WO2022067630A1 - 蓝光oled器件、显示面板和显示装置 - Google Patents

蓝光oled器件、显示面板和显示装置 Download PDF

Info

Publication number
WO2022067630A1
WO2022067630A1 PCT/CN2020/119267 CN2020119267W WO2022067630A1 WO 2022067630 A1 WO2022067630 A1 WO 2022067630A1 CN 2020119267 W CN2020119267 W CN 2020119267W WO 2022067630 A1 WO2022067630 A1 WO 2022067630A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue light
blue
light
dopant
oled device
Prior art date
Application number
PCT/CN2020/119267
Other languages
English (en)
French (fr)
Inventor
陈雪芹
陈磊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/119267 priority Critical patent/WO2022067630A1/zh
Priority to CN202080002217.XA priority patent/CN114902440A/zh
Publication of WO2022067630A1 publication Critical patent/WO2022067630A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a blue-light OLED device, a display panel and a display device.
  • the blue light emitting materials in blue OLED devices need to emit blue light.
  • the blue light emitting materials include the blue light emitting host BH and the blue dopant BD. orbital) energy levels are shallow. Therefore, in blue OLED devices, when BD is doped into BH, traps of holes will be formed due to the shallow HOMO energy level of BD, resulting in a rapid decrease in the overall hole mobility of the light-emitting layer.
  • the hole mobility of BH is usually smaller than that of electrons. Therefore, when BD with a shallow HOMO energy level is doped into it, the mobility difference between holes and electrons in the light-emitting layer will be further expanded, which in turn makes the exciton recombination region to one side. , which reduces the lifetime of blue OLED devices.
  • an object of the present disclosure is to propose a blue OLED device with a long service life.
  • the present disclosure provides a blue light OLED device.
  • the blue OLED device includes a blue light emitting layer including a blue light emitting host (BH) and a blue dopant (BD), wherein the blue light emitting host and the blue light
  • the HOMO energy level difference of the dopant is less than or equal to 0.9 eV; based on the total mass of the light emitting layer, the content of the blue light dopant is less than or equal to 6%. Therefore, the HOMO of the blue light dopant is not much different from the HOMO of the blue light emitting host, and the blue light dopant will not cause a significant decrease in hole mobility due to trapping too many holes. Under certain conditions, the lifespan of blue OLED devices can be effectively prolonged.
  • the HOMO energy level difference between the blue light-emitting host and the blue-light dopant is greater than 0.4 eV; based on the total mass of the light-emitting layer, the content of the blue-light dopant is less than or equal to 3% .
  • the HOMO energy level difference between the blue light-emitting host and the blue-light dopant is greater than 0.6 eV; based on the total mass of the light-emitting layer, the content of the blue-light dopant is less than or equal to 2% .
  • the HOMO energy level difference between the blue light-emitting host and the blue-light dopant is less than or equal to 0.4 eV; based on the total mass of the light-emitting layer, the content of the blue-light dopant is less than or equal to 6 %.
  • the chemical structural formula of the blue light-emitting host is:
  • Ar1, Ar2 and R are each independently hydrogen, substituted or unsubstituted C6-C30 aryl, heteroaryl or biphenyl.
  • the chemical structural formula of the blue light-emitting host is:
  • the blue light-emitting host satisfies at least one of the following conditions: the HOMO energy level is -6.2 to -5.3 eV; the LUMO energy is extremely -2.5 to -3.2 eV; the hole mobility is 1*10 -7 ⁇ 1* 10-10 ; Electron mobility is 1* 10-6 ⁇ 1* 10-8 .
  • the chemical structural formula of the blue light dopant is:
  • X and Y represent N, O or S respectively, wherein R1 and R2 are each independently a substituted or unsubstituted C6-C12 aryl group or biphenyl; m, n are 0 or 1; R3, R4 and R5 each Independently hydrogen or nitrogen-containing C6-C30 aryl, heteroaryl or biphenyl.
  • the chemical structural formula of the blue light dopant is:
  • the blue light dopant satisfies at least one of the following conditions: the HOMO energy level is -5.8 to -5.2 eV; the LUMO energy level is extremely -2.1 to -3.1 eV;
  • a blue OLED device includes an anode, a hole injection layer, a hole transport layer, the blue light emitting layer, an electron injection layer, an electron transport layer, and a cathode that are stacked in sequence.
  • the present disclosure provides a display panel.
  • the display panel includes the aforementioned blue OLED device. Therefore, the blue OLED device of the display panel has a longer service life, thereby helping to prolong the service life of the display panel.
  • the display panel has all the features and advantages of the aforementioned blue-light OLED devices, and details are not repeated here.
  • the present disclosure provides a display device.
  • the display device includes the aforementioned display panel.
  • the display device has a longer service life and higher cost performance. Those skilled in the art can understand that the display device has all the features and advantages of the above-mentioned display panel, which will not be repeated here.
  • FIG. 1 is a schematic diagram of the relationship between the HOMO energy level difference between BD and BH and the doping ratio of BD in an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a blue OLED device in another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a display panel in yet another embodiment of the present disclosure.
  • Embodiments of the present disclosure are described in detail below.
  • the embodiments described below are exemplary only for explaining the present disclosure and should not be construed as limiting the present disclosure. If no specific technique or condition is indicated in the examples, the technique or condition described in the literature in the field or the product specification is used.
  • the reagents or instruments used without the manufacturer's indication are conventional products that can be obtained from the market.
  • the present disclosure provides a blue light OLED device.
  • the blue OLED device includes a blue light emitting layer including a blue light emitting host (BH) and a blue dopant (BD), wherein the blue light emitting host and the blue light
  • the HOMO energy level difference of the dopant is less than or equal to 0.9 eV; based on the total mass of the light emitting layer, the content of the blue light dopant is less than or equal to 6%. Therefore, the HOMO of the blue light dopant is not much different from the HOMO of the blue light emitting host, and the blue light dopant will not cause a significant decrease in hole mobility due to trapping too many holes. Under certain conditions, the lifetime of blue OLED devices can be effectively prolonged.
  • the inventors found that, on the premise of ensuring a long lifetime of the blue OLED device, with the increase of the HOMO energy level difference between the blue light emitting host and the blue dopant, the doping of the blue dopant increases.
  • the ratio shows a decreasing trend, as shown in Figure 1 (the abscissa is the HOMO level difference between the blue dopant and the blue light-emitting host).
  • the HOMO energy level difference between the blue light-emitting host and the blue-light dopant is less than or equal to 0.4 eV; based on the total mass of the light-emitting layer, the content of the blue-light dopant is less than or equal to 6% ; In other embodiments, the HOMO energy level difference between the blue light-emitting host and the blue-light dopant is greater than 0.4 eV; based on the total mass of the light-emitting layer, the content of the blue-light dopant is less than or equal to 3%; In still other embodiments, the HOMO energy level difference between the blue light-emitting host and the blue-light dopant is greater than 0.6 eV; based on the total mass of the light-emitting layer, the content of the blue-light dopant is less than or equal to 2% . Under the above-mentioned HOMO energy level difference and the doping ratio of the blue dopant, the blue OLED device has
  • HOMO energy level difference refers to the absolute value of the HOMO energy level difference between the blue light dopant and the blue light emitting host.
  • the blue light emitting host material has an anthracene core structure
  • the blue light dopant has a boron-containing core structure.
  • the blue light-emitting host material containing anthracene has good electron-hole mobility and good thermal stability
  • the blue light-emitting dopant containing boron has a rigid core structure, high fluorescence quantum yield and thermal stability. sex.
  • the adjustment of the HOMO energy level of the blue light dopant can be flexibly realized, and then the HOMO energy level between the blue light emitting host and the blue light dopant can be flexibly adjusted difference.
  • the chemical structural formula of the blue light-emitting host is:
  • Ar1, Ar2 and R are each independently hydrogen, substituted or unsubstituted C6-C30 aryl, heteroaryl or biphenyl.
  • the chemical structural formula of the blue light emitting host is the following chemical structural formula 1-1, chemical structural formula 1-2 and chemical structural formula 1-3:
  • the blue light-emitting host satisfies at least one of the following conditions: the HOMO energy level is -6.2 to -5.3 eV (for example, the HOMO energy level is -6.2 eV, -6.0 eV, -5.8 eV, -5.6 eV) , -5.36eV, -5.3eV); LUMO can be extremely -2.5 ⁇ -3.2eV (such as -2.5eV, -2.6eV, -2.7eV, -2.8eV, -2.9eV, -3.0eV, -3.1eV, -3.2eV); hole mobility is 1*10 -7 ⁇ 1*10 -10 (for example, 1*10 -10 , 1*10 -9 , 5*10 -9 , 1*10 -8 , 5* 10 -8 , 1*10 -7 ); electron mobility is 1*10 -6 to 1*10 -8 (for example, 1*10 -8 (for example, 1*10 -8
  • the chemical structural formula of the blue light dopant is:
  • X and Y represent N, O or S respectively, wherein R1 and R2 are each independently a substituted or unsubstituted C6-C12 aryl group or biphenyl; m, n are 0 or 1; R3, R4 and R5 each Independently hydrogen or nitrogen-containing C6-C30 aryl, heteroaryl or biphenyl.
  • the chemical structural formula of the blue light dopant is the following chemical structural formula 2-1, chemical structural formula 2-2 and chemical structural formula 2-3:
  • the blue light dopant satisfies at least one of the following conditions: the HOMO energy level is -5.8 to -5.2 eV (for example, the HOMO energy level is -5.8 eV, -5.7 eV, -5.6 eV, -5.5 eV) eV, -5.4eV, -5.3eV,);; LUMO can be extremely -2.1 ⁇ -3.1eV (for example, -2.1eV, -2.3eV, -2.5eV, -2.8eV, -2.9eV, -3.0eV, - 3.1eV). Therefore, the blue dopant has better performance, which is helpful to further prolong the service life of the blue OLED device.
  • the blue OLED device includes an anode (ITO) 10 , a hole injection layer (HIL) 20 , a hole transport layer (HTL) 30 , and the blue light emitting layer 40 , which are stacked in sequence. , an electron injection layer (EIL) 50 , an electron transport layer (ETL) 60 and a cathode 70 .
  • ITO anode
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • cathode 70 a cathode
  • the present disclosure provides a display panel.
  • the display panel includes the aforementioned blue OLED device. Therefore, the blue OLED device of the display panel has a longer service life, thereby helping to prolong the service life of the display panel.
  • the display panel has all the features and advantages of the aforementioned blue-light OLED devices, and details are not repeated here.
  • the blue-light OLED device described above in the display panel also includes the necessary structures and components for conventional display panels, such as red-light OLED devices, green-light OLED devices, and TFT substrates, which are used for packaging
  • the necessary structures and components such as the encapsulation layer and glass cover of OLED devices.
  • an embodiment of the present disclosure further provides a display panel, as shown in FIG. 3 , including a plurality of the above-mentioned blue light OLED devices, red light OLED devices, green OLED devices.
  • the display panel includes: a base substrate 01, a thin film transistor 02 located on the base substrate 01, an anode 100 connected to the drain of the thin film transistor 02, a pixel defining layer 03 for defining the light-emitting area of each pixel, and spacers 04, a first auxiliary function layer 400 such as a hole injection layer and a hole transport layer, a second auxiliary function layer 500 such as a light-emitting layer 300, an electron transport layer, etc., and the cathode 200, etc. formed in sequence on the pixel defining layer 03, wherein, The first auxiliary function layer 400 , the second auxiliary function layer 500 and the cathode 200 and other film layers are film layers arranged on the entire surface of the base substrate 01 .
  • the material of the light-emitting layer 300 in the light-emitting area of different pixels is different and the thickness may also be different. different.
  • FIG. 3 only illustrates an implementable structure of the pixel light-emitting regions of R, G, and B and the thin film transistor of one pixel, and the structure of the display panel is not limited to this.
  • the present disclosure provides a display device.
  • the display device includes the aforementioned display panel.
  • the display device has a longer service life and higher cost performance. Those skilled in the art can understand that the display device has all the features and advantages of the above-mentioned display panel, which will not be repeated here.
  • specific types of display devices include, but are not limited to, mobile phones, televisions, notebooks, iPads, kindle, game consoles, and other display devices with display functions.
  • the blue OLED device includes an anode, a hole transport layer HTL, a blue light emitting layer, an electron blocking layer EBL, an electron transport layer ETL and a cathode which are stacked in sequence.
  • the blue light-emitting layer includes a blue light-emitting host BH and a blue-light dopant BD, wherein,
  • the chemical structural formula of the blue light-emitting host BH The chemical structural formula 1-1 mentioned above, its HOMO energy level is -5.92eV, LUMO is -3.01eV, hole mobility is 3.2*10 -9 , and electron mobility is 9.6*10 -8 ;
  • Chemical structural formula of blue-light dopant BD The chemical structural formula 2-1 mentioned above, its HOMO is -5.36eV, LUMO is -2.71eV, so, the HOMO energy level difference between BH and BD is 0.56eV. Wherein, based on the total mass of the blue light-emitting layer, the doping content of BD is 5%.
  • Example 1 The structure of the blue light OLED device in Example 1 is the same as that of Example 1. The difference between this Example and Example 1 is only that the doping content of BD is 3% based on the total mass of the blue light-emitting layer.
  • Example 1 The structure of the blue-light OLED device in Example 1 is the same, and the difference between this example and Example 1 is only that the doping content of BD is 1% based on the total mass of the blue light-emitting layer.
  • the blue OLED device includes an anode, a hole transport layer HTL, a blue light emitting layer, an electron blocking layer EBL, an electron transport layer ETL and a cathode which are stacked in sequence.
  • the blue light-emitting layer includes a blue light-emitting host BH and a blue-light dopant BD, wherein,
  • the chemical structural formula of the blue light-emitting host BH The chemical structural formula 1-1 mentioned above, its HOMO energy level is -5.92eV, LUMO is -3.01eV, hole mobility is 3.2*10 -9 , and electron mobility is 9.6*10 -8 ;
  • Chemical structural formula of blue light dopant BD The chemical structural formula 2-2 mentioned above, its HOMO is -5.68eV, LUMO is -3.08eV, so, the HOMO energy level difference between BH and BD is 0.24eV. Wherein, based on the total mass of the blue light-emitting layer, the doping content of BD is 5%.
  • Example 1 The structure of the blue light OLED device in Example 1 is the same as that of Example 1. The difference between this Example and Example 1 is only that the doping content of BD is 3% based on the total mass of the blue light-emitting layer.
  • Example 1 The structure of the blue-light OLED device in Example 1 is the same, and the difference between this example and Example 1 is only that the doping content of BD is 1% based on the total mass of the blue light-emitting layer.
  • the data of luminous efficiency in Table 1 is calculated based on Example 1, that is, it is defined that the luminous efficiency of the implemented blue OLED device is 100%, then compared with Example 1, Example 2 The luminous efficiency of the blue OLED device is 104%.
  • the lifetime data in Table 1 is also based on the blue OLED device in Example 1, and its lifetime is defined as 100%. Compared with Example 1, the lifetime of the blue OLED device in Example 2 is 110%.
  • Example 1 when 2-1 is selected as the BD material, the luminous efficiency and lifetime of the blue OLED device are better than those of the device with 2-2 BD material selected.
  • references to the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples”, etc. means a specific feature described in connection with the embodiment or example, A structure, material, or feature is included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供蓝光OLED器件、显示面板和显示装置。该蓝光OLED器件包括蓝色发光层,所述蓝色发光层包括蓝光发光主体(BH)和蓝光掺杂剂(BD),其中,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.9eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%。由此,蓝光掺杂剂的HOMO与蓝光发光主体的HOMO相差不大,蓝光掺杂剂不会因为捕捉太多空穴而造成空穴迁移率显著降低,所以蓝光掺杂剂在上述掺杂比例的条件下,可以有效延长蓝光OLED器件的寿命。

Description

蓝光OLED器件、显示面板和显示装置 技术领域
本公开涉及显示技术领域,具体的,涉及蓝光OLED器件、显示面板和显示装置。
背景技术
目前蓝光OLED器件中的蓝光发光材料需要发蓝光,蓝光发光材料包括蓝光发光主体BH和蓝光掺杂剂BD,目前常用的BD材料的HOMO能级(最高分子占据轨道)和LUMO(最低未占分子轨道)能级均较浅。因此在蓝光OLED器件中,将BD掺杂到BH当中,由于BD的HOMO能级较浅,从而会形成空穴的陷阱,造成发光层整体的空穴迁移率迅速降低。而BH的空穴迁移率通常小于电子迁移率,因此浅HOMO能级的BD掺杂进去后,会造成发光层中空穴和电子的迁移率差值更加扩大,进而使得激子复合区域偏向一侧,使得蓝光OLED器件的寿命降低。
因此,关于蓝光OLED器件的研究有待深入。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种蓝光OLED器件,该器件具有较长的使用寿命。
在本公开的一方面,本公开提供一种蓝光OLED器件。根据本公开的实施例,该蓝光OLED器件包括蓝色发光层,所述蓝色发光层包括蓝光发光主体(BH)和蓝光掺杂剂(BD),其中,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.9eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%。由此,蓝光掺杂剂的HOMO与蓝光发光主体的HOMO相差不大,蓝光掺杂剂不会因为捕捉太多空穴而造成空穴迁移率显著降低,所以蓝光掺杂剂在上述掺杂比例的条件下,可以有效延长蓝光OLED器件的寿命。
根据本公开的实施例,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值大于0.4eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于3%。
根据本公开的实施例,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值大于0.6eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于2%。
根据本公开的实施例,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.4eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%。
根据本公开的实施例,所述蓝光发光主体的化学结构式为
Figure PCTCN2020119267-appb-000001
其中,Ar1、Ar2和R各自独立的为氢、取代或未取代的C6-C30的芳基、杂芳基或联苯。
根据本公开的实施例,所述蓝光发光主体的化学结构式为
Figure PCTCN2020119267-appb-000002
根据本公开的实施例,所述蓝光发光主体满足以下条件至少之一:HOMO能级为-6.2~-5.3eV;LUMO能极为-2.5~-3.2eV;空穴迁移率为1*10 -7~1*10 -10;电子迁移率为1*10 -6~1*10 -8
根据本公开的实施例,所述蓝光掺杂剂的化学结构式为
Figure PCTCN2020119267-appb-000003
其中,X和Y分别表示N、O或S,其中R1和R2各自独立的为取代或未取代的C6-C12的芳基或联苯;m,n为0或1;R3、R4和R5各自独立的为氢或含氮的C6-C30的芳基、杂芳基或联苯。
根据本公开的实施例,所述蓝光掺杂剂的化学结构式为
Figure PCTCN2020119267-appb-000004
根据本公开的实施例,所述蓝光掺杂剂满足以下条件至少之一:HOMO能级为-5.8~-5.2eV;LUMO能极为-2.1~-3.1eV;
根据本公开的实施例,蓝光OLED器件包括依次层叠设置的阳极、空穴注入层、空穴传输层、所述蓝色发光层、电子注入层、电子传输层和阴极。
在本公开的另一方面,本公开提供了一种显示面板。根据本公开的实施例,该显示面板包括前面所述的蓝光OLED器件。由此,该显示面板的蓝光OLED器件具有较长的使用寿命,故而有助于延长该显示面板的使用寿命。本领域技术人员可以理解,该显示面板具有前面所述的蓝光OLED器件的所有特征和优点,在此不再过多的赘述。
在本公开的又一方面,本公开提供了一种显示装置。根据本公开的实施例,该显示装置包括前面所述的显示面板。该显示装置的使用寿命较长,性价比较高。本领域技术人员可以理解,该显示装置具有前面所述的显示面板的所有特征和优点,在此不再过多的赘述。
附图说明
图1是本公开一个实施例中BD与BH之间的HOMO能级差值与BD掺杂比例之间的关系示意图。
图2是本公开另一个实施例中蓝色OLED器件的结构示意图。
图3是本公开又一个实施例中显示面板的结构示意图。
发明详细描述
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一方面,本公开提供一种蓝光OLED器件。根据本公开的实施例,该蓝光OLED器件包括蓝色发光层,所述蓝色发光层包括蓝光发光主体(BH)和蓝光掺杂剂(BD),其中,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.9eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%。由此,蓝光掺杂剂的HOMO与蓝光发光主体的HOMO相差不大,蓝光掺杂剂不会因为捕捉太多空穴而造成空穴迁移率显著降低,所以蓝光掺杂剂在上述掺杂比例的条件下,可以有效延长蓝光OLED器件的寿命。
根据本公开的实施例,发明人发现,在保证蓝光OLED器件较长寿命的前提下,随着蓝光发光主体和蓝光掺杂剂的HOMO能级差值的增大,蓝光掺杂剂的掺杂比例呈降低的趋势,如图1所示(横坐标为蓝光掺杂剂和蓝光发光主体之间的HOMO能级差值)。在一些实施例中,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.4eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%;在另一些实施例中,蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值大于0.4eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于3%;在又一些实施例中,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值大于0.6eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于2%。在上述HOMO能级差值以及蓝光掺杂剂的掺杂比例下,蓝光OLED器件具有较长的寿命。
需要说明的是,上述“HOMO能级差值”是指蓝光掺杂剂和蓝光发光主体之间的HOMO能级差值的绝对值。
根据本公开的实施例,蓝光发光主体材料具有蒽的核心结构,蓝光掺杂剂具有含硼的核心结构。如此,含蒽的蓝光发光主体材料具有较好的电子空穴迁移率,同时具有较好的热稳定性,含硼的蓝光掺杂剂具有刚性的核心结构,高的荧光量子产率和热稳定性。其中,通过改变蓝光掺杂剂化学结构式中的取代基,可以灵活实现对蓝光掺杂剂的HOMO能级的调整,进而可以灵活调整蓝光发光主体和所述蓝光掺杂剂之间的HOMO能级差值。
根据本公开的实施例,所述蓝光发光主体的化学结构式为
Figure PCTCN2020119267-appb-000005
其中,Ar1、Ar2和R各自独立的为氢、取代或未取代的C6-C30的芳基、杂芳基或联苯。
在一些具体的具体实施例中,所述蓝光发光主体的化学结构式为以下化学结构式1-1、化学结构式1-2和化学结构式1-3:
Figure PCTCN2020119267-appb-000006
根据本公开的实施例,所述蓝光发光主体满足以下条件至少之一:HOMO能级为-6.2~-5.3eV(比如HOMO能级为-6.2eV、-6.0eV、-5.8eV、-5.6eV、-5.36eV、-5.3eV);LUMO能极为-2.5~-3.2eV(比如为-2.5eV、-2.6eV、-2.7eV、-2.8eV、-2.9eV、-3.0eV、-3.1eV、-3.2eV);空穴迁移率为1*10 -7~1*10 -10(比如为1*10 -10、1*10 -9、5*10 -9、1*10 -8、5*10 -8、1*10 -7);电子迁移率为1*10 -6~1*10 -8(比如为1*10 -8、5*10 -8、1*10 -7、5*10 -7、1*10 -6)。由此,蓝色发光主体具有较佳的性能,有助于进一步延长蓝光OLED器件的使用寿命。
根据本公开的实施例,所述蓝光掺杂剂的化学结构式为
Figure PCTCN2020119267-appb-000007
其中,X和Y分别表示N、O或S,其中R1和R2各自独立的为取代或未取代的C6-C12的芳基或联苯;m,n为0或1;R3、R4和R5各自独立的为氢或含氮的C6-C30的芳基、杂芳基或联苯。
在一些具体的具体实施例中,所述蓝光掺杂剂的化学结构式为以下化学结构式2-1、化学结构式2-2和化学结构式2-3:
Figure PCTCN2020119267-appb-000008
根据本公开的实施例,所述蓝光掺杂剂满足以下条件至少之一:HOMO能级为-5.8~-5.2eV(比如HOMO能级为-5.8eV、-5.7eV、-5.6eV、-5.5eV、-5.4eV、-5.3eV、);;LUMO能极为-2.1~-3.1eV(比如为-2.1eV、-2.3eV、-2.5eV、-2.8eV、-2.9eV、-3.0eV、-3.1eV)。由此,蓝色掺杂剂具有较佳的性能,有助于进一步延长蓝光OLED器件的使用寿命。
根据本公开的实施例,参照图2,蓝光OLED器件包括依次层叠设置的阳极(ITO)10、空穴注入层(HIL)20、空穴传输层(HTL)30、所述蓝色发光层40、电子注入层(EIL)50、电子传输层(ETL)60和阴极70。其中,形成空穴注入层(HIL)、空穴传输层(HTL)、电子注入层(EIL)和电子传输层(ETL)材料没有特殊要求,本领域技术人员可以根据实际情况灵活选择常规技术中的使用材料。
在本公开的另一方面,本公开提供了一种显示面板。根据本公开的实施例,该显示面板包括前面所述的蓝光OLED器件。由此,该显示面板的蓝光OLED器件具有较长的使用寿命,故而有助于延长该显示面板的使用寿命。本领域技术人员可以理解,该显示面板具有前面所述的蓝光OLED器件的所有特征和优点,在此不再过多的赘述。
本领域技术人员可以理解,该显示面板前面所述的蓝光OLED器件,还包括常规显示面板所必备的结构和部件,比如还包括红光OLED器件、绿光OLED器件、TFT基板、用于封装OLED器件的封装层、玻璃盖板等必备的结构和部件。
在一些具体实施例中,参照图3,基于同一发明构思,本公开实施例还提供了一种显示面板,如图3所示,包括多个本公开实施例提供的上述蓝光OLED器件、红光OLED器件、绿光OLED器件。具体地,显示面板包括:衬底基板01、位于衬底基板01上的薄膜晶体管02、与薄膜晶体管02的漏极连接的阳极100、用于限定各像素发光区域的像素限定层03、隔垫物04、在像素限定层03上依次形成的空穴注入层和空穴传输层等第一辅助功能层400、发光层300、电子传输层等第二辅助功能层500、阴极200等,其中,第一辅助功能层400、第二辅助功能层500和阴极200等膜层为在衬底基板01上整面设置的膜层,在不同像素发光区域的发光层300材质各不相同且厚度也可以不同。图3中仅示意出了R、G、B的像素发光区域和一个像素的薄膜晶体管的一种可实施的结构,显示面板的结构并不局限于此。
在本公开的又一方面,本公开提供了一种显示装置。根据本公开的实施例,该显示装置包括前面所述的显示面板。该显示装置的使用寿命较长,性价比较高。本领域技术人员可以理解,该显示装置具有前面所述的显示面板的所有特征和优点,在此不再过多的赘述。
根据本公开的实施例,该显示装置的具体种类没有特殊要求,本领域技术人员可以根据实际情况灵活选择。在一些实施例中,显示装置的具体种类包括但不限于手机、电视、笔记本、iPad、kindle、游戏机等一切具有显示功能的显示装置。
实施例
实施例1
蓝光OLED器件包括依次层叠设置的阳极、空穴传输层HTL、蓝色发光层、电子阻挡层EBL、电子传输层ETL和阴极。蓝色发光层包括蓝光发光主体BH和蓝光掺杂剂BD,其中,
蓝光发光主体BH的化学结构式前面所述的化学结构式1-1,其HOMO能级为-5.92eV,LUMO为-3.01eV,空穴迁移率为3.2*10 -9,电子迁移率为9.6*10 -8;蓝光掺杂剂BD的化学结构式前面所述的化学结构式2-1,其HOMO为-5.36eV,LUMO为-2.71eV,如此,BH与BD的HOMO能级差值为0.56eV。其中,基于蓝色发光层的总质量,BD的掺杂含量为5%。
实施例2
与实施例1中的蓝光OLED器件的结构相同,本实施例与实施例1的区别仅在于:基于蓝色发光层的总质量,BD的掺杂含量为3%。
实施例3
与实施例1中的蓝光OLED器件的结构相同,本实施例与实施例1的区别仅在于:基于蓝色发光层的总质量,BD的掺杂含量为1%。
实施例4
蓝光OLED器件包括依次层叠设置的阳极、空穴传输层HTL、蓝色发光层、电子阻挡层EBL、电子传输层ETL和阴极。蓝色发光层包括蓝光发光主体BH和蓝光掺杂剂BD,其中,
蓝光发光主体BH的化学结构式前面所述的化学结构式1-1,其HOMO能级为-5.92eV,LUMO为-3.01eV,空穴迁移率为3.2*10 -9,电子迁移率为9.6*10 -8;蓝光掺杂剂BD的化学结构式前面所述的化学结构式2-2,其HOMO为-5.68eV,LUMO为-3.08eV,如此,BH与BD的HOMO能级差值为0.24eV。其中,基于蓝色发光层的总质量,BD的掺杂含量为5%。
实施例5
与实施例1中的蓝光OLED器件的结构相同,本实施例与实施例1的区别仅在于:基于蓝色发光层的总质量,BD的掺杂含量为3%。
实施例6
与实施例1中的蓝光OLED器件的结构相同,本实施例与实施例1的区别仅在于:基于蓝色发光层的总质量,BD的掺杂含量为1%。
对上述实施例1-6中的蓝光OLED器件进行电压、发光效率和寿命进行测试,测试结果参下表1。
表1
  BD掺杂比例 电压(V) 发光效率(cd/cm 2) 寿命(小时)
实施例1 5% 100 100% 100%
实施例2 3% 99 104% 110%
实施例3 1% 99 106% 117%
实施例4 5% 100 103% 111%
实施例5 3% 100 103% 104%
实施例6 1% 99 104% 95%
需要说明的是,表1中发光效率的数据是以实施例1为基数而计算得到的数据,即定义实施的蓝光OLED器件的发光效率为100%,那么相比于实施例1,实施例2中的蓝光OLED器件的发光效率为104%。同理,表1中的寿命数据也是以实施例1中蓝光OLED器件为基数,定义其寿命为100%,相比于实施例1,实施例2中的蓝光OLED器件的寿命为110%。
通过对比实施例1-3可见,BH的化学结构式前面所述的化学结构式1-1,BD的化学结构式前面所述的化学结构式2-1(能级差值为0.56eV,大于0.4eV)时,随着BD掺杂比例的降低,蓝光OLED器件的发光效率和寿命逐渐提高。
通过对比实施例4-6可见,BH的化学结构式前面所述的化学结构式1-1,BD的化学结构式前面所述的化学结构式2-2(能级差值为0.24eV,小于0.4eV)时,随着BD掺杂比例的降低,蓝光OLED器件的发光效率和寿命逐渐降低。
通过上述结果可见,BH和BD选择不同的材料时,随着BD的掺杂比例的降低,器件的寿命或发光效率逐渐的提高或降低。
通过实施例1和实施例4对比可见,BD的材料选用2-1时,蓝光OLED器件的发光效率和寿命优于选择2-2的BD材料的器件。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互 矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种蓝光OLED器件,其特征在于,包括蓝色发光层,所述蓝色发光层包括蓝光发光主体和蓝光掺杂剂,其中,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.9eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%。
  2. 根据权利要求1所述的蓝光OLED器件,其特征在于,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值大于0.4eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于3%。
  3. 根据权利要求1所述的蓝光OLED器件,其特征在于,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值大于0.6eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于2%。
  4. 根据权利要求1所述的蓝光OLED器件,其特征在于,所述蓝光发光主体和所述蓝光掺杂剂的HOMO能级差值小于等于0.4eV;基于所述发光层的总质量,所述蓝光掺杂剂的含量小于等于6%。
  5. 根据权利要求1~4中任一项所述的蓝光OLED器件,其特征在于,所述蓝光发光主体的化学结构式为
    Figure PCTCN2020119267-appb-100001
    其中,Ar1、Ar2和R各自独立的为氢、取代或未取代的C6-C30的芳基、杂芳基或联苯。
  6. 根据权利要求5所述的蓝光OLED器件,其特征在于,所述蓝光发光主体的化学结构式为
    Figure PCTCN2020119267-appb-100002
  7. 根据权利要求5所述的蓝光OLED器件,其特征在于,所述蓝光发光主体满足以下条件至少之一:
    HOMO能级为-6.2~-5.3eV;
    LUMO能极为-2.5~-3.2eV;
    空穴迁移率为1*10 -7~1*10 -10
    电子迁移率为1*10 -6~1*10 -8
  8. 根据权利要求1~4中任一项所述的蓝光OLED器件,其特征在于,所述蓝光掺杂剂的化学结构式为
    Figure PCTCN2020119267-appb-100003
    其中,X和Y分别表示N、O或S,其中R1和R2各自独立的为取代或未取代的C6-C12的芳基或联苯;m,n为0或1;R3、R4和R5各自独立的为氢或含氮的C6-C30的芳基、杂芳基或联苯。
  9. 根据权利要求8所述的蓝光OLED器件,其特征在于,所述蓝光掺杂剂的化学结构式为
    Figure PCTCN2020119267-appb-100004
  10. 根据权利要求8所述的蓝光OLED器件,其特征在于,所述蓝光掺杂剂满足以下条件至少之一:
    HOMO能级为-5.8~-5.2eV;
    LUMO能极为-2.1~-3.1eV。
  11. 根据权利要求1~4中任一项所述的蓝光OLED器件,其特征在于,包括依次层叠设置的阳极、空穴注入层、空穴传输层、所述蓝色发光层、电子注入层、电子传输层和阴极。
  12. 一种显示面板,其特征在于,包括权利要求1~11中任意一项所述的蓝光OLED器 件。
  13. 一种显示装置,其特征在于,包括权利要求12所述的显示面板。
PCT/CN2020/119267 2020-09-30 2020-09-30 蓝光oled器件、显示面板和显示装置 WO2022067630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/119267 WO2022067630A1 (zh) 2020-09-30 2020-09-30 蓝光oled器件、显示面板和显示装置
CN202080002217.XA CN114902440A (zh) 2020-09-30 2020-09-30 蓝光oled器件、显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119267 WO2022067630A1 (zh) 2020-09-30 2020-09-30 蓝光oled器件、显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2022067630A1 true WO2022067630A1 (zh) 2022-04-07

Family

ID=80951126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119267 WO2022067630A1 (zh) 2020-09-30 2020-09-30 蓝光oled器件、显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN114902440A (zh)
WO (1) WO2022067630A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918261A (zh) * 2004-02-17 2007-02-21 伊斯曼柯达公司 具有各种掺杂剂的蒽衍生物主体
CN101490207A (zh) * 2006-07-11 2009-07-22 默克专利有限公司 用于有机电致发光器件的新材料
US20090227765A1 (en) * 2004-10-22 2009-09-10 Cambridge Display Technology Limited Monomer for making a crosslinked polymer
CN102437290A (zh) * 2011-09-28 2012-05-02 昆山维信诺显示技术有限公司 一种有机电致发光显示器用蓝光器件及其制备方法
CN111440204A (zh) * 2018-12-29 2020-07-24 江苏三月科技股份有限公司 一种含有硼的有机电致发光材料及其在有机电致发光器件上的应用
CN111592464A (zh) * 2019-02-20 2020-08-28 常州强力电子新材料股份有限公司 含螺二芴结构的有机化合物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918261A (zh) * 2004-02-17 2007-02-21 伊斯曼柯达公司 具有各种掺杂剂的蒽衍生物主体
US20090227765A1 (en) * 2004-10-22 2009-09-10 Cambridge Display Technology Limited Monomer for making a crosslinked polymer
CN101490207A (zh) * 2006-07-11 2009-07-22 默克专利有限公司 用于有机电致发光器件的新材料
CN102437290A (zh) * 2011-09-28 2012-05-02 昆山维信诺显示技术有限公司 一种有机电致发光显示器用蓝光器件及其制备方法
CN111440204A (zh) * 2018-12-29 2020-07-24 江苏三月科技股份有限公司 一种含有硼的有机电致发光材料及其在有机电致发光器件上的应用
CN111592464A (zh) * 2019-02-20 2020-08-28 常州强力电子新材料股份有限公司 含螺二芴结构的有机化合物及其应用

Also Published As

Publication number Publication date
CN114902440A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2022042037A1 (zh) 有机电致发光器件、显示面板及显示装置
EP3364459B1 (en) Organic electroluminescent device
WO2016202251A1 (zh) 一种有机电致发光器件及其制备方法
WO2023000961A1 (zh) 有机电致发光器件、显示面板及显示装置
CN103515537A (zh) 包括多层空穴传输层的有机发光装置以及包括该装置的有机发光显示设备
WO2021249037A1 (zh) 发光器件及显示面板
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
EP3567646A1 (en) Organic electroluminescent device and manufacturing method therefor
WO2022007177A1 (zh) 有机发光二极管显示器件、其制造方法以及显示面板
WO2022082990A1 (zh) 有机电致发光器件和显示装置
US20220102648A1 (en) Organic light-emitting devices, display panels and display apparatuses
US20190036058A1 (en) Use of singlet-triplet gap hosts for increasing stability of blue phosphorescent emission
WO2022067630A1 (zh) 蓝光oled器件、显示面板和显示装置
CN113328045B (zh) 发光器件及发光装置
WO2022140878A1 (zh) 有机电致发光器件和显示装置
CN111785858B (zh) 发光显示器件及其制备方法、显示装置
WO2022165731A1 (zh) 电致发光器件和显示装置
CN107565037A (zh) 一种有机发光器件和有机发光显示装置
US20240206316A1 (en) Organic light emitting diode comprising organometallic compound and plurality of host materials
WO2024098643A1 (zh) 一种有机电致发光器件及显示装置
US20240244948A1 (en) Organometallic compound and organic light emitting diode comprising the same
US20240215436A1 (en) Organic light emitting diode comprising organometallic compound and plurality of host materials
WO2022199010A1 (zh) 发光器件、发光基板及发光装置
US20240244949A1 (en) Organometallic compound and organic light emitting diode comprising the same
KR100622230B1 (ko) 유기 전계 발광 표시장치 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20955655

Country of ref document: EP

Kind code of ref document: A1