WO2022067940A1 - 一种针对线性控制器的无扰切换设计方法 - Google Patents

一种针对线性控制器的无扰切换设计方法 Download PDF

Info

Publication number
WO2022067940A1
WO2022067940A1 PCT/CN2020/125570 CN2020125570W WO2022067940A1 WO 2022067940 A1 WO2022067940 A1 WO 2022067940A1 CN 2020125570 W CN2020125570 W CN 2020125570W WO 2022067940 A1 WO2022067940 A1 WO 2022067940A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
loop
switching
control
closed
Prior art date
Application number
PCT/CN2020/125570
Other languages
English (en)
French (fr)
Inventor
温思歆
孙希明
马艳华
杜宪
杜静文
潘卓锐
郝光超
郝育闻
Original Assignee
大连理工大学人工智能大连研究院
大连空天动力控制系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学人工智能大连研究院, 大连空天动力控制系统有限公司 filed Critical 大连理工大学人工智能大连研究院
Priority to US17/777,015 priority Critical patent/US20220404777A1/en
Publication of WO2022067940A1 publication Critical patent/WO2022067940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B7/00Arrangements for obtaining smooth engagement or disengagement of automatic control
    • G05B7/02Arrangements for obtaining smooth engagement or disengagement of automatic control electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/32Automatic controllers electric with inputs from more than one sensing element; with outputs to more than one correcting element
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the invention belongs to the technical field of automatic control, and in particular relates to a design method for undisturbed switching of a linear controller.
  • each sub-controller is designed for different operating points of the system to meet the corresponding performance indicators, and a certain sub-controller is selected to enter the closed-loop control system by the corresponding switching signal.
  • switching control application scenarios based on multiple linear controllers.
  • the present invention takes an aero-engine as a typical example to illustrate.
  • the requirements of the aero-engine switching control system specifically include: mode switching, multi-loop switching, multi-target switching, and multiple operating points Switching, fault-tolerant control switching, saturation handling switching, etc.
  • the switching between multiple sub-controllers is prone to discontinuous control quantities, and the system response is prone to sudden sudden changes or even unstable control.
  • the existing design methods of non-disturbance switching are to use weighted transition in the switching process, or to design the switching controller according to the switching control theory of the average dwell time. It needs repeated parameter adjustment, lacks operability in many practical projects, and the application effect is poor. So far, there is no design method for simultaneously satisfying the above four design objectives, so the present invention aims to propose a design method for bumpless switching that satisfies the above four design objectives, so as to solve the problems caused by the switching of linear controllers in practical engineering. There is a sudden change in the system. It is worth noting that there is often a switch from manual control to machine control in the actual control system, which is equivalent to switching from an open-loop controller to a closed-loop controller.
  • the present invention regards the open-loop controller as a linear controller, that is, the present invention
  • the proposed bumpless switching design method is also applicable to switching from an open-loop controller to a closed-loop controller.
  • the present invention proposes a design method for non-disturbance switching of linear controllers.
  • the technical scheme adopted in the present invention is: a design method for non-disturbance switching of linear controllers, comprising the following steps:
  • step 1 the numerical simulation program of the control system is directly established without considering the influence of controller switching.
  • step 1 the control frame of the control system is shown in Figure 1, in which the controlled object is a general nonlinear model, which is expressed as:
  • f is the nonlinear function of the system state
  • g is the nonlinear function of the system output
  • y is the output of the controlled object
  • u is the control output of the switching controller.
  • Step 2 without considering the influence of controller switching, directly design the controller so that the performance of the closed-loop control system can reach the expected design index.
  • the proposed bumpless switching design method is for all linear controllers and open-loop controllers, such as PID, LQG, LADRC, H ⁇ , etc.
  • the present invention specifically defines the controller as a switching controller including an open-loop controller, an H ⁇ controller, and a LADRC controller.
  • an open-loop controller is designed for the nonlinear model, and the open-loop control law is abstracted as an interpolation table
  • the interpolation function interp of , and the reference input is r, we can get:
  • the H ⁇ controller is designed for the nonlinear model, and the nonlinear model is linearized to obtain a linear system, which can be obtained:
  • Ws(s) as the performance weighting function
  • Wr(s) as the controller output weighting function
  • Wt(s) as the robust weighting function
  • the LADRC controller is designed for the nonlinear model, and the bandwidth of the extended state observer ESO is set as w o , the influence coefficient of the control variable on the system state is b 0 , the estimated value of ESO to the target value is z 1 , and the derivative of ESO to the target value It is estimated to be z 2 , and the total disturbance to the system by ESO is estimated to be z 3 . Since ADRC has decoupling characteristics for the multi-variable loop, the multi-variable loop is directly composed of multiple single-variable control loops in parallel. The principle of the LADRC closed-loop control system is shown in Figure 3 As shown, the ESO of LADRC can be expressed as:
  • LADRC The control law of LADRC can be obtained as:
  • step 3 the open-loop controller, the H ⁇ controller, and the LADRC controller are combined into a switching controller, and a method for undisturbed switching is designed to achieve the four objectives of the present invention.
  • the output of each controller is differentiated, and then through the controller decision, a certain controller is connected to the closed-loop control loop by selecting and switching, and the differential term of the controller is taken out for integration, that is, the controllers are integrated first and then integrated through the common integration.
  • the controller is used to ensure a smooth transition of switching, thereby eliminating the adverse effects of instantaneous sudden change and even instability caused by controller switching.
  • the current control variable u k is the control increment of the current closed-loop controller superimposed on the control variable u k-1 at the previous moment. Then there will be no sudden change in the control amount when the controller is switched, and a smooth transition can be achieved.
  • the present invention uses a common integrator for integration after differentiating a plurality of linear controllers, which ensures a smooth transition of controller switching without affecting the performance of the original controller, and effectively solves the problem of controller switching problems.
  • the problem of sudden sudden change and even instability can meet the control performance requirements of the industry for switching controllers;
  • the design method of undisturbed switching proposed by the present invention is versatile and is suitable for all linear controllers in the control system, including undisturbed switching between single-variable controllers and multi-variable controllers, open-loop controllers and closed-loop controllers bumpless switching between controllers;
  • the design structure of the disturbance-free switching method proposed by the present invention is simple, has operability, does not need to adjust parameters on the basis of the existing controller, and can be easily applied to each actual control system.
  • Figure 1 is a schematic diagram of a bumpless switching design method for a linear controller
  • FIG. 2 is a schematic diagram of the H ⁇ control principle
  • FIG. 3 is a schematic diagram of the multivariable LADRC control principle
  • Figure 4 is a control effect diagram of the switching controller without the bumpless switching design method
  • Figure 5 is a control effect diagram of the switching controller including the design method of bumpless switching
  • the invention provides a design method for undisturbed switching of linear controllers, and considers the open-loop controller as a linear controller. And other issues.
  • a bumpless switching design method for a linear controller comprising the following steps:
  • step 1 the numerical simulation program of the control system is directly established without considering the influence of controller switching.
  • the control frame of the control system is shown in Figure 1, in which the controlled object is a general nonlinear model.
  • the nonlinear model is specifically a dual-rotor turbofan engine, which is expressed as:
  • f is the nonlinear function of the system state
  • g is the nonlinear function of the system output
  • Step 2 without considering the influence of controller switching, directly design the controller so that the performance of the closed-loop control system can reach the expected design index.
  • the bumpless switching design method proposed by the present invention is aimed at all linear controllers and open-loop controllers, such as PID, LQG, LADRC, H ⁇ , MRAC, open-loop control, and the like.
  • the present invention specifically defines the controller as a switching controller including an open-loop controller, a H ⁇ controller, and a LADRC controller.
  • an open-loop controller is designed for the nonlinear model, and the open-loop control law is abstracted as an interpolation table
  • the interpolation function interp of , and the reference input is r, we can get:
  • the H ⁇ controller is designed for the nonlinear model, and the nonlinear model is linearized to obtain a linear system, which can be obtained:
  • Ws(s) as the performance weighting function
  • Wr(s) as the controller output weighting function
  • Wt(s) as the robust weighting function
  • the LADRC controller is designed for the nonlinear model, and the bandwidth of the extended state observer ESO is set as w o , the influence coefficient of the control variable on the system state is b 0 , the estimated value of ESO to the target value is z 1 , and the derivative of ESO to the target value It is estimated to be z 2 , and the total disturbance to the system by ESO is estimated to be z 3 . Since ADRC has decoupling characteristics for the multi-variable loop, the multi-variable loop is directly composed of multiple single-variable control loops in parallel. The principle of the LADRC closed-loop control system is shown in Figure 3 As shown, the ESO of LADRC can be expressed as:
  • LADRC The control law of LADRC can be obtained as:
  • LADRC LADRC
  • step 3 the open-loop controller, the H ⁇ controller, and the LADRC controller are combined into a switching controller, and a method for undisturbed switching is designed to achieve the four objectives of the present invention.
  • the output of each controller is differentiated, and then through the controller decision-making, a certain controller is connected to the closed-loop control loop by selecting and switching, and the differential term of the controller is taken out for integration, that is, each controller is integrated first, and then through the common controller.
  • the integrator ensures a smooth transition of switching, thereby eliminating the adverse effects of instantaneous sudden change and even instability caused by controller switching.
  • the current control variable u k is the control increment of the current closed-loop controller superimposed on the control variable u k-1 at the previous moment. Then there will be no sudden change in the control amount when the controller is switched, and a smooth transition can be achieved.
  • a switching controller composed of an open-loop controller, a H ⁇ controller and a LADRC controller is obtained.
  • the control effect of the switching controller including the disturbance-free switching design method is shown in Figure 5. It can be seen that the disturbance-free switching design method for the linear controller proposed by the present invention has significant improvement effects, and its beneficial effects are as follows:
  • the present invention uses a common integrator for integration after differentiating a plurality of linear controllers, which ensures a smooth transition of controller switching without affecting the performance of the original controller, and effectively solves the problem of controller switching problems.
  • the problem of sudden sudden change or even unstable control can meet the control performance requirements of the industry for switching controllers;
  • the design method of undisturbed switching proposed by the present invention is versatile and is applicable to all linear controllers in the control system, including single-variable controllers, undisturbed switching of multi-variable controllers, open-loop controllers and closed-loop controllers bumpless switching between;
  • the design structure of the disturbance-free switching method proposed by the present invention is simple, has operability, does not need to adjust parameters on the basis of the existing controller, and can be easily applied to each actual control system.

Abstract

一种针对线性控制器的无扰切换设计方法,属于自动控制技术领域,其中线性控制器包含PID、LQG、LADRC、H∞、MRAC、开环控制等,首先对各个控制器的输出进行微分,然后通过决策选择将某一个控制器接入到闭环控制回路,再通过共同积分器来对该接入到闭环控制回路的控制器的微分项进行积分,保证控制器切换的平滑过渡。上述设计方法结构简单、通用性好,且无需调参,具备可操作性,可方便地应用至各实际控制系统,解决多个线性控制器的切换导致系统响应出现瞬间突变、甚至使控制回路不稳定的问题。

Description

一种针对线性控制器的无扰切换设计方法 技术领域
本发明属于自动控制技术领域,具体是涉及一种针对线性控制器的无扰切换设计方法。
背景技术
在实际控制系统中,许多被控对象存在强耦合性、非线性与时变性等特性,导致传统的经典控制理论难以满足控制性能需求,因此学术界与工业界开展关于多个子控制器的切换控制理论的研究,其中每个子控制器是针对系统的不同工况点设计的,以满足相应的性能指标,并由相应的切换信号来选择某个子控制器进入闭环控制系统。基于多个线性控制器的切换控制应用场景非常多,本发明以航空发动机作为典型例子进行阐述,航空发动机切换控制系统的需求具体包括:模态切换、多回路切换、多目标切换、多工作点切换、容错控制切换、饱和处置切换等。但多个子控制器之间的切换容易出现控制量不连续,系统响应容易出现瞬间突变、甚至出现控制不稳定的不良现象。
考虑到现有的工业控制系统大部分采用线性控制器,如PID、LQG、LADRC、H∞、MRAC等控制器,有必要提出一种针对线性控制器的无扰切换设计方法,以保证控制系统不受控制器切换的影响。针对线性控制器的无扰切换方法的设计目标是:(1)当不发生控制器切换时,控制系统性能由已接入闭环回路的控制器决定;(2)当发生控制器切换时,无扰切换设计方法发挥作用,使切换时刻的控制信号平滑变化,不出现瞬间突变或不稳定的现象;(3)设计方法具备通用性,适用于单变量控制器、多变量控制器的无扰切换,适用于开环控制器与闭环控制器之间的无扰切换;(4)设计方法尽可能减少对原控制器的修改,具备可操作性,无需调参或调参方法简单,可方便地应用至各实际控制系统。
现有的无扰切换设计方法是在切换过程采用加权过渡,或是根据平均驻留时间的切换控制理论来设计切换控制器,这些方法在实际工程中对现场工人的知识储备要求较高,且需要反复调参,在许多实际工程中缺乏可操作性,应用效果较差。到目前为止,没有公开专利同时满足上述四个设计目标的设 计方法,故本发明旨在提出一种满足上述四个设计目标的无扰切换设计方法,以解决实际工程中由于线性控制器切换导致系统出现瞬间突变的问题。值得注意的是,实际控制系统中经常存在由手动控制切换至机器控制,即等效为从开环控制器切换至闭环控制器,本发明将开环控制器视为线性控制器,即本发明提出的无扰切换设计方法同样适用于开环控制器切换至闭环控制器。
发明内容
本发明为了解决多个线性控制器切换导致的系统响应出现瞬间突变、甚至控制不稳定的问题,本发明提出了一种针对线性控制器的无扰切换设计方法。
为解决上述技术问题,本发明采用的技术方案是:一种针对线性控制器的无扰切换设计方法,包括如下步骤:
步骤一,不考虑控制器切换带来的影响,直接建立控制系统的数值仿真程序。
在步骤一中控制系统的控制框架如图1所示,其中被控对象为通用的非线性模型,表示为:
Figure PCTCN2020125570-appb-000001
其中f为系统状态的非线性函数;g为系统输出的非线性函数;y为被控对象的输出量;u为切换控制器输出的控制量。
步骤二,不考虑控制器切换带来的影响,直接设计控制器,使得闭环控制系统的性能达到预期的设计指标。
在步骤二中,提出的无扰切换设计方法是针对所有线性控制器及开环控制器,如PID、LQG、LADRC、H∞等。本发明将控制器具体为含开环控制器、H∞控制器、LADRC控制器的切换控制器。
第一,针对非线性模型设计开环控制器,将开环控制律抽象为根据插值表
Figure PCTCN2020125570-appb-000002
的插值函数interp,设参考输入为r,可得:
Figure PCTCN2020125570-appb-000003
第二,针对非线性模型设计H∞控制器,对非线性模型进行线性化得到线性系统,可得:
Figure PCTCN2020125570-appb-000004
基于H∞的闭环控制系统的原理图如图2所示,设r、e、u、y分别为参考输入、跟踪误差、控制输入和系统输出,C(s)为H∞控制器,G(s)为被控对象模型,则可得从r到e、u和y的闭环传递函数分别为:
Figure PCTCN2020125570-appb-000005
为保证闭环控制系统稳定,设Ws(s)为性能加权函数,Wr(s)为控制器输出加权函数,Wt(s)为鲁棒加权函数,需满足充要条件为:
Figure PCTCN2020125570-appb-000006
将原问题转换为标准H∞控制问题,对原闭环控制系统进行增广,可得:
Figure PCTCN2020125570-appb-000007
根据标准H∞控制问题的求解方法,可得通解形式为:
Figure PCTCN2020125570-appb-000008
第三,针对非线性模型设计LADRC控制器,设扩张状态观测器ESO的带宽为w o,控制量对系统状态影响系数为b 0,ESO对目标值估计为z 1,ESO对目标值的导数估计为z 2,ESO对系统总扰动估计为z 3,由于ADRC对多变量回路具备解耦特性,多变量回路是直接通过多个单变量控制回路并联组成,则LADRC闭环控制系统原理如图3所示,LADRC的ESO可表示为:
Figure PCTCN2020125570-appb-000009
可得LADRC的控制律为:
Figure PCTCN2020125570-appb-000010
步骤三,将开环控制器、H∞控制器、LADRC控制器组合为切换控制器,设计无扰切换的方法来实现本发明的四个目标,本发明提出的无扰切换设计方法是首先对各控制器的输出进行微分,然后通过控制器决策,以选择切换将某一个控制器接入到闭环控制回路,取出该控制器的微分项进行积分,即对各控制器先积分后通过共同积分器来保证切换的平滑过渡,从而消除控制器切换带来的瞬间突变、甚至不稳定的不良影响。
Figure PCTCN2020125570-appb-000011
是控制量u的导数;switch为切换控制器的选择函数,表明当前接入到闭环回路控制器为第i个控制器;则在第k个运行周期的控制器输出量u k可表示为:
Figure PCTCN2020125570-appb-000012
说明当前控制量u k是在上一时刻的控制量u k-1的基础上叠加了当前闭环回路控制器的控制增量
Figure PCTCN2020125570-appb-000013
则控制器切换时不会产生控制量的突变,可实现平滑过渡。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过对多个线性控制器进行微分后,利用共同积分器进行积分,在不影响原控制器性能的基础上保证了控制器切换的平滑过渡,有效解决了因控制器切换带来的瞬间突变、甚至不稳定的问题,满足工业界对切换控制器的控制性能要求;
(2)本发明提出的无扰切换设计方法具备通用性,适用于控制系统中所有线性控制器,其中包含单变量控制器与多变量控制器之间的无扰切换、开环 控制器与闭环控制器之间的无扰切换;
(3)本发明提出无扰切换方法的设计结构简单,具备可操作性,在现有控制器的基础上无需调参,可方便地应用至各实际控制系统。
附图说明
下面通过参考附图并结合实例具体地描述本发明,本发明的优点和实现方式将会更加明显,其中附图所示内容仅用于对本发明的解释说明,而不构成对本发明的任何意义上的限制,在附图中:
图1是针对线性控制器的无扰切换设计方法的示意图
图2是H∞控制原理的示意图
图3是多变量LADRC控制原理的示意图
图4是切换控制器不包含无扰切换设计方法的控制效果图
图5是切换控制器包含无扰切换设计方法的控制效果图
具体实施方式
下面结合实施例及其附图进一步叙述本发明:
本发明提供了一种针对线性控制器的无扰切换设计方法,并将开环控制器也视为线性控制器,主要目的是解决实际工程中线性控制器切换导致系统产生突变、甚至造成不稳定等问题。
一种针对线性控制器的无扰切换设计方法,包括如下步骤:
步骤一,不考虑控制器切换带来的影响,直接建立控制系统的数值仿真程序。控制系统的控制框架如图1所示,其中被控对象为通用的非线性模型,本实施例将非线性模型具体为双转子涡扇发动机,表示为:
Figure PCTCN2020125570-appb-000014
其中f为系统状态的非线性函数;g为系统输出的非线性函数;u为切换控制器输出的控制量,可表示为u=[WFM,A8] T;y为发动机输出量,可表示为y=[N 2,π r] T
步骤二,不考虑控制器切换带来的影响,直接设计控制器,使得闭环控制系统的性能达到预期的设计指标。本发明提出的无扰切换设计方法是针对所有线性控制器及开环控制器,如PID、LQG、LADRC、H∞、MRAC、开环控制等。本发明将控制器具体为含开环控制器、H∞控制器、LADRC控制器的切换 控制器。
第一,针对非线性模型设计开环控制器,将开环控制律抽象为根据插值表
Figure PCTCN2020125570-appb-000015
的插值函数interp,设参考输入为r,可得:
Figure PCTCN2020125570-appb-000016
通过工程经验可得开环控制律为:
Figure PCTCN2020125570-appb-000017
第二,针对非线性模型设计H∞控制器,对非线性模型进行线性化得到线性系统,可得:
Figure PCTCN2020125570-appb-000018
对双转子涡扇发动机模型进行线性化,根据小偏离模型方法,在慢车及以上状态的平衡点处通过系统辨识得到线性模型,表示为:
Figure PCTCN2020125570-appb-000019
基于H∞的闭环控制系统的原理图如图2所示,设r、e、u、y分别为参考输入、跟踪误差、控制输入和系统输出,C(s)为H∞控制器,G(s)为被控对象模型,则可得从r到e、u和y的闭环传递函数分别为:
Figure PCTCN2020125570-appb-000020
为保证闭环控制系统稳定,设Ws(s)为性能加权函数,Wr(s)为控制器输出加权函数,Wt(s)为鲁棒加权函数,需满足充要条件为:
Figure PCTCN2020125570-appb-000021
将原问题转换为标准H∞控制问题,对原闭环控制系统进行增广,可得:
Figure PCTCN2020125570-appb-000022
根据标准H∞控制问题的求解方法,可得通解形式为:
Figure PCTCN2020125570-appb-000023
则通过标准H∞控制问题的DGKF解法可得可行解为:
Figure PCTCN2020125570-appb-000024
第三,针对非线性模型设计LADRC控制器,设扩张状态观测器ESO的带宽为w o,控制量对系统状态影响系数为b 0,ESO对目标值估计为z 1,ESO对目标值的导数估计为z 2,ESO对系统总扰动估计为z 3,由于ADRC对多变量回路具备解耦特性,多变量回路是直接通过多个单变量控制回路并联组成,则LADRC闭环控制系统原理如图3所示,LADRC的ESO可表示为:
Figure PCTCN2020125570-appb-000025
可得LADRC的控制律为:
Figure PCTCN2020125570-appb-000026
经过反复调参可得LADRC的具体参数为:
Figure PCTCN2020125570-appb-000027
步骤三,将开环控制器、H∞控制器、LADRC控制器组合为切换控制器,设计无扰切换的方法来实现本发明的四个目标,本发明提出的无扰切换设计方法是首先对各控制器的输出进行微分,然后通过控制器决策,以选择切换将某一个控制器接入到闭环控制回路,取出该控制器的微分项进行积分,即对各个控制器先积分,再通过共同积分器来保证切换的平滑过渡,从而消除控制器切换带来的瞬间突变、甚至不稳定的不良影响。
Figure PCTCN2020125570-appb-000028
是控制量u的导数;switch为切换控制器的选择函数,表明当前接入到闭环回路控制器为第i个控制器;则在第k个运行周期的控制器输出量u k可表示为:
Figure PCTCN2020125570-appb-000029
说明当前控制量u k是在上一时刻的控制量u k-1的基础上叠加了当前闭环回路控制器的控制增量
Figure PCTCN2020125570-appb-000030
则控制器切换时不会产生控制量的突变,可实现平滑过渡。
经过上述三个步骤的设计,得到开环控制器、H∞控制器、LADRC控制器组合而成的切换控制器,该切换控制器不包含无扰切换设计方法的控制效果如图4所示,该切换控制器包含无扰切换设计方法的控制效果如图5所示,可以看出本发明所提的一种针对线性控制器的无扰切换设计方法具备显著的改进效果,其有益效果如下:
(1)本发明通过对多个线性控制器进行微分后,利用共同积分器进行积分,在不影响原控制器性能的基础上保证了控制器切换的平滑过渡,有效解决了因控制器切换带来的瞬间突变、甚至控制不稳定的问题,满足工业界对切换控制器的控制性能要求;
(2)本发明提出的无扰切换设计方法具备通用性,适用于控制系统中所有线性控制器,其中包含单变量控制器、多变量控制器的无扰切换、开环控制器与闭环控制器之间的无扰切换;
(3)本发明提出无扰切换方法的设计结构简单,具备可操作性,在现有控制器的基础上无需调参,可方便地应用至各实际控制系统。
以上对本发明的实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。其各步骤的实现方式是可以有所变化的,凡依本发明范围所作的均等变化与改进等,均应仍归属于本专利涵盖范围之内。

Claims (4)

  1. 一种针对线性控制器的无扰切换设计方法,其特征在于:包括如下步骤:
    步骤一,建立控制系统的数值仿真程序;
    步骤二,设计控制器,使得闭环控制系统的性能达到预期的设计指标,所述控制器包括线性控制器和开环控制器;
    步骤三,将开环控制器和线性控制器组合为切换控制器,首先对各控制器的输出进行微分,然后通过控制器决策,以选择切换将某一个控制器接入到闭环控制回路,取出该控制器的微分项进行积分,即对各个控制器先积分后通过共同积分器来保证切换的平滑过渡,从而消除控制器切换带来的瞬间突变、甚至不稳定的不良影响。
  2. 根据权利要求1所述的针对线性控制器的无扰切换设计方法,其特征在于:在步骤一中,其中被控对象为通用的非线性模型,表示为:
    Figure PCTCN2020125570-appb-100001
    其中f为系统状态的非线性函数;
    Figure PCTCN2020125570-appb-100002
    为系统输出的非线性函数;y为被控对象的输出量;u为切换控制器输出的控制量。
  3. 根据权利要求1所述的针对线性控制器的无扰切换设计方法,其特征在于:在步骤二中,所述控制器为含开环控制器、H∞控制器、LADRC控制器的切换控制器,
    第一,针对非线性模型设计开环控制器,将开环控制律抽象为根据插值表
    Figure PCTCN2020125570-appb-100003
    的插值函数interp,设参考输入为r,可得:
    Figure PCTCN2020125570-appb-100004
    第二,针对非线性模型设计H∞控制器,对非线性模型进行线性化得到线性系统,可得:
    Figure PCTCN2020125570-appb-100005
    设r、e、u、y分别为参考输入、跟踪误差、控制输入和系统输出,C(s)为H∞控制器,G(s)为被控对象模型,则可得从r到e、u和y的闭环传递函数分别为:
    Figure PCTCN2020125570-appb-100006
    为保证闭环控制系统稳定,设Ws(s)为性能加权函数,Wr(s)为控制器输出加权函数,Wt(s)为鲁棒加权函数,需满足充要条件为:
    Figure PCTCN2020125570-appb-100007
    将原问题转换为标准H∞控制问题,对原闭环控制系统进行增广,可得:
    Figure PCTCN2020125570-appb-100008
    根据标准H∞控制问题的求解方法,可得通解形式为:
    Figure PCTCN2020125570-appb-100009
    第三,针对非线性模型设计LADRC控制器,设扩张状态观测器ESO的带宽为w 0,控制量对系统状态影响系数为b 0,ESO对目标值估计为z 1,ESO对目标值的导数估计为z 2,ESO对系统总扰动估计为z 3,由于ADRC对多变量回路具备解耦特性,多变量回路是直接通过多个单变量控制回路并联组成,LADRC的ESO可表示为:
    Figure PCTCN2020125570-appb-100010
    可得LADRC的控制律为:
    Figure PCTCN2020125570-appb-100011
  4. 根据权利要求1所述的针对线性控制器的无扰切换设计方法,其特征在于:在步骤三中,设
    Figure PCTCN2020125570-appb-100012
    是控制量u的导数;switch为切换控制器的选择函数,表明当前接入到闭环回路控制器为第i个控制器;则在第k个运行周期的控制器输出量u k可表示为:
    Figure PCTCN2020125570-appb-100013
    说明当前控制量u k是在上一时刻的控制量u k-1的基础上叠加了当前闭环回路控制器的控制增量
    Figure PCTCN2020125570-appb-100014
    则控制器切换时不会产生控制量的突变,可实现平滑过渡。
PCT/CN2020/125570 2020-09-29 2020-10-30 一种针对线性控制器的无扰切换设计方法 WO2022067940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/777,015 US20220404777A1 (en) 2020-09-29 2020-10-30 Design method for undisturbed switching of linear controllers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011051685.4A CN112147879A (zh) 2020-09-29 2020-09-29 一种针对线性控制器的无扰切换设计方法
CN202011051685.4 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022067940A1 true WO2022067940A1 (zh) 2022-04-07

Family

ID=73895310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125570 WO2022067940A1 (zh) 2020-09-29 2020-10-30 一种针对线性控制器的无扰切换设计方法

Country Status (3)

Country Link
US (1) US20220404777A1 (zh)
CN (1) CN112147879A (zh)
WO (1) WO2022067940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237029B (zh) * 2021-12-16 2023-09-22 南京航空航天大学 基于主动切换逻辑的涡扇发动机加速过程控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282304A (ja) * 2000-03-31 2001-10-12 Toyota Central Res & Dev Lab Inc スライディングモード制御装置
CN101375219A (zh) * 2005-12-15 2009-02-25 霍尼韦尔国际公司 用于在控制器之间进行切换的技术
CN109100954A (zh) * 2018-08-06 2018-12-28 大连理工大学 一种控制器硬件在环仿真平台建立方法
CN110632872A (zh) * 2019-09-09 2019-12-31 中国海洋大学 双执行器切换控制系统及控制方法
CN111061221A (zh) * 2019-12-16 2020-04-24 常州工学院 一种磁悬浮电主轴自适应混合控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111106B (fi) * 1999-02-19 2003-05-30 Neles Controls Oy Menetelmä prosessinsäätösilmukan virittämiseksi teollisuusprosessissa
US8180464B2 (en) * 2002-04-18 2012-05-15 Cleveland State University Extended active disturbance rejection controller
US8041436B2 (en) * 2002-04-18 2011-10-18 Cleveland State University Scaling and parameterizing a controller
DE102004058328A1 (de) * 2004-12-02 2006-06-08 Framatome Anp Gmbh Regeleinrichtung
CN101578584A (zh) * 2005-09-19 2009-11-11 克利夫兰州立大学 控制器、观测器及其应用
EP2447792A1 (en) * 2005-09-19 2012-05-02 Cleveland State University Controllers, observer, and applications thereof
US7865254B2 (en) * 2007-01-11 2011-01-04 The Mathworks, Inc. Modeling of control systems with open-loop representations and factorization of components
CN106681148B (zh) * 2017-01-10 2019-05-14 南京航空航天大学 一种航空发动机积分正切模糊自适应滑模控制器设计方法
CN110957756A (zh) * 2019-10-29 2020-04-03 国网江苏省电力有限公司盐城供电分公司 一种基于自抗扰技术的光伏逆变器电压控制电路
CN110850740B (zh) * 2019-11-21 2021-04-20 大连理工大学 基于改进型Smith预估器的航空发动机H∞控制方法
CN111456857B (zh) * 2020-04-04 2023-02-28 西北工业大学 航空发动机降保守性增益调度二自由度h∞控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282304A (ja) * 2000-03-31 2001-10-12 Toyota Central Res & Dev Lab Inc スライディングモード制御装置
CN101375219A (zh) * 2005-12-15 2009-02-25 霍尼韦尔国际公司 用于在控制器之间进行切换的技术
CN109100954A (zh) * 2018-08-06 2018-12-28 大连理工大学 一种控制器硬件在环仿真平台建立方法
CN110632872A (zh) * 2019-09-09 2019-12-31 中国海洋大学 双执行器切换控制系统及控制方法
CN111061221A (zh) * 2019-12-16 2020-04-24 常州工学院 一种磁悬浮电主轴自适应混合控制方法

Also Published As

Publication number Publication date
US20220404777A1 (en) 2022-12-22
CN112147879A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN107894716A (zh) 温度控制方法
CN109541935B (zh) 一种参数自适应分数阶自抗扰自动发电控制方法
CN112506056B (zh) 基于闭环阶跃响应串级回路pid控制参数自校正方法
WO2022067940A1 (zh) 一种针对线性控制器的无扰切换设计方法
CN114995155B (zh) 一种高纯度精馏过程鲁棒解耦控制系统及控制方法
CN108828954B (zh) 气候风洞自适应预测控制系统及其控制方法
CN110879582A (zh) 带执行器对称饱和约束的时滞采样系统反饱和控制方法
CN104898425B (zh) 基于静态前馈补偿的抗饱和内模控制系统设计方法
CN113467340A (zh) 改进的一阶线性自抗扰控制系统及其参数整定方法
CN111766780B (zh) 开环稳定受限系统的抗饱和控制器设计方法
CN109298631A (zh) 一种基于传统pid控制器附加二次比例系数的自适应参数整定方法
CN113517832A (zh) 一种低压伺服离散线性自抗扰控制方法
Markaroglu et al. Tracking time adjustment in back calculation anti-windup scheme
CN108132597B (zh) 一种微分超前智能模型集pid控制器设计方法
CN108132596B (zh) 一种微分超前广义智能内部模型集pid控制器设计方法
CN115981159A (zh) 基于模型辅助和类史密斯预估的广义改进自抗扰控制方法
CN110609568B (zh) 一种大型无人机uav的强自耦pi协同控制方法
CN114019786A (zh) 一种pi在线切换到pid的控制系统及参数整定方法
Zobiri et al. Event-based sampling algorithm for setpoint tracking using a state-feedback controller
CN114810364B (zh) 节气门开度的控制方法、控制装置和节气门系统
CN116520684B (zh) 基于自抗扰控制和Youla参数化的控制器优化方法
CN116520680B (zh) 一种抗扰pid控制器整定方法
Visioli et al. Inversion-based feedforward actions in a ratio control system
Ban et al. Construction pruning for twice optimal control of pure integrating process with long time delay
CN110161845B (zh) 一种指数型闭环控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955960

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20955960

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2023)