TWI792331B - 光學鏡頭及顯示裝置 - Google Patents
光學鏡頭及顯示裝置 Download PDFInfo
- Publication number
- TWI792331B TWI792331B TW110119614A TW110119614A TWI792331B TW I792331 B TWI792331 B TW I792331B TW 110119614 A TW110119614 A TW 110119614A TW 110119614 A TW110119614 A TW 110119614A TW I792331 B TWI792331 B TW I792331B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- optical
- image
- light
- optical lens
- Prior art date
Links
Images
Abstract
一種光學鏡頭,包括具有屈光率的透鏡共五個,從入光
側至出光側沿光軸依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡,其中包括至少一玻璃透鏡。第一透鏡具有正屈光率,第二透鏡具有正屈光率,第三透鏡具有負屈光率。光學鏡頭滿足條件式0.5EFL<EFLG<2EFL,EFL為光學鏡頭的有效焦距,EFLG為第一透鏡至第五透鏡中的所有玻璃透鏡的有效焦距。光學鏡頭用於接收來自入光側的影像光束,影像光束在出光側形成光欄。一種顯示裝置亦被提出。
Description
本發明是有關於一種光學元件及裝置,且特別是有關於一種光學鏡頭及顯示裝置。
隨著立體顯示(stereoscopic display)及虛擬實境(virtual reality)等多媒體應用的出現,為了提供令人驚豔的視覺效果,具高解析度的顯示裝置的需求逐漸增加。
具有波導(waveguide)的波導顯示器依其影像源的種類可區分為自發光式(穿透式)面板架構以及反射式面板架構。影像源(面板)產生的影像光束透過光學鏡頭形成一個虛像,此虛像進一步顯示在使用者的眼睛前方的預設位置。當光學鏡頭應用在波導顯示器中,其在設計上的尺寸、重量、解析度以及熱飄移的考量是重要的議題。
“先前技術”段落只是用來幫助瞭解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決
的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。
本發明提供一種輕薄、解析度高且熱飄移小的光學鏡頭及顯示裝置。
根據本發明一實施例,提供一種光學鏡頭,包括具有屈光率的透鏡共五個,該五個透鏡從入光側至出光側沿光軸依序為第一透鏡、第二透鏡、第三透鏡、第四透鏡以及第五透鏡。第一透鏡具有正屈光率,第二透鏡具有正屈光率,第三透鏡具有負屈光率,且第一透鏡、第二透鏡、第三透鏡、第四透鏡及第五透鏡中至少一個透鏡的材料為玻璃。光學鏡頭包括至少一塑膠透鏡以及至少一玻璃透鏡,且滿足條件式0.5EFL<EFLG<2EFL,EFL為光學鏡頭的有效焦距,EFLG為第一透鏡至第五透鏡中的所有玻璃透鏡的有效焦距。光學鏡頭用於接收來自入光側的影像光束,影像光束在出光側形成光欄,光欄形成於影像光束的光束縮束的最小截面積的位置。
根據本發明另一實施例,提供一種顯示裝置,包括光學鏡頭、影像產生器以及波導元件。影像產生器設置於光學鏡頭的入光側,以提供影像光束。波導元件設置於光學鏡頭的出光側,且具有光耦合入口以及光耦合出口。影像光束經由光耦合入口進入波導元件,並且波導元件引導影像光束,以使影像光束由光耦
合出口離開波導元件。
基於上述,本發明實施例提供的光學鏡頭包含玻璃透鏡及塑膠透鏡,並滿足條件式0.5EFL<EFLG<2EFL,其中EFL為光學鏡頭的有效焦距,EFLG為第一透鏡至第五透鏡中的所有玻璃透鏡的有效焦距。光學鏡頭能解析116 lp/mm空間解析度的影像,且熱飄移量小。本發明實施例提供的顯示裝置具有良好的光學表現。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
0:光欄
1、2、3、4、5:透鏡
9:稜鏡
10:影像源
15、25、35、45、55、95、105:入光面
16、26、36、46、56、96、106:出光面
40、51:影像產生器
43、53:波導元件
43E、53E:光耦合入口
43O、53O:光耦合出口
52:照明光源
100、200、300、400、500:光學鏡頭
110:保護蓋
1000、2000、3000、4000、5000:影像投射模組
D4、D5:顯示裝置
A1:入光側
A2:出光側
C21、C22、C41、C42、C61、C62:曲線
I:光軸
I5:照明光束
L4、L5:影像光束
圖1為本發明之第一實施例之影像投射模組的示意圖。
圖2A至圖2D為第一實施例之光學鏡頭的橫向色差、場曲及畸變圖。
圖3為本發明之第二實施例之影像投射模組的示意圖。
圖4A至圖4D為第二實施例之光學鏡頭的橫向色差、場曲及畸變圖。
圖5為本發明之第三實施例之影像投射模組的示意圖。
圖6A至圖6D為第三實施例之光學鏡頭的橫向色差、場曲及畸變圖。
圖7為本發明之第四實施例之顯示裝置的示意圖。
圖8為本發明之第五實施例之顯示裝置的示意圖。
圖1為本發明之第一實施例之影像投射模組的示意圖。圖2A至圖2D為第一實施例之光學鏡頭的橫向色差、場曲及畸變圖。
參照圖1,影像投射模組1000包括光學鏡頭100、稜鏡9以及影像源10。光學鏡頭100包括具有屈光率的透鏡共五個,從入光側A1至出光側A2沿光軸I依序為具有屈光率的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4以及第五透鏡5。第一透鏡1為玻璃非球面透鏡。第二透鏡2為塑膠非球面透鏡。第三透鏡3為塑膠非球面透鏡。第四透鏡4為塑膠非球面透鏡。第五透鏡5為塑膠非球面透鏡。在本實施例中,光學鏡頭100的有效焦距EFL為7.38毫米(mm),第一透鏡1的有效焦距EFLG1為7.02mm。光學鏡頭100滿足條件式0.5EFL<EFLG1<2EFL。光學鏡頭100用於接收來自入光側A1的影像光束,影像光束由影像源10提供。稜鏡9設置於影像光束的路徑上,且設置於影像源10與光學鏡頭100之間。影像光束在出光側A2形成光欄0,光欄0形成於影像光束的光束縮束的最小截面積的位置。
在本實施例中,影像投射模組1000還包括保護蓋110,保護蓋110例如為透明玻璃,且配置於影像源10及稜鏡9之間,用以保護影像源10而避免灰塵沾附於影像源10的成像面(未標
號)。光學鏡頭100的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5、稜鏡9及保護蓋110都各自具有朝向入光側A1且使影像光束通過之入光面15、25、35、45、55、95、105及朝向出光側A2且使影像光束通過之出光面16、26、36、46、56、96、106。
第一透鏡1具有正屈光率(refracting power)。第一透鏡1的入光面15與出光面16皆為非球面(aspheric surface)。第二透鏡2具有正屈光率。第二透鏡2的入光面25與出光面26皆為非球面。第三透鏡3具有負屈光率。第三透鏡3的入光面35為球面(spherical surface),出光面36為非球面。第四透鏡4具有正屈光率。第四透鏡4的入光面45與出光面46皆為非球面。第五透鏡5具有負屈光率。第五透鏡5的入光面55為球面,出光面56為非球面。
第一實施例的其他詳細光學數據如下表一所示,且第一實施例的光學鏡頭100的有效焦距(Effective Focal Length,EFL)為7.38毫米(millimeter,mm),全視場角(field of view,FOV)為51度,最大像高為3.38毫米。應當說明的是,表一所示的入光面15的曲率半徑所指為第一透鏡1的入光面15在光軸區域的曲率半徑,出光面16的曲率半徑所指為第一透鏡1的出光面16在光軸區域的曲率半徑,依此類推。入光面15的間距(如表一所示為0.44mm)所指為入光面15與下一個表面(此例中為稜鏡9的出光面96)在光軸I上的間距,即第一透鏡1與稜鏡9在光軸I上的間隙
為0.44mm。出光面16的間距(如表一所示為4.02mm)所指為出光面16與入光面15在光軸I上的間距,即第一透鏡1在光軸I上的厚度為4.02mm,依此類推。
根據圖1及表一,第一透鏡1為雙凸透鏡。第二透鏡2為雙凸透鏡。第三透鏡3為雙凹透鏡。第四透鏡4為雙凸透鏡。第五透鏡5為雙凹透鏡。
在本實施例中,第一透鏡1的阿貝數大於40,第二透鏡2的阿貝數大於40,第三透鏡3的阿貝數小於30,第五透鏡5的
阿貝數大於50。
Y:非球面曲線上的點與光軸的距離;Z:非球面深度,即非球面上距離光軸為Y的點,與相切於非球面光軸上頂點之切面,兩者間的垂直距離;R:透鏡表面之曲率半徑;K:圓錐係數;a2i:第2i階非球面係數。
本實施例在上述非球面在公式(1)中的各項非球面係數如下表二所示。其中,表二中欄位編號15表示其為第一透鏡1的入光面15的非球面係數,其它欄位依此類推。
當本第一實施例的環境溫度分別為0℃、10℃、20℃、30℃及40℃,光學鏡頭100的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5的溫度(℃)如下表三所示。並且,當本第一實施例的光學鏡頭100在0℃~40℃的環溫範圍內,且應用在熱平衡時,在不重新調整焦距的情況下,對應投影畫面的中心點,光學鏡頭的背焦之熱飄移量小於0.01mm。
再配合參閱圖2A至圖2D,圖2A說明第一實施例的橫向色差(Lateral Chromatic Aberration),圖2B與圖2C則分別說明第一實施例當參考波長為525奈米(nm)時的弧矢(Sagittal)方向的場曲(Field Curvature)像差及子午(Tangential)方向的場曲像差,圖2D則說明第一實施例當參考波長為525nm時的畸變像差(Distortion Aberration)。
在本第一實施例的橫向色差圖式的圖2A中,代表波長分別為465nm、525nm及620nm。圖2A中的曲線C21繪示了波長465nm及620nm之間的色差,曲線C22繪示了波長465nm及525nm之間的色差。由圖2A可以看出,代表波長彼此間色差小,光學鏡頭100的色差表現良好。
在圖2B與圖2C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±0.04毫米內,說明本第一實施例的光學鏡頭100能有效消除像差。而圖2D的畸變像差圖式則顯示本第一實施例的畸變像差維持在±4%的範圍內,說明本第一實施例的畸變像差具備光學鏡頭的成像品質要求,據此說明本第一實施例相較於現有光學鏡頭,在全視場角為51°,最大像高為3.38毫米且部分透鏡為塑膠透鏡的條件下,仍能提供良好的成像品質。本第一實施例的光學鏡頭100能解析116 lp/mm空間解析度的影像。
為了充分說明本發明的各種實施態樣,將在下文描述本
發明的其他實施例。在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。
圖3為本發明之第二實施例之影像投射模組的示意圖。圖4A至圖4D為第二實施例之光學鏡頭的橫向色差、場曲及畸變圖。
參照圖3,影像投射模組2000包括光學鏡頭200、稜鏡9以及影像源10。光學鏡頭200包括具有屈光率的透鏡共五個,從入光側A1至出光側A2沿光軸I依序為具有屈光率的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4以及第五透鏡5。第一透鏡1為玻璃非球面透鏡。第二透鏡2為玻璃球面透鏡。第三透鏡3為玻璃球面透鏡。第四透鏡4為塑膠非球面透鏡。第五透鏡5為塑膠非球面透鏡。在本實施例中,光學鏡頭200的有效焦距EFL為7.76mm,第一透鏡1、第二透鏡2及第三透鏡3的整體有效焦距EFLG1-3為7.68mm。光學鏡頭200滿足條件式0.5EFL<EFLG1-3<2EFL。光學鏡頭200用於接收來自入光側A1的影像光束,影像光束由影像源10提供。稜鏡9設置於影像光束的路徑上,且設置於影像源10與光學鏡頭200之間。影像光束在出光側A2形成光欄0,光欄0形成於影像光束的光束縮束的最小截面積的位置。
影像投射模組2000還包括保護蓋110,保護蓋110例如為透明玻璃,且配置於影像源10及稜鏡9之間,用以保護影像源
10而避免灰塵沾附於影像源10的成像面。第一透鏡1具有正屈光率。第一透鏡1的入光面15與出光面16皆為非球面。第二透鏡2及第三透鏡3合而為一膠合透鏡,其中第二透鏡2具有正屈光率。第二透鏡2的入光面25與出光面26皆為球面。第三透鏡3具有負屈光率。第三透鏡3的出光面36為球面。第四透鏡4具有負屈光率。第四透鏡4的入光面45與出光面46皆為非球面。第五透鏡5具有正屈光率。第五透鏡5的入光面55與出光面56皆為非球面。
第二實施例的其他詳細光學數據如下表四所示,且第二實施例的光學鏡頭200的有效焦距為7.76毫米,全視場角為48°,最大像高為3.38毫米。
根據圖3及表四,第一透鏡1為雙凸透鏡。由第二透鏡2及第三透鏡3所構成的膠合透鏡為凸面朝入光側A1的凸凹透鏡。第四透鏡4為凸面朝入光側A1的凸凹透鏡。第五透鏡5為雙凸透鏡。
在本實施例中,第一透鏡1的阿貝數大於40,第二透鏡2的阿貝數大於40,第三透鏡3的阿貝數小於30。
在本實施例中,入光面15、45、55及出光面16、46、56共計六個面均是非球面。上述非球面在公式(1)中的各項非球面係數如下表五所示。
當本第二實施例的環境溫度分別為0℃、10℃、20℃、30℃及40℃,光學鏡頭200的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5的溫度(℃)如下表六所示。並且,當本第二實施例的光學鏡頭200在0℃~40℃的環溫範圍內,且應用在熱平衡時,在不重新調整焦距的情況下,對應投影畫面的中心點,光學鏡頭的背焦之熱飄移量小於0.01mm。
再配合參閱圖4A至圖4D,圖4A說明第二實施例的橫向色差,圖4B與圖4C則分別說明第二實施例當參考波長為525nm時的弧矢方向的場曲像差及子午方向的場曲像差,圖4D則說明第二實施例當參考波長為525nm時的畸變像差。
在本第二實施例的橫向色差圖式圖4A中,代表波長分別為465nm、525nm及620nm。圖4A中的曲線C41繪示了波長465nm及620nm之間的色差,曲線C42繪示了波長465nm及525nm之間的色差。由圖4A可以看出,代表波長彼此間色差小,光學鏡頭200的色差表現良好。
在圖4B與圖4C的二個場曲像差圖式中,三種代表波長
在整個視場範圍內的場曲像差落在±0.04毫米內,說明本第二實施例的光學鏡頭200能有效消除像差。而圖4D的畸變像差圖式則顯示本第二實施例的畸變像差維持在±4%的範圍內,說明本第二實施例的畸變像差具備光學鏡頭的成像品質要求,據此說明本第二實施例相較於現有光學鏡頭,在全視場角為48°,最大像高為3.38毫米且部分透鏡為塑膠透鏡的條件下,仍能提供良好的成像品質。本第二實施例的光學鏡頭200能解析116 lp/mm空間解析度的影像。
圖5為本發明之第三實施例之影像投射模組的示意圖。圖6A至圖6D為第三實施例之光學鏡頭的橫向色差、場曲及畸變圖。
參照圖5,影像投射模組3000包括光學鏡頭300、稜鏡9以及影像源10。光學鏡頭300包括具有屈光率的透鏡共五個,從入光側A1至出光側A2沿光軸I依序為具有屈光率的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4以及第五透鏡5。第一透鏡1為塑膠非球面透鏡。第二透鏡2為玻璃非球面透鏡。第三透鏡3為塑膠非球面透鏡。第四透鏡4為塑膠非球面透鏡。第五透鏡5為塑膠非球面透鏡。在本實施例中,光學鏡頭300的有效焦距EFL為7.31mm,第二透鏡2的有效焦距EFLG2為7.2mm。光學鏡頭300滿足條件式0.5EFL<EFLG2<2EFL。光學鏡頭300用於接收來自入光側A1的影像光束,影像光束由影像源10提供。稜鏡9設置於影像光束的路徑上,且設置於影像源10與光學鏡頭300之
間。影像光束在出光側A2形成光欄0,光欄0形成於影像光束的光束縮束的最小截面積的位置。
影像投射模組3000還包括保護蓋110,保護蓋110例如為透明玻璃,且配置於影像源10及稜鏡9之間,用以保護影像源10而避免灰塵沾附於影像源10的成像面。第一透鏡1具有正屈光率。第一透鏡1的入光面15與出光面16皆為非球面。第二透鏡2具有正屈光率。第二透鏡2的入光面25與出光面26皆為非球面。第三透鏡3具有負屈光率。第三透鏡3的入光面35與出光面36皆為非球面。第四透鏡4具有負屈光率。第四透鏡4的入光面45與出光面46皆為非球面。第五透鏡5具有正屈光率。第五透鏡5的入光面55與出光面56皆為非球面。
第三實施例的其他詳細光學數據如下表七所示,且第三實施例的光學鏡頭300的有效焦距為7.31毫米,全視場角為51.4°,最大像高為3.38毫米。
根據圖5及表七,第一透鏡1為雙凸透鏡。第二透鏡2為雙凸透鏡。第三透鏡3為雙凹透鏡。第四透鏡4為凸面朝入光側A1的凸凹透鏡。第五透鏡5為凸面朝入光側A1的凹凸透鏡。
在本實施例中,第一透鏡1的阿貝數大於40,第二透鏡2的阿貝數大於40,第三透鏡3的阿貝數小於30。第四透鏡4的阿貝數大於50。
在本實施例中,入光面15、25、35、45、55及出光面16、26、36、46、56共計十個面均是非球面。上述非球面在公式(1)中的各項非球面係數如下表八所示。
當本第三實施例的環境溫度分別為0℃、10℃、20℃、30℃及40℃,光學鏡頭300的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5的溫度(℃)如下表九所示。並且,當本第三實施例的光學鏡頭100在0℃~40℃的環溫範圍內,且應用在熱平衡時,在不重新調整焦距的情況下,對應投影畫面中心點,光學鏡頭的背焦之熱飄移量小於0.015mm。
再配合參閱圖6A至圖6D,圖6A說明第三實施例的橫向色差,圖6B與圖6C則分別說明第三實施例當參考波長為525nm時的弧矢方向的場曲像差及子午方向的場曲像差,圖6D則說明第三實施例當參考波長為525nm時的畸變像差。
在本第三實施例的橫向色差圖式圖6A中,代表波長分別為465nm、525nm及620nm。圖6A中的曲線C61繪示了波長465nm及620nm之間的色差,曲線C62繪示了波長465nm及525nm之間的色差。由圖6A可以看出,代表波長彼此間色差小,光學鏡頭300的色差表現良好。
在圖6B與圖6C的二個場曲像差圖式中,三種代表波長在整個視場範圍內的場曲像差落在±0.02毫米內,說明本第三實施例的光學鏡頭300能有效消除像差。而圖6D的畸變像差圖式則顯示本第三實施例的畸變像差維持在±4%的範圍內,說明本第三實施例的畸變像差具備光學鏡頭的成像品質要求,據此說明本第三實施例相較於現有光學鏡頭,在全視場角為51.4°,最大像高為3.38毫米且部分透鏡為塑膠透鏡的條件下,仍能提供良好的成像品質。本第三實施例的光學鏡頭300能解析116 lp/mm空間解析度的影像。
圖7為本發明之顯示裝置的示意圖。顯示裝置D4包括影
像投射模組4000以及波導元件43。影像投射模組4000包括光學鏡頭400、稜鏡9以及影像產生器40;影像產生器40設置於光學鏡頭400的入光側A1,以提供影像光束L4。影像投射模組4000可以前述第一至第三實施例所述的影像投射模組1000、2000或3000來實現,而光學鏡頭400則對應至前述第一至第三實施例所述的光學鏡頭100、200或300來實現。影像產生器40對應前述第一至第三實施例所述的影像源10,其具體的可以由有機發光二極體顯示器等自發光式影像產生器或液晶顯示器等穿透式影像產生器來實現。換句話說,本實施例的顯示裝置D4為使用自發光式(穿透式)面板架構。
波導元件43設置於光學鏡頭400的出光側A2,且具有光耦合入口43E以及光耦合出口43O。光學鏡頭400的光欄0位於波導元件43的光耦合入口43E處。影像光束L4經由光耦合入口43E進入波導元件43,並且波導元件43引導影像光束L4,使影像光束L4在波導元件43內全反射傳遞,進而使影像光束L4由光耦合出口43O離開波導元件43,進入人眼,用以在人眼前方的預設位置形成虛像。
圖8為本發明之另一實施例之顯示裝置的示意圖。顯示裝置D5包括影像投射模組5000、照明光源52以及波導元件53;影像投射模組5000包括光學鏡頭500、稜鏡9以及影像產生器51。影像產生器51為反射式影像產生器,具體的可以矽基液晶面板或數位微鏡元件來實現。照明光源52產生照明光束I5,照明光束I5
經由稜鏡9導引至影像產生器51後,經過影像產生器51的反射,形成為影像光束L5。影像產生器51設置於光學鏡頭500的入光側A1,以提供影像光束L5。影像投射模組5000可以前述第一至第三實施例所述的影像投射模組1000、2000或3000來實現,而光學鏡頭500則對應至前述第一至第三實施例所述的光學鏡頭100、200或300來實現,影像產生器51對應前述第一至第三實施例所述的影像源10。本實施例的顯示裝置D5為使用反射式面板架構。
波導元件53設置於光學鏡頭500的出光側A2,且具有光耦合入口53E以及光耦合出口53O。光學鏡頭500的光欄0位於波導元件53的光耦合入口53E。影像光束L5經由光耦合入口53E進入波導元件53,並且波導元件53引導影像光束L5,使影像光束L5在波導元件53內全反射傳遞,進而使影像光束L5由光耦合出口53O離開波導元件53,進入人眼,用以在人眼前方的預設位置形成虛像。
綜上所述,本發明實施例提供的光學鏡頭包含玻璃透鏡及塑膠透鏡,並滿足條件式0.5EFL<EFLG<2 EFL,其中EFL為光學鏡頭的有效焦距,EFLG為所有玻璃透鏡的有效焦距。光學鏡頭能解析116 lp/mm空間解析度的影像,且熱飄移量小。本發明實施例提供的顯示裝置具有良好的光學表現。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發
明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利檔搜尋之用,並非用來限制本發明之權利範圍。此外,本說明書或申請專利範圍中提及的“第一”、“第二”等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。
0:光欄
1、2、3、4、5:透鏡
9:稜鏡
10:影像源
15、25、35、45、55、95、105:入光面
16、26、36、46、56、96、106:出光面
100:光學鏡頭
110:保護蓋
1000:影像投射模組
A1:入光側
A2:出光側
I:光軸
Claims (19)
- 一種光學鏡頭,包括具有屈光率的透鏡共五個,且該五個透鏡從入光側至出光側沿一光軸依序為一第一透鏡、一第二透鏡、一第三透鏡、一第四透鏡以及一第五透鏡,其中該第一透鏡具有正屈光率,該第二透鏡具有正屈光率,該第三透鏡具有負屈光率,且該第一透鏡、該第二透鏡、該第三透鏡、該第四透鏡及該第五透鏡中至少一個透鏡的材料為玻璃,該光學鏡頭包括至少一塑膠透鏡以及至少一玻璃透鏡,且該第一透鏡至該第五透鏡中的所有玻璃透鏡的有效焦距EFLG滿足條件式0.5EFL<EFLG<2EFL,其中EFL為該光學鏡頭的有效焦距,該光學鏡頭用於接收來自該入光側的一影像光束,該影像光束在該出光側形成一光欄,該光欄形成於該影像光束的光束縮束的最小截面積的位置。
- 如請求項1所述的光學鏡頭,其中該第一透鏡的阿貝數大於40,該第二透鏡的阿貝數大於40,該第三透鏡的阿貝數小於30。
- 如請求項1所述的光學鏡頭,其中該第一透鏡為玻璃非球面透鏡。
- 如請求項3所述的光學鏡頭,其中該第二透鏡、該第三透鏡、該第四透鏡以及該第五透鏡為塑膠非球面透鏡。
- 如請求項3所述的光學鏡頭,其中該第四透鏡具有正屈光率,該第五透鏡具有負屈光率。
- 如請求項3所述的光學鏡頭,其中該第二透鏡以及該第三透鏡皆為玻璃球面透鏡,該第四透鏡以及該第五透鏡皆為塑膠非球面透鏡。
- 如請求項3所述的光學鏡頭,其中該第四透鏡具有負屈光率,該第五透鏡具有正屈光率。
- 如請求項1所述的光學鏡頭,其中該第二透鏡為玻璃非球面透鏡。
- 如請求項6所述的光學鏡頭,其中該第一透鏡、該第三透鏡、該第四透鏡以及該第五透鏡為塑膠非球面透鏡。
- 如請求項6所述的光學鏡頭,其中該第四透鏡具有負屈光率,該第五透鏡具有正屈光率。
- 如請求項1所述的光學鏡頭,其中該第一透鏡以及該第二透鏡皆為雙凸透鏡。
- 如請求項1所述的光學鏡頭,其中該第四透鏡及該第五透鏡中的至少一者的阿貝數大於50。
- 如請求項1所述的光學鏡頭,該光學鏡頭的全視場角小於等於51.4度。
- 如請求項1所述的光學鏡頭,其中該第二透鏡以及該第三透鏡合而為一膠合透鏡。
- 一種顯示裝置,包括: 如請求項1所述的光學鏡頭;一影像產生器,設置於該光學鏡頭的該入光側,以提供該影像光束;以及一波導元件,設置於該光學鏡頭的該出光側,且具有一光耦合入口以及一光耦合出口,該影像光束經由該光耦合入口進入該波導元件,並且該波導元件引導該影像光束,以使該影像光束由該光耦合出口離開該波導元件。
- 如請求項15所述的顯示裝置,其中該光欄位於該波導元件的該光耦合入口。
- 如請求項15所述的顯示裝置,還包括一稜鏡,設置於該影像光束的路徑上,且設置於該影像產生器與該光學鏡頭之間。
- 如請求項17所述的顯示裝置,還包括一照明光源,其中該影像產生器為一反射式影像產生器,該照明光源產生一照明光束,該照明光束經由該稜鏡導引至該影像產生器後,經過該影像產生器的反射,形成為該影像光束。
- 如請求項17所述的顯示裝置,其中該影像產生器為矽基液晶面板或數位微鏡元件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110119614A TWI792331B (zh) | 2021-05-31 | 2021-05-31 | 光學鏡頭及顯示裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110119614A TWI792331B (zh) | 2021-05-31 | 2021-05-31 | 光學鏡頭及顯示裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202248702A TW202248702A (zh) | 2022-12-16 |
TWI792331B true TWI792331B (zh) | 2023-02-11 |
Family
ID=85793533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110119614A TWI792331B (zh) | 2021-05-31 | 2021-05-31 | 光學鏡頭及顯示裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI792331B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201317618A (zh) * | 2012-10-31 | 2013-05-01 | 玉晶光電股份有限公司 | 可攜式電子裝置與其光學成像鏡頭 |
CN106019570A (zh) * | 2016-07-14 | 2016-10-12 | 浙江舜宇光学有限公司 | 目镜 |
US20170343772A1 (en) * | 2016-05-26 | 2017-11-30 | Sintai Optical (Shenzhen) Co., Ltd. | Projection Lens Assembly |
US20200110250A1 (en) * | 2008-01-22 | 2020-04-09 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
TW202034012A (zh) * | 2019-03-06 | 2020-09-16 | 大陸商信泰光學(深圳)有限公司 | 光學鏡頭(二) |
CN112305709A (zh) * | 2019-07-30 | 2021-02-02 | 佳能企业股份有限公司 | 光学镜头 |
TW202117391A (zh) * | 2019-06-26 | 2021-05-01 | 中強光電股份有限公司 | 光學鏡頭及頭戴式顯示裝置 |
-
2021
- 2021-05-31 TW TW110119614A patent/TWI792331B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200110250A1 (en) * | 2008-01-22 | 2020-04-09 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
TW201317618A (zh) * | 2012-10-31 | 2013-05-01 | 玉晶光電股份有限公司 | 可攜式電子裝置與其光學成像鏡頭 |
US20170343772A1 (en) * | 2016-05-26 | 2017-11-30 | Sintai Optical (Shenzhen) Co., Ltd. | Projection Lens Assembly |
CN106019570A (zh) * | 2016-07-14 | 2016-10-12 | 浙江舜宇光学有限公司 | 目镜 |
TW202034012A (zh) * | 2019-03-06 | 2020-09-16 | 大陸商信泰光學(深圳)有限公司 | 光學鏡頭(二) |
TW202117391A (zh) * | 2019-06-26 | 2021-05-01 | 中強光電股份有限公司 | 光學鏡頭及頭戴式顯示裝置 |
CN112305709A (zh) * | 2019-07-30 | 2021-02-02 | 佳能企业股份有限公司 | 光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
TW202248702A (zh) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6993251B2 (ja) | 投射光学系および画像表示装置 | |
US11275234B2 (en) | Projection objective and waveguide display device | |
TWI781947B (zh) | 光學鏡頭 | |
TWI797438B (zh) | 光學鏡頭 | |
TWI671559B (zh) | 顯示器 | |
TWI651564B (zh) | 定焦鏡頭 | |
TWI768313B (zh) | 光學鏡頭及頭戴式顯示裝置 | |
TWI671564B (zh) | 光學鏡頭 | |
TW202134734A (zh) | 微型頭戴顯示器之光學系統 | |
TWI792331B (zh) | 光學鏡頭及顯示裝置 | |
US7675685B2 (en) | Image display apparatus | |
TWI810955B (zh) | 光學鏡頭以及顯示裝置 | |
EP4141504A1 (en) | Optical lens having five lenses and a rear pupil and display device using the same | |
EP4094116A1 (en) | Light guide and virtual-image display device | |
TWI845026B (zh) | 光學鏡頭模組、光機模組以及頭戴式顯示裝置 | |
TWI829434B (zh) | 光學鏡頭模組、光機模組以及頭戴式顯示裝置 | |
CN118091940A (zh) | 光学镜头模块、光机模块以及头戴式显示装置 | |
TW202434914A (zh) | 光學透鏡組及頭戴式電子裝置 | |
KR20230161850A (ko) | 프로젝션 렌즈 광학계, 이를 채용한 프로젝션 장치 및 웨어러블 디바이스 |