。滤光片400能够滤除摄像装置在拍摄过程中的干扰光,滤光片400的种类可以有多种,一种可选的方案中,滤光片400可以为红外滤光片,红外滤光片能够吸收经过第一透镜机构200的环境光线中的红外光,进而使得摄像装置的成像效果较好。
在具体的工作过程中,通过第二透镜机构300的环境光线可被折衍射镜片310折衍射,且经过折衍射后的环境光线可依次经过第一透镜机构200和滤光片400投射至感光芯片100上。
在本申请实施例中,折衍射镜片310具有衍射结构,衍射结构能够发挥对环境光线衍射的作用。衍射结构可以位于折衍射镜片310的一侧,具体的,衍射结构可以位于折衍射镜片310的像侧,也可以位于折衍射镜片310的物侧。当然,衍射结构也可以位于折衍射镜片310的内部,只要不影响对环境光线的衍射即可,本申请不限制衍射结构在折衍射镜片310中的具体位置。
本申请实施例公开的摄像装置,通过对背景技术中的摄像装置的结构进行改进,使得第二透镜机构300包括折衍射镜片310,在环境光线经过折衍射镜片310时,折衍射镜片310能够使得衍射产生的色差和折射产生的色差相互抵消,在向感光芯片100投射光线的方向上,折衍射镜片310与第一透镜机构200依次设置,通过第二透镜机构300的环境光线可被折衍射镜片310折衍射,且经过折衍射后的环境光线可经过第一透镜机构200投射后被滤光片400滤光后最终投射至感光芯片100上,实现感光芯片100的成像。
本申请实施例公开的摄像装置,通过将部分镜片更换为折衍射镜片310,由于折衍射镜片310能够抵消色差,进而能够使得摄像装置无需额外配置用 于消除色差的镜片,此种结构能够使得摄像装置既能抵消色差而保证成像质量,又能减少摄像装置的镜片数量,进而能使得摄像模组的尺寸变小,最终能解决摄像装置的尺寸大小与电子设备的厚度之间的矛盾。
在本申请实施例中,折衍射镜片310的材质有很多,一种可选的方案中,折衍射镜片310由玻璃材质制成,在此种情况下,折衍射镜片310为玻璃结构件。在另一种可选的方案中,折衍射镜片310可以由光学塑料制成,在此种情况下,折衍射镜片310为光学塑料结构件,光学塑料质轻,从而有利于减小折衍射镜片310的质量,进而有利于减小摄像装置的镜头的质量。在摄像装置包括变焦马达的情况下,变焦马达可驱动镜头移动,由于镜头的质量能够得到减小,因此使得摄像装置无需配置较大功率的变焦马达,进而不但有利于降低摄像装置的成本,而且还能够降低能耗。
此外,光学塑料结构件可以通过注塑成型的方式进行加工,注塑成型的方式使得折衍射镜片310的加工较为简单,更适用于大批量的生产,而且加工成本较低。在本申请实施例中,光学塑料可以有多种,例如PC(Polycarbonate,聚碳酸酯)、COC(Cyclic OleflnsCopolymet,环烯烃类共聚合物)、COP(Cycio Olefins Polymer,环烯烃聚合物)等,本申请实施例对光学塑料的具体种类不作具体限制。
在本申请实施例中,折衍射镜片310的折射率n d可以大于1.5RIU且小于1.8RIU(RIU,Refractive index unit,折射率单位),经过检测,此种折射率范围的折衍射镜片310能够使得投射的环境光线在通过时,得到较佳的折射效果,从而能够使得折射产生的色差较好地抵消衍射产生的色差,最终能够得到较好的成像质量。
在本申请实施例中,折衍射镜片310可以包括多个同心设置的衍射凸起312,多个同心设置的衍射凸起312形成折衍射镜片310的衍射结构。具体的,衍射凸起312可以朝向第一透镜机构200,环境光线在经过折衍射镜片310时,先经过折射面折射,然后再经过衍射凸起312进行衍射,进而达到折射 和衍射产生的色差相互抵消的目的。需要说明的是,折射面,指的是折衍射镜片310上背离衍射凸起312的表面,即为后文所述的第一表面311a。
多个同心设置的衍射凸起312,使得折衍射镜片310形成的衍射结构为锯齿状结构,一种可选的方案中,在折衍射镜片310的中心向远离该中心的径向上,相邻的两个衍射凸起312的顶端之间的距离(即衍射结构的周期Λ)递减,进而衍射结构的周期Λ从衍射结构的中心到衍射结构的边缘逐渐递减。折衍射镜片310可以为圆形镜片,进而多个衍射凸起312为同心设置的环状凸起。
在进一步的技术方案中,相邻的两个衍射凸起312的顶端之间的距离(与衍射结构的周期Λ相等)可以大于0.5μm且小于300μm,需要说明的是,衍射凸起312具有根部和顶部,衍射凸起312的顶部则为衍射凸起312的顶端,衍射凸起312的根部则为衍射凸起312的底端。经过检测,上述相邻的两个衍射凸起312的顶端之间的距离,能够较好地确保衍射效果,有助于使得衍射产生的色差来抵消折射产生的色差。
在进一步的技术方案中,衍射凸起312的高度h d可以大于0.1μm且小于30μm。经过检测,上述衍射凸起312的高度,能够较好地确保衍射效果。需要说明的是,衍射凸起312的高度,指的是衍射凸起312的底端至顶端方向上的尺寸。具体的,在折衍射镜片310的中心向远离该中心的径向上,衍射凸起312的高度可以递减或递增,当然,折衍射镜片310的所有衍射凸起312的高度也可以均相等。
本申请实施例中,折衍射镜片310还可以包括基层311,衍射凸起312可以设置于基层311上,基层311背离衍射凸起312的表面为第一表面311a,第一表面311a可以是平面、凹面或凸面,具体面型可以是球面或非球面,具体面型可以根据需求优化决定,本申请实施例不限制第一表面311a的具体面型。在基层311背离衍射凸起312的表面为球面或非球面的情况下,能够更加优化折衍射镜片310的折射效果。
一种可选的方案中,基层311的中心厚度h c可以大于0.1mm且小于0.6mm,基层311的边缘厚度可以大于0.1mm且小于0.5mm,在基层311的中心厚度大于边缘厚度的情况下,折衍射镜片310能够起到更明显的折射作用。需要说明的是,折衍射镜片310的中心厚度可以认为是折衍射镜片310的中心轴(即折衍射镜片310的光轴)位置的厚度,折衍射镜片310的边缘厚度可以认为是折衍射镜片310的圆形边缘处的厚度。
该具体的方案中,基层311能够为衍射凸起312提供设置基础,从而使得衍射凸起312的强度较高,不易损坏。与此同时,基层311也方便衍射凸起312的成型。当然,基层311也可以为透光材料,进而能够确保环境光线的通过。具体的,基层311的材质与衍射凸起312的材质相同,均可以为玻璃材质、光学塑料等材料制成。
一种具体的实施方式中,在第一表面311a为非球面的情况下,第一表面311a的非球面方程为以下公式(1)所示:
Figure PCTCN2021120606-appb-000001
公式(1)中,c为第一表面311a的曲率,K为圆锥常数,A 2n为2n次方的非球面系数,r是环境光线距光轴的距离,本文中的光轴,指的是折衍射镜片310的光轴,x r为第一表面311a的各个点与基面之间的距离,该基面为经过第一表面311a的中心、且与光轴垂直的面,该距离为沿光轴方向的距离。
另一种具体的实施方式中,基层311用于支撑衍射凸起312的表面为第二表面311b,第二表面311b为衍射结构的基准面,第二表面311b可以是平面、球面或非球面,同样,本申请实施例不限制第二表面311b的具体面型。所有的衍射凸起312的顶端所在的表面为第三表面311c,衍射结构的高度可以认为是第二表面311b与第三表面311c之间的距离。
在第二表面311b为非球面的情况下,衍射结构的面型方程为以下公式(2)所示:
Figure PCTCN2021120606-appb-000002
公式(2)中,x d为衍射结构的各个点距衍射结构的基准面的距离,该距离为沿光轴方向的距离,c为第二表面311b的曲率,K为圆锥常数,A 2n为2n次方的非球面系数,r是环境光线距光轴的距离,n为衍射结构所包括的自折衍射镜片310的中心向边缘计数的衍射环带数,也就是衍射凸起312的数量,在衍射凸起312为环状凸起的情况下,一个环状凸起为一个衍射环带,h d为由标量衍射理论计算出的衍射结构的高度,也就是第三表面311c与第二表面311b之间的距离,0.1μm<h d<30μm,φ为衍射结构衍射产生的光程,可以由以下公式(3)计算。
φ=(C 2r 2+C 4r 4+C 6r 6+…+C 2nr 2n)×2π/λ   (3)
公式(3)中,C 2n为2n次方的相位系数,λ为环境光线的波长,r是环境光线距光轴的距离。
在本申请实施例中,衍射结构的1级衍射为成像用衍射级次,而其它级次衍射光会成为眩光,进而对成像产生不良影响,为了使得1级衍射达到最大效率而削减眩光现象,衍射结构的高度h d根据衍射结构和空气的折射率差Δn=|n d-n Air|并由标量衍射理论计算决定,其中,n d为折衍射镜片310的折射率,n Air为空气的折射率,该衍射结构的高度即为衍射凸起312的高度。
此外,折衍射镜片310可以为一体式注塑结构,也就是说,在生产制造的过程中,基层311和衍射凸起312可以一起成型,此种生产工艺具有加工简单、生产效率较高等优点。
在本申请实施例公开的摄像装置中,第二透镜机构300可以包括第一镜片300a和第二镜片300b,在靠近第一透镜机构200的方向上,第一镜片300a和第二镜片300b可以依次设置,第二镜片300b位于第一镜片300a与第一透镜机构200之间,第一镜片300a或第二镜片300b为折衍射镜片310。在第二镜片300b为折衍射镜片310的情况下,第二镜片300b位于第一镜片300a 第一透镜机构200之间,从而能够得到较好的防护。
如上文所述,折衍射镜片310包括多个同心设置的衍射凸起312,在第二镜片300b为折衍射镜片310的情况下,光路依次经过第一镜片300a、折衍射镜片310、第一透镜机构200、滤光片400再投射至感光芯片100。在此种情况下,衍射凸起312可以位于第二镜片300b朝向第一镜片300a的一侧(如图4所示),或者,衍射凸起312可以位于第二镜片300b朝向第一透镜机构200的一侧(如图3所示)。本申请实施例不限制衍射凸起312的朝向。
本申请实施例公开的摄像装置中,包含有折衍射镜片310在内的总镜片数量N可以满足4≤N≤9。其中,所有的镜片的所有镜面中至少包含有4个非球面。本申请实施例公开的摄像装置可以包括多个折衍射镜片310,折衍射镜片310在环境光线的投射方向依次设置,从而实现多次折衍射,达到更好地消除色差的目的,本申请实施例不限制折衍射镜片310的具体数量。
基于本申请实施例公开的摄像装置,本申请实施例公开一种电子设备,所公开的电子设备包括上文所述的摄像装置。
本申请实施例公开的电子设备可以是智能手机、微摄影装备、AR(Augmented Reality,增强现实)设备、游戏机、电子书等,本申请实施例不限制电子设备的具体种类。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种摄像装置,包括感光芯片(100)、第一透镜机构(200)和第二透镜机构(300),所述第一透镜机构(200)设于所述感光芯片(100)与所述第二透镜机构(300)之间,所述第二透镜机构(300)包括折衍射镜片(310),在向所述感光芯片(100)投射光线的方向上,所述折衍射镜片(310)与所述第一透镜机构(200)依次设置,所述摄像装置还包括滤光片(400),所述滤光片(400)位于所述感光芯片(100)与所述第一透镜机构(200)之间,通过所述第二透镜机构(300)的环境光线可被所述折衍射镜片(310)折衍射,且经过折衍射后的所述环境光线可依次经过所述第一透镜机构(200)和所述滤光片(400)投射至所述感光芯片(100)上。
  2. 根据权利要求1所述的摄像装置,其中,所述折衍射镜片(310)为光学塑料结构件。
  3. 根据权利要求1所述的摄像装置,其中,所述折衍射镜片(310)的折射率大于1.5RIU且小于1.8RIU。
  4. 根据权利要求1所述的摄像装置,其中,所述折衍射镜片(310)包括多个同心设置的衍射凸起(312),在所述折衍射镜片(310)的中心向远离所述中心的径向上,相邻的两个所述衍射凸起(312)的顶端之间的距离递减。
  5. 根据权利要求4所述的摄像装置,其中,相邻的两个所述衍射凸起(312)的顶端之间的距离大于0.5μm且小于300μm。
  6. 根据权利要求4所述的摄像装置,其中,所述衍射凸起(312)的高度大于0.1μm且小于30μm。
  7. 根据权利要求4所述的摄像装置,其中,所述折衍射镜片(310)还包括基层(311),所述衍射凸起(312)设置于所述基层(311)上。
  8. 根据权利要求7所述的摄像装置,其中,所述基层(311)的中心厚度大于0.1mm且小于0.6mm,所述基层(311)的边缘厚度大于0.1mm且小于0.5mm。
  9. 根据权利要求1所述的摄像装置,其中,所述第二透镜机构(300)包括第一镜片(300a)和第二镜片(300b),在靠近所述第一透镜机构(200)的方向上,所述第一镜片(300a)和所述第二镜片(300b)依次设置,所述第二镜片(300b)位于所述第一镜片(300a)与所述第一透镜机构(200)之间,所述第一镜片(300a)或所述第二镜片(300b)为所述折衍射镜片(310)。
  10. 根据权利要求9所述的摄像装置,其中,所述折衍射镜片(310)包括多个同心设置的衍射凸起(312),在所述第二镜片(300b)为所述折衍射镜片(310)的情况下,所述衍射凸起(312)位于所述第二镜片(300b)朝向所述第一镜片(300a)的一侧,或者,所述衍射凸起(312)位于所述第二镜片(300b)朝向所述第一透镜机构(200)的一侧。
  11. 一种电子设备,包括权利要求1-10中任一项所述的摄像装置。
PCT/CN2021/120606 2020-09-30 2021-09-26 摄像装置及电子设备 WO2022068712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011062847.4A CN112202999B (zh) 2020-09-30 2020-09-30 摄像装置及电子设备
CN202011062847.4 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068712A1 true WO2022068712A1 (zh) 2022-04-07

Family

ID=74013838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120606 WO2022068712A1 (zh) 2020-09-30 2021-09-26 摄像装置及电子设备

Country Status (2)

Country Link
CN (1) CN112202999B (zh)
WO (1) WO2022068712A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202999B (zh) * 2020-09-30 2022-02-15 维沃移动通信有限公司 摄像装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200608079A (en) * 2004-08-27 2006-03-01 Hon Hai Prec Ind Co Ltd Miniature image pick-up lens system
CN1766695A (zh) * 2004-10-25 2006-05-03 三星电机株式会社 使用衍射光学元件的光学系统
CN101344633A (zh) * 2007-07-13 2009-01-14 富士能株式会社 摄像透镜、照相机模组以及便携终端设备
CN110361849A (zh) * 2019-07-11 2019-10-22 长春理工大学 折衍混合手机镜头
CN111552138A (zh) * 2020-05-29 2020-08-18 Oppo广东移动通信有限公司 一种屏下摄像头、成像方法及终端
CN112202999A (zh) * 2020-09-30 2021-01-08 维沃移动通信有限公司 摄像装置及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044706A (en) * 1990-02-06 1991-09-03 Hughes Aircraft Company Optical element employing aspherical and binary grating optical surfaces
CN101174017A (zh) * 2006-11-02 2008-05-07 鸿富锦精密工业(深圳)有限公司 镜头模组及其组装方法
JP2009008758A (ja) * 2007-06-26 2009-01-15 Fujinon Corp 撮像デバイス、およびカメラモジュールならびに携帯端末機器
CN109031592B (zh) * 2018-07-26 2020-12-08 华为技术有限公司 摄像镜头、摄像模组及终端
CN210166554U (zh) * 2019-07-12 2020-03-20 比亚迪股份有限公司 镜头模组和电子设备
CN210629655U (zh) * 2019-12-23 2020-05-26 维沃移动通信有限公司 摄像模组及电子设备
CN111405087B (zh) * 2020-03-05 2022-12-09 维沃移动通信有限公司 一种电子产品及其摄像方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200608079A (en) * 2004-08-27 2006-03-01 Hon Hai Prec Ind Co Ltd Miniature image pick-up lens system
CN1766695A (zh) * 2004-10-25 2006-05-03 三星电机株式会社 使用衍射光学元件的光学系统
CN101344633A (zh) * 2007-07-13 2009-01-14 富士能株式会社 摄像透镜、照相机模组以及便携终端设备
CN110361849A (zh) * 2019-07-11 2019-10-22 长春理工大学 折衍混合手机镜头
CN111552138A (zh) * 2020-05-29 2020-08-18 Oppo广东移动通信有限公司 一种屏下摄像头、成像方法及终端
CN112202999A (zh) * 2020-09-30 2021-01-08 维沃移动通信有限公司 摄像装置及电子设备

Also Published As

Publication number Publication date
CN112202999B (zh) 2022-02-15
CN112202999A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN106483627B (zh) 光学成像系统
CN106707464B (zh) 光学成像系统
WO2022068709A1 (zh) 摄像装置及电子设备
US10935762B2 (en) Optical imaging lens
CN107589522A (zh) 光学成像系统
CN208921953U (zh) 光学成像系统
CN107085277A (zh) 光学成像系统
TWI681206B (zh) 光學成像鏡頭
CN108957689A (zh) 光学成像镜头
CN103135206A (zh) 便携式电子装置与其光学成像镜头
CN107797227A (zh) 光学成像系统
WO2022068707A1 (zh) 投影装置及智能眼镜
CN107085278A (zh) 光学成像系统
CN110275276A (zh) 光学成像系统
CN112764198A (zh) 成像光学系统、取像模组和电子装置
WO2022068712A1 (zh) 摄像装置及电子设备
CN112188066B (zh) 摄像装置及电子设备
WO2022068678A1 (zh) 摄像装置及电子设备
CN107462981A (zh) 光学成像系统
CN107305279A (zh) 光学成像系统
CN107340585A (zh) 光学成像系统
CN112202942B (zh) 电子设备
CN112203000B (zh) 摄像装置及电子设备
CN114488477B (zh) 光学系统、镜头模组和电子设备
CN112188062B (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874372

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21874372

Country of ref document: EP

Kind code of ref document: A1