WO2022068174A1 - 一种测定高温费托合成油中芳烃组成及含量的方法 - Google Patents

一种测定高温费托合成油中芳烃组成及含量的方法 Download PDF

Info

Publication number
WO2022068174A1
WO2022068174A1 PCT/CN2021/086956 CN2021086956W WO2022068174A1 WO 2022068174 A1 WO2022068174 A1 WO 2022068174A1 CN 2021086956 W CN2021086956 W CN 2021086956W WO 2022068174 A1 WO2022068174 A1 WO 2022068174A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic oil
tropsch synthetic
aromatic hydrocarbons
temperature fischer
content
Prior art date
Application number
PCT/CN2021/086956
Other languages
English (en)
French (fr)
Inventor
孙启文
孙燕
陈昂俊
Original Assignee
上海兖矿能源科技研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海兖矿能源科技研发有限公司 filed Critical 上海兖矿能源科技研发有限公司
Publication of WO2022068174A1 publication Critical patent/WO2022068174A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/065Preparation using different phases to separate parts of sample

Definitions

  • the invention belongs to the technical field of analysis and detection, and relates to a method for determining the composition and content of aromatic hydrocarbons in high-temperature Fischer-Tropsch synthetic oil.
  • Fischer-Tropsch synthesis has a history of nearly a hundred years. In recent years, due to the increase in the proven reserves of coal and natural gas and the adjustment of the energy industry structure in various countries, Fischer-Tropsch synthesis has become one of the research hotspots in the field of energy substitution at home and abroad. According to the different reaction temperature, Fischer-Tropsch synthesis can be divided into low-temperature Fischer-Tropsch synthesis and high-temperature Fischer-Tropsch synthesis.
  • Low-temperature Fischer-Tropsch synthesis products are mainly alkanes, followed by alkenes and oxygen-containing organic compounds such as alcohols, aldehydes, ketones, acids, esters, etc.; in high-temperature Fischer-Tropsch synthesis products, alkenes are the main products, followed by alkanes, aromatics and oxygen-containing organic compounds .
  • Aromatic compounds are important chemical intermediates, and the content of aromatics in high-temperature Fischer-Tropsch synthetic oil is as high as 5-10%, which has a very huge space for utilization.
  • the composition of aromatic hydrocarbons in high temperature Fischer-Tropsch synthetic oil is very complex, including various compounds such as alkylbenzenes, indans, indenes, naphthalenes, acenaphthylenes and fluorenes. Accurate analysis of the content of various aromatic hydrocarbons in high temperature Fischer-Tropsch synthetic oil is very necessary for the deep processing research of high temperature Fischer-Tropsch synthetic oil.
  • SH/T 0693 which connects two chromatographic columns through a valve, realizes the direct measurement of the content of aromatics in gasoline, but this method is not suitable for the analysis of the content of aromatics above C10; ASTM D2425, GB/T 32384, SH /T 0606 and ASTM D3239 use mass spectrometry to quantitatively analyze various types of aromatic hydrocarbons from C11 to C44, but it is necessary to separate saturated hydrocarbons from aromatic hydrocarbons in the oil in advance, and this method cannot separate high temperature Fischer-Tropsch synthetic oil.
  • Zhou Jian et al. used comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (Petroleum Refinery and Chemical Industry, 2012, 043(10): 97-102.) to analyze the heavy distillate oil obtained by catalytic cracking.
  • the heavy distillate oil is divided into saturated hydrocarbon and aromatic hydrocarbon components by solid phase extraction, and then the aromatic hydrocarbon components are directly injected into the chromatography for analysis.
  • Using the high resolution and high sensitivity of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry better qualitative and quantitative results of PAHs can be obtained.
  • the instruments used in this method are very expensive, and when applied to high-temperature Fischer-Tropsch synthetic oils with more complex compounds, mutual interference between aliphatic hydrocarbons and aromatic hydrocarbons will also occur.
  • CN102079987A and CN106947515B respectively disclose methods for separating different types of compounds in oil by solid-phase extraction, which separates oil samples into alkanes, aromatics and colloidal parts;
  • CN104749298B connects two solid-phase extraction columns in series to realize alkanes, alkenes, Separation of aromatics and gum fractions, and then use chromatography to separate and analyze the compounds in each fraction.
  • these methods have small sample throughput, poor quantitative effect on aromatic hydrocarbons with lower content, and are not suitable for high-temperature Fischer-Tropsch synthetic oils with more complex compositions.
  • Chinese patent application CN111308005A discloses a method for determining the content of hydrocarbons and oxygenates in Fischer-Tropsch synthetic oil, which includes first separating the Fischer-Tropsch synthetic oil by solid phase extraction to obtain hydrocarbon mixed components and oxygenate mixed components , and respectively carry out gas chromatography-mass spectrometry analysis, determine the reference score in the obtained spectrum and calculate the retention index of each peak, according to the retention index and the compound qualitative database, determine the hydrocarbons or oxygenates corresponding to each peak, and The content of each hydrocarbon or oxygenate is obtained from the peak area.
  • this method can separate the hydrocarbons and oxygenates in the Fischer-Tropsch synthetic oil to a certain extent, it is more suitable for the analysis of the low-temperature Fischer-Tropsch synthesis reaction product oil with less aromatic content. The presence of aromatic hydrocarbons is not considered, and the applicability is poor.
  • the purpose of the present invention is to provide a method for measuring the composition and content of aromatic hydrocarbons in the high-temperature Fischer-Tropsch synthetic oil in order to overcome the above-mentioned defects in the prior art, which can accurately analyze the specific types and contents of various aromatic hydrocarbons in the high-temperature Fischer-Tropsch synthetic oil.
  • a method for determining the composition and content of aromatic hydrocarbons in a high-temperature Fischer-Tropsch synthetic oil comprises: firstly dividing the high-temperature Fischer-Tropsch synthetic oil to be measured into two parts, wherein the first part of the high-temperature Fischer-Tropsch synthetic oil is reacted with a bromine solution, and after the reaction is divided into two parts.
  • the upper organic phase is concentrated and loaded onto the solid-phase extraction column A, rinsed and eluted by eluent I, the eluent is collected, concentrated, and separated to obtain the monocyclic aromatic hydrocarbon mixed component;
  • the synthetic oil was directly loaded on the solid phase extraction column B, washed and eluted by the eluent I and the eluent II, the eluent was collected, concentrated, and separated to obtain the mixed components of polycyclic aromatic hydrocarbons, and finally passed through the gas chromatography- Mass spectrometry is used to analyze the mixed components of monocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons, and the reference components are determined in the obtained spectrum and the retention index of each peak is calculated, and then according to the retention index and the pre-established compound qualitative database, each The monocyclic aromatic hydrocarbons or polycyclic aromatic hydrocarbons corresponding to the peaks are obtained, and the content of each monocyclic aromatic hydrocarbon or polycyclic aromatic hydrocarbons is obtained according to the peak area.
  • the qualitative and quantitative analysis of monocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons is specifically: first use the mass spectrum library to find the retention time of the reference component, and then use the gas chromatography-mass spectrometry to obtain the retention time of each peak in the spectrum.
  • the retention time of the corresponding reference component is substituted into the formula (1), the retention index is calculated, and the retention index is compared with the pre-established compound qualitative database to quickly identify each peak in the chromatogram;
  • the content of each monocyclic aromatic hydrocarbon and polycyclic aromatic hydrocarbon in the high temperature Fischer-Tropsch synthetic oil can be obtained.
  • I x is the retention index of the peak to be determined
  • z is the carbon number of the previous reference component peak of the peak to be determined
  • t R(x) is the retention time of the peak to be determined
  • t R(z) is The retention time of the reference component peak before the peak to be determined
  • t R(z+1) is the retention time of the reference component peak after the peak to be determined.
  • the high-temperature Fischer-Tropsch synthetic oil refers to the carbon number obtained by the high-temperature Fischer-Tropsch synthesis reaction process, which is C 5 -C 30 , mainly concentrated in C 5 -C 20 , and the distillation range is mainly distributed in 50-350 °C. Support synthetic oil.
  • the concrete method for the reaction of the first high-temperature Fischer-Tropsch synthetic oil and the bromine solution is as follows: take a certain amount of potassium bromide and potassium bromate, dissolve in deionized water, and prepare a potassium bromide-potassium bromate solution, which is called Take the first high-temperature Fischer-Tropsch synthetic oil, dissolve it in carbon tetrachloride, add a certain amount of acetic acid and potassium bromide-potassium bromate solution, and stir the reaction at room temperature for a certain period of time. Carbonize the organic phase and remove the solvent in a rotary evaporator.
  • the mass ratio of described potassium bromide and potassium bromate is (2.5-6): 1.
  • the mass ratio of potassium bromide and potassium bromate is (3-5): 1.
  • the mass ratio of described potassium bromide-potassium bromate total mass and the first part of high temperature Fischer-Tropsch synthetic oil is (2-4): 1.
  • the mass ratio of the total mass of potassium bromide-potassium bromate to the first part of high temperature Fischer-Tropsch synthetic oil is (2.5-3): 1.
  • the added amount of the acetic acid is: the volume-to-mass ratio of the acetic acid to the first high-temperature Fischer-Tropsch synthetic oil is 15-25 mL/1.5 g.
  • the amount of acetic acid added is: the volume-to-mass ratio of the acetic acid to the first high-temperature Fischer-Tropsch synthetic oil is 18-21 mL/1.5 g.
  • the time of the stirring reaction at room temperature is 2-4h.
  • the stirring reaction time at room temperature is 2.5-3h.
  • the solid phase extraction column A is filled with the stationary phase A
  • the solid phase extraction column B is filled with the stationary phase B
  • the carriers used for the stationary phase A and the stationary phase B can be silica gel or Neutral alumina, preferably silica gel
  • the carrier has a specific surface area of 200-500 m 2 /g and a pore volume of 0.5-1.5 mL/g.
  • the specific surface area of the stationary phase is 300-450 m 2 /g
  • the pore volume is 0.7-1.2 mL/g.
  • the carriers in the stationary phase A and stationary phase B all need to be modified, and the modified element is a group IB metal, preferably copper or silver, and the modification method is: weigh a certain mass of nitrate of group IB element, dissolve it in the deodorant
  • the modified metal nitrate solution (mass concentration is 3-10wt%) is obtained in the ionized water, and the carrier is slowly added to the IB group element nitrate aqueous solution under the condition of constant stirring (the carrier is immersed in the modified metal nitrate solution in equal volume). After all the additions are completed, let it stand for 60 minutes, and then keep it at 130-160 ° C for 3-7 hours for activation.
  • the activation conditions are 4-5 hours at a constant temperature of 145-150 ° C; preparation A modified stationary phase is obtained, wherein the mass content of the modified metal on the stationary phase A is 4-10%, preferably 5-6%; the mass content of the modified metal on the stationary phase B is 0.2-0.5%, preferably 0.3- 0.4%.
  • the IB group element nitrates loaded in the solid phase extraction column include copper nitrate and silver nitrate.
  • the IB group element nitrate loaded is silver nitrate.
  • the packing height of the stationary phase (including stationary phase A and stationary phase B) in the solid phase extraction column (solid phase extraction column A and solid phase extraction column B) is 130-160 mm/0.5g sample.
  • the packing height of the stationary phase is preferably 140-150mm/0.5g sample.
  • the method for separating the single-ring aromatic hydrocarbon components is as follows: taking a certain amount of oil sample (upper organic phase) after reacting with the bromine solution and concentrating, and transferring it to a solid-phase extraction column containing stationary phase A. , load the sample to make it adsorb on the stationary phase A, then rinse the stationary phase with eluent I, first elute the alkane substance (first eluent) in it; continue to rinse the stationary phase with eluent I, elution The single-ring aromatic hydrocarbon component (second eluent) in it was extracted, the second eluent was collected, concentrated to about 1 mL using a nitrogen blower, and then weighed.
  • the eluent I is a C 5 -C 7 saturated hydrocarbon.
  • the eluent I is at least one of n-pentane, n-hexane and n-heptane, preferably n-hexane.
  • the described eluent I consumption for eluting alkanes is 24-30mL/1g sample; the eluent I consumption for eluting monocyclic aromatic hydrocarbons is 26-34mL/1g sample.
  • the flushing speed of described eluent I is always 2.0-6.0mL/min.
  • the described eluent I consumption for eluting alkanes is 26-28mL/1g sample; the described eluent I consumption for eluting monocyclic aromatic hydrocarbons is 28-30mL/1g Sample; the washing speed of described eluent I is 3.0-4.0mL/min.
  • the method for separating the polycyclic aromatic hydrocarbon components is as follows: take a second part of high-temperature Fischer-Tropsch synthetic oil, directly load the sample into a solid-phase extraction column containing stationary phase B, and then rinse with eluent I first , eluted the former component (the third eluent: aliphatic hydrocarbon and monocyclic aromatic hydrocarbon mixture); then use the elution II agent to wash the stationary phase to elute the polycyclic aromatic hydrocarbon component (the fourth wash Dehydration), collect the fourth eluate, use a nitrogen blower to concentrate to about 1 mL, and then weigh.
  • the eluent II is a mixture of halogenated alkanes and C 5 -C 7 saturated hydrocarbons.
  • the halogenated alkanes include dichloromethane, chloroform and 1,2-dichloroethane.
  • the volume ratio of described C 5 -C 7 saturated hydrocarbon and halogenated alkane is (5-3): 1, as a preferred technical scheme, described halogenated alkane is methylene chloride, and described C 5 -C 7 saturated hydrocarbon
  • the hydrocarbon is one or more of n-pentane, n-hexane and n-heptane.
  • the volume ratio of C5 - C7 saturated hydrocarbons and halogenated alkanes is 4:1.
  • the C 5 -C 7 saturated hydrocarbon is n-hexane.
  • the eluent I consumption of the described elution front component is 80-120mL/1g sample; the described elution of the polycyclic aromatic hydrocarbons (the fourth eluent) is The amount of eluent II was 35-60 mL/1 g of sample.
  • the flushing speeds of the eluent I and the eluent II are both 2.0-6.0 mL/min.
  • the dosage of the eluent I is 90-110mL/1g sample; the dosage of the eluent II is 40-45mL/1g sample.
  • the flushing speeds of the first eluent and the second eluent are both 3.0-4.0 mL/min.
  • the working conditions of the gas chromatography include a sample injection volume of 0.1-0.5 ⁇ L, split injection, and the chromatographic columns are HP-1, DB-1, HP-PONA, DB-Petro One of the capillary columns, the inlet temperature is 250-300°C, and the column oven heating program is: initial temperature 30-40°C, heating rate 2-5°C/min, end temperature 250-300°C;
  • the working conditions of mass spectrometry include EI ionization mode, the bombardment voltage is 50-70eV, the scanning range is 15-500amu, and the ion source temperature is 200-250°C.
  • the injection volume is 0.2 ⁇ L
  • the chromatographic column is an HP-PONA capillary column
  • the inlet temperature is 300°C
  • the initial temperature of the column oven heating program is 35°C
  • the heating rate is 2°C/min
  • the end temperature is 300°C.
  • the bombardment voltage is 70 eV
  • the scanning range is 20-300 amu
  • the temperature of the ion source is 230°C.
  • the establishment method of described compound qualitative database comprises:
  • the reference component for the mixed component of monocyclic aromatic hydrocarbons, the reference component is n-alkylbenzene; for the mixed component of polycyclic aromatic hydrocarbons, the reference component is n-indene.
  • the present invention has the following advantages:
  • the present invention divides the high temperature Fischer-Tropsch synthetic oil to be measured into two parts, the first part dissolves the olefin component in the water phase by the bromine solution, and the remaining organic phase is mainly the aromatic hydrocarbon component, in the solid phase extraction column A,
  • the carrier filled with modified metal is used, and the saturated hydrocarbon of C 5 -C 7 is used as the elution solvent I to elute twice, in which the saturated hydrocarbon mixture that is loosely bound to the stationary phase A can be eluted first, and the The monocyclic aromatic hydrocarbons that are tightly bound to the stationary phase A are eluted during the second elution, and the polycyclic aromatic hydrocarbons are still firmly bound to the stationary phase A under the elution of the elution solvent I, so as to realize the separation of the monocyclic aromatic hydrocarbons;
  • the second part of high temperature Fischer-Tropsch synthetic oil is directly eluted on the solid phase extraction column B, wherein the saturated hydrocarbon of C 5 -C 7
  • the present invention finally separates the monocyclic aromatic hydrocarbons and the polycyclic aromatic hydrocarbons for independent detection by using the principle of polar compatibility, which can avoid monocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons such as alkylbenzene and Indene compounds can interfere with each other during chromatographic analysis, which can effectively improve the accuracy of aromatics content testing;
  • Gas chromatography-mass spectrometry can quickly locate the relatively high content of n-alkylbenzene and n-indene in monocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons, and then use them as reference peaks to calculate the values of the remaining peaks.
  • the retention index is used to characterize the compound. This qualitative method using retention index can effectively eliminate the interference caused by instrument instability, carrier gas fluctuation or identification deviation of mass spectrometer library, and can characterize compounds with high accuracy and very fast, and realize the rapid detection of samples of the same type. Batch analysis and processing;
  • Fig. 1 is the flow chart of measuring aromatic hydrocarbon composition and content in high temperature Fischer-Tropsch synthetic oil with the present invention
  • Fig. 2 is the monocyclic aromatic hydrocarbon total ion current chromatogram obtained by separating high-temperature Fischer-Tropsch synthetic oil with the method of the present invention
  • Fig. 3 is the polycyclic aromatic hydrocarbon total ion current chromatogram obtained by separating high-temperature Fischer-Tropsch synthetic oil by the method of the present invention.
  • the silica gel used was purchased from Qingdao Ocean Chemical Factory, with a specific surface area of 355 m 2 /g, a pore volume of 1.15 mL/g, and an average pore diameter of 13.0 nm; the used gas chromatography-mass spectrometer was purchased from Agilent Technologies Co., Ltd.
  • the model is 7890B/5977A;
  • the working conditions of gas chromatography are: injection volume 0.2 ⁇ L, split injection, chromatographic column is HP-PONA capillary column, injection port temperature 300 °C, oven heating program: initial temperature 35 °C, rising to 300°C at a heating rate of 2°C/min;
  • the working conditions of mass spectrometry are: EI ionization mode, bombardment voltage 70eV, scanning range 20-300amu, ion source temperature 230°C;
  • silica gel was activated at a constant temperature of 150°C for 5 hours and then taken out for use. Weigh 0.5 g of silver nitrate, dissolve it in 20 mL of deionized water, then weigh 9.5 g of silica gel, slowly add it to the silver nitrate solution under constant stirring, and leave it for 60 minutes after all the addition, and then place it at 150 ° C Activated at constant temperature for 5h to prepare stationary phase A.
  • step (1) Accurately weigh 0.5 g of the liquid finally obtained in step (1), transfer it to a solid-phase extraction column containing stationary phase A, rinse with 1 mL of n-hexane, and then rinse the stationary phase with 14 mL of n-hexane, and discard After the collected liquid, continue to rinse the stationary phase with 15 mL of n-hexane, and use a 50 mL conical flask to collect the liquid rinsed with n-hexane, while ensuring that the rinsing speed is basically controlled at 3.0 mL/min. Finally, the total volume of the collected liquid was concentrated to about 1 mL.
  • the liquid obtained by collecting the n-hexane-dichloromethane mixed washing liquid in step (5) is analyzed by gas chromatography-mass spectrometry.
  • the total ion current chromatogram of the polycyclic aromatic hydrocarbon compound is shown in Figure 2.
  • silica gel used, the working conditions of gas chromatography and the working conditions of mass spectrometry are all the same as in Example 1.
  • silica gel was activated at a constant temperature of 130 °C for 7 h and taken out for use. Weigh 0.4 g of silver nitrate, dissolve it in 20 mL of deionized water, and then weigh 9.6 g of silica gel, slowly add it to the silver nitrate solution under constant stirring, let it stand for 60 minutes after all the addition, and then place it at 130 ° C Activated at constant temperature for 7 h to prepare stationary phase A.
  • step (1) Accurately weigh 0.5 g of the liquid finally obtained in step (1), transfer it to a solid phase extraction column containing stationary phase A, and rinse with 1 mL of n-hexane, then rinse the stationary phase with 15 mL of n-hexane first, and discard After the collected liquid, continue to rinse the stationary phase with 17 mL of n-hexane, and use a 50 mL conical flask to collect the liquid rinsed with n-hexane, while ensuring that the rinsing speed is basically controlled at 6.0 mL/min. Finally, the total volume of the collected liquid was concentrated to about 1 mL.
  • the liquid obtained by collecting the n-hexane washing liquid in step (4) is analyzed by gas chromatography-mass spectrometry to obtain the total ion current chromatogram of the monocyclic aromatic hydrocarbon compound.
  • the retention time of n-alkylbenzene was found out by using the mass spectrometer library, and then the retention time of other peaks was converted into a retention index with n-alkylbenzene as a reference. By comparison, the compound assignment of each peak is determined. Then, the solvent content was deducted from the analysis results, and the absolute content of each single-ring aromatic hydrocarbon component was calculated in combination with the eluent n-hexane and the total mass of the high-temperature Fischer-Tropsch synthetic oil. Among them, the content of some monocyclic aromatic hydrocarbon components is shown in Table 5.
  • the liquid obtained by collecting the n-hexane-dichloromethane mixed washing liquid in step (5) is analyzed by gas chromatography-mass spectrometry to obtain a total ion current chromatogram of the polycyclic aromatic hydrocarbon compound.
  • silica gel used, the working conditions of gas chromatography and the working conditions of mass spectrometry are all the same as those in Example 1.
  • silica gel was activated at a constant temperature of 160°C for 3 hours and then taken out for use. Weigh 1 g of silver nitrate, dissolve it in 20 mL of deionized water, and then weigh 9 g of silica gel, slowly add it to the silver nitrate solution under constant stirring, let it stand for 60 minutes after all the addition is complete, and then place it at 160 °C for activation at a constant temperature 3h, the stationary phase A was prepared.
  • step (1) Accurately weigh 0.5 g of the liquid finally obtained in step (1), transfer it to a solid-phase extraction column containing stationary phase A, and rinse with 1 mL of n-hexane, then rinse the stationary phase with 12 mL of n-hexane first, and discard After the collected liquid, continue to rinse the stationary phase with 13 mL of n-hexane, and use a 50 mL conical flask to collect the liquid rinsed with n-hexane, while ensuring that the rinsing speed is basically controlled at 2.0 mL/min. Finally, the total volume of the collected liquid was concentrated to about 1 mL.
  • the liquid obtained by collecting the n-hexane washing liquid in step (4) is analyzed by gas chromatography-mass spectrometry to obtain the total ion current chromatogram of the monocyclic aromatic hydrocarbon compound.
  • the retention time of n-alkylbenzene was found out by using the mass spectrometer library, and then the retention time of other peaks was converted into a retention index with n-alkylbenzene as a reference. By comparison, the compound assignment of each peak is determined. Then, the solvent content was deducted from the analysis results, and the absolute content of each single-ring aromatic hydrocarbon component was calculated in combination with the total mass of the eluent n-hexane and high-temperature Fischer-Tropsch synthetic oil. Among them, the content of some monocyclic aromatic hydrocarbon components is shown in Table 7.
  • the liquid obtained by collecting the n-hexane-dichloromethane mixed washing liquid in step (5) is analyzed by gas chromatography-mass spectrometry to obtain a total ion current chromatogram of the polycyclic aromatic hydrocarbon compound.
  • silica gel used, the working conditions of gas chromatography and the working conditions of mass spectrometry are all the same as those in Examples 1 and 2.
  • Monocyclic aromatic hydrocarbons cannot be separated from high temperature Fischer-Tropsch synthetic oil, and monocyclic aromatic hydrocarbon components cannot be collected.
  • the polycyclic aromatic hydrocarbons could not be separated from the high temperature Fischer-Tropsch synthetic oil, and the fixation B was washed with a mixed solution of n-hexane-dichloromethane, and the polycyclic aromatic hydrocarbons could not be collected.
  • Aliphatic hydrocarbons could not be separated from monocyclic aromatic hydrocarbons, and the mixture of aliphatic hydrocarbons and monocyclic aromatic hydrocarbons was collected, which caused interference and could not quantify the components of monocyclic aromatic hydrocarbons.
  • Monocyclic aromatic hydrocarbons cannot be fully separated from high temperature Fischer-Tropsch synthetic oil, and the chromatographic yield of monocyclic aromatic hydrocarbons is obviously low.
  • Aliphatic hydrocarbons and monocyclic aromatic hydrocarbons cannot be separated from polycyclic aromatic hydrocarbons.
  • the collected polycyclic aromatic hydrocarbons are mixed with aliphatic hydrocarbons and monocyclic aromatic hydrocarbons, and there is interference, so the components of polycyclic aromatic hydrocarbons cannot be quantified.
  • the polycyclic aromatic hydrocarbons cannot be fully separated from the high temperature Fischer-Tropsch synthetic oil, and the collected polycyclic aromatic hydrocarbons are mixed with oxygen-containing compounds, and there is interference, so the quantification of the polycyclic aromatic hydrocarbon components cannot be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种测定高温费托合成油中芳烃组成及含量的方法,首先将待测高温费托合成油分成两份,其中第一份高温费托合成油与溴溶液反应,反应后分层,取上层有机相浓缩上样于固相萃取柱A,通过洗脱剂I淋洗和洗脱,收集洗脱液,浓缩,经气相色谱-质谱联用分析出高温费托合成油中的单环芳烃及其含量;再将第二份高温费托合成油直接上样于固相萃取柱B,通过洗脱剂I和洗脱剂II淋洗和洗脱,收集洗脱液,浓缩,经气相色谱-质谱联用分析出高温费托合成油中的多环芳烃及其含量。实现了高温费托合成油中单环芳烃与多环芳烃的快速分离,可有效地解决高温费托合成油中芳烃定性和定量检测困难的问题。

Description

一种测定高温费托合成油中芳烃组成及含量的方法 技术领域
本发明属于分析检测技术领域,涉及一种测定高温费托合成油中芳烃组成和含量的方法。
背景技术
费托合成研究已有近百年的历史,近年来由于煤和天然气探明储量增加、各国能源产业结构的调整等原因,费托合成已成为国内外能源替代领域的研究热点之一。根据反应温度的不同,费托合成可分为低温费托合成和高温费托合成。低温费托合成产物以烷烃为主,其次是烯烃和醇、醛、酮、酸、酯等含氧有机化合物;高温费托合成产物中烯烃是主产物,其次是烷烃、芳烃和含氧有机化合物。
芳香族化合物是重要的化工中间体,而高温费托合成油中芳烃的含量高达5-10%,有非常巨大的利用空间。高温费托合成油中的芳烃构成十分复杂,包含烷基苯、茚满类、茚类、萘类、苊类和芴类等多种化合物。准确分析高温费托合成油中各种芳烃的含量,对高温费托合成油的深加工研究是非常有必要的。
传统的油品中烃类的分析方法,都具有明显的局限性。代表性方法SH/T 0693,通过阀将二根色谱柱连接起来,实现汽油中芳烃含量的直接测试,但是这种方法不适用于C10以上的芳烃含量分析;ASTM D2425、GB/T 32384、SH/T 0606和ASTM D3239使用质谱对C11-C44的各种类型的芳烃进行定量分析,但是需要预先将油中的饱和烃与芳烃分离开来,而这种方法并不能分离高温费托合成油中的烯烃和芳烃,如果用于高温费托合成油中芳烃含量的测试会产生严重的干扰。因此,这些方法都不适用于高温费托合成油中芳烃组分的分离与分析。
周建等采用全二维气相色谱-飞行时间质谱法(石油炼制与化工,2012,043(10):97-102.)对催化裂化得到的重馏分油进行分析。先采用固相萃取的方法将重馏分油分为饱和烃与芳烃组分,然后将芳烃组分直接进样到色谱中进行分析。利用全二维气相色谱-飞行时间质谱的高分辨能力和高灵敏度,能够得到较好的多环芳烃定 性定量结果。但是,这种方法所使用的仪器价格非常昂贵,且应用于化合物种类更为复杂的高温费托合成油时,也会产生脂肪烃和芳香烃的互相干扰。
CN102079987A和CN106947515B分别公开了通过固相萃取分离油中不同类型化合物的方法,将油样分离成烷烃、芳烃和胶质部分;CN104749298B则通过将两种固相萃取柱串联起来,实现烷烃、烯烃、芳烃和胶质部分的分离,再使用色谱对各个部分的化合物进行分离与分析。但是,这些方法的样品处理量小,对于含量较低的芳烃物质定量效果较差,且对组成更复杂的高温费托合成油不适用。
中国专利申请CN111308005A公开了一种测定费托合成油中烃类和含氧化合物含量的方法,包括首先通过固相萃取法将费托合成油分离得到烃类混合组分及含氧化合物混合组分,并分别进行气相色谱-质谱联用分析,在所得谱图中确定参考分并计算各个峰的保留指数,根据保留指数与化合物定性数据库,确定各个峰所对应的烃类或含氧化合物,并根据峰面积获得各个烃类或含氧化合物的含量。该方法虽然可以一定程度上将费托合成油中的烃类和含氧化合物分开,更适用于芳烃含量较少的低温费托合成反应产物油的分析,对于高温费托合成油中较高含量芳烃的存在未考虑,适用性较差。
发明内容
本发明的目的就是为了克服上述现有技术缺陷而提供一种测定高温费托合成油中芳烃组成及含量的方法,可精确分析出高温费托合成油中各种芳烃的具体种类和含量。
本发明的目的可以通过以下技术方案来实现:
一种测定高温费托合成油中芳烃组成及含量的方法,该方法包括:首先将待测高温费托合成油分成两份,其中第一份高温费托合成油与溴溶液反应,反应后分层,取上层有机相浓缩上样于固相萃取柱A,通过洗脱剂I淋洗和洗脱,收集洗脱液,浓缩,分离得到单环芳烃混合组分;再将第二份高温费托合成油直接上样于固相萃取柱B,通过洗脱剂I和洗脱剂II淋洗和洗脱,收集洗脱液,浓缩,分离得到多环芳烃混合组分,最后通过气相色谱-质谱联用对单环芳烃混合组分和多环芳烃混合组分分析,在所得谱图中确定参考组分并计算各个峰的保留指数,再根据保留指数与预建立的化合物定性数据库,确定各个峰所对应的单环芳烃或多环芳烃, 并根据峰面积获得各个单环芳烃或多环芳烃的含量。
其中,单环芳烃及多环芳烃的定性及定量分析具体为:先利用质谱库查找出参考组分的保留时间,再将气相色谱-质谱联用得到的谱图中的各个峰的保留时间与相应参考组分的保留时间代入式(1)中,计算出保留指数,将保留指数与预建立的化合物定性数据库进行对比,即可快速地对色谱图中的各个峰进行定性;之后在色谱图中扣除分析用溶剂的含量,并根据固相萃取法中收集到的相应洗脱液的质量进行转化,即可得到高温费托合成油中各个单环芳烃及多环芳烃的含量。
Figure PCTCN2021086956-appb-000001
其中,I x为所需确定峰的保留指数,z为所需确定峰的前一个参考组分峰的碳数,t R(x)为所需确定峰的保留时间,t R(z)为所需确定峰的前一个参考组分峰的保留时间,t R(z+1)为所需确定峰的后一个参考组分峰的保留时间。
进一步地,所述的高温费托合成油指经高温费托合成反应工艺获得的碳数在C 5~C 30,主要集中在C 5-C 20,馏程主要分布在50~350℃的费托合成油。
进一步地,所述的第一份高温费托合成油与溴溶液反应的具体方法为:称取一定量的溴化钾与溴酸钾,溶于去离子水中,配制成溴化钾-溴酸钾溶液,称取第一份高温费托合成油,溶于四氯化碳中,再加入一定量的乙酸和溴化钾-溴酸钾溶液,在室温下搅拌反应一定时间,反应完成后,分层,收集四氯化碳有机相,并在旋转蒸发仪中除去溶剂。
更进一步优选地,所述的溴化钾与溴酸钾的质量比为(2.5-6):1。作为优选的技术方案,溴化钾与溴酸钾的质量比为(3-5):1。
更进一步优选地,所述的溴化钾-溴酸钾总质量与第一份高温费托合成油的质量比为(2-4):1。作为优选的技术方案,溴化钾-溴酸钾总质量与第一份高温费托合成油的质量比为(2.5-3):1。
更进一步优选地,所述的乙酸的加入量为:乙酸与第一份高温费托合成油的体积质量比为15-25mL/1.5g。作为优选的技术方案,乙酸的加入量为:乙酸与第一份高温费托合成油的体积质量比为18-21mL/1.5g。
更进一步优选地,所述的在室温下搅拌反应的时间为2-4h。作为优选的技术方案,在室温下搅拌反应的时间为2.5-3h。
进一步地,所述的固相萃取柱A中装填入固定相A,所述的固相萃取柱B中 装填入固定相B;固定相A和固定相B使用的载体都可为硅胶或中性氧化铝,优选硅胶,所述的载体比表面积为200-500m 2/g,孔体积为0.5-1.5mL/g。作为优选的技术方案,固定相的比表面积为300-450m 2/g,孔体积为0.7-1.2mL/g。
所述的固定相A和固定相B中的载体均需要改性,改性元素为IB族金属,优选铜或银,改性方法为:称取一定质量的IB族元素硝酸盐,溶解于去离子水中得到改性金属硝酸盐溶液(质量浓度为3-10wt%),将载体在不断搅拌的条件下,缓慢地加入到IB族元素硝酸盐水溶液中(载体等体积浸渍改性金属硝酸盐溶液中),全部加入完毕后静置60min,然后在130-160℃下保持3-7h,进行活化,作为优选的技术方案,所述的活化条件为在145-150℃下恒温4-5h;制备得到改性的固定相,其中,固定相A上改性金属的质量含量为4-10%,优选5-6%;固定相B上改性金属的质量含量为0.2-0.5%,优选0.3-0.4%。
所述的固相萃取柱中所负载的IB族元素硝酸盐包括硝酸铜和硝酸银,作为优选的技术方案,所负载的IB族元素硝酸盐为硝酸银。
固定相(包括固定相A和固定相B)在固相萃取柱(固相萃取柱A和固相萃取柱B)中的装填高度为130-160mm/0.5g样品。作为优选的技术方案,所述的固定相的装填高度优选140-150mm/0.5g样品。
进一步地,所述的单环芳烃组分的分离方法为:称取一定量的与溴溶液反应后并经过浓缩的油样(上层有机相),转移至含有固定相A的固相萃取柱中,上样使其吸附在固定相A上,然后用洗脱剂I冲洗固定相,首先洗脱其中的烷烃物质(第一洗脱液);再继续用洗脱剂I冲洗固定相,洗脱出其中的单环芳烃组分(第二洗脱液),收集第二洗脱液,使用氮吹仪浓缩至1mL左右后,进行称重。
所述的洗脱剂I为C 5-C 7的饱和烃。作为优选的技术方案,所述的洗脱剂I为正戊烷、正己烷、正庚烷中的至少一种,优选正己烷。
所述的用于洗脱烷烃的洗脱剂I用量为24-30mL/1g样品;用于洗脱单环芳烃的洗脱剂I用量为26-34mL/1g样品。所述的洗脱剂I的冲洗速度始终为2.0-6.0mL/min。
作为优选的技术方案,所述的用于洗脱烷烃的洗脱剂I用量为26-28mL/1g样品;所述的用于洗脱单环芳烃的洗脱剂I用量为28-30mL/1g样品;所述的洗脱剂I的冲洗速度为3.0-4.0mL/min。
进一步地,所述的多环芳烃组分的分离方法为:称取第二份高温费托合成油, 直接上样于含有固定相B的固相萃取柱中,然后先用洗脱剂I冲洗,洗脱掉其中的前组分(第三洗脱液:脂肪烃与单环芳烃混合物);再改用洗脱II剂冲洗固定相,洗脱出其中的多环芳烃组分(第四洗脱液),收集第四洗脱液,使用氮吹仪浓缩至1mL左右后,进行称重。
进一步地,所述的洗脱剂II为卤代烷烃和C 5-C 7饱和烃的混合物。所述的卤代烷烃包括二氯甲烷、三氯甲烷、1,2-二氯乙烷。所述的C 5-C 7饱和烃和卤代烷烃的体积比为(5-3):1,作为优选的技术方案,所述的卤代烷烃为二氯甲烷,所述的C 5-C 7饱和烃为正戊烷、正己烷、正庚烷中的一种或几种。优选C 5-C 7饱和烃和卤代烷烃的体积比为4:1。作为进一步优选的技术方案,所述的C 5-C 7饱和烃为正己烷。
进一步地,所述的洗脱掉前组分(第三洗脱液)的洗脱剂I用量为80-120mL/1g样品;所述的洗脱出多环芳烃(第四洗脱液)的洗脱剂II用量为35-60mL/1g样品。所述的洗脱剂I及洗脱剂II的冲洗速度均为2.0-6.0mL/min。作为优选的技术方案,所述的洗脱剂I用量为90-110mL/1g样品;所述的洗脱剂II用量为40-45mL/1g样品。所述的第一洗脱剂及第二洗脱剂的冲洗速度均为3.0-4.0mL/min。
所述的气相色谱-质谱联用分析过程中,气相色谱的工作条件包括进样量为0.1-0.5μL,分流进样,色谱柱为HP-1、DB-1、HP-PONA、DB-Petro毛细管柱中的一种,进样口温度为250-300℃,柱箱升温程序为:初始温度30-40℃,升温速率2-5℃/min,终点温度250-300℃;
质谱的工作条件包括EI电离方式,轰击电压为50-70eV,扫描范围为15-500amu,离子源温度为200-250℃。
作为优选的技术方案,所述的气相色谱的工作条件中,进样量为0.2μL,色谱柱为HP-PONA毛细管柱,进样口温度为300℃,柱箱升温程序的初始温度为35℃,升温速率为2℃/min,终点温度为300℃。
作为优选的技术方案,所述的质谱的工作条件中,轰击电压为70eV,扫描范围为20-300amu,离子源温度为230℃。
进一步地,所述的化合物定性数据库的建立方法包括:
(1)将单环芳烃标准品及多环芳烃标准品分别进行气相色谱-质谱联用分析,确定各个标准品的保留时间,其中,所述的标准品为单环芳烃或多环芳烃的纯物质;
(2)选取多个高温费托合成油普通样品,分别通过固相萃取法分离得到单环芳烃标准混合组分和多环芳烃标准混合组分,之后分别进行气相色谱-质谱联用分析,利用质谱确定各个保留时间对应的单环芳烃或多环芳烃化合物;
(3)根据选定的参考组分与保留时间,计算得到各个单环芳烃或多环芳烃的保留指数,之后将保留指数与各个单环芳烃或多环芳烃相对应,即得到化合物定性数据库。
其中,对于单环芳烃混合组分,参考组分为正构烷基苯;对于多环芳烃混合组分,参考组分为正构茚。
与现有技术相比,本发明具有如下优点:
(1)本发明将待测高温费托合成油分成两份,第一份通过溴溶液将烯烃组分溶解于水相中,剩余的有机相主要为芳烃组分,在固相萃取柱A,利用装填有改性金属的载体,并采用C 5-C 7的饱和烃作为洗脱溶剂I分两次进行洗脱,其中与固定相A结合较松的饱和烃混合物可先洗脱出来,与固定相A结合较紧的单环芳烃在第二次洗脱时洗脱出来,多环芳烃在洗脱溶剂I的洗脱下仍牢固地结合在固定相A上,实现单环芳烃的分离;第二份高温费托合成油直接在固相萃取柱B上进行洗脱,其中第一次洗脱采用的C 5-C 7的饱和烃作为洗脱溶剂I,将脂肪烃和单环芳烃混合物洗脱排出,第二次洗脱将与固定相B结合牢固的多环芳烃采用特定比例的卤代烷烃和C 5-C 7饱和烃的混合物进行深度洗脱,实现多环芳烃的分离。本发明通过对萃取相的改性以及洗脱剂的优选,利用极性相容原理最终将单环芳烃和多环芳烃分开单独进行检测,可避免单环芳烃和多环芳烃如烷基苯和茚类化合物,在色谱分析时的互相干扰,有效提高芳烃含量测试的准确性;
(2)气相色谱-质谱联用能够快速地对单环芳烃和多环芳烃中含量相对较高的正构烷基苯和正构茚进行定位,然后以它们为参考峰,计算出其余各个峰的保留指数,来进行化合物的定性。这种利用保留指数进行定性的方法,可以有效地排除仪器不稳定、载气波动或质谱库识别偏差带来的干扰,能够高准确度、且非常快速地定性化合物,并实现同类型样品的快速批量分析与处理;
(3)本方法操作简便,易于实现,分析与数据处理的过程都快速、高效,能够很好地适用于高温费托合成油中芳烃的分析。
附图说明
图1为用本发明测定高温费托合成油中芳烃组成及含量的流程图;
图2为用本发明方法分离高温费托合成油得到的单环芳烃总离子流色谱图;
图3为用本发明方法分离高温费托合成油得到的多环芳烃总离子流色谱图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
化合物定性数据库的建立:
(1)将单环芳烃与多环芳烃标准品,进行气相色谱-质谱联用的分析,确定它们的保留时间;
(2)选取多个高温费托合成油普通样品,通过与溴溶液反应以及固相萃取法提取出单环芳烃部分和多环芳烃部分,分别进行气相色谱-质谱联用分析,通过质谱确定各个保留时间对应的化合物;
(3)对单环芳烃和多环芳烃部分,分别以正构烷基苯和正构茚为参考组分,计算各个化合物的保留指数,并将保留指数与化合物一一对应,得到单环芳烃定性数据库和多环芳烃定性数据库,其中的部分结果如表1、表2所示。
表1单环芳烃定性数据库部分结果
化合物名称 分子式 保留指数
乙苯 C 8H 10 800.0
丙苯 C 9H 12 900.0
茚满 C 9H 10 978.4
甲基丙基苯 C 10H 14 995.1
丁苯 C 10H 14 1000.0
甲基茚满 C 10H 12 1024.9
丁烯基苯 C 10H 12 1029.9
甲基丁基苯 C 11H 16 1080.4
异构戊苯 C 11H 16 1089.5
二甲基茚满 C 11H 14 1092.2
异构戊苯 C 11H 16 1095.0
戊苯 C 11H 16 1100.0
异构戊苯 C 11H 16 1110.4
戊烯基苯 C 11H 14 1137.4
异构己苯 C 12H 18 1177.1
三甲基茚满 C 12H 16 1187.3
己苯 C 12H 18 1200.0
异构己苯 C 12H 18 1207.1
丙基茚满 C 12H 16 1231.0
庚苯 C 13H 20 1300.0
表2多环芳烃定性数据库部分结果
化合物名称 分子式 保留指数
甲基茚 C 10H 10 1000.0
异构乙基茚 C 11H 12 1094.1
乙基茚 C 11H 12 1100.0
甲基萘 C 11H 10 1126.6
丙基茚 C 12H 14 1200.0
乙基萘 C 12H 12 1233.1
二甲基萘 C 12H 12 1276.0
异构丁基茚 C 13H 16 1288.7
丁基茚 C 13H 16 1300.0
异构丁基茚 C 13H 16 1305.5
C 12H 10 1315.4
丙基萘 C 13H 14 1321.3
甲基苊 C 13H 12 1343.0
异构戊基茚 C 14H 18 1386.6
戊基茚 C 14H 18 1400.0
C 13H 10 1410.1
丁基萘 C 14H 16 1424.6
甲基芴 C 14H 12 1430.3
本实施例中,所用硅胶购自青岛海洋化工厂,其比表面积为355m 2/g,孔体积为1.15mL/g,平均孔径为13.0nm;所用气相色谱-质谱联用仪购自安捷伦科技有限公司,型号为7890B/5977A;气相色谱的工作条件为:进样量0.2μL,分流进样,色谱柱为HP-PONA毛细管柱,进样口温度300℃,柱箱升温程序为:初始温度35℃,以2℃/min的升温速率升至300℃;质谱的工作条件为:EI电离方式,轰击电压70eV,扫描范围20-300amu,离子源温度230℃;
高温费托合成油中芳烃含量的测定:
(1)称取3g溴化钾和0.9g溴酸钾,溶于25mL水中,配制成溴化钾-溴酸钾溶液。取高温费托合成油1.5g,溶于15mL四氯化碳中,加入20mL乙酸,再将溴化钾-溴酸钾溶液全部缓慢地加入其中,全部加入完毕后,继续搅拌3h。然后置于150mL分液漏斗中静置分层,收集四氯化碳相,并在旋转蒸发仪中除去溶剂。
(2)将硅胶置于150℃恒温活化5h后取出备用。称取硝酸银0.5g,溶解于20mL去离子水中,然后称取9.5g硅胶,在不断搅拌的条件下,缓慢地加入到硝酸银溶液中,全部加入完毕后静置60min,再置于150℃恒温活化5h,制备得到固定相A。同时,称取硝酸银0.03g,溶解于20mL去离子水中,然后称取9.97g硅胶,在不断搅拌的条件下,缓慢地加入到硝酸银溶液中,全部加入完毕后静置60min,再置于150℃恒温活化5h,制备得到固定相B。
(3)将固定相A和固定相B分别装于固相萃取柱之中,装填高度达到150mm,然后用正己烷润湿并活化硅胶。
(4)精确称取步骤(1)最后得到的液体0.5g,转移至含有固定相A的固相萃取柱中,并用1mL正己烷冲洗,然后先用14mL的正己烷冲洗固定相,并弃去收集到的液体后,再用15mL的正己烷继续冲洗固定相,并用50mL的锥形瓶收集使用正己烷冲洗出的液体,同时保证冲洗速度基本控制在3.0mL/min。最后将收集到液体的总体积浓缩至1mL左右。
(5)精确称取0.3g高温费托合成油,转移至含有固定相B的固相萃取柱中,并用1mL正己烷冲洗,然后分别用30mL的正己烷和14mL的正己烷-二氯甲烷混合溶液(体积比为4:1)冲洗固定相,保证冲洗速度基本控制在3.0mL/min。固相萃取柱下方用50mL的锥形瓶收集使用正己烷-二氯甲烷混合溶液冲洗出的液体,最后将收集到液体的总体积浓缩至1mL左右。
(6)将步骤(4)中正己烷冲洗液收集得到的液体进行气相色谱-质谱联用的分析,单环芳烃化合物的总离子流色谱图见图1。先利用质谱库查找出正构烷基苯的保留时间,再将其它各个峰的保留时间以正构烷基苯作为参比,转化为保留指数,与预先建立好的单环芳烃化合物定性数据库进行对比,确定各个峰的化合物归属。然后,从分析结果中扣除掉溶剂的含量,结合洗脱剂正己烷及高温费托合成油总质量计算得到各个单环芳烃组分的绝对含量。其中,部分单环芳烃组分的含量见表3。
(7)将步骤(5)中正己烷-二氯甲烷混合冲洗液收集得到的液体进行气相色谱-质谱联用的分析,多环芳烃化合物的总离子流色谱图见图2。先利用质谱库查找出正构茚的保留时间,再将其它各个峰的保留时间以正构茚作为参比,转化为保留指数,与预先建立好的多环芳烃定性数据库进行对比,确定各个峰的化合物归属。然后,从分析结果中扣除掉溶剂的含量,结合洗脱剂正己烷、二氯甲烷及高温费托合成油总质量计算得到各个多环芳烃组分的绝对含量。其中,部分多环芳烃组分的含量见表4。
其中所用硅胶、气相色谱的工作条件及质谱的工作条件均与实施例1相同。
表3高温费托合成油中部分单环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
乙苯 800.0 0.025
丙苯 900.0 0.030
茚满 978.4 0.060
甲基丙基苯 995.1 0.030
丁苯 1000.0 0.165
甲基茚满 1024.9 0.119
甲基丁基苯 1080.4 0.035
异构戊苯 1089.5 0.038
二甲基茚满 1092.2 0.032
异构戊苯 1095.0 0.034
戊苯 1100.0 0.093
异构戊苯 1110.4 0.027
戊烯基苯 1137.4 0.232
异构己苯 1177.1 0.051
三甲基茚满 1187.3 0.046
己苯 1200.0 0.153
丙基茚满 1231.0 0.266
庚苯 1300.0 0.296
表4高温费托合成油中部分多环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
甲基茚 1000.0 0.072
异构乙基茚 1094.1 0.308
乙基茚 1100.0 0.271
甲基萘 1126.6 0.358
丙基茚 1200.0 0.372
乙基萘 1233.1 0.343
异构丁基茚 1288.7 0.413
丁基茚 1300.0 0.386
异构丁基茚 1305.5 0.130
1315.4 0.015
丙基萘 1321.3 0.119
甲基苊 1343.0 0.034
戊基茚 1400.0 0.268
1410.1 0.057
可以看出,采用上述实施例的方法将单环芳烃中的各种芳烃均分离出来了,尤其是如甲基丙基苯、丁苯这类性能相差非常近的芳烃也完全分离开来了。
实施例2
高温费托合成油中芳烃含量的测定:
(1)称取3g溴化钾和0.5g溴酸钾,溶于25mL水中,配制成溴化钾-溴酸钾溶液。取高温费托合成油1.75g溶于15mL四氯化碳中,加入17.5mL乙酸,再将溴化钾-溴酸钾溶液全部缓慢地加入其中,全部加入完毕后,继续搅拌4h。然后置于150mL分液漏斗中静置分层,收集四氯化碳相,并在旋转蒸发仪中除去溶剂。
(2)将硅胶置于130℃恒温活化7h后取出备用。称取硝酸银0.4g,溶解于 20mL去离子水中,然后称取9.6g硅胶,在不断搅拌的条件下,缓慢地加入到硝酸银溶液中,全部加入完毕后静置60min,再置于130℃恒温活化7h,制备得到固定相A。同时,称取硝酸银0.02g,溶解于20mL去离子水中,然后称取9.98g硅胶,在不断搅拌的条件下,缓慢地加入到硝酸银溶液中,全部加入完毕后静置60min,再置于130℃恒温活化7h,制备得到固定相B。
(3)将固定相A和固定相B分别装于固相萃取柱之中,装填高度达到160mm,然后用正己烷润湿并活化硅胶。
(4)精确称取步骤(1)最后得到的液体0.5g,转移至含有固定相A的固相萃取柱中,并用1mL正己烷冲洗,然后先用15mL的正己烷冲洗固定相,并弃去收集到的液体后,再用17mL的正己烷继续冲洗固定相,并用50mL的锥形瓶收集使用正己烷冲洗出的液体,同时保证冲洗速度基本控制在6.0mL/min。最后将收集到液体的总体积浓缩至1mL左右。
(5)精确称取0.3g高温费托合成油,转移至含有固定相B的固相萃取柱中,并用1mL正己烷冲洗,然后分别用36mL的正己烷和18mL的正己烷-二氯甲烷混合溶液(体积比为5:1)冲洗固定相,保证冲洗速度基本控制在6.0mL/min。固相萃取柱下方用50mL的锥形瓶收集使用正己烷-二氯甲烷混合溶液冲洗出的液体,最后将收集到液体的总体积浓缩至1mL左右。
(6)将步骤(4)中正己烷冲洗液收集得到的液体进行气相色谱-质谱联用的分析,得到单环芳烃化合物的总离子流色谱图。先利用质谱库查找出正构烷基苯的保留时间,再将其它各个峰的保留时间以正构烷基苯作为参比,转化为保留指数,与预先建立好的单环芳烃化合物定性数据库进行对比,确定各个峰的化合物归属。然后,从分析结果中扣除掉溶剂的含量,结合洗脱剂正己烷及高温费托合成油总质量计算得到各个单环芳烃组分的绝对含量。其中,部分单环芳烃组分的含量见表5。
(7)将步骤(5)中正己烷-二氯甲烷混合冲洗液收集得到的液体进行气相色谱-质谱联用的分析,得到多环芳烃化合物的总离子流色谱图。先利用质谱库查找出正构茚的保留时间,再将其它各个峰的保留时间以正构茚作为参比,转化为保留指数,与预先建立好的多环芳烃定性数据库进行对比,确定各个峰的化合物归属。然后,从分析结果中扣除掉溶剂的含量,结合洗脱剂正己烷、二氯甲烷及高温费托合成油总质量计算得到各个多环芳烃组分的绝对含量。其中,部分多环芳烃组 分的含量见表6。
其中所用硅胶、气相色谱的工作条件及质谱的工作条件均与实施例1相同。
表5高温费托合成油中部分单环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
乙苯 800.0 0.024
丙苯 900.0 0.030
茚满 978.4 0.059
丁苯 1000.0 0.155
甲基茚满 1024.9 0.118
二甲基茚满 1092.2 0.032
戊苯 1100.0 0.087
三甲基茚满 1187.3 0.042
己苯 1200.0 0.142
庚苯 1300.0 0.278
表6高温费托合成油中部分多环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
甲基茚 1000.0 0.070
乙基茚 1100.0 0.265
甲基萘 1126.6 0.352
丙基茚 1200.0 0.373
乙基萘 1233.1 0.325
丁基茚 1300.0 0.367
1315.4 0.017
丙基萘 1321.3 0.115
甲基苊 1343.0 0.032
戊基茚 1400.0 0.265
可以看出,采用上述实施例的方法,在此端值下,各类单环芳烃和多环芳烃也能实现分离,但由于硝酸银的负载量较实施例1低,洗脱剂的冲洗速度较实施例1快,分离效果略差于实施例1,芳烃的色谱收率略低于实施例1。
实施例3
高温费托合成油中芳烃含量的测定:
(1)称取3g溴化钾和1.2g溴酸钾,溶于25mL水中,配制成溴化钾-溴酸钾溶液。取高温费托合成油1.05g,溶于15mL四氯化碳中,加入17.5mL乙酸,再将溴化钾-溴酸钾溶液全部缓慢地加入其中,全部加入完毕后,继续搅拌2h。然后置于150mL分液漏斗中静置分层,收集四氯化碳相,并在旋转蒸发仪中除去溶剂。
(2)将硅胶置于160℃恒温活化3h后取出备用。称取硝酸银1g,溶解于20mL去离子水中,然后称取9g硅胶,在不断搅拌的条件下,缓慢地加入到硝酸银溶液中,全部加入完毕后静置60min,再置于160℃恒温活化3h,制备得到固定相A。同时,称取硝酸银0.05g,溶解于20mL去离子水中,然后称取9.95g硅胶,在不断搅拌的条件下,缓慢地加入到硝酸银溶液中,全部加入完毕后静置60min,再置于160℃恒温活化3h,制备得到固定相B。
(3)将固定相A和固定相B分别装于固相萃取柱之中,装填高度达到130mm,然后用正己烷润湿并活化硅胶。
(4)精确称取步骤(1)最后得到的液体0.5g,转移至含有固定相A的固相萃取柱中,并用1mL正己烷冲洗,然后先用12mL的正己烷冲洗固定相,并弃去收集到的液体后,再用13mL的正己烷继续冲洗固定相,并用50mL的锥形瓶收集使用正己烷冲洗出的液体,同时保证冲洗速度基本控制在2.0mL/min。最后将收集到液体的总体积浓缩至1mL左右。
(5)精确称取0.3g高温费托合成油,转移至含有固定相B的固相萃取柱中,并用1mL正己烷冲洗,然后分别用24mL的正己烷和10.5mL的正己烷-二氯甲烷混合溶液(体积比为3:1)冲洗固定相,保证冲洗速度基本控制在2.0mL/min。固相萃取柱下方用50mL的锥形瓶收集使用正己烷-二氯甲烷混合溶液冲洗出的液体,最后将收集到液体的总体积浓缩至1mL左右。
(6)将步骤(4)中正己烷冲洗液收集得到的液体进行气相色谱-质谱联用的分析,得到单环芳烃化合物的总离子流色谱图。先利用质谱库查找出正构烷基苯的保留时间,再将其它各个峰的保留时间以正构烷基苯作为参比,转化为保留指数,与预先建立好的单环芳烃化合物定性数据库进行对比,确定各个峰的化合物归属。然后,从分析结果中扣除掉溶剂的含量,结合洗脱剂正己烷及高温费托合成油总质量计算得到各个单环芳烃组分的绝对含量。其中,部分单环芳烃组分的含量见 表7。
(7)将步骤(5)中正己烷-二氯甲烷混合冲洗液收集得到的液体进行气相色谱-质谱联用的分析,得到多环芳烃化合物的总离子流色谱图。先利用质谱库查找出正构茚的保留时间,再将其它各个峰的保留时间以正构茚作为参比,转化为保留指数,与预先建立好的多环芳烃定性数据库进行对比,确定各个峰的化合物归属。然后,从分析结果中扣除掉溶剂的含量,结合洗脱剂正己烷、二氯甲烷及高温费托合成油总质量计算得到各个多环芳烃组分的绝对含量。其中,部分单环芳烃组分的含量见表8。
其中所用硅胶、气相色谱的工作条件及质谱的工作条件均与实施例1、2相同。
表7高温费托合成油中部分单环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
乙苯 800.0 0.024
丙苯 900.0 0.029
茚满 978.4 0.061
丁苯 1000.0 0.158
甲基茚满 1024.9 0.114
二甲基茚满 1092.2 0.033
戊苯 1100.0 0.088
三甲基茚满 1187.3 0.044
己苯 1200.0 0.149
庚苯 1300.0 0.283
表8高温费托合成油中部分多环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
甲基茚 1000.0 0.073
乙基茚 1100.0 0.263
甲基萘 1126.6 0.355
丙基茚 1200.0 0.365
乙基萘 1233.1 0.333
丁基茚 1300.0 0.372
1315.4 0.012
丙基萘 1321.3 0.112
甲基苊 1343.0 0.032
戊基茚 1400.0 0.262
可以看出,采用上述实施例的方法,在此端值下,各类单环芳烃和多环芳烃也能实现分离,但由于固定相高度较实施例1低,分离效果略差于实施例1,芳烃的色谱收率略低于实施例1。
对比例1
仅固定相A为硅胶,不含改性金属,其余同实施例1。
单环芳烃无法从高温费托合成油中分离,收集不到单环芳烃组分。
对比例2
仅固定相B为硅胶,不含改性金属,其余同实施例1。
多环芳烃无法从高温费托合成油中分离,用正己烷-二氯甲烷混合溶液冲洗固定性B,收集不到多环芳烃组分。
对比例3
仅改变第一洗脱液正己烷的用量为5mL(10mL/1g样品,低于24mL/1g样品),其余同实施例1。
脂肪烃无法与单环芳烃分离,收集到脂肪烃与单环芳烃的混合物,存在干扰,无法对单环芳烃组分进行定量。
对比例4
仅改变第一洗脱液正己烷的用量为20mL(40mL/1g样品,高于30mL/1g样品),其余同实施例1。
其中,部分单环芳烃组分的含量见表9。
表9高温费托合成油中部分单环芳烃组分的含量
化合物名称 保留指数 含量(wt%)
乙苯 800.0 0.013
丙苯 900.0 0.015
丁苯 1000.0 0.053
戊苯 1100.0 0.021
己苯 1200.0 0.058
单环芳烃无法从高温费托合成油中充分分离,单环芳烃的色谱收率明显偏低。
对比例5
仅改变第三洗脱液正己烷的用量为18mL(60mL/1g样品,小于80mL/1g样品),其余同实施例1。
脂肪烃、单环芳烃无法与多环芳烃分离,收集到的多环芳烃中混有脂肪烃与单环芳烃,存在干扰,无法对多环芳烃组分进行定量。
对比例6
仅洗脱剂II为二氯甲烷,其余同实施例1。
多环芳烃无法从高温费托合成油中充分分离,收集的多环芳烃中混有含氧化合物,存在干扰,无法对多环芳烃组分进行定量。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,该方法包括:首先将待测高温费托合成油分成两份,其中第一份高温费托合成油与溴溶液反应,反应后分层,取上层有机相浓缩上样于固相萃取柱A,通过洗脱剂I淋洗和洗脱,收集洗脱液,浓缩,经气相色谱-质谱联用分析出高温费托合成油中的单环芳烃及其含量;再将第二份高温费托合成油直接上样于固相萃取柱B,通过洗脱剂I和洗脱剂II淋洗和洗脱,收集洗脱液,浓缩,经气相色谱-质谱联用分析出高温费托合成油中的多环芳烃及其含量。
  2. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的溴溶液为溴化钾-溴酸钾混合溶液,溴化钾与溴酸钾的质量比为(2.5-6):1。
  3. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的第一份高温费托合成油与溴溶液反应的条件为:室温,搅拌反应2-4h,反应后分层,取上层有机相,浓缩;
    所述的溴化钾与溴酸钾总质量与第一份高温费托合成油的质量比为(2-4):1。
  4. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的固相萃取柱A中装填入固定相A,所述的固相萃取柱B中装填入固定相B;固定相A和固定相B使用的载体都可为硅胶或中性氧化铝,所述的载体比表面积为200-500m 2/g,孔体积为0.5-1.5mL/g。
  5. 根据权利要求4所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的固定相A和固定相B中的载体采用IB族金属进行改性,改性方法为:将载体等体积浸渍改性金属硝酸盐,然后在130-160℃下保持3-7h,其中,固定相A上改性金属硝酸盐的质量含量为4-10%,固定相B上改性金属硝酸盐的质量含量为0.2-0.5%。
  6. 根据权利要求5所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的改性金属为铜或银。
  7. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的洗脱溶剂I为C 5-C 7的饱和烃;
    所述的洗脱溶剂II为卤代烷烃和C 5-C 7饱和烃的混合物,所述的C 5-C 7饱和烃和卤代烷烃的体积比为(5-3):1,其中,卤代烷烃包括二氯甲烷、三氯甲烷、1,2-二氯乙烷。
  8. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,分离单环芳烃时,将洗脱剂I分两次洗脱固相萃取柱A,第一次洗脱烷烃,洗脱剂I用量为24-30mL/1g样品;第二次洗脱出单环芳烃,洗脱剂I用量为26-34mL/1g样品;所述的洗脱剂I的冲洗速度为2.0-6.0mL/min;
    分离多环芳烃时,所述的洗脱剂I用量为80-120mL/1g样品;所述的洗脱剂II用量为35-60mL/1g样品;所述的洗脱剂I及洗脱剂II的冲洗速度均为2.0-6.0mL/min。
  9. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,所述的气相色谱-质谱联用分析过程中,气相色谱的工作条件包括:进样量为0.1-0.5μL,分流进样,色谱柱为HP-1、DB-1、HP-PONA、DB-Petro毛细管柱中的一种,进样口温度为250-300℃,柱箱升温程序为:初始温度30-40℃,升温速率2-5℃/min,终点温度250-300℃;质谱的工作条件为:EI电离方式,轰击电压50-70eV,扫描范围15-500amu,离子源温度200-250℃。
  10. 根据权利要求1所述的一种测定高温费托合成油中芳烃组成及含量的方法,其特征在于,经气相色谱-质谱联用分析出高温费托合成油中的单环芳烃、多环芳烃及其含量的具体方法如下:在所得谱图中确定参考组分并计算各个峰的保留指数,再根据保留指数与预建立的化合物定性数据库,确定各个峰所对应的单环芳烃或多环芳烃,并根据峰面积获得各个单环芳烃或多环芳烃的含量;
    其中,对于单环芳烃混合组分,参考组分为正构烷基苯;对于多环芳烃混合组分,参考组分为正构茚。
PCT/CN2021/086956 2020-09-29 2021-04-13 一种测定高温费托合成油中芳烃组成及含量的方法 WO2022068174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011057630.4 2020-09-29
CN202011057630.4A CN112229926B (zh) 2020-09-29 2020-09-29 一种测定高温费托合成油中芳烃组成及含量的方法

Publications (1)

Publication Number Publication Date
WO2022068174A1 true WO2022068174A1 (zh) 2022-04-07

Family

ID=74119741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086956 WO2022068174A1 (zh) 2020-09-29 2021-04-13 一种测定高温费托合成油中芳烃组成及含量的方法

Country Status (2)

Country Link
CN (1) CN112229926B (zh)
WO (1) WO2022068174A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942296A (zh) * 2022-05-05 2022-08-26 暨南大学 一种去除单萜类成分的艾草重油成分的检测方法
CN115491229A (zh) * 2022-09-23 2022-12-20 上海兖矿能源科技研发有限公司 一种高温费托合成轻质油的分离方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229926B (zh) * 2020-09-29 2022-09-02 上海兖矿能源科技研发有限公司 一种测定高温费托合成油中芳烃组成及含量的方法
CN113125592B (zh) * 2021-03-30 2022-11-22 中国地质大学(北京) 一种高硫原油单环、双环、三环和多环芳烃分离方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079987A (zh) * 2009-11-27 2011-06-01 中国石油化工股份有限公司 一种固相萃取分离重油的方法
US20120011920A1 (en) * 2006-03-30 2012-01-19 Nippon Oil Corporation Light oil composition
CN103063787A (zh) * 2012-12-25 2013-04-24 浙江工业大学 测定污泥热解油中多环芳烃的方法
CN104749298A (zh) * 2013-12-30 2015-07-01 中国石油化工股份有限公司 一种分离柴油中不同烃组分的固相萃取柱及应用方法
WO2015112165A1 (en) * 2014-01-24 2015-07-30 University Of Wyoming Research Corporation D/B/A Western Research Institute Volatile hydrocarbon separation and analysis apparatus
CN105548421A (zh) * 2015-12-07 2016-05-04 中国石油天然气集团公司 一种多环芳烃含量的分析方法及其应用
CN106290612A (zh) * 2016-07-27 2017-01-04 通标标准技术服务(上海)有限公司 橡胶制品中多环芳烃提取前处理净化方法
CN106947515A (zh) * 2016-01-07 2017-07-14 中国石油化工股份有限公司 固相萃取分离原油或重油中不同类型化合物的方法
CN107219313A (zh) * 2017-06-06 2017-09-29 衢州市疾病预防控制中心 一种基于分子印迹固相萃取‑气/质谱联用技术的检测食用油中24种多环芳烃的方法
CN107894479A (zh) * 2017-12-19 2018-04-10 北京市理化分析测试中心 气相色谱‑质谱联用检测食用油中芳烃矿物油的方法
CN109856285A (zh) * 2019-03-25 2019-06-07 深圳市环境科学研究院 一种同时检测水体中多类持久性有机物的方法
CN111308005A (zh) * 2020-03-30 2020-06-19 上海兖矿能源科技研发有限公司 一种测定费托合成油中烃类和含氧化合物含量的方法
CN112229926A (zh) * 2020-09-29 2021-01-15 上海兖矿能源科技研发有限公司 一种测定高温费托合成油中芳烃组成及含量的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273742B (zh) * 2014-07-16 2017-04-26 中国石油化工股份有限公司 一种固相萃取分离重油各组分的方法
CN105251437B (zh) * 2014-07-16 2017-12-22 中国石油化工股份有限公司 一种固相萃取分离重油烃类组分的固定相
JP7353751B2 (ja) * 2018-12-03 2023-10-02 古河電気工業株式会社 フィッシャー・トロプシュ合成触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120011920A1 (en) * 2006-03-30 2012-01-19 Nippon Oil Corporation Light oil composition
CN102079987A (zh) * 2009-11-27 2011-06-01 中国石油化工股份有限公司 一种固相萃取分离重油的方法
CN103063787A (zh) * 2012-12-25 2013-04-24 浙江工业大学 测定污泥热解油中多环芳烃的方法
CN104749298A (zh) * 2013-12-30 2015-07-01 中国石油化工股份有限公司 一种分离柴油中不同烃组分的固相萃取柱及应用方法
WO2015112165A1 (en) * 2014-01-24 2015-07-30 University Of Wyoming Research Corporation D/B/A Western Research Institute Volatile hydrocarbon separation and analysis apparatus
CN105548421A (zh) * 2015-12-07 2016-05-04 中国石油天然气集团公司 一种多环芳烃含量的分析方法及其应用
CN106947515A (zh) * 2016-01-07 2017-07-14 中国石油化工股份有限公司 固相萃取分离原油或重油中不同类型化合物的方法
CN106290612A (zh) * 2016-07-27 2017-01-04 通标标准技术服务(上海)有限公司 橡胶制品中多环芳烃提取前处理净化方法
CN107219313A (zh) * 2017-06-06 2017-09-29 衢州市疾病预防控制中心 一种基于分子印迹固相萃取‑气/质谱联用技术的检测食用油中24种多环芳烃的方法
CN107894479A (zh) * 2017-12-19 2018-04-10 北京市理化分析测试中心 气相色谱‑质谱联用检测食用油中芳烃矿物油的方法
CN109856285A (zh) * 2019-03-25 2019-06-07 深圳市环境科学研究院 一种同时检测水体中多类持久性有机物的方法
CN111308005A (zh) * 2020-03-30 2020-06-19 上海兖矿能源科技研发有限公司 一种测定费托合成油中烃类和含氧化合物含量的方法
CN112229926A (zh) * 2020-09-29 2021-01-15 上海兖矿能源科技研发有限公司 一种测定高温费托合成油中芳烃组成及含量的方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ANGELIKA PASCHKE, WALTER HERBEL, HANS STEINHART, STEPHAN FRANKE, WITTKO FRANCKE: "Determination of mono- to tetracyclic aromatic hydrocarbons in lubricating oil", JOURNAL OF HIGH RESOLUTION CHROMATOGRAPHY, vol. 15, no. 12, 1 December 1992 (1992-12-01), DE , pages 827 - 833, XP055498512, ISSN: 0935-6304, DOI: 10.1002/jhrc.1240151211 *
CHANG WEI,YU CUIHUA,ZHOU JUAN: "Determination of PAHs in Environmental Waters by Single Drop Microextraction Coupled With GC/MS", ENVIRONMENTAL POLLUTION & CONTROL, vol. 31, no. 5, 15 May 2009 (2009-05-15), pages 54 - 56+82, XP055917646, ISSN: 1001-3865, DOI: 10.15985/j.cnki.1001-3865.2009.05.014 *
DISDIER B., ARFI C., PASTOR J., PAULI A. M., PORTUGAL H.: "Analysis by GC-MS of monocyclic and polycyclic aromatic hydrocarbons in thermolysed waste products", ANALUSIS, vol. 27, no. 3, 1 April 1999 (1999-04-01), FR , pages 235 - 240, XP055917882, ISSN: 0365-4877, DOI: 10.1051/analusis:1999112 *
LECKEL DIETER: "A Closer Look at the Intrinsic Low Aromaticity in Diesel Hydrocracked from Low-Temperature Fischer−Tropsch Wax", ENERGY & FUELS, vol. 23, no. 1, 22 January 2009 (2009-01-22), WASHINGTON, DC, US. , pages 32 - 37, XP055917880, ISSN: 0887-0624, DOI: 10.1021/ef800605j *
LIANG XUE-MEI;ZHANG HUI-JIA;LI YA: "Study on the Characteristics of Coal Liquefaction Diesel Products", SYNTHETIC MATERIALS AGING AND APPLICATION, vol. 48, no. 6, 30 December 2019 (2019-12-30), pages 104 - 108+144, XP055917648, ISSN: 1671-5381, DOI: 10.16584/j.cnki.issn1671-5381.2019.06.028 *
LIU JIE, TIAN FENG, LIU JIEPING, GUO QING, FAN XIAOYONG, DAN YONG, FU QUANJUN, DU ZONGGANG, HAN WEI, SONG DI, LI DONG: "Structure Characterization and Solubility Analysis of the Existent Gum of the Fischer–Tropsch Synthetic Crude", ACS OMEGA, vol. 5, no. 30, 4 August 2020 (2020-08-04), US , pages 18778 - 18786, XP055917879, ISSN: 2470-1343, DOI: 10.1021/acsomega.0c01871 *
LUAN LI-XIN,TANG XIN-ZHONG,LUO XIANG,TANG JUN: "Research on Simultaneous Determination of Monocyclic and Polycyclic Aromatic Hydrocarbons in White Oil by Principal Component Regression Method", APPLIED CHEMICAL INDUSTRY, vol. 37, no. 1, 28 January 2008 (2008-01-28), pages 104 - 106, XP055917883, ISSN: 1671-3206, DOI: 10.16581/j.cnki.issn1671-3206.2008.01.005 *
LUAN LI-XING,ZHU JING,ZHANG PING,TANG JUN: "Determination of Monocyclic and Polycyclic Aromatic Hydrocarbons in White Oil by Dual-Wavelength Method", CHEMICAL ENGINEER, vol. 151, no. 4, 25 April 2008 (2008-04-25), pages 25 - 26, XP055917877, ISSN: 1002-1124, DOI: 10.16247/j.cnki.23-1171/tq.2008.04.013 *
PARIS ALICE, LEDAUPHIN JÉRÔME, LOPEZ CLAIRE, HENNEQUIN DIDIER, GAILLARD JEAN-LUC: "Trace amount determination of monocyclic and polycyclic aromatic hydrocarbons in fruits: Extraction and analytical approaches", JOURNAL OF FOOD COMPOSITION AND ANALYSIS, vol. 67, 1 April 2018 (2018-04-01), AMSTERDAM, NL , pages 110 - 118, XP055917878, ISSN: 0889-1575, DOI: 10.1016/j.jfca.2017.12.034 *
TANG BING, ISACSSON ULF: "Analysis of Mono- and Polycyclic Aromatic Hydrocarbons Using Solid-Phase Microextraction: State-of-the-Art", ENERGY & FUELS, vol. 22, no. 3, 1 May 2008 (2008-05-01), WASHINGTON, DC, US, pages 1425 - 1438, XP055917881, ISSN: 0887-0624, DOI: 10.1021/ef7007166 *
TANG JUN, HAN XIAO-QIANG, LUAN LI-XIN: "Simultaneous Determination of Monocyclic and Polycyclic Aromatic Hydrocarbons in White Oil by Partial Least Squares Regression Method", CHEMICAL REAGENTS, vol. 33, no. 6, 15 June 2011 (2011-06-15), pages 531 - 532+536, XP055917876, DOI: 10.13822/j.cnki.hxsj.2011.06.012 *
WANG, XIUJUN; ZHENG, LIANYI; DAI, JUNTAI; GAO, RUI'E; ZHAO, YING: "Rapid Determination of Monocyclic and Polycyclic Aromatic Hydrocarbons in Solvent Oil by Dual-Wavelength Ultraviolet Spectroscopy", HEBEI CHEMICAL ENGINEERING AND INDUSTRY, no. 3, 31 December 2002 (2002-12-31), pages 43 - 44, XP009535696, ISSN: 1003-5095 *
ZHU XIAPING; WANG YONG; ZUO HONGBAO; ZHAO PING; WANG ZEPENG: "Modified layered bimetallic compound used as a novel adsorbent for the solid-phase extraction of monoaromatic hydrocarbons from water samples prior to gas chromatography–mass spectrometry", ARABIAN JOURNAL OF CHEMISTRY, vol. 13, no. 2, 19 July 2019 (2019-07-19), AMSTERDAM, NL , pages 4246 - 4253, XP086060511, ISSN: 1878-5352, DOI: 10.1016/j.arabjc.2019.07.004 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942296A (zh) * 2022-05-05 2022-08-26 暨南大学 一种去除单萜类成分的艾草重油成分的检测方法
CN114942296B (zh) * 2022-05-05 2023-07-14 暨南大学 一种去除单萜类成分的艾草重油成分的检测方法
CN115491229A (zh) * 2022-09-23 2022-12-20 上海兖矿能源科技研发有限公司 一种高温费托合成轻质油的分离方法
CN115491229B (zh) * 2022-09-23 2024-03-22 上海兖矿能源科技研发有限公司 一种高温费托合成轻质油的分离方法

Also Published As

Publication number Publication date
CN112229926B (zh) 2022-09-02
CN112229926A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022068174A1 (zh) 一种测定高温费托合成油中芳烃组成及含量的方法
CN111308005A (zh) 一种测定费托合成油中烃类和含氧化合物含量的方法
CN109839448B (zh) 固相萃取柱及固相萃取分离柴油中酚类化合物的方法
CN108469471A (zh) 分离合成气制烯烃反应油相产物中不同族组分的固相萃取柱及应用方法
CN109839449B (zh) 固相萃取分离柴油中酚类化合物的方法
Luke et al. Identification of the methyl esters of the stable Krebs cycle acids by gas liquid chromatography.
CN114563506B (zh) 测定蜡油中烯烃化合物含量与组成的预处理方法
CN114563516B (zh) 测定蜡油族组成的方法
CN114076808B (zh) 测定煤基柴油族组成的预处理方法
Gee et al. Olefin esterification on Amberlyst® 15 catalyst: does the esterification site defy thermodynamics?
Matisova et al. Quantitative analysis of hydrocarbons in gasolines by capillary gas—liquid chromatography: II. Isothermal and temperature-programmed analyses
CN111579654B (zh) 一种分离、提纯以及同时测定航煤中抗氧剂和防冰剂的方法
Jackson et al. Semimicro Procedure for the Determination of Hydrocarbon Types in Shale-Oil Distillates.
CN114075450B (zh) 固相萃取分离柴油族组成的方法
CN114075446B (zh) 分离汽油中含氧化合物的方法
CN114432740B (zh) 一种用于分离费-托合成油中间馏分的双层固相萃取柱及其应用
CN114561228B (zh) 分离煤基蜡油中含氧化合物的方法
CN114075448B (zh) 分离柴油中含氮化合物和含硫化合物的固相萃取方法
CN2879184Y (zh) 甲苯歧化反应产物的在线分析装置
CN114075447B (zh) 分离煤基柴油中含氧化合物的方法
CN117269334A (zh) 一种含极性试剂柴油中的饱和烃和芳烃的分离方法及含量测定的方法
Heertje et al. Selectivity and monoene isomerization in the catalytic hydrogenation of polyenoic fatty acid methyl esters
Soják et al. Open tubular column gas chromatography of the catalytic dehydrogenation products of n-dodecane
CN115477956B (zh) 双层固相萃取柱和废塑料裂解油中各组分的分离方法以及分析方法
CN114924010A (zh) 一种测定氯化石蜡原料中的短链和中链氯化石蜡含量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873840

Country of ref document: EP

Kind code of ref document: A1