WO2022065425A1 - クランクシャフト - Google Patents

クランクシャフト Download PDF

Info

Publication number
WO2022065425A1
WO2022065425A1 PCT/JP2021/035059 JP2021035059W WO2022065425A1 WO 2022065425 A1 WO2022065425 A1 WO 2022065425A1 JP 2021035059 W JP2021035059 W JP 2021035059W WO 2022065425 A1 WO2022065425 A1 WO 2022065425A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
less
hardness
journal
pin
Prior art date
Application number
PCT/JP2021/035059
Other languages
English (en)
French (fr)
Inventor
達彦 安部
学 久保田
暁 大川
元一 村上
崇 小山
祐輔 森田
豪 福井
祐輔 犬飼
悠一朗 梶木
Original Assignee
日本製鉄株式会社
トヨタ自動車株式会社
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, トヨタ自動車株式会社, 大豊工業株式会社 filed Critical 日本製鉄株式会社
Priority to JP2022552066A priority Critical patent/JP7462781B2/ja
Priority to CN202180058495.1A priority patent/CN116323992A/zh
Priority to US18/005,877 priority patent/US20230304528A1/en
Publication of WO2022065425A1 publication Critical patent/WO2022065425A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/08Crankshafts made in one piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/30Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for crankshafts; for camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/62Low carbon steel, i.e. carbon content below 0.4 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/94Volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a crankshaft.
  • the crankshaft may be surface hardened by induction hardening or soft nitriding in order to improve fatigue strength and wear resistance.
  • the shaft part, the bush part, the flywheel part, the pin part, and the web part are separately manufactured, welded and integrated, and then quenched and tempered and then machined.
  • a method for manufacturing a crankshaft is disclosed.
  • crank shaft formed of non-tempered steel having a low carbon content was subjected to induction hardening and tempering so that the quenching hardness was less than HV400 to 500. Later, a surface treatment method for a crank shaft that is surface-plastically processed so that the hardness of the surface-hardened layer is HV500 to 700 is disclosed.
  • Japanese Patent No. 433207 discloses a high-strength steel for large forged steel products and a large crank shaft made of the same steel.
  • the publication describes that steel for forgings is heated to 870 ° C., cooled (quenched) at a cooling rate of 20 ° C./min, and tempered at 580 to 630 ° C.
  • the crankshaft is required to have seizure resistance in addition to fatigue strength and wear resistance.
  • the viscosity of lubricating oil has been reduced and the sliding portion of the crankshaft has become thinner, and the crankshaft is required to have better seizure resistance.
  • An object of the present invention is to provide a crankshaft having excellent seizure resistance.
  • the crankshaft according to the embodiment of the present invention is a crankshaft including a journal portion and a pin portion, and has a chemical composition of 0.35 to 0.40% by mass, C: 0.35 to 0.40%, and Si: 0.70% or less.
  • Mn 1.00 to 2.00%
  • Cr 0.50% or less
  • Al 0.050% or less
  • N 0.020% or less
  • P 0.020% or less
  • S 0.005 to 0.200%
  • each of the journal part and the pin part has a surface structure containing tempered martensite of 80% by volume or more, and the surface hardness is HV450 or less. Is.
  • crankshaft having excellent seizure resistance can be obtained.
  • FIG. 1 is a schematic view of a crankshaft according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a part of the journal part and the pin part.
  • FIG. 3 is a flow chart showing an example of the method for manufacturing the crankshaft of FIG.
  • FIG. 4 is a schematic diagram of the evaluation device used in the seizure test.
  • FIG. 5 is a schematic diagram of the time change of the surface pressure applied to the test shaft.
  • FIG. 6 is a graph showing the relationship between the surface hardness and the seizure surface pressure.
  • FIG. 7 is a graph showing the relationship between the surface hardness and the seizure surface pressure.
  • FIG. 1 is a schematic view of a crankshaft 10 according to an embodiment of the present invention.
  • the crankshaft 10 includes a journal portion 11, a pin portion 12, and an arm portion 13.
  • the journal unit 11 is connected to a cylinder block (not shown).
  • the pin portion 12 is connected to a connecting rod (not shown).
  • the arm portion 13 connects the journal portion 11 and the pin portion 12.
  • the journal portion 11 and the pin portion 12 slide with the bearings formed on the cylinder block and the connecting rod, respectively.
  • crankshaft 10 has the chemical composition described below. In the following description, "%" of the element content means mass%.
  • Carbon (C) improves the hardness of steel and contributes to the improvement of fatigue strength. On the other hand, if the C content is too high, the shrinkage resistance and machinability deteriorate. Therefore, the C content is 0.35 to 0.40%.
  • Si 0.70% or less Silicon (Si) deoxidizes steel. On the other hand, if the Si content is too high, the machinability is lowered. Therefore, the Si content is 0.70% or less.
  • the lower limit of the Si content is preferably 0.01%.
  • the upper limit of the Si content is preferably 0.50%.
  • Mn 1.00 to 2.00%
  • Mn Manganese
  • Chromium (Cr) enhances the hardenability of steel. On the other hand, if the Cr content is too high, the machinability is lowered. Therefore, the Cr content is 0.50% or less.
  • the lower limit of the Cr content is preferably 0.01%, more preferably 0.05%.
  • the upper limit of the Cr content is preferably 0.30%.
  • Al 0.050% or less Aluminum (Al) deoxidizes steel. On the other hand, if the Al content is too high, the machinability is lowered. Therefore, the Al content is 0.050% or less.
  • the lower limit of the Al content is preferably 0.001%.
  • N 0.020% or less Nitrogen (N) is an impurity. N reduces the hot ductility of the steel. Therefore, the N content is 0.020% or less. On the other hand, if the N content is excessively limited, the smelting cost increases.
  • the lower limit of the N content is preferably 0.001%, more preferably 0.005%.
  • P 0.020% or less Phosphorus (P) is an impurity. P reduces the shrinkage resistance of the steel. Therefore, the P content is 0.020% or less.
  • S 0.005 to 0.200% Sulfur (S) forms MnS and enhances the machinability of steel. On the other hand, if the S content is too high, the hot workability of the steel deteriorates. Therefore, the S content is 0.005 to 0.200%.
  • the rest of the chemical composition of the crankshaft 10 is Fe and impurities.
  • Impurities here refer to elements mixed from ores and scraps used as raw materials for steel, or elements mixed from the environment of the manufacturing process.
  • Each of the journal portion 11 and the pin portion 12 has a surface structure containing 80% by volume or more of tempered martensite, and has a surface hardness of HV450 or less.
  • the seizure resistance is remarkably improved.
  • cementite shall be treated as a structure independent of tempered martensite.
  • the surface textures of the journal portion 11 and the pin portion 12 preferably contain 10% by volume or more of cementite.
  • the volume fraction of cementite in the surface structure of the journal portion 11 and the pin portion 12 is preferably 12% by volume or more, more preferably 15% by volume or more.
  • Cementite is preferably finely dispersed in the form of particles.
  • the hardness of the surfaces of the journal portion 11 and the pin portion 12 is measured according to JIS Z 2244 (2009).
  • the test force is 300 gf (2.942 N).
  • the surface hardness of the journal portion 11 and the pin portion 12 is preferably HV400 or less, more preferably HV350 or less, still more preferably HV300 or less, still more preferably HV250 or less.
  • the lower limit of the hardness of the surfaces of the journal portion 11 and the pin portion 12 is not particularly set, but is, for example, HV180, more preferably HV200.
  • journal part 11 and the pin part 12 have an arbitrary structure other than the surface structure. That is, the journal portion 11 and the pin portion 12 may be a structure containing 80% by volume or more of tempered martensite up to the core part, or may be a structure containing 80% by volume or more of tempered martensite only on the surface or the vicinity of the surface. There may be.
  • journal portion 11 and the pin portion 12 other than the surface is arbitrary. That is, the journal portion 11 and the pin portion 12 may have a hardness of HV450 or less up to the core portion, or may have a hardness of HV450 or less only on the surface or in the vicinity of the surface.
  • each of the journal portion 11 and the pin portion 12 has the above-mentioned structure and hardness in the region from the surface to a depth of 1.0 mm.
  • the above-mentioned structure and the above-mentioned hardness are obtained in the region from the surface to a depth of 2.0 mm, and more preferably, the above-mentioned structure and the above-mentioned hardness are obtained in the region from the surface to a depth of 3.0 mm. be.
  • each of the journal portion 11 and the pin portion 12 has a surface roughness Ra of 0.100 ⁇ m or less.
  • the surface roughness Ra of the journal portion 11 and the pin portion 12 is more preferably 0.080 ⁇ m or less, and further preferably 0.060 ⁇ m or less.
  • FIG. 2 is an enlarged view of a part of the journal portion 11 and the pin portion 12 of the crankshaft 10.
  • the crankshaft 10 further includes a fillet portion 14 formed at a boundary between the journal portion 11 and the arm portion 13 and a boundary between the pin portion 12 and the arm portion 13.
  • the fillet portion adjacent to the journal portion 11 and the fillet portion adjacent to the pin portion 12 are not distinguished, and both are referred to as a fillet portion 14.
  • the fillet portion 14 is formed in a smooth shape in order to alleviate stress concentration.
  • the fillet portion 14 is a portion of the crankshaft 10 to which the strongest stress is applied.
  • the fatigue characteristics of the crankshaft 10 are dominated by the influence of the fatigue strength of the fillet portion 14. Further, the bending fatigue, which is a problem in the crankshaft 10, is dominated by the influence of the characteristics of the surface layer portion of the component. Therefore, from the viewpoint of increasing the fatigue strength of the crankshaft 10, it is preferable to increase the hardness of the surface layer portion of the fillet portion 14.
  • the hardness of the fillet portion 14 from the surface to a depth of 2 mm is HV580 or more.
  • the hardness of the fillet portion 14 from the surface to a depth of 2 mm is more preferably HV600 or more, still more preferably HV650 or more.
  • the upper limit of the hardness from the surface of the fillet portion 14 to the depth of 2 mm is not particularly set, but is, for example, HV800.
  • the hardness of the region deeper than 2.0 mm from the surface of the fillet portion 14 is arbitrary. That is, the fillet portion 14 may have a hardness of HV580 or more up to the core portion, or may have a hardness of only the region from the surface to a depth of 2 mm HV580 or more. However, in order to obtain a more stable effect, it is more preferable that the hardness of the region from the surface to the depth of 3.0 mm is HV580 or more, HV600 or more, or HV650 or more, and the depth from the surface is 4.0 mm. It is more preferable that the hardness of the region up to is HV580 or more, HV600 or more, or HV650 or more.
  • a sample having a cross section (longitudinal cross section) parallel to the axial direction of the crankshaft 10 as a measurement surface shall be taken, and the measurement surface shall be measured in accordance with JIS Z 2244 (2009). ..
  • the test force is 300 gf (2.942 N).
  • the organization of the fillet section 14 is arbitrary. However, when the hardness of the surface layer portion of the fillet portion 14 is set to HV580 or more in order to improve the fatigue strength of the crankshaft 10, it is preferable that the structure of the region is a structure containing martensite. More specifically, it is preferable that the structure of the region is a structure containing 80% by volume or more of martensite. The volume fraction of martensite in the region is more preferably 90% by volume or more, still more preferably 95% by volume or more.
  • Martensite (fresh martensite) here means martensite as it is hardened or low-temperature tempered martensite for strain removal, and shall be distinguished from “tempered martensite”.
  • "Martensite” and “tempering martensite” can be distinguished by observing the amount and dispersion state of precipitated metal carbides and cementite with a microscope or the like. Further, in specifying the structure of the surface layer of the fillet part 14, cementite shall be treated as a structure independent of martensite.
  • the structure and hardness of the parts other than the journal part 11, the pin part 12, and the fillet part 14 are arbitrary.
  • crankshaft manufacturing method Next, an example of a method for manufacturing the crankshaft 10 will be described.
  • the manufacturing method described below is merely an example, and does not limit the manufacturing method of the crankshaft 10.
  • FIG. 3 is a flow chart showing an example of a method for manufacturing the crankshaft 10.
  • This manufacturing method includes a process of preparing a material (step S1), a hot forging process (step S2), a heat treatment process (step S3), a machining process (step S4), a quenching process (step S5), and a tempering process (step). S6) and a finishing process (step S7) are provided.
  • step S1 a process of preparing a material
  • step S2 a hot forging process
  • step S3 a heat treatment process
  • step S4 a machining process
  • step S5 a quenching process
  • step S5 quenching process
  • a tempering process step S6
  • step S7 a finishing process
  • the material is, for example, steel bar.
  • the material can be produced, for example, by continuous casting or slab rolling of molten steel having a predetermined chemical composition.
  • the material is hot forged to give a rough shape to the crankshaft (step S2). Hot forging may be performed separately for rough forging and finish forging.
  • step S3 Heat treatment such as normalizing is performed on the rough crankshaft manufactured by hot forging as necessary (step S3).
  • the heat treatment step (step S3) is an arbitrary step, and this step may be omitted depending on the required characteristics of the crankshaft and the like.
  • Machining includes cutting, grinding, drilling, and the like. This process produces an intermediate product with a shape similar to that of the final product.
  • the intermediate product of the machined crankshaft is quenched (step S5). Specifically, it is heated to a predetermined heating temperature and then rapidly cooled. At this time, the intermediate product may be heated locally by a high-frequency induction heating device or the entire intermediate product may be heated by a heat treatment furnace. However, when locally heating, it is preferable that at least the journal portion 11, the pin portion 12, and the fillet portion 14 are heated. This quenching may be carried out in a plurality of times.
  • the heating temperature is preferably Ac 3 points or more, and more preferably 900 ° C. or more.
  • the hardness of the surface layer portion of the fillet portion 14 is HV580 or more.
  • the hardness of the surface layer portion of the fillet portion 14 can be adjusted by the chemical composition of the material and the cooling rate at the time of quenching. Specifically, if the content of an element that contributes to hardenability such as C is increased or the cooling rate is increased, the hardness of the surface layer portion of the fillet portion 14 increases. If the hardness of the surface layer portion of the fillet portion 14 does not reach HV580 due to quenching, plastic working such as a fillet roll may be performed to improve the hardness of the surface layer portion of the fillet portion 14.
  • Temper the hardened intermediate product (step S6). Specifically, for example, the temperature is maintained at 330 to 750 ° C. for a predetermined time. Tempering is performed so that the hardness of the surfaces of the journal portion 11 and the pin portion 12 is HV450 or less. The higher the heating temperature or the longer the holding time, the lower the hardness can be. If the heating temperature is less than 330 ° C., the hardness may not be sufficiently lowered. On the other hand, if the heating temperature is higher than 750 ° C., austenite may be generated in the tissue. Since this austenite transforms into re-quenched martensite and ferrite pearlite during cooling, it may not be possible to sufficiently reduce the hardness.
  • the heating temperature is preferably 550 to 650 ° C.
  • the holding time is, for example, 10 to 120 minutes.
  • journal portion 11 and the pin portion 12 it is preferable to heat the journal portion 11 and the pin portion 12 using a high-frequency induction heating device so that the fillet portion 14 is not heated as much as possible.
  • This tempering may be carried out in a plurality of times.
  • the heating location can be adjusted according to the shape of the induction coil, the distance between the induction coil and the target portion, the output frequency, and the like.
  • quenching and tempering may be performed a plurality of times, and other heat treatments may be performed in addition to quenching and tempering.
  • other heat treatments may be performed in addition to quenching and tempering.
  • low-temperature tempering at a temperature that does not significantly affect the surface texture and hardness may be carried out.
  • the tempered intermediate product is finished as necessary (step S7).
  • the journal portion 11 and the pin portion 12 are ground and wrapped to adjust the surface shape.
  • crankshaft 10 The configuration of the crankshaft 10 according to the embodiment of the present invention and an example of the manufacturing method thereof have been described above. According to this embodiment, a crankshaft having excellent seizure resistance can be obtained.
  • the material was heated to 1250 ° C. and then processed by hot forging (finishing temperature of 1075 ° C.) to an outer diameter of 63 mm and a length of 570 mm. After air cooling to room temperature, cutting and scale removal were performed. Then, induction hardening was performed by heating to a temperature of 3 points or more of Ac by a high frequency induction heating device and then cooling with water. The frequency and the like were adjusted so that the thickness of the hardened layer was 3.0 mm or more. Then, tempering was performed by heating at 620 ° C or 350 ° C for 90 minutes and then air-cooling. As a finishing process, the test shaft was ground and wrapped so that the surface roughness Ra was 0.040 to 0.100 ⁇ m.
  • a seizure test was carried out using the prepared test shaft.
  • the seizure test was carried out using a crank metal wear and seizure resistance evaluation device manufactured by Shinko Engineering Co., Ltd.
  • a schematic diagram of the evaluation device 20 is shown in FIG.
  • the test shaft TP was inserted into a plurality of bearings 21, and the test shaft TP was rotated at 8000 rpm by a motor (not shown) while refueling the bearings 21.
  • the metal of the bearing used was an engine bearing (Al alloy) manufactured by Taiho Kogyo Co., Ltd.
  • the lubricating oil was 0W-16 or 0W-8, and the lubrication temperature was 130 ° C.
  • FIG. 5 schematically shows the time change of the surface pressure applied to the test axis TP.
  • the holding time at the same surface pressure was 3 minutes, and the surface pressure increase width per step was 4.0 MPa. It was determined that seizure occurred when the surface temperature of the bearing exceeded the specified value or the torque applied to the test shaft exceeded the specified value.
  • Tables 2 and 3 show the surface hardness, surface texture, surface roughness Ra, tempering conditions, tempering surface pressure, tempering conditions, etc. of each test shaft.
  • FIGS. 6 and 7 show the relationship between the surface hardness and the seizure surface pressure created from the data of 0W-16 for the lubricating oil.
  • FIG. 6 relates to steel material A
  • FIG. 7 relates to steel material B.
  • the test shaft having a surface hardness of HV450 or less had a higher seizure surface pressure than the test shaft of the comparative example, and showed excellent seizure resistance.
  • the seizure surface pressure tended to increase as the surface hardness decreased.
  • the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-mentioned embodiment can be appropriately modified and carried out within a range not deviating from the gist thereof.

Abstract

耐焼付性に優れたクランクシャフトを提供する。クランクシャフト(10)は、ジャーナル部(11)及びピン部(12)を備えるクランクシャフトであって、化学組成が、質量%で、C:0.35~0.40%、Si:0.70%以下、Mn:1.00~2.00%、Cr:0.50%以下、Al:0.050%以下、N:0.020%以下、P:0.020%以下、S:0.005~0.200%、残部:Fe及び不純物、であり、ジャーナル部(11)及びピン部(12)の各々は、表面の組織が80体積%以上の焼戻しマルテンサイトを含む組織であり、表面の硬さがHV450以下である。

Description

クランクシャフト
 本発明は、クランクシャフトに関する。
 クランクシャフトには、疲労強度及び耐摩耗性を向上させるため、高周波焼入れや軟窒化による表面硬化処理が行われる場合がある。
 特開平1-303309号公報には、シャフト部、ブッシュ部、フライホイール部、ピン部、及びウェブ部を各々分割して製造し、これらを溶接して一体とするとともに焼入れ焼戻し後機械加工を行うクランクシャフトの製造方法が開示されている。
 特開平7-34134号公報には、含有炭素量を少なく抑えた非調質鋼を用いて形成されたクランクシャフトに対し、焼入れ硬さがHV400~500未満となるように高周波焼入れ焼戻しを行った後、表面硬化層の硬さがHV500~700となるように表面塑性加工を行うクランクシャフトの表面処理方法が開示されている。
 特許第4332070号公報には、大型鍛鋼品用高強度鋼及び同鋼からなる大型クランク軸が開示されている。同公報には、鍛鋼品用鋼を870℃まで加熱後、20℃/分の冷却速度で冷却(焼入れ)し、580~630℃で焼戻しすることが記載されている。
 国際公開第2017/56896号には、クランク軸粗形材、窒化クランク軸及びその製造方法が開示されている。同公報には、A点よりも10℃低い温度以上の温度で焼入れし、550℃以上A点以下の温度で焼戻しすることが記載されている。
特開平1-303309号公報 特開平7-34134号公報 特許第4332070号公報 国際公開第2017/56896号
 クランクシャフトには、疲労強度や耐摩耗性に加えて、耐焼付性が要求される。近年、燃費効率向上を目的として潤滑油の低粘度化やクランクシャフト摺動部の細軸化が進んでおり、クランクシャフトには、より優れた耐焼付性が求められている。
 本発明の目的は、耐焼付性に優れたクランクシャフトを提供することである。
 本発明の一実施形態によるクランクシャフトは、ジャーナル部及びピン部を備えるクランクシャフトであって、化学組成が、質量%で、C:0.35~0.40%、Si:0.70%以下、Mn:1.00~2.00%、Cr:0.50%以下、Al:0.050%以下、N:0.020%以下、P:0.020%以下、S:0.005~0.200%、残部:Fe及び不純物、であり、前記ジャーナル部及び前記ピン部の各々は、表面の組織が80体積%以上の焼戻しマルテンサイトを含む組織であり、表面の硬さがHV450以下である。
 本発明によれば、耐焼付性に優れたクランクシャフトが得られる。
図1は、本発明の一実施形態によるクランクシャフトの概略図である。 図2は、ジャーナル部及びピン部の一部の拡大図である。 図3は、図1のクランクシャフトの製造方法の一例を示すフロー図である。 図4は、焼付試験で使用した評価装置の模式図である。 図5は、試験軸に加えた面圧の時間変化の模式図である。 図6は、表面硬さと焼付面圧との関係を示すグラフである。 図7は、表面硬さと焼付面圧との関係を示すグラフである。
 耐焼付性を向上させるためには、摺動部品のうち軟質材の表面硬さを向上させる必要があると言われている。クランクシャフトにおいても、軟質材である軸受メタルの表面硬さを向上させて耐焼付性を向上させた例がある。一方、硬質材であるクランクシャフトのピン部及びジャーナル部の表面硬さと耐焼付性との関係は、これまで系統的に調べられていなかった。
 一般的には、表面硬さを高くすることで耐摩耗性が向上し、耐焼付性も向上すると考えられている。しかし本発明者らの調査によれば、この予想に反し、ピン部及びジャーナル部の表面硬さが低いほど耐焼付性が向上するという結果が得られた。
 本発明は、この知見に基づいて完成された。以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 [クランクシャフト]
 図1は、本発明の一実施形態によるクランクシャフト10の概略図である。クランクシャフト10は、ジャーナル部11、ピン部12、及びアーム部13を備えている。
 ジャーナル部11は、シリンダブロック(不図示)と連結される。ピン部12は、コネクティングロッド(不図示)と連結される。アーム部13は、ジャーナル部11とピン部12とを接続する。ジャーナル部11及びピン部12は、それぞれシリンダブロック及びコネクティングロッドに形成された軸受と摺動する。
 [化学組成]
 クランクシャフト10は、以下に説明する化学組成を有する。以下の説明において、元素の含有量の「%」は、質量%を意味する。
 C:0.35~0.40%
 炭素(C)は、鋼の硬さを向上させ、疲労強度の向上に寄与する。一方、C含有量が高すぎると、耐焼割れ性及び被削性が低下する。したがって、C含有量は0.35~0.40%である。
 Si:0.70%以下
 シリコン(Si)は、鋼を脱酸する。一方、Si含有量が高すぎると、被削性が低下する。したがって、Si含有量は0.70%以下である。Si含有量の下限は、好ましくは0.01%である。Si含有量の上限は、好ましくは0.50%である。
 Mn:1.00~2.00%
 マンガン(Mn)は、鋼の焼入れ性を高める。一方、Mn含有量が高すぎると、被削性が低下する。したがって、Mn含有量は1.00~2.00%である。
 Cr:0.50%以下
 クロム(Cr)は、鋼の焼入れ性を高める。一方、Cr含有量が高すぎると、被削性が低下する。したがって、Cr含有量は0.50%以下である。Cr含有量の下限は、好ましくは0.01%であり、さらに好ましくは0.05%である。Cr含有量の上限は、好ましくは0.30%である。
 Al:0.050%以下
 アルミニウム(Al)は、鋼を脱酸する。一方、Al含有量が高すぎると、被削性が低下する。したがって、Al含有量は0.050%以下である。Al含有量の下限は、好ましくは0.001%である。
 N:0.020%以下
 窒素(N)は、不純物である。Nは、鋼の熱間延性を低下させる。したがって、N含有量は0.020%以下である。一方、N含有量を過剰に制限すると製錬コストが増加する。N含有量の下限は、好ましくは0.001%であり、さらに好ましくは0.005%である。
 P:0.020%以下
 リン(P)は、不純物である。Pは、鋼の耐焼割れ性を低下させる。したがって、P含有量は0.020%以下である。
 S:0.005~0.200%
 硫黄(S)は、MnSを形成し、鋼の被削性を高める。一方、S含有量が高すぎると、鋼の熱間加工性が低下する。したがって、S含有量は0.005~0.200%である。
 クランクシャフト10の化学組成の残部は、Fe及び不純物である。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップから混入する元素、あるいは製造過程の環境等から混入する元素をいう。
 [組織]
 ジャーナル部11及びピン部12の各々は、表面の組織が80体積%以上の焼戻しマルテンサイトを含む組織であり、表面の硬さがHV450以下である。ジャーナル部11及びピン部12の表面の組織を80体積%以上の焼戻しマルテンサイトを含む組織とし、かつ、表面の硬さをHV450以下にすることで、耐焼付性が顕著に向上する。
 ジャーナル部11及びピン部12の表面の組織の特定において、セメンタイトは、焼戻しマルテンサイトとは独立した組織として扱うものとする。ジャーナル部11及びピン部12の表面の組織は、10体積%以上のセメンタイトを含むことが好ましい。ジャーナル部11及びピン部12の表面の組織のセメンタイトの体積率は、好ましくは12体積%以上であり、さらに好ましくは15体積%以上である。セメンタイトは、粒状に微細に分散していることが好ましい。
 ジャーナル部11及びピン部12の表面の硬さは、JIS Z 2244(2009)に準拠して測定する。試験力は300gf(2.942N)とする。ジャーナル部11及びピン部12の表面の硬さは、好ましくはHV400以下であり、より好ましくはHV350以下であり、さらに好ましくはHV300以下であり、さらに好ましくはHV250以下である。ジャーナル部11及びピン部12の表面の硬さの下限は特に設けないが、例えばHV180であり、より好ましくはHV200である。
 ジャーナル部11及びピン部12ともに、表面の組織以外の組織は任意である。すなわち、ジャーナル部11及びピン部12は、芯部まで80体積%以上の焼戻しマルテンサイトを含む組織であってもよいし、表面又は表面近傍だけが80体積%以上の焼戻しマルテンサイトを含む組織であってもよい。
 同様に、ジャーナル部11及びピン部12ともに、表面以外の硬さは任意である。すなわち、ジャーナル部11及びピン部12は、芯部まで硬さがHV450以下であってもよいし、表面又は表面近傍の硬さだけがHV450以下であってもよい。
 耐焼付性等の摺動特性は通常、部品の最表面の特性の影響が支配的である。そのため、ジャーナル部11及びピン部12の各々において、最表面の組織が上述した組織であり、最表面の硬さが上述した硬さであれば、耐焼付性向上の効果が得られる。もっとも、より安定して効果を得るためには、ジャーナル部11及びピン部12の各々において、表面から深さ1.0mmまでの領域で上述した組織及び硬さであることが好ましい。より好ましくは、表面から深さ2.0mmまでの領域で上述した組織及び上述した硬さであり、さらに好ましくは、表面から深さ3.0mmまでの領域で上述した組織及び上述した硬さである。
 ジャーナル部11及びピン部12のそれぞれは、表面粗さRaが0.100μm以下であることが好ましい。ジャーナル部11及びピン部12の表面粗さRaは、より好ましくは0.080μm以下であり、さらに好ましくは0.060μm以下である。
 図2は、クランクシャフト10のジャーナル部11及びピン部12の一部の拡大図である。クランクシャフト10は、ジャーナル部11とアーム部13との境界、及びピン部12とアーム部13との境界に形成されたフィレット部14をさらに備えている。本明細書では、ジャーナル部11に隣接したフィレット部と、ピン部12に隣接したフィレット部とを区別せず、両者をフィレット部14と呼ぶ。フィレット部14は、応力集中を緩和するために、滑らかな形状に形成されている。
 フィレット部14は、クランクシャフト10において、最も強い応力が加わる部分である。クランクシャフト10の疲労特性は、フィレット部14の疲労強度の影響が支配的である。また、クランクシャフト10で問題となる曲げ疲労は、部品の表層部の特性の影響が支配的である。そのため、クランクシャフト10の疲労強度を高くする観点では、フィレット部14の表層部の硬さを高くすることが好ましい。
 より具体的には、クランクシャフト10の疲労強度を高くする観点では、フィレット部14の表面から深さ2mmまでの硬さをHV580以上にすることが好ましい。フィレット部14の表面から深さ2mmまでの硬さは、さらに好ましくはHV600以上であり、さらに好ましくはHV650以上である。フィレット部14の表面から深さ2mmまでの硬さの上限は特に設けないが、例えばHV800である。
 クランクシャフト10の疲労強度の向上を目的としてフィレット部14の硬さを高くする場合であっても、フィレット部14の表面から深さ2.0mmよりも深い領域の硬さは任意である。すなわち、フィレット部14は、芯部まで硬さがHV580以上であってもよいし、表面から深さ2mmまでの領域の硬さだけがHV580以上であってもよい。もっとも、より安定して効果を得るためには、表面から深さ3.0mmまでの領域の硬さをHV580以上、HV600以上、又はHV650以上にすることがより好ましく、表面から深さ4.0mmまでの領域の硬さをHV580以上、HV600以上、又はHV650以上にすることがさらに好ましい。
 フィレット部14の硬さは、クランクシャフト10の軸方向と平行な断面(縦断面)を測定面とするサンプルを採取し、測定面をJIS Z 2244(2009)に準拠して測定するものとする。試験力は300gf(2.942N)とする。
 フィレット部14の組織は任意である。ただし、クランクシャフト10の疲労強度向上等のためにフィレット部14の表層部の硬さをHV580以上にする場合、当該領域の組織がマルテンサイトを含む組織であることが好ましい。より具体的には、当該領域の組織が、80体積%以上のマルテンサイトを含む組織であることが好ましい。当該領域のマルテンサイトの体積率は、より好ましくは90体積%以上であり、さらに好ましくは95体積%以上である。
 ここでの「マルテンサイト」(フレッシュマルテンサイト)は、焼入れままのマルテンサイト、又はひずみ除去のための低温焼戻しがされたマルテンサイトを意味し、「焼戻しマルテンサイト」と区別されるものとする。「マルテンサイト」と「焼戻しマルテンサイト」とは、析出した金属炭化物やセメンタイトの量及び分散状態を顕微鏡等で観察することによって判別することができる。また、フィレット部14の表層部の組織の特定において、セメンタイトは、マルテンサイトとは独立した組織として扱うものとする。
 ジャーナル部11、ピン部12、及びフィレット部14以外の部分(例えばアーム部13)の組織や硬さは任意である。
 [クランクシャフトの製造方法]
 次に、クランクシャフト10の製造方法の一例を説明する。以下に説明する製造方法は、あくまでも例示であって、クランクシャフト10の製造方法を限定するものではない。
 図3は、クランクシャフト10の製造方法の一例を示すフロー図である。この製造方法は、素材を準備する工程(ステップS1)、熱間鍛造工程(ステップS2)、熱処理工程(ステップS3)、機械加工工程(ステップS4)、焼入れ工程(ステップS5)、焼戻し工程(ステップS6)、及び仕上加工工程(ステップS7)を備えている。以下、各工程を詳述する。
 クランクシャフト10の素材を準備する(ステップS1)。素材は、例えば棒鋼である。素材は例えば、所定の化学組成を有する溶鋼を連続鋳造又は分塊圧延して製造することができる。
 素材を熱間鍛造してクランクシャフトの粗形状にする(ステップS2)。熱間鍛造は、粗鍛造と仕上鍛造とに分けて実施してもよい。
 熱間鍛造によって製造されたクランクシャフトの粗形品に対して、必要に応じて焼準し等の熱処理を実施する(ステップS3)。熱処理工程(ステップS3)は任意の工程であり、クランクシャフトの要求特性等によってはこの工程を省略してもよい。
 クランクシャフトの粗形品を機械加工する(ステップS4)。機械加工は、切削加工や研削加工、孔開け加工等である。この工程により、最終製品に近い形状を有する中間品が製造される。
 機械加工されたクランクシャフトの中間品を焼入れする(ステップS5)。具体的には、所定の加熱温度に加熱した後、急冷する。このとき、高周波誘導加熱装置によって局所的に加熱してもよいし、熱処理炉によって中間品全体を加熱してもよい。ただし、局所的に加熱する場合、少なくともジャーナル部11、ピン部12、及びフィレット部14が加熱されるようにすることが好ましい。この焼入れは、複数回に分けて実施してもよい。加熱温度は、好ましくはAc点以上であり、より好ましくは900℃以上である。
 このとき、フィレット部14の表層部の硬さがHV580以上になるようにすることが好ましい。フィレット部14の表層部の硬さは、素材の化学組成や、焼入れ時の冷却速度によって調整することができる。具体的には、C等の焼入れ性に寄与する元素の含有量を高くするか、冷却速度を大きくすれば、フィレット部14の表層部の硬さは高くなる。なお、焼入れでフィレット部14の表層部の硬さがHV580に届かない場合には、フィレットロール等の塑性加工を実施してフィレット部14の表層部硬さを向上させてもよい。
 焼入れされた中間品を焼戻しする(ステップS6)。具体的には例えば、330~750℃の温度に所定時間保持する。焼戻しは、ジャーナル部11及びピン部12の表面の硬さがHV450以下になるように行う。加熱温度を高くする程、あるいは保持時間を長くする程、硬さを低くすることができる。加熱温度が330℃未満であると、硬さを十分に下げることができない場合がある。一方、加熱温度を750℃よりも高くすると、組織中にオーステナイトが発生する場合がある。このオーステナイトは冷却時に再焼入れマルテンサイトやフェライト・パーライトに変態するため、硬さを十分に下げることができなくなる場合がある。加熱温度は、好ましくは550~650℃である。保持時間は、例えば10~120分間である。
 このとき、高周波誘導加熱装置を用いてジャーナル部11及びピン部12を加熱し、フィレット部14ができるだけ加熱されないようにすることが好ましい。この焼戻しは、複数回に分けて実施してもよい。これによって、ジャーナル部11及びピン部12を軟化させ、フィレット部14を軟化させないようにすることができる。加熱箇所は、誘導コイルの形状、誘導コイルと対象部分との距離、出力周波数等によって調整することができる。
 なお、焼入れや焼戻しは複数回実施してもよく、焼入れや焼戻しに加えて他の熱処理を実施してもよい。例えば、焼割れを抑制するため、表面の組織や硬さに大きな影響を与えない温度での低温焼戻しを実施してもよい。
 焼戻しされた中間品に対して、必要に応じて仕上加工を実施する(ステップS7)。例えばジャーナル部11及びピン部12に研削やラッピングを施して表面形状を調整する。仕上加工を行う場合、表面粗さRaを0.040~0.100μmにすることが好ましい。
 以上、本発明の一実施形態によるクランクシャフト10の構成及びその製造方法の一例を説明した。本実施形態によれば、耐焼付性に優れたクランクシャフトが得られる。
 以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。
 表1に示す化学組成を有する鋼を素材として、焼付試験用の試験軸を作製し、表面硬さと耐焼付性との関係を調査した。
Figure JPOXMLDOC01-appb-T000001
 具体的は、素材を1250℃に加熱した後、熱間鍛造(打ち終わり温度1075℃)によって外径63mm、長さ570mmに加工した。室温まで空冷した後、切削加工及びスケール除去を行った。その後、高周波誘導加熱装置により、Ac点以上の温度まで加熱した後水冷する高周波焼入れを行った。焼入れ硬化層の厚さが3.0mm以上になるように周波数等を調整した。その後、620℃又は350℃で90分間加熱後空冷する焼戻しを行った。仕上加工として、表面粗さRaが0.040~0.100μmになるように、試験軸に研削及びラッピングを施した。
 比較例として、焼戻しを省略した試験軸を作製した。
 作製した試験軸を用いて、焼付試験を実施した。焼付試験は、神鋼造機株式会社製クランクメタル耐摩耗焼付性評価装置を用いて実施した。評価装置20の模式図を図4に示す。試験軸TPを複数の軸受21に挿入し、軸受21に給油しながら、モータ(不図示)によって試験軸TPを8000rpmで回転させた。軸受のメタルは、大豊工業株式会社製エンジンベアリング(Al合金)を使用した。潤滑油は0W-16又は0W-8、給油温度は130℃とした。
 この状態で、軸受21の一つを引き下げて試験軸TPに加わる面圧を段階的に増加させながら、焼付きが発生するまで運転した。図5に、試験軸TPに加えた面圧の時間変化を模式的に示す。同一面圧での保持時間は3分間、1ステップあたりの面圧増加幅は4.0MPaとした。軸受の表面温度が規定値以上になるか、試験軸にかかるトルクが規定値以上になったときに焼付きが発生したと判定した。
 各試験軸の表面硬さ、表面の組織、表面粗さRa、焼戻し条件、焼付面圧、焼戻し条件等を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2及び表3の「表面から3.0mmまでの組織(体積%)」の欄には、表面から3.0mmの深さの位置における主な組織(最も体積率の大きい組織)を記載している。括弧内の数値は、当該組織の体積率である。具体的には、試験軸の軸方向と平行な断面(縦断面)を観察面として、表面から3.0mmの深さの位置で36μm×48μmの視野を観察し、当該断面での面積率を体積率とみなした。No.1~9及びNo.21~24の試験軸の表面の組織は、いずれも焼戻しマルテンサイトを80体積%以上含む組織であった。
 図6及び図7に、潤滑油が0W-16のデータから作成した、表面硬さと焼付面圧との関係を示す。図6は鋼材Aに関するものであり、図7は鋼材Bに関するものである。図6及び図7に示すように、表面硬さがHV450以下の試験軸は、比較例の試験軸よりも焼付面圧が高く、優れた耐焼付性を示した。また、ばらつきはあるものの表面硬さが低くなるほど焼付面圧が増加する傾向が見られた。
 以上、本発明の一実施形態を説明したが、上述した実施形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変形して実施することが可能である。
10 クランクシャフト
11 ジャーナル部
12 ピン部
13 アーム部
14 フィレット部

Claims (6)

  1.  ジャーナル部及びピン部を備えるクランクシャフトであって、
     化学組成が、質量%で、
     C :0.35~0.40%、
     Si:0.70%以下、
     Mn:1.00~2.00%、
     Cr:0.50%以下、
     Al:0.050%以下、
     N :0.020%以下、
     P :0.020%以下、
     S :0.005~0.200%、
     残部:Fe及び不純物、であり、
     前記ジャーナル部及び前記ピン部の各々は、表面の組織が80体積%以上の焼戻しマルテンサイトを含む組織であり、表面の硬さがHV450以下である、クランクシャフト。
  2.  請求項1に記載のクランクシャフトであって、
     フィレット部をさらに備え、
     前記フィレット部は、表面から深さ2.0mmまでの硬さがHV580以上である、クランクシャフト。
  3.  請求項2に記載のクランクシャフトであって、
     前記フィレット部は、表面から深さ2.0mmまでの組織が、80体積%以上のマルテンサイトを含む組織である、クランクシャフト。
  4.  請求項1~3のいずれか一項に記載のクランクシャフトであって、
     前記ジャーナル部及び前記ピン部の各々の表面の硬さがHV250以下である、クランクシャフト。
  5.  請求項1~4のいずれか一項に記載のクランクシャフトであって、
     前記ジャーナル部及び前記ピン部の各々の表面の組織が、10体積%以上のセメンタイトをさらに含む、クランクシャフト。
  6.  請求項1~5のいずれか一項に記載のクランクシャフトであって、
     前記ジャーナル部及び前記ピン部の各々の表面粗さRaが0.100μm以下である、クランクシャフト。
PCT/JP2021/035059 2020-09-28 2021-09-24 クランクシャフト WO2022065425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022552066A JP7462781B2 (ja) 2020-09-28 2021-09-24 クランクシャフト
CN202180058495.1A CN116323992A (zh) 2020-09-28 2021-09-24 曲轴
US18/005,877 US20230304528A1 (en) 2020-09-28 2021-09-24 Crankshaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162443 2020-09-28
JP2020162443 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065425A1 true WO2022065425A1 (ja) 2022-03-31

Family

ID=80846608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035059 WO2022065425A1 (ja) 2020-09-28 2021-09-24 クランクシャフト

Country Status (4)

Country Link
US (1) US20230304528A1 (ja)
JP (1) JP7462781B2 (ja)
CN (1) CN116323992A (ja)
WO (1) WO2022065425A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080029A1 (ja) * 2021-11-08 2023-05-11 日本製鉄株式会社 摺動部品用鋼材及び摺動部品用鋼材の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514868A (ja) * 1996-07-02 2000-11-07 ザ・ティムケン・カンパニー 高い疲労強度特性を有する高周波焼入れされた微量合金鋼
JP2007044764A (ja) * 2005-07-14 2007-02-22 Jfe Steel Kk 熱間鍛造設備
WO2007069270A2 (en) * 2005-10-04 2007-06-21 True Holdings Pvt Ltd Post forging process for enhancing fatigue strength of steel components
JP2007238965A (ja) * 2006-03-03 2007-09-20 Sumitomo Metal Ind Ltd クランクシャフト
JP2017110247A (ja) * 2015-12-15 2017-06-22 新日鐵住金株式会社 クランクシャフト及びその製造方法
JP2020041214A (ja) * 2018-09-07 2020-03-19 日本製鉄株式会社 摺動部品用鋼材及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000514868A (ja) * 1996-07-02 2000-11-07 ザ・ティムケン・カンパニー 高い疲労強度特性を有する高周波焼入れされた微量合金鋼
JP2007044764A (ja) * 2005-07-14 2007-02-22 Jfe Steel Kk 熱間鍛造設備
WO2007069270A2 (en) * 2005-10-04 2007-06-21 True Holdings Pvt Ltd Post forging process for enhancing fatigue strength of steel components
JP2007238965A (ja) * 2006-03-03 2007-09-20 Sumitomo Metal Ind Ltd クランクシャフト
JP2017110247A (ja) * 2015-12-15 2017-06-22 新日鐵住金株式会社 クランクシャフト及びその製造方法
JP2020041214A (ja) * 2018-09-07 2020-03-19 日本製鉄株式会社 摺動部品用鋼材及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080029A1 (ja) * 2021-11-08 2023-05-11 日本製鉄株式会社 摺動部品用鋼材及び摺動部品用鋼材の製造方法

Also Published As

Publication number Publication date
JPWO2022065425A1 (ja) 2022-03-31
JP7462781B2 (ja) 2024-04-05
US20230304528A1 (en) 2023-09-28
CN116323992A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JP5026625B2 (ja) 表面硬化用機械構造用鋼、及び、機械構造用鋼部品とその製造方法
JP4632931B2 (ja) 冷間加工性に優れる高周波焼入れ用鋼及びその製造方法
US9200354B2 (en) Rolled steel bar or wire for hot forging
WO2011158782A1 (ja) 鍛造クランクシャフト
JP5477111B2 (ja) 窒化高周波焼入れ用鋼及び窒化高周波焼入れ部品
JP6241136B2 (ja) 肌焼鋼鋼材
JP5561436B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP5886119B2 (ja) 肌焼鋼鋼材
WO2019244503A1 (ja) 機械部品
JP6561816B2 (ja) クランクシャフト及びその製造方法
JP3815499B2 (ja) 機械構造用部品およびその製造方法
WO2022065425A1 (ja) クランクシャフト
JP4835367B2 (ja) 浸炭部品または浸炭窒化部品
JP6394319B2 (ja) 熱間鍛造品
JP4507422B2 (ja) 被削性及び耐摩耗性に優れたクランクシャフト用鋼
CN109154042B (zh) 热锻品
JP3491612B2 (ja) 被削性及び耐摩耗性に優れたクランクシャフト用鋼
JP6447064B2 (ja) 鋼部品
WO2007069270A2 (en) Post forging process for enhancing fatigue strength of steel components
JP6551225B2 (ja) 高周波焼入れ歯車
JP7323850B2 (ja) 鋼材及び浸炭鋼部品
WO2020209320A1 (ja) 鋼軸部品
JP7343767B2 (ja) クランクシャフト及びその製造方法
JP2002294396A (ja) 熱処理歪の少ない肌焼用鋼
JP2024063447A (ja) シャフト部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872554

Country of ref document: EP

Kind code of ref document: A1