WO2022062393A1 - 一种定向反光膜的制作工艺 - Google Patents

一种定向反光膜的制作工艺 Download PDF

Info

Publication number
WO2022062393A1
WO2022062393A1 PCT/CN2021/089969 CN2021089969W WO2022062393A1 WO 2022062393 A1 WO2022062393 A1 WO 2022062393A1 CN 2021089969 W CN2021089969 W CN 2021089969W WO 2022062393 A1 WO2022062393 A1 WO 2022062393A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
reflective film
support
support shell
rod
Prior art date
Application number
PCT/CN2021/089969
Other languages
English (en)
French (fr)
Inventor
徐君东
章明能
Original Assignee
夜视丽新材料(仙居)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夜视丽新材料(仙居)有限公司 filed Critical 夜视丽新材料(仙居)有限公司
Publication of WO2022062393A1 publication Critical patent/WO2022062393A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/568Applying vibrations to the mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C2045/0079Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping applying a coating or covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0083Reflectors

Definitions

  • the invention relates to the technical field of reflective materials, in particular to a manufacturing process of a directional reflective film.
  • Reflective film is a film that reflects light or radiation back to the light source, and is widely used in traffic signs and personal safety protection signs; the retroreflective units in reflective film mainly include There are two structures of glass microbeads and cube pyramids. Among them, the cube corner reflective film is famous for its high retroreflection efficiency. Its retroreflection coefficient for vertically incident light is 2 to 3 times higher than that of glass microbeads, making the cube corner reflective.
  • the cube-cornered reflective film is pressed on the master mold with micro-geometric structure on the surface, and the reflective mold product is pressed by the cooperation with the male mold, so the quality of the master mold determines the quality of the produced reflective mold; the current In the master mold processing technology, the cube pyramid surface formed by the combination of sheets, after being installed in the master mold, the contact state between the sheets will affect the accuracy of the cube pyramid surface, and the temperature of the mold changes during the injection molding process. Precise control, otherwise it will degrade the quality of the injection molded reflective film.
  • a Chinese patent with an application number of 2014108233423 discloses a production method of a microprism type reflective film, comprising the following steps: a), the The resin glue of the sealing layer is coated on the film layer of the base material by coating and gluing, and is dried and cured by a step-by-step baking method to form a sealing layer.
  • the drying time is 10 to 20 minutes, and the baking temperature is set at 80°C to 130°C.
  • the thickness of the dry glue is 20 to 40 microns; b), the pressing surface of the sealing layer and the microprism shaped reflective film layer is embossed and compounded at a high temperature by a pressing roller with an engraved pattern, wherein the temperature of the pressing roller is 170 °C to 250 °C , the pressure is 3 to 5 kg, and the pressing rate is 3 to 6 meters per minute; c), coat the pressure-sensitive adhesive on the peelable layer, dry it, and then compound it with the other side of the base film layer.
  • the production process of the invention is simple, the production efficiency is high, and the product has the characteristics of high adhesion performance, high weather resistance, high reflective brightness, etc., and has a long service life and a wide range of use;
  • the present invention proposes a manufacturing process of a directional reflective film, using a special directional reflective film manufacturing process to solve the above-mentioned technical problems.
  • the present invention proposes a manufacturing process for a directional reflective film.
  • the process of the injection mold of the reflective film is controlled by a set mold frame, and the vibration of the support shell is driven by a swing rod to balance the concentration of the reflective film in the cavity.
  • the distribution state of the ester plastic maintains the overall flatness of the cube pyramid of the sheet combination, and uses the support shell to wrap the mold to accurately control its temperature state under the action of the support plate at the bottom of the mold to meet the requirements of the reflective film production process. Temperature adjustment requirements, thereby improving the operation effect of the directional reflective film manufacturing process.
  • stamping processing The microstructure of the cube pyramid is processed on the end face of the sheet, and the sheet is surface-treated by nickel electroforming, and the thickness of the sheet is controlled so that a single row of cube pyramids are distributed on the end face;
  • the cube pyramid plane formed by the combination of the slices replaces the high-precision requirements of the overall processing of the cube pyramid plane structure, which is convenient for the implementation of the processing process;
  • Hot-pressing setting After the injection molding process in S2 is completed, control the mold base to continue to heat the mold to 20-40 °C and maintain it for 3-5 hours. After it is naturally cooled to 220 °C, start the cooling sheet on the mold base to the mold. Active cooling is carried out to reduce the temperature to below 90 °C within 30 minutes, and then the mold is returned to the state of natural cooling to room temperature to obtain the pre-product of the reflective film; the secondary heating process of the mold after the injection molding is completed, using polyester The thermal expansion of the plastic increases the force it bears in the mold cavity, and the active cooling process in the mold cavity reduces the time-consuming process and stabilizes the shape of the homogeneous molten polyester plastic. In the cooling stage, the internal stress in the polyester plastic is subjected to aging treatment to ensure the quality of the pre-reflective film;
  • Hardening coating transfer the reflective film prefabricated in S3 to the curing chamber under constant temperature and humidity conditions for hardening treatment, and coat the surface of the cubic pyramid microstructure with polycarbonate material to form a layer of transparent matrix , to provide protection for the reflective film structure, and then apply the adhesive on the bottom surface of the reflective film and adhere to the cover; the hardening and surface coating of the reflective film maintains the effective service life of the reflective film;
  • the mold base described in S2-S3 includes a support shell, a swing rod and a controller; a female mold is installed in the support shell, and a male mold is arranged above the female mold; both sides of the support shell are provided with pendulums
  • the outer side of the pendulum rod is provided with a rotatable mounting leg, and the supporting leg is provided with a driving motor;
  • the inside of the supporting shell is provided with a supporting plate, and the peripheral edge of the supporting plate is in sliding contact with the inner wall of the supporting shell, and the supporting plate is in sliding contact with the inner wall of the supporting shell.
  • a telescopic frame is arranged between the shell and the supporting plate to connect; the supporting plate moves between the bottom of the supporting shell and the position of the port under the control of the telescopic frame; the upper surface of the supporting plate is provided with intermittently arranged ridges and grooves , refrigerating sheets are installed in the grooves; the protrusions between the grooves on the support plate are set as bosses, and electromagnetic heating rings are installed in the bosses; the controller is used to adjust the operation of the mold base; when in use, start the control The retractor lifts the support plate to the port of the support shell by the telescopic frame, then puts the female mold on the support plate and lowers it to the bottom of the support shell, and then installs the male mold on the female mold in the support shell.
  • the present invention uses the swing rods arranged on both sides of the support shell to cooperate with the swing rods to rotate and install the legs.
  • the controller drives the motor to drive The supporting shell swings up, so that the sheets in the master mold are subjected to reciprocating action to generate mutual vibration, which strengthens the tight fit between the sheets, and the electromagnetic heating ring arranged in the boss and the cooling sheet in the groove are the installed master mold.
  • the present invention utilizes the set mold base to control the process of the reflective film injection mold, and drives the vibration of the support shell through the pendulum rod to balance the temperature of the polyester plastic inside the mold cavity. Distributed state, maintain the overall flatness of the cube pyramid of the sheet combination, and use the support shell to wrap the mold to accurately control its temperature state under the action of the support plate at the bottom of the mold to meet the temperature adjustment requirements in the production process of the reflective film , thereby improving the operation effect of the directional reflective film manufacturing process.
  • the bottom of the support shell is provided with a shallow groove; the bottom of the support plate is provided with an embedded groove, and the embedded groove corresponds to the position of the shallow groove; the end of the telescopic frame is provided with a hinged slider, the sliding The blocks are respectively installed in the shallow groove and the embedded groove; a driving oil cylinder is also arranged between the sliding block and the end of the shallow groove; the telescopic frame in the supporting shell is used to drive the lifting and lowering of the supporting plate, and it is necessary to control the supporting plate to descend to the supporting plate
  • the mutual contact state between the bottom of the shell to ensure that the vibration of the support shell is completely transmitted to the mold on the support plate, and reduce the volume required for the support shell to wrap the mold; through the shallow grooves respectively provided on the support shell and the support plate And the embedded groove, so that the telescopic frame is in the space formed by the shallow groove and the embedded groove after shrinking, so as to ensure the mutual fit between the supporting plate and the supporting shell, and through the hinged slider on the tele
  • the support shell is also provided with a surrounding through hole in the circumferential direction, and the through hole corresponds to the position of the end of the groove on the support plate; the oil cylinder lifts the support plate through the telescopic frame under the action of the controller , so that the grooves and the through holes are connected; the cooling process in the reflective film process requires mutual cooperation between the supporting shell, the supporting plate and the mold to achieve effective temperature control and ensure the quality of the reflective film in the production process;
  • the through holes arranged on the support shell during the cooling process of the mold, the position of the edge groove and the through hole are connected by moving the position of the support plate, so that the heat of the edge groove to the cooling process of the mold passes through the support shell.
  • the through holes in the duct are discharged, which enhances the heat dissipation of the mold and achieves the purpose of rapid cooling in the process, thereby improving the operation effect of the directional reflective film manufacturing process.
  • a sliding rod and a truss are provided at the connection between the support shell and the swing rod; the sliding rod is fixed on the outer wall of the support shell, and its length direction is on a horizontal plane; the sliding contact between the truss and the sliding rod, The truss is rotated and installed at the bottom of the pendulum rod; during the production process of the reflective film, the swing of the support shell driven by the pendulum rod will cause the vibration of the mold to be in an inclined direction, which will affect the fit between the sheets assembled in the mold, and then interfere with the The quality of reflective film production; the present invention uses the sliding rod arranged on the outer wall of the support shell to cooperate with the truss at the lower end of the swing rod, so that the swinging action of the swing rod is converted into the movement of the sliding rod on the horizontal plane of the truss, and then the sliding rod is installed on the support shell.
  • the vibration effect of the mold in the mold is in the horizontal direction, which ensures the bonding state between the assembled and installed sheets in the
  • the end of the sliding rod is provided with a raised end, and the end is provided with a spring in the direction of the truss; one end of the spring is fixed on the end, and the other end of the spring is provided with a contact with the end of the truss .
  • the spring on the protruding end of the rod transfers its inertial force to the deformation of the spring at the end point where the sliding direction of the truss changes and stores it, and releases the potential energy stored in the spring at the moment when the truss changes direction and moves away.
  • the bearing plate set on the spring makes the force on the truss balanced on the plane, thus improving the operation effect of the directional
  • the end of the spring is also provided with a support rod, the support rod is installed on the end head, and the support rod changes the extension amount of the spring on the end head under the adjustment of the controller; during the production process of the reflective film, by changing Different types of sheets are made of reflective films with corresponding cubic pyramid microstructures, so that the vibration effect of the support shell needs to be changed accordingly to promote the bonding state of the combination between the sheets. After adjusting the operating power of the motor, it is necessary to change the truss accordingly.
  • the interaction state with the sliding rod can jointly improve the adjustment effect on the vibration state of the supporting shell; the present invention uses the supporting rod arranged on the end to change the position of the supporting rod on the end to control the extension of the spring, Further, the stroke of the truss sliding is adjusted, thereby improving the operation effect of the directional reflective film manufacturing process.
  • the present invention controls the process of the reflective film injection mold through the provided mold frame, balances the distribution state of the polyester plastic in the mold cavity, and precisely controls its temperature state; , to ensure the mutual fit between the support plate and the support shell; the through holes surrounding the support shell make the heat of the cooling process of the mold to be discharged through the through holes in the support shell, which enhances the heat dissipation of the mold.
  • the present invention cooperates with the truss at the lower end of the pendulum rod through the sliding rod arranged on the outer wall of the support shell, so that the swinging action of the pendulum rod is transformed into the movement of the sliding rod on the horizontal plane of the truss, so as to ensure the fit between the assembled and installed sheets in the mold. state; the spring set on the protruding end of the sliding rod maintains the movement rate of the truss on the sliding rod; the supporting rod set on the end uses the change of the position of the supporting rod on the end to control the extension of the spring , adjust the stroke of the truss sliding.
  • Fig. 1 is the flow chart of the manufacture process of directional reflective film in the present invention
  • Fig. 2 is the exploded view of the top view angle of mould base in the present invention
  • Fig. 3 is the exploded view of the bottom viewing angle of mould base in the present invention.
  • Fig. 4 is the partial enlarged view of A place in Fig. 2;
  • Fig. 5 is the partial enlarged view of B place in Fig. 2;
  • support shell 1 female mold 11, male mold 12, shallow groove 13, through hole 14, swing rod 2, outrigger 3, motor 31, support plate 4, edge groove 41, boss 42, embedded groove 43,
  • the telescopic frame 5 the sliding block 51 , the oil cylinder 52 , the sliding rod 6 , the end head 61 , the spring 62 , the bearing plate 63 , the support rod 64 , and the truss 7 .
  • the manufacturing process of a directional reflective film according to the present invention the process steps are as follows:
  • stamping processing The microstructure of the cube pyramid is processed on the end face of the sheet, and the sheet is surface-treated by nickel electroforming, and the thickness of the sheet is controlled so that a single row of cube pyramids are distributed on the end face;
  • the cube pyramid plane formed by the combination of the slices replaces the high-precision requirements of the overall processing of the cube pyramid plane structure, which is convenient for the implementation of the processing process;
  • Clamping and injection molding install the sheets made in S1 into the female mold 11 to make them fit each other, then install the male mold 12 on the female mold 11, and fix the boxed mold on the mold base, After the mold is heated to 210-240 °C through the mold base, the molten polyester plastic is injected into the cavity of the mold.
  • the injection molding process is controlled to be completed within 10-15s, and the mold temperature during the injection molding process is 3-4 °C/ The speed of s continues to increase; by controlling the gradually increasing mold temperature during the injection molding process, it is beneficial to maintain the flow properties of the molten polyester plastic inside the mold cavity, balance its distribution in the mold cavity, and reduce the injection molding process consumption. time;
  • Hot-pressing setting After the injection molding process in S2 is completed, control the mold base to continue to heat the mold to 20-40 °C and maintain it for 3-5 hours. After it is naturally cooled to 220 °C, start the cooling sheet on the mold base to the mold. Active cooling is carried out to reduce the temperature to below 90 °C within 30 minutes, and then the mold is returned to the state of natural cooling to room temperature to obtain the pre-product of the reflective film; the secondary heating process of the mold after the injection molding is completed, using polyester The thermal expansion of the plastic increases the force it bears in the mold cavity, and the active cooling process in the mold cavity reduces the time-consuming process and stabilizes the shape of the homogeneous molten polyester plastic. In the cooling stage, the internal stress in the polyester plastic is subjected to aging treatment to ensure the quality of the pre-reflective film;
  • Hardening coating transfer the reflective film prefabricated in S3 to the curing chamber under constant temperature and humidity conditions for hardening treatment, and coat the surface of the cubic pyramid microstructure with polycarbonate material to form a layer of transparent matrix , to provide protection for the reflective film structure, and then apply the adhesive on the bottom surface of the reflective film and adhere to the cover; the hardening and surface coating of the reflective film maintains the effective service life of the reflective film;
  • the mold base described in S2-S3 includes a support shell 1, a swing rod 2 and a controller; a female mold 11 is installed in the support shell 1, and a male mold 12 is arranged above the female mold 11; the support shell The two sides of the 1 are provided with a swing rod 2, the outer side of the swing rod 2 is provided with a rotatably installed support leg 3, and the support leg 3 is provided with a driving motor 31; the inside of the support shell 1 is provided with a support plate 4, the support plate The peripheral edge of 4 is in sliding contact with the inner wall of the support shell 1, and a telescopic frame 5 is provided between the support shell 1 and the support plate 4 to connect; the support plate 4 is connected with the bottom of the support shell 1 under the control of the telescopic frame Move between the positions of the ports; the upper surface of the support plate 4 is provided with intermittently arranged ridges 41, and the refrigerating chips are installed in the ridges 41; the protrusions between the ridges 41 on the support plate 4 are set as The
  • the present invention uses the swing rods 2 arranged on both sides of the support shell 1 to cooperate with the support legs 3 that are rotated and installed by the swing rod 2. After the female mold 11 is put into the support shell 1, the motor 31 is driven by the controller to drive the support shell 1.
  • the master mold 11 provides balanced heating and cooling effects to control the temperature of the mold; the present invention utilizes the set mold base to control the process of the reflective film injection mold, and drives the vibration of the support shell 1 through the pendulum rod 2 to balance the mold cavity.
  • the distribution state of the inner polyester plastic keeps the overall flatness of the cube-corner of the sheet combination, and uses the support shell 1 to wrap the mold to accurately control its temperature state under the action of the support plate 4 at the bottom of the mold to meet the requirements of the reflective film.
  • the temperature adjustment requirement in the manufacturing process improves the operation effect of the directional reflective film manufacturing process.
  • the bottom of the support shell 1 is provided with a shallow groove 13; the bottom of the support plate 4 is provided with an embedded groove 43, and the embedded groove 43 corresponds to the position of the shallow groove 13;
  • the end of the frame 5 is provided with a hinged sliding block 51, and the sliding block 51 is respectively installed in the shallow groove 13 and the embedded groove 43; a driving oil cylinder 52 is also provided between the sliding block 51 and the end of the shallow groove 13;
  • the telescopic frame 5 in the shell 1 is used to drive the lifting of the support plate 4, and it is necessary to control the mutual contact state between the support plate 4 and the bottom of the support shell 1 to ensure that the vibration effect of the support shell 1 is completely transmitted to the support plate 4.
  • the support shell 1 is also provided with a surrounding through hole 14 in the circumferential direction, and the through hole 14 corresponds to the position of the end of the groove 41 on the support plate 4; the oil cylinder 52 is controlled Under the action of the device, the support plate 4 is lifted through the telescopic frame 5, so that the groove 41 and the through hole 14 are connected; the cooling process in the reflective film process needs to cooperate with the support shell 1, the support plate 4 and the mold. , to achieve effective temperature control and ensure the quality of the reflective film in the production process; the present invention is provided with through holes 14 around the support shell 1, during the cooling process of the mold, by moving the position of the support plate 4.
  • a sliding rod 6 and a truss 7 are provided at the connection between the support shell 1 and the swing rod 2; the sliding rod 6 is fixed on the outer wall of the support shell 1, and its length direction is in a horizontal plane The sliding contact between the truss 7 and the sliding rod 6, the truss 7 is rotated and installed on the bottom of the swing rod 2;
  • the swing of the supporting shell 1 driven by the swing rod 2 will make the vibration of the mold in the inclined direction , affects the bonding state between the sheets assembled in the mold, and then interferes with the quality of the reflective film;
  • the present invention uses the sliding rod 6 arranged on the outer wall of the support shell 1 to cooperate with the truss 7 at the lower end of the pendulum rod 2, so that the pendulum The swinging action of the rod 2 is transformed into the movement of the sliding rod 6 on the horizontal plane of the truss 7, so that the vibration effect of the mold installed in the support shell 1 is in the horizontal direction, so as
  • the end of the sliding rod 6 is provided with a raised end 61, and the end 61 is provided with a spring 62 in the direction of the truss 7; one end of the spring 62 is fixed on the end 61 The other end of the spring 62 is provided with a bearing plate 63 that contacts the end of the truss 7; during the sliding process between the truss 7 and the sliding rod 6, the moment of its reciprocating movement needs to overcome the inertial force to change the direction of movement, Cause the potential energy waste of the swing rod 2 to drive the support shell 1 to move; the present invention transmits its inertial force to the end point where the sliding direction of the truss 7 changes through the spring 62 arranged on the end 61 of the sliding rod 6.
  • the end of the spring 62 is further provided with a support rod 64, the support rod 64 is installed on the end head 61, and the support rod 64 changes the spring 62 on the end head 61 under the adjustment of the controller
  • the amount of protrusion; in the production process of the reflective film, the reflective film with the corresponding cubic pyramid microstructure is produced by changing different types of sheets, so that the vibration effect of the support shell 1 needs to be changed accordingly, and the bonding state of the combination between the sheets is promoted.
  • the interaction state between the truss 7 and the sliding rod 6 needs to be changed accordingly, so as to jointly improve the adjustment effect of the vibration state of the support shell 1; 64.
  • the extension of the spring 62 is controlled, and the sliding stroke of the truss 7 is adjusted, thereby improving the operation effect of the reflective film manufacturing process.
  • the controller When in use, start the controller to lift the support plate 4 to the port of the support shell 1 by the telescopic frame 5, then put the female mold 11 on the support plate 4 and make it drop to the bottom of the support shell 1, and then put the male mold 12 is installed on the female mold 11 in the support shell 1; through the swing rods 2 arranged on both sides of the support shell 1, and the supporting legs 3 that are rotated and installed with the swing rod 2, after the female mold 11 is put into the support shell 1,
  • the motor 31 drives the support shell 1 to swing, so that the sheets in the master mold 11 are subjected to the reciprocating action to generate mutual vibration, so as to strengthen the close contact state between the sheets, and the electromagnetic heating ring and the rib arranged in the boss 42
  • the refrigerating sheet in the groove 41 provides a balanced heating and cooling effect for the installed mother mold 11 to achieve temperature control of the mold; the shallow grooves 13 and the embedded grooves 43 respectively arranged on the support shell 1 and the support plate 4 make the expansion and contraction
  • the frame 5 is in the space
  • the control of the frame 5 satisfies the driving of the weight of the bearing mold on the support plate 4; the through hole 14 surrounding the support shell 1 is arranged, and during the cooling process of the mold, the groove 41 and the through hole 14 are connected by moving the position of the support plate 4.
  • the positions of the rib grooves 41 are connected to each other, so that the heat of the cooling process of the mold by the groove 41 is discharged through the through holes 14 in the support shell 1, which enhances the heat dissipation of the mold and achieves the purpose of rapid cooling in the process; set on the outer wall of the support shell 1
  • the sliding rod 6 is matched with the truss 7 at the lower end of the pendulum rod 2, so that the swinging action of the pendulum rod 2 is converted into the movement of the sliding rod 6 on the horizontal plane of the truss 7, so that the vibration effect of the mold installed in the support shell 1 is in the Horizontal direction, to ensure the fitting state between the combined installation sheets in the mold; the spring 62 arranged on the raised end 61 of the sliding rod 6 transmits its inertial force to the spring 62 at the end point where the sliding direction of the truss 7 changes.
  • the bearing plate 63 set on the spring 62 makes the force on the truss 7 balanced on the plane; the support rod 64 set on the end head 61 uses the position change of the support rod 64 on the end head 61 to control the extension of the spring 62 and adjust the sliding stroke of the truss 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明涉及反光材料技术领域,具体涉及一种定向反光膜的制作工艺,包括压模加工、合模注塑、热压定型和硬化涂覆,其中采用的模架包括托壳、摆杆和控制器;由于薄片组合形成的立方角锥面间的相互接触状态,影响到立方角锥面的精度,且在注塑过程中模具的温度变化,需要进行精确的控制,否则会降低注塑成型的反光膜质量;故此,本发明通过设置的模架来控制反光膜注塑模具的工序过程,通过摆杆驱动托壳的振动,均衡模腔内部聚酯塑料的分布状态,保持薄片组合的立方角锥整体的平面度,并利用托壳对模具的包裹状态,在模具底部的托板的作用下精确控制其温度状态,满足反光膜制作工序中的温度调节需求,从而提升了定向反光膜制作工艺的运行效果。

Description

一种定向反光膜的制作工艺 技术领域
本发明涉及反光材料技术领域,具体涉及一种定向反光膜的制作工艺。
背景技术
反光膜(准确来说应该叫:逆反射膜)是一种将光或辐射反射回光源处的薄膜,被广泛地应用于交通标志和个人安全防护标志中;反光膜中的逆反射单元主要有玻璃微珠和立方角锥两种结构,其中立方角锥反光膜以逆反射效率高而著称,其对垂直入射光线的逆反射系数比玻璃微珠高出2到3倍,使得立方角锥反光膜的开发与应用得到了人们更多的重视;关于定向反光膜制作工艺的介绍,可参见:罗汉等,基于薄片组合技术的反光膜结构优化设计[J],中国激光,2015(No.2).216-221。
立方角锥型反光膜是在表面带有微几何结构的母模上,通过与公模间的配合来压制得反光模产品,因而母模的质量决定了所制作出的反光模品质;目前的母模加工技术中,薄片组合形成的立方角锥面,在安装至母模后其薄片间的相互接触状态,同时影响到立方角锥面的精度,且在注塑过程中模具的温度变化,需要进行精确的控制,否则会降低注塑成型的反光膜质量。
现有技术中也出现了一些关于定向反光膜的制作工艺的技术方案,如申请号为2014108233423的一项中国专利公开了一种微棱镜型反光膜的生产方法,包括以下步骤:a)、将密封层树脂胶采用涂布上胶方式涂布在基材薄膜层上,采用逐级烘烤法干燥固化形成密封层,其中干燥时间为10至20分钟,烘烤温度设定80℃至130℃,干胶厚度为20至40微米;b)、将密封层与微棱镜成型反光薄膜层的压制面通过带有雕花图案的压辊高温下压花复合,其中压辊温度为170℃至250℃,压力为3到5公斤,压制速率为3至6米/每分钟;c)、将压敏胶涂布在可剥离层后烘干,再与基材薄膜层的另一面复合成型。本发明生产工艺简单,生产效率高,而产品具有高粘接性能、高耐候性能、高反光亮度等特点,并且使用寿命长,使用范围广;但是该技术方案中未能维持反光膜制作工艺中薄片组合形成的微棱镜结构表面的精度等级,且制作工艺中的温度变化未能有效控制的问题。
鉴于此,为了克服上述技术问题,据此本发明提出了一种定向反光膜的制作工艺,采用了特殊的定向反光膜的制作工艺,解决了上述技术问题。
发明内容
为了弥补现有技术的不足,本发明提出了一种定向反光膜的制作工艺,通过设置的模架来控制反光膜注塑模具的工序过程,通过摆杆驱动托壳的振动,均衡模腔内部聚酯塑料的分布状态,保持薄片组合的立方角锥整体的平面度,并利用托壳对模具的包裹状态,在模具底部的托板的作用下精确控制其温度状态,满足反光膜制作工序中的温度调节需求,从而提升了定向反光膜制作工艺的运行效果。
本发明所述的一种定向反光膜的制作工艺,该工艺步骤如下:
S1、压模加工:在薄片的端面上加工出立方角锥的微结构,并通过镍电铸对薄片进行表面处理,且控制薄片的厚度使其端面上分布着单排的立方角锥;通过将薄片进行组合后形成的立方角锥平面,替代了整体加工立方角锥平面结构的高精度要求,便于加工过程的实施;
S2、合模注塑:将S1制得的薄片安装至母模中使其相互贴合,然后将公模合装至母模上,并将盒装后的模具固定在模架上,通过模架将模具加热至210-240℃后,把熔融态的聚酯塑料注入模具的型腔中,注塑工序控制在10-15s内完成,且注塑过程中的模具温度以3-4℃/s的速度继续升高;通过控制注塑过程中逐渐升高的模具温度,利于维持模腔内部熔融态聚酯塑料的流动性能,均衡其在模腔中的分布状态,并降低了注塑工序消耗的时间;
S3、热压定型:在S2中的注塑工序完成后,控制模架继续将模具升温20-40℃并维持3-5h,待其自然冷却至220℃后,启动模架上的制冷片对模具进行主动降温,使其温度在30min内降低至90℃以下,然后将模具恢复至自然冷却的状态至室温,获得反光膜的预制品;注塑完成后对模具进行的二次升温过程,利用聚酯塑料的热膨胀作用,加大了其在模腔中承受的作用力,且模腔中的主动降温过程,减少了工序耗时的同时稳定均质熔融态聚酯塑料的形状,主动降温后的自然冷却阶段,对聚酯塑料中的内应力进行时效处理,确保了反光膜预制品的质量;
S4、硬化涂覆:把S3中的反光膜预制品转移至固化室的恒温恒湿条件下进行硬化处理,并向其立方角锥微结构的表面上涂覆聚碳酸酯材料形成一层透明基质,为反光膜结构提供保护,然后在反光膜的底面上涂抹黏结剂并粘附封皮;对反光膜进行的硬化和表面涂覆,维持了反光膜的有效使用寿命;
其中,S2-S3中所述的模架包括托壳、摆杆和控制器;所述托壳中安装有母模,母模的上方设有公模;所述托壳的两侧设有摆杆,摆杆的外侧设有转动安装的支腿,支腿上设置有驱动的电机;所述托壳的内部设有托板,托板的周向边缘与托壳的内壁间滑动接触, 托壳与托板间设有伸缩架相连接;所述托板在伸缩架的控制下在托壳的底部与端口的位置间进行移动;所述托板的上表面设置有间歇排布的棱槽,棱槽中安装有制冷片;所述托板上的棱槽间的凸起设置为凸台,凸台中安装有电磁加热圈;所述控制器用于调节模架的运行;使用时,启动控制器由伸缩架将托板顶起至托壳的端口处,然后将母模放入托板上并使其降至托壳的底部,再将公模安装至托壳中的母模上,由于薄片组合形成的立方角锥面,在安装至母模后其薄片间的相互接触状态,同时影响到立方角锥面的精度,且在注塑过程中模具的温度变化,需要进行精确的控制,否则会降低注塑成型的反光膜质量;因此,本发明通过设置在托壳两侧的摆杆,配合摆杆转动安装的支腿,在将母模放入至托壳后,通过控制器使电机带动托壳摆动起来,使母模中的薄片受到往复作用产生相互的振动,加强薄片间的紧密贴合状态,且设置在凸台中的电磁加热圈与棱槽中的制冷片,为安装的母模提供均衡的加热与降温作用,达到对模具的温度控制;本发明利用了设置的模架来控制反光膜注塑模具的工序过程,通过摆杆驱动托壳的振动,均衡模腔内部聚酯塑料的分布状态,保持薄片组合的立方角锥整体的平面度,并利用托壳对模具的包裹状态,在模具底部的托板的作用下精确控制其温度状态,满足反光膜制作工序中的温度调节需求,从而提升了定向反光膜制作工艺的运行效果。
优选的,所述托壳的底部设置有浅槽;所述托板的底部设置有嵌槽,嵌槽与浅槽的位置相对应;所述伸缩架的端部设置有铰接的滑块,滑块分别安装在浅槽与嵌槽中;所述滑块与浅槽的端部间还设置有驱动的油缸;托壳中的伸缩架用来驱动托板的升降,需要控制托板降至托壳底部时其间的相互接触状态,以确保托壳的振动作用完全传递至托板上的模具中,并减少托壳包裹模具所需的体积;通过分别设置在托壳与托板上的浅槽与嵌槽,使得伸缩架在收缩后处于浅槽和嵌槽形成的空间中,确保托板与托壳间的相互贴合状态,并通过伸缩架上铰接的滑块,通过油缸对伸缩架的控制满足对托板上承载模具重量的驱动,从而提升了定向反光膜制作工艺的运行效果。
优选的,所述托壳的周向上还设置有环绕的通孔,通孔与托板上的棱槽端部位置相对应;所述油缸在控制器的作用下通过伸缩架将托板升起,使棱槽与通孔间相连通;反光膜工序中的降温过程,需要在托壳、托板和模具间进行相互配合,来达到对温度的有效控制,确保制作工序中的反光膜品质;本发明通过设置在托壳上环绕的通孔,在模具的降温过程中,通过移动托板的位置将棱槽与通孔的位置间相连通,使得棱槽对模具降温过程的热量经托壳中的通孔排出,增强了模具的散热量,达到了工序中的快速降温目的,从而提升了定向反光膜制作工艺的运行效果。
优选的,所述托壳与摆杆的连接处设有滑杆和桁架;所述滑杆固定在托壳的外壁上,且其长度方向处于水平面上;所述桁架与滑杆间滑动接触,桁架转动安装在摆杆的底部;反光膜的制作过程中,通过摆杆带动托壳的摆动会使模具的振动处于倾斜方向,影响到模具中组合安装的薄片间的贴合状态,继而干扰到反光膜制作的品质;本发明通过设置在托壳外壁上的滑杆,配合摆杆下端的桁架,使得摆杆摆动的动作转化为滑杆在桁架的水平面上的移动,进而使安装在托壳中的模具受到的振动作用处于水平方向,确保模具中组合安装薄片间的贴合状态,从而维持了定向反光膜制作工艺的运行效果。
优选的,所述滑杆的端部设置有凸起的端头,端头朝向桁架的方向设置有弹簧;所述弹簧的一端固定在端头上,弹簧的另一端设置有接触桁架端部的承载板;在桁架与滑杆间的滑移过程中,其往复移动的瞬间需要克服惯性力的作用去改变运动的方向,造成了摆杆驱动托壳移动的势能浪费;本发明通过设置在滑杆凸起的端头上的弹簧,在桁架滑动方向变化的端点处,将其惯性作用力传递至弹簧的形变中储存起来,并在桁架变向移动的脱离瞬间,将弹簧中储存的势能释放出来,保持桁架在滑杆上的移动速率,提供给托壳足够的振动作用,且弹簧上设置的承载板使得对桁架作用力处均衡的平面上,从而提升了定向反光膜制作工艺的运行效果。
优选的,所述弹簧的端部还设置有托杆,托杆安装在端头上,托杆在控制器的调节下改变端头上的弹簧伸出量;反光膜的制作过程中,通过改变不同型号的薄片进行相应立方角锥微结构的反光膜制作,使得托壳的振动作用需要进行相应的改变,促进薄片间组合的贴合状态,在调节了电机的运行功率后,需要相应改变桁架与滑杆间的相互作用状态,共同提升对托壳振动状态的调节效果;本发明通过设置在端头上的托杆,利用托杆在端头上的位置改变,控制弹簧的伸出量,进而调节了桁架滑动的行程,从而提升了定向反光膜制作工艺的运行效果。
本发明的有益效果如下:
1.本发明通过设置的模架来控制反光膜注塑模具的工序过程,均衡模腔内部聚酯塑料的分布状态,精确控制其温度状态;设置在托壳与托板上的浅槽与嵌槽,确保托板与托壳间的相互贴合状态;设置在托壳上环绕的通孔,使得棱槽对模具降温过程的热量经托壳中的通孔排出,增强了模具的散热量。
2.本发明通过设置在托壳外壁上的滑杆,配合摆杆下端的桁架,使得摆杆摆动的动作转化为滑杆在桁架的水平面上的移动,确保模具中组合安装薄片间的贴合状态;设置在滑杆凸起的端头上的弹簧,保持桁架在滑杆上的移动速率;设置在端头上的托杆,利用托杆 在端头上的位置改变,控制弹簧的伸出量,调节了桁架滑动的行程。
附图说明
下面结合附图和实施方式对本发明进一步说明。
图1是本发明中定向反光膜的制作工艺的流程图;
图2是本发明中模架俯视角度的爆炸图;
图3是本发明中模架仰视角度的爆炸图;
图4是图2中A处的局部放大图;
图5是图2中B处的局部放大图;
图中:托壳1、母模11、公模12、浅槽13、通孔14、摆杆2、支腿3、电机31、托板4、棱槽41、凸台42、嵌槽43、伸缩架5、滑块51、油缸52、滑杆6、端头61、弹簧62、承载板63、托杆64、桁架7。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如图1至图5所示,本发明所述的一种定向反光膜的制作工艺,该工艺步骤如下:
S1、压模加工:在薄片的端面上加工出立方角锥的微结构,并通过镍电铸对薄片进行表面处理,且控制薄片的厚度使其端面上分布着单排的立方角锥;通过将薄片进行组合后形成的立方角锥平面,替代了整体加工立方角锥平面结构的高精度要求,便于加工过程的实施;
S2、合模注塑:将S1制得的薄片安装至母模11中使其相互贴合,然后将公模12合装至母模11上,并将盒装后的模具固定在模架上,通过模架将模具加热至210-240℃后,把熔融态的聚酯塑料注入模具的型腔中,注塑工序控制在10-15s内完成,且注塑过程中的模具温度以3-4℃/s的速度继续升高;通过控制注塑过程中逐渐升高的模具温度,利于维持模腔内部熔融态聚酯塑料的流动性能,均衡其在模腔中的分布状态,并降低了注塑工序消耗的时间;
S3、热压定型:在S2中的注塑工序完成后,控制模架继续将模具升温20-40℃并维持3-5h,待其自然冷却至220℃后,启动模架上的制冷片对模具进行主动降温,使其温度在30min内降低至90℃以下,然后将模具恢复至自然冷却的状态至室温,获得反光膜的预制品;注塑完成后对模具进行的二次升温过程,利用聚酯塑料的热膨胀作用,加大了其在模腔中承受的作用力,且模腔中的主动降温过程,减少了工序耗时的同时稳定均质熔融态聚 酯塑料的形状,主动降温后的自然冷却阶段,对聚酯塑料中的内应力进行时效处理,确保了反光膜预制品的质量;
S4、硬化涂覆:把S3中的反光膜预制品转移至固化室的恒温恒湿条件下进行硬化处理,并向其立方角锥微结构的表面上涂覆聚碳酸酯材料形成一层透明基质,为反光膜结构提供保护,然后在反光膜的底面上涂抹黏结剂并粘附封皮;对反光膜进行的硬化和表面涂覆,维持了反光膜的有效使用寿命;
其中,S2-S3中所述的模架包括托壳1、摆杆2和控制器;所述托壳1中安装有母模11,母模11的上方设有公模12;所述托壳1的两侧设有摆杆2,摆杆2的外侧设有转动安装的支腿3,支腿3上设置有驱动的电机31;所述托壳1的内部设有托板4,托板4的周向边缘与托壳1的内壁间滑动接触,托壳1与托板4间设有伸缩架5相连接;所述托板4在伸缩架5的控制下在托壳1的底部与端口的位置间进行移动;所述托板4的上表面设置有间歇排布的棱槽41,棱槽41中安装有制冷片;所述托板4上的棱槽41间的凸起设置为凸台42,凸台42中安装有电磁加热圈;所述控制器用于调节模架的运行;使用时,启动控制器由伸缩架5将托板4顶起至托壳1的端口处,然后将母模11放入托板4上并使其降至托壳1的底部,再将公模12安装至托壳1中的母模11上,由于薄片组合形成的立方角锥面,在安装至母模11后其薄片间的相互接触状态,同时影响到立方角锥面的精度,且在注塑过程中模具的温度变化,需要进行精确的控制,否则会降低注塑成型的反光膜质量;因此,本发明通过设置在托壳1两侧的摆杆2,配合摆杆2转动安装的支腿3,在将母模11放入至托壳1后,通过控制器使电机31带动托壳1摆动起来,使母模11中的薄片受到往复作用产生相互的振动,加强薄片间的紧密贴合状态,且设置在凸台42中的电磁加热圈与棱槽41中的制冷片,为安装的母模11提供均衡的加热与降温作用,达到对模具的温度控制;本发明利用了设置的模架来控制反光膜注塑模具的工序过程,通过摆杆2驱动托壳1的振动,均衡模腔内部聚酯塑料的分布状态,保持薄片组合的立方角锥整体的平面度,并利用托壳1对模具的包裹状态,在模具底部的托板4的作用下精确控制其温度状态,满足反光膜制作工序中的温度调节需求,从而提升了定向反光膜制作工艺的运行效果。
作为本发明的一种实施方式,所述托壳1的底部设置有浅槽13;所述托板4的底部设置有嵌槽43,嵌槽43与浅槽13的位置相对应;所述伸缩架5的端部设置有铰接的滑块51,滑块51分别安装在浅槽13与嵌槽43中;所述滑块51与浅槽13的端部间还设置有驱动的油缸52;托壳1中的伸缩架5用来驱动托板4的升降,需要控制托板4降至托壳1 底部时其间的相互接触状态,以确保托壳1的振动作用完全传递至托板4上的模具中,并减少托壳1包裹模具所需的体积;通过分别设置在托壳1与托板4上的浅槽13与嵌槽43,使得伸缩架5在收缩后处于浅槽13和嵌槽43形成的空间中,确保托板4与托壳1间的相互贴合状态,并通过伸缩架5上铰接的滑块51,通过油缸52对伸缩架5的控制满足对托板4上承载模具重量的驱动,从而提升了定向反光膜制作工艺的运行效果。
作为本发明的一种实施方式,所述托壳1的周向上还设置有环绕的通孔14,通孔14与托板4上的棱槽41端部位置相对应;所述油缸52在控制器的作用下通过伸缩架5将托板4升起,使棱槽41与通孔14间相连通;反光膜工序中的降温过程,需要在托壳1、托板4和模具间进行相互配合,来达到对温度的有效控制,确保制作工序中的反光膜品质;本发明通过设置在托壳1上环绕的通孔14,在模具的降温过程中,通过移动托板4的位置将棱槽41与通孔14的位置间相连通,使得棱槽41对模具降温过程的热量经托壳1中的通孔14排出,增强了模具的散热量,达到了工序中的快速降温目的,从而提升了定向反光膜制作工艺的运行效果。
作为本发明的一种实施方式,所述托壳1与摆杆2的连接处设有滑杆6和桁架7;所述滑杆6固定在托壳1的外壁上,且其长度方向处于水平面上;所述桁架7与滑杆6间滑动接触,桁架7转动安装在摆杆2的底部;反光膜的制作过程中,通过摆杆2带动托壳1的摆动会使模具的振动处于倾斜方向,影响到模具中组合安装的薄片间的贴合状态,继而干扰到反光膜制作的品质;本发明通过设置在托壳1外壁上的滑杆6,配合摆杆2下端的桁架7,使得摆杆2摆动的动作转化为滑杆6在桁架7的水平面上的移动,进而使安装在托壳1中的模具受到的振动作用处于水平方向,确保模具中组合安装薄片间的贴合状态,从而维持了定向反光膜制作工艺的运行效果。
作为本发明的一种实施方式,所述滑杆6的端部设置有凸起的端头61,端头61朝向桁架7的方向设置有弹簧62;所述弹簧62的一端固定在端头61上,弹簧62的另一端设置有接触桁架7端部的承载板63;在桁架7与滑杆6间的滑移过程中,其往复移动的瞬间需要克服惯性力的作用去改变运动的方向,造成了摆杆2驱动托壳1移动的势能浪费;本发明通过设置在滑杆6凸起的端头61上的弹簧62,在桁架7滑动方向变化的端点处,将其惯性作用力传递至弹簧62的形变中储存起来,并在桁架7变向移动的脱离瞬间,将弹簧62中储存的势能释放出来,保持桁架7在滑杆6上的移动速率,提供给托壳1足够的振动作用,且弹簧62上设置的承载板63使得对桁架7作用力处均衡的平面上,从而提升了定向反光膜制作工艺的运行效果。
作为本发明的一种实施方式,所述弹簧62的端部还设置有托杆64,托杆64安装在端头61上,托杆64在控制器的调节下改变端头61上的弹簧62伸出量;反光膜的制作过程中,通过改变不同型号的薄片进行相应立方角锥微结构的反光膜制作,使得托壳1的振动作用需要进行相应的改变,促进薄片间组合的贴合状态,在调节了电机31的运行功率后,需要相应改变桁架7与滑杆6间的相互作用状态,共同提升对托壳1振动状态的调节效果;本发明通过设置在端头61上的托杆64,利用托杆64在端头61上的位置改变,控制弹簧62的伸出量,进而调节了桁架7滑动的行程,从而提升了定向反光膜制作工艺的运行效果。
使用时,启动控制器由伸缩架5将托板4顶起至托壳1的端口处,然后将母模11放入托板4上并使其降至托壳1的底部,再将公模12安装至托壳1中的母模11上;通过设置在托壳1两侧的摆杆2,配合摆杆2转动安装的支腿3,在将母模11放入至托壳1后,通过控制器使电机31带动托壳1摆动起来,使母模11中的薄片受到往复作用产生相互的振动,加强薄片间的紧密贴合状态,且设置在凸台42中的电磁加热圈与棱槽41中的制冷片,为安装的母模11提供均衡的加热与降温作用,达到对模具的温度控制;分别设置在托壳1与托板4上的浅槽13与嵌槽43,使得伸缩架5在收缩后处于浅槽13和嵌槽43形成的空间中,确保托板4与托壳1间的相互贴合状态,并通过伸缩架5上铰接的滑块51,通过油缸52对伸缩架5的控制满足对托板4上承载模具重量的驱动;设置在托壳1上环绕的通孔14,在模具的降温过程中,通过移动托板4的位置将棱槽41与通孔14的位置间相连通,使得棱槽41对模具降温过程的热量经托壳1中的通孔14排出,增强了模具的散热量,达到了工序中的快速降温目的;设置在托壳1外壁上的滑杆6,配合摆杆2下端的桁架7,使得摆杆2摆动的动作转化为滑杆6在桁架7的水平面上的移动,进而使安装在托壳1中的模具受到的振动作用处于水平方向,确保模具中组合安装薄片间的贴合状态;设置在滑杆6凸起的端头61上的弹簧62,在桁架7滑动方向变化的端点处,将其惯性作用力传递至弹簧62的形变中储存起来,并在桁架7变向移动的脱离瞬间,将弹簧62中储存的势能释放出来,保持桁架7在滑杆6上的移动速率,提供给托壳1足够的振动作用,且弹簧62上设置的承载板63使得对桁架7作用力处均衡的平面上;设置在端头61上的托杆64,利用托杆64在端头61上的位置改变,控制弹簧62的伸出量,进而调节了桁架7滑动的行程。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落 入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

  1. 一种定向反光膜的制作工艺,其特征在于,该工艺步骤如下:
    S1、压模加工:在薄片的端面上加工出立方角锥的微结构,并通过镍电铸对薄片进行表面处理,且控制薄片的厚度使其端面上分布着单排的立方角锥;
    S2、合模注塑:将S1制得的薄片安装至母模(11)中使其相互贴合,然后将公模(12)合装至母模(11)上,并将盒装后的模具固定在模架上,通过模架将模具加热至210-240℃后,把熔融态的聚酯塑料注入模具的型腔中,注塑工序控制在10-15s内完成,且注塑过程中的模具温度以3-4℃/s的速度继续升高;
    S3、热压定型:在S2中的注塑工序完成后,控制模架继续将模具升温20-40℃并维持3-5h,待其自然冷却至220℃后,启动模架上的制冷片对模具进行主动降温,使其温度在30min内降低至90℃以下,然后将模具恢复至自然冷却的状态至室温,获得反光膜的预制品;
    S4、硬化涂覆:把S3中的反光膜预制品转移至固化室的恒温恒湿条件下进行硬化处理,并向其立方角锥微结构的表面上涂覆聚碳酸酯材料形成一层透明基质,为反光膜结构提供保护,然后在反光膜的底面上涂抹黏结剂并粘附封皮;
    其中,S2-S3中所述的模架包括托壳(1)、摆杆(2)和控制器;所述托壳(1)中安装有母模(11),母模(11)的上方设有公模(12);所述托壳(1)的两侧设有摆杆(2),摆杆(2)的外侧设有转动安装的支腿(3),支腿(3)上设置有驱动的电机(31);所述托壳(1)的内部设有托板(4),托板(4)的周向边缘与托壳(1)的内壁间滑动接触,托壳(1)与托板(4)间设有伸缩架(5)相连接;所述托板(4)在伸缩架(5)的控制下在托壳(1)的底部与端口的位置间进行移动;所述托板(4)的上表面设置有间歇排布的棱槽(41),棱槽(41)中安装有制冷片;所述托板(4)上的棱槽(41)间的凸起设置为凸台(42),凸台(42)中安装有电磁加热圈;所述控制器用于调节模架的运行。
  2. 根据权利要求1所述的一种定向反光膜的制作工艺,其特征在于:所述托壳(1)的底部设置有浅槽(13);所述托板(4)的底部设置有嵌槽(43),嵌槽(43)与浅槽(13)的位置相对应;所述伸缩架(5)的端部设置有铰接的滑块(51),滑块(51)分别安装在浅槽(13)与嵌槽(43)中;所述滑块(51)与浅槽(13)的端部间还设置有驱动的油缸(52)。
  3. 根据权利要求2所述的一种定向反光膜的制作工艺,其特征在于:所述托壳(1)的周向上还设置有环绕的通孔(14),通孔(14)与托板(4)上的棱槽(41)端部位置相对应;所述油缸(52)在控制器的作用下通过伸缩架(5)将托板(4)升起,使棱槽(41)与通孔(14)间相连通。
  4. 根据权利要求3所述的一种定向反光膜的制作工艺,其特征在于:所述托壳(1)与摆杆(2)的连接处设有滑杆(6)和桁架(7);所述滑杆(6)固定在托壳(1)的外壁上,且其长度方向处于水平面上;所述桁架(7)与滑杆(6)间滑动接触,桁架(7)转动安装在摆杆(2)的底部。
  5. 根据权利要求4所述的一种定向反光膜的制作工艺,其特征在于:所述滑杆(6)的端部设置有凸起的端头(61),端头(61)朝向桁架(7)的方向设置有弹簧(62);所述弹簧(62)的一端固定在端头(61)上,弹簧(62)的另一端设置有接触桁架(7)端部的承载板(63)。
  6. 根据权利要求5所述的一种定向反光膜的制作工艺,其特征在于:所述弹簧(62)的端部还设置有托杆(64),托杆(64)安装在端头(61)上,托杆(64)在控制器的调节下改变端头(61)上的弹簧(62)伸出量。
PCT/CN2021/089969 2020-09-28 2021-04-26 一种定向反光膜的制作工艺 WO2022062393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011041956.8 2020-09-28
CN202011041956.8A CN112248359A (zh) 2020-09-28 2020-09-28 一种定向反光膜的制作工艺

Publications (1)

Publication Number Publication Date
WO2022062393A1 true WO2022062393A1 (zh) 2022-03-31

Family

ID=74234277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089969 WO2022062393A1 (zh) 2020-09-28 2021-04-26 一种定向反光膜的制作工艺

Country Status (2)

Country Link
CN (1) CN112248359A (zh)
WO (1) WO2022062393A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117325392A (zh) * 2023-11-24 2024-01-02 天津市合缘伟业轻质建材有限公司 一种塑性保温一体板加工的出料装置及使用方法
CN118456849A (zh) * 2024-07-12 2024-08-09 晋江恒起包装材料有限公司 一种肠衣膜吹膜冷却交换装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112248359A (zh) * 2020-09-28 2021-01-22 徐君东 一种定向反光膜的制作工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724737A1 (en) * 1993-10-20 1996-08-07 Minnesota Mining And Manufacturing Company Ultra-flexible retroreflective cube corner composite sheetings and methods of manufacture
CN101561523A (zh) * 2009-05-25 2009-10-21 浙江道明光学股份有限公司 具有微棱镜阵列结构的反光膜的生产方法
WO2012088921A1 (zh) * 2010-12-27 2012-07-05 浙江道明光学股份有限公司 一种具有微棱镜阵列结构的反光膜的生产方法
CN105372734A (zh) * 2015-11-02 2016-03-02 中国科学院重庆绿色智能技术研究院 微棱镜反光材料制作方法
CN112248359A (zh) * 2020-09-28 2021-01-22 徐君东 一种定向反光膜的制作工艺

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066370B2 (ja) * 1990-09-19 1994-01-26 アイシン精機株式会社 樹脂製装飾品およびその製法
JP3243629B2 (ja) * 1994-08-03 2002-01-07 ポリプラスチックス株式会社 光反射用部品の製造方法、及びその方法により製造される光反射用部品
DE19619462C1 (de) * 1996-05-14 1997-07-10 Hans Auer Verfahren zum Herstellen von mit bedruckten Etiketten versehenen Formkörpern nach dem sogenannten In-Mould-Labelling (IML) -Verfahren sowie Etikett für ein In-Mould-Labelling (IML) -Verfahren
CN101045323A (zh) * 2006-03-31 2007-10-03 蔡俊华 一种模内装饰印刷注塑的预制片材成型方法
CN101422946A (zh) * 2007-10-31 2009-05-06 比亚迪股份有限公司 模内装饰制品及其成型方法
CN101200156A (zh) * 2007-12-14 2008-06-18 无锡市红光标牌有限公司 一种表面装饰件及其制作工艺
CN101470220A (zh) * 2007-12-29 2009-07-01 一品光学工业股份有限公司 模造荧光塑胶镜片及其制造方法
JP5217800B2 (ja) * 2008-09-03 2013-06-19 日亜化学工業株式会社 発光装置、樹脂パッケージ、樹脂成形体並びにこれらの製造方法
EP2686152B1 (en) * 2011-03-15 2016-04-27 3M Innovative Properties Company Method for ultrasonic-assisted injection molding of precisely-shaped articles
CN102692698B (zh) * 2012-06-06 2014-04-02 上海沪渝实业有限公司 聚光反射装置及其制作方法
CN103507205B (zh) * 2012-06-29 2016-01-27 联想(北京)有限公司 一种工件的制备方法
CN103963538A (zh) * 2013-02-01 2014-08-06 黄瑜贞 一种具有立体效果的印刷装饰膜及其装饰塑胶产品
CN104859088B (zh) * 2014-02-25 2017-10-10 北京龙发建筑装饰工程有限公司 Upvc墙面装饰板的注塑制造方法
EP3124233B1 (en) * 2014-03-24 2024-10-09 Dainippon Printing Co., Ltd. Decorative sheet and decorative resin-molded article
CN105313384A (zh) * 2014-06-16 2016-02-10 黄瑜贞 一种导光装饰复合片材及其部件
CN105563751A (zh) * 2014-10-17 2016-05-11 天津盛相电子有限公司 一种汽车配件注塑模具
CN205553098U (zh) * 2016-03-25 2016-09-07 天津市威利佳精密模具有限公司 一种带有顶出机构的精密塑胶模具
CN207014686U (zh) * 2017-05-17 2018-02-16 龙旗电子(惠州)有限公司 一种智能手机壳体生产模具
CN107231774B (zh) * 2017-07-31 2022-10-25 Oppo广东移动通信有限公司 电子装置外壳、电子装置及电子装置外壳加工方法
CN208410549U (zh) * 2018-03-13 2019-01-22 惠州建源塑胶制品有限公司 一种高效散热的注塑模具
CN208514903U (zh) * 2018-06-13 2019-02-19 深圳精坚精密塑胶模具有限公司 一种方便散热的手机模具
CN109866401A (zh) * 2018-12-05 2019-06-11 青岛再特模具有限公司 一种注塑加工过程的改进工艺
CN109866393A (zh) * 2019-03-05 2019-06-11 福建省靖虹模具科技有限公司 一种快餐盒系列的注塑模具
CN210233900U (zh) * 2019-06-24 2020-04-03 东莞市百皓塑胶五金科技有限公司 一种便于顶出的斜面结构注塑模具
CN110370549B (zh) * 2019-08-08 2020-06-19 佛山市赫森模塑科技有限公司 一种微发泡注塑成型模具
CN210634082U (zh) * 2019-08-26 2020-05-29 吴江市春鑫塑料厂有限公司 一种桶盖注塑专用模具
CN110524826B (zh) * 2019-09-06 2021-07-06 惠州市银新鹏科技有限公司 一种减少内应力避免翘曲的塑料注塑设备
CN110798555A (zh) * 2019-11-19 2020-02-14 东莞市源展毅实业有限公司 一种用于电子产品的双色内镜像软胶保护壳及其制备方法
CN211492632U (zh) * 2019-12-26 2020-09-15 佛山市畅虹铝业有限公司 一种具备高效散热功能的模具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724737A1 (en) * 1993-10-20 1996-08-07 Minnesota Mining And Manufacturing Company Ultra-flexible retroreflective cube corner composite sheetings and methods of manufacture
CN101561523A (zh) * 2009-05-25 2009-10-21 浙江道明光学股份有限公司 具有微棱镜阵列结构的反光膜的生产方法
WO2012088921A1 (zh) * 2010-12-27 2012-07-05 浙江道明光学股份有限公司 一种具有微棱镜阵列结构的反光膜的生产方法
CN105372734A (zh) * 2015-11-02 2016-03-02 中国科学院重庆绿色智能技术研究院 微棱镜反光材料制作方法
CN112248359A (zh) * 2020-09-28 2021-01-22 徐君东 一种定向反光膜的制作工艺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117325392A (zh) * 2023-11-24 2024-01-02 天津市合缘伟业轻质建材有限公司 一种塑性保温一体板加工的出料装置及使用方法
CN117325392B (zh) * 2023-11-24 2024-03-08 天津市合缘伟业轻质建材有限公司 一种塑性保温一体板加工的出料装置及使用方法
CN118456849A (zh) * 2024-07-12 2024-08-09 晋江恒起包装材料有限公司 一种肠衣膜吹膜冷却交换装置

Also Published As

Publication number Publication date
CN112248359A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022062393A1 (zh) 一种定向反光膜的制作工艺
CN201226062Y (zh) 一种low-e调光玻璃
CN201918420U (zh) 大功率led封装结构
CN208156223U (zh) 一种高色域均匀性的功能扩散板
CN101982892A (zh) 大功率led封装结构及封装方法
CN111025627A (zh) 一种基于pdms薄膜的全固态可变焦静电驱动式微透镜
CN110028921A (zh) 一种带颜色热熔胶、反光膜及其制备方法
JPH08238636A (ja) プラスチックシートの製造方法
CN204515178U (zh) 一种内表面具有微凸结构阵列的反射元件
CN108802876A (zh) 一种聚光太阳能模组用曲面镜的镀膜方法
CN108646460A (zh) 实现出射光全偏振的高密度像素阵列装置及其制作方法
CN102422431B (zh) 制造用于光伏器件的纹理板的方法
CN105058770B (zh) 一种快速聚合物微结构等温平板热压印工艺
CN102230981A (zh) 玻璃基有机硅复合菲涅尔透镜及透镜阵列及其制备方法
CN103144326B (zh) 一种光学膜体及光学膜体和光学膜母体的制造方法
WO2013181866A1 (zh) 聚光反射装置及其制作方法
CN114311633A (zh) 一种纹理膜片的内凹贴合手机盖制备方法
CN209633810U (zh) 一种复合材料模具
CN104742297A (zh) 一种内表面具有微凸结构阵列的反射元件及其制造方法
LU502711B1 (en) The preparation method of adaptive lens based on PDMS gel
CN220700200U (zh) 一种生产具有单面微结构薄膜的装置
JP6582584B2 (ja) プラスチック光学素子の製造方法
CN110618482A (zh) 一种高厚度均匀性聚酰亚胺薄膜衍射透镜的制备方法
CN201524643U (zh) 用于生产具有微棱镜阵列结构的反光膜的涂覆装置
CN211105705U (zh) 一种易脱模一次性生物降解手套生产模具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870781

Country of ref document: EP

Kind code of ref document: A1