WO2022064767A1 - 鉱山機械 - Google Patents

鉱山機械 Download PDF

Info

Publication number
WO2022064767A1
WO2022064767A1 PCT/JP2021/019334 JP2021019334W WO2022064767A1 WO 2022064767 A1 WO2022064767 A1 WO 2022064767A1 JP 2021019334 W JP2021019334 W JP 2021019334W WO 2022064767 A1 WO2022064767 A1 WO 2022064767A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured
sensor
calculated
mining machine
acceleration
Prior art date
Application number
PCT/JP2021/019334
Other languages
English (en)
French (fr)
Inventor
幹雄 板東
信一 魚津
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US18/019,903 priority Critical patent/US20230278557A1/en
Priority to CN202180047992.1A priority patent/CN115812185A/zh
Priority to EP21871901.1A priority patent/EP4220328A1/en
Publication of WO2022064767A1 publication Critical patent/WO2022064767A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/125Heavy duty trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/90Single sensor for two or more measurements
    • B60W2420/905Single sensor for two or more measurements the sensor being an xyz axis sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/142Heavy duty trucks

Definitions

  • V is the GNSS velocity
  • C eb is the coordinate transformation matrix from the vehicle body coordinate system b to the global coordinate system e.
  • C eb is obtained from the roll angle ⁇ , pitch angle ⁇ , and yaw angle ⁇ obtained from the vehicle body posture sensor 27 by the following equation (3).
  • steps S107 to S111 following step S106 are the same as steps S2 to S6 described in the first embodiment, duplicate description will be omitted.
  • the inertial speed calculation flag is "0 (zero)" in the case of going straight, the wheel speed of the driven wheel can be substituted. That is, in the case of going straight, the mileage along the road surface may be calculated from the wheel speed of the front wheel 11 which is a driving wheel.
  • step S112 following step S111, the road surface gradient calculated in step S109 or step S110 and the driving force coefficient calculated in step S111 are transmitted to the control system 2 together with the current position.
  • the control system 2 receives this information and stores or updates it in the map database 2a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

鉱山機械は、GNSS受信機により計測された位置及び速度、車体姿勢センサにより計測された車体姿勢、及び加速度センサにより計測された加速度に基づいて、走行する経路の路面勾配を算出する路面勾配算出部と、GNSS受信機により計測された速度、加速度センサにより計測された加速度、車輪速度センサにより計測された車輪速度、操舵角センサにより計測された操舵方向、荷重センサにより計測された車重、及び駆動トルクセンサにより計測された駆動トルクに基づいて、駆動力係数を算出する駆動力係数算出部と、路面勾配算出部により算出された路面勾配及び駆動力係数算出部により算出された駆動力係数に基づいて、目標トルクを算出する目標トルク算出部と、を備える。

Description

鉱山機械
 本発明は、鉱山内を走行する鉱山機械に関する。
 本願は、2020年9月25日に出願された日本国特願2020-161342号に基づき優先権を主張し、その内容をここに援用する。
 例えば露天掘り鉱山において、油圧ショベルが平面を掘り下げながら、そこで排出された土等をダンプトラックが運び出すドロップカットと呼ばれる工法が採用されている。この工法では、油圧ショベルが平坦な場所を掘り進め、勾配路が徐々に生成され、生成された勾配路をダンプトラックが下り、油圧ショベルが掘り出した土等をダンプトラックで放土場に運び出す。このため、油圧ショベルによるダンプトラックへの積み込み作業のみならず、ダンプトラックによる運搬作業も、平坦な場所ではなく、ダンプトラックが大きく傾いた状態で行われている。
 最近では、鉱山現場の安全性及び生産性の向上、人件費の削減を図るために、上述の工法に無人ダンプトラックを導入する技術が進んでいる。しかし、採掘場所を拡大する場合、事前に整備された地図データがなく、且つ勾配が大きい路面を走行することになるので、無人ダンプトラックを推定位置及び姿勢のみに基づいて油圧ショベルの指定位置に移動又は停止する制御を行うことになる。そして、このような事前に路面勾配が分からない走行経路において、路面勾配を算出し走行する方法としては、例えば特許文献1に記載されるように、測量若しくはトラックが走行した結果から得られる隣り合う点の高低差に基づき、路面勾配を算出し、目標走行速度を設定するものが挙げられる。
特開2019-133473号公報
 しかしながら、新しく生成された路面或いは水を多く含んだ路面等では、土が柔らかいので、車輪が沈下することが多い。これによって、路面勾配に加えて車輪沈下による走行抵抗に抗う走行になるので、駆動トルクの算出が難しくなり、目的地とする地点への走行制御を精度良く行うことが困難であった。
 本発明は、このような技術課題を解決するためになされたものであって、路面勾配及び車輪沈下を考慮して駆動トルクを算出し、走行制御を高精度に行うことができる鉱山機械を提供することを目的とする。
 本発明に係る鉱山機械は、測位衛星から受信した電波に基づいて鉱山内を走行する鉱山機械の位置及び速度を計測するGNSS受信機と、前記鉱山機械の車体姿勢を計測する車体姿勢センサと、前記鉱山機械の加速度を計測する加速度センサと、前記鉱山機械の車輪の回転数に基づいて車輪速度を計測する車輪速度センサと、前記鉱山機械の操舵方向を計測する操舵角センサと、積荷重量を含む前記鉱山機械の車重を計測する荷重センサと、前記鉱山機械の駆動輪の駆動トルクを計測する駆動トルクセンサと、前記鉱山機械を制御する制御装置と、を備えた鉱山機械において、前記制御装置は、前記GNSS受信機によって計測された位置及び速度、前記車体姿勢センサによって計測された車体姿勢、及び前記加速度センサによって計測された加速度に基づいて、走行する経路の路面勾配を算出し、前記GNSS受信機によって計測された速度、前記加速度センサによって計測された加速度、前記車輪速度センサによって計測された車輪速度、前記操舵角センサによって計測された操舵方向、前記荷重センサによって計測された車重、及び前記駆動トルクセンサによって計測された駆動トルクに基づいて、駆動力係数を算出し、算出した前記路面勾配及び前記駆動力係数に基づいて前記鉱山機械の目標トルクを算出し、算出した前記目標トルクとなるように前記駆動輪の駆動トルクを制御することを特徴としている。
 本発明に係る鉱山機械では、制御装置は、GNSS受信機によって計測された位置及び速度、車体姿勢センサによって計測された車体姿勢、及び加速度センサによって計測された加速度に基づいて、走行する経路の路面勾配を算出し、GNSS受信機によって計測された速度、加速度センサによって計測された加速度、車輪速度センサによって計測された車輪速度、操舵角センサによって計測された操舵方向、荷重センサによって計測された車重、及び駆動トルクセンサによって計測された駆動トルクに基づいて、駆動力係数を算出する。更に、制御装置は、算出した路面勾配及び駆動力係数に基づいて、鉱山機械の目標トルクを算出する。このように走行経路の路面勾配及び車輪沈下を考慮して駆動トルクを算出することで、鉱山機械の走行制御を高精度に行うことができる。
 本発明によれば、路面勾配及び車輪沈下を考慮して駆動トルクを算出し、鉱山機械の走行制御を高精度に行うことができる。
無人ダンプトラックの概略構成を示す側面図である。 第1実施形態に係る無人ダンプトラックを示すブロック構成図である。 制御装置の処理フローを示す図である。 勾配変化点算出の処理フローを示す図である。 記憶部に記憶される勾配変化テーブルを示す図である。 ピッチ角系列の平均算出の概念図を示す図である。 速度による勾配算出の処理フローを示す図である。 慣性速度ベクトル算出の処理フローを示す図である。 記憶部に記憶される駆動力係数テーブルを示す図である。 目標トルク算出の処理フローを示す図である。 速度プロファイル設定の概念を示す図である。 第2実施形態に係る無人ダンプトラック、管制システム及び油圧ショベルの概略構成を示すブロック図である。 第2実施形態の処理フローを示す図である。 第2実施形態の経路設定の一例を示す図である。
 以下、図面を参照して本発明に係る鉱山機械の実施形態について説明する。図面の説明において同一の要素には同一符号を付し、その重複説明を省略する。また、以下の説明において、鉱山機械として無人ダンプトラックの例を挙げて説明するが、本発明は無人ダンプトラックに限定されない。
 無人ダンプトラック1は、露天掘り鉱山内において自律走行可能な車両である。図1に示すように、この無人ダンプトラック1は、左右一対の前輪11と、左右一対の後輪12と、左右の車輪(すなわち、前輪11又は後輪12)を繋ぐ車輪軸13と、ばね等によって車輪軸13と連結された頑丈なフレームである車体14とで構成されている。車体14の上には土砂等を積載するための荷台15が搭載され、車体14と荷台15とはホイストシリンダ16によって連結されている。また、車体14には、燃料タンク17が取り付けられている。後輪12は、例えば駆動輪であり、図示しない駆動モータ等に接続されている。また、車体14の上方には、オペレータや点検員等が歩行可能なデッキ18が取り付けられている。
[第1実施形態]
 図2は第1実施形態に係る無人ダンプトラックを示すブロック構成図である。無人ダンプトラック1には、GPS(Global Positioning System)等の測位衛星からの電波を受信する複数のGNSS(Global Navigation Satellite System)アンテナ20と、GNSSアンテナ20で受信した情報を基に無人ダンプトラック1の位置(現在位置ともいう)及び速度(以下、「GNSS速度」という)を計測するGNSS受信機21とが配置されている。GNSS受信機21は、計測した無人ダンプトラック1の位置及びGNSS速度を制御装置28(後述する)に出力する。
 また、無人ダンプトラック1の車体14には、加速度センサ22、車輪速度センサ23、操舵角センサ24、荷重センサ25、駆動トルクセンサ26、車体姿勢センサ27、及び制御装置28がそれぞれ取り付けられている。
 加速度センサ22は、無人ダンプトラック1にかかる重力方向を含めた加速度を車体座標系b(すなわち、車体14に固定された座標系)で計測し、計測した結果を制御装置28に出力する。車輪速度センサ23は、車輪(ここでは、駆動輪である後輪12)の回転数に基づいて車輪速度を計測し、計測した結果に制御装置28に出力する。
 操舵角センサ24は、無人ダンプトラック1の操舵方向を計測する。本実施形態では、操舵角センサ24は、従動輪である前輪11の操舵方向を計測し、計測した結果に制御装置28に出力する。荷重センサ25は、積荷重量を含む無人ダンプトラック1の車重を計測し、制御装置28に出力する。例えば、この荷重センサ25は、荷台15の積荷重量を計測し、計測した積荷重量と記憶された空荷時の車両重さとの合計値を車重として制御装置28に出力する。駆動トルクセンサ26は、駆動輪(すなわち後輪12)が出力する駆動トルクを計測し、計測した結果に制御装置28に出力する。
 車体姿勢センサ27は、無人ダンプトラック1の車体姿勢を計測する。本実施形態では、車体姿勢センサ27は、グローバル座標系e(すなわち、地球に固定された座標系)のXe軸とYe軸によって張られる水平面と車体座標系bのXb軸及びYb軸とが成す傾斜角度と、グローバル座標系eのXe軸から車体座標系bのXb軸までの回転角度とで表される車体姿勢を計測し、計測した結果を制御装置28に出力する。
 制御装置28は、無人ダンプトラック1の車両全体制御を行うものである。制御装置28は、例えば演算を実行するCPU(Central Processing Unit)と、演算のためのプログラムを記録した二次記憶部としてのROM(Read Only Memory)と、演算経過の保存や一時的な制御変数を保存する一時記憶部としてのRAM(Random Access Memory)とを組み合わせてなるマイクロコンピュータにより構成されており、記憶されたプログラムの実行によって無人ダンプトラック1の走行や操作等に関する各制御を行う。
 ここで、本発明に至った経緯を説明する。
 上述の課題を解決するため、本願発明者は、無人ダンプトラック1の駆動トルクに大きく影響する路面勾配と土が柔らかいことに起因する車輪沈下とに着目し、鋭意研究を行ってきた。
 まず、車体姿勢センサ27が車体14に取り付けられているため、車体姿勢センサ27によって計測された結果は、無人ダンプトラック1が実際に走行した経路の路面勾配と異なっている。そこで、本願発明者らは、無人ダンプトラック1が水平方向に走行した距離(以下、水平方向進行距離という)と、その間に無人ダンプトラック1が路面に沿った走行距離とをそれぞれ計測し、三角関数を用いて水平方向進行距離と走行距離との関係から路面勾配を求めることにした。
 次に、土が柔らかいことに起因した車輪沈下に関しては、本願発明者らは、車輪沈下量の関数としてスリップ率を用いることにした。そして、スリップ率について、GNSS受信機21によって計測されたGNSS速度と加速度センサ22によって計測された加速度とから慣性速度ベクトルを、車輪速度センサ23によって計測された車輪速度と操舵角センサ24によって計測された従動輪方向とから車輪速度ベクトルをそれぞれ算出し、算出した慣性速度ベクトルと車輪速度ベクトルとの差を算出することで求められる。
 更に、求められたスリップ率に加えて、加速度センサ22によって計測された加速度、荷重センサ25によって計測された車重、駆動トルクセンサ26によって計測された駆動トルクを用いて、勾配及び土の柔らかさ等路面の状態によって変化する駆動力を求めるための駆動力係数を算出する。そして、この駆動力係数を用いて、同じ土質が続くことを前提にして各位置での勾配及びスリップ率から各位置の目標加速度になるための目標トルク(すなわち必要な駆動トルク)を算出し、算出した目標トルクに向けて無人ダンプトラック1の駆動トルクを制御する。このようにすれば、無人ダンプトラック1の速度を制御し、目的地まで無人ダンプトラック1を高精度に走行させることが可能になる。
 従って、上述したことを実現するために、本実施形態の制御装置28は、勾配変化点算出部29、慣性速度ベクトル算出部30、路面勾配算出部31、車輪速度ベクトル算出部32、スリップ率算出部33、駆動力係数算出部34、目標トルク算出部35、目標加速度算出部36、駆動トルク制御コントローラ37、経路設定コントローラ38、及び記憶部39を備えている。
 勾配変化点算出部29は、車体姿勢センサ27によって計測されたピッチ角と、GNSS受信機21によって計測された位置とに基づいて、路面の勾配変化点を算出する。また、勾配変化点算出部29は、算出した結果を路面勾配算出部31に出力する。
 慣性速度ベクトル算出部30は、GNSS受信機21によって計測されたGNSS速度と、加速度センサ22によって計測された加速度とに基づいて、無人ダンプトラック1の速度となる慣性速度ベクトルを算出する。また、慣性速度ベクトル算出部30は、算出した結果を路面勾配算出部31に出力する。
 路面勾配算出部31は、GNSS受信機21によって計測された現在位置、勾配変化点算出部29によって算出された勾配変化点、及び慣性速度ベクトル算出部30によって算出された慣性速度ベクトルに基づいて、路面勾配を算出する。また、路面勾配算出部31は、算出した結果を目標トルク算出部35に出力する。
 車輪速度ベクトル算出部32は、車輪速度センサ23によって計測された車輪速度と、操舵角センサ24によって計測された従動輪方向とに基づいて、車輪速度ベクトルを算出する。また、車輪速度ベクトル算出部32は、算出した結果をスリップ率算出部33に出力する。
 スリップ率算出部33は、慣性速度ベクトル算出部30によって算出された慣性速度ベクトルと、車輪速度ベクトル算出部32によって算出された車輪速度ベクトルとに基づいて、路面のスリップ率を算出する。また、スリップ率算出部33は、算出した結果を駆動力係数算出部34に出力する。
 駆動力係数算出部34は、スリップ率算出部33によって算出されたスリップ率、荷重センサ25から出力された車重、駆動トルクセンサ26によって計測された駆動トルク、及び加速度センサ22によって計測された加速度に基づいて、路面勾配及び軟度(言い換えれば、土の柔らかさ)に応じた駆動力係数を算出する。また、駆動力係数算出部34は、算出した結果を目標トルク算出部35に出力する。
 目標加速度算出部36は、GNSS受信機21によって計測された現在位置と、経路設定コントローラ38によって設定された経路とに基づいて、無人ダンプトラック1の必要な加速である目標加速度を算出する。また、目標加速度算出部36は、算出した結果を目標トルク算出部35に出力する。
 目標トルク算出部35は、路面勾配算出部31によって算出された路面勾配、駆動力係数算出部34によって算出された駆動力係数、及び目標加速度算出部36によって算出された目標加速度に基づいて、目標トルクを算出する。この目標トルクは、車速を目標速度に変化させるために目標加速度を生じさせるための駆動トルクのことである。また、目標トルク算出部35は、算出した結果を駆動トルク制御コントローラ37に出力する。
 駆動トルク制御コントローラ37は、目標トルク算出部35によって算出された目標トルクに基づいて駆動輪の駆動トルクを制御することにより、無人ダンプトラック1の速度の制御を行う。例えば、駆動トルク制御コントローラ37は、目標トルクとなるように、駆動輪の駆動トルクを制御する。経路設定コントローラ38は、無人ダンプトラック1が目的地(例えば、油圧ショベルの停止位置または放土場)とする停止位置までの経路を設定する。
 以下、図3~図11を参照して制御装置28が路面勾配とスリップ率を算出し、目標トルクを算出して無人ダンプトラック1の走行を制御することを説明する。図3は制御装置の処理フローを示す図であり、図3に示す処理フローの詳細説明を図4~図11に示す。
 なお、図3に示す処理は、無人ダンプトラック1が目的地とする停止位置までの経路が経路設定コントローラ38によって予め設定されており、経路上の勾配が未知であることを前提とする。また、図3に示す処理は、同一周期(例えば0.01秒ずつ)で開始し、その周期内ですべての処理を終了するものとする。
 初めに、ステップS1では、制御装置28は、GNSS受信機21から無人ダンプトラック1の現在位置、車体姿勢センサ27から車体姿勢をそれぞれ取得し、取得した結果を記憶部39に記憶させる。
 ステップS1に続くステップS2では、勾配変化点算出部29は路面の勾配変化点を算出する。勾配変化点は、無人ダンプトラック1が走行する路面の勾配が一定以上変化したことを示す点であり、例えば図4のフローに従って算出される。
 図4に示すように、ステップS21では、勾配変化点算出部29は記憶部39からピッチ角系列を取得する。記憶部39では、図5に示すような勾配変化テーブルが記憶されている。勾配変化テーブルには、無人ダンプトラック1の位置毎に、ピッチ角、勾配変化の長期窓平均及び短期窓平均、勾配変化フラグ、走行距離、勾配がそれぞれ記載されている。なお、この勾配変化テーブルの初期値は全て「0(ゼロ)」である。
 ステップS21に続くステップS22では、勾配変化点算出部29は、ピッチ角を位置に対する系列に直し、その長期窓の平均と短期窓の平均とをそれぞれ算出する。図6はピッチ角系列の平均算出の概念図を示す図である。図6に示すように、長期窓は無人ダンプトラック1の現在位置よりNメートル分離れた位置からのピッチ角系列、短期窓は現在位置よりnメートル分離れた位置からのピッチ角系列である。勾配変化点算出部29は、これらの平均を算出し、算出した結果を記憶部39に記憶させる。そして、長期窓は例えば10メートル、短期窓は3メートル等に設定されている。
 ステップS22に続くステップS23では、まず、勾配変化点算出部29は、長期窓の平均と短期窓の平均との差を算出する。次に、制御装置28は、算出された平均の差が予め設定された第1閾値以上である否かを判断する。ここでの第1閾値は、例えば経験値等に基づいて設定されており、対象によって変更可能とされている。
 平均の差が第1閾値以上であると判断された場合、処理はステップS24に移行する。ステップS24では、勾配変化があると検出されため、勾配変化点算出部29は、勾配変化フラグを「1」に設定するとともに、それを記憶部39に記憶させる。一方、平均の差が第1閾値よりも小さいと判断された場合、勾配変化点はないとして、勾配変化点算出部29は勾配変化フラグを「0(ゼロ)」に設定するとともに、それを記憶部39に記憶させる。これによって、勾配変化点の算出処理を終了する。
 図3に示すように、勾配変化点の算出が終わると、処理はステップS3に移行する。ステップS3では、まず、路面勾配算出部31は、無人ダンプトラック1の現在位置からステップS2で算出した勾配変化点までの距離を算出する。次に、制御装置28は、算出された距離が予め設定された第2閾値よりも大きいか否かを判断する。ここでの第2閾値は、下記ステップS5で算出した速度の積分誤差と3次元位置の高さ誤差とを勘案して設定されており、例えば上述の長期窓と同じ値にする。また、この第2閾値は、対象によって適切な値が設定されても良い。
 そして、勾配変化点までの距離が第2閾値よりも大きいと判断された場合、処理はステップS4に移行する。ステップS4では、路面勾配算出部31は、3次元位置による勾配の算出を行う。3次元位置による勾配Sの算出は、図5の勾配変化テーブルに記載された現在位置に最も近い勾配変化フラグが「1」の位置(xA、yA、zA)と現在位置(xc、yc、zc)とに基づいて下記式(1)によって行われる。
Figure JPOXMLDOC01-appb-M000001
 一方、勾配変化点までの距離が第2閾値以下であると判断された場合、処理はステップS5に移行する。ステップS5では、路面勾配算出部31は、速度による勾配の算出を行う。速度による勾配の算出は、例えば図7のフローに従って行われる。
 図7に示すように、ステップS51では、慣性速度ベクトル算出部30は、GNSS受信機21によって計測されたGNSS速度と、加速度センサ22によって計測された加速度とに基づいて、無人ダンプトラック1の慣性速度を算出する。本実施形態では、慣性速度は慣性速度ベクトルで表されている。そして、慣性速度ベクトルは図8のフローに従い算出される。
 GNSS受信機21によって計測されたGNSS速度は、一定周期で無人ダンプトラック1の速度方向をグローバル座標系で出力される。本実施形態では、GNSS速度の出力周期は加速度センサ22の出力周期よりも遅く、加速度センサ22の出力周期は制御装置28の出力周期と同じであるとする。
 図8に示すように、ステップS511では、慣性速度ベクトル算出部30は、記憶部39に記憶されている前サンプル時刻の速度ベクトルを取得する。ステップS511に続くステップS512では、慣性速度ベクトル算出部30は、加速度センサ22から加速度ベクトルを取得する。
 ステップS512に続くステップS513では、制御装置28は、GNSS速度の取得周期であるかを判断する。GNSS速度の取得周期であると判断された場合、処理はステップS514に移行する。ステップS514では、慣性速度ベクトル算出部30は、GNSS速度ベクトルを車体座標系に変換し、慣性速度ベクトルviとして設定する。viは下記式(2)によって算出される。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、VはGNSS速度、Cebは車体座標系bからグローバル座標系eへの座標変換行列である。なお、Cebは、車体姿勢センサ27から得られるロール角ψ、ピッチ角φ、ヨー角θから下記式(3)によって求められる。
Figure JPOXMLDOC01-appb-M000003
 一方、ステップS513においてGNSS速度の取得周期でないと判断された場合、制御処理はステップS515に移行し、慣性速度ベクトル算出部30は、加速度の積分によって速度を算出する。ステップS515では、慣性速度ベクトル算出部30は、GNSS速度を取得できていない時間(GNSS速度未取得時間)を、最後にGNSS速度を取得した時刻と現在時刻との差を計算することで算出する。
 ステップS515に続くステップS516では、制御装置28は、ステップS515で算出したGNSS速度未取得時間が予め設定された第3閾値よりも小さいか否かを判断する。これは、加速度の積分によって算出される速度は積算時間による誤差が発生するため、時間による誤差の上限を設定することで誤差を抑制できるからである。なお、第3閾値は、例えば速度設計目標値を保っている時間を考慮して設定されている。
 そして、GNSS速度未取得時間が第3閾値以上であると判断された場合、処理はステップS517へ移行する。ステップS517では、慣性速度ベクトル算出部30は、慣性速度算出フラグを「0(算出不可)」に設定する。一方、GNSS速度未取得時間が第3閾値よりも小さいと判断された場合、処理はステップS518へ移行し、慣性速度ベクトルの算出が行われる。ステップS518では、慣性速度ベクトル算出部30は、ステップS511で取得した前サンプル時刻の速度ベクトルに、ステップS512で取得した加速度ベクトルを足し合わせることで現在時刻の速度を算出する。加速度αを用いた現在時刻の速度vi(t)は、単位時間をdtとして下記式(4)に基づいて算出される。式(4)において、vi(t-1)は前サンプル時刻の速度である。
Figure JPOXMLDOC01-appb-M000004
 ステップS518に続くステップS519では、慣性速度ベクトル算出部30は、慣性速度算出フラグを「1(算出可)」に設定する。これによって、慣性速度ベクトルの算出処理を終了する。
 図7に示すように、慣性速度の算出が終わると、処理はステップS52に移行する。ステップS52では、路面勾配算出部31は、勾配変化点からの慣性速度を積算して無人ダンプトラック1が路面に沿って走行した走行距離(すなわち、現在時刻の走行距離)を算出する。現在時刻の走行距離Lv(t)は、下記式(5)に示すように、記憶部39に記憶されている前回の走行距離Lv(t-1)にステップS51で算出した慣性速度v(t)にサンプル時間dtをかけた値を加えることで求められる。
Figure JPOXMLDOC01-appb-M000005
 なお、ステップS51で慣性速度算出フラグが「0(算出不可)」であった場合は、従動輪(すなわち、前輪11)から出力される車輪速度で代用し、あるいは前回の慣性速度を用いることで代用しても良い。
 ステップS52に続くステップS53では、路面勾配算出部31は、無人ダンプトラック1の水平方向進行距離を算出する。水平方向進行距離Lpは、記憶部39に記憶されている勾配変化テーブル(図5参照)において現在位置に最も近い勾配変化フラグが「1」の位置(xA、yA、zA)と現在位置(xc、yc、zc)のx、yを用いて、下記式(6)によって算出される。
Figure JPOXMLDOC01-appb-M000006
 ステップS53に続くステップS54では、制御装置28は、ステップS52で算出した走行距離が予め設定された第4閾値以上であるか否かを判断する。ここでの第4閾値は、例えばGNSS受信機21によって計測された位置の精度に対して水平方向進行距離が十分長い条件として設定されている。
 そして、走行距離が第4閾値よりも小さいと判断された場合、処理はステップS55へ移行する。ステップS55では、路面勾配算出部31は、前回の勾配S(t-1)をそのまま今回の勾配S(t)として設定するとともに、設定した結果を記憶部39に記憶させる。一方、走行距離が第4閾値以上であると判断された場合、処理はステップS56へ移行する。ステップS56では、路面勾配算出部31は、下記式(7)に基づいて勾配S(t)を算出し、算出した結果を記憶部39に記憶させる。
Figure JPOXMLDOC01-appb-M000007
 図3に示すように、ステップS4もしくはS5において勾配が算出されれば、処理はステップS6へ移行し、駆動力係数の算出が行われる。駆動力係数は、路面の柔らかさ(すなわち、土の柔らかさ)の原因で車輪が土に埋まることに起因して発生する駆動力を決定するための係数であり、記憶部39に図9のテーブルの形で記憶されている。路面が柔らかいと、車輪が沈み込む。この場合、走行するために必要な力は、舗装路での駆動力と異なり、土のせん断応力と等しくなる。この土のせん断応力は、駆動輪のスリップ率と関係する。そして、車輪が沈み込んだ場合の車体の運動方程式は、下記式(8)のように表すことができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-M000010
 そして、車輪のスリップに起因したせん断力によって生じる力は、駆動トルクFに(C0+C1λ+C2λ2+…)を掛ける形となっている。ここでは、各スリップ率の乗数の係数Cnを駆動力係数と呼ぶ。従って、車重、加速度、駆動トルク、スリップ率及び勾配の値が複数回計測又は算出できれば、駆動力係数を最小二乗法等によって決定することができる。
 加速度は加速度センサ22、車重は荷重センサ25、駆動トルクは駆動トルクセンサ26からそれぞれ取得することができる。また、勾配は上述のステップS4もしくはステップS5で算出することできる。従って、スリップ率が算出されれば、駆動力係数を算出することができる。
 スリップ率λは、下記式(10)に示すように、無人ダンプトラック1の車輪速度vwと車体進行速度vixとの比で表すことができる。
Figure JPOXMLDOC01-appb-M000011
 車輪速度vwは、車輪速度センサ23が駆動輪の回転数に基づいて計測されており、車体進行速度vixは上述のステップS51(慣性速度の算出方法)と同様の方法で算出することができる。このように算出されたスリップ率λ、取得された車重、加速度及び駆動トルク、算出された勾配は、図9に示す駆動力係数テーブルに、位置(すなわち、現在位置)毎に記憶されている。
 次に、駆動力係数算出部34は駆動力係数Cnを更新する。駆動力係数Cnは、予め決められたλの次数分だけ準備し、その変数分以上の前回値までを用いる。例えば、駆動力係数をC0及びC1までとする場合、現在位置での各変数が(Mm、Fm、Sm、λm)ならば、(M(m-1)、F(m-1)、S(m-1)、λ(m-1))を用いて式(8)による方程式を2つ作ることで、駆動力係数を算出することができる。また、駆動力係数の数以上に変数を用いる場合、最小二乗法等を用いて算出することができる。このように算出した駆動力係数は記憶部39に記憶されている。
 ステップS6に続くステップS7では、目標トルク算出部35は、目的の速度を出力するための目標トルクを算出する。目標トルクは、図10に示すフローに従って算出される。
 図10に示すように、ステップS71では、目標加速度算出部36は、GNSS受信機21によって計測された現在位置、ステップS51で算出した慣性速度をそれぞれ取得する。ステップS71に続くステップS72では、目標加速度算出部36は、経路設定コントローラ38から目的地までの経路を取得し、更に経路に設定されている制限速度情報を取得する。なお、経路は、途中の経由点の位置を示すノードとノード間をつなぐリンクから成り立っている。リンクには、そのリンク上を走行する際の制限速度が情報として備わっている。また、ノードには目的地である最終ノードがあり、この最終ノードで速度ゼロとなることを目標に無人ダンプトラック1は走行する。
 ステップS72に続くステップS73では、目標加速度算出部36は、現在の無人ダンプトラック1の慣性速度と速度変化点となるノードとの位置関係から最大速度プロファイルを設定し、目標加速度を算出する。図11に現在位置から目的地まで減速しながら進む場合の速度プロファイルの例を示す。図11に示すように、現在位置101から目的地102の間には、ノード(経由点)103が存在している。各位置での速度プロファイルを上部のグラフとして示している。
 図11において、一点鎖線で示すのはリンクに設定された制限速度である。制限速度は、現在位置101と経由点103との間にある制限速度104と、経由点103と目的地102との間にある制限速度105とに分けられている。そして、速度プロファイルとしては、例えば3つ考えられる。一つ目は、点線106で示すように、現在位置101での速度109から経由点103の制限速度105まで減速し、その後、目的地102まで更に減速する速度プロファイルである。二つ目は、破線107で示すように、現在位置101から目的地102まで一定減速する速度プロファイルである。三つ目は、二点鎖線108で示すように、最大速度で走行するために制限速度104,105まで一度速度を上げ、各ノードでその制限速度となるように速度を変える速度プロファイルである。
 この速度プロファイルの設定は、目的地到着までの猶予時間や優先走行等様々な要因で選択される。本実施形態では、いずれの速度プロファイルを採ったとしても以下の処理は変わらないため、ここでは一定減速する破線107で示す速度プロファイルを用いて説明する。
 目標加速度算出部36は、設定された速度プロファイルに基づいて目標加速度を算出する。現在位置101から目的地102までの距離をLとし、現在の慣性速度をvとし、目的地で停止する場合、目標加速度aは下記式(11)によって求められる。
Figure JPOXMLDOC01-appb-M000012
 ステップS73に続くステップS74では、目標トルク算出部35は目標トルクを算出する。目標トルクは、上述のステップS6で算出されて記憶部39に記憶された図9に示す位置毎のスリップ率、勾配、車重、駆動力係数を用いて、上述の式(8)から駆動トルクを逆算することで算出される。ステップS74に続くステップS75では、目標トルク算出部35は、算出した目標トルクを駆動トルク制御コントローラ37に出力する。
 図3に示すように、ステップS7に続くステップS8では、駆動トルク制御コントローラ37は、目標トルクとなるように無人ダンプトラック1の駆動トルクを制御することで、無人ダンプトラック1の速度制御を行う。これによって、一連の処理が終了する。
 このステップS1からステップS8の一連の処理を駆動トルク制御コントローラ37が起動する周期ごとに実行することによって、走行しながら路面状態や勾配が変化しても適切なトルクが出力されるようにし、高精度に走行できるようになる。その結果、土の柔らかい路面においても無人ダンプトラックを高精度に走行させることが可能となる。
 以上のように構成された無人ダンプトラック1によれば、走行経路の路面勾配及び車輪沈下を考慮して駆動トルクを算出するので、無人ダンプトラック1の走行制御を高精度に行うことができる。
[第2実施形態]
 上述の第1実施形態において、無人ダンプトラック1台のみが走行する場合を想定した例を説明したが、本発明は複数の無人ダンプトラック1の例にも適用される。すなわち、無人ダンプトラック1が複数の場合、それぞれ算出された路面勾配や駆動力係数等を共有することで、これらの無人ダンプトラック1を効率良く走行させることができ、作業効率を向上することができる。また、ドロップカット工法による油圧ショベルへのアプローチ等のように、経路が新たに作成された場合には、路面勾配及び駆動力係数等も大きく変化するので、各無人ダンプトラック1が算出した路面勾配及び駆動力係数等を共有することにより、ドロップカット工法の効率を高めることができる。
 そこで、第2実施形態では、各無人ダンプトラック1によって算出された路面勾配及び駆動力係数が定期的に管制システム2に送信され、管制システム2側で管理されている。以下の説明では、第2実施形態と第1実施形態との相違点のみを述べる。
 図12は第2実施形態に係る無人ダンプトラック、管制システム及び油圧ショベルの概略構成を示すブロック図である。図12に示す例では、複数の無人ダンプトラック1、管制システム2及び油圧ショベル3は、例えば鉱山機械管理システムを形成する。各無人ダンプトラック1は、それぞれに備えられた通信部19を介して管制システム2及び油圧ショベル3と通信可能に構成されている。
 この鉱山機械管理システムでは、複数の無人ダンプトラック1は、それぞれ算出した路面勾配及び駆動力係数を走行経路とともに、無人ダンプトラック1側の通信部19及び管制システム2側の通信部2bを介して定期的に管制システム2に送信する。管制システム2は、各無人ダンプトラック1から送信された走行経路及びそれに対応した路面勾配及び駆動力係数を地図データベース2aに記憶させて蓄積する。
 そして、例えば、ある無人ダンプトラック1が径路を走行する際に、その無人ダンプトラック1の制御装置28は、これから走行する経路に関する情報を管制システム2に要求し、管制システム2の地図データベース2aにその経路が記憶された場合にそれを受信して自車走行に必要な駆動トルクの算出に用いる。一方、地図データベース2aにその経路が記憶されていない場合、制御装置28は第1実施形態と同様に駆動トルクの算出を行う。以下、図13を参照してその詳細な処理を説明する。
 初めに、ステップS101では、制御装置28は、無人ダンプトラック1側の通信部19及び油圧ショベル3側の通信部3bを介して、油圧ショベル3の停止位置指示部3aから停止位置及び停止方位の指示を受信し、受信した停止位置及び停止方位を経路設定コントローラ38に出力する。
 ステップS101に続くステップS102では、制御装置28は、無人ダンプトラック1側の通信部19及び管制システム2側の通信部2bを介して、管制システム2に停止位置の情報を送信する。管制システム2は、受信した停止位置情報に基づいて、停止位置までの経路情報を地図データベース2aから読み出して無人ダンプトラック1の制御装置28に送信する。停止位置までの経路情報が送信される際に、その経路に対応した路面勾配及び駆動力係数も一緒に送信される。制御装置28は、受信した結果を経路設定コントローラ38に出力する。
 なお、停止位置までの経路情報が地図データベース2aに存在しない場合(言い換えれば、地図データベース2aに記憶されていない場合)、管制システム2は、存在しない経路を示す「null」等の不可値を制御装置28に送信する。また、停止位置までの経路の一部しかが地図データベース2aに存在しない場合、管制システム2は、地図データベース2aに存在する経路を送信するとともに、存在しない経路を示す「null」等の不可値も送信する。
 ステップS102に続くステップS103では、第1実施形態で述べたステップS1と同様に、無人ダンプトラック1の現在位置及び車体姿勢の取得が行われる。
 ステップS103に続くステップS104では、制御装置28は、ステップS102で受信した経路情報に不可値が存在するか否かを判断する。経路情報に不可値が存在しないと判断された場合(言い換えれば、経路情報に停止位置までの経路が全て存在している場合)、経路に対応した路面勾配及び駆動力係数が取得されたため、処理はステップS105に移行する。
 ステップS105では、上述のステップS7と同様の方法で目標トルクの算出が行われる。このとき、管制システム2から取得した路面勾配及び駆動力係数を使用して目標トルクが算出される。目標トルクが算出されると、処理はステップS114へ移行する。
 一方、ステップS104において経路情報に「null」等の不可値が存在すると判断された場合、処理はステップS106へ移行する。ステップS106では、この無人ダンプトラック1が初めに経路を生成することになるので、経路が経路設定コントローラ38によって新たに設定される。このとき、例えば図14に示すように、経路設定コントローラ38は、まず目的地となる停止位置201と無人ダンプトラック1の停止指示方位202に直線を伸ばし、管制システム2から取得された経路203との交点204を求める。
 次に、経路設定コントローラ38は、交点204に対して、無人ダンプトラック1がその方位となるようにスイッチバック等も含めて走行経路を設定する。なお、停止位置201から交点204までは直進のみとする。なお、図14に例示する経路の設定は一例にすぎず、その他の方法で経路が設定されても良く、効果も同じである。
 ステップS106に続くステップS107~S111は、第1実施形態で述べたステップS2~S6と同様であるので、重複説明を省略する。なお、ステップS110における慣性速度ベクトルを算出する際に、直進の場合は慣性速度算出フラグが「0(ゼロ)」であるので、従動輪の車輪速度を代替することもできる。すなわち、直進の場合、路面に沿った走行距離を従動輪である前輪11の車輪速度から算出しても良い。
 ステップS111に続くステップS112では、ステップS109もしくはステップS110で算出した路面勾配と、ステップS111で算出した駆動力係数とを現在位置とともに、管制システム2に送信する。管制システム2は、これらの情報を受信し、地図データベース2aに記憶又は更新させる。
 ステップS112に続くステップS113では、第1実施形態で述べたステップS7と同様な方法で目標トルクの算出が行われる。そして、ステップS114では、ステップS105もしくはステップS113で算出した目標トルクに基づいて無人ダンプトラック1の駆動トルクが制御される。これによって、一連の処理が終了する。
 本実施形態によれば、第1実施形態と同様な作用効果を得られるほか、複数の無人ダンプトラック1によって算出された路面勾配及び駆動力係数を共有することで、短時間で経路を生成することができるので、複数の無人ダンプトラック1を効率良く走行させることができ、作業効率を向上することができる。
 以上、本発明の実施形態について詳述したが、本発明は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、本発明は、第1実施形態の一部と第2の実施形態の一部を入れ替えもしくは組み合わせたものにも適用される。その場合も第1実施形態又は第2実施形態と同様な効果が得られる。
1  無人ダンプトラック
2  管制システム
3  油圧ショベル
19  通信部
20  GNSSアンテナ
21  GNSS受信機
22  加速度センサ
23  車輪速度センサ
24  操舵角センサ
25  荷重センサ
26  駆動トルクセンサ
27  車体姿勢センサ
28  制御装置
29  勾配変化点算出部
30  慣性速度ベクトル算出部
31  路面勾配算出部
32  車輪速度ベクトル算出部
33  スリップ率算出部
34  駆動力係数算出部
35  目標トルク算出部
36  目標加速度算出部
37  駆動トルク制御コントローラ
38  経路設定コントローラ
39  記憶部

Claims (7)

  1.  測位衛星から受信した電波に基づいて鉱山内を走行する鉱山機械の位置及び速度を計測するGNSS受信機と、前記鉱山機械の車体姿勢を計測する車体姿勢センサと、前記鉱山機械の加速度を計測する加速度センサと、前記鉱山機械の車輪の回転数に基づいて車輪速度を計測する車輪速度センサと、前記鉱山機械の操舵方向を計測する操舵角センサと、積荷重量を含む前記鉱山機械の車重を計測する荷重センサと、前記鉱山機械の駆動輪の駆動トルクを計測する駆動トルクセンサと、前記鉱山機械を制御する制御装置と、を備えた鉱山機械において、
     前記制御装置は、
     前記GNSS受信機によって計測された位置及び速度、前記車体姿勢センサによって計測された車体姿勢、及び前記加速度センサによって計測された加速度に基づいて、走行する経路の路面勾配を算出し、
     前記GNSS受信機によって計測された速度、前記加速度センサによって計測された加速度、前記車輪速度センサによって計測された車輪速度、前記操舵角センサによって計測された操舵方向、前記荷重センサによって計測された車重、及び前記駆動トルクセンサによって計測された駆動トルクに基づいて、駆動力係数を算出し、
     算出した前記路面勾配及び前記駆動力係数に基づいて前記鉱山機械の目標トルクを算出し、
     算出した前記目標トルクとなるように前記駆動輪の駆動トルクを制御することを特徴とする鉱山機械。
  2.  前記制御装置は、目的地までの経路を設定し、設定した目的地までの経路及び前記GNSS受信機によって計測された位置に基づいて前記鉱山機械の目標加速度を算出し、算出した前記目標加速度、前記路面勾配及び前記駆動力係数に基づいて前記目標トルクを算出する請求項1に記載の鉱山機械。
  3.  前記制御装置は、前記GNSS受信機によって計測された速度、前記加速度センサによって計測された加速度、前記車輪速度センサによって計測された車輪速度、及び前記操舵角センサによって計測された操舵方向に基づいて、路面のスリップ率を算出し、算出した前記スリップ率、前記加速度センサによって計測された加速度、前記荷重センサによって計測された車重、及び前記駆動トルクセンサによって計測された駆動トルクに基づいて、前記駆動力係数を算出する請求項1又は2に記載の鉱山機械。
  4.  前記制御装置は、前記GNSS受信機によって計測された速度及び前記加速度センサによって計測された加速度に基づいて、前記鉱山機械の慣性速度ベクトルを算出し、前記車輪速度センサによって計測された車輪速度及び前記操舵角センサによって計測された操舵方向に基づいて、車輪速度ベクトルを算出し、算出した前記慣性速度ベクトル及び前記車輪速度ベクトルに基づいて、前記スリップ率を算出する請求項3に記載の鉱山機械。
  5.  前記制御装置は、前記GNSS受信機によって計測された位置及び前記車体姿勢センサによって計測された車体姿勢に基づいて、路面の勾配変化点を算出し、算出した前記勾配変化点、前記GNSS受信機によって計測された位置、及び算出した前記慣性速度ベクトルに基づいて、前記路面勾配を算出する請求項4に記載の鉱山機械。
  6.  前記制御装置は、前記GNSS受信機によって計測された位置に基づいて前記鉱山機械の水平方向進行距離と、算出した前記慣性速度ベクトルに基づいて路面に沿った走行距離とをそれぞれ算出し、算出した前記水平方向進行距離及び前記走行距離に基づいて三角関数を用いて前記路面勾配を算出する請求項4又は5に記載の鉱山機械。
  7.  複数の前記鉱山機械を管理する管制システムと通信する通信部を更に備え、
     前記制御装置は、前記通信部を介して前記管制システムとの間で走行経路に対応する路面勾配及び駆動力係数を送受信する請求項1~6のいずれか一項に記載の鉱山機械。
PCT/JP2021/019334 2020-09-25 2021-05-21 鉱山機械 WO2022064767A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/019,903 US20230278557A1 (en) 2020-09-25 2021-05-21 Mining machine
CN202180047992.1A CN115812185A (zh) 2020-09-25 2021-05-21 矿山机械
EP21871901.1A EP4220328A1 (en) 2020-09-25 2021-05-21 Mining machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161342A JP7034225B1 (ja) 2020-09-25 2020-09-25 鉱山機械
JP2020-161342 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022064767A1 true WO2022064767A1 (ja) 2022-03-31

Family

ID=80846424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019334 WO2022064767A1 (ja) 2020-09-25 2021-05-21 鉱山機械

Country Status (5)

Country Link
US (1) US20230278557A1 (ja)
EP (1) EP4220328A1 (ja)
JP (1) JP7034225B1 (ja)
CN (1) CN115812185A (ja)
WO (1) WO2022064767A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117419760A (zh) * 2023-09-27 2024-01-19 湘潭市工矿电传动车辆质量检验中心 自卸车检测系统
CN117684985B (zh) * 2024-02-02 2024-05-07 长沙矿冶研究院有限责任公司 一种深海采矿车矿石料仓及计量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123860A (ja) * 1999-10-27 2001-05-08 Mitsubishi Motors Corp 路面勾配検出装置及び路面勾配に基づくエンジン出力制御装置
JP2005313863A (ja) * 2004-03-24 2005-11-10 Sumitomo Rubber Ind Ltd 路面状態判定方法および装置ならびに路面状態判定プログラム
JP2006017610A (ja) * 2004-07-02 2006-01-19 Aisin Aw Co Ltd ナビゲーションシステム
JP2006017607A (ja) * 2004-07-02 2006-01-19 Aisin Aw Co Ltd ナビゲーションシステム
JP2007106297A (ja) * 2005-10-14 2007-04-26 Sumitomo Rubber Ind Ltd 路面状態推定装置および方法、ならびに路面状態推定のためのプログラム
JP2009051310A (ja) * 2007-08-24 2009-03-12 Advics:Kk 車両走行制御装置
JP2014019256A (ja) * 2012-07-17 2014-02-03 Mitsubishi Fuso Truck & Bus Corp トレーラ車両の路面勾配推定装置
JP2019133473A (ja) 2018-01-31 2019-08-08 株式会社小松製作所 無人車両の管理装置、無人車両の管理方法、及び管理システム
JP2020161342A (ja) 2019-03-27 2020-10-01 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123860A (ja) * 1999-10-27 2001-05-08 Mitsubishi Motors Corp 路面勾配検出装置及び路面勾配に基づくエンジン出力制御装置
JP2005313863A (ja) * 2004-03-24 2005-11-10 Sumitomo Rubber Ind Ltd 路面状態判定方法および装置ならびに路面状態判定プログラム
JP2006017610A (ja) * 2004-07-02 2006-01-19 Aisin Aw Co Ltd ナビゲーションシステム
JP2006017607A (ja) * 2004-07-02 2006-01-19 Aisin Aw Co Ltd ナビゲーションシステム
JP2007106297A (ja) * 2005-10-14 2007-04-26 Sumitomo Rubber Ind Ltd 路面状態推定装置および方法、ならびに路面状態推定のためのプログラム
JP2009051310A (ja) * 2007-08-24 2009-03-12 Advics:Kk 車両走行制御装置
JP2014019256A (ja) * 2012-07-17 2014-02-03 Mitsubishi Fuso Truck & Bus Corp トレーラ車両の路面勾配推定装置
JP2019133473A (ja) 2018-01-31 2019-08-08 株式会社小松製作所 無人車両の管理装置、無人車両の管理方法、及び管理システム
JP2020161342A (ja) 2019-03-27 2020-10-01 三菱ケミカル株式会社 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池

Also Published As

Publication number Publication date
US20230278557A1 (en) 2023-09-07
JP7034225B1 (ja) 2022-03-11
EP4220328A1 (en) 2023-08-02
CN115812185A (zh) 2023-03-17
JP2022054261A (ja) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2022064767A1 (ja) 鉱山機械
AU2018281872B2 (en) Improvements in the stability of work machines
CN104520779B (zh) 用于为机器规划转弯路径的方法和系统
JP4466717B2 (ja) 走行軌跡生成方法及び走行軌跡生成装置
US8868302B2 (en) System for autonomous path planning and machine control
JP7171528B2 (ja) 運搬車両
JP7133298B2 (ja) 運搬車両の管制システム及び運搬車両の管理方法
CN103140632B (zh) 推土铲控制系统及建筑机械
EP3000681A1 (en) Stop position determining device for transport vehicle and transport vehicle with the same
JP6672339B2 (ja) 作業機械の管理システム及び作業機械
WO2017130419A1 (ja) 作業機械の管理システム、作業機械、作業機械の管理方法
JP6297228B2 (ja) 作業車両の制御システム、作業車両、及び作業車両の制御方法
EP3961340A1 (en) Underground worksite vehicle positioning control
WO2020122212A1 (ja) 運搬車両の管理システム及び運搬車両の管理方法
AU2021202318B2 (en) Stabilization based path planning
KR20230127352A (ko) 무게중심 위치 판정 장치 및 방법
JP2021189821A (ja) 運搬車両の管理システム及び運搬車両の管理方法
AU2024200931A1 (en) Road surface condition obtaining system
Kohlmeyer Modelling and control of an articulated underground mining vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871901

Country of ref document: EP

Effective date: 20230425