WO2020122212A1 - 運搬車両の管理システム及び運搬車両の管理方法 - Google Patents

運搬車両の管理システム及び運搬車両の管理方法 Download PDF

Info

Publication number
WO2020122212A1
WO2020122212A1 PCT/JP2019/048815 JP2019048815W WO2020122212A1 WO 2020122212 A1 WO2020122212 A1 WO 2020122212A1 JP 2019048815 W JP2019048815 W JP 2019048815W WO 2020122212 A1 WO2020122212 A1 WO 2020122212A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
course
transport vehicle
data
coordinate
Prior art date
Application number
PCT/JP2019/048815
Other languages
English (en)
French (fr)
Inventor
卓 前川
陸 宇佐美
裕司 小橋
Original Assignee
株式会社小松製作所
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所, 国立大学法人横浜国立大学 filed Critical 株式会社小松製作所
Priority to US17/312,516 priority Critical patent/US20220056670A1/en
Priority to AU2019396077A priority patent/AU2019396077B2/en
Priority to CA3123185A priority patent/CA3123185A1/en
Publication of WO2020122212A1 publication Critical patent/WO2020122212A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present disclosure relates to a transport vehicle management system and a transport vehicle management method.
  • unmanned transport vehicles are used for transport work.
  • the course on which the transport vehicle runs is set at the work site.
  • the haul vehicle is controlled to travel according to the course.
  • the transport vehicle can be driven at an appropriate traveling speed. By causing the transport vehicle to travel at an appropriate traveling speed, it is possible to suppress a decrease in productivity at the work site.
  • the aspect of the present invention is intended to suppress a decrease in productivity at a work site.
  • a two-dimensional course generation unit that generates a two-dimensional course of a transportation vehicle on a two-dimensional plane set at a work site, and a three-dimensional data acquisition unit that acquires three-dimensional data of the work site.
  • a three-dimensional course generation unit that generates a three-dimensional course of the transportation vehicle from the two-dimensional course based on the three-dimensional data is provided.
  • FIG. 1 is a diagram schematically illustrating an example of a management system for a transportation vehicle and a work site where the transportation vehicle operates according to an embodiment.
  • FIG. 2 is a perspective view of the transport vehicle according to the embodiment as seen from the rear.
  • FIG. 3 is a functional block diagram illustrating an example of the management device according to the embodiment.
  • FIG. 4 is a schematic diagram for explaining processing by the two-dimensional course generation unit according to the embodiment.
  • FIG. 5 is a schematic diagram for explaining processing by the three-dimensional curved surface generation unit according to the embodiment.
  • FIG. 6 is a schematic diagram for explaining the processing by the three-dimensional course generation unit according to the embodiment.
  • FIG. 7 is a schematic diagram for explaining the processing by the course determination unit according to the embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of a management system for a transportation vehicle and a work site where the transportation vehicle operates according to an embodiment.
  • FIG. 2 is a perspective view of the transport vehicle according to the embodiment as seen from the rear
  • FIG. 8 is a schematic diagram for explaining processing by the two-dimensional course correction unit according to the embodiment.
  • FIG. 9 is a schematic diagram for explaining the process performed by the traveling speed determination unit according to the embodiment.
  • FIG. 10 is a schematic diagram for explaining the process performed by the traveling speed determination unit according to the embodiment.
  • FIG. 11 is a functional block diagram showing an example of the travel control device according to the embodiment.
  • FIG. 12 is a flowchart showing an example of a management method for a transportation vehicle according to the embodiment.
  • FIG. 13 is a schematic diagram for explaining the processing by the three-dimensional course generation unit according to the embodiment.
  • FIG. 14 is a schematic diagram for explaining processing by the three-dimensional course generation unit according to the embodiment.
  • FIG. 15 is a block diagram showing an example of a computer system according to the embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of a management system 1 for a transport vehicle 2 and a work site where the transport vehicle 2 operates according to an embodiment.
  • the work site is a mine.
  • the transport vehicle 2 is a dump truck that can travel a work site and transport a load.
  • a mine means a place or a business place where a mineral is mined. Examples of the cargo transported to the transportation vehicle 2 include ore or earth and sand excavated in the mine.
  • the work site may be a quarry.
  • the transport vehicle 2 travels on at least part of the mine work site PA and the travel path HL leading to the work site PA.
  • the work area PA includes at least one of the loading area LPA and the earth discharging area DPA.
  • the traveling road HL includes an intersection IS.
  • the loading area LPA is an area where loading work for loading a load on the transport vehicle 2 is performed.
  • a loading machine 3 such as a hydraulic excavator operates in the loading field LPA.
  • the dumping site DPA is an area where the discharging work is performed in which the cargo is discharged from the transport vehicle 2.
  • the crusher 4 is arranged in the dumping site DPA.
  • the management system 1 includes a management device 10 and a communication system 9.
  • the management device 10 includes a computer system and is installed in the control facility 8 of the mine.
  • the management device 10 outputs a control command for controlling the transport vehicle 2.
  • the communication system 9 communicates between the management device 10 and the transport vehicle 2.
  • the management device 10 and the transport vehicle 2 wirelessly communicate with each other via the communication system 9.
  • the transport vehicle 2 is an unmanned dump truck that travels unmanned regardless of the driver's operation.
  • the transport vehicle 2 travels according to the three-dimensional course DC set on the travel path HL and the work site PA based on the control command output from the management device 10.
  • the transport vehicle 2 travels from the loading site LPA to the dumping site DPA or from the dumping site DPA to the loading site LPA according to the three-dimensional course DC.
  • the three-dimensional course DC includes the target travel route of the transport vehicle 2 set at the work site.
  • the absolute position of the transport vehicle 2 is detected using the Global Navigation Satellite System (GNSS).
  • the Global Navigation Satellite System includes a Global Positioning System (GPS).
  • GPS Global Positioning System
  • the global navigation satellite system detects the absolute position of the transport vehicle 2 defined by coordinate data of latitude, longitude, and altitude.
  • the global navigation satellite system detects the absolute position of the vehicle 2 defined in the global coordinate system.
  • the global coordinate system is a coordinate system fixed to the earth.
  • a local coordinate system is set at the work site.
  • the local coordinate system refers to a coordinate system based on the origin and coordinate axes set at the work site.
  • the local coordinate system is defined by the XYZ Cartesian coordinate system.
  • the coordinate axes of the local coordinate system include an X axis, a Y axis orthogonal to the X axis, and a Z axis orthogonal to both the X axis and the Y axis.
  • the two-dimensional plane set at the work site is the XY plane including the X axis and the Y axis.
  • the three-dimensional space set at the work site is an XYZ space including an X axis, a Y axis, and a Z axis.
  • the Y axis is orthogonal to the X axis on the XY plane.
  • the Z axis is orthogonal to the XY plane.
  • the position on the XY plane is defined by the X coordinate and the Y coordinate.
  • the position in the XYZ space is defined by the X coordinate, the Y coordinate, and the Z coordinate.
  • the position in the global coordinate system and the position in the local coordinate system can be converted using a conversion parameter.
  • FIG. 2 is a perspective view of the transport vehicle 2 according to the embodiment as viewed from the rear.
  • the transport vehicle 2 includes a vehicle body frame 21, a dump body 22 supported by the vehicle body frame 21, a traveling device 30 that travels while supporting the vehicle body frame 21, and traveling that controls the traveling device 30. And a control device 40.
  • the traveling device 30 has wheels 25 on which tires 24 are mounted.
  • the wheel 25 includes a front wheel 25F and a rear wheel 25R. Further, the traveling device 30 includes a drive device 31 that generates a driving force that rotates the rear wheels 25R, a brake device 32 that generates a braking force that stops the rotation of the wheels 25, and a steering device 33 that steers the front wheels 25F.
  • a drive device 31 that generates a driving force that rotates the rear wheels 25R
  • a brake device 32 that generates a braking force that stops the rotation of the wheels 25, and a steering device 33 that steers the front wheels 25F.
  • the rear wheels 25R are not steered.
  • the wheel 25 rotates around the rotation axis AX.
  • the direction parallel to the rotation axis AX of the rear wheel 25R is appropriately referred to as the vehicle width direction, and the traveling direction of the transport vehicle 2 is appropriately referred to as the front-rear direction.
  • the direction orthogonal to each other is appropriately referred to as a vertical direction.
  • One of the front and rear directions is the front and the other is the rear.
  • One of the vehicle width directions is on the right and the other is on the left.
  • One in the vertical direction is on the top and the other is on the bottom.
  • the front wheel 25F is arranged in front of the rear wheel 25R.
  • the front wheels 25F are arranged on both sides in the vehicle width direction.
  • the rear wheels 25R are arranged on both sides in the vehicle width direction.
  • the dump body 22 is arranged above the vehicle body frame 21.
  • the body frame 21 supports the traveling device 30.
  • the dump body 22 is a member on which a load is loaded.
  • the traveling device 30 has a rear axle 26 that transmits the driving force generated by the driving device 31 to the rear wheels 25R.
  • the rear axle 26 includes an axle that supports the rear wheel 25R.
  • the rear axle 26 transmits the driving force generated by the drive device 31 to the rear wheel 25R.
  • the rear wheel 25R rotates about the rotation axis AX by the driving force supplied from the rear axle 26. Thereby, the traveling device 30 travels.
  • the traveling control device 40 includes a computer system and is mounted on the transport vehicle 2.
  • the travel control device 40 can control the travel device 30 of the transport vehicle 2 based on the control command transmitted from the management device 10.
  • FIG. 3 is a functional block diagram showing an example of the management device 10 according to the embodiment.
  • the management device 10 wirelessly communicates with the travel control device 40 of the transport vehicle 2 via the communication system 9.
  • the management device 10 includes a three-dimensional data acquisition unit 11, a two-dimensional course generation unit 12, a three-dimensional curved surface generation unit 13, a three-dimensional course generation unit 14, a course determination unit 15, and a two-dimensional course correction unit 16. It has a traveling speed determination unit 17, an output unit 18, and a storage unit 19.
  • the 3D data acquisition unit 11 acquires 3D data of the work site.
  • the work site three-dimensional data indicates a three-dimensional shape of the work site topography.
  • the three-dimensional data acquisition unit 11 is connected to the three-dimensional measuring device 5.
  • the three-dimensional measuring device 5 can acquire three-dimensional data of a work site.
  • An example of the three-dimensional measurement device 5 is a stereo camera or a laser range finder mounted on an unmanned aerial vehicle (UAV) such as a drone.
  • UAV unmanned aerial vehicle
  • the unmanned aerial vehicle flies over the work site and measures the topography of the work site using the three-dimensional measuring device 5.
  • the measurement data of the three-dimensional measuring device 5 includes three-dimensional data of the work site.
  • the three-dimensional data of the work site measured by the three-dimensional measuring device 5 is output to the three-dimensional data acquisition unit 11.
  • the three-dimensional data acquisition unit 11 acquires three-dimensional data of the work site from the three-dimensional measuring device 5.
  • the three-dimensional measuring device 5 may be, for example, a stereo camera or a laser range finder installed at the work site.
  • the three-dimensional measuring device 5 may be a monocular camera, a laser sensor, or a radar sensor.
  • the three-dimensional measuring device 5 may be mounted on the transport vehicle 2.
  • the 3D data acquired by the 3D data acquisition unit 11 includes point cloud data indicating the 3D shape of the topography of the work site.
  • the point cloud data is an aggregate of a plurality of measurement points MP by the three-dimensional measuring device 5 on the topographical surface of the work site.
  • the position of each of the plurality of measurement points MP is defined by the X coordinate, the Y coordinate, and the Z coordinate.
  • the two-dimensional course generation unit 12 generates the two-dimensional course UC of the transport vehicle 2 on the two-dimensional plane set at the work site.
  • the two-dimensional course UC refers to the target travel route of the transport vehicle 2 set on the two-dimensional plane.
  • the two-dimensional plane includes the XY plane.
  • the two-dimensional course UC is two-dimensional data of the target travel route.
  • the two-dimensional course generation unit 12 is connected to the input device 6.
  • the input device 6 at least one of a computer keyboard, a mouse, and a touch panel is exemplified.
  • the input data generated by operating the input device 6 is output to the two-dimensional course generation unit 12.
  • By operating the input device 6, at least a part of the input data necessary for generating the two-dimensional course UC is input to the two-dimensional course generating unit 12.
  • the starting point and the arrival point of the two-dimensional course UC are input as input data.
  • FIG. 4 is a schematic diagram for explaining processing by the two-dimensional course generation unit 12 according to the embodiment.
  • a traveling area AR in which the transport vehicle 2 can travel and a prohibited area ER in which the transport vehicle 2 cannot travel are set.
  • the traveling area AR is an area in which the transportation vehicle 2 is permitted to travel.
  • the prohibited area ER is an area where the traveling of the transport vehicle 2 is prohibited.
  • the traveling area AR and the prohibited area ER are defined on a two-dimensional plane (XY plane) set at the work site.
  • the traveling area AR and the prohibited area ER may be defined in the three-dimensional space set at the work site.
  • the traveling area AR includes the traveling road HL and the work area PA.
  • FIG. 4 shows a traveling area AR of the traveling road HL.
  • the two-dimensional course UC is set in the traveling area AR.
  • the traveling area AR is defined by the outline FL of the traveling area AR.
  • the outer shape line FL is a division line that divides the traveling area AR and the prohibited area ER.
  • the traveling area AR is an area on one side of the outline FL, and the prohibited area ER is an area on the other side of the outline FL.
  • the outline FL at least one of the boundary line DL of the terrain of the work site and the survey line SL set based on the traveling locus of the survey vehicle 7 traveling along the boundary line DL is exemplified. That is, the outline FL may be defined by the boundary line DL of the terrain or the survey line SL.
  • the terrain boundary line DL is a characteristic part that can divide a work site, such as a bank or a cliff.
  • the boundary line DL may be a portion that divides the traveling area AR in which the transport vehicle 2 can travel and the prohibited area ER in which the transport vehicle 2 cannot travel.
  • the boundary line DL may be derived from the survey result of the work site.
  • the boundary line DL may be derived from terrain measurement data measured by a measuring device mounted on an unmanned aerial vehicle capable of flying over the work site.
  • CAD computer aided design
  • the boundary line DL may be derived from the design data of the work site.
  • the survey line SL is a virtual line that divides the traveling area AR and the prohibited area ER derived using the survey vehicle 7.
  • the survey vehicle 7 is a manned vehicle that travels based on the driving of a driver who is on board. Generally, the outer shape of the survey vehicle 7 is smaller than the outer shape of the transport vehicle 2.
  • the position of the traveling survey vehicle 7 is detected using the Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • the survey vehicle 7 is equipped with a position detector 7S that detects the position of the survey vehicle 7 in the global coordinate system.
  • the position detector 7S includes a GNSS antenna that receives a GNSS signal from a GNSS satellite, a GNSS calculator that calculates the absolute position of the survey vehicle 7 based on the GNSS signal received by the GNSS antenna, and a position in the global coordinate system. And a local coordinate converter for converting to a position in the local coordinate system.
  • the survey vehicle 7 travels along the boundary line DL of the terrain such as a bank or a cliff while detecting the absolute position of the survey vehicle 7 with the position detector 7S.
  • the survey line SL is set based on the traveling locus of the survey vehicle 7.
  • the contour line FL includes a set of contour points FP set at intervals.
  • the intervals of the outline points FP may be uniform or different.
  • the contour line FL is defined by the trajectory passing through the plurality of contour points FP.
  • the position of each of the outer shape points FP in the local coordinate system is derived.
  • the position data of the outline FL is defined in the local coordinate system.
  • the outer shape line FL includes the outer shape line FL1 existing on one side and the outer shape line FL2 existing on the other side in the width direction of the traveling path HL.
  • the outer shape line FL1 and the outer shape line FL2 are opposed to each other in the width direction of the traveling path HL.
  • the traveling path HL exists between the outline FL1 and the outline FL2.
  • the two-dimensional course generation unit 12 sets the reference line BL in the traveling area AR based on the outline FL of the traveling area AR.
  • the reference line BL refers to a virtual line set to generate the two-dimensional course UC.
  • the position data of the reference line BL is defined in the local coordinate system.
  • the outline data indicating the outline FL is input to the management device 10.
  • the contour line data indicating the contour line FL is generated based on the boundary line DL or the survey line SL at the work site.
  • the outline data is input to the management device 10 by operating the terminal device mounted on the survey vehicle 7.
  • the contour line data input to the management device 10 is stored in the storage unit 19.
  • the outline data may be stored in the storage unit 19 by the administrator operating the input device 6.
  • the two-dimensional course generation unit 12 acquires the contour line data from the storage unit 19.
  • the administrator operates the input device 6 the starting point and the arrival point of the two-dimensional course UC are input as input data.
  • the two-dimensional course generation unit 12 generates the reference line BL based on the acquired contour line data and input data.
  • the reference line BL is set approximately at the center in the width direction of the traveling road HL.
  • the reference line BL is set, for example, so that the pair of transport vehicles 2 can travel while passing each other on the traveling path HL.
  • the reference line BL may be set at a portion different from the central portion in the width direction of the traveling road HL.
  • the reference line BL may be set at an end portion in the width direction of the traveling road HL.
  • the reference line BL is also set in the work area PA in the traveling area AR.
  • the reference line BL is set so as to extend along the traveling road HL in the traveling road HL.
  • the reference line BL is set so as to connect the starting point and the ending point of the transport vehicle 2 traveling on the traveling path HL.
  • the starting point which is one end of the reference line BL, is defined, for example, at the exit of the work site PA that is the starting point.
  • the reference line BL includes an aggregate of a plurality of reference points BP set at intervals.
  • the intervals between the reference points BP may be uniform or different.
  • the reference line BL is defined by the trajectory passing through the plurality of reference points BP.
  • the position of each of the plurality of reference points BP in the local coordinate system is derived.
  • the two-dimensional course generation unit 12 generates the two-dimensional course UC of the transport vehicle 2 in the traveling area AR based on the reference line BL.
  • the two-dimensional course UC is generated in the two-dimensional plane.
  • the position data of the two-dimensional course UC is specified in the local coordinate system.
  • the position of the two-dimensional course UC is defined by the X coordinate and the Y coordinate of the two-dimensional plane.
  • the two-dimensional course UC includes an imaginary line indicating the target travel route of the transport vehicle 2 set on the two-dimensional plane.
  • the two-dimensional course UC is set substantially parallel to the reference line BL.
  • the two-dimensional course UC is set on both sides of the reference line BL.
  • the two-dimensional course UC includes a two-dimensional course UC1 set on one side of the reference line BL and a two-dimensional course UC2 set on the other side of the reference line BL.
  • the two-dimensional course UC1 is set between the reference line BL and the outer shape line FL1 in the width direction of the traveling path HL.
  • the two-dimensional course UC2 is set between the reference line BL and the outer shape line FL2 in the width direction of the traveling road HL.
  • the two-dimensional course UC includes a plurality of course points UP set at intervals. The intervals between the course points UP may be uniform or different.
  • the plurality of course points UP define the two-dimensional course UC of the transport vehicle 2.
  • the two-dimensional course UC is defined in the two-dimensional plane by the trajectory passing through the plurality of course points UP.
  • the position of the course point UP is defined by the X coordinate and the Y coordinate of the two-dimensional plane.
  • the two-dimensional course UC includes traveling condition data indicating traveling conditions of the transport vehicle 2 traveling in the traveling area AR of the work site.
  • the travel condition data includes at least target travel route data indicating the target travel route of the transport vehicle 2.
  • the traveling condition data includes target position data indicating a target position of the transportation vehicle 2, target traveling speed data indicating a target traveling speed Vr of the transportation vehicle 2, target acceleration data indicating a target acceleration of the transportation vehicle 2, and a target reduction of the transportation vehicle 2.
  • the target deceleration data indicating the speed, the target traveling direction data indicating the target traveling direction of the transport vehicle 2, the target stop position data indicating the target stop position of the transport vehicle 2, and the target departure position data indicating the target start position of the transport vehicle. Contains at least one.
  • the target position data of the transport vehicle 2 at the position where the course point UP is set, the target traveling speed data of the transport vehicle 2 at the position where the course point UP is set, and the course point UP are set.
  • the target traveling direction data of the transport vehicle 2 at the determined position is included.
  • the target traveling speed Vr of the transport vehicle 2 at the position where the course point UP is set is defined based on the target traveling speed data.
  • the target traveling direction of the transport vehicle 2 at the position where the course point UP is set is defined.
  • the traveling route, traveling speed, acceleration, deceleration, traveling direction, stop position of the transport vehicle 2 are defined.
  • the three-dimensional curved surface generation unit 13 generates a continuous three-dimensional curved surface from the three-dimensional data acquired by the three-dimensional data acquisition unit 11.
  • the three-dimensional curved surface is a three-dimensional curved surface showing the topography of the work site.
  • FIG. 5 is a schematic diagram for explaining processing by the three-dimensional curved surface generation unit 13 according to the embodiment.
  • the three-dimensional data acquired by the three-dimensional data acquisition unit 11 includes Z coordinates orthogonal to the two-dimensional plane.
  • the three-dimensional data acquired by the three-dimensional data acquisition unit 11 includes point cloud data indicating the three-dimensional shape of the topography of the work site.
  • the point cloud data is an aggregate of a plurality of measurement points MP by the three-dimensional measuring device 5 on the topographical surface of the work site.
  • the three-dimensional curved surface generation unit 13 interpolates point group data including a plurality of measurement points MP to generate a three-dimensional curved surface CS including a B-spline curved surface, for example.
  • the three-dimensional curved surface generation unit 13 may interpolate the point cloud data including the plurality of measurement points MP to generate the three-dimensional curved surface CS including the approximate curved surface.
  • the three-dimensional course generation unit 14 calculates the three-dimensional course of the transport vehicle 2 from the two-dimensional course UC generated by the two-dimensional course generation unit 12 based on the three-dimensional data of the work site acquired by the three-dimensional data acquisition unit 11. Generate DC.
  • the three-dimensional course generation unit 14 generates the three-dimensional course DC based on the three-dimensional curved surface CS generated by the three-dimensional curved surface generation unit 13.
  • the three-dimensional course DC means a target travel route of the transport vehicle 2 set on the surface of the terrain at the work site.
  • the three-dimensional course DC is three-dimensional data of the target travel route.
  • FIG. 6 is a schematic diagram for explaining processing by the three-dimensional course generation unit 14 according to the embodiment.
  • an XY plane and an XYZ space are defined at the work site.
  • the position on the XY plane is defined by the X coordinate and the Y coordinate.
  • the position in the XYZ space is defined by the X coordinate, the Y coordinate, and the Z coordinate orthogonal to the XY plane.
  • the two-dimensional plane on which the two-dimensional course UC is defined is the XY plane including the X axis and the Y axis.
  • the two-dimensional course UC is defined by the X coordinate and the Y coordinate of the XY plane.
  • the positions in the XY plane of the plurality of course points UP that define the two-dimensional course UC are defined by the X coordinate and the Y coordinate.
  • the three-dimensional data acquired by the three-dimensional data acquisition unit 11 and the three-dimensional curved surface CS generated by the three-dimensional curved surface generation unit 13 include Z coordinates orthogonal to the XY plane.
  • the measurement point MP and the three-dimensional curved surface CS that define the three-dimensional data are defined by the X coordinate, the Y coordinate, and the Z coordinate.
  • the three-dimensional course generation unit 14 generates the three-dimensional course DC by mapping the two-dimensional course UC on the three-dimensional curved surface CS.
  • the three-dimensional course generation unit 14 adds the Z coordinate of the three-dimensional data to the two-dimensional course UC to generate the three-dimensional course DC.
  • the three-dimensional course generation unit 14 adds the Z coordinate of the three-dimensional curved surface CS that matches the X coordinate and the Y coordinate of the two-dimensional course UC to the two-dimensional course UC.
  • the three-dimensional course generation unit 14 determines the three-dimensional curved surface.
  • the Z coordinate (Z1) at (X1, Y1) is derived.
  • the three-dimensional course generation unit 14 determines the coordinates of one course point DP1 among the plurality of course points DP defining the three-dimensional course DC to be (X1, Y1, Z1).
  • the three-dimensional course generation unit 14 sets the Z coordinate (Z2) at (X2, Y2) on the three-dimensional curved surface CS.
  • the coordinates of one course point DP2 are determined to be (X2, Y2, Z2).
  • the three-dimensional course generation unit 14 generates the three-dimensional course when the X coordinate and the Y coordinate of the i-th course point UPi are (Xi, Yi) among the N course points UP that define the two-dimensional course UC.
  • the unit 14 derives the Z coordinate (Zi) at (Xi, Yi) on the three-dimensional curved surface CS, and determines the coordinate of one course point DPi among the plurality of course points DP defining the three-dimensional course DC by (Xi, Yi, Zi).
  • the three-dimensional course generation unit 14 adds the Z-coordinate of the three-dimensional curved surface CS, which coincides with the X-coordinate and the Y-coordinate of the course point UP of the two-dimensional course UC, to the course point UP, and thereby the plurality of three-dimensional courses DC.
  • the respective X coordinate, Y coordinate, and Z coordinate of the course point DP can be determined.
  • the three-dimensional course generation unit 14 can generate a three-dimensional course DC by connecting a plurality of course points DP.
  • the three-dimensional course DC includes a three-dimensional curve defined in the XYZ rectangular coordinate system.
  • the course determination unit 15 evaluates the three-dimensional course DC generated by the three-dimensional course generation unit 14.
  • the course determination unit 15 evaluates the three-dimensional course DC based on the prescribed evaluation items.
  • the evaluation item of the three-dimensional course DC includes at least one of the curvature of the three-dimensional course DC, the radius of curvature, and the minimum turning radius. In the following description, in order to simplify the description, it is assumed that the evaluation item of the three-dimensional course DC is the curvature of the three-dimensional course DC.
  • the curvature includes the curvature of the three-dimensional course DC centered on each of the X axis, the Y axis, and the Z axis.
  • the course determination unit 15 compares a predetermined curvature threshold with the curvature of the three-dimensional course DC generated by the three-dimensional course generation unit 14. When the curvature of the three-dimensional course DC is equal to or larger than the curvature threshold, that is, when the curvature of the three-dimensional course DC is large, the course determination unit 15 determines that the three-dimensional course DC generated by the three-dimensional course generation unit 14 is inappropriate. Judge that there is.
  • the course determination unit 15 is appropriate for the three-dimensional course DC generated by the three-dimensional course generation unit 14. To determine.
  • FIG. 7 is a schematic diagram for explaining the processing by the course determination unit 15 according to the embodiment.
  • the course determination unit 15 can determine whether or not the three-dimensional course DC is appropriate by comparing the curvature of the three-dimensional course DC around the X axis or the Y axis with the curvature threshold.
  • the two-dimensional course correction unit 16 outputs a correction data for correcting the two-dimensional course UC generated by the two-dimensional course generation unit 12 based on the evaluation by the course determination unit 15. That is, when the course determination unit 15 determines that the three-dimensional course DC is inappropriate, the two-dimensional course correction unit 16 outputs correction data for correcting the two-dimensional course UC.
  • FIG. 8 is a schematic diagram for explaining the processing by the two-dimensional course correction unit 16 according to the embodiment.
  • the curvature of the three-dimensional course DC is small on the XY plane
  • the curvature of the three-dimensional course DC centering on the X axis is large due to, for example, a raised portion of the traveling road HL.
  • the two-dimensional course correction unit 16 corrects the two-dimensional course UC so that the curvature of the three-dimensional course DC becomes small.
  • the two-dimensional course correction unit 16 can reduce the curvature of the three-dimensional course DC around a portion having a large curvature of the three-dimensional course DC based on the three-dimensional data (three-dimensional curved surface CS) of the work site. To explore. That is, the two-dimensional course correction unit 16 searches for a flat portion around the raised portion. The two-dimensional course correction unit 16 calculates a difference in the Z-axis direction between adjacent course points DP, for example, and searches for a flat portion where the difference becomes small. Thereby, as shown in FIG. 8B, the two-dimensional course correction unit 16 can output correction data for correcting the two-dimensional course UC so as to bypass the raised portion.
  • the three-dimensional course generation unit 14 corrects the two-dimensional course UC based on the correction data output from the two-dimensional course correction unit 16 and regenerates the three-dimensional course DC.
  • the traveling speed determination unit 17 determines the target traveling speed Vr of the transport vehicle 2 based on the three-dimensional course DC generated by the three-dimensional course generation unit 14.
  • the traveling speed determination unit 17 is based on the three-dimensional course DC generated by the three-dimensional course generation unit 14 and the traveling performance of the transportation vehicle 2 stored in the storage unit 19, and is the target traveling speed Vr of the transportation vehicle 2.
  • the traveling performance of the transport vehicle 2 is known data that can be derived from design data or specification data of the transport vehicle 2, and is stored in the storage unit 19 in advance.
  • the traveling performance of the transport vehicle 2 may be derived by preliminary experiments or simulations and stored in the storage unit 19 in advance.
  • FIG. 9 is a schematic diagram for explaining the process performed by the traveling speed determination unit 17 according to the embodiment.
  • the traveling speed determination unit 17 derives the maximum value of the target traveling speed Vr at which the transportation vehicle 2 can travel for each of a plurality of performance items of the traveling performance of the transportation vehicle 2.
  • the horizontal axis represents the position of the three-dimensional course DC
  • the vertical axis represents the maximum value of the target traveling speed Vr at which the transport vehicle 2 can travel according to the position of the three-dimensional course DC.
  • the traveling speed determination unit 17 calculates the maximum value of the target traveling speed Vra at each position of the three-dimensional course DC based on the first performance item SPa.
  • the traveling speed determination unit 17 calculates the maximum value of the target traveling speed Vrb at each position of the three-dimensional course DC based on the second performance item SPb.
  • the traveling speed determination unit 17 calculates the maximum value of the target traveling speed Vrc at each position of the three-dimensional course DC based on the third performance item SPc.
  • At least one of the maximum output of the drive device 31, the braking capacity of the brake device 32, the slip limit of the tire 24, and the ground contact force of the tire 24 is exemplified as the performance item.
  • the traveling speed determination unit 17 determines, based on the maximum output of the drive device 31, the range in which the transport vehicle 2 does not deviate from the three-dimensional course DC and the transport vehicle 2.
  • the highest maximum output ra is calculated in the range where is not overturned.
  • the traveling speed determination unit 17 determines the highest braking force based on the braking ability of the brake device 32 within a range in which the transport vehicle 2 does not deviate from the three-dimensional course DC. Calculate the capability rb. For example, when the third performance item is the slip limit of the tire 24, the traveling speed determination unit 17 determines, based on the slip limit of the tire 24, the highest slip limit rc in the range in which the transport vehicle 2 does not deviate from the three-dimensional course DC. To calculate.
  • the traveling speed determination unit 17 determines the maximum output ra, the braking ability rb, and the slip limit rc to be low values in a portion having a large curvature in the three-dimensional course DC.
  • the maximum output ra, the braking ability rb, and the slip limit rc are determined to be high values in the portion of the three-dimensional course DC where the curvature is small.
  • the three-dimensional course DC is defined by a plurality of course points DP.
  • each of the course points DP includes not only the X coordinate, the Y coordinate, and the Z coordinate but also the slope data of the terrain.
  • the landform inclination data includes a pitch angle indicating the inclination angle of the transportation vehicle 2 in the front-rear direction and a roll angle indicating the inclination angle of the transportation vehicle 2 in the vehicle width direction.
  • the traveling speed determination unit 17 calculates the maximum output ra, the braking ability rb, and the slip limit rc based on the roll angle.
  • FIG. 10 is a schematic diagram for explaining processing by the traveling speed determination unit 17 according to the embodiment.
  • the transport vehicle 2 travels leftward on a travel path HL in which the roll angle is given to the transport vehicle 2 such that the left portion of the transport vehicle 2 is located below the right portion.
  • the transport vehicle 2 can stably travel on the traveling path HL.
  • the transport vehicle 2 when the transport vehicle 2 travels leftward on the travel path HL in which the roll angle is given to the transport vehicle 2 such that the right portion of the transport vehicle 2 is located below the left portion, the transport vehicle 2 If the target traveling speed Vr (Vra, Vrb, Vrc) is increased, the transport vehicle 2 cannot stably travel on the traveling path HL.
  • the traveling speed determination unit 17 determines the maximum value of the target traveling speed Vr (Vra, Vrb, Vrc) on the basis of the roll angle defined for each of the plurality of course points DP, so that the transport vehicle 2 can be set to three. It is possible to calculate the highest target traveling speed Vrb within a range that does not deviate from the dimension course DC.
  • the traveling speed determination unit 17 determines the lowest value of the target traveling speed Vra, the target traveling speed Vrb, and the target traveling speed Vrc at each of a plurality of positions of the three-dimensional course DC as the three-dimensional value.
  • the target traveling speed Vr at the position of the course DC is determined.
  • the output unit 18 outputs the three-dimensional course DC generated by the three-dimensional course generation unit 14 to the travel control device 40 of the transport vehicle 2.
  • the output unit 18 outputs the target traveling speed Vr at each position of the three-dimensional course DC determined by the traveling speed determination unit 17 to the traveling control device 40 in a state of being given to the course point DP of the three-dimensional course DC.
  • the course point DP output to the travel control device 40 includes respective data of the X coordinate, the Y coordinate, the Z coordinate, the inclination data (roll angle and pitch angle), and the target traveling speed Vr.
  • the three-dimensional course DC generated by the three-dimensional course generation unit 14 may be stored in the storage unit 19.
  • the output unit 18 may output the three-dimensional course DC stored in the storage unit 19 to the travel control device 40.
  • FIG. 11 is a functional block diagram showing an example of the travel control device 40 according to the embodiment.
  • the traveling control device 40 is connected to the traveling device 30.
  • the traveling device 30 includes a drive device 31, a brake device 32, and a steering device 33.
  • the travel control device 40 is also connected to the position sensor 34, the steering angle sensor 35, and the azimuth angle sensor 36.
  • the drive device 31, the brake device 32, the steering device 33, the position sensor 34, the steering angle sensor 35, and the azimuth angle sensor 36 are mounted on the transport vehicle 2.
  • the drive device 31 operates to drive the traveling device 30 of the transport vehicle 2.
  • the drive device 31 generates a driving force for driving the traveling device 30.
  • the drive device 31 generates a driving force for rotating the rear wheel 25R.
  • the drive device 31 includes an internal combustion engine such as a diesel engine.
  • the drive device 31 may include a generator that generates electric power by the operation of the internal combustion engine, and an electric motor that operates based on the electric power generated by the generator.
  • the brake device 32 operates to brake the traveling device 30. By the operation of the brake device 32, the traveling of the traveling device 30 is decelerated or stopped.
  • the steering device 33 operates to steer the traveling device 30.
  • the transport vehicle 2 is steered by the steering device 33.
  • the steering device 33 steers the front wheels 25F.
  • the position sensor 34 detects the absolute position of the transport vehicle 2.
  • the position sensor 34 includes a GNSS antenna that receives a GNSS signal from a GNSS satellite, a GNSS calculator that calculates the absolute position of the transport vehicle 2 based on the GNSS signal received by the GNSS antenna, and a position in the global coordinate system that is local.
  • a local coordinate converter for converting to a position in a coordinate system.
  • the steering angle sensor 35 detects the steering angle of the transport vehicle 2 by the steering device 33.
  • the azimuth sensor 36 detects the azimuth of the transport vehicle 2.
  • the steering angle sensor 35 includes, for example, a rotary encoder provided in the steering device 33.
  • the azimuth sensor 36 includes, for example, a gyro sensor provided on the vehicle body frame 21.
  • the traveling control device 40 has a three-dimensional course acquisition unit 41, a detection data acquisition unit 42, and an operation control unit 43.
  • the 3D course acquisition unit 41 acquires the 3D course DC generated by the management device 10.
  • the detection data acquisition unit 42 acquires position data indicating the position of the transport vehicle 2 from the position sensor 34.
  • the detection data acquisition unit 42 acquires steering angle data indicating the steering angle of the steering device 33 from the steering angle sensor 35.
  • the detection data acquisition unit 42 acquires the azimuth data indicating the azimuth of the transport vehicle 2 from the azimuth sensor 36.
  • the operation control unit 43 issues a control command for controlling at least one of the drive device 31, the brake device 32, and the steering device 33 of the transport vehicle 2 based on the three-dimensional course DC acquired by the three-dimensional course acquisition unit 41. Output.
  • the control command generated by the operation control unit 43 is output from the operation control unit 43 to the traveling device 30.
  • the control command output from the operation control unit 43 includes an accelerator command output to the drive device 31, a brake command output to the brake device 32, and a steering command output to the steering device 33.
  • the operation control unit 43 controls the drive device 31, the brake device 32, and the steering device 33 so that the transport vehicle 2 and the travel course CS travel in a matched state. Control.
  • FIG. 12 is a flowchart showing an example of the management method of the transport vehicle 2 according to the embodiment.
  • the three-dimensional measuring device 5 acquires three-dimensional data of the work site.
  • the three-dimensional measuring device 5 transmits the three-dimensional data to the management device 10.
  • the three-dimensional data acquisition unit 11 acquires three-dimensional data from the three-dimensional measuring device 5 (step S1).
  • the 3D data includes point cloud data having a plurality of measurement points MP.
  • the three-dimensional curved surface generation unit 13 generates a continuous three-dimensional curved surface CS from the three-dimensional data (step S2).
  • the two-dimensional course generation unit 12 generates a two-dimensional course UC on the XY plane set at the work site (step S3).
  • the two-dimensional course generation unit 12 acquires the contour line data indicating the contour line FL of the traveling area AR, acquires the position data of each of the entrance and the exit of the work place PA which is the starting point and the work place PA which is the arrival point, and the reference.
  • the start point data and the end point data of the line BL are calculated, and the reference line BL is generated based on the outline FL. Further, the two-dimensional course generation unit 12 generates the two-dimensional course UC based on the reference line BL.
  • the three-dimensional course generation unit 14 generates a three-dimensional course DC based on the three-dimensional curved surface CS generated in step S2 and the two-dimensional course UC generated in step S3 (step S4).
  • the three-dimensional course generation unit 14 adds the Z coordinate of the three-dimensional curved surface CS that matches the X coordinate and the Y coordinate of the course point UP that defines the two-dimensional course UC to the course point UP of the two-dimensional course UC, thereby obtaining 3
  • the course point DP of the dimension course DC is generated.
  • the three-dimensional course generation unit 14 generates a continuous three-dimensional course DC by connecting the generated plurality of course points DP.
  • the course determining unit 15 determines whether the three-dimensional course DC generated in step S5 is appropriate (step S5).
  • the course determination unit 15 compares a predetermined curvature threshold with the curvature of the three-dimensional course DC, and if the curvature of the three-dimensional course DC is equal to or larger than the curvature threshold, the three-dimensional course DC is inappropriate. If it is determined that the curvature of the three-dimensional course DC is less than the curvature threshold, it is determined that the three-dimensional course DC is appropriate.
  • step S5 When it is determined in step S5 that the three-dimensional course DC is appropriate (step S5: No), the traveling speed determination unit 17 determines the target traveling speed Vr of the transport vehicle 3 based on the three-dimensional course DC. (Step S6).
  • the traveling speed determination unit 17 determines the target traveling speed Vr of the transportation vehicle 2 based on the three-dimensional course DC and the traveling performance of the transportation vehicle 2 stored in the storage unit 19.
  • the three-dimensional course DC includes the curvature and the roll angle at the course point DP.
  • the output unit 18 outputs the target traveling speed Vr at each position of the three-dimensional course DC determined in step S6 to the traveling control device 40 in a state of being attached to the course point DP of the three-dimensional course DC (step S7). ..
  • the traveling control device 40 of the transport vehicle 2 travels on the work site according to the three-dimensional course DC transmitted from the management device 10.
  • step S5 When it is determined in step S5 that the three-dimensional course DC is inappropriate (step S5: Yes), the two-dimensional course correction unit 16 outputs the correction data for correcting the two-dimensional course UC to the two-dimensional course generation unit. It outputs to 12 (step S8).
  • the two-dimensional course correction unit 16 when it is determined that the curvature of at least part of the three-dimensional course DC is equal to or larger than the curvature threshold value, the two-dimensional course correction unit 16 reduces the curvature of the three-dimensional course DC. As described above, the correction data for correcting the two-dimensional course UC is output.
  • the two-dimensional course correction unit 16 searches for a terrain that can reduce the curvature of the three-dimensional course DC around a portion where the curvature of the three-dimensional course DC is large, based on the three-dimensional data (three-dimensional curved surface CS). ..
  • the two-dimensional course correction unit 16 outputs correction data for correcting the two-dimensional course UC so as to bypass the raised portion, for example. That is, since the two-dimensional course correction unit 16 can reduce the curvature by moving the control point, it is possible to output the correction data by using this characteristic.
  • the three-dimensional course generation unit 14 corrects the two-dimensional course UC based on the correction data output from the two-dimensional course correction unit 16 and regenerates the three-dimensional course DC (step S4).
  • the three-dimensional course DC is generated from the two-dimensional course UC based on the three-dimensional data of the work site.
  • the three-dimensional course DC in which the topography of the work site is taken into consideration is generated.
  • the transport vehicle 2 can be driven at an appropriate traveling speed V according to the three-dimensional course DC.
  • the transport vehicle 2 By causing the transport vehicle 2 to travel at an appropriate traveling speed V, it is possible to suppress a decrease in productivity at the work site.
  • the two-dimensional course UC and the three-dimensional course DC can be converted, for example, when it is desired to modify the three-dimensional course DC, the two-dimensional course UC can be modified or changed as usual. It can be done without time or cost.
  • the three-dimensional course DC suitable for the topography of the work site is generated.
  • the two-dimensional course UC is defined by the X coordinate and the Y coordinate.
  • the three-dimensional data includes the Z coordinate.
  • the three-dimensional course DC defined by the X coordinate, the Y coordinate, and the Z coordinate is generated.
  • Each of the plurality of course points DP of the three-dimensional course DC includes not only the X coordinate, the Y coordinate, and the Z coordinate but also inclination data including a roll angle and a pitch angle.
  • the transport vehicle 2 can travel at an appropriate traveling speed. As described with reference to FIG. 10, even if there is a roll angle, the traveling speed can be increased depending on the turning direction. Therefore, it is possible to suppress a decrease in productivity at the work site.
  • the target traveling speed of the transportation vehicle 2 can be set in consideration of the performance or posture of the transportation vehicle 2.
  • the three-dimensional curved surface generation unit 13 is configured to generate a three-dimensional curved surface CS from three-dimensional data as a three-dimensional model.
  • the three-dimensional curved surface generator 13 may generate a three-dimensional mesh model such as a triangular mesh model from the three-dimensional data as a three-dimensional model.
  • the three-dimensional curved surface generator 13 may generate the three-dimensional course CS based on the three-dimensional mesh model.
  • FIGS. 13 and 14 are schematic diagrams for explaining the processing by the three-dimensional course generation unit 14 according to the embodiment.
  • the three-dimensional curved surface CS is generated from the three-dimensional data
  • the three-dimensional course generating unit 14 is configured to generate the three-dimensional course DC based on the three-dimensional curved surface CS.
  • the three-dimensional curved surface CS may not be generated.
  • the three-dimensional course generation unit 14 determines the Z coordinate (Za) of the measurement point MP that matches the X coordinate and the Y coordinate of the course point UP of the two-dimensional course UC of the two-dimensional course UC.
  • the course point DP of the three-dimensional course DC can be generated.
  • the X coordinate and Y coordinate (Xa, Ya) of the course point UP of the two-dimensional course UC may not match the X coordinate and Y coordinate of the plurality of measurement points MP.
  • at least three measurement points MP existing around (Xa, Ya) in the XY plane are selected, and the average value (Zav) of the Z coordinates of these three measurement points MP is determined as the course of the two-dimensional course UC. It may be added to the point UP.
  • the two-dimensional course UC is defined by the course point UP.
  • the two-dimensional course UC may be defined by a function or a mathematical formula.
  • FIG. 15 is a block diagram showing an example of a computer system 1000 according to the embodiment.
  • the computer system 1000 includes a processor 1001 such as a CPU (Central Processing Unit), a main memory 1002 including a nonvolatile memory such as a ROM (Read Only Memory) and a volatile memory such as a RAM (Random Access Memory), It has a storage 1003 and an interface 1004 including an input/output circuit.
  • the functions of the management device 10 and the travel control device 40 described above are stored in the storage 1003 as programs.
  • the processor 1001 reads the program from the storage 1003, expands it in the main memory 1002, and executes the above-described processing according to the program.
  • the program may be distributed to the computer system 1000 via a network.
  • the computer system 1000 acquires the three-dimensional data of the work site according to the above-described embodiment, and based on the three-dimensional data, the three-dimensional course DC from the two-dimensional course UC of the transport vehicle 2 defined at the work site. The generation and the output of the three-dimensional course DC to the travel control device 40 of the transport vehicle 2 are executed.
  • the position data of the reference line BL is defined in the local coordinate system.
  • the position data of the reference line BL may be defined in the global coordinate system.
  • the traveling control device 40 may have some or all of the functions of the management device 10.
  • the traveling control device 40 includes the three-dimensional data acquisition unit 11, the two-dimensional course generation unit 12, the three-dimensional curved surface generation unit 13, the three-dimensional course generation unit 14, the course determination unit 15, the two-dimensional course correction unit 16, and the traveling. You may have a part or all function of the speed determination part 17.
  • the communication system 9 may be omitted.
  • 1... Management system 2... Transport vehicle, 3... Loader, 4... Crusher, 5... Three-dimensional measuring device, 6... Input device, 7... Survey vehicle, 7S... Position detector, 8... Control facility, 9 ... communication system, 10... management device, 11... three-dimensional data acquisition unit, 12... two-dimensional course generation unit, 13... three-dimensional curved surface generation unit, 14... three-dimensional course generation unit, 15... course determination unit, 16... 2 Dimensional course correction unit, 17... Running speed determination unit, 18... Output unit, 19... Storage unit, 21... Body frame, 22... Dump body, 24... Tire, 25... Wheel, 25F... Front wheel, 25R... Rear wheel, 26 ... rear axle, 30... traveling device, 31... drive device, 32... brake device, 33... steering device, 34...

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Transportation (AREA)
  • Optics & Photonics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

運搬車両の管理システムは、作業現場の3次元データを取得する3次元データ取得部と、作業現場に設定された2次元平面に運搬車両の2次元コースを生成する2次元コース生成部と、3次元データに基づいて、2次元コースから運搬車両の3次元コースを生成する3次元コース生成部と、を備える。

Description

運搬車両の管理システム及び運搬車両の管理方法
 本開示は、運搬車両の管理システム及び運搬車両の管理方法に関する。
 鉱山のような広域の作業現場においては、無人で走行する運搬車両が運搬作業に使用される。運搬車両が走行するコースが作業現場に設定される。運搬車両はコースに従って走行するように制御される。
特開2017-049172号公報
 作業現場の地形を考慮してコースを設定することができれば、運搬車両を適切な走行速度で走行させることができる。運搬車両を適切な走行速度で走行させることにより、作業現場の生産性の低下を抑制することができる。
 本発明の態様は、作業現場の生産性の低下を抑制することを目的とする。
 本発明の態様に従えば、作業現場に設定された2次元平面に運搬車両の2次元コースを生成する2次元コース生成部と、前記作業現場の3次元データを取得する3次元データ取得部と、前記3次元データに基づいて、前記2次元コースから前記運搬車両の3次元コースを生成する3次元コース生成部と、を備える運搬車両の管理システムが提供される。
 本発明の態様によれば、作業現場の生産性の低下を抑制することができる。
図1は、実施形態に係る運搬車両の管理システム及び運搬車両が稼働する作業現場の一例を模式的に示す図である。 図2は、実施形態に係る運搬車両を後方から見た斜視図である。 図3は、実施形態に係る管理装置の一例を示す機能ブロック図である。 図4は、実施形態に係る2次元コース生成部による処理を説明するための模式図である。 図5は、実施形態に係る3次元曲面生成部による処理を説明するための模式図である。 図6は、実施形態に係る3次元コース生成部による処理を説明するための模式図である。 図7は、実施形態に係るコース判定部による処理を説明するための模式図である。 図8は、実施形態に係る2次元コース補正部による処理を説明するための模式図である。 図9は、実施形態に係る走行速度決定部による処理を説明するための模式図である。 図10は、実施形態に係る走行速度決定部による処理を説明するための模式図である。 図11は、実施形態に係る走行制御装置の一例を示す機能ブロック図である。 図12は、実施形態に係る運搬車両の管理方法の一例を示すフローチャートである。 図13は、実施形態に係る3次元コース生成部による処理を説明するための模式図である。 図14は、実施形態に係る3次元コース生成部による処理を説明するための模式図である。 図15は、実施形態に係るコンピュータシステムの一例を示すブロック図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示はこれに限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[作業現場]
 図1は、実施形態に係る運搬車両2の管理システム1及び運搬車両2が稼働する作業現場の一例を模式的に示す図である。実施形態において、作業現場は、鉱山である。運搬車両2は、作業現場を走行して積荷を運搬可能なダンプトラックである。鉱山とは、鉱物を採掘する場所又は事業所をいう。運搬車両2に運搬される積荷として、鉱山において掘削された鉱石又は土砂が例示される。なお、作業現場は、採石場でもよい。
 運搬車両2は、鉱山の作業場PA及び作業場PAに通じる走行路HLの少なくとも一部を走行する。作業場PAは、積込場LPA及び排土場DPAの少なくとも一方を含む。走行路HLは、交差点ISを含む。
 積込場LPAとは、運搬車両2に積荷を積載する積込作業が実施されるエリアをいう。積込場LPAにおいて、油圧ショベルのような積込機3が稼働する。排土場DPAとは、運搬車両2から積荷が排出される排出作業が実施されるエリアをいう。排土場DPAには、例えば破砕機4が配置される。
 管理システム1は、管理装置10と、通信システム9とを備える。管理装置10は、コンピュータシステムを含み、鉱山の管制施設8に設置される。管理装置10は、運搬車両2を制御する制御指令を出力する。通信システム9は、管理装置10と運搬車両2との間で通信する。管理装置10と運搬車両2とは、通信システム9を介して無線通信する。
 運搬車両2は、運転者の操作によらずに無人で走行する無人ダンプトラックである。運搬車両2は、管理装置10から出力された制御指令に基づいて、走行路HL及び作業場PAに設定された3次元コースDCに従って走行する。運搬車両2は、3次元コースDCに従って、積込場LPAから排土場DPAに走行したり、排土場DPAから積込場LPAに走行したりする。3次元コースDCは、作業現場に設定された運搬車両2の目標走行経路を含む。
 運搬車両2の絶対位置が、全地球航法衛星システム(GNSS:Global Navigation Satellite System)を利用して検出される。全地球航法衛星システムは、全地球測位システム(GPS:Global Positioning System)を含む。全地球航法衛星システムは、緯度、経度、及び高度の座標データで規定される運搬車両2の絶対位置を検出する。全地球航法衛星システムにより、グローバル座標系において規定される運搬車両2の絶対位置が検出される。グローバル座標系とは、地球に固定された座標系をいう。
 作業現場にローカル座標系が設定される。ローカル座標系とは、作業現場に設定された原点及び座標軸を基準とする座標系をいう。実施形態において、ローカル座標系は、XYZ直交座標系によって規定される。ローカル座標系の座標軸は、X軸と、X軸に直交するY軸と、X軸及びY軸の両方に直交するZ軸とを含む。作業現場に設定される2次元平面は、X軸及びY軸を含むXY平面である。作業現場に設定される3次元空間は、X軸、Y軸、及びZ軸を含むXYZ空間である。Y軸は、XY平面においてX軸に直交する。Z軸は、XY平面に直交する。XY平面における位置は、X座標及びY座標によって規定される。XYZ空間における位置は、X座標、Y座標、及びZ座標によって規定される。グローバル座標系における位置とローカル座標系における位置とは変換パラメータを用いて変換可能である。
[運搬車両]
 図2は、実施形態に係る運搬車両2を後方から見た斜視図である。図2に示すように、運搬車両2は、車体フレーム21と、車体フレーム21に支持されるダンプボディ22と、車体フレーム21を支持して走行する走行装置30と、走行装置30を制御する走行制御装置40とを備える。
 走行装置30は、タイヤ24が装着される車輪25を有する。車輪25は、前輪25Fと後輪25Rとを含む。また、走行装置30は、後輪25Rを回転させる駆動力を発生する駆動装置31と、車輪25の回転を停止させる制動力を発生するブレーキ装置32と、前輪25Fを操舵する操舵装置33とを有する。後輪25Rは、操舵されない。車輪25は、回転軸AXを中心に回転する。
 以下の説明においては、後輪25Rの回転軸AXに平行な方向を適宜、車幅方向と称し、運搬車両2の進行方向を適宜、前後方向、と称し、車幅方向及び前後方向のそれぞれに直交する方向を適宜、上下方向、と称する。
 前後方向の一方が前であり他方が後である。車幅方向の一方が右であり他方が左である。上下方向の一方が上であり他方が下である。前輪25Fは、後輪25Rよりも前に配置される。前輪25Fは、車幅方向両側に配置される。後輪25Rは、車幅方向両側に配置される。ダンプボディ22は、車体フレーム21よりも上に配置される。
 車体フレーム21は、走行装置30を支持する。ダンプボディ22は、積荷が積まれる部材である。
 走行装置30は、駆動装置31で発生した駆動力を後輪25Rに伝達するリアアクスル26を有する。リアアクスル26は、後輪25Rを支持する車軸を含む。リアアクスル26は、駆動装置31で発生した駆動力を後輪25Rに伝達する。後輪25Rは、リアアクスル26から供給された駆動力により回転軸AXを中心に回転する。これにより、走行装置30は走行する。
 走行制御装置40は、コンピュータシステムを含み、運搬車両2に搭載される。走行制御装置40は、管理装置10から送信された制御指令に基づいて、運搬車両2の走行装置30を制御することができる。
[管理装置]
 図3は、実施形態に係る管理装置10の一例を示す機能ブロック図である。管理装置10は、運搬車両2の走行制御装置40と通信システム9を介して無線通信する。
 管理装置10は、3次元データ取得部11と、2次元コース生成部12と、3次元曲面生成部13と、3次元コース生成部14と、コース判定部15と、2次元コース補正部16と、走行速度決定部17と、出力部18と、記憶部19とを有する。
 3次元データ取得部11は、作業現場の3次元データを取得する。作業現場の3次元データは、作業現場の地形の3次元形状を示す。3次元データ取得部11は、3次元計測装置5に接続される。3次元計測装置5は、作業現場の3次元データを取得することができる。3次元計測装置5として、ドローンのような無人航空機(UAV:Unmanned Aerial Vehicle)に搭載されたステレオカメラ又はレーザレンジファインダが例示される。無人航空機は、作業現場の上空を飛行して、3次元計測装置5を用いて、作業現場の地形を計測する。3次元計測装置5の計測データは、作業現場の3次元データを含む。3次元計測装置5により計測された作業現場の3次元データは、3次元データ取得部11に出力される。3次元データ取得部11は、3次元計測装置5から作業現場の3次元データを取得する。
 なお、3次元計測装置5は、例えば作業現場に設置されたステレオカメラ又はレーザレンジファインダでもよい。3次元計測装置5は、単眼カメラやレーザセンサ又はレーダセンサでもよい。3次元計測装置5は、運搬車両2に搭載されてもよい。
 3次元データ取得部11により取得される3次元データは、作業現場の地形の3次元形状を示す点群データを含む。点群データは、作業現場の地形の表面における3次元計測装置5による複数の計測点MPの集合体である。複数の計測点MPのそれぞれの位置は、X座標、Y座標、及びZ座標によって規定される。
 2次元コース生成部12は、作業現場に設定された2次元平面に運搬車両2の2次元コースUCを生成する。2次元コースUCとは、2次元平面に設定された運搬車両2の目標走行経路をいう。2次元平面は、XY平面を含む。2次元コースUCは、目標走行経路の2次元データである。
 2次元コース生成部12は、入力装置6に接続される。入力装置6として、コンピュータ用のキーボード、マウス、及びタッチパネルの少なくとも一つが例示される。入力装置6が操作されることにより生成された入力データは、2次元コース生成部12に出力される。入力装置6が操作されることにより、2次元コースUCの生成に必要な入力データの少なくとも一部が2次元コース生成部12に入力される。本実施形態においては、入力装置6が操作されることにより、入力データとして、例えば2次元コースUCの出発点及び到着点が入力される。
 図4は、実施形態に係る2次元コース生成部12による処理を説明するための模式図である。作業現場において、運搬車両2が走行可能な走行エリアAR及び運搬車両2が走行不可能な禁止エリアERが設定される。走行エリアARは、運搬車両2の走行が許可されたエリアである。禁止エリアERは、運搬車両2の走行が禁止されたエリアである。走行エリアAR及び禁止エリアERは、作業現場に設定された2次元平面(XY平面)に規定される。なお、走行エリアAR及び禁止エリアERは、作業現場に設定された3次元空間に規定されてもよい。
 走行エリアARは、走行路HL及び作業場PAを含む。図4は、走行路HLの走行エリアARを示す。2次元コースUCは、走行エリアARに設定される。
 走行エリアARは、走行エリアARの外形線FLによって規定される。外形線FLは、走行エリアARと禁止エリアERとを区画する区画線である。走行エリアARは、外形線FLよりも一方側のエリアであり、禁止エリアERは、外形線FLよりも他方側のエリアである。
 外形線FLとして、作業現場の地形の境界線DL、及び境界線DLに沿って走行したサーベイ車両7の走行軌跡に基づいて設定されるサーベイラインSLの少なくとも一つが例示される。すなわち、外形線FLは、地形の境界線DLによって規定されてもよいし、サーベイラインSLによって規定されてもよい。
 地形の境界線DLとは、例えば土手又は崖のような作業現場を区画できる特徴部分をいう。なお、境界線DLは、運搬車両2が走行可能な走行エリアARと運搬車両2が走行不可能な禁止エリアERとを区画する部分であればよい。境界線DLは、作業現場の測量結果から導出されてもよい。境界線DLは、作業現場の上空を飛行可能な無人航空機に搭載された計測装置よって計測される地形の計測データから導出されてもよい。作業現場がコンピュータ支援設計(CAD:Computer Aided Design)等の設計手法を用いて設計されている場合、境界線DLは、作業現場の設計データから導出されてもよい。
 サーベイラインSLとは、サーベイ車両7を用いて導出された走行エリアARと禁止エリアERとを区画する仮想線をいう。サーベイ車両7は、搭乗した運転者の運転に基づいて走行する有人車両である。一般に、サーベイ車両7の外形は、運搬車両2の外形よりも小さい。走行するサーベイ車両7の位置が、全地球航法衛星システム(GNSS)を利用して検出される。サーベイ車両7には、グローバル座標系におけるサーベイ車両7の位置を検出する位置検出器7Sが搭載されている。位置検出器7Sは、GNSS衛星からのGNSS信号を受信するGNSSアンテナと、GNSSアンテナで受信されたGNSS信号に基づいてサーベイ車両7の絶対位置を算出するGNSS演算器と、グローバル座標系における位置をローカル座標系における位置に変換するローカル座標変換器とを含む。サーベイ車両7は、位置検出器7Sでサーベイ車両7の絶対位置を検出しながら、土手又は崖のような地形の境界線DLに沿って走行する。サーベイ車両7の走行軌跡に基づいてサーベイラインSLが設定される。
 外形線FLは、間隔をあけて設定される複数の外形点FPの集合体を含む。外形点FPの間隔は均一でもよいし異なってもよい。複数の外形点FPを通過する軌跡によって、外形線FLが規定される。ローカル座標系における複数の外形点FPそれぞれの位置が導出される。外形線FLの位置データは、ローカル座標系において規定される。
 走行路HLにおいて、外形線FLは、走行路HLの幅方向において一方側に存在する外形線FL1と、他方側に存在する外形線FL2とを含む。走行路HLの幅方向において外形線FL1と外形線FL2とは対向する。走行路HLは、外形線FL1と外形線FL2との間に存在する。
 2次元コース生成部12は、走行エリアARの外形線FLに基づいて、走行エリアARに基準線BLを設定する。基準線BLとは、2次元コースUCの生成のために設定される仮想線をいう。基準線BLの位置データは、ローカル座標系において規定される。
 外形線FLを示す外形線データは、管理装置10に入力される。上述のように、外形線FLを示す外形線データは、作業現場の境界線DL又はサーベイラインSLに基づいて生成される。外形線データがサーベイラインSLに基づいて生成される場合、サーベイ車両7に搭載されている端末装置が操作れることにより、外形データが管理装置10に入力される。管理装置10に入力された外形線データは、記憶部19に記憶される。なお、外形線データは、管理者が入力装置6を操作することにより記憶部19に記憶されてもよい。2次元コース生成部12は、記憶部19から外形線データを取得する。また、管理者により入力装置6が操作されることにより、入力データとして、2次元コースUCの出発点及び到着点が入力される。2次元コース生成部12は、取得した外形線データ及び入力データに基づいて基準線BLを生成する。
 基準線BLは、走行路HLの幅方向において概ね中央部に設定される。基準線BLは、例えば走行路HLにおいて一対の運搬車両2がすれ違いながら走行できるように設定される。なお、基準線BLは、走行路HLの幅方向において中央部とは異なる部分に設定されてもよい。例えば、基準線BLは、走行路HLの幅方向において端部に設定されてもよい。また、走行エリアARの作業場PAにおいても、基準線BLが設定される。
 基準線BLは、走行路HLにおいて、走行路HLに沿って延在するように設定される。基準線BLは、走行路HLを走行する運搬車両2の始点と終点とを結ぶように設定される。基準線BLの一端部である始点は、例えば出発点となる作業場PAの出口に規定される。基準線BLの他端部である終点は、到着点となる作業場PAの入口に規定される。なお、基準線BLの一端部は、運搬車両2が停車している位置でもよい。
 基準線BLは、間隔をあけて設定される複数の基準点BPの集合体を含む。基準点BPの間隔は均一でもよいし異なってもよい。複数の基準点BPを通過する軌跡によって、基準線BLが規定される。ローカル座標系における複数の基準点BPそれぞれの位置が導出される。
 2次元コース生成部12は、基準線BLに基づいて、走行エリアARに運搬車両2の2次元コースUCを生成する。2次元コースUCは、2次元平面に生成される。2次元コースUCの位置データは、ローカル座標系において規定される。2次元コースUCの位置は、2次元平面のX座標及びY座標によって規定される。2次元コースUCは、2次元平面に設定された運搬車両2の目標走行経路を示す仮想線を含む。2次元コースUCは、基準線BLと概ね平行に設定される。
 2次元コースUCは、基準線BLの両側に設定される。2次元コースUCは、基準線BLの一方側に設定される2次元コースUC1と、基準線BLの他方側に設定される2次元コースUC2とを含む。2次元コースUC1は、走行路HLの幅方向において、基準線BLと外形線FL1との間に設定される。2次元コースUC2は、走行路HLの幅方向において、基準線BLと外形線FL2との間に設定される。
 2次元コースUCは、間隔をあけて設定される複数のコース点UPを含む。コース点UPの間隔は均一でもよいし異なってもよい。複数のコース点UPは、運搬車両2の2次元コースUCを規定する。複数のコース点UPを通過する軌跡によって、2次元コースUCが2次元平面に規定される。コース点UPの位置は、2次元平面のX座標及びY座標によって規定される。
 2次元コースUCは、作業現場の走行エリアARを走行する運搬車両2の走行条件を示す走行条件データを含む。走行条件データは、運搬車両2の目標走行経路を示す目標走行経路データを少なくとも含む。走行条件データは、運搬車両2の目標位置を示す目標位置データ、運搬車両2の目標走行速度Vrを示す目標走行速度データ、運搬車両2の目標加速度を示す目標加速度データ、運搬車両2の目標減速度を示す目標減速度データ、運搬車両2の目標走行方向を示す目標走行方向データ、運搬車両2の目標停車位置を示す目標停車位置データ、及び運搬車両の目標発車位置を示す目標発車位置データの少なくとも一つを含む。
 複数のコース点UPのそれぞれは、コース点UPが設定された位置における運搬車両2の目標位置データ、コース点UPが設定された位置における運搬車両2の目標走行速度データ、及びコース点UPが設定された位置における運搬車両2の目標走行方向データを含む。目標走行速度データに基づいて、そのコース点UPが設定された位置における運搬車両2の目標走行速度Vrが規定される。目標走行方向データに基づいて、そのコース点UPが設定された位置における運搬車両2の目標走行方向が規定される。複数のコース点UPのそれぞれに規定された目標位置データ、目標走行速度データ、及び目標走行方向データに基づいて、運搬車両2の走行経路、走行速度、加速度、減速度、走行方向、停車位置、及び発車位置の少なくとも一つを含む走行条件が規定される。
 3次元曲面生成部13は、3次元データ取得部11により取得された3次元データから、連続する3次元曲面を生成する。3次元曲面とは、作業現場の地形を示す3次元曲面をいう。
 図5は、実施形態に係る3次元曲面生成部13による処理を説明するための模式図である。3次元データ取得部11により取得される3次元データは、2次元平面に直交するZ座標を含む。3次元データ取得部11により取得される3次元データは、作業現場の地形の3次元形状を示す点群データを含む。点群データは、作業現場の地形の表面における3次元計測装置5による複数の計測点MPの集合体である。3次元曲面生成部13は、例えば複数の計測点MPからなる点群データを補間して、例えばB-スプライン曲面からなる3次元曲面CSを生成する。なお、3次元曲面生成部13は、複数の計測点MPからなる点群データを補間して、近似曲面からなる3次元曲面CSを生成してもよい。
 3次元コース生成部14は、3次元データ取得部11により取得された作業現場の3次元データに基づいて、2次元コース生成部12により生成された2次元コースUCから運搬車両2の3次元コースDCを生成する。3次元コース生成部14は、3次元曲面生成部13により生成された3次元曲面CSに基づいて、3次元コースDCを生成する。3次元コースDCとは、作業現場の地形の表面に設定された運搬車両2の目標走行経路をいう。3次元コースDCは、目標走行経路の3次元データである。
 図6は、実施形態に係る3次元コース生成部14による処理を説明するための模式図である。図6に示すように、作業現場にXY平面及びXYZ空間が規定される。XY平面における位置は、X座標及びY座標によって規定される。XYZ空間における位置は、X座標、Y座標、及びXY平面に直交するZ座標によって規定される。
 2次元コースUCが規定される2次元平面は、X軸とY軸とを含むXY平面である。2次元コースUCは、XY平面のX座標及びY座標によって規定される。2次元コースUCを規定する複数のコース点UPのそれぞれのXY平面内における位置は、X座標及びY座標によって規定される。
 3次元データ取得部11により取得された3次元データ及び3次元曲面生成部13により生成された3次元曲面CSは、XY平面に直交するZ座標を含む。3次元データを規定する計測点MP及び3次元曲面CSは、X座標、Y座標、及びZ座標によって規定される。
 3次元コース生成部14は、2次元コースUCを3次元曲面CSに写像することにより、3次元コースDCを生成する。3次元コース生成部14は、3次元データのZ座標を2次元コースUCに付加して、3次元コースDCを生成する。実施形態において、3次元コース生成部14は、2次元コースUCのX座標及びY座標に一致する3次元曲面CSのZ座標を2次元コースUCに付加する。
 例えば、2次元コースUCを規定する複数のコース点UPのうち、第1のコース点UP1のX座標及びY座標が(X1,Y1)である場合、3次元コース生成部14は、3次元曲面CSにおいて(X1,Y1)におけるZ座標(Z1)を導出する。3次元コース生成部14は、3次元コースDCを規定する複数のコース点DPのうち、1つのコース点DP1の座標を(X1,Y1,Z1)に決定する。同様に、第2のコース点UP2のX座標及びY座標が(X2,Y2)である場合、3次元コース生成部14は、3次元曲面CSにおいて(X2,Y2)におけるZ座標(Z2)を導出し、3次元コースDCを規定する複数のコース点DPのうち、1つのコース点DP2の座標を(X2,Y2,Z2)に決定する。3次元コース生成部14は、2次元コースUCを規定するN個のコース点UPのうち、第iのコース点UPiのX座標及びY座標が(Xi,Yi)である場合、3次元コース生成部14は、3次元曲面CSにおいて(Xi,Yi)におけるZ座標(Zi)を導出し、3次元コースDCを規定する複数のコース点DPのうち、1つのコース点DPiの座標を(Xi,Yi,Zi)に決定する。
 3次元コース生成部14は、2次元コースUCのコース点UPのX座標及びY座標に一致する3次元曲面CSのZ座標を、コース点UPに付加することにより、3次元コースDCの複数のコース点DPのそれぞれのX座標、Y座標、及びZ座標を決定することができる。3次元コース生成部14は、複数のコース点DPを結ぶことにより、3次元コースDCを生成することができる。3次元コースDCは、XYZ直交座標系において規定される3次元曲線を含む。
 コース判定部15は、3次元コース生成部14により生成された3次元コースDCを評価する。コース判定部15は、規定の評価項目に基づいて、3次元コースDCを評価する。3次元コースDCの評価項目は、3次元コースDCの曲率、曲率半径、及び最小旋回半径の少なくとも一つを含む。以下の説明においては、説明を簡単にするため、3次元コースDCの評価項目が、3次元コースDCの曲率であることとする。
 曲率は、X軸、Y軸、及びZ軸のそれぞれを中心とする3次元コースDCの曲率を含む。コース判定部15は、予め定められている曲率閾値と、3次元コース生成部14により生成された3次元コースDCの曲率とを比較する。3次元コースDCの曲率が曲率閾値以上である場合、すなわち、3次元コースDCの曲率が大きい場合、コース判定部15は、3次元コース生成部14により生成された3次元コースDCは不適切であると判定する。3次元コースDCの曲率が曲率閾値未満である場合、すなわち、3次元コースDCの曲率が小さい場合、コース判定部15は、3次元コース生成部14により生成された3次元コースDCは適切であると判定する。
 図7は、実施形態に係るコース判定部15による処理を説明するための模式図である。図7(A)に示すように、2次元コースUCの曲率が緩やかでも、図7(B)に示すように、作業現場に隆起部位が存在したり、図7(C)に示すように、窪み部位が存在したりする場合、X軸を中心とする3次元コースDCの曲率が大きくなるってしまう可能性がある。コース判定部15は、X軸又はY軸を中心とする3次元コースDCの曲率と曲率閾値とを比較することにより、3次元コースDCが適切であるか否かを判定することができる。
 2次元コース補正部16は、コース判定部15による評価に基づいて、2次元コース生成部12により生成された2次元コースUCを補正するための補正デエータを出力する。すなわち、3次元コースDCが不適切であるとコース判定部15に判定された場合、2次元コース補正部16は、2次元コースUCを補正するための補正データを出力する。
 図8は、実施形態に係る2次元コース補正部16による処理を説明するための模式図である。図8(A)に示すように、XY平面においては3次元コースDCの曲率が小さいものの、例えば走行路HLの隆起部位に起因して、X軸を中心とする3次元コースDCの曲率が大きい場合、2次元コース補正部16は、3次元コースDCの曲率が小さくなるように、2次元コースUCを補正する。2次元コース補正部16は、作業現場の3次元データ(3次元曲面CS)に基づいて、3次元コースDCの曲率が大きい部位の周囲において、3次元コースDCの曲率を小さくすることができる地形を探索する。すなわち、2次元コース補正部16は、隆起部位の周囲において、平坦部位が存在するか否かを探索する。2次元コース補正部16は、例えば隣り合うコース点DPのZ軸方向の差分を算出し、差分が小さくなる平坦部位を探索する。これにより、図8(B)に示すように、2次元コース補正部16は、隆起部位を迂回するように、2次元コースUCを補正するための補正データを出力することができる。
 3次元コース生成部14は、2次元コース補正部16から出力された補正データに基づいて、2次元コースUCを補正して、3次元コースDCを再生成する。
 走行速度決定部17は、3次元コース生成部14により生成された3次元コースDCに基づいて、運搬車両2の目標走行速度Vrを決定する。走行速度決定部17は、3次元コース生成部14により生成された3次元コースDCと、記憶部19に記憶されている運搬車両2の走行性能とに基づいて、運搬車両2の目標走行速度Vrを決定する。運搬車両2の走行性能は、運搬車両2の設計データ又は諸元データから導出可能な既知データであり、記憶部19に予め記憶されている。なお、運搬車両2の走行性能が予備実験又はシミュレーションにより導出され、記憶部19に予め記憶されてもよい。
 図9は、実施形態に係る走行速度決定部17による処理を説明するための模式図である。走行速度決定部17は、運搬車両2の走行性能の複数の性能項目のそれぞれについて、運搬車両2が走行可能な目標走行速度Vrの最高値を導出する。図9に示すグラフにおいて、横軸は、3次元コースDCの位置を示し、縦軸は、3次元コースDCの位置に応じて運搬車両2が走行可能な目標走行速度Vrの最高値を示す。
 図9に示すように、走行速度決定部17は、第1の性能項目SPaに基づいて、3次元コースDCのそれぞれの位置における目標走行速度Vraの最高値を算出する。走行速度決定部17は、第2の性能項目SPbに基づいて、3次元コースDCのそれぞれの位置における目標走行速度Vrbの最高値を算出する。走行速度決定部17は、第3の性能項目SPcに基づいて、3次元コースDCのそれぞれの位置における目標走行速度Vrcの最高値を算出する。
 性能項目として、駆動装置31の最高出力、ブレーキ装置32の制動能力、タイヤ24のスリップ限界、及びタイヤ24の接地力の少なくとも一つが例示される。例えば第1の性能項目が駆動装置31の最高出力である場合、走行速度決定部17は、駆動装置31の最高出力に基づいて、運搬車両2が3次元コースDCを逸脱しない範囲及び運搬車両2が横転しない範囲で最も高い最高出力raを算出する。例えば第2の性能項目がブレーキ装置32の制動能力である場合、走行速度決定部17は、ブレーキ装置32の制動能力に基づいて、運搬車両2が3次元コースDCを逸脱しない範囲で最も高い制動能力rbを算出する。例えば第3の性能項目がタイヤ24のスリップ限界である場合、走行速度決定部17は、タイヤ24のスリップ限界に基づいて、運搬車両2が3次元コースDCを逸脱しない範囲で最も高いスリップ限界rcを算出する。
 走行速度決定部17は、3次元コースDCのうち曲率が大きい部位においては、最高出力ra、制動能力rb、及びスリップ限界rcを低い値に決定する。3次元コースDCのうち曲率が小さい部位においては、最高出力ra、制動能力rb、及びスリップ限界rcを高い値に決定する。
 3次元コースDCは、複数のコース点DPによって規定される。実施形態において、コース点DPのそれぞれは、X座標、Y座標、及びZ座標のみならず、地形の傾斜データを含む。地形の傾斜データは、運搬車両2の前後方向の傾斜角度を示すピッチ角、及び運搬車両2の車幅方向の傾斜角度を示すロール角を含む。走行速度決定部17は、ロール角に基づいて、最高出力ra、制動能力rb、及びスリップ限界rcを算出する。
 図10は、実施形態に係る走行速度決定部17による処理を説明するための模式図である。図10に示すように、例えば運搬車両2の左部が右部よりも下方に位置するように運搬車両2にロール角が付与される走行路HLを運搬車両2が左旋回するように走行する場合、運搬車両2の最高出力ra、制動能力rb、及びスリップ限界rcを高めても、運搬車両2は、走行路HLを安定して走行することができる。一方、例えば運搬車両2の右部が左部よりも下方に位置するように運搬車両2にロール角が付与される走行路HLを運搬車両2が左旋回するように走行する場合、運搬車両2の目標走行速度Vr(Vra,Vrb,Vrc)を高めてしまうと、運搬車両2は、走行路HLを安定して走行することができない。走行速度決定部17は、複数のコース点DPのそれぞれに規定されているロール角に基づいて、目標走行速度Vr(Vra,Vrb,Vrc)の最高値を決定することにより、運搬車両2が3次元コースDCを逸脱しない範囲で最も高い目標走行速度Vrbを算出することができる。
 図9に示すように、走行速度決定部17は、3次元コースDCの複数の位置のそれぞれにおいて、目標走行速度Vra、目標走行速度Vrb、及び目標走行速度Vrcのうち最低値を、その3次元コースDCの位置における目標走行速度Vrに決定する。
 出力部18は、3次元コース生成部14により生成された3次元コースDCを運搬車両2の走行制御装置40に出力する。出力部18は、走行速度決定部17により決定された3次元コースDCの各位置における目標走行速度Vrを、3次元コースDCのコース点DPに付与した状態で、走行制御装置40に出力する。走行制御装置40に出力されるコース点DPは、X座標、Y座標、Z座標、傾斜データ(ロール角及びピッチ角)、及び目標走行速度Vrのそれぞれのデータを含む。
 なお、3次元コース生成部14により生成された3次元コースDCが記憶部19に記憶されてもよい。出力部18は、記憶部19に記憶されている3次元コースDCを走行制御装置40に出力してもよい。
[走行制御装置]
 図11は、実施形態に係る走行制御装置40の一例を示す機能ブロック図である。走行制御装置40は、走行装置30と接続される。走行装置30は、駆動装置31、ブレーキ装置32、及び操舵装置33を含む。また、走行制御装置40は、位置センサ34、操舵角センサ35、及び方位角センサ36と接続される。駆動装置31、ブレーキ装置32、操舵装置33、位置センサ34、操舵角センサ35、及び方位角センサ36は、運搬車両2に搭載される。
 駆動装置31は、運搬車両2の走行装置30を駆動するために作動する。駆動装置31は、走行装置30を駆動させるための駆動力を発生する。駆動装置31は、後輪25Rを回転させるための駆動力を発生する。駆動装置31は、例えばディーゼルエンジンのような内燃機関を含む。なお、駆動装置31が、内燃機関の作動により電力を発生する発電機と、発電機で発生した電力に基づいて作動する電動モータとを含んでもよい。
 ブレーキ装置32は、走行装置30を制動するために作動する。ブレーキ装置32の作動により、走行装置30の走行が減速したり停止したりする。
 操舵装置33は、走行装置30を操舵するために作動する。運搬車両2は、操舵装置33により操舵される。操舵装置33は、前輪25Fを操舵する。
 位置センサ34は、運搬車両2の絶対位置を検出する。位置センサ34は、GNSS衛星からのGNSS信号を受信するGNSSアンテナと、GNSSアンテナで受信されたGNSS信号に基づいて運搬車両2の絶対位置を算出するGNSS演算器と、グローバル座標系における位置をローカル座標系における位置に変換するローカル座標変換器とを含む。
 操舵角センサ35は、操舵装置33による運搬車両2の操舵角を検出する。方位角センサ36は、運搬車両2の方位角を検出する。操舵角センサ35は、例えば操舵装置33に設けられたロータリーエンコーダを含む。方位角センサ36は、例えば車体フレーム21に設けられたジャイロセンサを含む。
 走行制御装置40は、3次元コース取得部41と、検出データ取得部42と、運転制御部43とを有する。
 3次元コース取得部41は、管理装置10において生成された3次元コースDCを取得する。
 検出データ取得部42は、運搬車両2の位置を示す位置データを位置センサ34から取得する。検出データ取得部42は、操舵装置33の操舵角を示す操舵角データを操舵角センサ35から取得する。検出データ取得部42は、運搬車両2の方位角を示す方位角データを方位角センサ36から取得する。
 運転制御部43は、3次元コース取得部41により取得された3次元コースDCに基づいて、運搬車両2の駆動装置31、ブレーキ装置32、及び操舵装置33の少なくとも一つを制御する制御指令を出力する。運転制御部43において生成された制御指令は、運転制御部43から走行装置30に出力される。運転制御部43から出力される制御指令は、駆動装置31に出力されるアクセル指令、ブレーキ装置32に出力されるブレーキ指令、及び操舵装置33に出力されるステアリング指令を含む。運転制御部43は、位置センサ34で検出された位置データに基づいて、運搬車両2と走行コースCSとが一致した状態で走行するように、駆動装置31、ブレーキ装置32、及び操舵装置33を制御する。
[管理方法]
 図12は、実施形態に係る運搬車両2の管理方法の一例を示すフローチャートである。3次元計測装置5により作業現場の3次元データが取得される。3次元計測装置5は、3次元データを管理装置10に送信する。3次元データ取得部11は、3次元計測装置5から3次元データを取得する(ステップS1)。
 3次元データは、複数の計測点MPを有する点群データを含む。3次元曲面生成部13は、3次元データから連続する3次元曲面CSを生成する(ステップS2)。
 2次元コース生成部12は、作業現場に設定されたXY平面に2次元コースUCを生成する(ステップS3)。
 2次元コース生成部12は、走行エリアARの外形線FLを示す外形線データを取得し、出発点となる作業場PA及び到着点となる作業場PAの入口及び出口それぞれの位置データを取得し、基準線BLの始点データ及び終点データを算出し、外形線FLに基づいて基準線BLを生成する。また、2次元コース生成部12は、基準線BLに基づいて2次元コースUCを生成する。
 3次元コース生成部14は、ステップS2において生成された3次元曲面CSと、ステップS3において生成された2次元コースUCとに基づいて、3次元コースDCを生成する(ステップS4)。
 3次元コース生成部14は、2次元コースUCを規定するコース点UPのX座標及びY座標に一致する3次元曲面CSのZ座標を2次元コースUCのコース点UPに付加することによって、3次元コースDCのコース点DPを生成する。3次元コース生成部14は、生成した複数のコース点DPを繋ぐことによって、連続する3次元コースDCを生成する。
 コース判定部15は、ステップS5において生成された3次元コースDCが適切か否かを判定する(ステップS5)。
 コース判定部15は、予め定められている曲率閾値と3次元コースDCの曲率とを比較して、3次元コースDCの曲率が曲率閾値以上である場合、3次元コースDCは不適切であると判定し、3次元コースDCの曲率が曲率閾値未満である場合、3次元コースDCは適切であると判定する。
 ステップS5において、3次元コースDCが適切であると判定された場合(ステップS5:No)、走行速度決定部17は、3次元コースDCに基づいて、運搬車両3の目標走行速度Vrを決定する(ステップS6)。
 走行速度決定部17は、3次元コースDCと、記憶部19に記憶されている運搬車両2の走行性能とに基づいて、運搬車両2の目標走行速度Vrを決定する。3次元コースDCは、曲率及びコース点DPにおけるロール角を含む。
 出力部18は、ステップS6において決定された3次元コースDCの各位置における目標走行速度Vrを、3次元コースDCのコース点DPに付与した状態で、走行制御装置40に出力する(ステップS7)。
 運搬車両2の走行制御装置40は、管理装置10から送信された3次元コースDCに従って、作業現場を走行する。
 ステップS5において、3次元コースDCが不適切であると判定された場合(ステップS5:Yes)、2次元コース補正部16は、2次元コースUCを補正するための補正データを2次元コース生成部12に出力する(ステップS8)。
 図8を参照して説明したように、3次元コースDCの少なくとも一部の曲率が曲率閾値以上であると判定された場合、2次元コース補正部16は、3次元コースDCの曲率が小さくなるように、2次元コースUCを補正するための補正データを出力する。2次元コース補正部16は、3次元データ(3次元曲面CS)に基づいて、3次元コースDCの曲率が大きい部位の周囲において、3次元コースDCの曲率を小さくすることができる地形を探索する。2次元コース補正部16は、例えば隆起部位を迂回するように、2次元コースUCを補正するための補正データを出力する。すなわち、2次元コース補正部16は、制御点を移動することで曲率を緩和できるため、この特性を利用して、補正データを出力することができる。
 3次元コース生成部14は、2次元コース補正部16から出力された補正データに基づいて、2次元コースUCを補正して、3次元コースDCを再生成する(ステップS4)。
[効果]
 以上説明したように、実施形態によれば、2次元コースUCが生成された後、作業現場の3次元データに基づいて、2次元コースUCから3次元コースDCが生成される。これにより、作業現場の地形が考慮された3次元コースDCが生成される。作業現場の地形が考慮された3次元コースDCが生成されることにより、3次元コースDCに従って、運搬車両2を適切な走行速度Vで走行させることができる。運搬車両2を適切な走行速度Vで走行させることにより、作業現場の生産性の低下を抑制することができる。
 また、2次元コースUCと3次元コースDCとが変換可能であるため、例えば3次元コースDCを修正したい場合は、従来どおり2次元コースUCを修正又は変更すればよく、修正又は変更の処理を時間やコストをかけずに実行することができる。
 点群データを含む3次元データから作業現場の3次元曲面CSが生成されることにより、作業現場の地形に適した3次元コースDCが生成される。
 2次元コースUCは、X座標及びY座標によって規定される。3次元データは、Z座標を含む。これにより、3次元データのZ座標を2次元コースUCに付加することによって、X座標、Y座標、及びZ座標によって規定される3次元コースDCが生成される。
 3次元コースDCの複数のコース点DPのそれぞれは、X座標、Y座標、及びZ座標のみならず、ロール角及びピッチ角を含む傾斜データを含む。傾斜データが含まれることにより、運搬車両2を適切な走行速度で走行させることができる。図10を参照して説明したように、ロール角があっても、旋回方向によっては走行速度を高めることができる。そのため、作業現場の生産性の低下を抑制することができる。
 また、運搬車両2の性能又は姿勢を考慮して、運搬車両2の目標走行速度を設定することができる。
 なお、上述の実施形態において、3次元曲面生成部13は、3次元モデルとして、3次元データから3次元曲面CSを生成することとした。3次元曲面生成部13は、3次元データから、3次元モデルとして、3角形メッシュモデルのような3次元メッシュモデルを生成してもよい。3次元曲面生成部13は、3次元メッシュモデルに基づいて、3次元コースCSを生成してもよい。
[他の実施形態]
 図13及び図14は、実施形態に係る3次元コース生成部14による処理を説明するための模式図である。上述の実施形態においては、3次元データから3次元曲面CSが生成され、3次元コース生成部14は、3次元曲面CSに基づいて、3次元コースDCを生成することとした。3次元曲面CSは生成されなくてもよい。
 図13に示すように、2次元コースUCのコース点UPのX座標及びY座標(Xa,Ya)と、複数の計測点MPのうち少なくとも一つの計測点MPのX座標及びY座標(Xa,Ya)とが一致していれば、3次元コース生成部14は、2次元コースUCのコース点UPのX座標及びY座標に一致する計測点MPのZ座標(Za)を2次元コースUCのコース点UPに付加することにより、3次元コースDCのコース点DPを生成することができる。
 なお、図14に示すように、2次元コースUCのコース点UPのX座標及びY座標(Xa,Ya)と、複数の計測点MPのX座標及びY座標とが一致しない場合がある。その場合、XY平面内において(Xa,Ya)の周囲に存在する少なくとも3つの計測点MPを選択し、それら3つの計測点MPのZ座標の平均値(Zav)を、2次元コースUCのコース点UPに付加してもよい。
 上述の実施形態において、2次元コースUCはコース点UPで規定されることとした。2次元コースUCは関数又は数式で規定されてもよい。
[コンピュータシステム]
 図15は、実施形態に係るコンピュータシステム1000の一例を示すブロック図である。上述の管理装置10及び走行制御装置40のそれぞれは、コンピュータシステム1000を含む。コンピュータシステム1000は、CPU(Central Processing Unit)のようなプロセッサ1001と、ROM(Read Only Memory)のような不揮発性メモリ及びRAM(Random Access Memory)のような揮発性メモリを含むメインメモリ1002と、ストレージ1003と、入出力回路を含むインターフェース1004とを有する。上述の管理装置10の機能及び走行制御装置40の機能は、プログラムとしてストレージ1003に記憶されている。プロセッサ1001は、プログラムをストレージ1003から読み出してメインメモリ1002に展開し、プログラムに従って上述の処理を実行する。なお、プログラムは、ネットワークを介してコンピュータシステム1000に配信されてもよい。
 コンピュータシステム1000は、上述の実施形態に従って、作業現場の3次元データを取得することと、3次元データに基づいて、作業現場に規定された運搬車両2の2次元コースUCから3次元コースDCを生成することと、3次元コースDCを運搬車両2の走行制御装置40に出力することと、を実行する。
 なお、上述の実施形態において、基準線BLの位置データは、ローカル座標系において規定されることとした。基準線BLの位置データは、グローバル座標系において規定されてもよい。
 なお、走行制御装置40が管理装置10の機能の一部又は全部を有してもよい。例えば、走行制御装置40は、3次元データ取得部11、2次元コース生成部12、3次元曲面生成部13、3次元コース生成部14、コース判定部15、2次元コース補正部16、及び走行速度決定部17の一部又は全部の機能を有してもよい。走行制御装置40が管理装置10の機能の全部を有する場合、通信システム9は省略されてもよい。
 1…管理システム、2…運搬車両、3…積込機、4…破砕機、5…3次元計測装置、6…入力装置、7…サーベイ車両、7S…位置検出器、8…管制施設、9…通信システム、10…管理装置、11…3次元データ取得部、12…2次元コース生成部、13…3次元曲面生成部、14…3次元コース生成部、15…コース判定部、16…2次元コース補正部、17…走行速度決定部、18…出力部、19…記憶部、21…車体フレーム、22…ダンプボディ、24…タイヤ、25…車輪、25F…前輪、25R…後輪、26…リアアクスル、30…走行装置、31…駆動装置、32…ブレーキ装置、33…操舵装置、34…位置センサ、35…操舵角センサ、36…方位角センサ、40…走行制御装置、41…3次元コース取得部、42…検出データ取得部、43…運転制御部、1000…コンピュータシステム、1001…プロセッサ、1002…メインメモリ、1003…ストレージ、1004…インターフェース、AR…走行エリア、AX…回転軸、BL…基準線、BP…基準点、CS…3次元曲面、DC…3次元コース、DL…境界線、DPA…排土場、ER…禁止エリア、FL…外形線、FL1…外形線、FL2…外形線、FP…外形点、HL…走行路、IS…交差点、LPA…積込場、MP…計測点、PA…作業場、SL…サーベイライン、UC…2次元コース、UC1…2次元コース、UC2…2次元コース、UP…コース点。

Claims (11)

  1.  作業現場の3次元データを取得する3次元データ取得部と、
     前記作業現場に設定された2次元平面に運搬車両の2次元コースを生成する2次元コース生成部と、
     前記3次元データに基づいて、前記2次元コースから前記運搬車両の3次元コースを生成する3次元コース生成部と、
    を備える運搬車両の管理システム。
  2.  前記3次元データは、点群データを含み、
     前記3次元データから3次元モデルを生成する3次元曲面生成部を備え、
     前記3次元コース生成部は、前記3次元モデルに基づいて、前記3次元コースを生成する、
    請求項1に記載の運搬車両の管理システム。
  3.  前記2次元コースは、前記2次元平面の第1座標及び第2座標によって規定され、
     前記3次元データは、前記2次元平面に直交する第3座標を含み、
     前記3次元コース生成部は、前記3次元データの前記第3座標を前記2次元コースに付加して、前記3次元コースを生成する、
    請求項1又は請求項2に記載の運搬車両の管理システム。
  4.  前記2次元コースは、前記2次元平面の第1座標及び第2座標によって規定され、
     前記3次元データは、点群データを含み、
     前記点群データは、前記2次元平面に直交する第3座標を含み、
     前記3次元データから3次元曲面を生成する3次元曲面生成部を備え、
     前記3次元コース生成部は、前記2次元コースの前記第1座標及び前記第2座標に一致する前記3次元曲面の前記第3座標を前記2次元コースに付加する、
    請求項1に記載の運搬車両の管理システム。
  5.  前記3次元コースは、3次元曲線を含む、
    請求項3又は請求項4に記載の運搬車両の管理システム。
  6.  前記3次元コースは、複数のコース点によって規定され、
     前記コース点のそれぞれは、前記第1座標、前記第2座標、前記第3座標、及び傾斜データを含む、
    請求項3から請求項5のいずれか一項に記載の運搬車両の管理システム。
  7.  前記3次元コースを評価するコース判定部を備える、
    請求項1から請求項6のいずれか一項に記載の運搬車両の管理システム。
  8.  前記コース判定部による評価に基づいて、前記2次元コースを補正するための補正データを出力する2次元コース補正部を備え、
     前記3次元コース生成部は、前記補正データに基づいて前記2次元コースを補正して、前記3次元コースを再生成する、
    請求項7に記載の運搬車両の管理システム。
  9.  前記3次元コースに基づいて、前記運搬車両の目標走行速度を決定する走行速度決定部を備える、
    請求項1から請求項8のいずれか一項に記載の運搬車両の管理システム。
  10.  前記3次元コースを前記運搬車両の走行制御装置に出力する出力部を備える、
    請求項1から請求項9のいずれか一項に記載の運搬車両の管理システム。
  11.  作業現場の3次元データを取得することと、
     前記3次元データに基づいて、前記作業現場に規定された運搬車両の2次元コースから3次元コースを生成することと、
     前記3次元コースを前記運搬車両の走行制御装置に出力することと、
    を含む運搬車両の管理方法。
PCT/JP2019/048815 2018-12-14 2019-12-12 運搬車両の管理システム及び運搬車両の管理方法 WO2020122212A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/312,516 US20220056670A1 (en) 2018-12-14 2019-12-12 Transport vehicle management system and transport vehicle management method
AU2019396077A AU2019396077B2 (en) 2018-12-14 2019-12-12 Transport vehicle management system and transport vehicle management method
CA3123185A CA3123185A1 (en) 2018-12-14 2019-12-12 Transport vehicle management system and transport vehicle management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018234749A JP2020095612A (ja) 2018-12-14 2018-12-14 運搬車両の管理システム及び運搬車両の管理方法
JP2018-234749 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020122212A1 true WO2020122212A1 (ja) 2020-06-18

Family

ID=71075678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048815 WO2020122212A1 (ja) 2018-12-14 2019-12-12 運搬車両の管理システム及び運搬車両の管理方法

Country Status (5)

Country Link
US (1) US20220056670A1 (ja)
JP (1) JP2020095612A (ja)
AU (1) AU2019396077B2 (ja)
CA (1) CA3123185A1 (ja)
WO (1) WO2020122212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196034A1 (ja) * 2021-03-16 2022-09-22 株式会社小松製作所 無人車両の管理システム及び無人車両の管理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220356674A1 (en) * 2021-05-07 2022-11-10 Clark Equipment Company Automatic path tracking for power machines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053916A (ja) * 2014-09-04 2016-04-14 日立建機株式会社 運搬車両及びその走行制御装置
JP2016071695A (ja) * 2014-09-30 2016-05-09 富士通株式会社 移動経路統合方法、装置、及びプログラム
JP2017049172A (ja) * 2015-09-03 2017-03-09 日立建機株式会社 作業機械の地図作成装置及び方法
CN108803617A (zh) * 2018-07-10 2018-11-13 深圳大学 轨迹预测方法及装置
JP2018183072A (ja) * 2017-04-24 2018-11-22 株式会社クボタ 牧草管理システム
KR20180127568A (ko) * 2017-05-18 2018-11-29 주식회사 에프엠웍스 지형정보를 반영한 3차원 비행경로 생성방법 및 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8332134B2 (en) * 2008-04-24 2012-12-11 GM Global Technology Operations LLC Three-dimensional LIDAR-based clear path detection
US8498812B2 (en) * 2010-01-05 2013-07-30 Robert Bosch Gmbh Stylized procedural modeling for 3D navigation
GB2558251B (en) * 2016-12-23 2019-12-04 Caterpillar Sarl A method of operating a work machine
CN108986485A (zh) * 2018-07-24 2018-12-11 江苏云光智慧信息科技有限公司 基于智能视频分析技术的车辆速度检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053916A (ja) * 2014-09-04 2016-04-14 日立建機株式会社 運搬車両及びその走行制御装置
JP2016071695A (ja) * 2014-09-30 2016-05-09 富士通株式会社 移動経路統合方法、装置、及びプログラム
JP2017049172A (ja) * 2015-09-03 2017-03-09 日立建機株式会社 作業機械の地図作成装置及び方法
JP2018183072A (ja) * 2017-04-24 2018-11-22 株式会社クボタ 牧草管理システム
KR20180127568A (ko) * 2017-05-18 2018-11-29 주식회사 에프엠웍스 지형정보를 반영한 3차원 비행경로 생성방법 및 시스템
CN108803617A (zh) * 2018-07-10 2018-11-13 深圳大学 轨迹预测方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196034A1 (ja) * 2021-03-16 2022-09-22 株式会社小松製作所 無人車両の管理システム及び無人車両の管理方法

Also Published As

Publication number Publication date
CA3123185A1 (en) 2020-06-18
JP2020095612A (ja) 2020-06-18
US20220056670A1 (en) 2022-02-24
AU2019396077B2 (en) 2022-10-27
AU2019396077A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP7133298B2 (ja) 運搬車両の管制システム及び運搬車両の管理方法
JP6067876B2 (ja) 鉱山の管理システム
CN108139755B (zh) 自己位置推定装置的异常检测装置以及车辆
JP6456368B2 (ja) 作業車両の制御システム
CN106029477B (zh) 行走车辆及行走车辆的控制方法
WO2017171073A1 (ja) 運搬車両の制御システム、運搬車両、及び運搬車両の制御方法
JP7138538B2 (ja) レーザスキャナのキャリブレーション方法、運搬機械
WO2020122212A1 (ja) 運搬車両の管理システム及び運搬車両の管理方法
JP6148403B2 (ja) 作業機械の制御システム、作業機械、作業機械の管理システム及び作業機械の制御方法
AU2017241973B2 (en) Control system for work vehicle, work vehicle, and control method for work vehicle
US11835643B2 (en) Work machine control system, work machine, and work machine control method
JP7103834B2 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
WO2021246112A1 (ja) 運搬車両の管理システム及び運搬車両の管理方法
JP7458883B2 (ja) 運搬車両の管理システム及び運搬車両の管理方法
JP7141883B2 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
WO2019187654A1 (ja) 作業機械の制御システム、作業機械、及び作業機械の制御方法
JP6761845B2 (ja) ダンプトラックの制御システム、及びダンプトラック
JP7346754B2 (ja) ダンプトラックの制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3123185

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019396077

Country of ref document: AU

Date of ref document: 20191212

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19897316

Country of ref document: EP

Kind code of ref document: A1