WO2022064840A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2022064840A1
WO2022064840A1 PCT/JP2021/028260 JP2021028260W WO2022064840A1 WO 2022064840 A1 WO2022064840 A1 WO 2022064840A1 JP 2021028260 W JP2021028260 W JP 2021028260W WO 2022064840 A1 WO2022064840 A1 WO 2022064840A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
alternating current
phase alternating
circuit
phase
Prior art date
Application number
PCT/JP2021/028260
Other languages
English (en)
French (fr)
Inventor
哲試 古川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21871972.2A priority Critical patent/EP4220939A4/en
Priority to CN202180063256.5A priority patent/CN116325480A/zh
Priority to US18/043,774 priority patent/US20230336103A1/en
Priority to JP2022551168A priority patent/JPWO2022064840A1/ja
Publication of WO2022064840A1 publication Critical patent/WO2022064840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0243Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a broken phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present disclosure relates to a motor drive device for driving a motor.
  • Patent Document 1 a motor drive device using a three-phase alternating current as a power source is known (see, for example, Patent Document 1).
  • the motor drive device may not be able to drive the motor normally when the load of the driving motor is relatively large when there is a phase loss in the three-phase alternating current that is the power source.
  • the present disclosure provides a control signal to the effect that the motor is not driven when there is a possibility that the motor cannot be driven normally due to the lack of phase in the three-phase alternating current that is the power source. It is an object of the present invention to provide a motor drive device capable of outputting power.
  • the motor drive device is a motor drive device that drives a motor using a three-phase AC as a power source, and is rectified by a rectifier circuit that rectifies the three-phase AC and the rectifier circuit.
  • a cross point between a current detection circuit that detects a DC current, a current detected by the current detection circuit, and a predetermined current value is detected, and based on the detection result, whether or not to drive the motor is shown. It is equipped with a crosspoint detection circuit that outputs a control signal.
  • a control signal indicating that the motor is not driven is output.
  • FIG. 1 is a block diagram showing a configuration of a motor drive system according to the first embodiment.
  • FIG. 2A is a waveform diagram showing a voltage waveform in a low load state when there is no open phase in the three-phase alternating current.
  • FIG. 2B is a waveform diagram showing a voltage waveform in a high load state when there is no open phase in the three-phase alternating current.
  • FIG. 2C is a waveform diagram showing a voltage waveform in a low load state when there is an open phase in the three-phase alternating current.
  • FIG. 2D is a waveform diagram showing a voltage waveform in a high load state when there is an open phase in the three-phase alternating current.
  • FIG. 2A is a waveform diagram showing a voltage waveform in a low load state when there is no open phase in the three-phase alternating current.
  • FIG. 2B is a waveform diagram showing a voltage waveform in a high load state when there is no open phase in the three-phase
  • FIG. 3A is a waveform diagram showing a current waveform and the number of crosspoint detections in a low load state when there is no open phase in the three-phase alternating current.
  • FIG. 3B is a waveform diagram showing a current waveform and the number of crosspoint detections in a high load state when there is no open phase in the three-phase alternating current.
  • FIG. 3C is a waveform diagram showing a current waveform and the number of crosspoint detections in a low load state when there is an open phase in the three-phase alternating current.
  • FIG. 3D is a waveform diagram showing a current waveform and the number of crosspoint detections in a high load state when there is a phase loss in the three-phase alternating current.
  • FIG. 4 is a flowchart showing the motor stop process.
  • FIG. 5 is a block diagram showing a configuration of the motor drive system according to the second embodiment.
  • FIG. 6 is a block diagram showing the configuration of the motor drive system according to the third embodiment.
  • the comprehensive or specific embodiment of the present disclosure may be realized by a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM (Compact Disc Read Only Memory), and the system may be realized. , Methods, integrated circuits, computer programs and any combination of recording media.
  • a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM (Compact Disc Read Only Memory)
  • CD-ROM Compact Disc Read Only Memory
  • FIG. 1 is a block diagram showing a configuration of a motor drive system 1 according to the first embodiment.
  • the motor drive system 1 includes a motor drive device 10, a three-phase AC power supply 20, a motor 30, and a display device 40.
  • the motor 30 is driven by the motor drive device 10.
  • the three-phase AC power supply 20 supplies the motor drive device 10 with a three-phase AC consisting of three phases of L1 phase, L2 phase, and L3 phase.
  • the display device 40 displays an image based on a control signal (described later) output from the motor drive device 10.
  • the motor drive device 10 uses the three-phase AC supplied from the three-phase AC power supply 20 as a power source to drive the motor 30.
  • the motor drive device 10 includes a rectifier circuit 11, a current detection circuit 12, a crosspoint detection circuit 13, an inverter 14, and a smoothing circuit 15.
  • the rectifier circuit 11 rectifies the three-phase AC supplied from the three-phase AC power supply 20.
  • the direct current rectified by the rectifier circuit 11 and before being smoothed by the smoothing circuit 15 described below is also referred to as “pre-smoothing direct current”.
  • the smoothing circuit 15 is supplied with the pre-smoothing direct current rectified by the rectifier circuit 11 and smoothes the supplied pre-smoothing direct current.
  • the direct current smoothed by the smoothing circuit 15 is also referred to as “direct current after smoothing”.
  • the inverter 14 is supplied with a direct current after smoothing smoothed by the smoothing circuit 15 to drive the motor 30. More specifically, the inverter 14 drives the motor 30 by converting the supplied smoothed direct current into a three-phase alternating current and supplying the converted three-phase alternating current to the motor 30.
  • the inverter 14 converts a smoothed direct current into a three-phase alternating current and a control signal (described later) indicating that the motor 30 is not driven is input from the crosspoint detection circuit 13, the inverter 14 converts the smoothed direct current into a three-phase alternating current. Stop.
  • the inverter 14 starts the conversion to the three-phase alternating current when a control signal (described later) for driving the motor 30 is input from the cross point detection circuit 13. do.
  • FIG. 2A is a waveform diagram showing a voltage waveform in a low load state when there is no open phase in the three-phase alternating current.
  • FIG. 2B is a waveform diagram showing a voltage waveform in a high load state when there is no open phase in the three-phase alternating current.
  • FIG. 2A shows a relatively small load such that when the three-phase alternating current input to the rectifier circuit 11 has no open phase, the voltage of the DC after smoothing causes a voltage drop only to the minimum voltage of the DC before smoothing. It is a waveform diagram in the state which is applied to the motor 30 (hereinafter, also referred to as "low load state”).
  • FIG. 2B shows a relatively large load in which a voltage drop occurs until the voltage of the DC after smoothing becomes lower than the minimum voltage of the DC before smoothing when the three-phase AC input to the rectifier circuit 11 has no open phase. It is a waveform diagram in the state which is applied to the motor 30 (hereinafter, also referred to as "high load state").
  • FIG. 2C is a waveform diagram showing a voltage waveform in a low load state when there is an open phase in the three-phase alternating current.
  • FIG. 2D is a waveform diagram showing a voltage waveform in a high load state when there is an open phase in the three-phase alternating current.
  • the vertical axis is voltage and the horizontal axis is time.
  • L1-L2, L2-L3, and L3-L1 are the voltage difference between the L1 phase and the L2 phase, the voltage difference between the L2 phase and the L3 phase, and the voltage difference between the L3 phase and the L1 phase, respectively.
  • Vrec is a pre-smoothing direct current voltage rectified by the rectifier circuit 11.
  • Vpn is a DC voltage after smoothing smoothed by the smoothing circuit 15.
  • the current detection circuit 12 detects the pre-smoothing direct current rectified by the rectifier circuit 11.
  • the crosspoint detection circuit 13 detects a crosspoint between the current detected by the current detection circuit 12 and a predetermined current value (here, the predetermined current value is set to 0 [A]).
  • the cross point means a state in which the current detected by the current detection circuit 12 and the predetermined current value are the same value.
  • the cross point detection circuit 13 crosses by detecting a change point in which the current detected by the current detection circuit 12 changes from a state of being equal to or less than a predetermined current value to a state of being larger than a predetermined current value. Detect points.
  • the crosspoint detection circuit 13 outputs a drive signal indicating whether or not to drive the motor 30 based on the crosspoint detection result. More specifically, the crosspoint detection circuit 13 does not drive the motor 30 when (1) the number of crosspoints detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is two. A control signal indicating that effect is output, and (2) the motor 30 is driven when the number of crosspoints detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is 0 or 6. Outputs a control signal indicating. The crosspoint detection circuit 13 outputs the drive signal in this way to the rectifier circuit 11 which is detected by the crosspoint detection circuit 13 when there is a phase loss in the three-phase alternating current input to the rectifier circuit 11.
  • the number of crosspoints detected in one cycle of the input three-phase alternating current is two, and if there is no phase loss in the three-phase alternating current input to the rectifier circuit 11, the crosspoint detection circuit 13 detects it. This is because the number of times the cross point is detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is 0 or 6. That is, the crosspoint detection circuit 13 outputs a control signal indicating that the motor 30 is not driven when the three-phase alternating current input to the rectifier circuit 11 has an open phase, and the three-phase is input to the rectifier circuit 11. When there is no open phase in the alternating current, a control signal indicating that the motor 30 is driven is output.
  • the cross point detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 detected by the crosspoint detection circuit 13.
  • the number of detections is two and there is no open phase in the three-phase alternating current input to the rectifier circuit 11, in one cycle of the three-phase alternating current input to the rectifier circuit 11 detected by the crosspoint detection circuit 13.
  • the reason why the number of detections of the cross point to be detected is 0 or 6 will be described with reference to the drawings.
  • FIG. 3A is a waveform diagram showing the current waveform and the number of crosspoint detections in a low load state when there is no open phase in the three-phase alternating current.
  • FIG. 3B is a waveform diagram showing a current waveform and the number of crosspoint detections in a high load state when there is no open phase in the three-phase alternating current.
  • FIG. 3C is a waveform diagram showing the current waveform and the number of crosspoint detections in a low load state when there is an open phase in the three-phase alternating current.
  • FIG. 3D is a waveform diagram showing a current waveform and the number of crosspoint detections in a high load state when there is a phase loss in the three-phase alternating current.
  • the voltage of the DC after smoothing is equal to or higher than the minimum voltage of the DC before smoothing.
  • the voltage drop occurs only by. Therefore, the current flowing from the rectifier circuit 11 to the smoothing circuit 15, that is, the current detected by the current detection circuit 12, is, as shown in FIG. 3A, in one cycle of the three-phase alternating current input to the rectifier circuit 11.
  • the current value is always 0 [A] 6 times. Therefore, as shown in FIG. 3A, the crosspoint detection circuit 13 detects the crosspoint six times in one cycle of the three-phase alternating current input to the rectifier circuit 11.
  • the crosspoint detection circuit 13 detects the crosspoint 0 times in one cycle of the three-phase alternating current input to the rectifier circuit 11.
  • the cross point detection circuit 13 always makes a cross point in one cycle of the three-phase alternating current input to the rectifier circuit 11. Detect 0 or 6 times.
  • the three-phase alternating current input to the rectifier circuit 11 is used in both the case where the load of the motor 30 is in the low load state and the case where the load of the motor 30 is in the high load state.
  • the DC voltage after smoothing drops to 0 [V]. Therefore, the current flowing from the rectifier circuit 11 to the smoothing circuit 15, that is, the current detected by the current detection circuit 12, is 1 of the three-phase alternating current input to the rectifier circuit 11 as shown in FIGS. 3C and 3D.
  • the current value always becomes 0 [A] twice. Therefore, as shown in FIGS. 3C and 3D, the crosspoint detection circuit 13 always detects the crosspoint twice in one cycle of the three-phase alternating current input to the rectifier circuit 11.
  • the motor stop process is a process of stopping the drive of the motor 30 when the motor drive device 10 is driving the motor 30 and a phase loss occurs in the three-phase AC supplied from the three-phase AC power supply 20. be.
  • the motor stop process is started, for example, when the motor drive device 10 starts driving the motor 30.
  • FIG. 4 is a flowchart showing the motor stop process.
  • the crosspoint detection circuit 13 checks whether or not the number of crosspoints detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is two (step S10). ).
  • step S10 when the number of detections of the crosspoint to be detected is not twice (No in step S10), the crosspoint detection circuit 13 returns to the process of step S10 again and repeats the process of step S10.
  • step S10 when the number of detections of the crosspoint to be detected is two (Yes in step S10), the crosspoint detection circuit 13 outputs a control signal indicating that the motor 30 is not driven (step S20). ..
  • the inverter 14 stops the conversion of the smoothed direct current into the three-phase alternating current supplied to the motor 30 (step S30).
  • step S40 When the conversion to the three-phase alternating current supplied to the motor 30 is stopped, the motor 30 is stopped (step S40).
  • Step S50 when a control signal indicating that the motor 30 is not driven is output, the display device 40 displays that the motor 30 is stopped because there is a phase loss in the three-phase alternating current input to the rectifier circuit 11. Step S50).
  • step S50 the motor drive system 1 ends the motor stop process.
  • the motor drive device 10 outputs a control signal indicating that the motor 30 is not driven when the three-phase alternating current input to the rectifier circuit 11 has an open phase.
  • the motor drive device 10 having the above configuration, when there is a possibility that the motor 30 cannot be driven normally due to the lack of phase in the three-phase alternating current that is the power source, the motor It is possible to output a control signal indicating that the 30 is not driven.
  • FIG. 5 is a block diagram showing the configuration of the motor drive system 1A according to the second embodiment.
  • the motor drive system 1A is configured by changing the motor drive device 10 to the motor drive device 10A with respect to the motor drive system 1 according to the first embodiment.
  • the motor drive device 10A is configured by changing the crosspoint detection circuit 13 to the crosspoint detection circuit 13A with respect to the motor drive device 10.
  • the cross point detection circuit 13 has a configuration in which a predetermined current value is set to 0 [A].
  • the cross point detection circuit 13A has a configuration in which a predetermined current value is set to a positive value X [A].
  • the predetermined current value X [A] which is a positive value, makes the motor 30 normal even if the load applied to the motor 30 has a phase loss in the three-phase alternating current input to the rectifier circuit 11. This is the maximum value of the current flowing from the rectifier circuit 11 to the smoothing circuit 15 when the load is such that the load can be driven to.
  • the crosspoint detection circuit 13A having the above configuration, even if the three-phase alternating current input to the rectifier circuit 11 has an open phase, a load sufficient to normally drive the motor 30 is applied to the motor. When it depends on 30, the number of detections of the cross point to be detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 becomes 0 times.
  • the cross point detection circuit 13A having the above configuration when the three-phase alternating current input to the rectifier circuit 11 has an open phase, the load equal to or greater than the load capable of normally driving the motor 30 is applied to the motor. When it depends on 30, the number of times of detecting the cross point to be detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is two times, similarly to the cross point detection circuit 13 according to the first embodiment. Further, according to the cross point detection circuit 13A having the above configuration, when there is no open phase in the three-phase alternating current input to the rectifier circuit 11, the rectifier circuit 11 is similar to the cross point detection circuit 13 according to the first embodiment. The number of times the cross point is detected in one cycle of the three-phase alternating current input to is 0 or 6 times.
  • the cross point detection circuit 13A depends on the motor 30 when there is no open phase in the three-phase alternating current input to the rectifying circuit 11 and when there is a missing phase in the three-phase alternating current input to the rectifying circuit 11.
  • a control signal indicating that the motor 30 is driven is output, and the three-phase alternating current input to the rectifying circuit 11 has a phase loss.
  • a control signal indicating that the motor 30 is not driven is output when the load applied to the motor 30 is equal to or greater than the load capable of driving the motor 30 normally.
  • the motor drive device 10A having the above configuration has no phase loss in the three-phase alternating current input to the rectifier circuit 11, and even when the three-phase alternating current input to the rectifier circuit 11 has a phase loss.
  • a control signal to drive the motor 30 is output.
  • the load applied to the motor 30 is equal to or greater than the load capable of normally driving the motor 30.
  • a control signal indicating that the motor 30 is not driven is output.
  • the motor drive device 10A having the above configuration, when there is a possibility that the motor 30 cannot be driven normally due to the lack of phase in the three-phase alternating current that is the power source, the motor It is possible to output a control signal indicating that the 30 is not driven.
  • FIG. 6 is a block diagram showing the configuration of the motor drive system 1B according to the third embodiment.
  • the motor drive system 1B is configured by changing the motor drive device 10 to the motor drive device 10B with respect to the motor drive device 10 according to the first embodiment. Further, as shown in FIG. 6, in the motor drive device 10B, a voltage detection circuit 16 and a power calculation circuit 17 are added to the motor drive device 10, and the crosspoint detection circuit 13 is added to the crosspoint detection circuit 13B. Modified and configured.
  • the voltage detection circuit 16 detects the smoothed DC voltage after smoothing by the smoothing circuit 15.
  • the power calculation circuit 17 calculates the power for driving the motor 30 based on the current detected by the current detection circuit 12 and the voltage detected by the voltage detection circuit 16.
  • the power calculation circuit 17 outputs a first signal indicating that the calculated power is smaller than the predetermined power value when the calculated power is smaller than the predetermined power value.
  • the predetermined power value is such that the load applied to the motor 30 can normally drive the motor 30 even if the three-phase alternating current input to the rectifier circuit 11 has an open phase. In this case, it is the maximum value of the electric power for driving the motor 30.
  • the crosspoint detection circuit 13B has a current detected by the current detection circuit 12 and a predetermined current value (here, the predetermined current value is 0 [A]]. Detects crosspoints with).
  • the crosspoint detection circuit 13B outputs a drive signal indicating whether or not to drive the motor 30 based on the crosspoint detection result. More specifically, the crosspoint detection circuit 13B is described in (1) from the power calculation circuit 17 when the number of crosspoints detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is two. When the first signal is not output, a control signal indicating that the motor 30 is not driven is output, and (2) the number of crosspoints detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is 0. Alternatively, the first signal is output from the power calculation circuit 17 when the number of times is 6 or when the number of times the cross point detected in one cycle of the three-phase alternating current input to the rectifier circuit 11 is 2 times.
  • a control signal indicating that the motor 30 is driven is output. That is, in the cross point detection circuit 13B, when there is a phase loss in the three-phase alternating current input to the rectifying circuit 11, the load applied to the motor 30 is equal to or greater than the load capable of normally driving the motor 30. When it is a load, a control signal indicating that the motor 30 is not driven is output, and when there is no open phase in the three-phase alternating current input to the rectifying circuit 11, and in the three-phase alternating current input to the rectifying circuit 11. When there is a phase loss and the load applied to the motor 30 is such that the motor 30 can be driven normally, a control signal indicating that the motor 30 is driven is output.
  • the motor drive device 10B having the above configuration has no phase loss in the three-phase alternating current input to the rectifier circuit 11, and even when the three-phase alternating current input to the rectifier circuit 11 has a phase loss.
  • the load applied to the motor 30 is small enough to drive the motor 30 normally, the output of the control signal indicating that the motor 30 is not driven is suppressed, and the control that the motor 30 is driven instead is suppressed. Output a signal.
  • the load applied to the motor 30 is equal to or greater than the load capable of normally driving the motor 30.
  • a control signal indicating that the motor 30 is not driven is output.
  • the motor drive device 10B having the above configuration, when there is a possibility that the motor 30 cannot be driven normally due to the lack of phase in the three-phase alternating current that is the power source, the motor It is possible to output a control signal indicating that the 30 is not driven.
  • the motor drive device has been described above based on the first to third embodiments.
  • the present disclosure is not limited to these embodiments.
  • one or a plurality of embodiments of the present disclosure may be obtained by subjecting various modifications to these embodiments to those skilled in the art, or by combining components in different embodiments. It may be included in the range of the aspect of.
  • the cross point detection circuit 13, the cross point detection circuit 13A, and the cross point detection circuit 13B detect the cross in one cycle of the three-phase alternating current input to the rectifier circuit 11.
  • the number of times the points are detected may be counted for each cycle, or the average value of a plurality of cycles may be counted.
  • the predetermined current value X [A] set in the cross point detection circuit 13A is such that the load applied to the motor 30 is open to the three-phase alternating current input to the rectifier circuit 11. Even if there is, it is a configuration that is the maximum value of the current flowing from the rectifier circuit 11 to the smoothing circuit 15 when the load is such that the motor 30 can be driven normally. On the other hand, as another configuration, a positive value smaller than the above maximum value may be used. Even in this configuration, when there is a phase loss in the three-phase alternating current input to the rectifier circuit 11, and a control signal indicating that the motor 30 is driven is output from the crosspoint detection circuit 13A, the motor 30 is output. This is when the applied load is such that the motor 30 can be driven normally.
  • the predetermined power value set in the power calculation circuit 17 is such that the load applied to the motor 30 has a phase loss in the three-phase alternating current input to the rectifying circuit 11.
  • the configuration is such that the maximum value of the electric power for driving the motor 30 when the load is such that the motor 30 can be normally driven.
  • a value smaller than the above maximum value may be used. Even in this configuration, when there is a phase loss in the three-phase alternating current input to the rectifier circuit 11, and a control signal indicating that the motor 30 is driven is output from the crosspoint detection circuit 13B, the motor 30 is output. This is when the applied load is such that the motor 30 can be driven normally.
  • the voltage detection circuit 16 is configured to detect the smoothed DC voltage smoothed by the smoothing circuit 15.
  • the voltage detection circuit 16 may be configured to detect the voltage of the pre-smoothing direct current before being smoothed by the smoothing circuit 15.
  • the motor drive device is a motor drive device that drives a motor using a three-phase AC as a power source, and is composed of a rectifier circuit that rectifies the three-phase AC and the rectifier circuit. Whether or not to drive the motor based on the detection result by detecting the cross point between the current detection circuit that detects the rectified DC current, the current detected by the current detection circuit, and the predetermined current value. It is provided with a crosspoint detection circuit that outputs a control signal indicating the above.
  • the motor drive device having the above configuration by setting a predetermined current value to an appropriate value, the motor cannot be driven normally due to the lack of phase in the three-phase alternating current that is the power source.
  • the frequency of crosspoint detection can be different from each other depending on whether there is a possibility or not. Therefore, according to the motor drive device having the above configuration, when there is a possibility that the motor cannot be driven normally due to the lack of phase in the three-phase alternating current that is the power source, the motor is driven. It is possible to output a control signal to that effect.
  • the cross point detection circuit outputs the control signal indicating that the motor is not driven when the number of cross points detected in one cycle of the three-phase alternating current is two. May be good.
  • a power calculation circuit for calculating the power for driving the motor is provided, and the crosspoint detector is used when the power calculated by the power calculation circuit is smaller than a predetermined power value. May suppress the output of the control signal indicating that the motor is not driven.
  • the load applied to the motor is small enough to drive the motor normally even if there is a phase loss in the three-phase alternating current. Occasionally, it is possible to suppress the output of a control signal indicating that the motor is not driven.
  • the current detection is provided with a smoothing circuit for smoothing the direct current rectified by the rectifier circuit and an inverter to which the direct current smoothed by the smoothing circuit is supplied to drive the motor.
  • the circuit may detect the current value by using the direct current rectified by the rectifier circuit before being smoothed by the smoothing circuit.
  • the direct current supplied to the inverter can be made into a smoothed direct current.
  • the present disclosure can be widely used for a motor drive device for driving a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

三相交流を電力源とする、モータを駆動するモータ駆動装置であって、三相交流を整流する整流回路と、整流回路により整流された直流の電流を検出する電流検出回路と、電流検出回路により検出された電流と、所定の電流値とのクロスポイントを検出し、検出結果に基づいて、モータを駆動するか否かを示す制御信号を出力するクロスポイント検出回路と、を備える。

Description

モータ駆動装置
 本開示は、モータを駆動するモータ駆動装置に関する。
 従来、三相交流を電力源とするモータ駆動装置が知られている(例えば、特許文献1を参照)。
 モータ駆動装置は、電力源となる三相交流に欠相がある場合において、駆動するモータの負荷が比較的大きいときに、そのモータを正常に駆動できないことがある。
 このため、電力源となる三相交流に欠相があることに起因して、モータを正常に駆動することができない可能性がある場合には、そのモータを駆動しないことが望まれる。
特開2000-116186号公報
 そこで、本開示は、電力源となる三相交流に欠相があることに起因して、モータを正常に駆動することができない可能性がある場合に、そのモータを駆動しない旨の制御信号を出力することができるモータ駆動装置を提供することを目的とする。
 本開示の一態様に係るモータ駆動装置は、三相交流を電力源とする、モータを駆動するモータ駆動装置であって、前記三相交流を整流する整流回路と、前記整流回路により整流された直流の電流を検出する電流検出回路と、前記電流検出回路により検出された電流と、所定の電流値とのクロスポイントを検出し、検出結果に基づいて、前記モータを駆動するか否かを示す制御信号を出力するクロスポイント検出回路と、を備える。
 これにより、電力源となる三相交流に欠相があることに起因して、モータを正常に駆動することができない可能性がある場合に、そのモータを駆動しない旨の制御信号を出力することができるモータ駆動装置を提供する。
図1は、実施の形態1に係るモータ駆動システムの構成を示すブロック図である。 図2Aは、三相交流に欠相がない場合において低負荷状態であるときの電圧波形を示す波形図である。 図2Bは、三相交流に欠相がない場合において高負荷状態であるときの電圧波形を示す波形図である。 図2Cは、三相交流に欠相がある場合において低負荷状態であるときの電圧波形を示す波形図である。 図2Dは、三相交流に欠相がある場合において高負荷状態であるときの電圧波形を示す波形図である。 図3Aは、三相交流に欠相がない場合において低負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。 図3Bは、三相交流に欠相がない場合において高負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。 図3Cは、三相交流に欠相がある場合において低負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。 図3Dは、三相交流に欠相がある場合において高負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。 図4は、モータ停止処理を示すフローチャートである。 図5は、実施の形態2に係るモータ駆動システムの構成を示すブロック図である。 図6は、実施の形態3に係るモータ駆動システムの構成を示すブロック図である。
 以下、本開示の一態様に係るモータ制御装置の具体例について、図面を参照しながら説明する。ここで示す実施の形態は、いずれも本開示の一具体例を示すものである。従って、以下の実施の形態で示される数値、形状、構成要素、構成要素の配置及び接続形態、並びに、ステップ(工程)及びステップの順序等は、一例であって本開示を限定する趣旨ではない。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。
 なお、本開示の包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROM(Compact Disc Read Only Memory)などの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 (実施の形態1)
 図1は、実施の形態1に係るモータ駆動システム1の構成を示すブロック図である。
 図1に示すように、モータ駆動システム1は、モータ駆動装置10と、三相交流電源20と、モータ30と、表示装置40とを備える。
 モータ30は、モータ駆動装置10により駆動される。
 三相交流電源20は、モータ駆動装置10に、L1相とL2相とL3相との三相からなる三相交流を供給する。
 表示装置40は、モータ駆動装置10から出力される制御信号(後述)に基づく画像を表示する。
 モータ駆動装置10は、三相交流電源20から供給される三相交流を電力源とし、モータ30を駆動する。
 図1に示すように、モータ駆動装置10は、整流回路11と、電流検出回路12と、クロスポイント検出回路13と、インバータ14と、平滑回路15とを備える。
 整流回路11は、三相交流電源20から供給される三相交流を整流する。以下、整流回路11により整流された直流であって、次に説明する平滑回路15により平滑化される前の直流のことを、「平滑前直流」とも称する。
 平滑回路15は、整流回路11により整流された平滑前直流が供給され、供給される平滑前直流を平滑化する。以下、平滑回路15により平滑化された直流のことを「平滑後直流」とも称する。
 インバータ14は、平滑回路15により平滑化された平滑後直流が供給され、モータ30を駆動する。より具体的には、インバータ14は、供給される平滑後直流を三相交流に変換し、変換した三相交流をモータ30に供給することでモータ30を駆動する。
 モータ30の負荷が大きくなると、インバータ14がモータ30に供給する三相交流の電力が増加する。このため、インバータ14に供給される平滑後直流の電圧降下が増加する。
 インバータ14は、平滑後直流を三相交流に変換している場合において、クロスポイント検出回路13からモータ30を駆動しない旨の制御信号(後述)が入力されると、三相交流への変換を停止する。
 インバータ14は、三相交流への変換を停止している場合において、クロスポイント検出回路13からモータ30を駆動する旨の制御信号(後述)が入力されると、三相交流への変換を開始する。
 図2Aは、三相交流に欠相がない場合において低負荷状態であるときの電圧波形を示す波形図である。図2Bは、三相交流に欠相がない場合において高負荷状態であるときの電圧波形を示す波形図である。
 図2Aは、整流回路11に入力される三相交流に欠相がない場合において、平滑後直流の電圧が平滑前直流の最低電圧以上までにしか電圧降下が起こらない程度の比較的小さい負荷がモータ30にかかっている状態(以下、「低負荷状態」とも称する)における波形図である。図2Bは、整流回路11に入力される三相交流に欠相がない場合において、平滑後直流の電圧が平滑前直流の最低電圧よりも低くなるまで電圧降下が起こる程度の比較的大きい負荷がモータ30にかかっている状態(以下、「高負荷状態」とも称する)における波形図である。
 図2Cは、三相交流に欠相がある場合において低負荷状態であるときの電圧波形を示す波形図である。図2Dは、三相交流に欠相がある場合において高負荷状態であるときの電圧波形を示す波形図である。
 図2A、図2B、図2C、図2Dにおいて、縦軸は電圧であり、横軸は時間である。L1-L2、L2-L3、L3-L1は、それぞれ、L1相とL2相との電圧差、L2相とL3相との電圧差、L3相とL1相との電圧差である。Vrecは、整流回路11により整流された平滑前直流の電圧である。Vpnは、平滑回路15により平滑化された平滑後直流の電圧である。
 再び図1に戻り、モータ駆動装置10の説明を続ける。
 電流検出回路12は、整流回路11により整流された平滑前直流の電流を検出する。
 クロスポイント検出回路13は、電流検出回路12により検出された電流と、所定の電流値(ここでは、所定の電流値は0[A]に設定されている。)とのクロスポイントを検出する。クロスポイントとは、電流検出回路12により検出された電流と、所定の電流値とが同じ値となる状態をいう。ここでは、クロスポイント検出回路13は、電流検出回路12により検出された電流が、所定の電流値以下の状態から、所定の電流値より大きい状態へと変化する変化点を検出することで、クロスポイントを検出する。
 また、クロスポイント検出回路13は、上記クロスポイントの検出結果に基づいて、モータ30を駆動するか否かを示す駆動信号を出力する。より具体的には、クロスポイント検出回路13は、(1)整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回である場合に、モータ30を駆動しない旨を示す制御信号を出力し、(2)整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が0回又は6回である場合に、モータ30を駆動する旨を示す制御信号を出力する。クロスポイント検出回路13がこのように駆動信号を出力するのは、整流回路11に入力される三相交流に欠相がある場合には、クロスポイント検出回路13により検出される、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回となり、整流回路11に入力される三相交流に欠相がない場合には、クロスポイント検出回路13により検出される、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が0回又は6回となるためである。すなわち、クロスポイント検出回路13は、整流回路11に入力される三相交流に欠相がある場合に、モータ30を駆動しない旨を示す制御信号を出力し、整流回路11に入力される三相交流に欠相がない場合に、モータ30を駆動する旨を示す制御信号を出力する。
 以下、整流回路11に入力される三相交流に欠相がある場合には、クロスポイント検出回路13により検出される、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回となり、整流回路11に入力される三相交流に欠相がない場合には、クロスポイント検出回路13により検出される、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が0回又は6回となる理由について、図面を参照しながら説明する。
 図3Aは、三相交流に欠相がない場合において低負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。図3Bは、三相交流に欠相がない場合において高負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。
 図3Cは、三相交流に欠相がある場合において、低負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。図3Dは、三相交流に欠相がある場合において高負荷状態であるときの電流波形とクロスポイントの検出回数とを示す波形図である。
 図2Aに示すように、モータ30の負荷が低負荷状態である場合において、整流回路11に入力される三相交流に欠相がないときには、平滑後直流の電圧が平滑前直流の最低電圧以上までにしか電圧降下が起こらない。このため、整流回路11から平滑回路15へと流れる電流、すなわち、電流検出回路12により検出される電流は、図3Aに示すように、整流回路11に入力される三相交流の1周期において、その電流値が必ず6回0[A]となる。このため、図3Aに示すように、クロスポイント検出回路13は、整流回路11に入力される三相交流の1周期において、クロスポイントを6回検出する。
 図2Bに示すように、モータ30の負荷が高負荷状態である場合において、整流回路11に入力される三相交流に欠相がないときには、平滑後直流の電圧が平滑前直流の最低電圧よりも低くなるまで電圧降下が起る。このため、整流回路11から平滑回路15へと流れる電流、すなわち、電流検出回路12により検出される電流は、図3Bに示すように、整流回路11に入力される三相交流の1周期において、その電流値が0[A]となることはない。このため、図3Bに示すように、クロスポイント検出回路13は、整流回路11に入力される三相交流の1周期において、クロスポイントを0回検出する。
 このように、クロスポイント検出回路13は、整流回路11に入力される三相交流に欠相がない場合には、整流回路11に入力される三相交流の1周期において、必ず、クロスポイントを0回又は6回検出する。
 図2C、図2Dに示すように、モータ30の負荷が低負荷状態である場合とモータ30の負荷が高負荷状態である場合との双方の場合において、整流回路11に入力される三相交流に欠相があるときには、平滑後直流の電圧が0[V]まで低下する。このため、整流回路11から平滑回路15へと流れる電流、すなわち、電流検出回路12により検出される電流は、図3C、図3Dに示すように、整流回路11に入力される三相交流の1周期において、その電流値が必ず2回0[A]となる。このため、図3C、図3Dに示すように、クロスポイント検出回路13は、整流回路11に入力される三相交流の1周期において、必ず、クロスポイントを2回検出する。
 以下、上記構成のモータ駆動システム1が行うモータ停止処理について説明する。
 モータ停止処理は、モータ駆動装置10がモータ30を駆動している場合において、三相交流電源20から供給される三相交流に欠相が生じたときに、モータ30の駆動を停止する処理である。
 モータ停止処理は、例えば、モータ駆動装置10がモータ30の駆動を開始することで開始される。
 図4は、モータ停止処理を示すフローチャートである。
 モータ停止処理が開始されると、クロスポイント検出回路13は、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回であるか否かを調べる(ステップS10)。
 ステップS10の処理において、検出するクロスポイントの検出回数が2回でない場合に(ステップS10でNo)、クロスポイント検出回路13は、再びステップS10の処理に戻り、ステップS10の処理を繰り返す。
 ステップS10の処理において、検出するクロスポイントの検出回数が2回である場合に(ステップS10でYes)、クロスポイント検出回路13は、モータ30を駆動しない旨の制御信号を出力する(ステップS20)。
 モータ30を駆動しない旨の制御信号が出力されると、インバータ14は、平滑後直流の、モータ30に供給する三相交流への変換を停止する(ステップS30)。
 モータ30に供給する三相交流への変換が停止されると、モータ30が停止する(ステップS40)。
 また、モータ30を駆動しない旨の制御信号が出力されると、表示装置40は、整流回路11に入力される三相交流に欠相があるため、モータ30を停止する旨の表示を行う(ステップS50)。
 ステップS50の処理が終了すると、モータ駆動システム1は、そのモータ停止処理を終了する。
 <考察>
 上述したように、モータ駆動装置10は、整流回路11に入力される三相交流に欠相がある場合に、モータ30を駆動しない旨の制御信号を出力する。このように、上記構成のモータ駆動装置10によると、電力源となる三相交流に欠相があることに起因して、モータ30を正常に駆動することができない可能性がある場合に、モータ30を駆動しない旨の制御信号を出力することができる。
 (実施の形態2)
 以下、実施の形態1に係るモータ駆動装置10の一部が変更されて構成される実施の形態2に係るモータ駆動装置について説明する。
 以下では、実施の形態2に係るモータ駆動装置について、モータ駆動装置10の構成要素と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、モータ駆動装置10との相違点を中心に説明する。
 図5は、実施の形態2に係るモータ駆動システム1Aの構成を示すブロック図である。
 図5に示すように、モータ駆動システム1Aは、実施の形態1に係るモータ駆動システム1に対して、モータ駆動装置10が、モータ駆動装置10Aに変更されて構成される。モータ駆動装置10Aは、モータ駆動装置10に対して、クロスポイント検出回路13がクロスポイント検出回路13Aに変更されて構成される。
 実施の形態1に係るクロスポイント検出回路13は、所定の電流値が0[A]に設定されている構成であった。これに対して、クロスポイント検出回路13Aは、所定の電流値が正の値X[A]に設定されている構成となっている。ここで、正の値である所定の電流値X[A]は、モータ30にかかっている負荷が、整流回路11に入力される三相交流に欠相があったとしても、モータ30を正常に駆動することができる程度の負荷である場合における、整流回路11から平滑回路15へと流れる電流の最大値である。これにより、上記構成のクロスポイント検出回路13Aによると、整流回路11に入力される三相交流に欠相がある場合であっても、モータ30を正常に駆動することができる程度の負荷がモータ30にかかっているときには、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が0回となる。
 一方で、上記構成のクロスポイント検出回路13Aによると、整流回路11に入力される三相交流に欠相がある場合において、モータ30を正常に駆動することができる程度の負荷以上の負荷がモータ30にかかっているときには、実施の形態1に係るクロスポイント検出回路13と同様に、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回となる。また、上記構成のクロスポイント検出回路13Aによると、整流回路11に入力される三相交流に欠相がない場合には、実施の形態1に係るクロスポイント検出回路13と同様に、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が0回又は6回となる。
 従って、クロスポイント検出回路13Aは、整流回路11に入力される三相交流に欠相がない場合、および、整流回路11に入力される三相交流に欠相がある場合において、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷であるときに、モータ30を駆動する旨を示す制御信号を出力し、整流回路11に入力される三相交流に欠相があり、かつ、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷以上の負荷であるときにモータ30を駆動しない旨を示す制御信号を出力する。
 <考察>
 上記構成のモータ駆動装置10Aは、整流回路11に入力される三相交流に欠相がない場合に加えて、整流回路11に入力される三相交流に欠相がある場合であっても、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度に小さいときには、モータ30を駆動する旨の制御信号を出力する。一方で、モータ駆動装置10Aは、整流回路11に入力される三相交流に欠相がある場合において、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷以上の負荷であるときには、モータ30を駆動しない旨の制御信号を出力する。このように、上記構成のモータ駆動装置10Aによると、電力源となる三相交流に欠相があることに起因して、モータ30を正常に駆動することができない可能性がある場合に、モータ30を駆動しない旨の制御信号を出力することができる。
 (実施の形態3)
 以下、実施の形態1に係るモータ駆動装置10の一部が変更されて構成される実施の形態3に係るモータ駆動装置について説明する。
 以下では、実施の形態3に係るモータ駆動装置について、モータ駆動装置10の構成要素と同様の構成要素については、既に説明済みであるとして同じ符号を振ってその詳細な説明を省略し、モータ駆動装置10との相違点を中心に説明する。
 図6は、実施の形態3に係るモータ駆動システム1Bの構成を示すブロック図である。
 図6に示すように、モータ駆動システム1Bは、実施の形態1に係るモータ駆動装置10に対して、モータ駆動装置10が、モータ駆動装置10Bに変更されて構成される。また、図6に示すように、モータ駆動装置10Bは、モータ駆動装置10に対して、電圧検出回路16と、電力算出回路17とが追加され、クロスポイント検出回路13がクロスポイント検出回路13Bに変更されて構成される。
 電圧検出回路16は、平滑回路15により平滑化された平滑後直流の電圧を検出する。
 電力算出回路17は、電流検出回路12により検出された電流と、電圧検出回路16により検出された電圧とに基づいて、モータ30を駆動するための電力を算出する。
 電力算出回路17は、算出した電力が所定の電力値よりも小さい場合に、算出した電力が所定の電力値よりも小さい旨を示す第1信号を出力する。ここで、所定の電力値は、モータ30にかかっている負荷が、整流回路11に入力される三相交流に欠相があったとしても、モータ30を正常に駆動することができる程度の負荷である場合における、モータ30を駆動するための電力の最大値である。
 クロスポイント検出回路13Bは、実施の形態1に係るクロスポイント検出回路13と同様に、電流検出回路12により検出された電流と、所定の電流値(ここでは、所定の電流値は0[A]に設定されている。)とのクロスポイントを検出する。
 クロスポイント検出回路13Bは、上記クロスポイントの検出結果に基づいて、モータ30を駆動するか否かを示す駆動信号を出力する。より具体的には、クロスポイント検出回路13Bは、(1)整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回である場合において、電力算出回路17から第1信号が出力されないときに、モータ30を駆動しない旨を示す制御信号を出力し、(2)整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が0回又は6回である場合、および、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数が2回である場合において、電力算出回路17から第1信号が出力されるときに、モータ30を駆動する旨を示す制御信号を出力する。すなわち、クロスポイント検出回路13Bは、整流回路11に入力される三相交流に欠相がある場合において、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷以上の負荷であるときに、モータ30を駆動しない旨を示す制御信号を出力し、整流回路11に入力される三相交流に欠相がない場合、および、整流回路11に入力される三相交流に欠相がある場合において、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷であるときに、モータ30を駆動する旨を示す制御信号を出力する。
 <考察>
 上記構成のモータ駆動装置10Bは、整流回路11に入力される三相交流に欠相がない場合に加えて、整流回路11に入力される三相交流に欠相がある場合であっても、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度に小さいときには、モータ30を駆動しない旨の制御信号の出力を抑制して、替わりに、モータ30を駆動する旨の制御信号を出力する。一方で、モータ駆動装置10Bは、整流回路11に入力される三相交流に欠相がある場合において、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷以上の負荷であるときには、モータ30を駆動しない旨の制御信号を出力する。このように、上記構成のモータ駆動装置10Bによると、電力源となる三相交流に欠相があることに起因して、モータ30を正常に駆動することができない可能性がある場合に、モータ30を駆動しない旨の制御信号を出力することができる。
 (補足)
 以上、本開示の一態様に係るモータ駆動装置について、実施の形態1~実施の形態3に基づいて説明した。しかし、本開示は、これら実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形をこれら実施の形態に施したもの、又は、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の1つ又は複数の態様の範囲内に含まれてもよい。
 (1)実施の形態1~実施の形態3において、クロスポイント検出回路13、クロスポイント検出回路13A、クロスポイント検出回路13Bは、整流回路11に入力される三相交流の1周期において検出するクロスポイントの検出回数を、1周期毎に計数するとしてもよいし、複数周期の平均値を計数するとしてもよい。
 (2)実施の形態2において、クロスポイント検出回路13Aにおいて設定される所定の電流値X[A]は、モータ30にかかっている負荷が、整流回路11に入力される三相交流に欠相があったとしても、モータ30を正常に駆動することができる程度の負荷である場合における、整流回路11から平滑回路15へと流れる電流の最大値である構成であった。これに対して他の構成として、上記最大値よりも小さい正の値であっても構わない。この構成の場合にも、整流回路11に入力される三相交流に欠相がある場合において、クロスポイント検出回路13Aからモータ30を駆動する旨を示す制御信号が出力されるときには、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷であるときとなる。
 (3)実施の形態3において、電力算出回路17において設定される所定の電力値は、モータ30にかかっている負荷が、整流回路11に入力される三相交流に欠相があったとしても、モータ30を正常に駆動することができる程度の負荷である場合における、モータ30を駆動するための電力の最大値である構成であった。これに対して他の構成として、上記最大値よりも小さい値であっても構わない。この構成の場合にも、整流回路11に入力される三相交流に欠相がある場合において、クロスポイント検出回路13Bからモータ30を駆動する旨を示す制御信号が出力されるときには、モータ30にかかっている負荷がモータ30を正常に駆動することができる程度の負荷であるときとなる。
 (4)実施の形態3において、電圧検出回路16は、平滑回路15により平滑化された平滑後直流の電圧を検出する構成であった。これに対して他の構成として、電圧検出回路16は、平滑回路15により平滑化される前の平滑化前直流の電圧を検出する構成であっても構わない。
 (5)本開示の一態様に係るモータ駆動装置の例について、更に、以下に記載する。
 (a)本開示の一態様に係るモータ駆動装置は、三相交流を電力源とする、モータを駆動するモータ駆動装置であって、前記三相交流を整流する整流回路と、前記整流回路により整流された直流の電流を検出する電流検出回路と、前記電流検出回路により検出された電流と、所定の電流値とのクロスポイントを検出し、検出結果に基づいて、前記モータを駆動するか否かを示す制御信号を出力するクロスポイント検出回路と、を備える。
 上記構成のモータ駆動装置によると、所定の電流値を適切な値に設定することで、電力源となる三相交流に欠相があることに起因して、モータを正常に駆動することができない可能性がある場合とない場合とで、クロスポイントの検出頻度を、互いに異なるものとすることができる。このため、上記構成のモータ駆動装置によると、電力源となる三相交流に欠相があることに起因して、モータを正常に駆動することができない可能性がある場合に、そのモータを駆動しない旨の制御信号を出力することができる。
 (b)また、前記クロスポイント検出回路は、前記三相交流の1周期において検出する前記クロスポイントの回数が2回である場合に、前記モータを駆動しない旨を示す前記制御信号を出力するとしてもよい。
 これにより、三相交流に欠相がある場合に、モータを駆動しない旨を示す制御信号を出力することができる。
 (c)また、前記所定の電流値は、ゼロであり、前記クロスポイント検出回路は、更に、前記三相交流の1周期において検出する前記クロスポイントの回数が0回又は6回である場合に、前記モータを駆動する旨を示す前記制御信号を出力するとしてもよい。
 これにより、三相交流に欠相がない場合に、モータを駆動する旨を示す制御信号を出力することができる。
 (d)また、前記所定の電流値は、正の値であり、前記クロスポイント検出回路は、更に、前記三相交流の1周期において検出する前記クロスポイントの回数が0回である場合に、前記モータを駆動する旨を示す前記制御信号を出力するとしてもよい。
 これにより、所定の電流値を適切な値に設定することで、三相交流に欠相がある場合であっても、モータにかかっている負荷がモータを正常に駆動することができる程度に小さいときに、モータを駆動する旨を示す制御信号を出力することができる。
 (e)また、更に、前記モータを駆動するための電力を算出する電力算出回路を備え、前記クロスポイント検出器は、前記電力算出回路により算出された電力が所定の電力値よりも小さい場合には、前記モータを駆動しない旨を示す前記制御信号の出力を抑制するとしてもよい。
 これにより、所定の電力値を適切な値に設定することで、三相交流に欠相がある場合であっても、モータにかかっている負荷がモータを正常に駆動することができる程度に小さいときに、モータを駆動しない旨を示す制御信号の出力を抑制することができる。
 (f)また、更に、前記整流回路により整流された直流を平滑化する平滑回路と、前記平滑回路により平滑化された直流が供給され、前記モータを駆動するインバータと、を備え、前記電流検出回路は、前記平滑化回路により平滑化される前の、前記整流回路により整流された直流を用いて、前記電流値を検出するとしてもよい。
 これにより、インバータに供給される直流を、平滑化された直流とすることができる。
 本開示は、モータを駆動するモータ駆動装置に広く利用可能である。
 1、1A、1B モータ駆動システム
 10、10A、10B モータ駆動装置
 11 整流回路
 12 電流検出回路
 13、13A、13B クロスポイント検出回路
 14 インバータ
 15 平滑回路
 16 電圧検出回路
 17 電力算出回路
 20 三相交流電源
 30 モータ
 40 表示装置

Claims (6)

  1. 三相交流を電力源とする、モータを駆動するモータ駆動装置であって、
    前記三相交流を整流する整流回路と、
    前記整流回路により整流された直流の電流を検出する電流検出回路と、
    前記電流検出回路により検出された電流と、所定の電流値とのクロスポイントを検出し、検出結果に基づいて、前記モータを駆動するか否かを示す制御信号を出力するクロスポイント検出回路と、を備えるモータ駆動装置。
  2. 前記クロスポイント検出回路は、前記三相交流の1周期において検出する前記クロスポイントの回数が2回である場合に、前記モータを駆動しない旨を示す前記制御信号を出力する
    請求項1に記載のモータ駆動装置。
  3. 前記所定の電流値は、ゼロであり、
    前記クロスポイント検出回路は、更に、前記三相交流の1周期において検出する前記クロスポイントの回数が0回又は6回である場合に、前記モータを駆動する旨を示す前記制御信号を出力する
    請求項2に記載のモータ駆動装置。
  4. 前記所定の電流値は、正の値であり、
    前記クロスポイント検出回路は、更に、前記三相交流の1周期において検出する前記クロスポイントの回数が0回である場合に、前記モータを駆動する旨を示す前記制御信号を出力する
    請求項2に記載のモータ駆動装置。
  5. 更に、前記モータを駆動するための電力を算出する電力算出回路を備え、
    前記クロスポイント検出器は、前記電力算出回路により算出された電力が所定の電力値よりも小さい場合には、前記モータを駆動しない旨を示す前記制御信号の出力を抑制する
    請求項2に記載のモータ駆動装置。
  6. 更に、前記整流回路により整流された直流を平滑化する平滑回路と、
    前記平滑回路により平滑化された直流が供給され、前記モータを駆動するインバータと、を備え、
    前記電流検出回路は、前記平滑化回路により平滑化される前の、前記整流回路により整流された直流を用いて、前記電流値を検出する
    請求項1~5のいずれか1項に記載のモータ駆動装置。
PCT/JP2021/028260 2020-09-23 2021-07-30 モータ駆動装置 WO2022064840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21871972.2A EP4220939A4 (en) 2020-09-23 2021-07-30 MOTOR DRIVE DEVICE
CN202180063256.5A CN116325480A (zh) 2020-09-23 2021-07-30 马达驱动装置
US18/043,774 US20230336103A1 (en) 2020-09-23 2021-07-30 Motor drive device
JP2022551168A JPWO2022064840A1 (ja) 2020-09-23 2021-07-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-159133 2020-09-23
JP2020159133 2020-09-23

Publications (1)

Publication Number Publication Date
WO2022064840A1 true WO2022064840A1 (ja) 2022-03-31

Family

ID=80845272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028260 WO2022064840A1 (ja) 2020-09-23 2021-07-30 モータ駆動装置

Country Status (6)

Country Link
US (1) US20230336103A1 (ja)
EP (1) EP4220939A4 (ja)
JP (1) JPWO2022064840A1 (ja)
CN (1) CN116325480A (ja)
TW (1) TW202215768A (ja)
WO (1) WO2022064840A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223930A (ja) * 1995-02-08 1996-08-30 Mitsubishi Electric Corp 空気調和機の制御装置
JPH09284985A (ja) * 1996-04-09 1997-10-31 Daikin Ind Ltd 空気調和機における電力供給装置
JP2000116186A (ja) 1998-09-30 2000-04-21 Matsushita Electric Ind Co Ltd Acサーボモータ制御装置および欠相検出回路
WO2015033427A1 (ja) * 2013-09-05 2015-03-12 三菱電機株式会社 空気調和装置
JP2015201905A (ja) * 2014-04-04 2015-11-12 パナソニックIpマネジメント株式会社 インバータ制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791157B2 (ja) * 1990-01-08 1998-08-27 株式会社日立製作所 インバータ装置の異常検出装置
CN1201156C (zh) * 2003-01-17 2005-05-11 艾默生网络能源有限公司 应用于三相四线输入设备的缺相检测方法和缺相检测电路
JP4737712B2 (ja) * 2005-04-14 2011-08-03 株式会社安川電機 電力変換装置とその電源異常判定方法
JP6948245B2 (ja) * 2017-12-18 2021-10-13 三菱重工サーマルシステムズ株式会社 判定システム、判定システムによる判定方法及びプログラム
CN111665400A (zh) * 2019-03-07 2020-09-15 丹佛斯(天津)有限公司 缺相检测装置、包括该装置的压缩机及缺相检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223930A (ja) * 1995-02-08 1996-08-30 Mitsubishi Electric Corp 空気調和機の制御装置
JPH09284985A (ja) * 1996-04-09 1997-10-31 Daikin Ind Ltd 空気調和機における電力供給装置
JP2000116186A (ja) 1998-09-30 2000-04-21 Matsushita Electric Ind Co Ltd Acサーボモータ制御装置および欠相検出回路
WO2015033427A1 (ja) * 2013-09-05 2015-03-12 三菱電機株式会社 空気調和装置
JP2015201905A (ja) * 2014-04-04 2015-11-12 パナソニックIpマネジメント株式会社 インバータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220939A4

Also Published As

Publication number Publication date
TW202215768A (zh) 2022-04-16
JPWO2022064840A1 (ja) 2022-03-31
EP4220939A1 (en) 2023-08-02
CN116325480A (zh) 2023-06-23
EP4220939A4 (en) 2024-02-28
US20230336103A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP5024827B2 (ja) インバータ装置
JP2010154642A (ja) 3相インバータの電源回路保護装置
US20140306640A1 (en) Motor control apparatus with power failure determination unit
JP2011188653A (ja) モータ駆動装置
US11218107B2 (en) Control device for power converter
JP2016158323A (ja) アクティブフィルタを備えた高調波抑制装置
JP5779530B2 (ja) 電力変換装置
JPWO2014030181A1 (ja) 電力変換装置
JP2007244104A (ja) 地絡検出方法
JP2006191743A (ja) 3レベルpwm電力変換装置
JP6543872B2 (ja) 制御装置、制御方法及びプログラム
WO2022064840A1 (ja) モータ駆動装置
JP2001292580A (ja) 出力欠相検出方法および装置、並びにインバータ装置
JP2008253008A (ja) 電力変換装置および電源誤接続判定方法
JP5288165B2 (ja) 交流電動機の制御装置
JP2013066257A (ja) 電源回生コンバータ、モータ駆動システム、及び電源回生処理方法
US20170139011A1 (en) Automatic identification of the type of motor
JPWO2022064840A5 (ja)
JP2006262573A (ja) 交流交流電力変換器の制御装置
JP2011217473A (ja) 突入電流抑制回路の故障検出機能を持つモータ駆動回路、モータ制御装置
JP2791157B2 (ja) インバータ装置の異常検出装置
JP2012042316A (ja) インバータ装置
JP2872210B1 (ja) サーボ駆動装置
JP4899109B2 (ja) 電源回路の故障検出装置
JP2005185029A (ja) 欠相検出回路およびインバータ装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871972

Country of ref document: EP

Effective date: 20230424