CN114019786A - 一种pi在线切换到pid的控制系统及参数整定方法 - Google Patents

一种pi在线切换到pid的控制系统及参数整定方法 Download PDF

Info

Publication number
CN114019786A
CN114019786A CN202111148538.3A CN202111148538A CN114019786A CN 114019786 A CN114019786 A CN 114019786A CN 202111148538 A CN202111148538 A CN 202111148538A CN 114019786 A CN114019786 A CN 114019786A
Authority
CN
China
Prior art keywords
pid
controller
control system
order
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111148538.3A
Other languages
English (en)
Other versions
CN114019786B (zh
Inventor
范国朝
俞卫新
安风霞
万晖
王飞
王亮
孙明
谢云辰
张文亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHN Energy Group Science and Technology Research Institute Co Ltd
Original Assignee
CHN Energy Group Science and Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHN Energy Group Science and Technology Research Institute Co Ltd filed Critical CHN Energy Group Science and Technology Research Institute Co Ltd
Priority to CN202111148538.3A priority Critical patent/CN114019786B/zh
Publication of CN114019786A publication Critical patent/CN114019786A/zh
Application granted granted Critical
Publication of CN114019786B publication Critical patent/CN114019786B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本申请公开一种PI在线切换到PID的控制系统及参数整定方法,该参数整定方法实现了工业现场控制系统从PI控制器到PID控制器的在线无扰切换,具有可调参数少,整定方向清晰,调试规律和物理意义明确的特点,能更好满足现场控制工程师的调试习惯,避免了通过经验整定公式带来的参数意义模糊、调试过程不明确的问题。本申请广泛适用于工业过程自动化控制领域,尤其适用于火电厂、石油化工,冶金钢铁等过程控制领域。

Description

一种PI在线切换到PID的控制系统及参数整定方法
技术领域:
本申请属于自动化控制技术领域,具体涉及一种PI在线切换到PID的控制系统及参数整定方法。
背景技术:
PID控制器结构的调节器广泛应用于工业控制领域中,在一些复杂的控制律中,其基本控制层采用的仍然是PID控制算法。PID控制中一个关键的问题是PD对参数的整定,使PID控制系统达到所期望的控制性能。但是在实际的应用中,许多被控过程机理复杂,具有高度非线性、时变不确定性和纯滞后等特点,特别是在噪声、负载扰动等因素的影响下,过程参数甚至模型结构均会随时间和工作环境的变化而变化,导致PID控制系统的控制性能达不到用户所期望的要求,需要重新进行参数的整定优化工作。随着工业装置规模越来越大,控制回路越来越多,操作越来越复杂,使得PID调节器的参数往往难以整定到理想状态,影响回路控制的效果,对产品质量、原料消耗、能耗等都会带来不利影响。所以PID的参数整定方法在实际生产中的应用成为研究的热点。
在使用PI控制器和PID控制器进行控制实际自动化控制中,当被控过程在PI控制器无法达到预期控制性能指标要求时,再进一步采用PID控制进行控制。目前对PI或PID控制参数整定需要进行大量工作,通常根据经验对比例单元P、积分单元I和微分单元D,通过诸多参数进行试凑,费时费力,如何寻找一个简洁高效的参数整定方法,在线实现由PI控制器无扰切换到PD控制器实现系统参数整定,一直是一个难点。
发明内容:
为解决现有技术中存在的问题,本申请从工程应用角度出发,结合了PI及PID控制器算法本身特点,提供一种PI在线切换到PID的控制系统及参数整定方法。
根据一实施例提供的PI在线切换到PID的控制系统及参数整定方法,包括被控对象和PID控制器,所述PID控制器包括比例单元P、积分单元I、微分单元D和控制器增益系数k,所述PID控制器的传递函数为:
Figure BDA0003286802640000011
所述PID控制器基于线性自抗扰控制器启发,则启发下的传递函数为:
Figure BDA0003286802640000021
其中:kp为比例系数;Ti为积分时间;kd为微分系数;Td为微分时间;kb为控制器增益系数;ω0为线性自抗扰控制器中扩张状态观测器LESO的带宽,即闭环期望的PID控制器的滤波参数;ωc为线性自抗扰控制器中误差反馈律的带宽,即闭环期望的PID控制器带宽;ξ为阻尼比;所述PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd的表达式分别为:
Figure BDA0003286802640000022
令所述闭环期望的PID控制器带宽ωc与所述闭环期望的PID控制器滤波参数ω0的比值为λ,即
Figure BDA0003286802640000023
则:
Figure BDA0003286802640000024
kp=2ξλ-λ2
Figure BDA0003286802640000025
kd=(1-2ξλ+λ2);
当λ=1,ξ=1时,有
Figure BDA0003286802640000026
kp=1,
Figure BDA0003286802640000027
kd=0,
此时,即得到PI控制器的传递函数:
Figure BDA0003286802640000028
通过调节所述λ值,以实现所述PI控制器在线切换到所述PID控制器。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述控制对象为自衡对象,在稳定点处线性化后,分为一阶惯性对象即单容对象和二阶欠阻尼惯性对象即双容对象,所述一阶惯性对象和所述二阶欠阻尼惯性对象均分别包括有延迟和无延迟,高阶自衡对象即多容对象可简化为所述一阶惯性对象加延迟或所述二阶欠阻尼惯性对象加延迟,即:
Figure BDA0003286802640000029
Figure BDA0003286802640000031
其中,阶跃响应无超调的简化为所述一阶惯性对象,由所述PI控制器控制;阶跃响应有超调的简化为所述二阶欠阻尼惯性对象,由所述PID控制器控制;
其中,二阶等阻尼系统可以简化为所述一阶惯性对象加延迟系统,即:
Figure BDA0003286802640000032
其中,T2为二阶系统的惯性时间常数,T1为一阶系统的惯性时间常数,τ1为一阶系统的延迟时间,τ2为二阶系统的延迟时间,k为稳态增益。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述二阶等阻尼系统可简化为所述一阶惯性对象加延迟系统,其中:
T1≈1.6T2,τ1≈τ2+0.475T2
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,包括如下具体步骤:
步骤一:基于所述的一种PI在线切换到PID的控制系统及参数整定方法在所述被控对象的控制系统上进行控制算法组态;
步骤二:令λ=1,ξ=1,对所述被控对象使用所述PI控制器,经过调试得到参数ωc和kb,所述被控对象的响应曲线是无超调的闭环响应曲线,即超调不超过5%,第一个谷值是第一个峰值的一半,谷底至少不低于97.5%的单调上升曲线;
步骤三:ωc不变,修改λ=1为λ=λk,此时设置kb=a1*kpk,如果效果满意,结束,效果不满意,转到下一步骤;
步骤四:λ=λk不变,修改ωcnew=a2cold,此时设置kbnew=kbold/a2,如果效果满意,结束,效果不满意,重复所述步骤四到满意为止;
步骤五:选取闭环控制效果满足性能指标的控制器增益系数k,按此时所述PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd,设置控制逻辑组态,并投入运行。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤一中,所述被控对象的控制系统包括DCS控制系统和PLC控制系统。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤二中所述PI控制器对一阶惯性延迟系统的最佳参数为:
Figure BDA0003286802640000041
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤三中所述PID控制器对二阶等阻尼惯性延迟系统的最佳参数为:
Figure BDA0003286802640000042
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤三中λk=0.1。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤三中,a1的取值范围1.1≤a1≤1.4。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤三中,a1=1.2。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤四中,a2的取值范围1.2≤a2≤1.6。
例如,在一个实施例提供的PI在线切换到PID的控制系统及参数整定方法中,所述步骤四中,a2=1.5。
本申请相比于现有技术具有如下有益效果:
本申请一些实施例提供的一种PI在线切换到PID的控制系统及参数整定方法,实现了由PI控制器到PID控制器的在线无扰切换,控制系统的可调参数少,参数方法的整定方向清晰,整定方法形象直观,具有明确的调试规律和物理意义,更能满足现场控制工程师的调试习惯,避免了通过经验整定公式带来的参数意义不清楚和调试过程不明确的问题。
本申请广泛适用于工业过程自动化控制领域,尤其适用于火电厂、石油化工,钢铁冶金等过程控制领域。
附图说明:
图1为本申请实施例一中PID控制器系统结构图;
图2为本申请实施例一中PID控制器算法组态图;
图3为本申请实施例三中闭环响应曲线图;
图4为本申请实施例四中同时采用PI控制器和PID控制器的系统闭环响应输出曲线;
图5为本申请实施例五中主汽温系统单位阶跃响应曲线;
图6为本申请实施例五中λ=1,ξ=1时PI控制下的系统输出响应曲线;
图7为本申请实施例五中ξ=1,不同λ值下的系统输出响应曲线;
图8为本申请实施例六中ωc=0.8,λ=0.1时PID控制系统输出响应曲线;
图9为本申请实施例六中kb=5.04时PID控制系统输出响应曲线;
图10为本申请实施例六中ωc=1.2,kb=3.12时PID控制系统输出响应曲线;
图11为本申请实施例二中步骤流程框图。
具体实施方式:
绝大多数被控过程为自衡过程,当输入发生变化时,无需外加任何控制作用,过程能够自发地趋于新的平衡状态。由于被控对象大多数为非线性,工程界将其在稳定点处线性化,自衡对象线性化后,通常可分为两大类:一阶惯性对象(单容对象)和二阶欠阻尼惯性对象(双容对象),每一大类再分为有延迟和没延迟两小类。
高阶惯性对象的传递函数一般表达式:
Figure BDA0003286802640000051
标幺化后,可以化为
Figure BDA0003286802640000052
其中
Figure BDA0003286802640000061
称为稳态增益,
Figure BDA0003286802640000062
称为n阶系统的时间尺度,高阶自衡对象(多容对象)可以简化为一阶惯性加延迟或二阶惯性加延迟,即:
Figure BDA0003286802640000063
Figure BDA0003286802640000064
通常无超调的简化为一阶,有超调的简化为二阶,可以分别用PI控制器和PID控制器进行控制。实际自动化控制系统,当被控过程在PI控制器无法达到预期控制性能指标要求时,再进一步采用PID控制进行控制。目前对PI或PID控制参数整定需要进行大量工作,通常根据经验对比例单元P、积分单元I和微分单元D,通过Kp,Ki和Kd三个参数进行试凑,费时费力,如何寻找一个简洁高效的参数整定方法,在线实现由PI控制器无扰切换到PID控制器实现系统参数整定,一直是一个难点。
有鉴于此,本申请提供一种PI在线切换到PID的控制系统及参数整定方法,包括被控对象和PID控制器,所述PID控制器包括比例单元P、积分单元I、微分单元D和控制器增益系数k,所述PID控制器的传递函数为:
Figure BDA0003286802640000065
所述PID控制器基于线性自抗扰控制器启发,则启发下的传递函数为:
Figure BDA0003286802640000066
其中kp为比例系数;Ti为积分时间;kd为微分系数;Td为微分时间;kb为控制器增益系数;ω0为线性自抗扰控制器中扩张状态观测器LESO的带宽,即闭环期望的PID控制器的滤波参数;ωc为线性自抗扰控制器中误差反馈律的带宽,闭环期望的PID控制器带宽;ξ为阻尼比。
PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd的表达式分别为:
Figure BDA0003286802640000071
令所述闭环期望的PID控制器带宽ωc与所述闭环期望的PID控制器滤波参数ω0的比值为λ,则
Figure BDA0003286802640000072
kp=2ξλ-λ2
Figure BDA0003286802640000073
kd=1-2ξλ+λ2
当λ=1,ξ=1时,有
Figure BDA0003286802640000074
kp=1,
Figure BDA0003286802640000075
kd=0,
Figure BDA0003286802640000076
即为PI控制器,通过调节λ值,可实现PI控制器在线切换到PID控制器。
对于一阶惯性延迟系统
Figure BDA0003286802640000077
使用PI控制器
Figure BDA0003286802640000078
那么当
Figure BDA0003286802640000079
时,通过调节kP达到快速性和超调性的最佳响应曲线,即超调不超过5%,第一个谷值是第一个峰值的一半,至少不能低于97.5%的单调上升曲线。反之,则只能调节kP,得到无超调的单调上升曲线。
对于二阶等阻尼系统可以简化为一阶加延迟系统,即:
Figure BDA00032868026400000710
其中T1=1.6T,τ=0.475T
对于任一无超调的高阶系统,可以简化为一个一阶惯性加延迟系统,有
Figure BDA00032868026400000711
其中
Figure BDA00032868026400000712
其它两个参数可以通过扰动试验来获得。
此时使用PI控制器来控制这个高阶系统
Figure BDA00032868026400000713
实施例一:
本实施例的一种PI在线切换到PID的控制系统及参数整定方法统,如图1所示,包括被控对象和PID控制器,PID控制器包括比例单元P、积分单元I、微分单元D和控制器增益系数k,该PID控制器的传递函数为:
Figure BDA0003286802640000081
该PID控制器基于线性自抗扰控制器启发,则PID控制器启发下的传递函数为:
Figure BDA0003286802640000082
该PID控制器参数与基于线性自抗扰控制器LADRC启发的参数关系表达式为:
Figure BDA0003286802640000083
其中kp为比例系数;Ti为积分时间;kd为微分系数;Td为微分时间;k为控制器增益系数;ω0为线性自抗扰控制器中扩张状态观测器LESO的带宽,即闭环期望的PID控制器的滤波参数;ωc为线性自抗扰控制器中误差反馈律的带宽,即闭环期望的PID控制器带宽;ξ为阻尼比。
上述PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd的表达式分别为:
Figure BDA0003286802640000084
令闭环期望的PID控制器带宽ωc与闭环期望的PID控制器滤波参数ω0的比值为λ,则:
Figure BDA0003286802640000085
kp=2ξλ-λ2
Figure BDA0003286802640000086
kd=1-2ξλ+λ2
当λ=1,ξ=1时,
Figure BDA0003286802640000087
kp=1,kd=0,PID控制器变为PI控制器,
Figure BDA0003286802640000088
通过调节λ值,实现PI控制器在线切换到PID控制器压。
实施例二:
本实施例一种PI在线切换到PID的控制系统及参数整定方法,包括如下具体步骤:
步骤一:基于所述的一种PI在线切换到PID的控制系统及参数整定方法在所述被控对象的控制系统上进行控制算法组态;
步骤二:令λ=1,ξ=1,对所述被控对象使用所述PI控制器,经过调试得到参数ωc和kb,所述被控对象的响应曲线是无超调的闭环响应曲线,即超调不超过5%,第一个谷值是第一个峰值的一半,谷底至少不低于97.5%的单调上升曲线;
步骤三:ωc不变,修改λ=1为λ=λk,此时设置kb=a1*kpk,如果效果满意,结束,效果不满意,转到下一步骤;
步骤四:λ=λk不变,修改ωcnew=a2cold,此时设置kbnew=kbold/a2,如果效果满意,结束,效果不满意,重复所述步骤四到满意为止;
步骤五:选取闭环控制效果满足性能指标的控制器增益系数k,按此时所述PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd,设置控制逻辑组态,并投入运行。
所述步骤二中,所述被控对象的控制系统包括DCS控制系统和PLC控制系统。
所述步骤三中,λk=0.1,a1的取值范围1.1≤a1≤1.4,优选a1=1.2。
所述步骤四中,a2的取值范围1.2≤a2≤1.6,优选a2=1.5。
由以上步骤可见,本申请的方法调试步骤清晰,调试规律明确,满足现场控制需要,参数意义设定清楚和调试过程明确,调试时间较短,适用于DCS控制系统和PLC控制系统的自动控制。
实施例三:
本实施例采用本申请控制系统及参数整定方法对一阶惯性延迟对象模型(单容对象)进行自动控制,该系统模型如下:
Figure BDA0003286802640000091
此模型可以使用PI控制器或PID控制器来控制。
采用PI控制器时:
Figure BDA0003286802640000101
此处kb=kP
Figure BDA0003286802640000102
闭环传递函数是
Figure BDA0003286802640000103
闭环特征方程
Figure BDA0003286802640000104
当对象是定常系数,那么PI控制器的最佳参数自然是
Figure BDA0003286802640000105
这样零极点抵消,闭环特征方程
Figure BDA0003286802640000106
根据根轨迹,如果对象是自衡系统,且控制器安排的极点也在负半平面,第一个到达虚轴的根的增益值,就是稳定性的条件。
用s=jω代入,可以得
Figure BDA0003286802640000107
推导出两个方程
Figure BDA0003286802640000108
ωcos(τ1ω)=0
下式可以求出
Figure BDA0003286802640000109
从上式,可以得到
Figure BDA00032868026400001010
(n取最小值,n=0,sin(τ1ω)=1,cos(τ1ω)=0)。
稳定性充要条件
Figure BDA00032868026400001011
控制器增益kb和控制对象的稳态增益k同号,当其它参数已知为常数的话,控制器增益和时滞时间成反比。
将s=ω(-1+j)代入,得到
Figure BDA00032868026400001012
推出两个等式
Figure BDA0003286802640000111
Figure BDA0003286802640000112
下式可以求出
Figure BDA0003286802640000113
最小值
Figure BDA0003286802640000114
从上式,可以得到
Figure BDA0003286802640000115
综上所述,PI参数最优整定公式为
Figure BDA0003286802640000116
响应曲线为超调不到5%的曲线。Kp和τ成反比。
对象
Figure BDA0003286802640000117
PI参数为ωc=1,kp=0.5,闭环响应曲线如图3所示,超调4.05%,调节时间3.37秒。开环调节时间约为4秒,闭环略小于开环。
对于标幺二阶等阻尼对象
Figure BDA0003286802640000118
可简化为一阶惯性延迟对象模型
Figure BDA0003286802640000119
采用本实例PI控制器,简化过程如下:
二阶等阻尼对象阶跃响应,
Figure BDA00032868026400001110
简化的一阶惯性延迟对象阶跃响应,
Figure BDA00032868026400001111
定义两个性能指标变量J1,J2
J1=∫|y2(t)-y1(t)|dt
J2=∫(y2(t)-y1(t))2dt
采用最小二乘法求取指标变量最小值,有
Figure BDA00032868026400001112
Figure BDA0003286802640000121
实施例四:
本实施例采用本申请控制系统及参数整定方法对二阶等阻尼延迟系统对象模型进行自动控制,该系统模型如下:
Figure BDA0003286802640000122
PID控制器
Figure BDA0003286802640000123
闭环传递函数是
Figure BDA0003286802640000124
闭环特征方程
Figure BDA0003286802640000125
当对象是定常系数,那么PID控制器的最佳参数自然是
Figure BDA0003286802640000126
ξ=1,这样零极点抵消,闭环特征方程
Figure BDA0003286802640000127
根据根轨迹,如果对象是自衡系统,且控制器安排的极点也在负半平面,第一个到达虚轴的根的增益值,就是稳定性的条件。
Figure BDA0003286802640000128
要获得无超调的闭环响应曲线,由于无法获得代数解,只能有大概的范围
Figure BDA0003286802640000129
如果令
Figure BDA00032868026400001210
需要在调试中获得最佳参数。
对象为标幺系统
Figure BDA0003286802640000131
PI参数ωc=1,经过调试,得到最佳kP≈0.25,此时超调4.3%,调节时间7.25
换成PID,ωc=1,λ=0.1,经过调试,得到最佳kb≈4.5,其范围正好在
Figure BDA0003286802640000132
内,超调3.77,调节时间3.76,PID最佳。可以获得n=0.45,如图4所示。
实施例五
采用本申请一种PI在线切换到PID的控制系统及参数整定方法对某330MW循环流化床机组主汽温控制系统进行自动控制,该机组的主汽温系统模型如下:
Figure BDA0003286802640000133
其中,P1(s)为导前区模型(℃/%),P2(s)为惰性区模型(℃/℃),两者串联后的单位阶跃响应曲线如图3所示。
该系统近似FOPTD模型如下:
Figure BDA0003286802640000134
本实施例中
Figure BDA0003286802640000135
该系统单位阶跃响应曲线如图5所示,参数整定方法包括:
第1步,基于本申请的PID控制器在被控对象的控制系统上进行控制算法组态,如图2所示;
第2步,令λ=1,ξ=1,对被控对象使用PI控制器,选择
Figure BDA0003286802640000136
经过调试得到参数kb=0.072,响应曲线为无超调的曲线,调节时间ts=392,如图6所示。
第3步,基于仿真平台进行调试,自初值逐渐减小λ,每减小一次λ,调节控制器增益系数kb,λ分别取值0.8、0.6、0.4、0.2,选择出最佳的kb值,系统最佳响应曲线如图7所示,整定完成后四条曲线控制参数分别为:
λ=0.8,kb=-0.095,超调量σ=4.35%,取5%稳态误差时,调节时间ts=372;
λ=0.6,kb=-0.138,超调量σ=4.56%,取5%稳态误差时,调节时间ts=338;
λ=0.4,kb=-0.25,超调量σ=3.51%,取5%稳态误差时,调节时间ts=301;
λ=0.2,kb=-0.58,超调量σ=4.95%,取5%稳态误差时,调节时间ts=256;
可见,减少λ,再通过调节kb值可以加快调节时间。
在λ=0.2时的PID控制器的调节时间ts=256,比PI控制器调节时间ts=392快了34.7%。
实施例六
实施例六采用本申请一种PI在线切换到PID的控制系统及参数整定方法对标幺系统进行自动控制,该标幺系统模型如下:
Figure BDA0003286802640000141
本实施例中
Figure BDA0003286802640000142
PI参数ωc=0.8,经过调试,得到最佳kp≈0.36,此时超调4.75%,调节时间6.14.
换成PID,ωc=0.8,λ=0.1,经过调试,得到最佳kb≈6.12,超调3.67,谷值93.31%,这代表参数ωc=0.8设小了,需要增大。好的响应曲线,应该是超调不超过5%,第一个谷值是第一个峰值的一半,至少不能低于97.5%,如图8所示。
如果kb=1.4*kp/λ=5.04,无超调,但调节时间略慢于PI,如图9所示。
这种情况下,步骤增加一步,就是让PID的ωc=0.8*1.5=1.2为PI的1.5倍(依据是选比模型简化的1.6倍小一点,即1.5),那么kb=1.3*kp/λ/1.5=3.12,超调5%,调节时间4.87,如图10所示,PID调节时间4.87,PI调节时间6.14,可见PID调节时间比PI快了20%。

Claims (12)

1.一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:包括被控对象和PID控制器,所述PID控制器包括比例单元P、积分单元I、微分单元D和控制器增益系数k,所述PID控制器的传递函数为:
Figure FDA0003286802630000011
所述PID控制器基于线性自抗扰控制器启发,则启发下的传递函数为:
Figure FDA0003286802630000012
其中:kp为比例系数;Ti为积分时间;kd为微分系数;Td为微分时间;kb为控制器增益系数;ω0为线性自抗扰控制器中扩张状态观测器LESO的带宽,即闭环期望的PID控制器的滤波参数;ωc为线性自抗扰控制器中误差反馈律的带宽,即闭环期望的PID控制器带宽;ξ为阻尼比;
所述PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd的表达式分别为:
Figure FDA0003286802630000013
令所述闭环期望的PID控制器带宽ωc与所述闭环期望的PID控制器滤波参数ω0的比值为λ,即
Figure FDA0003286802630000014
则:
Figure FDA0003286802630000015
kp=2ξλ-λ2
Figure FDA0003286802630000016
kd=(1-2ξλ+λ2);
当λ=1,ξ=1时,有
Figure FDA0003286802630000017
kp=1,
Figure FDA0003286802630000018
kd=0,
此时,即得到PI控制器的传递函数:
Figure FDA0003286802630000019
通过调节所述λ值,以实现所述PI控制器在线切换到所述PID控制器。
2.根据权利要求1所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述控制对象为自衡对象,在稳定点处线性化后,分为一阶惯性对象即单容对象和二阶欠阻尼惯性对象即双容对象,所述一阶惯性对象和所述二阶欠阻尼惯性对象均分别包括有延迟和无延迟,高阶自衡对象即多容对象可简化为所述一阶惯性对象加延迟或所述二阶欠阻尼惯性对象加延迟,即:
Figure FDA0003286802630000021
Figure FDA0003286802630000022
其中,阶跃响应无超调的简化为所述一阶惯性对象,由所述PI控制器控制;阶跃响应有超调的简化为所述二阶欠阻尼惯性对象,由所述PID控制器控制;
其中,二阶等阻尼系统可以简化为所述一阶惯性对象加延迟系统,即:
Figure FDA0003286802630000023
其中,T2为二阶系统的惯性时间常数,T1为一阶系统的惯性时间常数,τ1为一阶系统的延迟时间,τ2为二阶系统的延迟时间,k为稳态增益。
3.根据权利要求2所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述二阶等阻尼系统可简化为所述一阶惯性对象加延迟系统,其中:
T1≈1.6T2,τ1≈τ2+0.475T2
4.根据权利要求1所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于,包括如下具体步骤:
步骤一:基于所述的一种PI在线切换到PID的控制系统及参数整定方法在所述被控对象的控制系统上进行控制算法组态;
步骤二:令λ=1,ξ=1,对所述被控对象使用所述PI控制器,经过调试得到参数ωc和kb,所述被控对象的响应曲线是无超调的闭环响应曲线,即超调不超过5%,第一个谷值是第一个峰值的一半,谷底至少不低于97.5%的单调上升曲线;
步骤三:ωc不变,修改λ=1为λ=λk,此时设置kb=a1*kpk,如果效果满意,结束,效果不满意,转到下一步骤;
步骤四:λ=λk不变,修改ωcnew=a2cold,此时设置kbnew=kbold/a2,如果效果满意,结束,效果不满意,重复所述步骤四到满意为止;
步骤五:选取闭环控制效果满足性能指标的控制器增益系数k,按此时所述PID控制器中积分时间Ti、比例系数kp、微分时间Td和微分系数kd,设置控制逻辑组态,并投入运行。
5.根据权利要求4所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤一中,所述被控对象的控制系统包括DCS控制系统和PLC控制系统。
6.根据权利要求4所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤二中所述PI控制器对一阶惯性延迟系统的最佳参数为:
Figure FDA0003286802630000031
7.根据权利要求4所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤三中所述PID控制器对二阶等阻尼惯性延迟系统的最佳参数为:
Figure FDA0003286802630000032
8.根据权利要求4所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤三中λk=0.1。
9.根据权利要求4所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤三中,a1的取值范围1.1≤a1≤1.4。
10.根据权利要求9所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤三中,a1=1.2。
11.根据权利要求4所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤四中,a2的取值范围1.2≤a2≤1.6。
12.根据权利要求11所述的一种PI在线切换到PID的控制系统及参数整定方法,其特征在于:所述步骤四中,a2=1.5。
CN202111148538.3A 2021-09-29 2021-09-29 一种pi在线切换到pid的控制系统及参数整定方法 Active CN114019786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111148538.3A CN114019786B (zh) 2021-09-29 2021-09-29 一种pi在线切换到pid的控制系统及参数整定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111148538.3A CN114019786B (zh) 2021-09-29 2021-09-29 一种pi在线切换到pid的控制系统及参数整定方法

Publications (2)

Publication Number Publication Date
CN114019786A true CN114019786A (zh) 2022-02-08
CN114019786B CN114019786B (zh) 2024-09-24

Family

ID=80055308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111148538.3A Active CN114019786B (zh) 2021-09-29 2021-09-29 一种pi在线切换到pid的控制系统及参数整定方法

Country Status (1)

Country Link
CN (1) CN114019786B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117193140A (zh) * 2023-10-19 2023-12-08 中广核工程有限公司 控制参数的确定方法、装置、计算机设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142932A1 (en) * 2005-12-15 2007-06-21 Honeywell Asca, Inc. Technique for switching between controllers
PL395033A1 (pl) * 2011-05-27 2011-11-21 Politechnika Świętokrzyska Sposób doboru nastaw parametrów regulatorów ciągłych typu PI oraz typu PID
CN113377008A (zh) * 2021-07-12 2021-09-10 国家能源集团科学技术研究院有限公司 一种pid控制系统及参数整定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142932A1 (en) * 2005-12-15 2007-06-21 Honeywell Asca, Inc. Technique for switching between controllers
PL395033A1 (pl) * 2011-05-27 2011-11-21 Politechnika Świętokrzyska Sposób doboru nastaw parametrów regulatorów ciągłych typu PI oraz typu PID
CN113377008A (zh) * 2021-07-12 2021-09-10 国家能源集团科学技术研究院有限公司 一种pid控制系统及参数整定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邹阳阳;汪思源;唐昌明;: "一种改进两点法无超调PID自整定算法研究", 中国集体经济, no. 31, 5 November 2016 (2016-11-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117193140A (zh) * 2023-10-19 2023-12-08 中广核工程有限公司 控制参数的确定方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN114019786B (zh) 2024-09-24

Similar Documents

Publication Publication Date Title
US5159660A (en) Universal process control using artificial neural networks
Piltan et al. Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator
Kozák State-of-the-art in control engineering
Wang et al. Bounded UDE-based controller for input constrained systems with uncertainties and disturbances
Pal et al. Self-tuning fuzzy PI controller and its application to HVAC systems
Yang et al. SGD-based adaptive NN control design for uncertain nonlinear systems
CN113377008B (zh) 一种pid控制系统及参数整定方法
Hušek et al. Fuzzy model reference control with adaptation of input fuzzy sets
CN108828954A (zh) 气候风洞自适应预测控制系统及其控制方法
Kozák Advanced control engineering methods in modern technological applications
CN112462614A (zh) 改进的ladrc线性自抗扰控制系统及参数整定方法
Kudinov et al. Analysis of control system models with conventional LQR and fuzzy LQR controller
CN114019786A (zh) 一种pi在线切换到pid的控制系统及参数整定方法
CN114859732A (zh) 一种基于调度信号的前馈补偿自抗扰控制器及其设计方法
Piltan et al. Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator
Mrad et al. Experimental comparative analysis of adaptive fuzzy logic controllers
Khanduja et al. Intelligent control of CSTR using IMC-PID and PSO-PID controller
Kurien et al. Overview of different approaches of pid controller tuning
Ablay A generalized PID controller for high-order dynamical systems
Sivaramakrishnan et al. Design of Hybrid control for Isothermal Continuous stirred tank Reactor
Reyes et al. A PID using a non-singleton fuzzy logic system type 1 to control a second-order system
Guo Controlling of lower-order dead system by implementing adaptive RST algorithm
Zhang et al. Operational Optimal Tracking Control for Industrial Multirate Systems Subject to Unknown Disturbances
CN116520680B (zh) 一种抗扰pid控制器整定方法
Li et al. Optimal MIMO PID controllers for the MIMO processes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant